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Abstract. We present an infrastructure that allows importing an initial
part of the Mizar Mathematical Library into the Isabelle/Mizar object
logic. For this, we first combine the syntactic information provided by
the Mizar parser with the syntactic one originating from the Mizar ver-
ifier. The proof outlines are then imported by an Isabelle package, that
translates particular Mizar directives to appropriate Isabelle meta-logic
constructions. This includes processing of definitions, notations, typing
information, and the actual theorem statements, so far without proofs. To
show that the imported 100 articles give rise to a usable Isabelle environ-
ment, we use the environment to formalize proofs in the Isabelle/Mizar
environment using the imported types and their properties.

1 Introduction

The Mizar project [10] has developed a language allowing users to write formal
mathematics similar to the way it is done in informal mathematical practice [3].
This convenience for the users however means that the Mizar system is the only
tool able to parse the language. Many exports of the Mizar Mathematical Li-
brary (MML) [1] to various formats and systems have been developed, including
variants of XML [24,21], TPTP [6], and OMDoc [12], however they are all static.
They allow inspecting the information contained in the Mizar library, presenting
it [26], searching, and even give proof hints [20], but do not allow any further
development of the proof scripts.

One of the reasons for this state-of-art is the architecture of the Mizar ver-
ifier. The verification of a Mizar proof script, called an article is performed by
a series of independent programs, that each check particular aspects of syntactic
and semantic correctness. Modules include derived information in the interme-
diate representation and drop the data which the checker will not need to certify
the proof. This final format, which is used by most of the exports, no longer con-
tains the original user input and it is usually not possible to completely restore
it.
? The paper has been supported by the resources of the Polish National Science Center
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Such lost information together with the processed script is necessary in our
project [17] aiming to certify the Mizar proofs in Isabelle and create an environ-
ment to further develop the Mizar Library in the Isabelle logical framework [29].
For this, we develop an application able to combine the syntactic and semantic
information available at the various stages of the Mizar processing. Such pro-
cessed information is suitable for importing it in Isabelle or other frameworks,
it could for example serve as a basis for a more complete import into OMDoc,
that would include user steps and notations.

We develop an Isabelle infrastructure able to import the processed Mizar
information into the Isabelle/Mizar object logic. Definitions of Mizar functions,
types, predicates, etc. are automatically processed giving rise to Isabelle/Mizar
constants together with their respective properties. Type inference information,
contained in Mizar registrations and clusters is transformed to Isabelle theo-
rems, that are furthermore put into special theorem lists that can be used by
Isabelle/Mizar type inference. Actual theorem (as well as lemma and theorem
scheme) statements give rise to corresponding statements in Isabelle with Mizar
notations transformed into similar Isabelle MixFix notations [28].

Contributions This paper introduces an infrastructure for importing an initial
part of the Mizar Mathematical Library into the Isabelle/Mizar object logic.
The particular contributions are:

– We create a combined syntactic-semantic export of the Mizar proof data. As
part of this we propose ways to match the processed semantic information
with the original proof script.

– We develop an Isabelle infrastructure able to process and import the first
100 MML articles (out of 1318) into Isabelle/Mizar, so far mostly without
proofs. The transferred values are loaded into the LCF environment in the
spirit of Isabelle/Import [14].

– The imported environment allows users to work with Mizar data inside Is-
abelle, with features including notations and type inference. We demonstrate
this by formalizing proofs depending on the imported parts of the library,
namely the beginning of the Mizar article NEWTON which defines factorials
and exponents and shows their basic properties.

Contents In Section 2 we discuss existing Mizar exports. Section 3 introduces
the Isabelle/Mizar object logic. In Section 4 we discuss the Isabelle import in-
frastructure. Section 6 discusses combining the syntactic information. As this is
mostly technical and not necessary to understand the previous sections, we chose
to present it at this point. Finally in Section 5 we show an example formalization
that uses the imported definitions, theorems, and Mizar type inference rules.

