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Abstract—The Mizar project from its beginning aimed to make
a highly human oriented proof environment where the proof style
closely reflects the informal proofs style. The support is reflected
in the size of the largest consistent formal library — Mizar
Mathematical Library (MML). However, the Mizar system is the
only tool that provides full verification and further development
of the MML. In this paper, we present the progress in the
development of the Isabelle/Mizar project whose main goal is
independent cross-verification of the MML in Isabelle. We focus
on Mizar set comprehension operators that allow defining sets
that satisfy a given predicate. The development already covers
simple cases where the arity of predicates is limited to two.
We propose an infrastructure that provides a more elegant and
recursive approach to construct and to provide the main property
of set comprehension operators.

I. INTRODUCTION

M izar Mathematical Library (MML) [1] is one of the
most recognizable features of the Mizar system. Devel-

oped for almost three decades the library contains today more
than 1300 articles, 60000 proved theorems and covers many
areas of today’s mathematics from algebra, analysis, topol-
ogy including topological manifolds [2] and lattice theory [3]
that have not been formalized elsewhere. Therefore, it is not a
surprise that there exists a number of external tools that explore
the content of the MML to ensure human-readable access,
starting with automatically generated articles in the Journal of
Formalized Mathematics, searching tools as MML Query [4],
variants of XML format [5] and MMT logical framework [6].

On the other hand, the MML is often used as an extensive
theorems database, for instance, in the process of comparing
the performance of leading systems of Automatic Theorem
Proving (ATP) as well as a training data in machine learn-
ing, especially for developing and testing premise selection
methods [7]. However, the Mizar logic is a serious problem
for today’s efficient first-order ATP systems. It is important to
note that the Mizar is essentially a first-order system that is
based on the set theory, but the Mizar logic goes a little bit
beyond first-order in two cases:

• the Mizar schemes that are second-order theorems pa-
rameterized by the predicates and functions,

• the Mizar set comprehensions (referred to as Fraenkel in
the Mizar literature [8]) that allow defining sets of terms
whose arguments have given types and satisfy a given
predicate.
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Therefore, to translate and further to cross-verify the content
of the MML we have to choose between first and higher
order logic. Obviously, first-order logic is welcome from the
ATP point of view, but currently existing translations omit
each problem where second-order constructions occur or they
need to be expressed in first-order logic with the support of a
potentially infinite number of axioms [9]. On the other hand,
second-order Mizar problems have been cross-verified by
C. Brown [10] using higher-order automated theorem provers
Satallax and LEO-II with the support of only a few additional
axioms.

Isabelle/Mizar is a project whose main goal is an automatic
translation of the Mizar proof scripts from the MML to the
Isabelle framework, enabling cross-verification of the obtained
scripts, but in contrast to the existing translations it tries
to preserve types, commands and the structure of proofs
originally used [11], [12]. The project is also a unique from
the point of view of the order of logic. Namely, our object
logic created in Isabelle that expresses that the foundations
of the Mizar logic can be both an extension of first-order
and higher-order logic, that is, a user can switch between
the dependency on relatively poor Isabelle/FOL and the most
developed Isabelle object logic Isabelle/HOL [13].

In this paper, we discuss the progress in the Isabelle/Mizar
project in relation to the development of set comprehensions.
In our previous work [14] we proposed an equivalent of these
sets that can be defined as a meta-functor independently for
every arity of relevant predicates. Unfortunately, proofs of such
n-arity functor correctness require a lot of effort especially in
the case of predicates with many arguments.We will, therefore,
propose an infrastructure for a more elegant recursive proof of
correctness that is able to apply the proven property of n-ary
meta-functor to justify corresponding property of (n+1)-ary
one. We investigate the efficiency of our procedure up to the
maximum arity of the set comprehension used in the MML.
Currently, the maximum required n is 6.

In Section II we discuss existing methods that try to express
more advanced Mizar concepts in first-order and higher-
order systems. We mainly focus on solutions used to express
the Mizar set comprehension operators and the number of
additional axioms introduced for this purpose. After a short
introduction of the axiomatization used in our Isabelle/Mizar
project in Section III, we describe our concept of the Mizar
set comprehension in Section IV. The particular contributions
of this paper are:

• We propose a concept of the product of Mizar types that



is expressed in our semantics that is slightly more liberal
than the Mizar one. We use the concept in a new approach
to define Mizar set comprehension in a clear and elegant
way.

