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Preface

This monograph presents the recent results obtained by the Podlasie com-
puter scientists and their colleagues working among the wide world. The book
consists of sixteen chapters and is divided into four parts.

In Part I, comprising four chapters, some aspects of formalization of math-
ematics are presented. In Chapter 1, almost distributive lattices (ADL) being
structures defined by Swamy and Rao in 1981 as the generalization of ordinary
distributive lattices by removing certain conditions from the well-known axioma-
tization of these are considered. As distributive lattices are pretty well present in
the Mizar Mathematical Library (MML), also formal characterization of ADL in
terms of Mizar attributes and clusters are given. Many of the lemmas and coun-
terexamples can be obtained semiautomatically with the help of external provers
(e.g. Prover9 and MACE), and also internal Mizar utilities can improve human
work in this area. A new formalization of crucial parts of the chosen results
obtained by Rao is presented. The characterization of the class of generalized
almost distributive lattices is obtained as well.

The fundamental theorem of finite abelian groups, which describes the struc-
ture of these groups, is formalized in Chapter 2. Since the theorem underlies
the study of finite abelian groups, it is expected to become widely applied in
formalizing fields such as number theory and cryptology as future Mizar results.

In Chapter 3, an original theorem in auction theory is provided. It specifies
general conditions under which the sum of the payments of all bidders is granted
not to be identical to zero, and more generally – not to be constant. Moreover,
it explicitly supplies a construction for a finite minimal set of possible bids on
which such sum is not constant. In particular, the theorem presented applies to
the important case of the second-price Vickrey auction, where it reduces itself
to a basic result of which a novel, alternative proof is given. In order to enhance
the confidence in this new theorem, it has been formalized in Isabelle/HOL:
the main results and definitions of the formal proof are reproduced here in the
common mathematical language, and accompanied with an informal discussion
about the underlying ideas.

Chapter 4 is devoted to the analysis of algorithms with Mizar. The approach
proposed consists in the Mizar formalization of abstract concepts like algebra
of instructions, execution function, termination, and their substantiation in a
model with integers as the only data type and in models with abstract data
types. The proof of correctness of the algorithm Exponentiation by Squaring is
described.

Part II is devoted to the memory of Andrzej Trybulec, a pioneer of computer–
assisted formalization of mathematical problems. Over the last decades we wit-
nessed a number of successful instances of such formalization. Research in this
field has been boosted by the development of systems for practical formalization
of mathematics (proof assistants), creation of large repositories of computer–
verified formal mathematics, and integration of interactive and automated meth-
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ods of theorem proving. Proof assistants provide a very useful teaching tool suit-
able for undergraduate instruction, in particular for training beginning students
in writing rigorous proofs. Thus, interactive theorem proving is the main subject
of this part of the monograph. The part comprises five chapters.

The usage of extensionality of sets, possibly satisfying some additional prop-
erties, by proof checkers is presented in Chapter 5. In particular, it is shown how
extensionality influences proof tactics and equational calculus. Short descrip-
tions of Mizar constructions, having an impact on two basic Mizar modules:
Reasoner for supporting definitional expansions and Equalizer for computing of
the congruence closure of a given set of equalities, are collected.

Chapter 6 is devoted to the formal proof checking systems such as Mizar
and Isabelle/Isar. These systems can verify the correctness of proof scripts, both
easily readable and obscure. However, for humans like those analysing of the
main idea of a formal proof or redeveloping of fragments of reasoning to make
them stronger, the legibility has a substantial significance. Furthermore, proof
writers create still more and more complex deductions that cannot be shortened
to several steps by any tools currently available. Therefore, it is important to
understand better how we can facilitate the work of script readers modifying
the order of independent deduction steps or how we can reorganize the proof
structure by extracting lemmas that are obtained automatically. Experimental
results are presented, obtained with a method that improves proof legibility and
is based on human short-term memory.

Chapter 7 is devoted to a brief description of the logical and semantic ap-
proaches being developed in the Kyiv school of automated reasoning. This ap-
proach can be traced back to 1970, when academician V. Glushkov initiated
research on automated theorem proving in mathematics, which is known as the
Evidence Algorithm programme (EA) having many common theses with the
Polish Mizar project. A significant attention has been paid to the study and the
development of logic and semantics as well as a technique for logical inference
search. Carried out first at the Institute of Cybernetics of NASU, these investiga-
tions moved in 1987 to the Faculty of Cybernetics of the National University of
Kyiv, where now they are developed in two directions. The first direction is the
traditional one, centered mainly on the construction of proof methods in various
first-order logics. The second direction aims at developing of logics oriented on
semantic models of programs. It is expected that the results obtained will give
us a possibility to extend SAD with more expressive logical languages and more
powerful reasoning tools.

Though more and more advanced theorems have been formalized in proof
systems, their presentation still lacks the elegance of the mathematical writing.
The reason is that proof systems have to state much more details – a large
number of which is usually omitted by mathematicians. In Chapter 8, the au-
thors argue that proof languages should be improved into this direction to make
proof systems more attractive and usable – the ultimate goal of course being a
like-on-paper presentation. It has been shown that using advanced Mizar typing
techniques the results of formalization look pretty close to the mathematical
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paper style. Consequently, users of proof systems should be supplied with en-
vironments providing and automating these techniques, so that they can easily
benefit from these.

In Chapter 9, the author surveys and describes the implementation of par-
allelization of the Mizar proof checking and of related Mizar utilities. The im-
plementation makes use of Mizar’s compiler-like division into several relatively
independent passes, with typically quite different processing speeds. The infor-
mation produced in earlier (typically much faster) passes can be used to paral-
lelize the later (typically much slower) passes. The parallelization now works by
splitting the formalization into a suitable number of pieces that are processed in
parallel, assembling from them together the required results. The implementa-
tion is evaluated on examples from the Mizar library, and future extensions are
discussed.

Parts III and IV show a recent study in theoretical and applied computer
science. Part III contains four chapters devoted to optimization techniques and
decision-making processes.

Chapter 10 describes the project of innovative software component – LOG-
TRAVEL which supports planning and organization of touristic travels. The
implementation of LOGTRAVEL requires the solution of many optimization
problems on graphs. These problems are variations of a computationally diffi-
cult task called Orienteering Problem, also known under the Selective Travelling
Salesman Problem with Profits.

The new method of solving the Orienteering Problem with Time Windows
is provided in Chapter 11. The authors propose a hybrid heuristic which com-
bines genetic algorithms and the path relinking strategy. Computer experiments
has shown that the proposed method gives better solutions in comparisons to
the previous described in the literature algorithms. The proposed method can
be applied to solve realistic problem of planning the most valuable routes for
tourism.

Different types of graph weights representations used to solve the Time-
Dependent Orienteering Problem was shown in Chapter 12. The author has
applied three variants: real time-dependent weights, mean weights and the hybrid
of previous two. As optimization algorithm the randomized, local search was
used. Tests were conducted on real public transport network of Białystok.

Chapter 13 is devoted to applications of metasets in making decisions. Me-
tasets are designed to represent and process vague, imprecise data, similarly
to fuzzy sets or rough sets. The definitions of metaset and related notions are
directed towards efficient computer implementations and applications. The pro-
posed approach can be used in automated personalized tour-planning devices. In
particular, it can be a starting point in the Orienteering Problem. The authors
demonstrate an example of the application of first-order metasets to solving the
problem of finding the most appropriate holiday destination for a tourist on real
data from the city of Białystok.

Part IV refers to formal methods and data mining, in particular to the fol-
lowing three topics: (a) analysis of formal models of computer systems which are
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represented by graphs, (b) extracting knowledge from data structures, and (c)
structural analysis of musical pieces.

Chapter 14 presents the progress in the development of techniques for auto-
matically verifying correctness properties of finite-state software and hardware
systems. The authors deal with the problem of verification of properties ex-
pressible in the language of Metric Temporal Logic by means of Bounded Model
Checking. Model checking refers to the problem in which given a model of the
system, it is automatically checked whether this model meets a given specifica-
tion. In order to solve such a problem, both the model of the system and the
specification are formulated in some precise mathematical language. To this end,
it is formulated as a task in logic, namely to check whether a given structure
satisfies a given logical formula.

Chapter 15 is devoted to the problem of computer-aided diagnostics. Its aim
is to present an algorithm for finding action rules from medical databases. The
classical knowledge discovery algorithms have the potential to identify enormous
number of significant patterns from data. But at the same time people are over-
whelmed by a large number of uninteresting patterns. Therefore, a need for new
methods with the ability to assist users in analyzing a large number of rules for
a useful knowledge is seeking. An action rule is a rule extracted from a decision
system that describes a possible transition of objects from one state to another
with respect to a distinguished attribute called a decision attribute.

Chapter 16 focus on construction of specialized grammars covering music
information. The authors present a grammar-oriented searching operations for
analyzing a musical composition. They propose three operators (rhythm ratio,
scalar difference and half difference operator) that describe relations between
neighboring notes, regarding melody and rhythm. The operators can be used for
searching of transformed and non-transformed motives, analysis of melodic and
rhythmical sequences, structure discovery and comparative analysis of musical
pieces.

The main goal of this monograph is to report on some actual results and
directions of the research conducted both by computer scientists in Podlasie
and their colleagues in Poland and abroad. The exchange of ideas and, more
generally, the collaboration among various groups of researchers are clearly of a
paramount importance for the further development of computer science in our
region. The edition of the monograph was supported by the Polish Ministry of
Science and Higher Education.

Editors of the volume: Białystok, June 2014
Anna Gomolińska
Adam Grabowski
Małgorzata Hryniewicka
Magdalena Kacprzak
and Ewa Schmeidel
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Adam Grabowski

Institute of Informatics
University of Białystok

ul. Akademicka 2, 15-267 Białystok, Poland
adam@math.uwb.edu.pl

Abstract. Almost distributive lattices (ADL) are structures defined by
Swamy and Rao in 1981 as the generalization of ordinary distributive lat-
tices by removing certain conditions from well-known axiomatization of
these. As distributive lattices are pretty well present in the Mizar Math-
ematical Library (MML), we decided to give also formal characterization
of ADL in terms of Mizar attributes and clusters. Many of the lemmas
and counterexamples can be obtained semiautomatically with the help
of external provers (e.g. Prover9 and MACE), also internal Mizar utili-
ties can improve human work in this area. We formalized crucial parts
of the chosen papers of Rao (some of them are pretty recent), obtaining
also the characterization of the class of generalized almost distributive
lattices.

1 Introduction

The problem of the formalization of mathematics with the help of computer is
rather old. Finding equivalent sets of axioms for various classes of structures
was also a challenge for machine proof-assistants for years. Boolean lattices are
special field here, if we recall the solution of Robbins problem obtained with the
help of EQP/Otter prover by William McCune back in 1996. Also other varieties
of lattices are important for representation reasons, to enumerate here modular
or distributive ones, at least.

We decided to formalize this concrete topic for some reasons: one of them
was to eventually give the formal description of almost distributive lattices – the
topic which was suggested many years ago by Andrzej Trybulec. The other one
was to give some answers for open questions formulated by G.C. Rao (including
associativity of ADLs). Finally, we hoped to obtain uniform characterization
of these structures (including some generalizations) as in many papers their
axiomatization was not clear and unique (as e.g. zero was sometimes included
among the axioms, in other cases the structures were explicitly given as ADLs
with zero).

If we treat this just as giving another equationally-defined class of structures
(as modular, distributive, implicative, pseudo-complemented, etc.), the task is
not very hard; it can be also of rather minor interest as the impact of this

Trends in Contemporary Computer Science, Podlasie 2014, ISBN 978-83-62582-58-7
by A. Gomolińska, A. Grabowski, M. Hryniewicka, M. Kacprzak, E. Schmeidel (Eds.)
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specific class of almost distributive lattices for the mathematics as a whole is
rather small. On the other hand, recently we have proven a generalized version
of Nachbin theorem for spectra of distributive lattices, and we would try to apply
similar techniques in the case of ADLs.

The paper is organized as follows: at the beginning we draw the state of the
current formalization of the lattice theory within the Mizar Mathematical Li-
brary (MML); in Section 3 we show how much the problem of finding equivalent
(alternative) characterization of lattices was influential for the world of auto-
matic proof-assistants. The fourth section will explain the notion of an almost
distributive lattice and later we will show some details of the formalization of
ADLs within Mizar proof checker. Finally we draw some conclusions and plans
for future work.

2 Lattices in Mizar

Lattices can be defined by the well-known equational characterization (the struc-
ture 〈L,t,u〉, where t and u are binary operations defined on the non-empty
set L; both operations are commutative, associative and satisfy the absorption
laws).

The other definition, which is based on the ordering relation 〈L,6〉, assumes
that the binary relation 6 is reflexive, transitive, and antisymmetric, that is, 6
partially orders L, and all binary suprema and infima exist. Both approaches
are equivalent; the common structure in which we have the ordering relation
as a field in the structure and both lattice operations is relatively recent; we
eventually merged both into the single structure called LattRelStr (the details
of the approach can be found in [4]).

Relational-structure-based approach was heavily used when formalizing Com-
pendium of Continuous Lattices in Mizar [1] between 1996 and 2003 (a long-term
project, resulting in YELLOW and WAYBEL series, 58 articles in total). LATTICE se-
ries however was significantly older back to 1989 and Żukowski submission [14]
(this was the second article ever in MML using the notion of a structure).

Simple grepping reports 188 articles using LATTICES, but the real test is the
scanning of dno files (the files using not anything connected with LATTICES file –
including reserved symbols, e.g. "\/", but only the notation, which corresponds
with the actual use of the notion of a lattice). This searching reports 94 Mizar
articles; some of them are only construction of certain lattices (of subspaces of
a vector space, of subalgebras of an algebra, etc.), but still there’s a significant
number (as there’s about 1200 articles in the whole MML).

For sure, the author of original submission [14] had not a chance to foresee
the development of adjectives and clusters mechanism; it is not very strange
that, e.g. the existence of the zero element in a lattice was guaranteed by the
conjunction of four equalities (some of them are of course superfluous in the
general lattice). We still have some hard decisions to make: either to exchange
our approach with the original one or just to let things be developed in parallel
and to let them meet eventually in the area they have to meet. In our approach
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we wrote the next article in LATTICES series, so we are closer to equationally
defining class of structures rather that starting from the orderings – it’s not very
strange as the ordering occuring in Rao’s papers is not even partial order.

3 The Problem of Equivalent Characterizations

Giving equivalent axiomatizations, although not looking as a challenging point
for a human at a first glance (because it’s usually very labour-consuming task
and the results are not really innovative as they don’t push the theory too much
forward), can serve as a testbed for computer systems. Alternative characteri-
zation of Boolean algebras effected in probably one of the most famous results
obtained with the help of automatic theorem provers – the solution of Robbins
problem [7].

Various classes which arose in this direction and already present in MML are:
Sheffer stroke-based lattices – the characterization of Boolean lattices in

terms of the Sheffer stroke (x|y = x′ t y′), with the characterization of
Boolean algebras in terms of single short axiom (SHEFFER2);

Robbins algebras – the Mizar formalization of the solution of the Robbins
problem that satisfying the equation

(
(a+ b)′ + (a+ b′)′

)′
= a

(additionally + is associative and commutative, and the dual operation is
given by the ordinary de Morgan laws) makes the lattice Boolean (ROBBINS1,
both in the original version given by EQP/Otter, and in the significantly
shortened version);

Huntington algebras – this was the first step in the proof of the solution
of Robbins problem, contained also in ROBBINS1; Huntington axiom is (a′ +
b′)′ + (a′ + b)′ = a;

Short axiom systems – of course, the abovementioned Sheffer stroke is in-
cluded here; useful collection of various equational systems for lattices is
given in [9].
Here we can point out that relatively powerful mechanism of structures can

make a problem here; once the structure is under consideration, the operations
are determined, so if we want to give e.g. the characterization of Boolean algebras
in terms of the Sheffer stroke, so-called merging mechanism for structures should
have been applied.

4 Tempting Generalizations

Almost distributive lattices according to [12] are structures

〈L,t,u, 0〉

with the following axioms:
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(x t y) u z = (x u z) t (y u z) (x t y) u y = y
x u (y t z) = (x u y) t (x u z) (x t y) u x = x
0 u x = 0 x t (x u y) = x

for arbitrary x, y, z ∈ L.
First surprise was the naming scheme: almost distributive lattices are not

lattices at all! Essentially, either commutativity of t or u, or remaining distribu-
tivities were dropped. Also the role of zero is uncertain.

As always, one can pose a question of the direction of generalization: how far
we can go? One can imagine the series of papers which stems from excluding some
among seven axioms for distributive lattices and discuss what we can expect (it
is not really question of the number seven; e.g. there are two absorption laws, but
if we have no commutativity, the number extends – similarly in the case of the
distributivity, observe that we have no general distributivity in GADLs). ADLs
have some mathematical origins (Baer semirings), but further generalization
work can not be sufficiently justified.

Generalized almost distributive lattices have not less axioms, but just differ-
ent ones, and the implication that all ADLs are also GADLs is not very clear at
the very first sight (Def. 3.1 in [11]):

(x u y) u z = x u (y u z) x u (x t y) = x
x t (y u z) = (x t y) u (x t z) (x t y) u x = x
x u (y t z) = (x u y) t (x u z) (x u y) t y = y

But the axiom set for GADLs is just nicer to understand and to remember;
which is also important, the lower bound is not included which gives more general
approach. But the form of these equations forces to prove some basic properties
of ADLs before to show that the latter are consequences of the earlier.

The ordering on such defined structures is given by

x 6 y ⇔ x t y = y

or equivalently
x 6 y ⇔ x u y = x

Interesting to see, although authors of [12] stated that “6 is partial ordering",
it’s not antisymmetric, hence without any additional assumptions it’s not the
partial order for arbitrary generalized almost distributive lattice L.

The reader should be really aware of the ordering, it’s important to have the
proper one – of course if we have commutativity in mind, taking either xuy = x
or y u x = x as a definition of x 6 y doesn’t really matter, but in fact we have
two various relations defined; first – classical one (already mentioned above),
but the second one new (ThetaOrder in Mizar formalism): x u y = y, which
is not equivalent to y 6 x. Of course the relation is reflexive and transitive;
its antisymmetry makes general almost distributive lattice also commutative (so
essentially calling ThetaOrder L the partial ordering is a strong assumption
about L).

We were suggested by rough set community and Zhu’s approach to get a
kind of reverse mathematics in obtaining core rough approximations properties
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by distinct properties of binary relations [2]; essentially the formalization in
Mizar was done from scratch at the satisfying level of generality.

5 The Use of Proof-Assistants

Paradoxically, although our primary motivation was to formalize ADLs in the
Mizar language to extend the Mizar Mathematical Library, our first turn was
to use Prover9/MACE to obtain the answer for the question of the associativity
of ADLs. As u is associative as it was proven by Rao, we attacked the question
formulated in [12] and repeated in 2009 in [11] about the associativity of t.

We started Prover9 with no positive results; we ask MACE (Models and
Counterexamples) and almost immediately got the answer: there exists an ADL
which is not t-associative.

For example, formulating an input for Prover9/MACE as follows:

formulas(assumptions).

%% Axioms for ADL
(x v y) ^ z = (x ^ z) v (y ^ z).
x ^ (y v z) = (x ^ y) v (x ^ z).
(x v y) ^ y = y.
(x v y) ^ x = x.
x v (x ^ y) = x.

end_of_list.

formulas(goals).

%% Associativity condition
(x v y) v z = x v (y v z).

end_of_list.

we obtained after a 0.03 seconds the model:

interpretation( 5, [number = 1,seconds = 0], [
function(^(_,_), [

0,1,0,1,0,
0,1,0,1,0,
0,1,2,3,4,
0,1,2,3,4,
0,1,2,3,4]),

function(v(_,_), [
0,0,2,4,4,
1,1,3,3,3,
2,2,2,2,2,
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3,3,3,3,3,
4,4,4,4,4]),

function(c1, [0]),
function(c2, [1]),
function(c3, [2])]).

which in more human-readable form is

c1: 0 c2: 1 c3: 2

u: 0 1 2 3 4
0 0 1 0 1 0
1 0 1 0 1 0
2 0 1 2 3 4
3 0 1 2 3 4
4 0 1 2 3 4

t: 0 1 2 3 4
0 0 0 2 4 4
1 1 1 3 3 3
2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4 4

In fact, in the above ADL, we have 0 t (1 t 2) = 4, but (0 t 1) t 2 = 2.
Josef Urban’s work on the automatic translation of Otter proof objects into

Mizar is available and potentially useful, but we should also take into account
model building which seems to be not as straightforward in the current state of
the Mizar system.

6 The Details of the Formalization

Our first doubts before we even started the process of the translation of [12] were
if the expressive power of the existing formal apparatus present in [14] is enough
to give the proper axiomatization of structures which are not even lattices. We
observed just the opposite situation in the series started with ALGSTR_0 – very
general setting when structures are equipped by proper attributes one by one.

Example handling is formally very complex in Mizar: of course one can just
give the set of all lattice operations’ results, but this can be long for larger uni-
verses; in the series of Rao’s papers there are some examples of ADLs defined;
these are just the tables of both lattice operations, usually on the set {a, b, c},
where a, b, c are (distinct, which is not explicitly stated) elements, we use rather
natural numbers in such case. In the case of lattices, where we could use the par-
tial ordering to characterize lattice operations, we use set-theoretical inclusions
between natural numbers as examples.

Definitely much more automation could be useful in this specific case, perhaps
the set of potentially useful structures with their properties shown automatically.
Here we can point out the role of Sledgehammer in Isabelle which automatically
tries to fill the gaps in the demonstrations; similar functionality was recently
enabled by Josef Urban in Emacs, but we didn’t benefit from it in its full extent.

definition let L be non empty LattStr;
attr L is left-Distributive means
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for x,y,z being Element of L holds
x "\/" (y "/\" z) = (x "\/" y) "/\" (x "\/" z);

attr L is ADL-absorbing means
for x,y being Element of L holds

x "/\" (y "\/" x) = x;
end;

As usual, all single axioms were formulated in terms of Mizar adjectives, so equa-
tionally defined class in Mizar should be called rather defining by attributes of specific
type.

definition
mode GAD_Lattice is meet-associative distributive left-Distributive
join-absorbing Meet-Absorbing meet-absorbing non empty LattStr;

end;

Of course, even if not really useful, we had to introduce the type of being a general
almost distributive lattice, just for a record. For such structures, all further properties,
as e.g. t-idempotence, can be proven without any major problem:

reserve L for GAD_Lattice;
reserve x,y,z for Element of L;

theorem ISum: :: Lemma 3.4. (I \/)
x "\/" x = x
proof
thus x "\/" x = ((x "\/" x) "/\" x) "\/" x by DefA2

.= x by LATTICES:def 8;
end;

If we compare the above with the original proof from [14] (as idempotence is the
consequence of classical lattice axioms), we can note that as a result of revision intro-
ducing reduction registrations it was formulated as a reduction:

registration
let L be meet-absorbing join-absorbing meet-commutative
non empty LattStr,

a be Element of L;
reduce a "\/" a to a;
reducibility
proof
thus a "\/" a = (a "/\" (a "\/" a)) "\/" a by Def9

.= a by Def8;
end;

end;

After such registration terms a t a and a are automatically unified. In our Mizar
article we didn’t use reductions, because we were focused on clear proofs, understand-
able for human, by adding some more reductions our proofs will be probably much
shorter.
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theorem Th31143: :: Theorem 3.11. (4) <=> (3)
L is join-commutative iff L is ADL-absorbing
proof
thus L is join-commutative implies L is ADL-absorbing
proof

assume
A1: L is join-commutative;

let a,b be Element of L;
a "\/" b = b "\/" a by A1;
hence thesis by LATTICES:def 9;

end;
assume

B1: L is ADL-absorbing;
let a,b be Element of L;
a "/\" (b "\/" a) = a by B1;
hence thesis by Th3726;

end;

registration
cluster join-commutative -> ADL-absorbing for GAD_Lattice;
coherence by Th31143;
cluster ADL-absorbing -> join-commutative for GAD_Lattice;
coherence by Th31143;

end;

Both registrations of clusters together state that the associativity of the join oper-
ation and the absorption expressed in the original set of axioms for generalized almost
distributive lattices are equivalent. Furthermore, the reference for Theorem 3.11 is not
needed anymore.

Although we formalized quite a significant piece of basic theory of almost distribu-
tive lattices, which is a good starting point for future developments, some issues are
still to be considered:
• we are not sure about the real role of zero in Rao’s proofs. In earlier papers it was

used really much, but in later generalization it is often missing;
• the handling of “TFAE” (the following are equivalent) – already mentioned during

formalization of CCL; there are three important theorems formulated in such a
mood in [11], and there is no satisfactory solution of how to formulate it in a feasible
way in Mizar (of course, proofs can be in arbitrary ways, but the formulation is
usually in a star-like mood);

• implementing associativity as another property; tricks with brackets are usually
simple, but sometimes can be really annoying; they also can blow the real idea of
the proof; commutativity is obvious and it’s really nice not to refer to it;

• the programs which enhance reasoning by eliminating irrelevant proofs steps (e.g.
relinfer and reliters) can be better used as after introducing some additional
reduction registrations can suggest further abbreviations and improvements; it’s
fine as long as in the original work there is often no proof at all, but for a human
it’s sometimes unacceptable without longer thinking;

• paradoxically to show that almost distributive lattices are GADLs we have to prove
some properties of ADLs before, but we don’t see any method of avoiding it.



Formal Characterization of Almost Distributive Lattices 19

6.1 The issue of knowledge reuse

Essentially, from the machine viewpoint, it’s not very important which collection of
attributes is really needed. But human mathematician usually uses just the same set
of axioms through all the paper and the reflection which generalization ways can be
chosen comes usually later on. Some individual adjectives are unexpected, as the below:

definition
let L be non empty /\-SemiLattStr;
attr L is meet-Associative means

:: ROBBINS3:def 2
for x, y, z being Element of L holds
x "/\" (y "/\" z) = y "/\" (x "/\" z);

end;

which is a mix of associativity and commutativity.
We were stuck that after finishing our formalization (and during writing of this

paper) we discover that we already introduced the attribute of the dual distributivity
(called left-Distributivity in current approach and present also in the formalization
of Sheffer stroke-based lattices). Of course, the one which introduced later will be
removed.

definition
let IT be non empty LattStr;
attr IT is distributive’ means

:: SHEFFER1:def 5
for a, b, c being Element of IT holds
a "\/" (b "/\" c) = (a "\/" b) "/\" (a "\/" c);

end;

6.2 The question of the quantifier

We were surprised in the proof of one of the lemmas by the phrase “Exchanging variables
in the formula above we obtain...". In Mizar, the naming scheme of variables is really
unimportant. To be honest, in the place mentioned above, we were suggested that the
proof failed, and we formulated it in the generalized (i.e. with general quantifier added)
form. This caused however to formulate all equivalences in such form.

But the motivation is much deeper. Rao et al. wrote Theorem 3.8 for individual
variables and then restated this for lattices which satisfy commutativity for all pairs
of such elements x, y:

theorem :: Theorem 3.8. 1) <=> 5)
x "\/" y = y "\/" x iff x [= y "\/" x by LemX3,Th3851;

6.3 What’s done already

At the very beginning of our work we wanted to give the formal characterization of
almost distributive lattices as defined in Rao in 1981 [12] (1980 in his PhD thesis,
but this work was unavailable for us). We were surprised that the existence of zero
element was so important in these proofs, and we eventually discovered that the class
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of generalized almost distributive lattices (GADL) doesn’t use zero at all, and those
structures in which the lower bound exists, are treated especially. Then we changed
our focus on the latter class.

What’s not formalized was two examples – of GADLs which are not ADLs and
also a problem of defining interval in GADL. Theorem 3.8 from [11] states that if
∃zx 6 z ∧ y 6 z, then x t y = y t x. As it is commutative, it makes every interval of
GADL distributive lattice; then a theory of certain substructures behaves more regular
than the original.

The Mizar article which is a complete source for the formalization (all theorems
are proven and the Mizar checker doesn’t report any errors) was send for inclusion into
Mizar Mathematical Library under MML identifier LATTAD_1.

7 Conclusions

We described our experiment with the help of automated proof-assistants – the for-
malization of almost distributive lattices, or, to be more precise, generalized almost
distributive lattices. Even if the content itself is not really impressing (about 1800 lines
of the Mizar source code, currently submitted for inclusion in the Mizar Mathematical
Library), we are sure our approach, even if less readable for those who do not know the
Mizar syntax, has some obvious advantages. Some of the lemmas from [12] were left
without proof, which is quite natural, other lemmas were automatically recognized by
the system as straightforward corollaries. Essentially if the reader is not interested in
proofs, but only in pure mathematical content, we hope that expressing certain identi-
ties (axioms) by Mizar adjectives offers some new capabilities and enables new insight
for what is really written.
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Abstract. In this paper, we describe the formalization of the funda-
mental theorem of finite abelian groups in Mizar language. This theorem
describes not only the structures of finite abelian groups, but also a
complete classification of them. Since the theorem underlies the study
of finite abelian groups, it is expected to become widely applied in for-
malizing fields such as number theory and cryptology as future Mizar
papers.