2 Existing Mizar Exports

This section introduces the process how Mizar processes a formalization, and
discusses the existing exports from Mizar which use various parts of this process.
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The Mizar system processes each formalization in multiple stages. The stages
are independent processes, which communicate using external files. There are
more than 20 types of such files. This large number allows different stages and
data exports to import only minimal information, which was crucial given the
memory limits 40 years ago, when Mizar was conceived. In 2005, Urban [24]
has modified the representation used in the intermediate stages to a slightly
more accessible XML format. This has been done relatively late, as the larger
representation does slow down the verification of the MML 1.67 times, but at
the same time it allowed external access of some of the Mizar information.

tarski.xml

<Proposition line="27" col="35">
<For pid="0" vid="2">
<Typ kind="M" nr="1" pid="1"><Cluster/><Cluster/></Typ>
<Is>
<Var nr="1"/>
<Typ kind="M" nr="2" pid="2"><Cluster/><Cluster/></Typ>
</Is>
</For>
</Proposition>

tarski.idx

<Symbol kind="I" nr="2" name="x"/>
tarski.eno

<Pattern kind="M" nr="1" aid="HIDDEN" formatnr="2" constrkind="M"
constrnr="1" relnr="1">

tarski.frm

<Format kind="M" nr="2" symbolnr="2" argnr="0"/>
tarski.dcx

<Symbol kind="M" nr="2" name="object"/>

Fig. 1. The statement of the theorem “Everything is a set” in Mizar XML together
with the information encoded in four other tarski XML files. These are necessary
to decode the information. In the statement, the <For pid="0"vid="2"> binds the
second occurrence of the symbol x, assigning it the type object, which corresponds
to pid="1". Similarly the <Is> node encodes the information that the variable bound
by the first x quantifier is of the type set pid="2".

The information processed by the first stages of Mizar is encoded in the
Mizar XML (an example statement presented in Fig. 1), with some of the origi-
nal syntactic information lost. All formulas are transformed to the Mizar normal
form (MNF), which uses only selected logical connectives (∧, ¬, >, and ∀) [4].
Furthermore, Mizar XML also uniquely identifies the constructors correspond-
ing to particular notations, fixes their arities, and expands some abbreviations.
For example the Mizar type Function of A,B is exported as quasi_total
Function-like Relation-like Element of bool [:A,B:] in the XML rep-
resentation.
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Later versions of Mizar XML included pid attributes containing information
about the notation and normalization, which allowed the generation of HTML
and a system for semantic browsing of the Mizar Library [4]. This information
is passed by the Analyzer to the Checker, however the latter ignores it.

The notations are re-constructed based on this information heuristically, how-
ever in some cases it is not possible to guess the original representation.3 Such
small inconsistencies do not have a significant influence on the rendered HTML.

Urban has also developed the Mizar Problems for Theorem Proving (MPTP)
export [25]. It is also based on the semantic XML representation. It aims to
provide problems for automated reasoning, cross-verification [27] of Mizar, and
more recently exploited for machine learning for theorem proving [13], and lemma
extraction [19]. The export uses an XSLT stylesheet to make all problems inde-
pendent from the Mizar environment, which allows consistent naming of symbols
across the whole corpus. The core of Mizar is based on first-order logic, however
the theorem and axiom schemes can also be exported to higher-order TPTP
problems based on the same information [6].

The MPTP translation closely represents the first-order top-level statements
of each article. Mizar types are represented as predicates. Definition blocks are
unfolded to separate axioms stating the return type, the parent type, and the
property of the introduced concepts. Similarly Mizar registrations (user-defined
type inference rules) become axioms about the types. Second-order objects can-
not be directly represented in the first-order format, therefore a fresh constant,
together with an axiomatization, is introduced for each instance. This is theo-
retically justified by the set theoretic axioms of replacement and comprehension.
This has been sufficient to translate the MML.

The MPTP representation was also used to import Mizar into OMDoc [12].
This means that the representation is semantically correct, but cannot reliably
represent the original syntax. In particular many notations and variable names
have been lost. Still this is enough to browse and search the Mizar library to-
gether with other theorem proving libraries.