• We investigate the possibilities of our approach to prove
recursively the main property of the Mizar set comprehen-
sion operators, , i.e. , every set comprehension determined
by given functor, universe and predicate can be replaced
by a new constant whose members are exactly the values
of the function at each element of the universe that
satisfies the predicate.

II. SOLUTIONS IN EXISTING MIZAR TRANSLATIONS

A lot of work has been done to explore the MML by external
tools that struggle with many Mizar problems. J. Urban [15]
created the largest and the most comprehensive export of
MML, initially to the TPTP untyped first-order language where
each higher-order problems related to the set comprehension
and schemes have been omitted. To cover omitted cases
he uses the standard set-theoretic elimination procedure and
introduces a dedicated extension of the TPTP language to
make the entire MML available for first-order ATPs as a
part of the Mizar Problems for Theorem Proving (MPTP)
project [9]. Theoretically, all second-order problems could be
completely removed from the representation of the MML using
the following two rules:

• every reference to a given scheme can be redirected to
a copy of the scheme where the occurring second-order
variables have been instantiated by the corresponding
predicates and functions determined in the context of the
reference,

• every set comprehension can be replaced by a new
constant with an appropriate property that is guaranteed
by the Replacement axiom of Tarski-Grothendieck set
theory.

Obviously, the first solution generates a very large expansion,
since schemes in most cases refer to other schemes in their
justification. Additionally, the Replacement axiom that is orig-
inally formulated as a scheme in the MML

scheme ::TARSKI_0:sch 1
Replacement {A() → set,P[object,object]}:
ex X being set st for x being object holds

x in X iff ex y being object st y in A() & P[y,x]
provided
for x,y,z being object st P[x,y] & P[x,z]
holds y = z;

has to be replaced by a potentially infinite number of instances
of the axiom. These are necessary to decode the information.
The expression A() → set declares a “second-order” 0-arity
functor that, in this case, trivializes to a constant and can be
instantiated by a term of the type set; and the expression
P[object,object] that declares a “second-order” 2-arity
predicate that semantically can be instantiated by a formula
with two free variables of the type object. The second rule
also generates a potentially infinite number of axioms, since

the property of the new constant that replaces a given set
comprehension can be introduced as an axiom or proven using
the Replacement axiom.

A different approach to solve second-order Mizar problems
has been proposed by Kunčar [16] who tried to express
the content of the MML in the type system of HOL Light.
Obviously, the set comprehension operators and schemes can
be naturally expressed in higher-order logic. However, the
approach proposed by Kunčar was not able to cover more
advanced features of the Mizar type system and finally was
only sufficient to translate the first few simpler theories. A
successful attempt to cover second-order Mizar problems has
been done by C. Brown and J. Urban [10] where second-order
Mizar problems have been cross-verified using higher-order
automated theorem provers Satallax and LEO-II. However,
even in this case the set comprehension operators have been
axiomatized instead of defined, using a family of constants
replSepn that correspond to the n-arity set comprehension
operators.

III. MIZAR FOUNDATIONS IN ISABELLE

In our previous work [14], we defined a unique equivalent of
the Mizar foundations as an object logic in the Isabelle logical
framework that includes several definitional mechanisms, the
Mizar dependent type system including the structure types as
well as the second-order concepts. This equivalent is a result
of many experiments whose main goal was to simultaneously
express each Mizar components and minimize the number of
additional axioms and constants.