1 Introduction

Mizar [1, 11, 2, 3], initiated and directed by Andrzej Trybulec since 1973, is one of
the oldest and largest computer-aided mathematical knowledge management systems.
The Mizar project attempts to build a formalized library covering basic facts of all
mathematics. The high readability of the Mizar language enables any mathematician
to read its papers without deep knowledge of the Mizar grammar. In 2013, the Mizar
Mathematical Library (MML) contains more than 11,600 definitions of mathematical
concepts and more than 53,700 theorems. All MML papers are available on the Internet
under the GPLv3 and CC BY-SA 3.0 license. The Mizar community remains actively
engaged in expanding MML contents.

In this paper, we describe the formalization of the fundamental theorem of finite
abelian groups [4, 5] in Mizar language. This theorem states that a finite abelian group
can be decomposed into a direct sum of finite cyclic subgroups. The theorem has two
different forms. The first form is the decomposition into a direct sum of cyclic groups
of prime power order. The second form is called invariant factor decomposition, which
gives a classification of finite abelian groups.

The formalization task in Mizar is divided into three parts [9, 10]. In the first
part, we formalize the decomposition of a finite abelian group into a direct sum of
finite abelian subgroups of prime power order. In the second part, we discuss the
decomposition of a finite abelian group of prime power order into a direct sum of cyclic
subgroups of prime power order. In the final part, we prove the targeted theorem. Here,
we formalize that a two-level direct sum decomposition can be expressed as a one-level
direct sum decomposition and apply this result.

? This work was partly supported by JSPS KAKENHI 22300285

Trends in Contemporary Computer Science, Podlasie 2014, ISBN 978-83-62582-58-7
by A. Gomolińska, A. Grabowski, M. Hryniewicka, M. Kacprzak, E. Schmeidel (Eds.)
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2 Group and Some Basic Concepts

In this section, we give an introduction to the formalization of group and a few of its
basic concepts in Mizar.

In Mizar, the definition of group is formalized as below:

Definition 1 (Group in Mizar).

definition
let IT be multMagma;
attr IT is unital means

:: GROUP_1:def 1
ex e being Element of IT st for h being
Element of IT holds h * e = h & e * h = h;
attr IT is Group-like means

:: GROUP_1:def 2
ex e being Element of IT st for h being Element of IT holds
h * e = h & e * h = h & ex g being Element of
IT st h * g = e & g * h = e;
attr IT is associative means

:: GROUP_1:def 3
for x,y,z being Element of IT holds (x*y)*z = x*(y*z);

end;

definition
mode Group is Group-like associative non empty multMagma;

end;

Here, multMagma is magma (or groupoid), which consists of a set of elements
and a single binary operator on it. So Definition 1 states the following:

Definition 2 (Group). A group (G, ·) is a set of elements with a binary operation
· : G×G→ G that satisfies the following conditions:
1. Associativity For all a, b, c ∈ G, (a · b) · c = a · (b · c).
2. Identity element There exists an element e such that e · a = a · e = a for all

a ∈ G.
3. Inverse element For all a ∈ G, there exists an element b ∈ G with a ·b = b ·a = e.

In Mizar, subgroup is formalized as mode. (mode is one of the type declaration
keywords in Mizar language.)

Definition 3 (Subgroup in Mizar).

definition
let G be Group-like non empty multMagma;
mode Subgroup of G -> Group-like non empty multMagma means

:: GROUP_2:def 5
the carrier of it c= the carrier of G

& the multF of it = (the multF of G) || the carrier of it;
end;

the carrier of G is a set of all elements in G, and the multF of G is a binary
operator of G. So the definition is equivalent to the following:
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Definition 4 (Subgroup). Let G is a group. Then H is a subgroup of G means
1. H is a group.
2. A set of elements of H is a subset of that of G.
3. A binary operator of H is the restriction of that of G on a set of elements of H.

In Mizar, the definition of abelian group is formalized as an attribute of mult-
Magma as following:

Definition 5 (Abelian group in Mizar).

definition
let IT be multMagma;
attr IT is commutative means

:: GROUP_1:def 12
for x, y being Element of IT holds x*y = y*x;

end;

It is interpreted into natural language as follows:

Definition 6 (Abelian group). A magma M is called abelian if M satisfies the
following condition:
• Commutativity For all a, b ∈M , a · b = b · a.

It is helpful to take a look at the definition of the following terms: cyclic and
prime_power_order.

Definition 7 (Cyclic group in Mizar).

definition
let IT be Group;
attr IT is cyclic means

:: GR_CY_1:def 7
ex a being Element of IT st the multMagma of IT = gr {a};

end;

Definition 8 (Cyclic group). A group G is called cyclic if there is a ∈ G with
G = 〈a〉, where 〈a〉 = {an|n ∈ ZZ}.

Definition 9 (Group with prime power order in Mizar).

definition
let G be Group;
attr G is prime_power_order means
ex p be Prime, m be Nat st card G = p |^ m;

end;

Definition 10 (Group with prime power order). A group G is called prime
power order if there is a prime number p and the order of G is a power of p.
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3 Direct Sum Decomposition

In this section, we describe the formalization of the direct sum decomposition of finite
abelian groups in Mizar. For convenience, we consider only decomposition into an
internal direct sum, but it can be extended to an external direct sum case easily.

In Mizar, the direct sum decomposition is defined as follows:

Definition 11 (Internal direct sum decomposition in Mizar).

definition
let G be finite commutative Group;
let I be non empty finite set;
let F be commutative Group-Family of I;
pred G is_direct_sum_of_subgroup_family F means
(for i be Element of I holds F.i is Subgroup of G)
& (for i,j be Element of I st i <> j holds
(the carrier of (F.i)) /\ (the carrier of (F.j)) = {1_G})

& (for y be Element of G
ex x be (the carrier of G)-valued total I-defined Function
st (for i be Element of I holds x.i in F.i) & y = Product x)

& (for x1,x2 be (the carrier of G)-valued total I-defined Function
st (for i be Element of I holds x1.i in F.i)
& (for i be Element of I holds x2.i in F.i)
& (Product x1 = Product x2)

holds x1 = x2);
end;

We now explain Definition 11 in detail. the carrier of G denotes ‘the set of all
elements in group G‘, so (the carrier of G)-valued total I-defined Function
implies ‘Function from I to G‘. The predicate in the definition satisfies the following
conditions:
1. ∀i ∈ I, Fi is subgroup of G.
2. ∀i, j ∈ I, i 6= j ⇒ Fi ∩ Fj = {1G}.
3. ∀y ∈ G,∃x ∈

⊕

i∈I
Fi such that

∏

i∈I
xi = y as element of G.

4. ∀x1, x2 ∈
⊕

i∈I
Fi,
∏

i∈I
x1i =

∏

i∈I
x2i ⇒ x1 = x2.

Conditions 3 and 4 imply the existence and uniqueness of the internal direct sum
representation. Finally, it is interpreted as follows:

Definition 12 (Internal direct sum decomposition of finite abelian groups).
Let G be a finite abelian group having subgroups F1, · · · , Fn. If the following condition
is satisfied, {Hi} is called an internal direct sum decomposition of G, and the conditions
are denoted by G = F1 ⊕ · · · ⊕ Fn.
1. i 6= j ⇒ Fi ∩ Fj = {1G}.
2. Each y ∈ G has a unique expression of the form y = x1 · · ·xn where xi ∈ Fi.

4 Decomposition into Subgroups of Prime Power Order

In this section, we formalize the direct sum decomposition of a finite abelian group
into finite abelian subgroups of prime power order in Mizar.
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We first formalize a simple case; the decomposition of a finite abelian group into
the direct sum of two groups.

Theorem 1 (Decomposition into two groups in Mizar).

theorem :: GROUP_17:16
for G being finite commutative Group,
h,k be Nat

st card G = h*k
& h,k are_coprime holds

ex H,K being strict finite Subgroup of G
st the carrier of H =

{x where x is Element of G: x|^h = 1_G}
& the carrier of K =

{x where x is Element of G: x|^k = 1_G}
& H is normal & K is normal
& (for x be Element of G holds

ex a,b be Element of G
st a in H & b in K & x = a*b)

& (the carrier of H) /\ (the carrier of K) = {1_G};

From Theorem 1, we notice that the relationship among G, H, and K satisfies
the conditions of direct sum decomposition formalized in Definition 11. Thus Theorem
1 shows that a direct sum is decomposable into two nontrivial groups if the original
abelian group order is expressed as a product of two co-prime integers. The essence of
the theorem is described as follows:

Theorem 2 (Decomposition into two groups). Let G is a finite abelian group
with |G| = h · k where h is coprime to k. Then there exist H and K that are subgroups
of G where |H| = h, |K| = k and satisfy G = H ⊕K.

Recursive application of Theorem 1 leads to the following theorem.

Theorem 3 (Decomposition into abelian groups of prime power order in
Mizar).

theorem :: GROUP_17:35
for G being strict finite commutative Group
st card G > 1 holds

ex I be non empty finite set,
F be commutative Group-Family of I

st I = support (prime_factorization card G)
& (for p be Element of I holds

F.p is strict Subgroup of G
& card (F.p) = (prime_factorization card G).p)

& (G is_direct_sum_of_subgroup_family F);

We now explain the terms in Theorem 3.
The function prime_factorization satisfies

prime_factorization(m)(pi) = pi
ri

where m = p1
r1p2

r2 · · · pnrn , pi is prime, and ri is a positive integer.
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support is an attribute that attaches to a function, where a function is a subset of
the function domain containing non-zero function values. Therefore, in Theorem 3.2, I
denotes a set of prime divisors of |G|, where |G| is the number of elements in group G.

It should be noted the reason why theorem excludes a trivial case by card G
> 1. Supposing card G = 1, then I = support(prime_factorization card G)
becomes empty, because 1 is not included in prime numbers. It is not suited for our
Group-Family definition.

In conclusion, Theorem 3 encodes the following theorem:

Theorem 4. Let G be a finite abelian group where |G| = p1
r1p2

r2 · · · pnrn , ∀i, pi is
prime and ri is a positive integer. Then there exists a family of subgroups {Fpi}pi∈I in
G that satisfies G = Fp1 ⊕ Fp2 ⊕ · · · ⊕ Fpn and ∀i, |Fpi | = pi

ri .

5 Decomposition into Cyclic Subgroups of Prime Power
Order

In this section, we formalize the direct sum decomposition of a finite abelian group of
prime power order into cyclic subgroups of prime power order in Mizar. Similarly, the
theorem is formalized by mathematical induction.

First, we define a function Ordset for a finite group.

Definition 13 (Ordset in Mizar).

definition :: GROUP_18:def 1
let G be finite Group;
func Ordset G -> Subset of NAT equals

the set of all ord a where a is Element of G;
end;

That definition is translated into natural language as follows:

Definition 14 (Ordset). Let G is a finite group. then Ordset G is a set of the orders
of all elements in G.

Since Ordset G is a finite set of natural numbers, it contains a unique upper
bound. We define this upper bound as upper_bound Ordset G.

Then we formalize the theorem by which a cyclic group factor is extracted from a
finite abelian group of prime power order in Mizar.

Theorem 5 (Extraction of a cyclic group factor in Mizar).

theorem :: GROUP_18:19
for G being strict finite commutative Group,

p being Prime, m be Nat st card(G) = p|^m
ex K be normal strict Subgroup of G,

n, k be Nat,
g be Element of G

st
ord g = upper_bound Ordset G
& K is finite commutative
& (the carrier of K) /\ (the carrier of gr{g}) = {1_G}
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& (for x be Element of G holds
ex b1, a1 be Element of G
st b1 in K & a1 in gr{g} & x = b1*a1)

& ord g = p|^n
& k = m - n & n <= m
& card K = p|^k
& ex F being Homomorphism of product <*K,gr{g}*>, G

st F is bijective
& for a,b be Element of G

st a in K & b in gr{g}
holds F.(<*a,b*>) = a*b;

The essential aspects of Theorem 5 are listed below.
1. One of the largest order elements in G is selected and labeled g.
2. A cyclic subgroup, gr{g} is generated by the group element g.
3. A subgroup of G, labeled K, satisfies G = K ⊕ 〈g〉.

So the essence of the theorem is described as follows:

Theorem 6 (Extraction of a cyclic group factor). Let G is a finite abelian group.
1. There exists an element g ∈ G with the largest order.
2. And there exists K being a subgroup of G that satisfies G = 〈g〉 ⊕K.

Finally, Theorem 7 is formalized by recursive application of Theorem 5.

Theorem 7 (Decomposition into cyclic subgroups of prime power order in
Mizar).

theorem :: GROUP_18:21
for G being strict finite commutative Group,
p being Prime, m be Nat

st card(G) = p|^m
holds
ex k be non zero Nat,
a be k-element FinSequence of G,
Inda be k-element FinSequence of NAT,
F be commutative Group-Family of Seg k

st (for i be Nat st i in Seg k holds
ex ai be Element of G
st ai = a.i & F.i = gr{ai}
& ord(ai) = p|^(Inda.i))

& (for i be Nat st 1 <= i & i <= k-1
holds Inda.i <= Inda.(i+1))

& G is direct_sum_ob_subgroup_family F;

Theorem 7 can be translated into the following.

Theorem 8 (Decomposition into cyclic subgroups of prime power order).
Let G be a finite abelian group of prime power order where |G| = pm, p is prime and
m is a positive integer. Then there exist k-element sequences {ai} and {ri} that satisfy
the following conditions:
1. ai ∈ G and ri ∈ IN.
2. |〈ai〉| = pri

3. {ri} is a monotonically increasing sequence.
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4. G = 〈a1〉 ⊕ · · · ⊕ 〈ak〉

In other words, we can regard {ai} as a basis of G.
We should mention that {ri} need not be a monotonically increasing sequence, but

the sequence has been ordered for the next step.

6 Fundamental Theorem of Finite Abelian Groups

In this section, we finally formalize the fundamental theorem of finite abelian groups
in Mizar. A theorem that describes two-level direct summation can be expressed as a
one-level direct sum.

Theorem 9 (Two-level direct sum flattening in Mizar).

theorem
for G be finite commutative Group,
I be non empty finite set,
F be commutative Group-Family of I,
II be ManySortedSet of I,
FF be ManySortedSet of I

st (G is_direct_sum_of_subgroup_family F)
& (for i be Element of I

ex Fi be finite commutative Group,
IIi be non empty finite set,
FFi be commutative Group-Family of IIi

st Fi = F.i & IIi = II.i & FFi = FF.i
& Fi is_direct_sum_of_subgroup_family FFi)

& (for i, j be Element of I st i <> j holds
II.i misses II.j)

holds
ex Ix be non empty finite set,

Fx be commutative Group-Family of Ix
st Ix = Union II

& Fx = Union FF
& G is_direct_sum_of_subgroup_family Fx;

Essentially, Theorem 9 means an extension of associativity of direct sum H1⊕(H2⊕
H3) = (H1 ⊕H2)⊕H3. It states that

Theorem 10 (Two-level direct sum flattening). Assume
1. G is a finite abelian group.
2. {Fi}i∈I is a family of subgroups of G such that G =

⊕

i∈I
Fi.

3. {Hi,j}(i,j)∈K is a family of subgroups of G where K =
⋃

i∈I

⋃

j∈Ji

(i, j) such that Fi =
⊕

j∈Ji

Hi,j.

Then
G =

⊕

(i,j)∈K
Hi,j .

To formalize the fundamental theorem, we apply Theorem 9 to Theorem 3 and
Theorem 7.
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Theorem 11 (Primary decomposition form in Mizar).

theorem
for G be strict finite commutative Group
st card G > 1 holds

ex I be non empty finite set,
F be commutative Group-Family of I

st (G is_direct_sum_of_subgroup_family F)
& (for i be Element of I holds

F.i is cyclic & F.i is prime_power_order);

This theorem can be interpreted as follows:

Theorem 12 (Primary decomposition form). Every finite abelian group G is a
direct sum of finite cyclic groups of prime power order. That means G can be written
as follow:

G = ZZq1 ⊕ ZZq2 ⊕ · · · ⊕ ZZqt ,
where the numbers q1, · · · , qt are powers of prime numbers.

We also formalize the second expression of the fundamental theorem of finite abelian
groups.

Theorem 13 (Existence of invariant factor decomposition in Mizar).

theorem
for G being finite commutative Group st card G > 1
holds
ex n be non zero Nat,
b be Function of Seg n, the carrier of G,
F be commutative Group-Family of Seg n

st
(G is_direct_product_of_subgroup_family F)
& (for i be Element of Seg n holds

F.i = gr {b.i} & ord (b.i) > 1)
& (for i,j be Element of (Seg n) st j=i+1 holds

ord (b.i) divides ord (b.j));

Theorem 14 (Uniqueness of invariant factor decomposition in Mizar).

theorem
for G being finite commutative Group,
n0, n1 be non zero Nat,
b0 be Function of Seg n0, the carrier of G,
b1 be Function of Seg n1, the carrier of G,
F0 be commutative Group-Family of (Seg n0),
F1 be commutative Group-Family of (Seg n1)

st (G is_direct_product_of_subgroup_family F0)
& (G is_direct_product_of_subgroup_family F1)
& (for i be Element of (Seg n0) holds

F0.i = gr {b0.i} & ord (b0.i) > 1)
& (for i be Element of (Seg n1) holds

F1.i = gr {b1.i} & ord (b1.i) > 1)
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& (for i,j be Element of (Seg n0) st j=i+1 holds
ord (b0.i) divides ord (b0.j))

& (for i,j be Element of (Seg n1) st j=i+1 holds
ord (b1.i) divides ord (b1.j))

holds
n0 = n1

& (for i0 be Element of Seg n0,
i1 be Element of Seg n1

st i0 = i1 holds
ord (b0.i0) = ord (b1.i1));

From Theorem 13 and Theorem 14, invariant factor decomposition form is obtained.
Before that, we give a definition of invariant factors.

Definition 15 (Invariant factors). If a finite abelian group G has a decomposition
as a direct sum

G = ZZm1 ⊕ ZZm2 ⊕ · · · ⊕ ZZmt ,

wherem1|m2| · · · |mt is satisfied. Then one says that G has invariant factors (m1, · · · ,mt).

Invariant factor decomposition form can be expressed as follows:

Theorem 15 (Invariant factor decomposition form). Every finite abelian group
G has a invariant factor decomposition and its invariant factors are uniquely deter-
mined. That means,

G = ZZm1 ⊕ ZZm2 ⊕ · · · ⊕ ZZmt ,

where m1|m2| · · · |mt and the invariant factors (m1, · · · ,mt) are uniquely determined
by G.

The theorem gives us a complete classification for finite abelian groups. Once an
order is determined, we can easily count the number of finite abelian groups by using
the property of invariant factors. For example, let us think of the classification of
abelian groups with order 72 = 32 · 23. Then the combination of invariant factors can
be listed up as bellow:
1. ZZ72 (23 · 32)
2. ZZ36 ⊕ ZZ2 (22 · 32, 21)
3. ZZ18 ⊕ ZZ2 ⊕ ZZ2 (21 · 32, 21, 21)
4. ZZ24 ⊕ ZZ3 (23 · 31, 31)
5. ZZ12 ⊕ ZZ6 (22 · 31, 21 · 31)
6. ZZ6 ⊕ ZZ6 ⊕ ZZ2 (21 · 31, 21 · 31, 21)

Let us briefly outline the proof of Theorem 15. From Theorem 11, the following
lemma is obtained by adding trivial groups to the direct sum factors as required.

Lemma 1. Let G be a finite abelian group. Then there exists a double-indexed family
of cyclic groups {Hi,j}1≤i≤r,1≤j≤s and a sequence of primes {pi}1≤i≤r that satisfies
the following conditions:
1. Hi,j is a subgroup of G.
2. Hi,j is pi-power order or trivial.
3. 1 ≤ ∀j ≤ s− 1, |Hi,j | ≤ |Hi,j+1|.
4. G =

⊕

1≤i≤r,1≤j≤s
Hi,j

Defining Fi =
⊕

1≤j≤r
Hi,j , we obtain G = F1 ⊕ · · · ⊕ Fr and can conclude Theorem

15.
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7 Conclusions and Future Work

In this paper, we formalized the fundamental theorem of finite abelian groups in Mizar.
We also defined the direct sum of finite abelian groups and several patterns of direct sum
decomposition by which we proved the targeted theorem. Since we have formalized an
essential algebraic principle, the result is applicable to a variety of future formalizations.

As the next step, we aim to formalize the extended case for finitely generated
abelian groups in Mizar. We also have to note that the current definition of internal
direct sum decomposition can only be applied to finite abelian groups. We are now
trying to formalize a new definition of both internal and external direct sum decompo-
sition of groups in Mizar. The new definition will be more natural and comprehensive
for group theory.
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Abstract. We present an original theorem in auction theory: it specifies
general conditions under which the sum of the payments of all bidders is
necessarily not identically zero, and more generally not constant. More-
over, it explicitly supplies a construction for a finite minimal set of possi-
ble bids on which such a sum is not constant. In particular, this theorem
applies to the important case of a second-price Vickrey auction, where it
reduces to a basic result of which a novel proof is given. To enhance the
confidence in this new theorem, it has been formalized in Isabelle/HOL:
the main results and definitions of the formal proof are reproduced here
in common mathematical language, and are accompanied by an informal
discussion about the underlying ideas.

1 Introduction

The ForMaRE project [4] employs formal methods to provide a unified approach to
both the generation of executable code for running auctions and the proving of theorems
about them. In this paper, we will describe the formalization of a classical result about
the second price Vickrey auction (which will be introduced in Section 2), stating that
the sum of the payments for all participants cannot be zero for all possible bids. We
will indicate this result as NB (for no balance).

The proof mechanism we present for NB is, to the best of our knowledge, new.
Although it is also applicable to the specific case of the Vickrey auction, our proof works
for a wide class of possible auction mechanisms: indeed, it gives a characterization of
the kinds of auctions for which it holds. By contrast, all the existing proofs we know
of vitally rely on the particular algebraic form that the mechanism assumes in the
particular case of the Vickrey auction. Furthermore, our proof explicitly constructs
a minimal, finite set of possible bids on which the sum of all the payments is not a
constant function.

All the results have been formalized and checked in the Isabelle/HOL theorem
prover [7]. Because the results are new, they are stated here in common mathematical
language, which should be friendlier for the reader. The lemmas, definitions, and the-
orems in this paper correspond as far as possible their formalized counterparts and for
each statement we indicate the corresponding Isabelle name in typewriter font. The rel-
evant Isabelle theory file is Maskin3.thy, available at https://github.com/formare/
auctions/.
? This work has been supported by EPSRC grant EP/J007498/1 and an LMS Com-
puter Science Small Grant.
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1.1 Structure of the paper

In Section 2, some context is given: we will see the basic mathematical definitions for
auctions, which will be needed to state the main theorem NB, the object of the present
formalization.

Section 3 informally illustrates the idea behind our original proof of NB, and Section
4 presents the formal result implementing this idea, which is Lemma 1. This lemma is
the cornerstone of the whole formalization effort presented here: all the other results
depend on it.

This fact is illustrated in Section 5, where it is informally explained how Lemma 1
can be applied to the particular case of the Vickrey auction.

This informal explanation is then made formal and systematic in Section 6, where
ancillary lemmas and definitions are given in order to formally derive from Lemma 1
the main result, Theorem 1, which is the formal statement of our generalized version
of NB.

1.2 Notations

• We will represent any function (e.g., the one associating to each participant her bid)
in a set-theoretical fashion; that is, as the set {(x, f (x)) |x ∈ dom f}, commonly
called the graph of f . Hence, for example, the cartesian product X × {y} is the
constant function defined on X and yielding y.

• Similarly, any relation will be represented as the set of the pairs of elements related
through it; formally, this means that any relation is a subset of some cartesian
product X × Y .

• Given a relation R, R (X) will be the image of the set X through R: R (X) :=
{y| (x, y) ∈ R and x ∈ X}. For example, given a function f , f−1 ({y}) will then be
the fiber of the point y under f .

• The restriction of a function f to the set-theoretical difference dom f\X will be
written f −X; moreover, in the special case of X = {x}, we will often abuse the
notation, writing f − x instead of f − {x}.

• A multiset (which is also called a bag) will be extensionally denoted writing, e.g.,
{|0, 0, 1, 1, 1, 2|}: we recall that a multiset is similar to a set, but each member has
a multiplicity describing how many times it appears in the multiset. We will use
+ as the infix symbol for pairwise multiset union; we will write A 6 B to express
the fact that A is a sub-multiset of B: for instance, {|2, 1, 1|} 6 {|0, 0, 1, 1, 1, 2|} is
true.

• Finally, x ⇀ X denotes the operation of union of x with each set in the family of
sets X:

x ⇀ X :=
{
x ∪ x′ : x′ ∈ X

}
.

We will need this operation to state Lemma 1.

2 Statement of the main result

An auction mechanism is mathematically represented through a pair of functions a, p:
the first describes how the goods at stake are allocated among the bidders (also called
participants or agents), while the second specifies how much each bidder pays following
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this allocation. Each possible output of this pair of functions is referred to as an outcome
of the auction. Both functions take the same argument, which is another function,
commonly called a bid vector ; it describes how much each bidder prefers each possible
outcome of the auction. This preference relation is usually expressed through money,
hence the bid vector associates some outcome to how much the participant values that
outcome. To stick with traditional notation, we will use bold face for bid vectors, as in
a (b).

In the case of a single good being auctioned, the bid vector simply associates to
each bidder the amount she bids for the good. Given a fixed bidder i, moreover, ai is
{0, 1}-valued, corresponding to the fact that i either wins the item or not. For a single
good auction, the Vickrey mechanism has a special relevance because of the formal
properties it enjoys [5], [3]. It works by assigning the good to the highest bidder. Each
agent then pays a ‘fee’ term p′i (b− i) irrespective of the outcome; this fee does not
depend on how much i herself bids, but only on the other participants’ bids: hence
the argument of p′i is b − i rather than the full b. Additionally, the winner pays a
proper price term given by the highest of the bids computed on the set of participants
excluding the winner herself (second price); given a fixed bid vector b, we will denote
this amount as f2 (b).

An often desirable property of an auction mechanism is that it achieves budget
balancing [6, Section 2.3]. This means that the sum of the money given or received by
each participant always totals to zero:

∀b
∑

i

pi (b) = 0. (1)

Such a property becomes attractive when

it is preferable to maintain as much wealth as possible within the group of
agents, and the transfer payment can be viewed as an undesirable “cost of
implementation”. [1]

There are important cases in which (1) assumes a more specific form:3

∀b f (b) +
∑

i

p′i (b− i) = 0, (2)

where f typically extracts some kind of maximum: e.g., for the single-good Vickrey
mechanism, f (b) is the second price f2 (b). The function p′i is related to pi through a
simple construction we are not interested in here. Here, the important fact is the formal
difference between pi and p′i: the former takes as an argument the full bid vector, while
the latter takes a reduced bid vector, in which the bid pertaining participant i has been
removed.

A standard result [6, Theorem 2.2], [5, Proposition 3], [2, Theorem 4.1] is that for
such cases, budget balancing cannot be satisfied: (1) is false. Its known proofs, however,
all exploit the particular form of the map f appearing in (2) in the considered case,
namely that of f being f2. Vice versa, we will see a proof starting from (2) where the
latter map is considered as an unknown; the proof will work out the conditions it needs
to impose on that map: only after that we will ascertain they are fulfilled for the given
cases we are interested in (e.g., the mentioned single-good Vickrey auction). To be even

3 We recall that bid vectors are modeled as functions, hence we can write b− i, using
the notation introduced in Section 1.2.
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more informative, the proof will show that to falsify equation (2), it is not needed to
quantify it over all the possible b admissible as an argument to f : a smaller, finite set
X will be suggested by the proof itself.

Hence, we will consider the logical formula

∀b ∈ X
∑

i

p′i (b− i) = f (b) (3)

and study for what X and f it leads to a contradiction (which will include, of course,
our starting case (2), where f = −f). Since we are going to set up a proof mechanism
minimizing the requirements on the generic f (e.g., we are not going to expect that f
is the maximum or the second maximum of the bids), we must impose some different
premises to carry through a proof. The main assumption needed is one of symmetry:
while the pis in (1) (and hence the p′is in (2)) are completely arbitrary, we need to
require that they do not depend on re-labeling the participants:

∃P ∀i b p′i (b) = P (‖b‖), (4)

where ‖R‖ is the multiset (or bag) obtained from the relation R: that is, the range of
R, but taking into account the multiplicities of possibly repeated values in it.4 This
means that the price paid by any participant i is given by a rule depending only on
the amount of each bid other than i’s, and not on who placed those. Moreover, such a
rule itself must not depend on i.

