
Adjective Clustering in the Mizar Type System

Adam Naumowicz

Institute of Informatics
University of Bia lystok, Poland

adamn@mizar.org

TYPES 2017, Budpest, May 29, 2017

adamn@mizar.org


About adjectives in Mizar

Main motivation: imitating as closely as possible the natural
language of mathematics with its rich syntax.

The idea was also present in de Bruijn’s famous Mathematical
Vernacular.

The support for adjectives in the Mizar language dates back to
1983/84, in a version called Mizar HPF (with hidden parameters
and functions).

In most (natural) languages that support adjectives, they form an
open class of words, i.e. it is relatively common for new adjectives to
be formed via derivation. In the formal context, this usually means
applying ’technical’ suffixes like ’-like’ or prefixes like ’being ’,
’having ’, or ’with ’ to predicates.

When attributes were introduced in Mizar, such changes were done
semi-automatically to numerous predicates previously defined in the
Mizar library.

A. Naumowicz

Adjective Clustering in the Mizar Type System



Adjectives/attributes terminology

Mizar “adjectives” are constructed using “attributes”.

They provide flexible type hierarchies in the collection of
interdependent Mizar articles forming the Mizar Mathematical
Library (MML).

Mizar adjectives are semantically variants of (dependent)
predicates, but with

natural language based syntactic form,
built-in type inference automation.

A. Naumowicz

Adjective Clustering in the Mizar Type System



Examples of attributes

Without implicit parameters:
definition

let R be Relation;

attr R is well_founded means

for Y being set st Y c= field R & Y <> {}

ex a being set st a in Y & R-Seg a misses Y;

end;

With an implicit parameter:
definition

let n be Nat, X be set;

attr X is n-at_most_dimensional means

for x being set st x in X holds card x c= n+1;

end;

With more implicit parameters:

definition

let S,T be TopStruct, f be Function of S,T;

attr f is continuous means

for P1 being Subset of T st

P1 is closed holds f" P1 is closed;

end;

A. Naumowicz

Adjective Clustering in the Mizar Type System



What is a “cluster of adjectives” in Mizar jargon?

A collection of attributes (constructors of adjectives) with boolean
values associated with them (negated or not) and their arguments.

The tree-like hierarchical structure of Mizar types is built by the
widening relation which uses such collections of adjectives to extend
existing types.

Grouping adjectives in clusters enables automation of some type
inference rules (encoded in the form of so called registrations).

Previously proved registrations can subsequently be used to

secure the non-emptiness of Mizar types (existential registrations),
allow formulating and automating relationships between adjectives
(conditional registrations),
store adjectives that are always true for instantiations of terms with
certain arguments (functorial registrations).

A. Naumowicz

Adjective Clustering in the Mizar Type System



Examples of registrations

Existential:
registration

let n be Nat;

cluster n-at_most_dimensional subset-closed non empty for set;

end;

Conditional:
registration

let n be Nat;

cluster n-at_most_dimensional -> finite-membered for set;

end;

Functorial (term):
registration

let n be Nat;

let X, Y be n-at_most_dimensional set;

cluster X \/ Y -> n-at_most_dimensional;

end;

A. Naumowicz

Adjective Clustering in the Mizar Type System



Biggest existential registration

registration

let C be empty with_identities CategoryStr;

let D be with_identities CategoryStr;

cluster identity-preserving multiplicative antimultiplicative

for Functor of C,D;

end;

A. Naumowicz

Adjective Clustering in the Mizar Type System



Adjective processing

Original semantics

Mostly syntactic role, i.e. the Analyzer module automatically
“rounded-up” the information from all available registrations to
disambiguate used constructors and check their applicability.
The semantic role was restricted to processing only the type
information for the terms explicitely stated in an inference.

Attributive statements as premises or conclusions were not
“rounded-up”.
The available automation did not take into account the potential of
applying registrations to every element of a class of equal terms
generated in the Equalizer module as a consequence of the equality
calculus.

Current optimized algorithm

“rounding-up” the, so called, “super clusters”, i.e. clusters of
adjectives collected from various representations of terms that
happen to be aggregated in the same equality class as a consequence
of equality processing.

A. Naumowicz

Adjective Clustering in the Mizar Type System



Examples

With these two typical functorial registrations for integers encoded in the
Mizar syntax:

registration

let i be even Integer, j be Integer;

cluster i*j -> even;

end;

registration

let i be even Integer, j be odd Integer;

cluster i+j -> odd;

end;

Mizar’s Checker module can, for example, infer automatically the
following statements as obvious for any i, j, e and o being integers:

e is even implies i*e is even;

e is even & o is odd implies e+o is odd;

e is even & o is odd implies (i*e)+o is odd;

e is even & o is odd & i = j*e + o implies e+i is odd;

A. Naumowicz

Adjective Clustering in the Mizar Type System



Some notes about Mizar equality classes

Equality classes are formed as a result of explicite equality
statements and other language constructs: set, reconsider as well
as e.g. built-in arithmetic.

Equality classes may have numerous representatives, as well as
multiple types, which in turn have their arguments of the same form,
and so on.

As a class may have several types and several term instances that
may match the same registration, the result of matching is a list of
instantiations of classes for the loci used in a registration.

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm

Cluster matching reuses some of the data structures previously
developed for the Unifier module.

An algebra of substitutions is used to contradict a given universal
formula.

The main difference is when joining instantiation lists:

in the Unifier the longer substitution is absorbed,
in the “super cluster” matching algorithm the longer substitution
remains.