Rather than extracting the information from the XML representation pro-
cessed by the checker, it is also possible to use the intermediate output of the
parser. This approach has been used by Weakly Strict Mizar (WSX) [21] and
More Strict Mizar (MSX) [7] which export subsequent syntactic layers. The aim
of WSX (presented in Fig. 2) is to provide a standalone parser for Mizar arti-
cles, that can be used by external tools. MSX is an extension of WSX, where
the representation is additionally augmented by variable information: variables
are categorized as reserved, free, bound, or local constant together with unique
identifiers and implicit quantifiers are made explicit. Both syntactic exports have
complete information about the user input, but do not include any derived in-

3 These rarely affect the HTMLization of the current Mizar library, see for
example http://mizar.uwb.edu.pl/version/current/html/funct_2.html#
FC4 where the expression K3(g,f) includes K3 rather than f * g. Note the reverse
order or arguments.

http://mizar.uwb.edu.pl/version/current/html/funct_2.html#FC4
http://mizar.uwb.edu.pl/version/current/html/funct_2.html#FC4
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<Proposition>
<Label idnr="0" spelling="" line="27" col="5"/>
<Universal-Quantifier-Formula line="27" col="5">
<Explicitly-Qualified-Segment line="27" col="5">
<Variables>
<Variable idnr="2" spelling="x" line="27" col="7"/>
</Variables>
<Standard-Type nr="2" spelling="object" line="27" col="20"/>
</Explicitly-Qualified-Segment>
<Qualifying-Formula line="27" col="35">
<Simple-Term idnr="2" spelling="x" line="27" col="28"/>
<Standard-Type nr="1" spelling="set" line="27" col="35"/>
</Qualifying-Formula>
</Universal-Quantifier-Formula>
</Proposition>

Fig. 2. The statement of the theorem “Everything is a set” in Weakly Strict Mizar.
WSX includes all user input, exactly as it was typed by the user and parsed in a
tree form. The proposition without a label states that the explicitly universally bound
variable x is of type set.

formation. In particular the disambiguation and hidden arguments are missing,
and are very hard to reconstruct for any external tool.

3 Isabelle and the Mizar Object Logic

Isabelle [29] is a logical framework, that is a proof assistant designed for the pur-
pose of defining logics and working in these logics. The foundations of Isabelle
are a variant of simple type theory with ML-style polymorphism. Isabelle’s im-
plementation is based on a relatively small kernel implemented in Standard ML.
It includes functionality that makes it convenient to define constants present in
logics, basic inference rules, notations, and the procedures specific to particular
logics.

In our previous work we formally defined the semantics of Mizar as an Is-
abelle object logic [18]. This included mechanisms that allowed for the definition
and use of Mizar types, introduction of meta-level constants and predicates, and
the use of Mizar quantifiers. The notations of the resulting Isabelle/Mizar object
logic have been optimized [16] allowing a combination of Mizar definitions with
Isabelle-style ones, some hidden arguments, re-definitions, as well as extended
constructions present in the Mizar library such as set comprehensions and struc-
tures. We finally defined a type inference mechanism for Isabelle/Mizar [15]. This
Isabelle/Mizar object logic, serves as the basis for the imported Mizar library.
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4 Isabelle Import Infrastructure

In this section we discuss the import of an already pre-processed Mizar library
article. An outline of the procedure preparing an article for import will be dis-
cussed in Section 6.

Isabelle already includes a package that allows importing proofs originating
from HOL Light and HOL4 [22,14] as well as one for importing the OpenTheory
library articles [11]. Both of these are restricted to higher-order logic and only
include higher-order logic kernel specific basic inference steps. The Mizar articles
do not include any basic inference steps, but rather specify the different kind of
Mizar language items: Mizar style definitions, actual proved statements or user
proved type inference rules. The existing package are therefore insufficient for
our purposes, in fact none of the Isabelle HOL/Import rules could be re-used.

