List of all theorems which could be rewritten as transitivity property of used predicates theorem :: ABCMIZ_A:50 for t1,t2,t3 being expression of C st t1 matches_with t2 & t2 matches_with t3 holds t1 matches_with t3; theorem :: ABCMIZ_A:51 for A1,A2,A3 being Subset of QuasiAdjs C st A1 matches_with A2 & A2 matches_with A3 holds A1 matches_with A3; theorem :: ABCMIZ_A:52 for T1,T2,T3 being quasi-type of C st T1 matches_with T2 & T2 matches_with T3 holds T1 matches_with T3; theorem :: ABSRED_0:3 x =*=> y & y =*=> z implies x =*=> z; theorem :: ABSRED_0:7 x <=*=> y & y <=*=> z implies x <=*=> z; theorem :: ABSRED_0:35 x =+=> y & y =+=> z implies x =+=> z; theorem :: ABSRED_0:58 x <=+=> y & y <=+=> z implies x <=+=> z; theorem :: ALG_1:14 U1,U2 are_isomorphic & U2,U3 are_isomorphic implies U1,U3 are_isomorphic; theorem :: ALTCAT_2:8 for I,J,K being set, A being ManySortedSet of I, B being ManySortedSet of J, C being ManySortedSet of K holds A cc= B & B cc= C implies A cc= C; theorem :: ALTCAT_3:8 for C being category, o1,o2,o3 being Object of C st o1,o2 are_iso & o2,o3 are_iso holds o1,o3 are_iso; theorem :: ANPROJ_1:2 are_Prop p,u & are_Prop u,q implies are_Prop p,q; theorem :: ARMSTRNG:12 for X being set, P, Q, S being Dependency of X st P <= Q & Q <= S holds P <= S; theorem :: ARYTM_1:3 x <=' y & y <=' z implies x <=' z; theorem :: ARYTM_3:67 r <=' s & s <=' t implies r <=' t; theorem :: ASYMPT_3:33 for f,g,h be Function of NAT,REAL st f negligibleEQ g & g negligibleEQ h holds f negligibleEQ h; theorem :: AUTALG_1:10 A is_transformable_to B & B is_transformable_to C implies A is_transformable_to C; theorem :: BAGORD_2:28 for a,b,c being bag of I st a divides b divides c holds a divides c; theorem :: BCIALG_5:1 x <= y & y <= z implies x <= z; theorem :: BHSP_3:12 seq1 is_compared_to seq2 & seq2 is_compared_to seq3 implies seq1 is_compared_to seq3; theorem :: BORSUK_3:3 for S, T, V being non empty TopSpace st S, T are_homeomorphic & T, V are_homeomorphic holds S, V are_homeomorphic; theorem :: BORSUK_6:42 a,b are_connected & b,c are_connected implies a,c are_connected; theorem :: BORSUK_6:79 for P, Q, R be Path of a, b holds P, Q are_homotopic & Q, R are_homotopic implies P, R are_homotopic; theorem :: CAT_1:60 a,b are_isomorphic & b,c are_isomorphic implies a,c are_isomorphic; theorem :: CAT_8:10 for C1,C2,C3 being composable with_identities CategoryStr st C1 ~= C2 & C2 ~= C3 holds C1 ~= C3; theorem :: CIRCTRM1:29 for S1, S2, S3 being non empty ManySortedSign st S1, S2 are_equivalent & S2, S3 are_equivalent holds S1, S3 are_equivalent; theorem :: CLOSURE3:4 for A,B,C be set holds A is_coarser_than B & B is_coarser_than C implies A is_coarser_than C; theorem :: CLVECT_2:68 seq1 is_compared_to seq2 & seq2 is_compared_to seq3 implies seq1 is_compared_to seq3; theorem :: CQC_SIM1:46 p,q are_similar & q,r are_similar implies p,r are_similar; theorem :: CQC_THE3:6 p |- q & q |- r implies p |- r; theorem :: CQC_THE3:9 X |- Y & Y |- Z implies X |- Z; theorem :: CQC_THE3:19 X |-| Y & Y |-| Z implies X |-| Z; theorem :: CQC_THE3:28 p |-| q & q |-| r