With this assumption in place, (3) becomes

∀b ∈ X
∑

i

P (‖b− i‖) = f (b) . (5)

3 Proof idea

Let N be the number of bidders. The proof starts by considering the case that they all
submit the same (fixed but arbitrary) bid b0, whence (5) yields:

P







∣∣∣∣∣∣
b0, . . . , b0︸ ︷︷ ︸

N−1

∣∣∣∣∣∣






 = k0f


b0, . . . , b0︸ ︷︷ ︸

N


 , (6)

with k0 := 1
N

not depending on b0. Then we continue with a b in which only one
component (let us say the first, for example) assumes an arbitrary value b1 different
than b0; thus, (5) gives

(N − 1)P







∣∣∣∣∣∣
b1, b0, . . . , b0︸ ︷︷ ︸

N−2

∣∣∣∣∣∣






 = −P







∣∣∣∣∣∣
b0, . . . , b0︸ ︷︷ ︸

N−1

∣∣∣∣∣∣






− f (b1, b0, . . . , b0) . (7)

At this point, we would like to trigger an iterative mechanism by exploiting (6)
inside (7). A natural imposition to make this possible is to ask that

f (b1, b0, . . . , b0) = q1f (b0, . . . , b0) (8)

4 For example, given the map associating to participant 1 the bid 10, to participant 2
the bid 20, and to participant 3 the bid 10, the obtained multiset is {|10, 10, 20|}.
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for some arbitrary constant q1. Then we can substitute (6) inside (7), obtaining a
rational number k1 not depending on b0, b1 such that

P







∣∣∣∣∣∣
b1, b0, . . . , b0︸ ︷︷ ︸

N−2

∣∣∣∣∣∣






 = k1f (b0, . . . , b0) . (9)

Proceding the same way, we can build a rational constant k2 such that

P







∣∣∣∣∣∣
b1, b2, b0, . . . , b0︸ ︷︷ ︸

N−3

∣∣∣∣∣∣






 = k2f (b0, . . . , b0) (10)

for arbitrary b1, b2.
So that by iterating this mechanism we can construct a relation binding the generic

P ({|b1, . . . , bN−2, b0|}) to f (b0, . . . , b0):

P ({|b1, . . . , bN−2, b0|}) = kN−2f (b0, . . . , b0) . (11)

Moreover, at each step of this iteration, the requirement (8) gives indications about
how q1, q2, . . ., X and f must be related if we want the proof mechanism to work. It is
important to note that, in doing so, such mutual relations should be weakened as much
as possible, with the only rationale that they should grant that the proof mechanism
just outlined actually works. For example, we imposed one equality of the kind (8) at
each inductive step, but these equalities actually need to hold only for the bid vectors
inside some minimal X; otherwise, we would restrict ourselves to quite trivial instances
of f . In this section, we wanted to give a general idea of the proof, and we did not
explicitly state the exact mutual relations between b0, X and f . Indeed, such relations
are not immediate, at first: they actually became clearer when formalizing the proof
itself; a process that we feel would have been harder to manage with a standard paper-
based proof. These relations will be given in full detail in Section 4, in Definition 1.

The iteration explained above implies that we assign some value to the numbers
q1, q2, . . .. We deemed them arbitrary because the proof mechanism works whichever
values we assign them. For simplicity, however, we restricted our work to the case

1 = q1 = q2 = . . . , (12)

which will be general enough for any application to auction theory.
The idea is now to take equation (11), which was obtained using equation (5), and

to derive a contradiction between it and (5) itself. Hence, the formalization can be
seen as split in two stages: there is Lemma 1, presented in Section 4, which formalizes
equation (11) and takes care of spelling out all the exact requirements in order to derive
it exploiting the idea we informally presented above. Then there are other auxiliary
definitions and lemmas, presented in Section 6, which employ Lemma 1 to obtain the
wanted contradiction (given in the thesis of Theorem 1).

4 From the idea to the formal statement

Given a multiset m, an m-restriction of b is any b′ ⊆ b such that ‖b′‖ = m.
An m-completion of b to b0 is a b′ writable as the disjoint union of an m-restriction

of b with a function constantly valued b0, and such that dom b = dom b′. In other



40 Marco B. Caminati, Manfred Kerber, and Colin Rowat

words, an m-completion of b to b0 is obtained from b by changing its value to b0
outside some m-restriction of it.

A full family of b0-completions of b is a set containing one m-completion of b to b0
for each possible m 6 ‖b‖.

Lemma 1 (lll57). Consider a full family Y of b0-completions of b, and set X :=
({i1, i2} × {b0}) ⇀ Y for some i1 6= i2 outside dom b. Assume that, ∀b′ ∈ X:

f
(
b′
)

= f (({i1, i2} ∪ dom b)× {b0}) (13)

f
(
b′
)

=
∑

i∈dom b′
P
(
b′ − i

)
. (14)

Then

P (‖b‖+ {|b0|}) =
1

2 + |dom b|f (({i1, i2} ∪ dom b)× {b0}) .

For later discussion, it will be useful to express requirements in Lemma 1 up to
equality (13) in a predicate form:

Definition 1. [pred2, pred3] The set X is adequate for the quintuple (b, b0, f, i1, i2)
if
• X = {i1, i2}⇀ Y for some Y being a full family of b0-completions of b;
• ∀b′ ∈ X f (b′) = f (({i1, i2} ∪ dom b)× {b0}) .

This allows us to restate Lemma 1 as

Lemma 2 (lll57). Assume that X is adequate for the quintuple (b, b0, f, i1, i2), and
that

∀b′ ∈ X
∑

i∈dom b′
P
(
b′ − i

)
= f

(
b′
)
.

Then

P (‖b‖+ {|b0|}) =
1

2 + |dom b|f (({i1, i2} ∪ dom b)× {b0}) .

5 Example application to the Vickrey auction

Let us consider the specific case of f = −f2: we recall that f2 (b) is the maximum of
the bids b, once the bid of the winner has been removed. In this case, choosing any
b0 > max(rng b) satisfies hypothesis (13) of Lemma 1, permitting

P (‖b‖+ {|b0|}) =
−b0

2 + |dom b| . (15)

Let us apply this to two particular bid vectors:

b := (1, 2, . . . , n, n+ 1, n+ 3) b := (1, 2, . . . , n, n+ 2, n+ 3) .

We get
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f2 (b) +
∑

i

P (‖b− i‖) (15)
= (n+ 1)−

[
(n+ 3)

n+ 2
(n+ 1)

]
− n+ 1

n+ 2

6= n+ 2−
[

(n+ 3)

n+ 2
(n+ 1)

]
− n+ 2

n+ 2

(15)
= f2

(
b
)

+
∑

i

P
(∥∥b− i

∥∥) . (16)

Thus, we have falsified (2) as an application of Lemma 1. To do that, we had to apply
Lemma 1 n+ 2 times for the first equality of the chain above, and further n+ 2 times
for its last equality. This corresponds to having imposed (5) on the sets

{
{i, j} × {n+ 3}⇀ Cn+3

b−i−j
}

b(j)=n+3
i∈dom b−{j}

(17)

(
b−1 {n+ 1, n+ 3}

)
× {n+ 1}⇀ Cn+1

b−b−1{n+1,n+3} (18)

and on the sets
{
{i, j} × {n+ 3}⇀ Cn+3

b−i−j

}
b(j)=n+3

i∈dom b−{j}
(19)

(
b
−1 {n+ 2, n+ 3}

)
× {n+ 2}⇀ Cn+2

b−b
−1{n+2,n+3} (20)

respectively. Above, we have indicated with Cbb a fixed, arbitrary full family of b-
completions of b. Hence, the union of the family of sets in (17), the union of that
in (19), the sets in (18), (20), together with

{
b, b
}
, form the wanted set X: we have a

contradiction when imposing (5) on it.

6 Application to the general case

Formally, as a first step of what we did in Section 5, we apply Lemma 1 to each possible
b− i appearing in (5), obtaining an equality for the sum featured there. The following
result does exactly that and is an immediate corollary of Lemma 2:

Corollary 1 (lll68). Assume that ∀i ∈ dom b there are ji and Xi such that

ji ∈ dom b\ {i}
Xi is adequate for (b− {i, ji} , b (ji) , f, i, ji) .

Also assume that

∀b′ ∈
⋃
Xi

∑

i∈dom b′
P
(∥∥b′ − i

∥∥) = f
(
b′
)
.

Then
∑

i∈dom b

P ({|b− i|}) =
1

|dom b|
∑

i∈dom b

f (dom b× {b (ji)}) . (21)

What we informally did in Section 5 was to find b, b to each of which corollary 1
is applicable, but such that the maps η : i 7→ f

(
dom b×

{
b
(
j
i

)})
and η : i 7→

f
(
dom b×

{
b
(
ji
)})

enjoy the following properties:
1. each assumes exactly two values, call them v1 6= v2 and v1 6= v2, respectively;
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2. of these four values, exactly two are equal, let us say v1 = v1, while v2 6= v2;
3. the sets η−1

{
v1

}
and η−1

{
v1

}
coincide: that is, the points on which η and η yield

the same value are exactly the same.
These facts cause the occurrence of the two identical terms which can be cancelled
in expression (16): they are put in square brackets there for clarity. This cancellation
is fundamental, because it immediately allows to establish the inequality appearing
there. Finding such b and b is particularly easy in the case of f = f2, but the same
mechanism works for a generic f , leading to a similar cancellation between the two
sums

∑

i∈dom b

f
(

dom b×
{
b
(
j
i

)})

and
∑

i∈dom b

f
(
dom b×

{
b
(
ji
)})

;

each of those sums is yielded by a separate application of corollary 1, in the right hand
side of equation (21).

To formalize the requirements (1), (2), (3) appearing in the list above, we introduce
the following definition:

Definition 2 (counterexample). The triple
(
b, b, h

)
is a counterexample for the map

f if dom b = dom b and there is a map g such that

h : (dom b)→ {f, g}
{0} ⊂

{
f
(
b
)
− f (b) , g

(
b
)
− g (b)

}
.

This definition is devised exactly to formulate the following lemma, which is an easy
arithmetical statement:

Lemma 3 (lll69). Assume that
(
b, b, h

)
is a counterexample for f , and that 2 6

|dom b| < +∞. Then

f (b)− 1

|dom b|
∑

(h (i)) (b) 6= f
(
b
)
− 1∣∣dom b

∣∣
∑

(h (i))
(
b
)
.

In turn, the lemma above can finally be combined with corollary 1 into the main
theorem:

Theorem 1 (tt01). Assume that
(
b, b, h

)
is a counterexample for f , with 2 6 |dom b| <

+∞. Moreover, assume that
∀i ∈ dom b there are j

i
, Xi, ji, Xi satisfying

j
i
∈ dom b\ {i}

Xi is adequate for
(
b−

{
i, j

i

}
, b
(
j
i

)
, f, i, j

i

)

f
(

dom b×
{
b
(
j
i

)})
= (h (i)) (b)

ji ∈ dom b\ {i}
Xi is adequate for

(
b−

{
i, ji

}
, b
(
ji
)
, f, i, ji

)
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f
(
dom b×

{
b
(
ji
)})

= (h (i))
(
b
)
.

Finally, suppose that

∀b′ ∈
⋃

i∈dom b

Xi ∪Xi

∑

k∈dom b′
P
(∥∥b′ − k

∥∥) = f
(
b′
)
.

Then

f (b)−
∑

i∈dom b

P (‖b− i‖) 6= f
(
b
)
−

∑

i∈dom b

P
(∥∥b− i

∥∥) .

7 Conclusions

We developed a result characterizing imbalanced auction mechanisms. Both the theo-
rem and the proof are new to the best of our knowledge, and we informally illustrated
the idea behind the proof.

On the formal side, the proof has been implemented in the Isabelle/HOL theorem
prover, which is especially important in this case, because the confidence added by the
formalization is a significant soundness validation for any new result.

Given a rather general class of auction mechanisms, our theorem provides explicit
conditions implying the imbalance condition, and in this sense it can also be regarded
as a result in reverse game theory. Moreover, our theorem also explicitly constructs a
finite set on which the imbalance condition holds: this can be exploited in concrete im-
plementations to computationally check the imbalance condition only over that known,
finite set.

The fact that the proof and the result are new also leaves open many avenues for
possible generalizations and improvements. For example, assumption (12) was taken
for the sake of simplicity, but less immediate assumptions are also possible. Similarly,
Definition 2 is merely the simplest one granting that Lemma 3 holds: there are plenty
of ways to achieve the same result, which can lead to different final requirements on
f appearing in the statement of Theorem 1. Currently, ForMaRE is following these
tracks to investigate further developments of possible interest to its application domain,
auction theory.
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Abstract. In this paper we present an approach to the analysis of al-
gorithms with Mizar. It consists in the Mizar formalization of abstract
concepts like algebra of instructions, execution function, termination and
their substantiation in a model with integers as the only data type and
in models with abstract data types. The proof of correctness of the al-
gorithm Exponentiation by Squaring is described.
The approach is aimed at creating Mizar tools for verification of real
programs, but primarily to be used in teaching.

1 Previous works

An analysis of algorithms (AofA) is always a very attractive task for developers of
any computer-aided system for formal reasoning. It appears naturally at every stage
of system development as developers are closely related to practical and theoretical
problems in programming. Actually, it is one of the most common motivations behind
developing many such systems. The verification of programs was also one of the motives
for developing Mizar. The first documented uses of this system in that area concerned
• the proof of the correctness of a factorial computing program (Elżbieta Ramm and

Edmund Woronowicz in 1978, [17]),
• the proof of the correctness of a list reversing program (Piotr Rudnicki and Włodz-

imierz Drabent in 1983, [18]).
The investigations in this area constitute also an important part of recent Mizar Math-
ematical Library, MML. The main stream concerns the theory of abstract computers
started by Yatsuka Nakamura and Andrzej Trybulec [15]. It was developed in 66 of 1191
articles in MML. The base concept of this theory is AMI – Architecture Model for In-
structions which is a Mizar type for random access stored program machines (RASP).
Models of AMI which have been defined in MML compute over integers [15], finite
sequences of integers [22], or elements of a ring [12]. The theory of macro-instructions
developed for these models allowed to prove correctness, inter alia, of Euclid’s Algo-
rithm [20], Bubble Sort [8], Insertion Sort [5], Quick Sort [6], compiler of arithmetic
expressions [4], etc.

Mathematical descriptions of algorithms which do not enroll abstract machines
are also developed in MML. These investigations concern, inter alia, IDEA encryp-
tion/decryption algorithm [9], RSA algorithm [10], generic GCD algorithms [19], and
graph algorithms [14] [7].

To start an AofA we need to introduce a mathematical apparatus allowing to denote
algorithms as Mizar terms. In previous Mizar approaches algorithms were denoted
in the following ways.

Trends in Contemporary Computer Science, Podlasie 2014, ISBN 978-83-62582-58-7
by A. Gomolińska, A. Grabowski, M. Hryniewicka, M. Kacprzak, E. Schmeidel (Eds.)
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Direct description An algorithm is presented as a Mizar formula describing each
step and each loop in it (Euclid’s Algorithm in [1], algebraic algorithms).

Procedural description An algorithm is presented as a Mizar formula with Mizar
functors describing particular procedures and functions (Dijkstra and Prim Algo-
rithms in [14], GCD in [19], Dijkstra Algorithm in [7]).

Meta-algebraization An algorithm is presented as a Mizar term with Mizar func-
tors corresponding to constructions in programming languages like sequential com-
position or loops (composition of macro-instructions in [21], Euclid’s Algorithm in
[20]).

Algorithms denoted using these approaches are, however, rather inconvenient for fur-
ther manipulations. It is difficult to describe and state their properties as they belong
to a meta level. Finally, these approaches were developed for proving only partial cor-
rectness of algorithms. The complexity and termination is difficult to investigate in
these approaches and it is hardly done.

2 Main ideas of the Mizar formalization

The approach presented here can be considered as a classical approach. We decided
to define a language for denoting algorithms as a mathematical object which can be
investigated like, for example, a language for logic. Moreover, the language is defined
independently from a machine.

Algorithms and their parts – instructions – are introduced as elements of a one-
sorted universal algebra called an if-while algebra. The algebra has 4 operations: a
constant – the empty instruction, a binary catenation of instructions (_;_), a ternary
conditional instruction (if _ then _ else _), and a binary while instruction (while _
do _). An execution function is defined on pairs (s, I), where s is a state (an element
of a certain set of states) and I is an instruction, and results in states. The execution
function obeys control structures using the set of distinguished true states. I.e., a
condition instruction is executed and the continuation of execution depends on the
fact whether the resulting state is in true states, or not. Termination is also defined
for pairs (s, I) and depends on the execution function. The existence of an execution
function determined by elementary instructions and the uniqueness of it for terminating
instructions is proved in the Mizar formalization.

2.1 If-while algebra

The definition of an if-while algebra uses the type Universal_Algebra which is defined
in [13] as a system

UAStr(# carrier -> set, charact -> PFuncFinSequence of the carrier #);

fulfilling some additional properties. It means that a universal algebra is an aggregate
of two components: a set called carrier and a finite sequence of partial operations
on the carrier called charact. If-while algebra is introduced in a few steps. First, a
Mizar attribute with_empty_instruction is defined to express a property of a uni-
versal algebra that its operation number 1 is nullary, (i.e., has arity zero).

definition
let S be non empty UAStr;
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attr S is with_empty-instruction means
1 in dom the charact of S &
(the charact of S).1 is 0-ary non empty homogeneous
quasi_total PartFunc of (the carrier of S)*, the carrier of S;

end;

The meaning of the definiens is that 1 is in the domain of the charact (so there is at
least one element in the sequence of operations) and the value of the charact on 1 is a
nullary operation. In other words, there exists the operation number 1 and it is nullary.
In the same way we introduce attributes
• with_catenation – there exists the operation number 2 and it is binary,
• with_if-instruction – there exists the operation number 3 and it is ternary, and
• with_while-instruction – there exists the operation number 4 and it is also

binary.
Then, preIfWhileAlgebra is introduced as a Universal_Algebra which possesses all
4 these properties.

definition
mode preIfWhileAlgebra is with_empty-instruction

with_catenation with_if-instruction with_while-instruction
Universal_Algebra;

end;

Before this definition the existence of such an algebra had to be proved (existential
registration). Of course, the best example is a free universal Ω-algebra where Ω is the
signature of type (0, 2, 3, 2) (see [16]) but the catenation operation in a free algebra is
not associative and the result of the catenation of empty instruction is different from
the argument. In our approach, we allow the if-while algebra to have some compiler
optimizations (e.g., elimination of the empty instruction). The if-while algebra may have
associative catenation (attribute associative) and may have the empty instruction as
a neutral element of the catenation (attribute unital). However, some properties of
free algebras are still welcome. For example, a conditional instruction could not be a
loop instruction or the other way round; a conditional instruction could not be identical
with its condition or sub-instruction, etc. This could be expressed with the adjective
non degenerated which is an antonym of the attribute degenerated introduced in this
approach. Other properties of a free algebra are that it is generated from a given set of
atoms (attribute well_founded) and there is no other operation but the one specified
by a signature (attribute ECIW-strict1). Our atoms are elementary instructions which
are non compound elements of the carrier (they are not results of any operation).
Finally, IfWhileAlgebra is introduced as

definition
mode IfWhileAlgebra is

non degenerated well_founded ECIW-strict preIfWhileAlgebra;
end;

The motivation behind IfWhileAlgebra is to have a set of assignments as the set of
elementary instructions and to build compound instructions with algebra’s operations
as follows
1 ECIW stands for Empty instruction, Catenation, If-instruction, and While-
instruction
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ei A I1\;I2 ifte(C,I1,I2) while(C,I)

The first expression is the empty instruction of the if-while algebra A, the second one is
the sequential composition of instructions, the third one is conditional instruction with
condition C, and the last one is the loop instruction with condition C. Additionally, we
define a for-loop as an abbreviation

for-do(I0, C, J, I) equals I0\;while(C, I\;J)

Such an approach is best suitable for imperative programming and it can be ex-
tended to fulfill conditions of object-oriented programming (see Section 5). Functional
paradigm could not be realized well as it requires quite a different approach.

The theory applying the concept of IfWhileAlgebra could be easily ported to
algorithms defined on AMI machines by defining appropriate if-while algebras and this
work is planed as student tasks (engineer or master theses).

2.2 Execution function

The execution function is defined as follows

definition
let A be preIfWhileAlgebra;
let S be non empty set;
let T be Subset of S;
mode ExecutionFunction of A,S,T

-> Function of [:S, the carrier of A:], S means
it is complying_empty-instruction &
it is complying_catenation &
it complies_if_wrt T &
it complies_while_wrt T;

end;

The non empty set S is intended to be an arbitrary set of states2 and T to be a set of
true states. An execution function is a function f from the Cartesian product S × |A|
into S which
• does not change state for empty instruction (complying_empty-instruction),

f.(s, ei A) = s
• is a function composition for catenation of instructions (complying_catenation),

f.(s, I1;I2) = f.(f.(s, I1), I2)
• obeys conditional instructions with respect to the set of true states

(complies_if_wrt),
f.(s, C) in T implies f.(s, ifte(C,I1,I2)) = f.(f.(s, C), I1)
f.(s, C) nin T implies f.(s, ifte(C,I1,I2)) = f.(f.(s, C), I2)

• obeys loop instructions (complies_while_wrt)
f.(s, C) nin T implies f.(s, while(C,I)) = f.(s, C)

f.(s, C) in T implies f.(s, while(C,I)) = f.(f.(f.(s,C),I),while(C,I))
It means that the f -execution in a state s of the instruction

if C then I1 else I2 (ifte(C, I1, I2))

2 S may be the set of states of a certain machine, but it is not required.
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starts from executing C in state s and if the resulted state s′ = f(s, C) is an element
of true states (s′ ∈ T ) then the instruction I1 is executed in state s′. Otherwise, the
instruction I2 is executed in s′. The f -execution of

while C do I (while(C, I))

starts also from executing C in state s and while the resulted state is a true state then
the execution of I and after that C is repeated. The execution function is determined
by the execution on loop instructions I and is unknown3 for nonterminating loops.

2.3 Termination

The termination is defined for pairs (s, I) by induction on the structure of instruction
I in the usual way. The induction base is that every elementary instruction terminates
in any state. The loop instruction while(C, I) terminates in state s if C terminates
in s and there exists a finite sequence (s1, . . . , sn, z) which is a sequence of states of
iteration of I\;C such that s1 equals f.(s, C), states s1, . . . , sn are true states and z
is not true state, and I\;C terminates in every state si. In Mizar it looks like

[s,C] in it &
(ex r being non empty FinSequence of S st

r.1 = f.(s,C) & r.len r nin T &
for i being Nat st 1 <= i & i < len r
holds r.i in T & [r.i, I\;C] in it & r.(i+1) = f.(r.i, I\;C))

implies [s, while(C,I)] in it

where it stands for the set of terminating pairs.
The proof of the termination of an algorithm (for states satisfying the input con-

dition) must be done following the structure of the algorithm. It could be semi-
automatized with Mizar adjectives (attributes) and registrations or with Mizar re-
definitions. For example, we introduce an attribute

I is absolutely-terminating

for the condition that for any state and execution function the instruction I terminates.
Then we register elementary instructions to be absolutely-terminating. The same regis-
tration is done for the empty instruction, the composition and the conditional instruc-
tions built up of the absolutely-terminating instructions. Only a while-loop is omitted
for the well-known reason.

registration
let A be preIfWhileAlgebra;
cluster ei A -> absolutely-terminating;
let I,J be absolutely-terminating Element of A;
cluster I\;J -> absolutely-terminating;
let C be absolutely-terminating Element of A;
cluster ifte(C,I,J) -> absolutely-terminating;

end;

After these registrations compound instructions without while-loops are known by the
Mizar verifier to be terminating.
3 The value of the execution function on a state and a nonterminating loop while(C,
I) is a certain state but the state is not specified.
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2.4 Correctness

To prove the correctness of an algorithm, we need to prove the termination for states
satisfying the input condition and to prove that the result states satisfy the output con-
dition. The most essential problems appear when the algorithm includes a while-loop.
The termination of while-loop iteration is proved according to the following scheme

scheme Termination
{A() -> preIfWhileAlgebra, I() -> (Element of A()),
S() -> non empty set, s() -> (Element of S()),
T() -> Subset of S(), F(set) -> Nat,
f() -> ExecutionFunction of A(),S(),T(),
P[set]
}:

f() iteration_terminates_for I(),s()
provided

A1: s() in T() iff P[s()]
and

A2: for s being Element of S() st P[s]
holds (P[f().(s,I())] iff f().(s,I()) in T()) &

F(f().(s,I())) < F(s);

The idea carried by the scheme is that if in each step of the iteration some nonnegative
value is reduced, then the iteration terminates. Literally, the scheme states that the
iteration of the instruction I according to the execution f started with the state s
terminates provided that conditions A1 and A2 hold. The condition A1 means that
the state s is a true state if and only if s has some property P . The condition A2 means
that the property P is actually the loop condition and that the nonnegative natural
value F (s) is reduced with each iteration.

The second scheme is prepared to prove loop-invariants and may be seen as a Mizar
adaptation of Hoare’s while rule [11]. The loop-condition is denoted here with R and
the invariant is denoted with P .

scheme InvariantSch
{A() -> preIfWhileAlgebra, C,I() -> (Element of A()),
S() -> non empty set, s() -> (Element of S()),
T() -> Subset of S(),
f() -> ExecutionFunction of A(),S(),T(),
P,R[set]
}:
P[f().(s(),while(C(),I()))] & not R[f().(s(),while(C(),I()))]

provided
P[s()]
and
f() iteration_terminates_for I()\;C(), f().(s(),C())
and
for s being Element of S() st P[s] & s in T() & R[s]
holds P[f().(s,I())]

and
for s being Element of S() st P[s] holds
P[f().(s,C())] & (f().(s,C()) in T() iff R[f().(s,C())]);
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3 Model with integers as the only data type

To start investigations on real algorithms we first need to introduce assignment in-
structions as elementary instructions. The assignment instruction should assign to a
variable a value which is calculated for the current state according to some arithmetic
expression. The expression may include variables, constants, and a limited number of
arithmetic operations. In this model values are integers only and operations are the
following:

+ - * div mod eq leq gt

States are functions from a set X of locations into the set INT of integers. In the Mizar
notation, states are elements of the set Funcs(X, INT). A variable is a function from
states into locations and an expression is a function from states into integers.

definition
let X be non empty set;
mode Variable of X is Function of Funcs(X, INT), X;
mode Expression of X is Function of Funcs(X, INT), INT;

end;

For a variable v and a state s, v(s) is a location. Namely, v(s) says in which location
is the value of v in the state s. Such approach allows to have static variables (when v
is a constant function) as well as dynamic ones. It means that we may easily model
variables for arrays like A[i].

The definition above gives only a rough approximation of variables and expressions.
Not all functions are allowed to be expressions, especially, incomputable ones should
not be. Therefore we give some additional conditions that limit the set of variables and
expressions and, simultaneously, allow to write algorithms in a natural way (and to
prove their correctness). For example, the correctness of the following algorithms has
been proved using this approach.

s:=1\; for-do(i:=2, i leq n, i+=1, s*=i)

while(y gt 0, z:=x\; z%=y\; x:=y\; y:=z)

while(y gt 0,
z:=(.x-.y)\; if-then(z lt 0, z*=-1)\; x:=y\; y:=z

)

x:=0\; y:=1\; for-do(i:=1, i leq n, i+=1, z:=x\;x:=y\;y+=z)

y:=1\; for-do(i:=1, i leq n, i+=1, y*=x)

y:=1\;
while(m gt 0,
if-then(m is_odd, y*=x)\; x*=x\; m/=2

)

The algorithms above calculate respectively
• factorial n!,
• gcd by modulo operation (Euclid Algorithm 1),
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• gcd by subtraction (Euclid Algorithm 2),
• Fibonacci numbers,
• exponentiation by multiplication,
• exponentiation by squaring.