We therefore propose a new format to represent Mizar article to import,
which will consist of (possibly nested) sequences of commands. In practice, we
will represent the article in XML with different tags corresponding to the possible
Mizar proof script items.

The architecture of the Mizar import will be influenced by the Isabelle com-
munity’s experience with HOL/Import. The first version of HOL/Import [22]
attempted to syntactically create Isabelle theory files corresponding to the im-
ported articles. It was soon realized, that the input syntax of Isabelle changes
significantly with successive versions and it was too much work to keep the output
of HOL/Import up to date with it. Therefore, the newer version of HOL/Import
does not attempt to generate an Isabelle theory file source, but rather processes
the values directly, giving rise to an environment with the definitions and the-
orems pre-loaded, together with documentation that a user can use instead of
a theory file, to further develop the formalizations. This approach came to be a
viable one, and did not need significant updates since its creation. In our current
work we imitate the latter approach.

A common part shared by the import of the various Mizar item types are
Mizar propositions, terms, and types all of which will be imported as Isabelle
terms. To simplify this process, the term representation exported from Mizar
will include all the necessary information to represent the knowledge in a logical
framework. All variables are guaranteed to be quantified and include their meta-
types (i.e., a Mizar type variable or a term variable or a propositional variable),
as well as the meta-types of their arguments in case of higher-order variables
(scheme variables). Applications and abstractions directly correspond to the Is-
abelle application and abstraction (abstraction is present in Mizar in case of
constructions such as quantifiers, set comprehensions, or the choice operator).
The seven constants corresponding to the basic predicate logic and five constant
corresponding to the foundations of Mizar are mapped explicitly to their Isabelle
counterparts. Finally, we also map manually the five constants corresponding to
the axiomatic Mizar article HIDDEN. All subsequent constants will be defined
by the imported Mizar articles.

Mizar definitions need to be presented in a format that can be accepted by
Isabelle. This means equations, where left-hand side consists of the newly intro-



Towards the MML in Isabelle 7

duced concept possibly applied to some arguments. To fit the various kinds of
Mizar definitions (including definitions of types, functions, predicates, and struc-
tures, conditional definitions, definitions by means, synonyms, and antonyms) in
this format, we create a local theory context with assumptions, in that context
define the constant, and apply definitional theorems. Such theorems give rise to
definition correctness obligations (such as for example existence and uniqueness
for functions defined by means). The proof obligations are currently assumed
– this will be discussed in future work. Finally, suitable derived theorems are
declared and exported to the global theory and attributes (such as its use in the
type inference mechanism) are applied.

Actual theorems and lemmas are straightforward to process, as we do not
import the proofs yet. The statement is fully transformed to an Isabelle cor-
responding statement. There are two special cases of theorems. Mizar type in-
ference rules (referred to as clusters in Mizar) need to be further processed and
added to specific type inference lists. Mizar schemes give rise to higher-order the-
orems, therefore Mizar variable declarations need to be transformed to Isabelle
assumptions.

The general methods for translating definitions will be discussed in Sec-
tion 6.3. Here we will only give an example of a definition that provides two
types of information, the meaning of the defined object ordinal2_def_10 and the
Mizar type inference rule ordinal2_def_ty.
definition
let fi be Ordinal−Sequence;
given A such that
A is_limes_of fi;

func lim fi → Ordinal means
it is_limes_of fi;

end;

thm ordinal2_def_10
fi is Ordinal-SequenceORDINAL2M1 =⇒
∃A : OrdinalORDINAL1M3. A is-limes-of fi

=⇒ lim fi is-limes-of fi
thm ordinal2_def_10_ty
fi is Ordinal-SequenceORDINAL2M1 =⇒
lim fi is OrdinalORDINAL1M3

5 Mizar-style Proof Development in Isabelle

In this section we present a case study, which shows the usability of the imported
part of the Mizar library in Isabelle. For this, we manually re-formalize selected
parts (1 reduction, 3 clusters, 6 theorems, and the definition proof obligations)
of the Mizar article NEWTON, which defines powers and factorials.