implies p |-| r; theorem :: CQC_THE3:51 p <==> q & q <==> r implies p <==> r; theorem :: DIST_1:6 for S be finite set, s,t,u be FinSequence of S st s,t -are_prob_equivalent & t,u -are_prob_equivalent holds s,u -are_prob_equivalent; theorem :: EC_PF_1:44 for p be Prime, P,Q,R be Element of ProjCo(GF(p)) holds P _EQ_ Q & Q _EQ_ R implies P _EQ_ R; theorem :: EUCLIDLP:33 x1 // x2 & x2 // x3 implies x1 // x3; theorem :: EUCLIDLP:60 L0 // L1 & L1 // L2 implies L0 // L2; theorem :: FILTER_1:33 for L1,L2,L3 being Lattice st L1,L2 are_isomorphic & L2,L3 are_isomorphic holds L1,L3 are_isomorphic; theorem :: FSM_1:15 tfsm1, tfsm2-are_equivalent & tfsm2, tfsm3-are_equivalent implies tfsm1, tfsm3-are_equivalent; theorem :: FSM_1:16 q1, q2-are_equivalent & q2, q3-are_equivalent implies q1, q3 -are_equivalent; theorem :: FSM_1:42 tfsm1,tfsm2-are_isomorphic & tfsm2,tfsm3-are_isomorphic implies tfsm1,tfsm3-are_isomorphic; theorem :: FUNCTOR2:2 for A,B being transitive with_units non empty AltCatStr, F,F1, F2 being Functor of A,B holds F is_transformable_to F1 & F1 is_transformable_to F2 implies F is_transformable_to F2; theorem :: FUNCTOR2:8 for A,B be category, F,F1,F2 be covariant Functor of A,B holds F is_naturally_transformable_to F1 & F1 is_naturally_transformable_to F2 implies F is_naturally_transformable_to F2; theorem :: FUNCTOR3:33 F1, F2 are_naturally_equivalent & F2, F3 are_naturally_equivalent implies F1, F3 are_naturally_equivalent; theorem :: GAUSSINT:42 for x, y, z be G_INTEG holds x is_associated_to y & y is_associated_to z implies x is_associated_to z; theorem :: GCD_1:2 for R being associative non empty multLoopStr for a,b,c being Element of R holds a divides b & b divides c implies a divides c; theorem :: GCD_1:4 for R being associative non empty multLoopStr for a,b,c being Element of R holds a is_associated_to b & b is_associated_to c implies a is_associated_to c; theorem :: GLIB_000:85 G1 == G2 & G2 == G3 implies G1 == G3; theorem :: GRAPH_1:17 G1 c= G2 & G2 c= G3 implies G1 c= G3; theorem :: GROUP_1A:276 a,b are_conjugated & b,c are_conjugated implies a,c are_conjugated; theorem :: GROUP_1A:290 A,B are_conjugated & B,C are_conjugated implies A,C are_conjugated; theorem :: GROUP_3:77 a,b are_conjugated & b,c are_conjugated implies a,c are_conjugated; theorem :: GROUP_3:91 A,B are_conjugated & B,C are_conjugated implies A,C are_conjugated; theorem :: GROUP_6:67 G,H are_isomorphic & H,I are_isomorphic implies G,I are_isomorphic; theorem :: GROUP_9:55 G,H are_isomorphic & H,I are_isomorphic implies G,I are_isomorphic; theorem :: INT_2:9 a divides b & b divides c implies a divides c; theorem :: ISOCAT_1:15 A ~= B & B ~= C implies A ~= C; theorem :: ISOCAT_1:46 A,B are_equivalent & B,C are_equivalent implies A,C are_equivalent; theorem :: LANG1:8 n1 is_derivable_from n2 & n2 is_derivable_from n3 implies n1 is_derivable_from n3; theorem :: LATTAD_1:25 x [= y & y [= z implies x [= z; theorem :: LATTICES:7 for L being join-associative non empty \/-SemiLattStr, a, b, c being Element of L holds a [= b & b [= c implies a [= c; theorem :: LFUZZY_1:5 