4 An example – exponentiation by squaring

Let us consider the algorithm which calculates exponentiation by squaring:

y:=1\;
while(m gt 0,
if-then(m is_odd, y*=x)\; x*=x\; m/=2

)

We want to prove that it calculates exponentiation, i.e.,

for x,y,m being Variable of g
st ex d being Function st d.b = 0 & d.x = 1 & d.y = 2 & d.m = 3
for s being Element of Funcs(X, INT)
for n being Nat st n = s.m holds
g.(s, y:=1\; while(m gt 0, if-then(m is_odd, y*=x)\; x*=x\; m/=2)

).y = (s.x)|^n

where g is an execution function. The function d differentiates variables b, x, y, and m.
Variable b is responsible for true states – a state is true if the value of b is different from
0. In the proof we denote the invariant of the while-loop by P and the value reduced
in the while-loop by F. The scheme Termination is used to justify the formula labeled
with B and the scheme InvariantSch to justify E.

proof
set S = Funcs(X, INT); set T = S\(b,0);
let x,y,m be Variable of g;
given d being Function such that

A0: d.b = 0 & d.x = 1 & d.y = 2 & d.m = 3;
D0: m <> x & m <> y & x <> y & b <> x & b <> y & b <> m by A0;

let s be Element of Funcs(X, INT);
let n be Nat such that

A1: n = s.m;
set C = m gt 0; set I = if-then(m is_odd, y*=x);
set J = I\; m/=2\; x*=x;
set s0 = g.(s, y:=1); set s1 = g.(s0,C); set fs = g.(s0, while(C,J));

A2: g.(s, y:=1\; while(C, J)) = fs by AOFA_000:def 29;
Z0: g complies_if_wrt T by AOFA_000:def 32;
A4: s1.x = s0.x & s1.m = s0.m & s1.y = s0.y &

(s0.m > 0 implies s1.b = 1) & (s0.m <= 0 implies s1.b = 0) by Z0,D0,Th015;
defpred P[Element of S] means

(s.x)|^n = ($1.y)*(($1.x)to_power($1.m)) & $1.m >= 0;
defpred R[Element of S] means

$1.m > 0;
A: P[s0] proof ... end;
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deffunc F(Element of S) = In($1.m, NAT);
B0: g.(s0,C) in T iff R[g.(s0,C)] by A4,LemTS;
B1: for s being Element of S st R[s]

holds (R[g.(s,J\;C)] iff g.(s,J\;C) in T) & F(g.(s,J\;C)) < F(s)
proof ... end;

B: g iteration_terminates_for J\;C, g.(s0,C) from Termination(B0,B1);
C: for s being Element of S st P[s] & s in T & R[s]

holds P[g.(s,J)]
proof ... end;

D: for s being Element of S st P[s] holds
P[g.(s,C)] & (g.(s,C) in T iff R[g.(s,C)])

proof ... end;
E: P[g.(s0,while(C,J))] & not R[g.(s0,while(C,J))]

from InvariantSch(A,B,C,D); then
fs.m = 0 & (fs.x) to_power 0 = 1 by XXREAL_0:1,POWER:29;
hence g.(s, y:=1\; while(m gt 0, J)).y = (s.x)|^(s.m) by A2,E;

end;

5 Model over an algebra (ADT)

Object oriented and generic programming paradigms require a different model than a
model with one data type. We rather want to have a rich enough collection of types,
a subtyping structure, and an algebra of constants of these types. The algebra should
include operations like the n-th element of an array, dereferencing, the dot operator, etc.
The types and operations could be specified by an algebraic signature. Then we want to
build terms of this signature including constants and syntactic variables. Finally, some
compound terms together with syntactic variables are intended to serve as program
variables (l-values).

The base of this model is the structure, [3].

definition
let J be non empty non void ManySortedSign;
let T be MSAlgebra over J; :: term algebra
let X be GeneratorSet of T; :: program variables
struct (UAStr) ProgramAlgStr over J,T,X(#
carrier -> set,
charact -> PFuncFinSequence of the carrier,
assignments ->

Function of Union [|X, the Sorts of T|], the carrier
#);

end;

The structure ProgranAlgStr is defined over a signature J of types and an algebra
T of terms. It includes the fields carrier and charact like IfWhileAlgebra and,
moreover, the generator set X which chooses program variables from terms and the
field assignments which for each pair (t1, t2) points the instruction t1 := t2 from the
carrier. Terms t1, t2 are of the same type.

For example, the algebra of previously mentioned macro-instructions could be easily
expressed in this manner.
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6 Conclusions and further work

The approach presented here is the project in MML aimed at the analysis of algorithms.
It allows to formalize the variety of algorithms including proofs of correctness and
termination.

However, the formalization is not completed. It has just been started and still does
not give all advantages of Hoare’s logic [11]. For example, the invariants still belong to
a metalanguage and the uniform axiomatization of them could not be done well.

Further work concerns the development of the formalization to reach an acceptable
level of fluency of analysis of algorithms. It relies on the formalization of all elements
of Hoare’s logic as well as on the utility of Mizar type widening mechanisms (see
[2]). The computer algebra of types available in Mizar promises a solution to some
nasty jobs like tracking variable values. For this purpose we also need an algebra of
Hoare’s formulae. On the other hand, internal Mizar automation should be completed
by external automation. It means, we need external software which could make au-
tomatically the Mizar description of an algorithm and complete as big as possible
fragments of correctness proofs.
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Abstract. The usage of extensionality of sets, possibly satisfying some
additional properties, by proof checkers will be presented. In particular,
we will show how extensionality influences proof tactics and equational
calculus. In the paper, we collect short descriptions of Mizar construc-
tions, which have an impact on two basic Mizar modules: Reasoner
for supporting definitional expansions, and Equalizer for computing
the congruence closure of a given set of equalities.

1 Introduction

Axiom of extensionality is a very basic axiom of many set theories. It says that two
sets are equal (are the same set) if they have the same elements, what in systems with
equality could be symbolically written as:

∀X,Y : (∀z : z ∈ X ⇔ z ∈ Y )⇒ X = Y.

To see how the axiom can be used to prove equality of two particular sets in practice
let’s examine a simple example, and prove that intersection of two sets is commutative,
that is A ∩B = B ∩A. To justify this fact, the statement ∀z : z ∈ A ∩B ⇔ z ∈ B ∩A
has to be proven. Let’s then fix a z and assume that z ∈ A ∩ B. By definition of the
intersection we know that z ∈ A ∧ z ∈ B. Then, by commutativity of the conjunction
we know that z ∈ B∧z ∈ A, and hence z ∈ B∩A. Opposite direction of the equivalence
can be proven similarly.

However, in a case of more complex sets, sets which elements are of some particular
structure or satisfy some particular properties (e.g. relations or functions), it is often
better to express equality of such sets in terms adequate to the domain to which those
sets belong. A good example is the equality of two functions. The standard definition
says that two functions are equal if their domains equal each other and assignments
for each argument are equal, that is
f = g ⇔ dom(f) = dom(g) ∧ ∀x : x ∈ dom(f)⇒ f(x) = g(x).

The definition looks more complex than the extensionality axiom, but it is easier
to use to prove the equality of functions.

Let’s consider two functions f, g : N → N such that f(n) = n and g(n) = |n| for
every natural number n. These functions are equal because dom(f) = N = dom(g),
and by definitions of f and g we obtain that for every natural number n holds f(n) =
n = |n| = g(n).

One can imagine a proof, that would treat these functions as sets of ordered
pairs, and use the extensionality axiom directly. Firstly, f should be expressed as
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{[0, 0], [1, 1], [2, 2], . . . }, and g as {[0, |0|], [1, |1|], [2, |2|], . . . }. Then these two sets of
pairs should be compared.

In the paper, we present short descriptions of all Mizar constructions [5, 17], which
have an impact on processing equalities. In Section 2 we describe how Mizar users can
control structures of proofs. In Section 3 we show how to formulate different facts about
equalities to increase computational power of the Mizar Verifier. We will focus on
practical aspects of two basic Mizar modules: Reasoner for supporting definitional
expansions, and Equalizer for computing the congruence closure of a given set of
equalities. We describe how to utilize functionalities of the modules in practice, rather
than how the modules are structured and implemented.

2 Reasoning

Proof system of the Mizar is based on logical reasoning in the Jaśkowski style of
the natural deduction [7]. Structures of proofs are related to the structures of the
formulas being proved. However, in many cases it is easier to trace the reasonings
not by following the structure of the statement, but by following the structure of the
definition of the main symbol of the statement, that is to exploit definitional expansions
[2, 13]. Definitional expansions are then strictly related to definitions. So, a natural
question “how to manage expansions of overloaded definitions” arises. Overloading can
be understood syntactically, that is when a symbol is overloaded to spell different
notions in the same way (e.g. + as the addition of complex numbers, and + as the
strings concatenation). Overloading can be also understand semantically, when the
same operation is applied to arguments of different types and its meaning can be
defined using symbols and notions specific to the domain of the arguments (e.g. the
composition ∗ of relations applied to functions). In the Mizar language, syntactically
overloaded definitions are understood simply as different definitions, while definitions
overloaded semantically are understood as redefinitions of the notion.

In this paper we are interested in processing equalities, so we are focusing on se-
mantical overloading of the axiom of extensionality. However, the theory of overloading
concerns not only equality, but also other relations between objects.

As a case study, we propose a system of redefinitions of equalities of functions. Of
course, equality of two particular functions can be proven from the axiom of exten-
sionality directly. However, as it was shown in the Introduction, it is often easier and
more natural to prove it using notions like domain and value assignment. Moreover,
we will show, that even in the such easy case, one redefinition may not be so useful as
a system of redefinitions depending on exact types of functions. Namely, one can con-
sider functions, of which declared types are without explicitly determined domains and
codomains; or functions between determined, but possibly not equal, sets; or functions,
of which declared type is just the same type. We then propose to consider four different
redefinitions with different definientia, which prevents from unnecessary repetitions of
proofs of facts, which can be inferred from declared types of arguments.

1) General case

definition
let f1,f2 be Function;
redefine pred f1 = f2 means
dom f1 = dom f2 &
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for x being object st x in dom f1 holds f1.x = f2.x;
compatibility;
end;

2) f1 : A1 → B1, f2 : A2 → B2

definition
let A1,A2 be set, B1,B2 be non empty set;
let f1 be Function of A1,B1, f2 be Function of A2,B2;
redefine pred f1 = f2 means
A1 = A2 & for a being Element of A1 holds f1.a = f2.a;
compatibility;
end;

3) f1 : A → B1, f2 : A → B2

definition
let A be set, B1,B2 be non empty set;
let f1 be Function of A,B1, f2 be Function of A,B2;
redefine pred f1 = f2 means
for a being Element of A holds f1.a = f2.a;
compatibility;
end;

4) f1, f2 : A → B

definition
let A,B be set;
let f1,f2 be Function of A,B;
redefine pred f1 = f2 means
for a being Element of A holds f1.a = f2.a;
compatibility;
end;

Case 1) is applicable for all types that behave as functions. Case 2) can be used for
functions defined between possibly different sets. Comparing domains of functions can
be reduced to comparing sets A1 and A2, because it is provable that these sets are the
domains. Case 3) is applicable for functions with common domains. Then, the definiens
can be simplified, and comparison of domains can be removed. Case 4) can be used for
functions with common domains and codomains, which could be possibly empty sets.

Advantages of proposed redefinitions are illustrated by two different proofs of the
same fact:
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for f,g being Function of NAT,NAT st
(for n being Nat holds f.n = n) &
(for n being Nat holds g.n = |.n.|)

holds f = g
proof

let f,g be Function of NAT,NAT such that
A0: for n being Nat holds f.n = n and
A1: for n being Nat holds g.n = |.n.|;
A2: dom f = NAT by FUNCT_2:def 1;

hence dom f = dom g by FUNCT_2:def 1;
let n be object;
assume n in dom f;
then reconsider m = n as Nat by A2;
thus f.n = m by A0
.= |.m.| by ABSVALUE:def 1
.= g.n by A1;

end;

for f,g being Function of NAT,NAT st
(for n being Nat holds f.n = n) &
(for n being Nat holds g.n = |.n.|)

holds f = g
proof

let f,g be Function of NAT,NAT such that
A0: for n being Nat holds f.n = n and
A1: for n being Nat holds g.n = |.n.|;

let n be Element of NAT;
thus f.n = n by A0
.= |.n.| by ABSVALUE:def 1
.= g.n by A1;

end;

The right proof is simpler and shorter than the left one. It is because, due to declared
types of considered functions, in the right proof the domains of the functions do not
have to be touched. All reasoning is about the values assigned by the functions.

System of redefinitions of equality of particular objects can be expanded further,
for example for relations, partial functions, sequences, finite sequences, etc. We could
also imagine, that for every new type of objects, a new redefinition of the equality of
elements of that type could be introduced to the Mizar Mathematical Library [1].

3 Equalizer

The Equalizer is a Mizar module dealing with equational calculus [11]. It collects
all terms from the processed formula (inference), and computes the congruence closure
over equalities available in the inference, where the congruence closure of a relation
R defined on a set A is a minimal congruence relation (a relation that is reflexive,
symmetric, transitive, and monotonic) containing the original relation R.

The computed congruence closure of a given inference is used by the Mizar Checker
to detect a possible contradiction and to refute the inference (Mizar is a disprover),
what can happen when one of the following cases holds
• there are two premises of the form P [x] and ¬P [y] and x, y are congruent, or
• there is a premise of the form x 6= y again when x, y are congruent.

where two elements x and y are congruent, if the pair [x, y] belongs to the congruence
closure.

The second case can be applied to check if an equality is a consequence of a given
set of equalities.

3.1 Sources of equalities

In this section we present possible sources of equalities, which can be taken into account
processing a given inference. The sources can be classified into the following categories:
• occurring explicitly in a given inference,
• term expansions (equals),
• properties,
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• term reductions,
• term identifications,
• arithmetic,
• type changing (reconsider),
• others, e.g. processing structures.

Equalities occurring explicitly in a given inference

A very basic case are equalities, which are stated in the statement to be proven,
e.g.

for a,b being Element of INT.Ring
for c,d being Complex st a = c & b = d
holds a + b = c + d;

Term expansions

One of the methods defining new functors can use the following syntax:

definition
let x1 be θ1, x2 be θ2, . . . , xn be θn;
func ⊗ (x1, x2, . . . , xn) -> θ equals :ident:
τ(x1, x2, . . . , xn);

coherence
proof
thus τ(x1, x2, . . . , xn) is θ;

end;
end;

which introduces a new functor ⊗(x1, x2, . . . , xn) equals to τ(x1, x2, . . . , xn). Such
definitions, whenever terms ⊗(x1, x2, . . . , xn) occur in an inference, allow the Verifier
to generate equalities ⊗(x1, x2, . . . , xn) = τ(x1, x2, . . . , xn). For example,

definition
let x,y be Complex;
func x - y -> Complex equals
x + (-y);
coherence;
end;

causes that all instantiations of terms x-y are expanded to x+-y. As a gain of such
expansions, for example, the equality a-b-c = a+(-b-c) is a direct consequence of
associativity of addition. It holds because the term a-b is expanded to the term a+-b,
and the term a-b-c is expanded to the term a-b+-c, what both results in a+-b+-c. On
the other hand, the term -b-c is expanded to the term -b+-c, what creates the term
a+(-b+-c), that is the associative form of a+-b+-c.

An important feature of this kind of term expansions is that it is “a one way”
expansion, in the sense, that terms ⊗(x1, x2, . . . , xn) are expanded to τ(x1, x2, . . . , xn),
but not vice-versa. The reason of such treatment is to avoid ambiguity of expansions
and over-expanding terms.
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Properties

Properties in Mizar are special formulas, which can be registered while defining
functors [9]. Mizar supports involutiveness and projectivity for unary operations
and commutativity and idempotence for binary operations. If a property is regis-
tered for some functor, the Equalizer processes appropriate equalities adequate to
the property, where for involutiveness the equality is f(f(x)) = x, for projectivity
it is f(f(x)) = f(x), for commutativity it is f(x, y) = f(y, x), and for idempotence
f(x, x) = x.

Term reductions

Another method of imposing the Equalizer to generate extra equalities based on
terms occurring in processed inferences are term reductions [8] with syntax:

registration
let x1 be θ1, x2 be θ2, . . . , xn be θn;
reduce τ1(x1, x2, . . . , xn) to τ2(x1, x2, . . . , xn);
reducibility
proof
thus τ1(x1, x2, . . . , xn) = τ2(x1, x2, . . . , xn);

end;
end;

Term reductions can be used to simplify terms to their proper subterms. This sim-
plification relies on matching terms existing in the processed inference with left-side
terms of all accessible reductions, and whenever the Equalizer meets an instantia-
tion σ of the term τ1(x1, x2, . . . , xn), it makes σ equal to its subterm equivalent to
τ2(x1, x2, . . . , xn).

The restriction about simplifying terms to their proper subterms, not to any terms,
is to fulfill the general rule established for the system, that the Equalizer does not
generate extra terms and does not grow up the universe of discourse.

An example and counterexample of possible reductions could be reducing the com-
plex conjugate of a real number to the number, and reducing the subtraction a number
from itself to the zero.

example counterexample

registration
let r be Real;
reduce r*’ to r;
reducibility;

end;

registration
let r be Real;
reduce r - r to 0;
reducibility;
end;
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Term identifications

In mathematics, there are different theories which at some their parts are about
the same objects. For example, when one considers complex numbers and extended
real numbers (reals augmented by +∞ and −∞) and discusses basic operations on
such numbers (like addition, subtraction, etc.), it can be quickly recognized that if
the numbers are reals, the results of these operations are equal each other. That is,
there is no difference, if one adds reals in the sense of complex numbers or in the sense
of extended real numbers. Therefore, pairs of such operations could be identified on
appropriate sets of arguments.

Mizar provides a special construction for such identifications [3] with syntax:

registration
let x1 be θ1, x2 be θ2, . . . , xn be θn;
let y1 be Ξ1, y2 be Ξ2, . . . , yn be Ξn;
identify τ1(x1, x2, . . . , xn) with τ2(y1, y2, . . . , yn)
when x1 = y1, x2 = y2, . . ., xn = yn;

compatibility
proof
thus x1 = y1 & x2 = y2 & . . . & xn = yn
implies τ1(x1, x2, . . . , xn) = τ2(y1, y2, . . . , yn);

end;
end;

and, whenever the Equalizer meets an instantiation σ of the term τ1(x1, x2, . . . , xn),
it makes σ equal to the appropriate instantiation of τ2(y1, y2, . . . , yn). A gain of using
such identifications is that all facts proven about τ2(y1, y2, . . . , yn) are applicable for
τ1(x1, x2, . . . , xn), as well.

An example of identification taken from the Mizar Mathematical Library could
be the lattice of real numbers with operations min, max as the infimum and supremum
of two elements of the lattice [4].

registration
let a,b be Element of Real_Lattice;
identify a "\/" b with max(a,b);
identify a "/\" b with min(a,b);
end;

Built-in computations

Another source of equalities processed by the Equalizer are special built-in pro-
cedures for processing selected objects. Generating equalities by these routines is con-
trolled by the environment directive requirements [9]. In our interest are two proce-
dures dealing with boolean operations on sets (BOOLE) and basic arithmetic operations
on complex numbers (ARITHM).

Requirements BOOLE

X \/ {} = X; X /\ {} = {}; X \ {} = X;
{} \ X = {}; X \+\ {} = X;
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Requirements ARITHM

x + 0 = x; x * 0 = 0; 1 * x = x;
x - 0 = x; 0 / x = 0; x / 1 = x;

Moreover, requirements ARITHM fires procedures for solving systems of linear equations
over complex numbers.

Type changing

It is quite common situation, when one object can be treated as an element of
different theories or different structures. For example, the empty set is the empty
set in set theories, but it is also the zero number is some arithmetics. In computerized
mathematics, to allow systems distinguish and understand symbols clearly and to avoid
ambiguity, it is often required to express types of objects explicitly.

Mizar provides a special rule (reconsider) for forcing the system to treat a given
term as if its type was the one stated.

For example, to consider 0 as an element of the field of real numbers (for example,
to prove that it is the neutral element of its additive group), one can state

reconsider z = 0 as Element of F_Real;

The equality z = 0 is obviously processed by the Equalizer.

3.2 Example with automatization

In this section we present an example how all described above techniques can autom-
atize reasoning and make proofs shorter or even make theorems obvious. The working
example (about elements of the additive group of real numbers G_Real) with all au-
tomatizations switched-off and all basic proof steps written within the proof is:

for a being Element of G_Real holds a + 0.G_Real = a
proof
let a be Element of G_Real;
reconsider x = a as Real;

A: 0.G_Real = the ZeroF of G_Real by STRUCT_0:def 6
.= In(0,REAL) by VECTSP_1:def 1
.= 0 by A1,SUBSET_1:def 8;
thus a + 0.G_Real = (the addF of G_Real).(a,0.G_Real) by ALGSTR_0:def 1
.= addreal.(a,0.G_Real) by VECTSP_1:def 1
.= x + 0 by A,BINOP_2:def 9
.= x by ARITHM:1
.= a;

end;

while the theorem is obvious when all provided mechanism are utilized.
The equality a + 0.G_Real = (the addF of G_Real).(a,0.G_Real) is a consequence
of the “equals” expansion of the definition:
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definition
let M be addMagma;
let a,b be Element of M;
func a+b -> Element of M equals
:: ALGSTR_0:def 1
(the addF of M).(a,b);
end;

The equality a + 0.G_Real = x + 0 is a consequence of the equality x = a (recon-
sider), the equality 0.G_Real = 0 and the term identification:

registration
let a,b be Element of G_Real, x,y be Real;
identify a+b with x+y when a = x, b = y;
compatibility by BINOP_2:def 9;
end;

The equality 0.G_Real = 0 is a consequence of the “equals” expansion of the definition:

definition
let S be ZeroStr;
func 0.S -> Element of S equals
:: STRUCT_0:def 6
the ZeroF of S;
end;

and the “equals” expansion of the definition:

definition
func G_Real -> strict addLoopStr equals
:: VECTSP_1:def 1
addLoopStr (# REAL,addreal,In(0,REAL) #);
end;

and the term reduction:

registration
let r be Real;
reduce In(r,REAL) to r;
reducibility;
end;

The equality x + 0 = x is a consequence of built-in calculations over complex numbers.
And finally, the equality x = a is a trivial consequence of the “reconsider”.

4 Conclusions

Different aspects of dealing with equalities by the Mizar proof-checker are presented
in the paper.

In Section 2 we introduced a system of redefinitions suitable for proving equalities
of particular functions depending on their exact types. Similar systems could be defined
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for other notions. A revision of the Mizar Mathematical Library concerning such
redefinitions could be performed [10].

In Section 3 we described different techniques, which increase the number of equal-
ities accessible for the Checker making more statements easier to prove. Some of the
mechanisms were implemented in the system quite recently, and they are not exploited
in articles stored in the Mizar Mathematical Library before the implementation.
Then some revisions of the repository are necessary and they are successively carried.
For example, our example about the group of real numbers

theorem
for a being Element of G_Real holds a + 0.G_Real = a;

could be and should be reformulated as a term reduction, i.e.

registration
let a be Element of G_Real;
reduce a + 0.G_Real to a;
reducibility;
end;
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Abstract. Formal proof checking systems such as Mizar or Isabelle/Isar
can verify the correctness of proof scripts, both easily readable and ob-
scure. However for humans, e.g., those who analyse the main idea of a
formal proof or redevelop fragments of reasoning to make them stronger,
the legibility has substantial significance. Furthermore, proof writers cre-
ate still more and more complex deductions that cannot be shortened to
several steps by any tools currently available. Therefore, it is important
to better understand how we can facilitate the work of script readers
modifying the order of independent deduction steps or reorganise the
proof structure by extracting lemmas that are obtained automatically.
In this paper we present experimental result obtained with a method
that improves proof legibility based on human short-term memory and
we explore its impact for realisation of other, also popular methods.

Keywords: Operations on languages, Legibility of proofs, Proof assis-
tants

1 Introduction

1.1 Motivations

One of the most important tasks of proof assistants such as Mizar [17, 23] or Is-
abelle/Isar [24] is checking proof step correctness. Clearly, inferences that are obvious
for proof writers should be also obvious for checkers and vice versa. However, the notion
of “obviousness” has often different meaning for humans and checkers [5, 21]. Generally,
this difference is not so important problem if we do not need to analyze, adapt or mod-
ify the existing formal proofs scripts [10, 12]. According to the opinion of some proof
writers, repairing a justification in re-developed fragments of reasoning that ceased to
be acceptable, can be very difficult. We can observe similar situation in the area of proof
script legibility. A proof assistant can check correctness of every syntactically correct
formal proof scripts, even automatically generated, excessively large, or written in a
chaotic way. However, any attempt to analyse such scripts by a human is extremely
difficult or even impossible. The main reason for this situation is often the fact that
proof scripts are created in an artificial language which “tries” to be similar to the one
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that occurs in the traditional mathematical practice. Another reason is that readability
does not come of zero cost on the side of proof script developers. Namely, the legibility
strongly depends on the amount of effort invested in enhancing the readability by the
author of a given proof script. Unfortunately, authors often do not care about legibility
of their proof scripts. It is often a consequence of their assumption that no one, with
the exception of a proof checker, will want to analyse their proof scripts. Furthermore if
somebody would want to do it, then some tool rather than themselves should improve
the legibility of their scripts. The experience with proof assistants shows that reading
proof script is often unavoidable, e.g., if we adapt or modify existing proofs [8, 11], or
if several authors cooperate on a common formalisation. The important point to note
here is that creating such a tool that enhances legibility can in general be NP-complete
[20].

1.2 Proposed approach
In this paper we present a next stage [18, 20] in the enhancing legibility of proof scripts
based on a modification of the order of independent deduction steps. We concentrate
on a modification that minimises the number of steps decorated by labels. Note that we
need to refer to a premise, if we want to use it in the justification of a step. But in some
cases to do this in the Mizar system we do not have to use the label of this premise.
Indeed, referencing a step by its label may be replaced in the Mizar system by the then
construction, if the step is located in the directly preceding step that refers to it (for
more detail see [9, 17]). Additionally, if each reference to a fixed step can be realised by
the then construction, then the label that decorates this step in unnecessary and can
be removed from the proof script. Therefore, it is possible to minimise the number of
labels that are introduced in proof scripts.

Analysing deductions contained in proof scripts of the Mizar Mathematical Library
(MML), one may reasonably conclude that the number of introduced labels in a reason-
ing can be rarely minimised so that a proof reader can keep them in human short-term
memory. However, minimisation to such a number is often possible in one-level deduc-
tions (i.e., substructures of a proof where nested lemmas are ignored) that are located
on all levels of nesting (see Fig. 2). Note that only 4.5% of one-level deductions that
occur in MML (Version 5.22.1191) have more than 7 labels. Additionally, G. A. Miller
shows that the capacity of human short-term memory is 7 ± 2 elements [15]. This limi-
tation is also recognised in modern scientific literature that concerns human perception
[3, 4]. Clearly, the capacity of memory decreases quickly with time and it is smaller in
the case of similar information [25]. However, this capacity can be extended through
training [6]. Therefore, small departure beyond the number 7 should be acceptable and
this is the case for MML where the number of labels is in the range 5-10 [14].

In this paper we represent experimental results obtained with minimisation of the
number of introduced labels. We combined this result with other criteria that improve
proof scripts legibility and have been already recognised by the scientific community
of people who write proof scripts in Mizar [18, 19] as well as in other systems [2, 13,
22]. Since, optimisation of legibility criteria in most cases is NP-hard [20], we present
readability enhancements obtained with the help of the SMT-solver Z3 [16].

2 Labeled steps in terms of proof graphs

To formulate a criterion that minimises the number of introduced labels and the in-
fluence of this criterion implementation for the realisation of other similarly popular
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criteria, we need to set the terminology and notation. Let G = 〈V,A〉 be a DAG and a
vertex u ∈ V . We use the following notation:

N−G (u) :− {v ∈ V : 〈v, u〉 ∈ A} (incoming arcs),
N+
G (u) :− {v ∈ V : 〈u, v〉 ∈ A} (outgoing arcs). (1)

Let A1 be a subset of A. An arc 〈u, v〉 ∈ A is called an A1-arc if 〈u, v〉 ∈ A1. A
sequence p = 〈u1, u2, . . . , un〉 of vertices of G is called an A1–path if 〈u1, ui+1〉 is an
A1-arc for each i = 1, 2, . . . , n−1. We identify here topological sortings of G, called also
linearisations, with one-to-one functions τ : V → {1, 2, . . . , |V |}, where τ(u) < τ(v) for
each A–arc 〈u, v〉.

An abstract model of a proof graph that represents the structure of natural de-
duction proofs, even with potentially nested subreasonings is fully explained in [18,
20]. However for our purposes it is enough to consider a simplified model which is
represented by a DAG with the structure that ignores nested lemmas (i.e., one-level
deductions). It is worth pointing out that the number of introduced labels on a one-
level deduction in a proof script is independent of the number of introduced labels on
another one-level deduction of such script. A DAG D = 〈V,A〉 with a distinguished set
of arcs R(D) ⊆ A is called a simple abstract proof graph. The vertices of D represent
steps of the reasoning and A–arcs represent the flow of information between different
steps of the reasoning. A R(D)–arc, called a reference arc, represents the information
flow between a premise (the tail of the arc) and a place of its use (the head of the arc).
The other A-arcs represent all kinds of additional constraints that force one step to
precede another one, e.g., the dependence between a step that introduces a variable
into the reasoning and a step that uses this variable in its expression.