The article is not among the first 100 imported articles, and our export
infrastructure is not yet able to interpret the Mizar environments in order to
process it automatically. The NEWTON article depends (directly or indirectly) on
80 Mizar articles. All these are imported automatically, therefore the current for-
malization relies both on Mizar and on Isabelle when it comes to proof checking.
Importing the proofs will allow reducing the trust base to a single system.

In the paper we only present the statements, all the theorems have proofs
in the formalization, and so does the definition, as one needs to prove that
the result of the function is of the declared type. For correspondence, Isabelle
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theorem and constant names include their absolute MML addresses [25], we
however consider using more canonical Isabelle-like names [2]. We first define
the binary power function, Mizar version presented on the left for comparison:
definition
let x be Complex,

n be natural Number;
func x |^ n → number equals
Product (n |→ x);

mdef newton-def-1 (- - [90,0]91) where
mlet x is Complex,

n is natural|Number
func xn → number equals
Π (n 7→ x)

where n 7→ x denotes a constant sequence of length n, equal x everywhere.
Next, we prove a number of properties of the defined power operator. The

proofs make use of various concepts (including natural numbers, complex ad-
dition, finite products) from the imported articles. Furthermore, the declared
user type inference rules imported from previous articles are automatically used
by the Isabelle/Mizar type inference, which automatically handles a number of
reasonings about the soft types.
mtheorem newton-th-4:
z0 = 1

mtheorem newton-th-6:
zs +IN 1 = zs ∗C z

mtheorem newton-th-8:
xs +C t = xs ∗C xt

mtheorem newton-th-5:
z1 = z

mtheorem newton-th-7:
(x ∗C y)s = xs ∗C ys

mtheorem newton-th-9:
(xs)t = x(s ∗C t)

An example of the use of an imported statement is the induction on natural
numbers. It is used to show the user-level typing rule, that the power of a natural
number is also a natural number.
registration
let x, n be natural Number;
cluster x|^n → natural;
coherence proof

A0: n is Nat by TARSKI:1;
defpred P[Nat] means
x|^$1 is natural;

A1: for a being Nat st P[a]
holds P[a+1]

proof
let a be Nat; assume P[a];
then reconsider b = x|^a as Nat;
x|^(a+1) = b∗x
by Th6;

hence thesis;
end;

A2: P[0] by RVSUM_1:94;
for a being Nat holds P[a]
from NAT_1:sch 2(A2,A1);

hence thesis by A0;
end;

end;

mtheorem
mlet x is natural|Number, n is natural|Number
cluster xn → natural

proof
have A0:n is Nat using tarski-th-1 by simp
let ?P =
λit. xit is natural

have A1: for a be Nat st ?P(a)
holds ?P(a +IN 1)

proof(rule ballI,rule impI)
fix a assume [ty]:a be Nat and ?P(a)
hence [ty]:xa is natural|Number by mauto
have xa +IN 1 = xa ∗C x
using newton-th-6[of a] by mauto

thus xa +IN 1 is natural by mauto
qed mauto
have A2:?P(0) using newton-th-4 by mauto
have for a be Nat holds ?P(a)
using nat-1-sch-2[of ?P] A2 A1 by simp

thus xn is natural using A0 by simp
qed



Towards the MML in Isabelle 9

The Isabelle/Isar environment with Mizar proofs imported is already usable,
albeit the level of automation is still weaker than that of Mizar. Some of the
Mizar abbreviations have been introduced as definitions, and are therefore not
automatically unfolded. By specifying our own notations and additional registra-
tions, the environment becomes well usable, where even some of the complicated
proofs are of similar length to those of Mizar. It is however currently slower,
especially when it comes to selecting the background information: in the above
proof at some reasoning steps 139 typing judgements are derived automatically
and stored in an Isabelle theorem list. This is possibly due to the highly opti-
mized Mizar implementation, which uses arrays for all indexing and contrary to
Isabelle does not need to rely on bi-resolution.