The current version of our semantic model of Mizar based
on the following Isabelle meta-level types and meta-level
constants:

typedecl Set
typedecl Ty
consts
ty-membership :: Set ⇒ Ty ⇒ o (infix be 90)
define-ty :: Ty ⇒ (Set ⇒ o) ⇒ (Set ⇒ o) ⇒Ty
choice :: Ty ⇒ Set (the -)

where Set corresponds to Mizar terms, Ty corresponds to
Mizar types, ty_membership specifies the relation between
terms and types, define_ty allows to define types, and choice is
the choice operator. Note that Mizar distinguishes syntactically
types for two kinds: modes that require the existence and
adjectives that can restrict modes. We have provided this
division in our logical framework before [17], but we have
combined these types to simplify our model. To preserve the
Mizar semantics we define a meta-predicate

inhabited(D) ←→ (∃Mx. x be D)

and assume it defining the bounded quantifiers

inhabited(D) =⇒
Ball(D, P) ←→ (∀Mx. x be D −→ P(x))

inhabited(D) =⇒
Bex(D, P) ←→ (∃Mx. x be D ∧ P(x))



where ∀M , ∃M correspond to the standard universal and
existential quantifiers of the logic (either Isabelle/FOL or
Isabelle/HOL), respectively.

Then to specify all necessary dependencies between terms
and types as well as the standard axiom of choice we introduce
only two axioms that extend the MML axioms, that is, are
defined in three axiomatic Mizar articles and are HIDDEN,
TARSKI_0, and TARSKI_A, are sufficient to introduce a full
semantic model of Mizar. It is important to note that keeping
such a small number of axioms is one of the main goals of
our project.

axiomatization where
def-ty-property: T ≡ define-ty(parent, cond, property) =⇒

(x be T −→ x be parent ∧ (cond(x) −→ property(x))) ∧
(x be parent ∧ cond(x) ∧ property(x) −→ x be T) ∧
(x be parent ∧ ¬cond(x) −→ inhabited(T)) and

choice-ax: inhabited(M) =⇒ (the M) be M

Note that the def_ty_property axiom seems to be unnecessar-
ily complicated and could be replaced by a stronger formula T
≡ define_ty(property) =⇒x be T←→ property(x). However,
our experience has shown that our formulation is weaker but
sufficient to define all the necessary concepts. For example,
we use the def_ty_property axiom to define the negation
of type, the intersection of types but also in the case of
more advanced concepts, for instance, the conditional functor
definitions where meaning (prop) of defined functor (df) is
formulated under some assumption (as).

definition NON (non - )
where non A ≡ define-ty(object, λ-. True,λ x . ¬ x is A)

definition ty-intersection (infixl | 100) where
t1 | t2 ≡ define-ty(object,λ-.True, λx. x be t1 ∧ x be t2)

abbreviation func-assume-means-prefix
(assume - func - → - means - [0,0,0,0] 10)

where assume as func df → ty means prop ≡
df = the define-ty(ty, λ-. as, prop)

It is also important to note that in our approach we use
the MML axioms or even the first few re-formalized articles
of the MML to define as well as to provide properties of
selected concepts, for instance, we use the root of the Mizar
type (object) in the above definitions.

IV. MIZAR SET COMPREHENSIONS IN ISABELLE

As it has been shown in Section II the Mizar set compre-
hension is one of the two second-order Mizar concepts that
require a lot of effort in any attempt to cross-verify the MML.

Generally, it allows to use a set of terms F(v1, . . . , vn)
whose arguments have given types (vi be Θi for i =
1, 2, . . . , n) and satisfies the formula P[v1, . . . , vn]. Note that
the Mizar semantic does not allow to define this operator
directly in a Mizar script (for more detail see [18]). Therefore,
the operator is built-in and is automatically expanded in terms
of set membership as follows:

x in {F(v1, . . . , vn) where v1 is Θ1, . . . ,vn is Θn:P[v1, . . . , vn]}

iff
ex v1 be Θ1, . . . ,vn be Θnst x=F(v1, . . . , vn)& P[v1, . . . , vn]

Obviously such a set is guaranteed to exist by the Replacement
axiom but only if every type Θi has sethood property to avoid
Russell’s paradox.

definition sethood-prop where
sethood-prop(M) ≡ ∃X:set. ∀ x: M. x in X

For example, if a type Θ has sethood property, then the
existence of the set {F(v) where v isΘ :P[v]} is a direct
consequence of the Replacement axiom substituted by the
set of all objects of the type Θ and the predicate λx y.
x=F(y) & P[y]. However, the construction of the suitable set
is generally a laborious process, since we need to construct the
Cartesian product of sets that cover particular types directly
from axioms. By using our re-formalization of the MML in
the Isabelle/Mizar system we can reduce the size of such
a justification using directly the Cartesian product defined
originally in the Mizar script ZFMISC_1 but the justification
is still quite tedious.