1: reserve i, n, m for Nat; theorem
1: fixes n m i::nat

theorem 2: shows "i ∈ {k::nat. 1<=k & k<=n}==>
2: i in Seg n implies i+m in Seg(n+m) i+m ∈ {k::nat. 1 <= k & k <= n+m}"

proof proof -
3: assume A1: i in Seg n; 3: assume A1: "i ∈ {k::nat. 1 <= k & k <= n}"
4: then A2: 1 <= i by FINSEQ_1:1; 4: then have A2: "1 <= i" by simp
5: i <= i+m by NAT_1:11; 5: have "i <= i+m" by simp
6: then A3: 1 <= i+m by A2,XXREAL_0:2; 6: then have A3: "1 <= i+m" using A2 by simp
7: i <= n by A1,FINSEQ_1:1; 7: have "i <= n" using A1 by simp
8: then i+m <= n+m by XREAL_1:7; 8: then have "i+m <= n+m" by simp
9: hence thesis by A3,FINSEQ_1:1; 9: then show ?thesis using A3 by simp

end; qed

Fig. 1. An example proof script written in the Mizar language that is contained in [1]
and its reformulation to the Isabelle/Isar language.

As an illustration, let us consider an example shown in Fig. 2 that represents
the structure of proof scripts presented in Fig. 1, where solid arrows correspond to
reference arcs that are also A-arcs, and dashed arrows correspond to A-arcs that are
not reference arcs. Additionally, the term Seg n that occurs in Fig. 1 represents the
set {1, 2, . . . , n}. Clearly, both arcs and nodes of the abstract proof graph are not
labeled. However we label each element in the actual graph only to simplify their
identification. Note that this graph contains two one-level deductions (vertices 1–2 and
vertices 3–9) and additionally� arrows that correspond to meta-edges of proof graphs,
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which do not occur in our simplified model. We only recall that meta-edges represent
dependencies between one-level deductions, i.e., between a step (e.g., the vertex 2)
that as a justification contains the nested reasoning and each step of this reasoning
(e.g., vertices 3–9). It is easily seen that in such a simplified model we have to take into
consideration additional hidden dependencies that can occur between steps in one-level
deductions. As an illustration note that the 1st step has to occur before the 2nd step,
even if variables introduced in the 1st step do not occur in the statement of the 2nd step.
Indeed, e.g., the variable i is used in the statement of the 3rd step that occurs in the
nested reasoning that justify the 2nd step.

1 2

4 6

3 5 9

7 8

1st one-level deduction

2nd one-level deduction

i,n,m

i
,n

i,m

i

i,m

i,n,m

i,n
the

n
th
en

A1

A3

th
en

then

A2

Fig. 2. The abstract proof graph illustrating the structure of the reasoning presented
in Fig. 1.

Let D = 〈V,A〉 be a one-level deduction. For simplicity, we assume that A contains
additionally every hidden dependence between vertices of V, and denote by R(D) the
set of reference arcs and hidden ones. We mark by then(D) the set of references that
can be replaced by the then construction. However, to study the general case, without
the Mizar context, we will assume only the relation between distinguished sets of arcs in
D that then(D) ⊆ R(D) ⊆ A. Therefore, in further considerations we mean then(D),
R(D) simply as two sets A1, A2, respectively, where A1 ⊆ A2 ⊆ A.

Recall that we identify the arrangement of reasoning steps that correspond to V in
a proof script with a topological sortings of D. Let us consider σ ∈ TS(D). We define a
metric dσ : V×V → N that is called σ–distance and is given by dσ(v, u) = |σ(v)−σ(u)|
for all v, u ∈ V. We call a vertex v ∈ V a thenA1(σ)–step if v corresponds to a step
that refers to the directly preceding step using a A1–arc (e.g., the vertex 4). We denote
by thenA1(σ) the set of such steps given by

v ∈ thenA1(σ)⇐⇒
(
σ(v) 6= 1 ∧ 〈σ−1(σ(v)−1), v〉 ∈ A1

)
. (2)

We call a vertex v ∈ V σ–labeled if at least once we have to use a label to refer to the
statement of a step that corresponds to V (e.g., the vertex 3). The set of all σ–labeled
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vertices, denoted by labA1,A2(σ), is defined as follows:

v ∈ labA1,A2(σ)⇐⇒ ∃
u∈V
〈v, u〉 ∈ A2 ∧

(
〈v, u〉 ∈ A1 =⇒ dσ(v, u) > 1

)
. (3)

However, according to an additional syntax restriction of Mizar that prohibits refer-
ring to steps that introduce variables into the reasoning, we have to consider also the
following set of σ–labeled vertices:

v ∈ labMIZA1,A2
(σ)⇐⇒ ∃

u∈V
〈v, u〉 ∈ A2 ∧

(
(〈v, u〉 ∈ A1 =⇒ dσ(v, u) > 1) ∨ ( ∃

w∈V
〈v, w〉 ∈ A \ A1)

)
. (4)

We call |labMIZA1,A2
| the lab–parameter.

Based on the notions described above we can formulate the method of improving
legibility that corresponds to the lab-parameter as the following decision problems:

The 1st Method of Improving Legibility (MILlab):
Instance: A DAG D=〈V,A〉, subsets A1⊆A2⊆A, and a positive integer K 6 |V|.
Question: Does there exist σ ∈ TS(D) for which |labA1,A2(σ)| 6 K?

The 1st Method of Improving Legibility limited to the Mizar system (MILMIZ
lab):

Instance: A DAG D=〈V,A〉, subsets A1⊆A2⊆A, and a positive integer K 6 |V|.
Question: Does there exist σ ∈ TS(D) for which |labMIZA1,A2

(σ)| 6 K?

3 Optimisation of the lab–parameter

The complexity problem of improving legibility methods that corresponds to the lab–
parameter optimisation has been studied in [20]. It has been shown that MILlab is
NP-complete and MILMIZ

lab is solvable in polynomial time. Here we concentrate first
on properties of the polynomial time procedure that optimises the lab–parameter for
Mizar proof scripts. Then we show that the MILlab method for one-level deductions
that potentially occur in Isabelle proof scrips is NP-hard.

3.1 The lab–parameter in the Mizar system

Let us fix a one-level deduction DAG D=〈V,A〉 with two distinguished subsets of arcs
A1⊆A2⊆A. First note that some of the vertices of D have to be σ–labeled regardless
of the σ choice. Indeed, every v ∈ V for which at last one of the following properties
holds:
(i) |N+

〈V,A1〉(v)| > 1,
(ii) |N+

〈V,A2〉(v)| > |N+
〈V,A1〉(v)|,

(iii) |N+
D (v)| > |N+

〈V,A2〉(v)| > 0,
has to be σ–labeled in all σ ∈ TS(D). Mark the set of such vertices by LMIZ

A1,A2
. Note

also that if we remove all A–arcs outgoing from vertices of LMIZ
A1,A2

then the digraph
obtained in this way, denoted by D′, is a forest where every connected maximal tree
is an arborescence (i.e., a rooted tree where all arcs are directed from leaves to the
root). Additionally, every arc of D′ is simultaneously A2–arc, A1–arc, and A–arc, hence
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labMIZA1,A2
(σ) \ LMIZ

A1,A2
has to contain at least |N+

D′(v)| − 1 elements of N+
D′(v) if only

N+
D′(v) is nonempty for each v ∈ V. As it has been proven in [20], for each set of vertices

that contain LMIZ
A1,A2

and exactly |N+
D′(v)| − 1 elements of every nonempty N+

D′(v),
there exists a topological sorting σ ∈ TS(D) for which labMIZA1,A2

(σ) is equal to this set.
Clearly, in this topological sorting every non-selected vertex u ∈ N+

D′(v) \ labMIZA1,A2
(σ)

has to be located in the directly preceding step v, since u is not decorated by a label.
Additionally, this holds for each choice of |N+

D′(v)| − 1 elements of N+
D′(v). Therefore,

we can modify this choice in such a way that an arbitrary step of N+
D′(v) can become

not labeled. Hence from this we can conclude that the lab–parameter is minimal if each
vertex v that “refers” to at least one “premise” with exactly one incoming A-arc, has
to contain at least one such premise that is located directly before v or more precisely:

Proposition 1. Let D = 〈V,A〉 be a DAG with two distinguished sets of arcs A1 ⊆
A2 ⊆ A. Then labMIZA1,A2

(σ) has the smallest possible size if and only if, for every v ∈ V
it holds that

N−D (v) ∩ L 6= ∅ =⇒ σ−1(σ(v)−1) ∈ L, (5)

where σ ∈ TS(D) and L = {v ∈ V : |N+
〈V,A1〉(v)| = |N+

〈V,A〉(v)| = 1}.

3.2 The lab–parameter in the Isabelle/Isar system

Now we show that the minimisation of the lab–parameter for Isabelle/Isar proof scripts
is NP-hard. To achieve this we indicate a family of correct proof scripts for which the
minimisation of the lab–parameter is equally hard as the minimisation of the size of a
vertex cover.

In this paper, we do not concentrate on a full explanation of how the known NP-
complete problem Vertex Cover (see GT1 in [7]) is reducible to the MILlab problem (for
more details see [20]). We present only a way to create proofs written in the Isabelle/Isar
system that have structures described by graphs obtained in this reduction. In this way
we show that difficult proof structures are indeed representable there.
Vertex Cover (VC):

Instance: An (undirected) graph G = 〈V,E〉 and a positive integer K 6 |V |.
Question: Is there a vertex cover of size at most K, i.e., a subset V ′ ⊆ V of size

at most K such that for each edge {u, v} ∈ E at least one of u or v belongs to V ′?

Let G = 〈V,E〉, K 6 |V | be an instance of VC. For simplicity we assume that
V = {1, 2 . . . , |V |}. The instance of MILlab that is used in the reduction of VC to MILlab

is defined as follows. We construct a digraph D = 〈V,A〉 and subsets A1⊆A2⊆A given
by:

V :− V × {0, 1},
A1 :− {〈〈v, 0〉, 〈v, 1〉〉 : v ∈ V },
A2 :− {〈〈v, 0〉, 〈v, 1〉〉 : v ∈ V } ∪ {〈〈v, 0〉, 〈u, 1〉〉 : {v, u} ∈ E},
A :− A2.

(6)

Obviously, D, A1, and A2 determine a one-level deduction with two distinguished
subsets of arcs. Additionally, this deduction together with K is an instance of MILlab

problem. Let us remind that the main idea of this reduction based on the fact that to
obtain a vertex cover, for every edge {v, u} ∈ E, at least one of 〈v, 0〉, 〈u, 0〉, has to
belong to labA1,A2(σ) for each σ ∈ TS(D).

To create Isabelle/Isar proof scripts that correspond to the constructed deduction,
we associate:
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obtain xi::nat where Ai: "xi=i" by simp

with every vertex of the form 〈i, 0〉 and

have "xi=i & (xj1=xj1 & . . . & xjn=xjn)" using Ai by simp

with every vertex of the form 〈i, 1〉, where i ∈ V , {j1, j2, . . . , jn} = N−〈V,A2\A1〉(v). For
illustration, an example of a reasoning that follows this pattern is presented in Fig. 3.
It is simple to observe that every topological sorting of D organises such steps in the
reasoning acceptable by the proof checker, since every occurring statement is “obvious”.
Additionally, this linearisation ensures that none of the variables and label identifers
is used before their introduction in the reasoning. This completes the justification that
computationally difficult instances can potentially occur in Isabelle/Isar proof scrips.

1

2 3

G

D
〈1, 0〉

〈1, 1〉
〈2, 0〉

〈2, 1〉

〈3, 0〉

〈3, 1〉
x1 x3

x1 x3

x2 x2

x1 A1

x2 A2

x3 then

〈1, 0〉: obtain x1::nat where
A1: "x1=1" by simp

〈2, 0〉: obtain x2::nat where
A2: "x2=2" by simp

〈3, 0〉 : obtain x3::nat where
"x3=3" by simp

〈3, 1〉 : then have"x3=3 & (x1=x1 & x2=x2)"
by simp

〈1, 1〉 : have "x1=1 & (x2=x2 & x3=x3)"
using A1 by simp

〈2, 1〉 : have "x2=2 & (x1=x1 & x3=x3)"
using A2 by simp

Fig. 3. An example that illustrates the construction from Section 4, where considered
vertex cover is equal to {1, 2} and corresponds to vertices 〈1, 0〉, 〈2, 0〉, represented as
steps decorated by A1 and A2, respectively.

4 The lab-parameter in the process of improving other
determinants of legibility

Our research is focused on the impact of the methods presented above on other popular
methods such as increasing the number of then constructions (called then–parameter)
or reducing the sum of all σ–distances of references (called dist–parameter). These
methods of improving legibility of proofs can be formulated as the following two prob-
lems:

The 2nd Method of Improving Legibility (MILthen):
Instance: A DAG D=〈V,A〉, a subset A1⊆A, and a positive integer K6 |V|.
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Question: Does there exist σ ∈ TS(D) for which |thenA1(σ)| > K?

The 3rd Method of Improving Legibility (MILdist):
Instance: A DAG D = 〈V,A〉, a subset A2 ⊆ A, and a positive integer K 6(
|V|+ 1

3

)
.

Question: Does there exist σ ∈ TS(D) for which
∑

〈v,u〉∈A2

σ(u)−σ(v) 6 K?

This impact has been studied on the MML database Version 5.22.1191 that in-
cludes 208590 one-level deductions. To obtain the result we use a brute-force method
to check the existence of a solution for simple instances of this problem (e.g., one-level
deductions that have at most 1000000 of possible linearisations) and the SMT-solver
Z3 [16] to check more computationally complex ones, since both problems, MILthen and
MILdist, are NP-complete [20]. There was a time limit of 10 minutes set for each com-
bination of the transformation strategies. With this threshold only 1.92% and 0.03%
remained untransformed in then and dist parameters optimisation, respectively.

Using a polynomial time algorithm that is sketched in Prop. 1, we reduced the
number of labeled steps only in 4.49% of deductions. Additionally, these deductions
were mainly located in proof scripts recently added to the MML database. This obser-
vation is a simple consequence of the fact that the lab–parameter in older scripts was
reduced in a revision of MML database Version 4.121.1054 and obtained results were
introduced to the Version 4.127.1060 [18]. Note that this situation was not inten-
tional, since the main aim of this revision was not to minimise the lab–parameter, but
generally to increase the then–parameter in proof scripts based on a greedy algorithm.
However, topological sortings obtained by this algorithm fulfil the conditions (5).

then–parameter dist–parameter
Improved 1.19% 8.27%
Unchanged 76.36% 74.42%
Worsened 22.45% 17.31%

Table 1. Modification of then and dist parameters obtained by a polynomial time
algorithm, sketched in Section 4, in comparison to the initial situation.

then–parameter dist–parameter
Improved 6.02% 18.66%
Unchanged 93.89% 80.89%
Worsened 0.09% 0.45%

Table 2. Modification of then and dist parameters obtained by a brute-force method
or Z3 solver, if we restrict the search to the linearisation with optimal lab–parameter,
in comparison to the initial situation. Clearly, we limited results to cases, in which at
least one strategy solved the problem.
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Analysing the impact of this polynomial time algorithm application for then and
lab parameters, we observe that this parameters are more often worsened than im-
proved. These results are summarised in Tab. 1. However, since we can determine
efficiently the lab–parameter, we explored also the improvement of these parameters
among such topological sortings that have optimal lab–parameter (see Tab. 2).

It is important to pay attention to the 0.45% percent of deductions for which it
is certainly impossible to obtain the optimal value for both, lab and dist parameters
simultaneously. More precisely, the analysis shows also that these 0.45% of deductions
constitute only part (18.91%) of 2.37% cases where we cannot obtain the optimal dist-
parameter if we have optimal lab-parameter. The other 79.36% and 1.73% of 2.37%
cases are obtained for deductions where, despite optimal value of lab-parameter, we
can improve or unchange respectively the dist-parameter in comparison to the initial
situation.

As an illustration of such a conflict between lab and dist parameters, let us con-
sider a simple abstract proof graph that is presented in Fig. 4. It is easy to see that
this graph has exactly two possible linearisations σ: 1, 2, 3, 4 and 2, 1, 3, 4. Additionally,
the number od σ-labeled steps is equal to 2 and 1 respectively, but the sum of all
σ–distances of references is equal to 6 and 7, respectively.

1 2

3

4

Fig. 4. A simple abstract proof graph for which the conflict between lab and dist
parameters occurs.

Let us note also that the situation where we have to reduce then-parameter to
obtain optimal lab-parameter is a rare situation that occurs mainly in a complex one-
level deductions of MML. Additionally, existing examples of this conflict have more
than one million of possible linearisations. However, to illustrate the conflict between
lab and dist parameter, we can consider an artificial simple abstract proof graph,
presented in Fig. 5 that can potentially occur in Mizar proof scripts. Based on the
analysis carried out in Section 4 and Prop. 1 we infer that every topological sorting
of this deduction has to have at last 5 labeled steps and this value is obtained, e.g.,
for an arrangement 1, 2, 4, 5, 7, 8, 3, 6, 9. Indeed, vertices 1, 2, 4, 5 have to be labelled,
since there exist at least two tail endpoints references arc adjacent to these vertices.
Additionally, at most one of the references to premises that correspond to vertices 6, 8
can be realised without a label. The analysis of all possible, 42, topological sortings
shows that the maximal value of then-parameter is equal to 6 and it is obtained in
exactly two arrangements 1, 2, . . . , 9 and 1, 4, 7, 2, 5, 8, 3, 6, 9 where there exist exactly
6 labeled steps. This shows that the conflict between lab and then parameters can
occur even in “small” one-level deductions.
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1

4 2

7 5 3

8 6

9

Fig. 5. A simple abstract proof graph for which the conflict between lab and then
parameter occurs.

5 Conclusion

In this paper we have focused on reducing the number of labels introduced to formal
reasoning in the process that improves legibility of proof scripts. We have showed that
such a reduction can be NP-hard in a formal proof checking environment, even if it is
computationally easy in another. Additionally, initial experiments with proof scripts
occurring in the MML database show that optimisation of the labeled steps number can
be in a conflict with other frequently employed methods of improving proof legibility.
However, the presented research shows that this conflict occurs not so often and it
appears mainly in deductions that have complex structures.
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Abstract. The paper contains a brief description of the logical and se-
mantic approaches to automated reasoning that can be traced back to
1962, when academician V. Glushkov initiated research on automated
theorem proving. Carried out first at the Institute of Cybernetics of
NASU, in 1998 these investigations were moved to the Faculty of Cy-
bernetics of the Taras Shevchenko National University of Kyiv, where
now they are being developed in two directions. The first direction is the
traditional one, centered mainly on the construction of proof methods
in various first-order logics including the resolution-type technique. The
second direction aims to develop logics based on the principles of compo-
sitionality and nominativity. Such logics are oriented towards semantic
models of programs represented by special algebras. Currently, work is
being done to consolidate the investigations carried out in these direc-
tions. The main results obtained by the authors and the state of art of
their research in automated reasoning are presented.

1 Introduction

The turn of the 1960s is characterized by the appearance of the first Western papers on
the problem of automated theorem proving, focused on the construction of automatic
provers (see, for example [1, 47]; more information can be found in [2]). About the
same time, in Ukraine, Academician Victor Glushkov proposed an approach to its so-
lution called the Evidence Algorithm (EA in accordance with [3]). It includes: a formal
language designed for writing mathematical texts and close to natural language; the
evolutionary development of methods for automated theorem proving; the construction
of an information environment (a mathematical knowledge base in modern terminol-
ogy) that contains the data necessary for a successful search of a theorem’s proof; and
the interface between man and computer. The current state of research in the field of
automated theorem proving has confirmed the viability of Glushkov’s approach and
many of the systems, oriented to a comprehensive logical processing of mathematical
(or, more generally, formal) texts, implemented it in one way or another.

Historically, the time span of automating theorem proving in Kyiv (Kiev) can
be divided into four stages [4]: 1962-1969, when the first steps were made in this
field; 1970-1982, when such studies were carried out in accordance with the so-called
Evidence Algorithm programme initiated by V. Glushkov, which led to the design
and implementation of the Russian-language SAD system (1978); 1983-1992, when the
Russian SAD system was improved by means of the building-in of human-like proof
technique into it, and 1998 - present, when, after a certain period of absence of any

Trends in Contemporary Computer Science, Podlasie 2014, ISBN 978-83-62582-58-7
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research on the EA-style reasoning, Glushkov’s position has been revised in the light of
the new paradigms and advances in automated reasoning, which led to the construction
of the English-language SAD system (2002) [5] accessible on the site “nevidal.org”.

In this connection, the following should be noted. In Ukraine, all the logical studies
related to the first three stages of the EA investigations were performed at the Institute
of Cybernetics of NASU, while since 1998 they completely moved to the Faculty of
Cybernetics of the Taras Shevchenko National University of Kyiv, where they proceeded
in two directions. One continues the research done by the first author since the 1970s,
and the other, initiated by V. Glushkov in his works on systems of algorithmic algebras,
has been developed by the second author since the 1990s.

The paper consists of two main sections. The first section is written by Alexander
Lyaletski and devoted to the description of his results connected with EA. The second
one is written by Mykola Nikitchenko and devoted to program-oriented algebra-based
logics.

The standard terminology for first-order logics is used.

2 EA Deduction in First-order Logics

The first author started his logical investigations in the framework of EA in the 1970s.
They can be divided into three groups: resolution-type methods, interpretation of
Maslov’s Inverse Method, and sequent inference search in the EA-style.

These investigations have already been presented in [6] in a complete enough form.
That is why we are focusing here only on the description of the main approaches and
corresponding method and results.

2.1 Resolution Technique and Maslov’s Inverse Method

This subsection concerns the problem of the establishing of unsatisfiability in classical
logic on the basis of resolution technique [7] and Maslov’s Inverse Method (MIM) [8].

Obviously, we can restrict ourselves to the consideration of closed formulas only.
It is known that the problem of the establishing of the validity of a set {F1, . . . , Fm}
of formulas is equivalent to the deducibility of a sequent S of the form → F1, . . . , Fm
(m > 1) in any complete and sound sequent calculus. Moreover, for any first-order
sequent → F1, . . . , Fm being investigated for deducibility, any Fi can be reduced to its
(closed) Skolem functional form containing only negative [9] quantifiers. That is, Fi may
be considered as a formula presented in the form ∃xi,1 . . .∃xi,miGi(xi,1, , xi,mi), where
xi,1, , xi,mi are all its variables and each Gi(xi,1, , xi,mi) is presented in conjunctive
normal form, which leads to the notions and denotations given below.

2.1.1 Resolution-type Technique

Following tradition, we move to reasoning on satisfiability replacing the establishing
of the deducibility of a sequent → F1, . . . , Fn (where F1, . . . , Fn are quantifier-free
formulas in conjunctive normal form) by the establishing of the unsatisfiability of the
set {¬F1, . . . ,¬Fn}. As a result, we can assume that ¬Fi is presented in disjunctive
normal form, each variable of which is bounded by a universal quantifier.

A literal is an atomic formula A or its negation ¬A. If a literal L is of the form ¬A,
its complementary L̃ is A; otherwise, L̃ presents ¬A.
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If L1, . . . , Ln are literals, then the expression L1 ∧ . . .∧Ln (L1 ∨ . . .∨Ln) is called
a conjunct (a disjunct).

Any conjunct (or disjunct) is identified with the set of its literals1.
An expression of the form C1 ∨ . . . ∨ Cn (D1 ∧ . . . ∧ Dn), where C1, . . . , Cn are

conjuncts (D1, . . . , Dn are disjuncts), is called a conjunctive disjunct or c-disjunct (dis-
junctive conjunct or d-conjunct).

Any c-disjunct (d-conjunct) is identified with the set of its conjuncts (disjuncts).
Therefore, the order of the writing of its conjuncts (disjuncts) is immaterial.

A c-disjunct (d-conjunct) not containing any conjunct (disjunct) is called an empty
disjunct (conjunct) and denoted by ∅.

The definition of a c-disjunct (d-conjunct) as a first-order formula allows us to use
all the semantic notions of first-order classical logic for c-disjuncts (d-conjuncts) and
sets of c-disjuncts (sets of d-conjuncts) on the understanding that each variable in any
c-disjunct (d-conjunct) is considered to be bounded by the universal quantifier in the
case of reasoning on unsatisfiability and by the existential quantifier in the case of
reasoning on validity.

As we see, the notions of c-disjuncts and d-conjuncts are “dual” in the sense that
replacing the disjunction sign by the conjunction sign and vice versa, we transform the
problem of the establishing of the unsatisfiability of a set of c-disjuncts to the problem
of the establishing of the validity of the set of the “dual” d-conjuncts taking into mind
the quantifier boundness of variables. This “duality” can be extended to the rules of
the described calculi of c-disjuncts transforming the calculi of c-disjuncts to the calculi
of d-conjuncts for to the establishing of the validity of sets of d-conjuncts. (We leave
such a re-wording to a reader as an exercise.)

Having the notion of a c-disjunct, we can introduce two different inference rules,
thereby determining two calculi of c-disjuncts which use the standard notion of a most
general simultaneous unifier2 (mgsu) of sets of expressions [10].

The deducibility of a c-disjunct D from a set M of c-disjuncts in any c-disjunct
calculus is understood as the existence of a sequence D1, . . . , Dn, such that Dn is D
and each Di (1 6 i 6 n) is a variant of a c-clause from M or can be deduced from
variants of early deduced c-clauses.

We start with the consideration of a calculus based on the analog of Robinson’s
clash-resolution rule [11].

CR-rule. Let c-disjuncts D0, D1, . . . , Dq (q > 1), not containing common variables
in pairs, be of the forms D′0 ∨M1,1 ∨ . . .∨M1,r1 ∨ . . .∨Mq,1 ∨ . . .∨Mq,rq , D

′
1 ∨C1,1 ∨

. . .∨C1,p1 , . . ., D
′
q ∨Cq,1 ∨ . . .∨Cq,pq , respectively, where D′0, . . . , D′q are c-clauses and

M1,1, . . . ,Mq,rq , . . . , C1,1, . . . Cq,pq are conjuncts. Suppose that M1,1, . . . ,Mq,rq con-
tain literals L1,1, . . . , Lq,rq respectively, and for each j (1 6 j 6 q) Cj,1, . . . Cj,pj
contain literals Ej,1,. . .Ej,pj respectively, such that there exists the mgsu σ of the
sets {L1,1, . . . , L1,r1 , Ẽ1,1, . . . Ẽ1,p1}, . . ., {Lq,1, . . . , Lq,rq , Ẽq,1, . . . Ẽq,pq}. Then the c-
disjunct D′0 · σ ∨D′1 · σ ∨ . . .∨D′q · σ is said to be deduced from D0, D1, . . . , Dq by the
rule CR.

The following result was proved in [12] for the c-disjunct calculus with the CR-rule.

Theorem 1. (Soundness and completeness w.r.t. CR.) A set M of c-clauses is un-
satisfiable if, and only if, ∅ is deducible from M in the c-disjunct calculus with CR.

1 Thus, a disjunct is the same as a clause in the resolution method [7].
2 We use the usual notion of a substitution; the result of the application of a substi-
tution σ to an expression Ex is denoted by Ex · σ.
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Now, let us construct another c-disjunct calculus.
IR-rule. Let c-disjuncts D0, D1, . . . , Dq (q > 1), not containing common variables in

pairs, be of the forms D′0∨M1∨. . .∨Mq, D′1∨C1
1,1∨. . .∨C1

1,p1,1∨C
r1
1,1∨. . .∨Cr11,p1,r1

, . . .,
D′q∨C1

q,1∨. . .∨C1
q,pq,1∨C

rq
q,1∨. . .∨C

rq
q,pn,rn

respectively, where D′0, . . . , D′q are c-clauses
and M1, . . . ,Mq, C

1
1,1, . . . C

rq
q,pn,rn

are conjuncts. Suppose that for each j (1 6 j 6 q)
Mj contains literals Lj,1, . . . , Lj,rj and C1

j,1, . . . , C
1
j,pj,1 , . . . , C

rj
j,1, . . . , C

rj
j,pj,1

contain
literals E1

j,1, . . . ,E
1
j,pj,1 , . . . , E

rj
j,1, . . . , E

rj
j,pj,1

respectively, such that there exists the
mgsu σ of the sets {L̃1,1, E

1
1,1, . . . , E

1
1,p1,1}, . . . , {L̃1,r1 , E

r1
1,1, . . . , E

r1
1,p1,r1

}, . . . , {L̃q,1,
E1
q,1, . . . , E

1
q,pq,1}, . . . , {L̃q,rq , E

rq
q,1, . . . , E

rq
q,pq,rq

}. Then the c-disjunct D′0 · σ ∨D′1 · σ ∨
. . . ∨D′q · σ is said to be inferred from D0, D1, . . . , Dq by the rule IR.

The following result was proved in [13] for the c-disjunct calculus with the IR-rule.

Theorem 2. (Soundness and completeness w.r.t. IR.) A set M of c-clauses is unsat-
isfiable if, and only if, ∅ is deducible from M in the c-disjunct calculus with IR.

Example 1. Let M = {(A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L), ¬B ∨ ¬C, ¬E ∨ ¬L}, where
A,B,C,E, and L are atomic formulas.

The (minimal) inference in the calculus with CR is as follows:

1. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L) (∈ S),
2. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L) (∈ S),
3. (B ∧ C) ∨ (E ∧ L) (from (1) and (2) by CR),
4. (B ∧ C) ∨ (E ∧ L) (a variant of (3)),
5. ¬B ∨ ¬C (∈ S),
6. E ∧ L (from (5), (3), and (4) by CR),
7. E ∧ L (a variant of (6)),
8. ¬E ∨ ¬L (∈ S),
9. ∅ (from (8), (6), and (7) by CR).