6 Combining the Syntactic and Semantic Representations
of Mizar

In order to re-verify the Mizar proofs, we would like to export the individual proof
steps faithfully. The semantic Mizar XML introduced in Sec. 2 is insufficient
for many cases. In particular the term abbreviations, reservations, and hidden
quantifiers, which are already supported by Isabelle/Mizar, are not preserved in
Mizar XML, and a modification of the Mizar checker to preserve such information
would be a tremendous task, as the information would need to be correctly
processed by all parts of the large Mizar kernel. A simple example of two formulas
with exactly the same representation in XML is: α→ (β → γ) and (α∧ β)→ γ.
Even with the Mizar XML hints, the two are identical. This is a problem in
Isabelle, as there the proof skeleton must precisely correspond to the proof [30].
A further discussion of combining the proof steps is provided in [23].

6.1 Procedure Overview

The combination of the syntactic and semantic Mizar processing data consists
of two parts. First, we will match all the items from these both representations
filling the missing information, using a process similar to that of the Mizar anal-
yser. Then we will ensure that the combined information corresponds to our
Isabelle meta-model of Mizar [15], matching the constants and lists of arguments.
In the following we present the process in more detail.

First, we match single items (both top-level items and individual proof items).
Then we perform a full identification of all objects present in the item. Construc-
tors for all ambiguous terms are determined, and argument lists are expanded
by the hidden arguments computed by the Mizar analyser. To match this
with the transformed syntactic form, we modify the latter imitating some of
the analyser processes, including logical formula normalization, simplification
of selected constructions (such as predicate and attribute negations). This also
needs to identify the types of variables bound by the quantifiers and matching
atomic propositions, and further their term and subterm arguments recursively.
Additionally Mizar local abbreviations (Mizar syntax: set), which have been
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<proposition label="tarski_th_1">
<app>
<logic id="Ball" type="o" args="2" argsType="ty_abs"/>
<const id="HIDDENM1" type="ty" args="0" argsType="set"/>
<abs id="x" type="set" args="0">
<app>
<reservedconst id="IsType" type="o" args="2" argsType="set_ty"/>
<var id="x" type="set" args="0" argsType="set"/>
<const id="HIDDENM2" type="ty" args="0" argsType="set"/>
</app>
</abs>
</app>
</proposition>

Fig. 3. The formulation of the Mizar theorem “Everything is a set” with the combined
syntactic and semantic representation. All terms are expressed using applications and
abstractions of a meta-logic allowing an easy correspondence to the meta-model of
Mizar, in particular making it easy to express in a logical framework.

fully unfolded in the XML format, can be identified and folded, which is useful
to improve the legibility of proof texts. All Mizar constructions can be presented
as applications of meta-constants, which is unique and allows a uniform way
of processing the information, as was needed in the previous two sections. An
example of the combined information is presented in Fig. 3.

6.2 Background Information

The processing of a Mizar article requires a precisely defined environment. In
order to allow external processing, selected background information needs to
be transformed and exported. In Mizar these are of three kinds: clusters which
aid the computation of types in the presence of attributes, reductions which
denote rewrite rules, and identify, which resolves conflicts that arise when
identifying objects based on their arguments. Of course all of these are seman-
tically theorems, and could be exported as such (as is done for example by
MPTP [25]). Our import would however include its own type inference mech-
anisms, so we can export exactly the information Mizar has. In particular, we
include constants corresponding to each kind of background information (the
Isabelle/Mizar constructions are given in [16]). A limited use of this information
was shown in Section 5.

An example exported cluster and presented in Isabelle is:

registration
let f be one−to−one

Function;
cluster f" → one−to−one;

thm funct_1_cl_10
f is one-to-one =⇒
f is FunctionFUNCT-1M1 =⇒

(f −1) is one-to-one
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which states that the inverse of a one-to-one function is also one-to-one.

6.3 Definitions

We export each individual definition separately (rather than using Mizar def-
inition blocks) including all the available information for each definition. The
data that is again distributed between the different semantic processed files and
needs matching with the syntactic part to reconstruct the missing information.
For example a redefinition of a Mizar function, whose type has been expanded,
and the modification only concerns the right-hand side of the definition, the
folded type is only present in the correctness condition.