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm’s basics

The calculus of (lists of) instantiations uses two binary functions, JOIN
and MEET with the following semantics:

JOIN(l1,l2) produces a union of lists l1 and l2, replacing shorter
substitutions with longer ones - unlike in the Unifier, where a shorter
list is always preferred as it is used for refutation

MEET(l1,l2) produces a collection of unions of two instantiations
(one from l1, the other from l2 provided they agree on the
intersection of their domains; again a shorter substitution is replaced
by a longer one if they both are inserted into this collection)

For convenience, two lattice-like constants:

TOP which denotes a trivial substitution (no loci to be substituted,
but all constants are matched)

BOTTOM which is an empty list of substitutions (no match found).

TOP and BOTTOM have the usual lattice properties, e.g. are neutral with
respect to the MEET and JOIN operations, respectively.

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm’s main functions

All these functions return as their result a (possibly empty) list of
substitutions of classes for loci in the registration.

For simplicity, we treat any class of terms E as a special kind of a
term - one that satisfies the condition E is CLASS.

To check if a given class E matches a conditional registration C we
generate substitutions which match both the type and the antecedent of
C:

match(E:term ,C:condreg)

begin

l:=match(E,C.type)

l:=MEET(l,match(E,C.antecedent))

return l

end

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm’s main functions - ctd.

In the case of a functorial registration F, the matching function generates
substitutions which match both the registered type and term of F.

If a substitution is found, it can be used to extend the cluster of the
equality class E.

F.type is just a radix type, the adjectives from the type’s cluster of
adjectives do not have arguments other than that of the type, so the
cluster does not have to be matched as such:

match(E:term ,F:funcreg)

begin

l:=match(E,F.type)

l:=MEET(l,match(E,F.term))

return l

end

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm’s main functions - ctd.

Matching a class E with a type T is just matching one by one all the
types of E with T:

match(E:term ,T:type)

begin

l:= BOTTOM

if E is CLASS then

for t in E.types do

l:=JOIN(l,match(t,T))

return l

end

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm’s main functions - ctd.

When types T1 and T2 are to be matched, they must denote the same
mode (T1.id=T2.id) as well as all their arguments must match:

match(T1:type ,T2:type)

begin

if T1.id=T2.id then

begin

l:=TOP

while n do

l:=MEET(l,match(T1.arg(n),T2.arg(n)))

end

else return BOT

return l

end

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm’s main functions - ctd.

Matching terms is the main part of the substitution process, since terms
are arguments of terms, types and adjectives. Therefore, all matching
must eventually come to this point.

A class E can be matched with a term T being a locus in a
registration if the type of T (T.type) and the cluster of adjectives of
T (T.cluster) match the class E. Having a valid substitution, we
merge it with (T<-E) (E is substituted for T).

If E is a class but T is not a locus, then we generate a union of
possible matches of instances of E (taken from E.terms) with T.

Otherwise, if E and T have the same kind and number (so E is not a
class and T is not a locus), then we simply match all their arguments:

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm’s main functions - ctd.

match(E:term ,T:term)

begin

if E is CLASS then

begin

if T is LOCUS then

begin

l:=match(E,T.type))

l:=MEET(l,match(E,T.cluster))

l:=MEET(l,(T<-E))

return l

end

else

begin

l:= BOTTOM

for t in E.terms do l:=JOIN(l,match(t,T))

return l

end

end

else

if E.id=T.id then

begin

l:=TOP

while n do

l:=MEET(l,match(E.arg(n),T.arg(n)))

return l

end

else return BOTTOM

end

A. Naumowicz

Adjective Clustering in the Mizar Type System



Cluster matching algorithm’s main functions - ctd.

Matching a class E with a cluster of adjectives (for matching an
antecedent of a conditional registration or a cluster accompanying the
type of a locus) can be split for clarity into the following two steps:
match(E:term ,L:cluster)

begin

l:=TOP

for a in L.adjectives do

l:=MEET(l,match(E,a))

return l

end

and finally matching single adjectives as below. An adjective A matches
some adjective in the cluster of a class E (E.cluster) if they denote the
same attribute, have the same value, and their arguments match:
match(E:term ,A:adjective)

begin

l:=BOT

if E is CLASS then

for a in E.cluster do

if a.id=A.id & a.bool=A.bool then

begin

l1:=TOP

while n do

l1:=MEET(l1 ,match(a.arg(n),A.arg(n)))

l:=JOIN(l,l1)

end

return l

end
A. Naumowicz

Adjective Clustering in the Mizar Type System



The cluster matching algorithm’s main loop pseudo-code

0. Create a dependence list for all equivalence classes in a given
inference. Let dep(E) denote a list of all classes in which E appears
as a term argument.

1. Put all classes into a set CLASSES
2. Proceed as below until CLASSES remains empty:

while CLASSES <> {} do

begin

take E from CLASSES

repeat

extended =:false

for C in CondRegs do

l:=match(E,C)

if l<>BOTTOM then

begin

extend E.cluster with l applied to C.consequent

extended :=true

end

for F in FuncRegs do

l:=match(E,F)

if l<>BOTTOM then

begin

extend E.cluster with l applied to F.consequent

extended=true

end

if extended then

CLASSES=CLASSES+dep(E)

until not extended

end

A. Naumowicz

Adjective Clustering in the Mizar Type System



Some interesting problems

Rounding up adjectives is computationally expensive, but relatively
simple if all the attributes are absolute, i.e. their only argument is
the subject.

In general, the subject may be defined with a type that has its own
(explicit or implicit) arguments, and so the adjective may have more
implicit arguments which complicates the “rounding-up” procedure.

Efficient “rounding-up” clusters of adjectives with many arguments
that can appear in clusters several times (but possibly with different
arguments) is another non-trivial issue.

A. Naumowicz

Adjective Clustering in the Mizar Type System