The (minimal) inference in the calculus with IR is as follows:

1. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L), (∈ S),
2. (A ∧ ¬A) ∨ (B ∧ C) ∨ (E ∧ L), (∈ S),
3. (B ∧ C) ∨ (E ∧ L) (from (1) and (2) by IR),
4. ¬B ∨ ¬C, (∈ S),
5. ¬E ∨ ¬L, (∈ S),
6. ∅ (from (3), (4), and (5) by IR)

Using Theorem 1 or Theorem 2, we obtain the unsatisfiability of M .
We draw your attention to the fact that in these examples the inference with IR

is shorter than the inference with CR, which concerns both the number of c-disjuncts
and the number of inference rule applications in the inferences. This demonstrates that
calculi with CR and IR, in spite of having similar definitions, behave very differently
in some specific situations, which was tracked in [14].

The calculi with CR and IR admit many of the (sound and complete) strategies
that take place for the usual class-resolution such as, for example, binary resolution,
linear resolution, and positive and negative hyper-resolution (see [12] and [13]).

For the case of classical logic with equality (denoted by ') we can incorporate the
usual paramodulation rule in the calculi with CR and IR.

Paramodulation rule (PP). Suppose we have two c-clauses D and C ∨ (K ∧ s ' t),
where C is a c-clause and K conjunct (possibly, empty). If there exists mgsu σ of the
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set of terms {s, u}, where u is a term occurring in D at a selected position, then the
c-clause C · σ ∨ (D · σ)[t · σ] is said to be deduced from the given c-clauses by the
PP-rule, where (D · σ)[t · σ] denotes the result of the replacement of the term u · σ
being at the selected position in D · σ by t · σ.

The addition of the PP -rule to the calculi with CR and IR leads to their complete
paramodulation extensions in all the cases where such extensions are complete for the
usual clash-resolution, binary resolution, and their strategies, thus avoiding the need
for functionally reflexive axioms where it is possible to do so, in the case of the usual
clash-resolution. The proof of these facts can be made, for example, on the basis of
the ideas used in [13, 14] for the proof of the completeness of CR and IR for sets of
c-clauses without equality.

2.1.2 Maslov’s Inverse Method

In 1964, Sergei Maslov (the USSR) proposed his inverse method (MIM) for the es-
tablishment of the deducibility of sequents of the form → D1, . . . , Dn in first-order
classical logic (without equality), where D1, . . . , Dn are formulas presented in disjunc-
tive normal form, that is they are d-conjuncts under the condition that each of their
variables is bounded by an existential quantifier. The method was defined as a special
calculus of so-called favorable assortments [8]. The description of his method was made
in terms that did not correspond to traditional logical terminology applied at that time
(including resolution terminology). That is why the problem of the interpretation of
the scheme of MIM operation in resolution terms or other commonly-used terms was
raised.

In [15], S. Maslov himself gave a MIM interpretation in the resolution notions for
a restricted case. Later, the first author of this paper proposed a MIM interpretation
in the terms of the c-disjunct calculus with the IR-rule [13]. In 1989, V. Lifschitz,
independently introducing the notion of a c-disjunct under the name of super-clause,
improved such interpretation [16]. An interpretation of MIM closer to its definition in
[8] was made in [17] for the case where a set of clauses (disjuncts in our terminology),
maybe, with equality is taken as “input” for MIM.

In what follows, MIM is treated as a special calculus of so-called favorable se-
quents having the most adequate interpretation of MIM in comparison with all the
other interpretations of MIM in the form from [8]. (Reasoning is made by validity i.e.
deducibility.)

SupposeD is a d-conjunct C1∧. . .∧Cn, where C1, . . . , Cn are disjuncts, xi,1, . . . , , xi,mi

are all the variables from Ci, and PCi is a new mi-arity predicate symbol (1 6 i 6 n).
Then PCi(xi,1, . . . , xi,mi) is called an abbreviation (name in the terminology of [17])
for Ci.

Let D1 and D2 be d-conjuncts and PC1 and PC2 be abbreviations for C1 from D1

and C1 from D1 respectively (D1 and D2 can coincide). Suppose there exists the mgsu
σ of a set {L1, L̃2}, where L1 is a literal from C1 and L2 is a literal from C2. Then
PC1 · σ ∨ PC2 · σ is called a favorable disjunct for D1 and D2. In the case of the
coincidence of D1 and D2, PC1 · σ is a favorable disjunct for D1.

Obviously, there is only a finite set of favorable disjuncts for any d-conjuncts D1

and D2. The same concerns a finite set of d-conjuncts.
We determine the favorable sequent calculus in the following way (as in the case of

[8], this calculus has two inference rules: A and B).
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We are interested in establishing of the validity of a set {D1, . . . , Dn} (i.e. in the de-
ducibility of the sequent→ D1, . . . , Dn), where D1, . . . , Dn are d-conjuncts not having
pairwise common variables.

Rule A (for generating a starting favorable sequent). Let {D1, . . . , Dn} be a set of
d-conjuncts being investigated for validity andDi be of the form Ci,1∧. . .∧Ci,mi , where
Ci,1, . . . , Ci,mi are disjuncts (i = 1, . . . , n). If PC1,1 , . . ., PCn,mn

are abbreviations of
Ci,1, . . . , Cn,mn respectively and Γ is the multiset of all favorable disjuncts constructed
by using D1, . . . , Dn, then Γ → PC1,1 ∧ . . .∧PC1,m1

, . . ., PCn,1 ∧ . . .∧PCn,mn
is called

a starting favorable sequent deduced from D1, . . . , Dn by the rule A.
Remark. A starting sequent does not contain the negation symbol. Moreover, its

antecedent contains favorable disjuncts with only one or two literals and its succedent
contains only conjuncts of atomic formulas.

Rule B. Let Γ → ∆ be a favorable sequent (i.e. it is already deduced by the rule
A or B ). Suppose there are disjuncts B1 ∨ L1, . . . , Bn ∨ Ln in Γ , where B1, . . . , Bn
are disjuncts and L1, . . . , Ln are literals, and ∆ contains a conjunct PD1 ∧ . . . ∧ PDn ,
such that there exists the mgsu σ of the set {PD1 , L1}, . . . , {PDn , Ln}. Then, for any
variant D of the disjunct B1 ·σ∨ . . .∨Bn ·σ, the sequent Γ,D → ∆ is called a favorable
sequent deduced from Γ → ∆ by the rule B.

Any process of inference search in the favorable sequent calculus starts with the
generation of a starting favorable sequent S by the rule A. Subsequent favorable se-
quents can be deduced only by the rule B. The inference process is considered to be
successful, if an sequent containing ∅ in its antecedent is deduced. Such a sequent is
called a final favorable sequent.

Theorem 3. A set of d-conjuncts {D1, ..., Dk} is valid in first-order classical logic if,
and only if, a final favorable sequent is deducible from the starting favorable sequent
for {D1, ..., Dk} in the favorable sequent calculus.

Example 2. Let us return to Example 1 and establish the unsatisfiability of M
transforming M into its “dual” image M ′ containing d-conjuncts: M ′ = {(¬A ∨ A) ∧
(¬B ∨ ¬C) ∧ (¬E ∨ ¬L), B ∧ C, E ∧ L}.

Let us introduce the following abbreviations: P1 for ¬A ∨ A, P2 for ¬B ∨ ¬C, P3

for ¬E ∨ ¬L, G1 for B, G2 for C, G3 for E, and G4 for L.
We can construct the following inference in the favorable sequent calculus (we

underline objects participating in applications of the rule B) :

1. P1, P2 ∨G1, P2 ∨G2, P3 ∨G3, P3 ∨G4 → P1 ∧ P2 ∧ P3, G1∧ G2, G3 ∧G4

(by A, a starting favorable sequent),
2. P1, P2 ∨G1, P2 ∨G2, P3 ∨G3, P3 ∨G4, P2 → P1 ∧ P2 ∧ P3, G1 ∧G2, G3 ∧G4

(from (1) by B),
3. P1, P2 ∨G1, P2 ∨G2, P3 ∨G3, P3 ∨G4, P2, P3 → P1 ∧ P2∧ P3, G1 ∧G2, G3 ∧G4

(from (2) by B),
4. P1, P2 ∨G1, P2 ∨G2, P3 ∨G3, P3 ∨G4, P2, P3, ∅ → P1 ∧ P2∧ P3, G1 ∧G2, G3 ∧G4

(from (3) by B, a final favorable sequent; it contains ∅).
In accordance with Theorem 3,M ′ is a valid set. (Hence,M is an unsatisfiable one.)

The problem of the building-in of a equality-handling technique into MIM in the
form from [8] remains open. It is expected that the favorable sequent calculus will be
able to give a key to its solution.
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2.2 Sequent Inference Search in EA-style

From the very beginning of its appearance, the EA program has paid great attention
to developing machine proof search methods suitable for the various fields of mathe-
matics and reflecting (informal) human reasoning techniques. The first attempt in this
direction was made in 1963, when the problem of automated theorem proving in the
group theory was formulated by V. Glushkov. To develop it, texts on the group theory
were exposed to the careful analysis. As a result, a machine procedure for proof search
in the group theory was constructed in the middle of the 1960s [18].

Later, that procedure was generalized to the case of classical first-order restricted
predicate calculus without equality [19, 20]. The procedure admitted its interpretation
as a specific, sound and complete, sequent calculus later called the AGS (Auxiliary
Goals Search) calculus [21]. The distinctive features of the primary AGS were: (1)
goal-orientation (i.e. at every moment of time the succedent of any sequent under con-
sideration had no more than one formula-goal) and (2) specific handling of quantifiers,
being actually the independent repetition of Kanger’s idea [22] about using of so-called
“dummies” and “parameters” in quantifier rules as special variables with subsequent
replacing “dummies” by “admissible” terms at a certain time.

Further development of the ASG calculus led to its improvement in the direction
of optimizing quantifier handling, separating equality processing from deduction, and
making goal-driven proof search.

The optimization of quantifier handling was achieved by the introduction of an
original notion of admissible substitutions distinguished from Kanger’s.

The equality separation was oriented to the development of special methods for
equality processing and equation solving. (Later algebra systems and problem solvers
were suggested to use for this purpose.)

The goal-driven search was based on driving the process of an auxiliary goal gen-
eration by taking into account a formula (goal) under consideration.

All these investigations led to the construction of an original sequent calculus (with
the new notion of admissibility) published in [23] in 1981 and implemented in the
(Russian) system for automated deduction SAD. This implementation demonstrated
the usefulness of deductive research towards constructing of such calculi.

Since then, the investigations on inference search in EA-style were stopped until
1998, when the first author began to participate in the Intas project 96-0760 “Rewriting
Techniques and Efficient Theorem Proving” (1998-2000). The project gave a reason for
the modification of the calculus from [23] in several directions (see, for example, [24]
for the classical case) and later led to a wide spectrum of interesting results on efficient
inference search in the EA-style not only for classical logic, but for intuitionistic one
and their modal extensions [25].

Note that the (new) notion of admissibility is not enough for the construction
of sound calculi in the intuitionistic case. This situation can be corrected by using
the notion of compatibility proposed in [26] for the construction of the sound (and
complete) tableau calculus with free variables for intuitionistic logic (some historical
details can be found in [27]).

Besides, the usage of the new admissibility led to the possibility of constructing a
wide class of Herbrand theorems for classical logic in a form not requiring preliminary
skolemization. The exhaustive research on this topic was published in [28], where the
sequent approach was used for obtaining the main results.

The sequent approach developed in [29] also was used in [30] for the construction
of new complete resolution strategies containing a special resolution and factorization.
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The paramodulation rule can be incorporated into these strategies for the case of
equality, but the completeness of such extensions is observed only in the case of adding
functional reflexivity axioms. The research of the paper [30] also demonstrates the
possibility of applying a special paramodulation technique in the model elimination
method [31] (with additional functional reflexivity axioms to provide completeness).

As for SAD, its logical "engine" can be considered a modification of a connection
tableaux calculus based on the model elimination method. Its further development is
aimed at the construction of tools for inference search in non-classical logics.

3 Program-oriented Algebras and Logics

Logical investigations at the Department of Theory and Technology of Programming of
the Faculty of Cybernetics were driven by the necessity to develop formal program se-
mantics and methods for program reasoning. These tasks were initiated by V. Glushkov
who in his paper [32] proposed an algebra-based formalism for program formalization
called systems of algorithmic algebras. Later these ideas were elaborated by V. Redko
[33, 34] who combined them with ideas developed by V. Korolyuk and E. Yushchenko
in their works on address programming [35].

An approach proposed by V. Redko was called composition programming and aimed
at constructing formal models of programming languages.

The main semantic notions of composition programming are data, functions, and
compositions. In the simplest case, data are considered as named sets of the form
{(v1, d1), . . . , (vn, dn)}, where v1, . . . , vn are names, and d1, . . . , dn are their values re-
spectively. Hierarchical named data were also introduced. Program semantics is repre-
sented by functions over named data (program functions); compositions are understood
as program construction means (operations over program functions).

Therefore, the main attention was paid to the definition of functions and composi-
tions oriented on processing of named data (see details in [34, 43]). Formal models of
different programming languages and database query languages were constructed and
investigated within composition programming [36].

Composition-nominative approach (CNA) [40] aimed to enhance composition pro-
gramming in the following directions. First, program data were presented as inten-
sionalized data [41]. Such data can be considered as certain objects with prescribed
intensions. This idea is similar to the notion of typed data, but the latter is usually un-
derstood in the extensional sense while CNA aimed to emphasize intensional features
of data.

For such kind of data a special form of abstract computability was defined, its prop-
erties were investigated, and complete classes of computable functions were constructed
[42].

Second, special program algebras called composition-nominative program algebras
(CNPA) were constructed and investigated.

Third, special logics called composition-nominative program logics (CNPL) were
defined and investigated.

Now we will formally define a special case of program algebras called quasiary
program algebras.

3.1 Quasiary Program Algebras
For such algebras, data are treated as nominative sets (nominative data in the general
case). Nominative sets are defined as partial mappings from a set of names (variables)
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to a set of basic values. Such mappings do not have fixed arity and are called quasiary.
Nominative sets can be also treated as states of program variables (see, for example,
[37]). More complex case of hierarchical nominative data is not considered in this paper.
Compositionality means that complex functions and predicates are built from simpler
ones using compositions. Compositions are the operations of the respective algebras
used in defining semantics. Also all mappings are partial (can be undefined on some
data).

We start with definitions of nominative sets, quasiary predicates and functions.
The arrows p−→ and t−→ specify the sets of partial and total mappings respectively.

Also for an arbitrary partial mapping f : D
p−→D′:

• f(d) ↓ is used to denote that f is defined on data d ∈ D;
• f(d) ↓= d′ is used to denote that f is defined on data d ∈ D with a value d′ ∈ D′;
• f(d) ↑ is used to denote that f is undefined on data d ∈ D.
Let V be a set of names (variables). Let A be a set of basic values. Then the class

VA of nominative sets is defined as the class of all partial mappings from the set of
names V to the set of basic values A. Thus, VA = V

p−→A.
Set-like notation for nominative sets is more convenient in some cases. We will use

the following notation: [vi 7→ ai | i ∈ I] to describe a nominative set where variables
vi have values ai respectively. Expression vi 7→ ai ∈n d denotes that d(vi) ↓= ai or in
other words that the value of variable vi in nominative set d is ai (i ∈ I).

One of the main operations is a binary total overriding operation that joins two
nominative sets taking into account names of the variables, and is defined in the fol-
lowing way:

d1∇d2 = [v 7→ a | v 7→ a ∈n d2 ∨ (v 7→ a ∈n d1 ∧ ¬∃a′(v 7→ a′ ∈n d2))].

Informally, this means that all name-value pairs from d2 and those pairs from d1

whose names are not defined in d2 are present in the resulting nominative set.
Let Bool = {F, T} be the set of Boolean values. Let PrV,A = VA

p−→Bool be the set
of all partial predicates over VA. Such predicates are called partial quasiary predicates.
They represent different conditions in programs.

Let FnV,A = VA
p−→A be the set of all partial functions from VA to A. Such func-

tions are called partial ordinary quasiary functions. They represent different expressions
in programs. The term ‘ordinary’ is used to distinguish ordinary functions from pro-
gram functions (bi-quasiary functions) that represent programs. This term will usually
be omitted.

Let FPrgV,A = VA
p−→VA be the set of all partial functions from VA to VA. Such

functions are called bi-quasiary functions. They represent semantics of programs.
Algebras with three presented sets (partial quasiary predicates, partial ordinary

quasiary functions, and partial bi-quasiary functions) as algebra carriers can be used
to define semantics of programming languages. We distinguish the following three al-
gebras:
• pure quasiary predicate algebras with one sort PrV,A of quasiary predicates;
• quasiary predicate-function algebras with two sorts: PrV,A of quasiary predicates

and FnV,A of quasiary functions;
• quasiary program algebras with three sorts: PrV,A of quasiary predicates, FnV,A

of quasiary functions, and FPrgV,A of bi-quasiary functions.
For pure quasiary predicate algebras the set of compositions includes disjunc-

tion ∨ : PrV,A × PrV,A
t−→PrV,A and negation ¬ : PrV,A

t−→PrV,A. Also paramet-
ric quantification composition ∃x : PrV,A

t−→PrV,A and renomination composition
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Rv̄x̄ : PrV,A
t−→PrV,A [44, 45] should be included to the set of compositions (here v̄

stands for v1, . . . , vn and x̄ for x1, . . . , xn). Renomination is a specific new composition
for quasiary predicates. Informally, while evaluating Rv̄x̄(p)(d) we construct a new nom-
inative set changing in d values of names from v̄ with values of corresponding names
from x̄; then p is evaluated on the obtained nominative set.

For quasiary predicate-function algebras we add ordinary quasiary functions to
the scope. Compositions of the pure predicate algebras are extended with parametric
compositions of superposition for functions Sx̄F : (FnV,A)n+1 t−→FnV,A and predicates
Sx̄P : PrV,A × (FnV,A)n

t−→PrV,A [44, 45]. Another composition that has to be added
is null-ary parametric composition of denomination ′x : FnV,A. Renomination compo-
sition can be given as a combination of superposition and denomination compositions,
thus Rv̄x̄(p) = Sv̄P (p,′ x1, . . . ,

′ xn). So, renomination compositions can be omitted.
For bi-quasiary functions there are many possible ways to define compositions

that provide means to construct complex functions from simpler ones. We have cho-
sen the following compositions [37]: the parametric assignment composition ASx :

FnV,A
t−→FPrgV,A, which corresponds to the assignment operator := ; the identity

composition (function) id : FPrgV,A , which corresponds to the skip operator; the
composition of sequential execution • : FPrgV,A × FPrgV,A

t−→FPrgV,A; the con-
ditional composition IF : PrV,A × FPrgV,A × FPrgV,A

t−→FPrgV,A, which corre-
sponds to the operator if_then_else; the cyclic composition (loop) WH : PrV,A ×
FPrgV,A

t−→FPrgV,A, which corresponds to the operator while_do.
We also need compositions that could provide possibility to construct predicates

describing properties of programs. The main conventional operations of this kind are
Glushkov prediction operation [32] and a ternary operation induced by Floyd-Hoare as-
sertions. The prediction operation is related to the weakest precondition defined by
Dijkstra and possibility/necessity operations of dynamic logic [38]. We need modifi-
cations of these operations oriented on partial predicates. Obtained compositions are
called preimage predicate transformer composition PC : FPrgV,A × PrV,A t−→PrV,A
(simply referred to as preimage composition [39]) and Floyd-Hoare composition for
partial predicates FH : PrV,A × FPrgV,A × PrV,A t−→PrV,A (see detailed explanation
in [39]).

The latter composition takes a precondition, a postcondition, and a program as
inputs and yields a predicate that represents the respective Floyd-Hoare assertion.

Now we give formal definitions of the compositions of the considered algebras. In
the following definitions p, q, r ∈ PrV,A, f, g1, . . . , gn ∈ FnV,A, pr1, pr2, pr ∈ FPrgV,A,
x ∈ V , x̄ = (x1, . . . , xn) ∈ V n, d ∈ VA.

(p ∨ q)(d) =




T, if p(d) ↓= T or q(d) ↓= T,
F, if p(d) ↓= F and q(d) ↓= F,
undefined in other cases.

(¬p)(d) =




T, if p(d) ↓= F,
F, if p(d) ↓= T,
undefined in other cases.

(∃xp)(d) =




T, if p(d∇x 7→ a) ↓= T for some a ∈ A,
F, if p(d∇x 7→ a) ↓= F for each a ∈ A,
undefined in other cases.

Sx̄P (p, g1, . . . , gn)(d) = p(d∇[x1 7→ g1(d), . . . , xn 7→ gn(d)]),
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Sx̄F (f, g1, . . . , gn)(d) = f(d∇[x1 7→ g1(d), . . . , xn 7→ gn(d)]).

′x(d) = d(x).

ASx(f)(d) = d∇[x 7→ f(d)].

id(d) = d.

pr1 • pr2(d) = pr2(pr1(d)).

IF (r, pr1, pr2)(d) =




pr1(d), if r(d) ↓= T and pr1(d) ↓,
pr2(d), if r(d) ↓= F and pr2(d) ↓,
undefined in other cases.

WH(r, pr)(d) = dn, if r(d) ↓= T, f(d) ↓= d1, r(d1) ↓= T, f(d1) ↓= d2, . . . ,

f(dn−1) ↓= dn, r(dn) ↓= F .

PC(pr, q)(d) =




T, if pr(d) ↓ and q(pr(d)) ↓= T,
F, if pr(d) ↓ and q(pr(d)) ↓= F,
undefined in other cases.

FH(p, pr, q)(d) =




T, if p(d) ↓= F or q(pr(d)) ↓= T,
F, if p(d) ↓= T and q(pr(d)) ↓= F,
undefined in other cases.

Floyd-Hoare composition was proved to be monotone and continuous [39]. It is
derivable from other compositions by formula FH(p, pr, q) = p→ PC(pr, q), therefore
this composition can be omitted from the list of algebra compositions.

Thus, the following quasiary program algebras (for different A) were defined:

QPA(V,A) =< PrV,A, FnV,A, FPrgV,A;∨,¬,∃x, Sx̄P , Sx̄F ,′ x,ASx, id, •, IF,WH,PC > .

These program algebras form a semantic basis for the corresponding program logics.

3.2 Quasiary Program Logics

Program logics are defined in a sematic-syntactic style. It means that we first define
logic semantics as a class of CNPA of the formQPA(V,A) for different A; then we define
a logic language as the set of terms of such algebras over sets Fs of function symbols, Ps
of predicate symbols, and Prs of program function symbols; finally, we define formula
interpretation mappings. These mappings are based on interpretational mappings for
function, predicate, and program function symbols IFs:Fs t−→FnV,A, IPs:Ps t−→PrV,A,
and IPrs:Prs t−→PrgV,A respectively.

Then we can compositionally construct the interpretational mapping for algebra
terms. A quadruple (QPA(V, A), IFs, IPs, IPrs) is called a logic model. A model is
determined by a tuple JFs,Ps,Prs=(V, A, IFs, IPs, IPrs) called an interpretation. In
simplified form, interpretations will be denoted as J. Algebra terms over the class of
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predicates are called formulas. For an interpretation J and a formula Φ the meaning
of Φ in J is denoted ΦJ .

A formula Φ is called satisfiable in an interpretation J if there is d ∈VA such
that ΦJ (d)↓= T. A formula Φ is called satisfiable if there exists an interpretation J in
which Φ is satisfiable. We call formulas Φ and Ψ equisatisfiable if they are either both
satisfiable or both not satisfiable (i.e. unsatisfiable).

The problem under investigation is to check whether CNPL formula Φ is satisfiable.
Our main aim is to transform Φ to an equisatisfiable formula of the classical first-
order logic with equality so that we can use existing methods for solving this problem
developed for classical logic.

In this paper we consider formulas with loop-free programs only. For programs with
loops, their loop-free approximations may be often considered. This is possible because
program compositions are continuous.

The required transformation is made in two steps. First, for formulas with loop-free
programs we inductively eliminate the preimage composition PC using the following
reductions:

PC(id, q) = q,

PC(ASx(h), q) = SxP (q, h),

PC(pr1 • pr2, q) = PC(pr1, PC(pr2, q)),

PC(IF (r, pr1, pr2), q) = (r → PC(pr1, q)) ∧ (¬r → PC(pr2, q)) ∧ (r → r).

Due to these reductions we obtain formula Ψ of composition-nominative quasiary
predicate logic that is equisatisfiable with Φ.

Second, we transform the formula Ψ to a special normal form, which is translated
to its classical counterpart ΨCL afterwards. This reduction we describe in more detail.

As there is no distributivity of existential quantifier with superposition composi-
tions [45] we need an infinite set of unessential variables in order to be able to carry
out equivalent transformations of formulas. We assume that a set U of unessential
variables is an infinite subset of V (U ⊆V ). Informally speaking, this restricts the
class of possible interpretations but does not affect the satisfiability problem [45].

A formula Ψ is said to be in unified superposition normal form (USNF) if the
following requirements are met:
• for every sub-formula of the form Sv̄P (Ψ ′,t̄) we have that Ψ ′ ∈Ps;
• for every sub-formula of the form Sv̄F (t,t̄) we have that t∈Fs;
• all instances of superposition compositions have the same list of variables w̄;
• for every quantifier ∃y occurring in Ψ we have that y should occur in w̄ (see the

previous rule).
Consider transformation rules T1–T12 of the form Ψl 7→ Ψr. These rules are equiv-

alent transformations [44].
T1) Sv̄P (Ψ ∨ Ψ ,t̄) 7→ Sv̄P (Ψ ,t̄) ∨ Sv̄P (Ψ ,t̄).
T2) Sv̄P (¬Ψ ,t̄) 7→ ¬Sv̄P (Ψ ,t̄).
T3) Sv̄P (∃x Ψ , t̄) 7→ ∃u Sv̄P (SxP (Ψ, ′u), t̄), u is an unessential variable that does not

occur in Sv̄P (∃x Ψ , t̄), u ∈ U .
T4) S ū,x̄P (S x̄,v̄P (Ψ , r̄, s̄), t̄, w̄) 7→ Sū,x̄,v̄P (Ψ , t̄, Sū,x̄F (r1,t̄, w̄), ... , Sū,x̄F (rk , t̄, w̄),

Sū,x̄F (s1, t̄, w̄), ... , Sū,x̄F (sm, t̄, w̄)), here (and in T5) ū= u1,...,un; t̄= t1,...,tn;
x̄ = x1,...,xk; r̄=r1,...,rk; w̄ = w1,...,wk; v̄= v1,...,vm; s̄= s1,...,sm, ui 6= vj ,
i = 1, ..., n, j = 1, ...,m.

T5) Sū,x̄F (Sx̄,v̄F (t, r̄, s̄), t̄, w̄) 7→ Sū,x̄,v̄F (t, t̄, Sū,x̄F (r1,t̄, w̄), ... , Sū,x̄F (rk , t̄, w̄), Sū,x̄F
(s1, t̄, w̄), ... , Sū,x̄F (sm, t̄, w̄)).
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T6) Sv̄P (r = s, t̄) 7→ Sv̄F (r, t̄) = Sv̄F (s, t̄).
T7) Sv̄P (Ψ , t̄) 7→ Sx,v̄P (Ψ, ′x, t̄), x does not occur in v̄.

In particular Ψ 7→ SxP (Ψ, ′x).
T8) Sv̄F (t, t̄) 7→ Sx,v̄F (t, ′x, t̄), x does not occur in v̄.

In particular, t 7→ SxF (t, ′x).
T9) Sū,x,v̄P (Ψ ,q̄, r, s̄) 7→ Sx,ū,v̄P (Ψ, r, q̄, s̄).
T10) Sū,x,v̄F (t,q̄, r, s̄) 7→ Sx,ū,v̄F (t, r, q̄, s̄).
T11) Sx,v̄F (′x, t, r̄) 7→ t.
T12) Sv̄F (′x, r̄) 7→′ x, x does not occur in v̄.

Rules T3 and T7 permit to assume w.l.o.g. that all quantified variables in the initial
formula are different.

Given an arbitrary formula Ψ we can construct (non-deterministically) its unified
superposition normal form usnf [Ψ ] by applying rules T1–T12. This transformation is
satisfiability-preserving.

In order to reduce the satisfiability problem in the composition-nominative predi-
cate logic to the satisfiability problem for classical logics, we consider algebras defined
over extended data set AVε =V t−→A∪{ε}. Informally, the additional value ε represents
undefined components of nominative data. So, by changing data classes from VA to AVε
we make our algebras closer to their classical counterparts and simplify the required
proofs.