All kinds of defined objects (meta level functions, Mizar types and predicates)
require different information, however they share multiple common parts: a
unique binding allowing refering to the definition body (such as newton_def_1),
a unique constant definition, a notation, and the types of all the arguments of
the defined object including their dependent types (Mizar allows term arguments
in types), as well as the assumptions for conditional definitions. To preserve the
Mizar semantics and at the same time allow for uniformity, Mizar attribute def-
initions need to have their last assumption transformed to an argument. For
example the definition of an empty set uses X as an argument rather than an
assumption to reflect the meta semantics:

definition let X be set;
attr X is empty means
not ex x st x in X;

mdef xboole-0-def-1 (empty) where
attr empty for set means

(λX. ¬ (∃ x : object. x in X))

The definition body can usually be expressed directly, however many Mizar
constructs allow definitions per cases. For those, specific abstractions need to
be introduced, for example the (somewhat non-standard) definition of an ele-
ment of a set in Mizar is formulated as follows, while its export includes all the
information necessary to transform the cases to multiple implications:

definition
let X be set;
mode Element of X → set means
it in X if X is non empty

otherwise it is empty;

mdef subset-1-def-1 (Element -) where
mlet X is set
mode Element X → set means

(λit. it inTARSKIR2 X if X is non empty
otherwise λit. it is empty)

The final exported information from definitions are the properties of the
defined concepts, which can be introduced in Mizar definition blocks. Similar
to registrations, they can be expressed as theorems. Mizar does not include a
formulation of the properties, and we recover this meaning along with the syntax
in the exported environment. The reason for this in Mizar, is that the concept
cannot be used in the definition block. Therefore we recover the folded form of
each property:
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definition
let X, Y be set;
func X \/ Y → set means
for x holds
x in it iff x in X or x in Y;

existence...
uniqueness...
commutativity;
idempotence;

thm XBOOLE_0_def_3
X is set =⇒ Y is set =⇒
x in X ∪ Y ←→ x in X ∨ x in Y

thm XBOOLE_0K2_commutativity
∀X : set. ∀Y : set. X ∪ Y = Y ∪ X

thm XBOOLE_0K2_idempotence
∀Y : set. Y = Y ∪ Y

6.4 Redefinitions

Mizar redefinitions allow expanding and clarifying the information about already
existing objects. It is possible to modify any kind of object (function, predicate,
or Mizar type). There are four main categories of redefinitions, and we will need
to adapt the export process for each of the below categories:

1. Adding a notation to an object. The name and the visible arguments need to
be preserved, however the new notation can include more hidden arguments.

2. Changing the definition body of an object. This is particularly important,
as Mizar proofs must correspond to definitions, therefore showing the equiv-
alence of two definitions allows for different proof obligations when the defi-
nition is expanded.

3. Making the type more precise. The result types of functions can be refined,
as well as the mother type can be refined for Mizar types. For example the
exponential function could be defined with range type being the type of real
numbers. Later, the user can show that the result is also non-negative and
inform the type system about it.

4. Adding selected properties to defined objects.

Each redefinition introduces a notation, equivalent to the original constant,
with the additional arguments removed. Each modification of the definition body
is formulated as a theorem. These can later be processed in Isabelle by modifying
the default introduction and elimination rules, just like it is done for regular
definitions.

definition
let X, Y be set;
redefine pred X = Y means
X c= Y & Y c= X;

abbreviation
X =XBOOLE-0R4 Y ≡ X = Y

thm xboole_0_def_10
X is set =⇒ Y is set =⇒
X =XBOOLE-0R4 Y ←→ X ⊆ Y ∧ Y ⊆ X

Proving that the result of a function has a more precise type is semantically
close to a Mizar cluster (the two however require different syntax in Mizar). It
can of course be specified as a theorem, but we want to preserve both the syntax
and the semantics in our export, therefore we annotate the syntax and verify
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that the semantics are correct already in the imported setting and that such
rules can be used by the type inference mechanism:
definition
let p be FinSequence;
redefine func
dom p → Subset of NAT;

thm finseq_1_add_3
p is FinSequenceFINSEQ-1M1 =⇒
domRELAT-1K1 p is
SubsetSUBSET-1M2 NATNUMBERSK1