for R,S,T being Membership_Func of X holds R c= S & S c= T implies R c= T; theorem :: LMOD_6:18 V c= M & M c= N implies V c= N; theorem :: MATRIX10:45 M1 is_less_than M2 & M2 is_less_than M3 implies M1 is_less_than M3; theorem :: MATRIX_8:34 M1 is_similar_to M2 & M2 is_similar_to M3 implies M1 is_similar_to M3; theorem :: METRIC_2:1 for M being PseudoMetricSpace, x,y,z being Element of M holds x tolerates y & y tolerates z implies x tolerates z; theorem :: MFOLD_2:8 A1,A2 are_homeomorphic & A2,A3 are_homeomorphic implies A1,A3 are_homeomorphic; theorem :: MIDSP_1:23 p ## q & q ## r implies p ## r; theorem :: MODELC_2:34 F is_proper_subformula_of G & G is_proper_subformula_of H implies F is_proper_subformula_of H; theorem :: MODELC_2:35 F is_subformula_of G & G is_subformula_of H implies F is_subformula_of H; theorem :: MSUALG_3:18 for U1,U2,U3 being non-empty MSAlgebra over S holds U1,U2 are_isomorphic & U2,U3 are_isomorphic implies U1,U3 are_isomorphic; theorem :: MSUHOM_1:5 for S,S9,S99 be non empty ManySortedSign st S <= S9 & S9 <= S99 holds S <= S99; theorem :: NAT_D:4 i divides j & j divides h implies i divides h; theorem :: NATTRA_1:18 F is_transformable_to F1 & F1 is_transformable_to F2 implies F is_transformable_to F2; theorem :: NATTRA_1:23 F is_naturally_transformable_to F1 & F1 is_naturally_transformable_to F2 implies F is_naturally_transformable_to F2; theorem :: NATTRA_1:29 F1 ~= F2 & F2 ~= F3 implies F1 ~= F3; theorem :: NECKLACE:12 for R,S,T be non empty RelStr holds R embeds S & S embeds T implies R embeds T; theorem :: NECKLACE:13 for R,S,T be non empty RelStr holds R is_equimorphic_to S & S is_equimorphic_to T implies R is_equimorphic_to T; theorem :: NELSON_1:15 a <= b & b <= c implies a <= c; theorem :: NORMFORM:2 a c= b & b c= c implies a c= c; theorem :: ORDERS_2:3 for A being transitive RelStr, a1,a2,a3 being Element of A holds a1 <= a2 & a2 <= a3 implies a1 <= a3; theorem :: ORDERS_2:5 for A being transitive antisymmetric RelStr for a1,a2,a3 being Element of A holds a1 < a2 & a2 < a3 implies a1 < a3; theorem :: ORDINAL1:10 for A,B being set, C being epsilon-transitive set st A in B & B in C holds A in C; theorem :: ORDINAL4:37 A is_cofinal_with B & B is_cofinal_with C implies A is_cofinal_with C; theorem :: OSALG_1:2 for S being non empty non void OverloadedMSSign, o,o1,o2 being OperSymbol of S holds o ~= o1 & o1 ~= o2 implies o ~= o2; theorem :: OSALG_1:21 for w1,w2,w3 being Element of (the carrier of S)* holds w1 <= w2 & w2 <= w3 implies w1 <= w3; theorem :: OSALG_1:23 o1 <= o2 & o2 <= o3 implies o1 <= o3; theorem :: OSALG_3:10 for U1,U2,U3 being non-empty OSAlgebra of S1 holds U1,U2 are_os_isomorphic & U2,U3 are_os_isomorphic implies U1,U3 are_os_isomorphic; theorem :: OSALG_4:3 for R being non empty Poset, s1,s2,s3 being Element of R holds s1 ~= s2 & s2 ~= s3 implies s1 ~= s3; theorem :: PBOOLE:13 X c= Y & Y c= Z implies X c= Z; theorem :: PBOOLE:120 X [= Y & Y [= Z implies X [= Z; theorem :: PETERSON:9 e1 <= e2 & e2 <= e3 implies e1 <= e3; theorem :: PETERSON:12 e1 << e2 & e2 << e3 implies e1 << e3; theorem :: PNPROC_1:2 m1 c= m2 & m2 c= m3 implies m1 c= m3; theorem :: PRE_POLY:41 for n being Ordinal, p, q, r being bag of n st p < q & q < r holds p < r; theorem :: PRE_POLY:42 for n being Ordinal, p, q, r being bag of n st p <=' q & q <=' r holds p <=' r; theorem :: PUA2MSS1:30 for S1,S2,S3 being ManySortedSign st S1 is_rougher_than S2 & S2 is_rougher_than S3 holds S1 is_rougher_than S3; theorem :: QC_LANG1:21 s <= t & t <= u implies s <= u; theorem :: QC_LANG2:56 F is_proper_subformula_of G & G is_proper_subformula_of H implies F is_proper_subformula_of H; theorem :: QC_LANG2:57 F is_subformula_of G & G is_subformula_of H implies F is_subformula_of H; theorem :: QMAX_1:4 p |- q & q |- r implies p |- r; theorem :: QMAX_1:7 p <==> q & q <==> r implies p <==> r; theorem :: RING_3:44 for R,S,T being Ring st R,S are_isomorphic & S,T are_isomorphic holds R,T are_isomorphic; theorem :: RINGCAT1:5 G1 <= G2 & G2 <= G3 implies G1 <= G3; theorem :: ROUGHS_1:59 X _c= Y & Y _c= Z implies X _c= Z; theorem :: ROUGHS_1:60 X c=^ Y & Y c=^ Z implies X c=^ Z; theorem :: ROUGHS_1:61 X _c=^ Y & Y _c=^ Z implies X _c=^ Z; theorem :: RUSUB_5:3 for V being Abelian add-associative right_zeroed right_complementable non empty RLSStruct for M,L,N be Affine Subset of V st M is_parallel_to L & L is_parallel_to N holds M is_parallel_to N; theorem :: SETFAM_1:17 SFX is_finer_than SFY & SFY is_finer_than SFZ implies SFX is_finer_than SFZ; theorem :: SRINGS_5:74 a <= b & b <= c implies a <= c; theorem :: SRINGS_5:77 a < b & b < c implies a < c; theorem :: STACKS_1:13 s1 == s2 & s2 == s3 implies s1 == s3; theorem :: STACKS_1:46 X1,X2 are_isomorphic & X2,X3 are_isomorphic implies X1,X3 are_isomorphic; theorem :: UNIALG_2:2 U1,U2 are_similar & U2,U3 are_similar implies U1,U3 are_similar; theorem :: WAYBEL_1:7 for L1,L2,L3 being RelStr st L1,L2 are_isomorphic & L2,L3 are_isomorphic holds L1,L3 are_isomorphic; theorem :: WAYBEL_3:5 for L being non empty Poset, x,y,z being Element of L st x << y & y << z holds x << z; theorem :: WELLORD1:42 R,S are_isomorphic & S,T are_isomorphic implies R,T are_isomorphic; theorem :: WELLORD2:15 X,Y are_equipotent & Y,Z are_equipotent implies X,Z are_equipotent; theorem :: XBOOLE_1:1 X c= Y & Y c= Z implies X c= Z; theorem :: XBOOLE_1:56 X c< Y & Y c< Z implies X c< Z; theorem :: XXREAL_0:2 for a,b,c being ExtReal holds a <= b & b <= c implies a <= c; theorem :: YELLOW18:4 for A,B,C being category st A,B are_equivalent & B,C are_equivalent holds A,C are_equivalent; theorem :: YELLOW_4:4 for L being transitive RelStr, A, B, C being Subset of L st A is_finer_than B & B is_finer_than C holds A is_finer_than C; theorem :: YELLOW_4:7 for L being transitive RelStr, A, B, C being Subset of L st C is_coarser_than B & B is_coarser_than A holds C is_coarser_than A; theorem :: ZF_LANG:64 F is_proper_subformula_of G & G is_proper_subformula_of H implies F is_proper_subformula_of H; theorem :: ZF_LANG:65 F is_subformula_of G & G is_subformula_of H implies F is_subformula_of H; theorem :: ZFREFLE1:19 A is_cofinal_with B & B is_cofinal_with C implies A is_cofinal_with C;