We formalize the syntactical reduction clf of terms and formulas in unified super-
position normal form to formulas of classical logic inductively as follows:
1. clf [′x]7→ x.
2. clf [Sw1,...,wn

F (F, t1, ..., tn)] 7→ F (clf [t1], ..., clf [tn]), F∈Fs.
3. clf [(Ψ1 ∨ Ψ2)] 7→ ( clf [Ψ1] ∨ clf [Ψ2]).
4. clf [¬Ψ ] 7→ ¬clf [Ψ ].
5. clf [Sw1,...,wn

P (P, t1, ..., tn)] 7→ P (clf [t1], ..., clf [tn]), n ≥ 0.
6. clf [∃xΨ ] 7→ ∃x(x 6= e&clf [Ψ ]), e ∈ U , e is a predefined variable.
7. clf [t1 = t2] 7→ clf(t1) = clf(t2).

Note that all applications of the 6-th rule introduce the same variable e which is a
predefined variable from U in the sense that it does not occur in USNF. In interpreta-
tions the value of this variable is treated as ε.

These reductions transform formulas (with loop-free programs) of composition-
nominative program logics to formulas of classical predicate logic preserving their sat-
isfiability.

We can also use direct methods to check satisfiability/validity in the defined logics.
To do this, different calculi of sequent type were constructed [44, 46].

4 Conclusion

In the 1960s, V. Glushkov initiated a series of investigations on automated reasoning,
among which the main attention was paid to the issues connected with deduction
constructions in both logic and programming as well as their semantic grounding.

Carried out first at the Institute of Cybernetics of NASU, in 1987 these investiga-
tions moved to the Faculty of Cybernetics of the Taras Shevchenko National University
of Kyiv, where now they are developing in the logical and semantic directions. As a
result, sufficiently deep studies have been made in their frameworks.

The following results have been obtained for the first direction: (1) new calculi and
methods including resolution- and paramodulation-type techniques as well as modifi-
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cations of Maslov’s Inverse Method have been constructed; (2) research on inference
search in various first-order classical and non-classical sequent logics oriented to their
implementation in automated reasoning systems, in particular, in the English SAD
system has been made; (3) as a result, the logical “engine” of the English SAD system
has been revised and modified.

The following results have been obtained for the second direction: (1) a hierarchy
of algebra-based program models have been constructed; (2) new program-oriented
logics of partial predicates and functions based on principles of compositionality and
nominativity have been developed; (3) sound and complete sequent calculi have been
constructed for these logics; (4) algorithms for reduction of the satisfiability problem
in these logics to the satisfiability problem in classical logic have been developed; (5) a
quasiary program logic which can be considered as an extension of Floyd-Hoare logic
on partial predicates has been defined and investigated.

It is expected that the obtained results will be able to serve as a basis for extending
automated reasoning systems with more expressive logical languages and more powerful
reasoning tools.
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Abstract. Though more and more advanced theorems have been for-
malized in proof systems their presentation still lacks the elegance of
mathematical writing. The reason is that proof systems have to state
much more details – a large number of which is usually omitted by
mathematicians. In this paper we argue that proof languages should be
improved into this direction to make proof systems more attractive and
usable – the ultimate goal of course being a like-on-paper presentation.
We show that using advanced Mizar typing techniques we already have
the ability of formalizing pretty close to mathematical paper style. Con-
sequently users of proof systems should be supplied with environments
providing and automating these techniques, so that they can easily ben-
efit from these.

1 Introduction

Interactive reasoning aims at developing methods and systems to be used to formalize
– state and prove – mathematical theorems in a comfortable way. The ultimate dream
is a system containing all mathematical knowledge in which mathematicians develop
and prove new theories and theorems. Though more and more advanced pieces of
mathematical knowledge are being formalized, we are still far from this dream – in
particular few mathematicians even notice proof systems.3 Formalizing mathematics
more or less still is a matter of computer scientists.

In our opinion the main reason is the clash between how mathematicians and proof
systems work: Any proof system by nature is based on logical rigour to ensure correct-
ness of formalization. Consequently such systems state theorems more or less as logical
formulae and use a logical calculus doing inferences to prove them. Mathematicians,
however, do not use logic or logical symbols in the strong sense of proof systems. They
argue rather intuitively assuming that their arguments can be easily transformed into
such a logical reasoning. From this stem reservations against using proof systems like
“Theorems are hard to read”, “Too much obvious facts has to be explicitly considered”,
or “Applying theorems is too elaborated”.

3 The most prominent exception is Thomas Hales’ Flyspeck project [7].
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To illustrate the above we consider the term n− 1 with n ∈ N as an easy example.
In some situations – to apply a theorem or to use n− 1 as an argument of a function
– n − 1 has to be a natural number. This is of course obvious if n > 1 (or n 6= 0), so
mathematicians do not care about. Proof systems have to be much more formal: One
has to prove that in this particular situation n−1 ∈ N. This is of course pretty easy and
can for example be done by changing the type of n− 1 to N, using the monus function
n ·−1 or by generating some proof obligation. Somewhat more involved examples would
be (p− 1)/2 ∈ N, if p 6= 2 is a prime or that (−1)n = −1, if n is odd.

Though there have been efforts to overcome these shortcomings, we claim that in
proof systems this kind of mathematical obviousness should be more strengthened:
Proofs as those in the above example must be invisible for users, that is automatically
identified and conducted. In this paper we show that Mizar’s attributed types [14], [2]
can be used to do so: Providing a number of so-called registrations and redefinitions –
stored and made available to users in a special environment – automates reasoning as
sketched in the above example and therefore allows for a much more mathematicians-
like handling of mathematical knowledge. More concrete, we present examples from
number theory – which in particular includes theorems as mentioned above – and deal
with instantiation of algebraic structures.

2 Pocklington’s Theorem

Pocklington’s criterium is a number theoretical result providing a sufficient condition
for (large) numbers to be prime. It may be worth mentioning that in the original work
[15] there is no precisely stated theorem. In the literature one therefore finds a number
of different variants. One version (from [3]) reads as follows.

Let s be a positive divisor of n − 1, s >
√
n. Suppose there is an integer a

satisfying:

an−1 ≡ 1 (mod n)

gcd(a(n−1)/q − 1, n) = 1

for each prime q dividing s. Then n is prime.

One can find several formalizations of Pocklington’s criterium none of which, however,
resembles completely the mathematical formulation. In Mizar [16] we find for example
the following.

for n,f,d,n1,a,q being Element of NAT
st n-1 = q|^n1 * d & q|^n1 > d & d > 0 & q is prime &

a|^(n-’1) mod n = 1 & (a|^((n-’1) div q)-’1) gcd n = 1
holds n is prime;

As we see the minus function -’ and division with remainder though not being part of
the theorem are used. Furthermore besides mod function and prime the formalization
does not use no number theoretical notation, even divisibility is expressed implicitly.

The formalization found in [4] adds coprime as a number theoretical notation in
this way substituting the gcd function. Note, however, that divisibility is expressed
once explicitly using predicate | and once implicitly.
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n > 2 ∧ n− 1 = q · r ∧ n 6 q2 ∧ an−1 ≡ 1 (mod n)

∧(∀p.prime p ∧ p|q −→ coprime(a
n−1
q − 1) n) −→ prime n.

In Coq [6] a somewhat different version has been formalized using a partial factorization
of n − 1. Therefore lists of natural numbers have been used. Congruence of numbers
is here expressed using the Mod-function, and S and pred denote n + 1 and n ·− 1,
respectively.

∀(n q m : nat) (a : Z) (qlist : natlist),
n > 1→
n = S (q× m)→
q = product qlist→
allPrime qlist→
Mod (Exp a (pred n)) 1 n→
allLinCombMod a n m qlist→ n 6 q× q→ Prime n.

Though of course correct – and also more or less well-readable – all these formalizations
rather present themselves as an expression having been proved in a formal system than
as a well-formulated mathematical theorem. In the rest of this section we will show how
preparing a number theoretic environment allows for the following Mizar formulation
of Pocklington’s theorem.

for n being 2_greater natural number,
s being non trivial Divisor of n-1 st s > sqrt(n) &

ex a being natural number
st a|^(n-1),1 are_congruent_mod n &

for q being PrimeDivisor of s holds a|^((n-1)/q) - 1 gcd n = 1
holds n is prime;

2.1 Preparing Proper Mathematical Notation

The first step is obvious. We have to introduce definitions resembling the mathematical
objects of concern: Divisor, PrimeDivisor, are_congruent_mod, and so on. Some of
them were already available in the Mizar Mathematical Library, some we had to intro-
duce by ourselves. How to do this has been described for example in [8] and is therefore
omitted. However, we also introduced the <-relation as a Mizar adjective _greater by
the following attribute definition.

definition
let n,x be natural number;
attr x is n_greater means x > n;

end;

This at first sight seems to be an unnecessary repetition. However, Mizar adjectives
can be used in so-called cluster registrations to automatically extend and enrich objects’
types. For example, the fact that primes p 6= 2 are odd can now be formulated – and
proved – not only as a theorem, but also as a cluster registration:

registration
cluster 2_greater -> odd for PrimeNumber;

end;
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As a consequence having p of type 2_greater PrimeNumber Mizar automatically
adds the adjective odd to the type of p in this way adding hidden information about
mathematical objects – that mathematicians use implicitly. In section 2.2 from this
then will – also automatically – follow that (p-1)/2 for such p is actually a natural
number. To give another example here, the existence of an arbitrary large prime number
can be guaranteed by the following registration.

registration
let n be natural number;
cluster n_greater for PrimeNumber;

end;

Now, if necessary, the user can declare an arbitrary large prime number by just
writing let p be 12345_greater PrimeNumber; or even more generally by
let n be natural number; let p be n_greater PrimeNumber;. Its existence is guar-
anteed by the above registration and the fact that p is greater than 12345 or n respec-
tively can be used in the following without any proving or referencing.

2.2 Automatically Adapting Types

The cluster mechanism of adding adjectives to an object’s type from the last subsection
can be used to automatically adapt types in particular situations. In this way users –
like mathematicians – do not have to deal explicitly with changing and adapting types
to apply functors or theorems.

To deal with the easy example from the introduction first, if n ∈ N is not equal to 0
the type of n−1 of course can be changed to natural number. To do this automatically,
we identify properties – given by adjectives – ensuring that n − 1 ∈ N and formulate
corresponding registrations, such as for example

registration
let n be non zero natural number;
cluster n-1 -> natural;

end;

registration
let m be natural number;
cluster m_greater -> non zero for natural number;

end;

Note here that registrations do not stand alone, but are applied in a iterative
matter.4 As a consequence the type of n − 1 now happens to be natural number not
only if n is non zero, but also if n is m_greater for an arbitrary natural number m.

We end this section by illustrating how the use of adjectives and cluster registrations
allows to avoid additional helper functions such as minus and division with remainder
to formulate Pocklington’s theorem. Having the following registration

4 Actually Mizar rounds up an object’s type by adding all adjectives from clusters
available in the environment, see [2].
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registration
let n be odd natural number;
cluster (n-1)/2 -> natural;

end;

then, if p is of type 2_greater PrimeNumber the type of (p-1)/2 is not just real
number as given by the type of the division functor /. Together with the registrations
from section 2.1 both adjectives odd and then natural are added to the type of (p-1)/2.
Hence its type in particular is natural number and (p-1)/2 is therefore accepted as
the argument of a function requiring natural numbers. Note that once the registration
has been introduced, no proof obligation for the user shows up, all that’s necessary has
– and must have – been proved in the cluster registration. Using the earlier introduced
type Divisor the following

registration
let n be natural number;
let q be Divisor of n;
cluster n/q -> natural;

end;

now is an easy generalization of the former case – q = 2 – changing the type of a
quotient to natural number, as necessary in the formulation of Pocklington’s theorem.
Note again that the type of n/q is automatically enriched with adjective natural, if n
and q have the attributed types mentioned in the registration.

3 Abstract Mathematical Structures and Instantiations

Another main topic is moving between mathematical structures: Mathematical proofs
receive their elegance from noting that a given domain constitutes a special structure
and applying theorems from it. Here both jumping to completely different structures as
well as inheriting from more general structures is of concern. In proof systems, however,
this goes along with a type coercion. The type of an element of a ring is different from
the one of a real number, of an element of a group or a topological space. Much effort
has been spent to ease users of proof systems to move between and to apply theorems
from different structures, see e.g. [9], [1], [17], [18].

Here we deal with another topic connected with inheriting from general structures:
Functions and properties defined in a general structure are to be refined or extended
in a more concrete one. As a running example we consider greatest common divisors in
different domains. The greatest common divisor and a number of its basic properties
can be defined for arbitrary gcd domains. Note, however, that one cannot define a gcd
function, just because in general the gcd is not unique. In gcd domains we therefore
end up with a type a_gcd:5

definition
let L be non empty multMagma;
let x,y,z be Element of L;
attr z is x,y-gcd means

5 One can of course also define the set of gcds for given x and y, but we found it more
convenient to use Mizar types here.
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z divides x & z divides y &
for r being Element of L

st r divides x & r divides y holds r divides z;
end;

definition
let L be gcdDomain;
let x,y be Element of L;
mode a_gcd of x,y is x,y-gcd Element of L;

end;

In more concrete gcd domains – so-called instantiations – such as the ring of integers
or polynomial rings the notion of a gcd now is adopted – actually changed into a gcd
function – by just saying that the gcd is greater than 0 or the gcd is monic, respectively.
However, these additional properties apply only to objects of the more concrete type
– Integer and Polynomial – whereas a_gcd expects arguments of the more general
type Element of L, where L is a gcdDomain. To easily adopt mathematical refining
techniques we need a way to – automatically – identify these types.

3.1 Preparing the Instantiation

Instantiations of abstract structures are defined by gluing together the corresponding
objects and operations in the appropriate structure, in our example doubleLoopStr.
So the ring of polynomials with coefficients from a structure L can be defined by

definition
let L be Ring;
func Polynom-Ring L -> strict non empty doubleLoopStr equals
doubleLoopStr(#POLYS,polyadd(L),polymult(L),1_.(L),0_.(L)#);

end;

where POLYS is the set of objects with type Polynomial of L. So we are left with two
different types Polynomial of L and Element of the carrier of Polynom-Ring L,
the latter one being the type of the – abstract – ring elements. As a consequence special
properties of polynomials can be only defined for the concrete type Polynomial of L,
such as for example an adjective monic . Even after its definition, monic is not available
for objects of type Element of the carrier of Polynom-Ring L:

definition
let L be Ring,

p be Polynomial of L;
attr p is monic means Leading-Coefficient p = 1.L:

end;

now let L be Ring;
let p be Element of the carrier of Polynom-Ring L;
p is monic;

::> *106: Unknown attribute
...

end;
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This is unsatisfying not only because it is obvious that p in this example is ac-
tually a polynomial, but also because it prevents the combination of monic with the
former defined type a_gcd. The solution is to automatically cast abstract types into
concrete ones, here Element of the carrier of Polynom-Ring L into Polynomial of
L. Again attributes – and a so-called redefinition – allow both to describe such situ-
ations and to enhance Mizar type checking: First an attribute polynomial-membered
describes sets containing only elements of type Polynomials of L. Then for such sets
the type of its elements can be redefined into Polynmial of L – because the attribute
polynomial-membered ensures that this cast is possible.6

definition
let L be non empty ZeroStr;
let X be set;
attr X is L-polynomial-membered means
for p be set st p in X holds p is Polynomial of L;

end;

definition
let L be Ring;
let X be non empty L-polynomial-membered set;
redefine mode Element of X -> Polynomial of L;

end;

All that remains now is stating – and proving – a cluster saying that the type
the carrier of Polynom-Ring L can automatically be enriched with the adjective
polynomial-membered

registration
let L be Ring;
cluster the carrier of Polynom-Ring L -> L-polynomial-membered;

end;

and objects of type Element of the carrier of Polynom-Ring L are automatically
identified as objects also having the concrete type Polynomial of L. Therefore notions
defined for Polynomial of L – such as for example monic – are also available for objects
of type Element of the carrier of Polynom-Ring L.

3.2 Extending Definitions in the Instantiation

Working in an environment containing the clusters and redefinitions from the last
section users can now extend and combine properties defined for different types –
abstract ring elements and concrete polynomials – according to their needs. First –
if not already provided in the standard environment – one has to ensure that the
instantiation establishes the abstract structure, here that Polynom-Ring L is a gcd
domain.

registration
let L be Field;
cluster Polynom-Ring L -> Euclidian;

end;
6 In fact exactly this has to be proved in the redefinition.
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Then all is set: Both abstract notions from gcdDomain and concrete ones for Polynomials
are available and can be easily used. The definition for polynomial gcd function, for
example, is now just combining notions a_gcd and monic.

definition
let L be Field;
let p,q be Element of the carrier of Polynom-Ring L;
func p gcd q -> Element of the carrier of Polynom-Ring L means
it is a_gcd of p,q & it is monic;

end;

Please note again, that notion monic has been introduced for objects of type
Polynomial of L, whereas notion a_gcd for objects of type Element of the carrier
of Polynom-Ring L. To nicely complete the development of polynomial gcds one should
in addition provide the following registration enriching the type of the just defined gcd
function – to make available properties of polynomial gcds without the need of refer-
encing its definition.7

registration
let L be Field;
let p,q be Element of the carrier of Polynom-Ring L;
cluster p gcd q -> monic p,q-gcd;

end;

4 Conclusion and Further Development

We have seen how thorough preparation of Mizar environments using registrations and
redefinitions to manipulate mathematical objects’ types not only improves working in
a special mathematical theory, but also enables automatic use of hidden information –
information that is used implicitly but is not stated by mathematicians. It is this kind
of obvious knowledge and inferences that proof systems must enable in order to attract
more users. We claim that further development of the presented techniques will lead
to both more convenience in formalizing mathematics and more recognition of proof
systems by mathematicians.

In this context we want to discuss briefly two further items that seem important
to us. Firstly, a lot of theorems mathematicians do not mention in proofs can actually
be presented as term reductions, just because they describe equalities, such as for
example (−1)n = −1, if n is odd, v − v = 0, a ∧ b = a, if a 6 b or x ∪ ∅ = x. Of
course it depends on the proof assistant to which extent such equalities/reductions
are automatically applied. Mizar, however, provides a language construct similar to
clustering that enables users enriching the proof process by particular reductions [13],
so for example

registration
let n be odd natural number;
reduce (-1)|^n to -1;

end;

7 There is a relatively new Mizar environment directive – expansion – that also serves
for automatically applying definitions.
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After such a registration the Mizar prover automatically identifies the left term with
the term on the right side, so that – even depending on the object’s type – equalities
are automatically performed and accepted.

now let n be odd natural number;
5 * (-1)|^n = -5;
...

end;

Unfortunately not all examples from above can be registered this way, because at
the moment reductions must be to proper subterms.

The second point concerns the use of ellipses, a constituent mathematicians use
to eliminate logical formulae describing finite sequences. In [5] we find, for example,
Pocklington’s theorem as follows:

Let n ∈ N, n > 1 with n− 1 = q ·m such that q = q1 · · · qt for certain primes
q1, . . . qt. Suppose that a ∈ Z satisfies an−1 = 1 (mod n) and gcd(a

n−1
qi −1, n) =

1 for all i = 1, . . . t. If q >
√
n, then n is a prime.

The Coq version of Pocklington’s theorem mentioned in section 2 actually formalizes
this theorem and therefore uses lists of natural numbers. Mizar already offers the use
of ellipses, but only if the underlying formula is existential [12], like for example in the
following theorem.

for n being non zero natural number,
x being integer number holds

x,0 are_congruent_mod n or ... or x,(n-1) are_congruent_mod n;

This, however, unfortunately does not allow to formulate Pocklington’s theorem with
the use of ellipses. In particular the use of ellipses for indexed variables is necessary
here.

Summarizing, proof assistants should be capable of automatically identifying and
performing obvious mathematical arguments and shortcuts, that is arguments left out
by working mathematicians. In our opinion the way to do so is not strengthening the
proof assistant’s inference system, but making its proof languages more flexible and
adaptable by using language constructs like those presented in the paper: They allow to
explicitly state theorems behind mathematicians’ obvious arguments and then enrich
the proof process by automatically applying them. In this way users – or developers by
providing standard environments for formalizing mathematics – can adapt the proof
process according to their particular needs.
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Parallelizing Mizar

Josef Urban?

Radboud University, Nijmegen

Abstract. This paper surveys and describes the implementation of par-
allelization of the Mizar proof checking and of related Mizar utilities.
The implementation makes use of Mizar’s compiler-like division into sev-
eral relatively independent passes, with typically quite different process-
ing speeds. The information produced in earlier (typically much faster)
passes can be used to parallelize the later (typically much slower) passes.
The parallelization now works by splitting the formalization into a suit-
able number of pieces that are processed in parallel, assembling from
them together the required results. The implementation is evaluated on
examples from the Mizar library, and future extensions are discussed.

1 Introduction and Motivation

While in the 90-ies the processing speed of a single CPU has grown quickly, in the
last decade this growth has considerably slowed down, or even stopped. The main
advances in processing power of computers have been recently done by packing multiple
cores into a single CPU, and related technologies like hyperthreading. A low-range
dual-CPU (Intel Xeon 2.27 GHz) MathWiki server of the Foundations Group at the
Radboud University bought in 2010 has eight hyperthreading cores, so the highest
raw performance is obtained by running sixteen processes in parallel. The server of
the Mizar group at University of Bialystok has similar characteristics, and the Mizar
server at University of Alberta has twelve hyperthreading cores. Packing of CPU cores
together is happenning not only on servers, but increasingly also on desktops and
notebooks, making the advantages of parallelization attractive to many applications.

To take advantage of this development, reasonable ways of parallelizing time-
consuming computer tasks have to be introduced. This paper discusses the various
ways of parallelization of proof checking with the Mizar formal proof verifier, and par-
allelization of the related Mizar utilities. Several parallelization methods suitable for
different scenarios and use-cases are introduced, implemented, and evaluated.

The paper is organized as follows: Section 2 describes the main tasks done today
by the Mizar [7, 17] verifier and related utilities, and the ways how they are performed.
Section 3 explores the various possible ways and granularity levels in which suitable
parallelization of the Mizar processing could be done, and their advantages and disad-
vantages for various use scenarious. Section 4 describes and evaluates parallelization of
the processing of the whole Mizar library and Mizar wiki done on the coarsest level of
granularity, i.e. on the article level. Section 5 then describes the recent parallelization
done on sub-article levels of granularity, i.e. useful for the speedup of processing of a
single Mizar article. Both the verification and various other utilities have been paral-
lelized this way, and evaluation on hundreds of Mizar articles is done. Section 7 names
possible future directions, and concludes.
? Supported by the NWO project MathWiki.
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2 Mizar Processing

2.1 Article Workflow

The term Mizar Processing can in the broad sense refer to several things. Mizar con-
sists of a large library of formal matheamatical articles, on top of which new articles
are written, formally verified by the Mizar verifier, possibly also checked by various
(proof improving) utilities during or after the writing, possibly HTML-ized for better
understanding during and after the writing, and usually translated to TeX after they
are written. During the verification a number of tools can be used, ranging from tools
for library searching, tools for creating proof skeletons, to tools for ATP or AI based
proof advice.

After a new article is written, it is typically submitted to the library, possibly
causing some refactoring of the library and itself, and the whole new version of the
library is re-verified (sometimes many times during the refactoring process), and again
possibly some more utilities can be then applied (again typically requiring further re-
verification) before the library reaches the final state. The new library is then HTML-
ized and publicly released. The library also lives in the experimental Mizar wiki based
on the git distributed version control system [28, 2]. There, collaborative re-factoring of
the whole library is the main goal, requiring fast real-time re-verification and HTML
linking.

2.2 Basic Mizar Verification

In more detail, the basic verification of an article starts by selecting the necessary
items from the library (so called accommodation) and creating an article-specific local
environment (set of files) in which the article is then verified without further need
to access the large library. The verification and other Mizar utilities then proceeds in
several compiler-like passes that typically vary quite a lot in their processing times.
The first Parser pass tokenizes the article and does a fast syntactic analysis of the
symbols and a rough recognition of the main structures (proof blocks, formulas, etc.).

The second Analyzer pass then does the complete type computation and disam-
biguation of the overloading for terms and formulas, and checks the structural cor-
rectness of the natural deduction steps, and computes new goals after each such step.
These processes typically take much longer than the parsing stage, especially when a
relatively large portion of the library is used by the article, containing a large amount
of type automations and overloaded constructs. The main product of this pass is a
detailed XML file containing the disambiguated form of the article with a number of
added semantic information [23]. This file serves as the main input for the final Checker
pass, and also for the number of other Mizar proof improving utilities (e.g., the Rel-
prem1 utility mentioned in Table 1), for the HTML-ization, and also for the various
ATP and AI based proof advice tools.

The final Checker pass takes as its main input the XML file with the fully dis-
ambiguated constructs, and uses them to run the limited Mizar refutational theorem
prover for each of the (typically many) atomic (by) justification steps. Even though
this checker is continuosly optimised to provide a reasonable combination of strength,
speed, and “human obviousness”, this is typically the slowest of the verifier passes.
Similar situation is with the various utilities for improving (already correct) Mizar

1 Irrelevant Premises Detector
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proofs. Such utilities also typically start with the disambiguated XML file as an input,
and typically try to merge some of the atomic proof steps or remove some redundant
assumptions from them. This may involve running the limited Mizar theorem prover
several times for each of the atomic proof steps, making such utilities even slower than
the Checker pass.

2.3 Other Tools

All the processes described so far are implemented using the Mizar code base writ-
ten in object-oriented extension of Pascal. The disambiguated XML file is also used
as an input for creation of the HTML representation of the article, done purely by
XSL processing. XSL processing is also used for translation of the article to an ATP
format, serving as an input for preparing ATP problems (solvable by ATP systems)
corresponding to the problems in the Mizar article, and also for preparing data for
other proof advice systems (MML Query, Mizar Proof Advisor). The XSL processing
is usually done in two stages. The first stage (called absolutization) is common for all
these utilities, it basically translates the disambiguated constructs living in the local
article’s environment into the global world of the whole Mizar library. The second
stage is then the actual XSL translation done for a particular application. The XSL
processing can take very different times depending on its complexity. Generally, XSL
processors are not as much speed-optimized as, e.g., the Pascal compilers, so complex
XSL processing can take more time than analogous processing programmed in Pascal.

Finally, there are a number of proof advice tools, typically taking as input the
suitably translated XML file, and providing all kinds of proof advice using external
processing. Let us mention at least the Automated Reasoning for Mizar [32, 30, 9] sys-
tem, linking Mizar through its Emacs authoring environment and through a HTML
interface to ATP systems (particulary a custom version [29] of the Vampire-SInE sys-
tem [15] and a customized [27] version of E [19]) usable for finding and completing
proofs automatically, for explaining the Mizar atomic justifications, and for ATP-based
cross-verification of Mizar. This processing adds (at least) two more stages: (i) It uses
the MPTP system [22, 25] to produce the ATP problems corresponding to the Mizar
formulation, and (ii) it uses various ATP/AI systems and metasystems to solve such
problems. Attached to such functions is typically various pre/post-processing done in
Emacs Lisp and/or as CGI functions.

See Figure 1 for the overall structure of Mizar and related processing for one article.
Table 1 gives timings of the various parts of Mizar processing for the more involved
Mizar article fdiff_1 about real function differentiability2 [14], and for the less involved
Mizar article abian about Abian’s fixed point theorem3 [16] run on recent Intel Atom
1.66 GHz notebook4.

2 http://mws.cs.ru.nl/~mptp/mml/mml/fdiff_1.miz
3 http://mws.cs.ru.nl/~mptp/mml/mml/abian.miz
4 This small measurement is intentionally done on a standard low-end notebook, while
the rest of global measurements in this paper are done on the above mentioned server
of the Foundations Group. This is in order to compare the effect of parallelized
server-based verification with standard notebook work in Section 5.
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Fig. 1. Structure of the Mizar processing for one article
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Table 1. Speed of various parts of the Mizar processing on articles fdiff_1 and abian
in seconds - real time and user time

Processing (language) real - fdiff_1 user - fdiff_1 real - abian user - abian
Accommodation (Pascal) 1.800 1.597 1.291 1.100
Parser (Pascal) 0.396 0.337 0.244 0.183
Analyzer (Pascal) 28.455 26.155 4.182 4.076
Checker (Pascal) 39.213 36.631 10.628 10.543
Relprem (Pascal) 101.947 99.385 48.493 47.683
Absolutizer (XSL) 17.203 13.579 9.624 7.886
HTML-izer (XSL) 27.699 24.498 11.582 11.323
MPTP-izer (XSL) 70.153 68.919 47.271 45.410
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3 Survey of Mizar Parallelization Possibilities

There are several ways how to parallelize Mizar and related utilities, and several pos-
sible levels of granularity. Note that for any of these Mizar parallelization methods the
main issue is speed, not the memory consumption. This is because Pascal does not have
garbage collection, and Mizar is very memory efficient, taking typically less than 30MB
RAM for verifying an article. The reason for this extreme care is mainly historical, i.e.,
the codebase goes back to times when memory was very expensive. Methods used for
this range from exhaustive sharing of data structures, to using only the part of the
library that is really necessary (see accommodation in 2.2).