Redefinitions that include properties, can be exported in a similar way to
properties specified for original definitions. They give rise to uniquely identified
theorems about the exported constants and their property names:

definition
let X, Y be non empty set;
redefine pred X misses Y;
irreflexivity;

abbreviation
X missesSUBSET-1R1 Y ≡ X misses Y

thm SUBSET_1R1_irreflexivity
∀Y : non empty | set.
¬ Y missesSUBSET-1R1 Y

The Mizar language is very rich when it comes to notations. Notations are
used for example for predicate synonyms and antonyms, function synonyms,
or type abbreviations. Adding notations is very cheap, since all components of
Mizar reason modulo a congruence closure algorithm. Rather than clarify these
in the export, we imitate the Mizar syntax and semantics, by introducing a
new constant along with its syntax for each such introduced notation. The new
constant is defined to be equal to the previous one, modulo arguments. For
example, the domain of a relation is the projection of the relation on its first
component.

notation
let R be Relation;
synonym dom R for proj1 R;

abbreviation
domRELAT-1K1 R ≡ proj1 R

Just like with attributes, to correctly preserve the Mizar semantics we would
need to separate the last argument. However, as can be seen in the following
example, that last argument can be removed in case of notations. To give com-
plete semantics to an introduced type constant new defined in terms of an ex-
isting one old, rather than the Mizar x is new for x is old we need to define
new == old. A concrete example for the Mizar type of uncountable sets is:

notation
let X be set;
antonym X is uncountable

for X is countable;

abbreviation
uncountableCARD-3V6 ≡ non countable

7 Conclusion
We have proposed a combination of the syntactic and semantic Mizar in-
formation, creating an export that includes all the information needed to
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Theorems 5994
Lemmas 478
Definitions 1851
User typing rules 1517
Derived introduction and elimination rules 540
Object typing rules 448
Schemes 270
Definition Uniqueness 226
...

Total imported facts 11920
Table 1. Facts available in the Isabelle/Mizar environment, subdivided into major fact
categories.

import Mizar into a logical framework. We imported the first 100 articles
of the library into the Isabelle/Mizar object logic, which gives rise to 11,920
Isabelle imported facts of different kinds (see Table 1). The imported li-
brary is usable for further development. The first articles from the exported
Mizar, the import infrastructure, and our re-formalization are available at:

http://cl-informatik.uibk.ac.at/cek/cicm2018.tgz

The import process assumes a model of Mizar based on first order logic,
therefore by defining a similar model of Mizar in another logical framework the
import could be directly reproduced there. We have also exported most of the
proofs, but various transformations are necessary to import it in Isabelle. So far,
the import only verifies that the statements are consistent and type correct, only
importing the proofs would allow complete re-verification of the Mizar library.
This still poses a number of challenges. The Isabelle proof nested blocks are
weaker than the Mizar now construction [30]. The exported structures generate
a large number of selectors which we cannot process automatically yet. Finally,
even if Isabelle includes strong general purpose automation [5], it may not be as
powerful as the Mizar by tailored for the Mizar proofs.

The main future work that goes beyond importing and certifying the whole
Mizar library in Isabelle is to further develop the Isabelle/Mizar environment in
order to allow more convenient proof development. This includes more Mizar-like
infrastructure for notations that would allow overloading, disambiguation, and
hidden arguments. Furthermore, Mizar includes many tools that allow optimizing
complete proof scripts. We would like to generalize such tools to the level of a
logical framework. The presence of two libraries with dependencies can allow
improved proof automation [9]. Lastly, we also want to generate and provide
documentation for the articles imported in Isabelle, which will allow browsing
multiple prover libraries with proofs within one system [8].

http://cl-informatik.uibk.ac.at/cek/cicm2018.tgz
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