A. Recursive Justification of Freankel Obligations

A naive approach to constructing (n+1)-ary set compre-
hension operators using n-ary one fails in the original Mizar
semantics since we cannot define there the product types.
However, our semantics is slightly more liberal than that of
Mizar and it can be done using the def_ty_property axiom as
follows

definition ProdType-prefix (- × -)
where A × B ≡

define-ty(object,λ-. True, λx. x be pair ∧ x‘1 beA ∧ x‘2 beB)

where the pair type corresponds to the Mizar attribute pair and
x‘1, x‘2 correspond to the left and right projection of a given
term x that can be represented as a pair. Note that the attribute
and projections are originally defined in the Mizar article
XTUPLE_0. We give as an example of our re-formulation
definitions of the pair and the left projection.

mdef xtuple-0-def-1 (pair) where
attr pair for object means

(λX. ex x1,x2 be object st X=[x1,x2])

mdef xtuple-0-def-2 (- ‘1) where
mlet x be object
assume x is pair func x ‘1 → object means

(λit. for y1,y2 be object st x=[y1,y2] holds it = y1)

Then, based on the selected re-formalized theorems including
properties of the Cartesian product we provide that the product
of inhabited types is inhabited as well as that the product of
types that have sethood property also has the property

lemma PT-inhabited:
assumes inhabited(A) inhabited(B)
shows inhabited(A×B)

lemma PT-sethood:



assumes inhabited(A) inhabited(B)
sethood-prop(A) sethood-prop(B)

shows sethood-prop(A×B)

Next, we prove the PT_rule lemma that specifies a depen-
dence between a formula where an existential quantifier binds
a variable of a product type Θ1×Θ2 and a corresponding for-
mula where two quantifiers have been used to bind separately
variables of types Θ1, Θ2

lemma PT-rule:
assumes inhabited(T1) inhabited(T2)
shows (∃ x:T1×T2. uncurry(P)(x)) ←→

(∃ x1:T1. ∃ x2:T2. P(x1,x2))

where the uncurry operator is defined as follows:

abbreviation
uncurry(P) ≡ λx. P(x‘1,x‘2)

The PT_rule lemma can now be practically used to provide
a basic property of 2-arity set comprehension operator based
on the corresponding property of 1-arity ones.

theorem Fraenkel2E:
assumes inhabited(T1) inhabited(T2)

sethood-prop(T1) sethood-prop(T2)
shows x in Fraenkel1(uncurry(F),T1×T2,uncurry(P))

←→ (∃ y1:T1. ∃ y2:T2. x = F(y1,y2) ∧ P(y1,y2))
by (rule Ifft[OF - Fraenkel1], rule Ifft[OF - PT-rule],

auto simp add: assms PT-sethood PT-inhabited)

It is important to note the justification is a single Isabelle
tactic where we use all lemmas formulated above. Addition-
ally, modifying only the reference to the theorem we can
easily cover all cases up to the arity equals 6 (for more detail
see our formalization). Then it is easy to see that every set
comprehension operator can be defined as abbreviations for
an appropriately substituted 1-arity operator

Fraenkeln(F,Θ1,Θ2,. . .,Θn,Q) ≡
Fraenkel1( uncurry( . . . (uncurry(︸ ︷︷ ︸

n−1-times

F)). . .),

Θ1×Θ2×. . .×Θn,
uncurry( . . . (uncurry(︸ ︷︷ ︸

n−1-times

Q)). . .) )

V. CONCLUSION

We have presented the progress in our project aiming to
cross-verification the MML in Isabelle. In relation to our previ-
ous work [14] the proposed recursive approach is an important
step forward in defining more clearly Mizar set comprehension
operators. We have improved our solution in two aspects.
Namely, we indicate how to define more advanced cases based
only on the simplest case, i.e., the 1-arity set comprehension
operator and we reduce the proof of the main property of
Mizar set comprehension in more advanced cases to a single
Isabelle tactic. The detail of our formalization is available at:

http://alioth.uwb.edu.pl/~pakkarol/fedcsis2018/
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