The simplest method of parallelization which is useful for the Mizar wiki users,
developers, and library maintainers is article-level parallelization of the whole library
verification, and parallization of various other utilities applied to the whole Mizar
library. There are about 1100 Mizar articles in the recent library, and with this number
the parallelization on the article level is already very useful and can bring a lot of speed-
ups, especially useful in the real-time wiki setting, and for the more time consuming
utilities like the above mentioned Relprem.

A typical user is however mainly interested in working with one (his own) article.
For that, finer (sub-article) levels of parallelization are needed. A closer look at the
Table 1 indicates that the Parser pass of the verification is very fast, while the Analyzer
and especially the Checker passes are the bottlenecks (see also the global statistics for
the whole MML processing done with article-level parallelization in Table 2).

3.1 Checker parallelization

There are several basic options to parallelizing the most costly verification operation -
the Checker pass, they are explained in more detail below:
1. Running several Checker passes in parallel as separate executables, each checking

only a part of the atomic steps conducted in the article
2. Running one Checker pass as only one executable, with multithreading code used

for parallelizing the main checking procedure
3. Running one Checker pass as only one executable, with multithreading code used

inside the main checking procedure
4. Combinations of above

As mentioned above, the input for the Checker pass is a fully disambiguated article,
where only the atomic justification steps need to be checked, i.e. proved by the Mizar’s
limited theorem prover. The number of such atomic justification steps in one article is
typically high, about every second to third line in a formal Mizar text is justified in
such a way. The result of one such theorem proving attempt is completely independent
of others, and it is just a boolean value (true or false)5. All of these theorem proving
attempts however share a lot of data-structures that are basically read-only for them,
for example information about the types of all the ground terms appearing up to the
particular point in the formal text, and information about the equalities holding about
ground terms at particular points of the formal text.

The first method suggested above - running several Checker passes in parallel as
separate executables, each checking only a part of the atomic steps conducted in the
article - is relatively “low-tech”, however it has some good properties. First, in the

5 Note that this is not generally true for nonclassical systems like Coq, where the proof
might not be an opaque object.
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methods based on multithreading, the relatively large amount of the shared data has
to be cloned in memory each time a new thread is created for a new justification step.
This is not the case when several executables are running from the beginning to the
end, each with its own memory space. Second, the implementation can be relatively
simple, and does not require use of any multithreading libraries, and related refactoring
of the existing single-threaded code.

The second and third method require the use of a multithreading library (this is
possible for the Free Pascal Compiler used for Mizar, with the MTProcs unit), and
related code refactoring. There are several places where the multithreading can be in-
troduced relatively easily, let us name at least the most obvious two: (i) the main entry
to the refutational proof checker, and (ii) within the refutational proof checker, sepa-
rately disproving each of the disjuncts in the toplevel disjunctive normal form created
in the initial normalization phase. The advantage of such implementation in compari-
son with running several executables would probably be more balanced load, and in the
latter case, possibly being able to use more extreme parallelization possibilities (e.g.,
if 1000 cores are available, but the article has only 500 atomic justifications).

3.2 Type Analysis and Caching: Why not use fine multithreading

Caching vs. Multithreading For the also relatively costly Analyzer pass, the
methods based on fine multithreading however seem to be either relatively compli-
cated or of relatively little value. The problem is following: A major and increasing
amount of work done in Analyzer consists in computing the full types of terms. This
is because the Mizar mechanisms for working with adjectives are being used more and
more, and are being made stronger and stronger, recently to a level that could be
compared to having arbitrary Prolog programs working over a finite domain (a finite
set of ground terms). The method that then very considerably improves the Analyzer
efficiency in the singlethreaded case is simple caching of terms’ types. With a sim-
ple multithreaded implementation, when the newly computed types are forgotten once
the thread computing them exits, this large caching advantage is practically lost. Im-
plementation where each thread updates the commonly used cache of terms’ types is
probably possible, but significantly more involved, because the access to the shared
datastructures is then not just read-only (like in the Checker case), and the updates
are likely to be very frequent.

Suitable Parallelization for Tree-like Documents Above is the reason why in
the Analyzer case, it makes much more sense to rather have several “long-term-running”
threads or processes, each developing and remembering its own cache of terms’ types.
The main problem is then to determine a proper level of granularity for dividing Ana-
lyzer ’s work into such larger parts. Unlike in the Checker pass, Analyzer is not a large
set of independent theorem proving runs returning just a boolean result. Analysing
each term depends on the analysis of its subterms, and similarly, analysing the natural
deduction structure of the proofs (another main task of this pass) depends on the re-
sults of the analysis of the proof’s components (formulas, and natural deduction steps
and subproofs). Thus, the finer the blocks used for parallelization, the larger the part
that needs to be repeated by several threads (all of them having to analyse all the nec-
essary parts of the nested proof, formula, and term levels leading to the fine parallelized
part). To put this more visually, the formal text (proof, theory) is basically a tree (or
forest) of various dependencies. The closer to the leaves the parallelization happens, the
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more common work has to be repeated by multiple threads or processes when descend-
ing down the branches to the parallelization points on those branches. Obviously, the
best solution is then to parallelize not on the finest possible level, but on the coarsest
possible level, i.e., as soon as there are enough branches for the parallelization.

Toplevel Proofs as Suitable Parallelization Entry Points To this require-
ment reasonably corresponds the choice of toplevel proofs in a given formal text as the
entry points for parallelization. There are typically tens to hundreds of toplevel proofs
in one article, and with some exceptions (very short articles, or articles consisting of
one very involved proof) these toplevel proofs can usually be divided into the necessary
number of groups with roughly the same overall length. Mizar (unlike e.g. Coq) never
needs the proofs for anything, only the proved theorem can be used in later proofs.
Thanks to this, a simple directive (@proof) was introduced in the Mizar language long
time ago, in order to omit verification of the (possibly long) proofs that have already
been proved, and would only slow-down the verification of the current proof. This direc-
tive basically tells to the Parser to skip all text until the end of the proof is found, only
asserting the particular proposition proved by this skipped proof. Due to the file-based
communication between the passes, the whole skipped proof therefore never appears in
the Analyzer ’s input, and consequently is never analyzed. This feature can be used for
file-based parallelization of the Analyzer, described in more detail in Section 5. It also
parallelizes the Checker, and also can be used for easy parallelization of the subsequent
HTML-ization.

3.3 HTML-ization parallelization

As mentioned above, HTML-ization of Mizar texts is based on the disambiguated article
described in the XML file produced by the Analyzer. HTML-ization is done completely
separately from the Mizar codebase written in Pascal, by XSL processing. Even though
XSL is a pure lazily evaluated functional language6, as of January 2011, the author is
not aware of a XSL processor implementing multithreading. The remaining choice is
then again file-based parallelization, which actually corresponds nicely to the file-based
parallelization usable for skipping whole proof blocks in the Analyzer. During the XSL
processing, it is easy to put the HTML-ized toplevel proofs each into a separate file7,
and then either to load the proofs into a browser on-demand by AJAX calls, or to
merge the separate files with HTML-ized proofs created by the parallelization by a
simple postprocessing into one big HTML file.

3.4 Parallelization of Related Mizar Processing

Remaining Mizar refactoring utilities (like Relprem) are typically implemented by mod-
ifying or extending the Checker or Analyzer passes, and thus the above discussion and
solutions apply to them too. Creation of data for MML Query, Mizar Proof Advisor,
and similar systems is done purely by XSL, and the file-based approach can again

6 Thanks to being implemented in all major browsers, XSL is today probably by far
the most widely used and spread purely functional language.

7 This functionality actually already exists independently for some time, in order to
decrease the size of the HTML code loaded into browser, loading the toplevel proofs
from the separate files by AJAX calls.
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be applied analogously to HTML-ization. The same holds for translating the article
to the MPTP format (extended TPTP), again done completely in XSL. A relatively
important part used for the automated reasoning functions available for Mizar is the
generation of ATP problems corresponding to the Mizar problems. This is done by
the MPTP system implemented in Prolog. The problem generating code is probably
quite easily parallelizable in multithreaded Prologs (Prolog is by design one of the most
simply parallelizable languages), however the easiest way is again just to run several
instances of MPTP in parallel, each instructed to create just a part of all the arti-
cle’s ATP problems. The recent Emacs authoring interface for Mizar implements the
functions for communicating with ATP servers asynchronously [18], thus allowing to
solve as many ATP-translated problems in parallel as the user wants (and the possible
remote MPTP/ATP server allows). The asynchronously provided ATP solutions then
(in parallel with other editing operations) update the authored article using Emacs
Lisp callbacks.8

As for the parallelization of the ATP solving of Mizar problems, this is a field
where a lot of previous research exists [20, 21], and in some systems (e.g. Waldmeister,
recent versions of Vampire used for the Mizar ATP service) this functionality is readily
available. Other options include running several instances of the ATPs with different
strategies, different numbers of most relevant axioms, etc. The MaLARea [26, 33, 10]
metasystem for solving problems in large Mizar-like theories explores this number of
choices in a controlled way, and it already has some parallelization options implemented.

4 Parallelization of the MML Processing on the Article
Level

A strong motivation for fast processing of large parts of the library comes with the
need for collaborative refactoring. As the library grows, it seems that the number of
submissions make it more and more difficult for the small core team of the library main-
tainers and developers to keep the library compact, and well organized and integrated
together. The solution that seems to work for Wikipedia is to outsource the process
of library maintanance and refactoring to a large number of interested (or addicted)
users, through a web interface to the whole library. In order for this to work in the
formal case, it is however important to be able to quickly re-verify the parts of the
library dependent on the refactored articles, and notify the users about the results,
possibly re-generating the HTML presentation, etc.

The implementation of article-level parallelization is as follows. Instead of the old
way of using shell (or equivalent MS Windows tools) for processing the whole library
one article after another, a Makefile has been written, using the files produced by the
various verification passes and other tools as targets, possibly introducing artificial
(typically empty file) targets when there is no clear target of a certain utility. The eas-
iest option once the various dependencies have been reasonably stated in the Makefile,
is just to use the internal parallelization implemented in the GNU make utility. This
parallelization is capable of using a pre-specified number of processes (via the -j op-
tion), and to analyse the Makefile dependencies so that the parallelization is only done
when the dependencies allow that. The Makefile now contains dependencies for all the
main processing parts mentioned above, and is regularly used by the author to process

8 See, e.g.,the AMS 2011 system demonstration at http://mws.cs.ru.nl/~urban/
ams11/out4.ogv
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the whole MML and generate HTML and data for various other tools and utilities. In
Table 2 the benefits of running make -j64 on the recently acquired eight-core hyper-
threading Intel Xeon 2.27 GHz server are summarized. The whole library verification
and HTML-ization process that with the sequential processing can take half a day (or
much more on older hardware), can be done in less than an hour when using this par-
allelization. See [28] for further details and challenges related to using this technique in
the git-based formal Mizar wiki backend to provide reasonably fast-yet-verified library
refactoring.

Table 2. Speed of various parts of the Mizar processing on the MML (1080 articles)
with 64 process parallelization run on an 8-core hyperthreading machine, in seconds -
real time and user time, total and averages for the whole MML.

Stage (language) real times total user times total real times avrg user times avrg
Parser (Pascal) 14 91 0.01 0.08
Analyzer (Pascal) 330 4903 0.30 4.53
Checker (Pascal) 1290 18853 1.19 17.46
Absolutizer (XSL) 368 4431 0.34 4.10
HTML-izer (XSL) 700 8980 0.65 8.31

Similar Makefile-based parallelization technology is also used by the MaLARea sys-
tem when trying to solve the ca. fifty thousand Mizar theorem by ATPs, and producing
a database of their solutions that is used for subsequent better proof advice and im-
proved ATP solving using machine learning techniques. One possible (and probably
very useful) extension for purposes of such fast real-time library re-verification is to ex-
tract finer dependencies from the articles (e.g. how theorems depend on other theorems
and definitions - this is already to a large extent done e.g. by the MPTP system), and
further speed up such re-verification by checking only certain parts of the dependent
articles, see [3] for detailed analysis. This is actually also one of the motivations for the
parallelization done by splitting articles into independently verified pieces, described
in the next section.

5 Parallelization of Single Article Processing

While parallelization of the whole (or large part of) library processing is useful, and as
mentioned above it is likely going to become even more used, the main use-case of Mizar
processing is when a user is authoring a single article, verifying it quite often. In the
case of a formal mathematical wiki, the corresponding use-case could be a relatively
limited refactoring of a single proof in a larger article, without changing any of the
exported items (theorems, definitons, etc.), and thus not influencing any other proofs
in any other article. The need in both cases is then to (re-)verify the article as quickly as
possible, in the case of wiki also quickly re-generating the HTML presentation, giving
the user a real-time experience and feedback.

5.1 Toplevel Parallelization

As described in Section 3, there are typically several ways how to parallelize various
parts of the processing, however it is also explained there that the one which suits best
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the Analyzer and HTML-ization is a file-based parallelization over the toplevel proofs.
This is what was also used in the initial implementation of the Mizar parallelizer9. This
section describes this implementation (using Perl and LibXML) in more detail.

As can be seen from Table 1 and Table 2, the Parser pass is very fast. The total user
time for the whole MML in Table 2 is 91.160 seconds, which means that the average
speed on a MML article is about 0.1 second. This pass identifies the symbols and the
keywords in the text, and the overall block structure, and produces a file that is an
input for the much more expensive Analyzer pass. Parsing a Mizar article by external
tools is (due to the intended closeness to mathematical texts) very hard [5], so in order
to easily identify the necessary parts (toplevel proofs in our case) of the formal text, the
output of the Parser pass is now also printed in an XML format, already containing a
lot of information about the proof structure and particular proof positions10

The Parallelizer’s processing therefore starts by this fast Parser run, putting the
necessary information in the XML file. This XML file is then (inside Perl) read by
the LibXML functions, and the toplevel proof positions are extracted by simple XPath
queries from it. This is also very fast, and adds very little overhead. These proof
positions are an input to a (greedy) algorithm, which takes as another input parameter
the desired number of processes (N) run in parallel (for compatibility with GNU make,
also passed as the -j option to the parallelizer). This algorithm then tries to divide
the toplevel proofs into N similarly hard groups. While there are various options how
to estimate the expected verification hardness of a proof, the simplest and reasonably
working one is the number of lines of the proof. Once the toplevel proofs are divided
into the N groups, the parallelizer calls Unix fork() on itself with each proof group,
spawning N child instances.

Each instance creates its own subdirectory (symbolically linking there the necces-
sary auxiliary files from the main directory), and creates its own version of the verified
article, by replacing the keyword proof with the keyword @proof for all toplevel proofs
that do not belong to the proofs processed by this particular child instance. The Parser
pass is then repeated on such modified input by the child instance, the @proof direc-
tives producing input for Analyzer that contains only the desired toplevel proofs. The
costly subsequent passes like the Analyzer, Checker,and HTML-ization can then be run
by the child instance on the modified input, effectively processing only the required
toplevel proofs, which results in large speedups. Note that the Parser’s work is to some
extent repeated in the children, however its work in the skipped proofs is very easy
(just counting brackets that open and close proofs), and this pass is in comparison with
others very fast and thus negligible. The parallel instances of the Analyzer, Checker,
and HTML-ization passes also overlap on the pieces of the formal text that are not
inside the toplevel proofs (typically the stated theorems and definitions have to be at
least analyzed), however this is again usually just a negligible share of the formal text
in comparison with the full text with all proofs.

The speedup measured for the verification (Parser, Analyzer, Checker) passes on
the above mentioned article fdiff_1 run with eight parallel processes -j8 is given
in the Table 3 below. While the total user time obviously grows with the number of
parallel processes used, the real verification time is in this case decreased nearly four

9 http://github.com/JUrban/MPTP2/raw/master/MizAR/cgi-bin/bin/mizp.pl
10 Note that the measurement of Parser speed in the above tables was done after the

XMLization of the Parser pass, so the usual objection that printing a larger XML file
slows down verification is (as usual) completely misguided, especially in the larger
picture of costly operations done in the Analyzer and the Checker.
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times. Additionally, in comparison with the notebook processing mentioned in the ini-
tial Table 1, the overall real-time benefit of remote parallelized server processing is a
speedup factor of 20. This is a strong motivation for the server-based remote verifica-
tion (and other) services for Mizar implemented in Emacs and through web interface
decribed in [32]. The overall statistics done across all (395) MML articles that take in
the normal mode more than ten seconds to verify is computed for parallelization with
one, two, four, and eight processes, and compared in Table 4. The greatest real-time
speedup is obviously achieved by running with eight processes, however, already using
two processes helps significantly, while the overhead (in terms of user time ratios) is
very low. When all the child instances finish their jobs, the parent parallelizer post-

Table 3. Comparison of the verification speed on article fdiff_1 run in the normal
mode and in the parallel mode, with eight parallel processes (-j8)

Article real (normal) user (normal) real (-j8) user (-j8)
fdiff_1 13.11 12.99 3.54 21.20

Table 4. Comparison of the verification speeds on 395 slow MML articles run with
one, two, four, and eight parallel processes

-j1 -j2 -j4 -j8
Sum of user times (s) 12561.07 13289.41 15937.42 21697.71
Sum of real times (s) 13272.22 7667.37 5165.9 4277.12
Ratio of user time to -j1 1 1.06 1.27 1.73
Ratio of real time to -j1 1 0.58 0.39 0.32

processes their results. In the case of running just verification (Analyzer and Checker),
the overall result is simply a file containing the error messages and positions. This file
is created just by (uniquely) sorting together the error files produced by the child in-
stances. Merging the HTML-ization results of the child instances is very simple thanks
to the mechanisms described in Section 3.3. The –ajax-proofs option is used to place
the HTMLized proofs into separate files, and depending on the required HTML out-
put, either just bound to AJAX calls in the toplevel HTML-ization, inserting them
on-demand, or postprocessing the toplevel HTML in Perl by the direct inclusion of the
HTML-ized toplevel proofs into it (creating one big HTML file).

5.2 Finer Parallelization

The probably biggest practical disadvantage of the parallelization based on toplevel
proofs is that in some cases, the articles really may consist of proofs with very uneven
size, in extreme cases of just one very large proof. In such cases, the division of the
toplevel proofs into groups of similar size is going to fail, and the largest chunk is going
to take much more time in verification and HTML-ization than the rest. One option
is in such cases to recurse, and inspect the sub-proof structure of the very long proofs,
again, trying to parallelize there. This was not done yet, and instead, the Checker-
based parallelization was implemented, providing speedup just for the most expensive
Checker pass, but on the other hand, typically providing a very large parallelization
possibility. This is now implemented quite similarly to the toplevel proof parallelization,
by modifying the intermediate XML file passed from the Analyzer to the Checker. As
with the @proof user-provided directive, there is a similar internal directive usable
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in the XML file, telling the Checker to skip the verification of a particular atomic
inference. This is the used very similarly to @proof: The parallelizer divides the atomic
inferences into equally sized groups, and spawns N children, each of them modifying the
intermediate XML file, and thus checking only the inferences assigned to the particular
child. The errors are then again merged by the parent process, once all the child
instances have finished.

The overall evaluation of this mode done again across all (395) MML articles that
take in the normal mode more than ten seconds to verify is shown in Table 5 for
(checker-only) -j8, and compared with the (toplevel) -j8 from Table 4 where the toplevel
parallelization mode is used. The data confirm the general conjecture from Section 3.2:
A lot of Mizar’s work is done in the type analysis module, and the opportunity to
parallelize that is missed in the Checker-only parallelization. This results in lower
overall user time (less work repetition in analysis), however higher real time (time
perceived by the user). This parallelization is in some sense orthogonal to the toplevel

Table 5. Comparison of the toplevel and checker-only verification speeds on 395 slow
MML articles run with one and eight parallel processes

-j1 -j8 (toplevel) -j8 (checker-only)
Sum of user times (s) 12561.07 21697.71 18927.91
Sum of real times (s) 13272.22 4277.12 5664.1
Ratio of user time to -j1 1 1.73 1.51
Ratio of real time to -j1 1 0.32 0.43

proof parallelization, and it can be used to complement the toplevel proof parallelization
in cases when there are for instance only two major toplevel proofs in the article, but
the user wants to parallelize more. I.e., it is no problem to recurse the parallelizer, using
the Checker-based parallelization for some of the child instances doing toplevel-proof
parallelization.

6 Related Work

As already mentioned, sophisticated parallelization and strategy scheduling have been
around in some ATP systems for several years now, an advanced example is the in-
frastructure in the Waldmeister system [8]. The Large Theory Batch (LTB) division
of the CADE ATP System Competition has started to encourage such development
by allowing parallelization on multicore competition machines. This development suits
particularly well the ATP/LTB tasks generated in proof assistance mode for Mizar.
Recent parallelization of the Isabelle proof assistant and its implementation language
are reported in [12] and in [34], focusing on fitting parallelism within the LCF ap-
proach. This probably makes the setting quite different: [34] states that there is no
magical way to add the “aspect of parallelism” automatically, which does not seem to
be the case with the relatively straightforward approaches suggested and used here for
multiple parts of Mizar and related processing. As always, there seems to be a trade-off
between (in this case LCF-like) safety aspirations, and efficiency, usability, and imple-
mentation concerns. Advanced ITP systems are today much more than just simple slow
proof checkers, facing similar “safety” vs. “efficiency” issues as ATP systems [13]. The
Mizar philosophy favors (sometimes perhaps too much) the latter, arguing that there
are always enough ways how to increase certainty, for example, by cross-verification
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as in [31], which has been recently suggested as a useful check even for the currently
safest LCF-like system in [1]. Needless to say, in the particular case of parallelization
a possible error in the parallelization code is hardly an issue for any proof assistant
(LCF or not) focused on building large libraries. As already mentioned in Section 2,
at least in case of Mizar the whole library is typically re-factored and re-verified many
times, for which the safe file-based parallelization is superior to internal paralleliza-
tion also in terms of efficiency, and this effectively serves as overredundant automated
cross-verification of the internal parallelization code.

7 Future Work and Conclusions

The parallelizer has been integrated in the Mizar mode for Emacs [24] and can be
used instead of the standard verification process, provided that Perl and LibXML
are installed, and also in the remote server verification mode, provided Internet is
available. The speedups resulting from combination of these two techniques are very
significant. As mentioned above, other Mizar utilities than just the standard verifier
can be parallelized in exactly the same way, and the Emacs environment allows this
too. The solutions described in this paper might be quite Mizar-specific, and possibly
hard to port e.g., to systems with non-opaque proofs like Coq, and the LCF-based
provers, that do not use similar technique of compilation-like passes. Other, more
mathematician-oriented Mizar-like systems consisting of separate linguistic passes like
SAD/ForThel [11] and Naproche [6] might be able to re-use this approach more easily.

As mentioned above, another motivation for this work comes from the work on
a wiki for formal mathematics, and for that mode of work it would be good to have
finer dependencies between the various items introduced and proved in the articles.
Once that is available, the methods developed here for file-based parallelization will be
also usable in a similar way for minimalistic checking of only the selected parts of the
articles that have to be quickly re-checked due to some change in their dependencies.
This mode of work thus seems to be useful to have not just for Mizar, but for any proof
assistant that would like to have its library available, editable, and real-time verifiable
in an online web repository.
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Abstract. The paper describes the project of innovative software com-
ponent – LOGTRAVEL which can be applied as a logistic toolbox for
e-tourism systems called Tourist Travel Planners (TTP). Functionali-
ties of LOGTRAVEL supports planning and organization of cheap and
attractive touristic travels which tourists can use in TTP system. The
component includes solutions of many variants and extensions of Orien-
teering Problem which enable a generation of an optimal trip satisfying
variety traveler preferences. The paper has the survey character and is to
the definition of the problems and their application and does not present
solutions for them.

Keywords: Tourist Travel Planners, Orienteering Problem, Point of Interest

1 Introduction

According to the actual trends on the market, expected conditions in the development
of e-services in the next five years, include social networks and thematic hobby that
can grow despite the huge competition and general social networks portals in the area
of tourism and travel. The increase in the number of users of an e-tourism or web-based
systems on the theme of tourism, is already noticeable and only in Poland is about 10
percents per year over the past two years.

The trends described above fits perfectly the need for a social networks site for
fans of expeditions organized yourself. There are many travel portals for individual
tourists. The largest one in Poland has less than 25 thousand users, which appears to
be the result of the weak against the statistics showing the number of Poles going as a
tourist and not using the travel agency services. These people were in Poland, almost
3.3 million in 2009, including nearly 2 million followers it yourself organized trip. What
is the reason for this relatively little interest in Polish travel portals? In the opinion
of many users of these sites expressed in online forums, they lack the functionality to
support the planning, organization and monitoring of travel.

In all Polish web portals is implemented the same idea of gathering unspecified in-
formation in the form of relationships with travel, photos and videos. The user can only
select a location or region that wants to visit, read reviews or memories, view photos
and videos added by people who visited this place during his departure. Sometimes

Trends in Contemporary Computer Science, Podlasie 2014, ISBN 978-83-62582-58-7
by A. Gomolińska, A. Grabowski, M. Hryniewicka, M. Kacprzak, E. Schmeidel (Eds.)
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the user who presented their relations with the expedition is also possible to issue the
scoring visited tourist objects.

This paper presents a proposal for the travel of innovative functionalities, support-
ing logistics processes occurring during route planning tourist trips organized indepen-
dently. The implementation of these functions is the subject of research conducted at
the Faculty of Computer Science, Bialystok University of Technology, which will result
in the software component (library) called LOGTRAVEL.

2 LOGTRAVEL functionalities

The result of the application functionality is implemented by LOGTRAVEL path (or
set of paths) with the highest possible degree of tourist attractiveness, fulfilling a fixed
set of constraints and preferences set by the user. It is important that the method of
generating routes were efficient in time, both when they are applied to the area of the
type of the continent, as well as when they are run for smaller territorial regions such
as the state or city. The implementation of component functionality LOGTRAVEL
requires the solution of many optimization problems on graphs. These problems are
variations of a computationally difficult task called Orienteering Problem (OP ) [9], also
known under the Selective Travelling Salesman Problem with Profits (STSPwP ) [2].
Vertices of the graph that models the problem of the OP are tourist attractions (Points
of Interest, POI in brief) with a certain degree of attractiveness and geographical loca-
tion. Types of tourist attractions can be very different from the monuments, museums
or starting viewpoints, and in hotels, guest houses or clubs ending entertainment. In
addition to the degree of attractiveness and geographical location of the attraction
may be related to other information, such as ticket prices or accommodation or hours
away. The edges of the graph correspond to connections between attractions (ie road,
air transport, walking, public transport, etc.). The edges are assigned weights indicat-
ing the length of the call, expressing the distance and /or time of the merger. If the
connection is implemented using public transport timetables, the value of connections
depend on the time of departure. LOGTRAVEL realize the following functionalities:
• SelectingandRouting(SaR): Generate routes for the highest possible total degree

of attractiveness of the objects contained in the route. Length of the route may
not exceed the set limit (time or length of communication links) [7].

• PossibilitiesofReturns (POR): The generated route may further comprise recur-
ring attractions , but on subsequent presentations of the same objects degree of
attractiveness is zero [2]. Functionality useful in networks communication links ,
which are modeled part-graph , i.e. one in which there may be no direct connection
between at least one pair of objects.

• ObligatoryPOIs (OPs): Generate routes, containing additional mandatory attrac-
tions of the status of "must see". The user defines a set of activities that wants
mandatory visit in route [1], [16].

• OpeningHours (OH): Generate a route taking into account the additional access
time of interest for inclusion in the route [12].

• ScenicRoutes (SR): Generating route, which also has the highest possible value
of viewing dialed communication, if links in the graph are assigned values of the
attractiveness of the observation [11].

• PublicTransportation (PT ): Generating route, which also may be fully or partially
developed using selected measures of public transport (ie train, plane, bus, etc.)
with specific timetables [6].
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• BudgetLimitations (BL): Generate route, which also satisfies the budget allocated
for the route [1].

• DynamicRecalculation (DR): functionality needed in the event of unforeseen
events earlier (eg the delay of the aircraft) and the modification is required origi-
nally planned route in "real-time" [12].

• Max − nType (MnT ): Reducing the number of points of interest in a particular
type of route (eg route can occur up to three museums) [1].

• ObligatoryTypes (OT ): Specify the type of activities that must occur at least once
in the itinerary, such as the route must occur at least one historic church [1].
Currently LOGTRAVEL includes enforcing functions SelectingandRouting and

PossibilitiesofReturns. Other functionality of the library will be implemented and
tested soon. Fig. 1 shows the screenshot of the application testing component func-
tionality LOGTRAVEL realized. Tests were carried out on real data from the region
of Podlasie. Solutions to problems implementing the functionality SaR and times are
based on the use of artificial intelligence methods (AI in brief), namely genetic algo-
rithms [3]. Testing time complexity and accuracy of the resulting slopes confirm the
high quality of the solutions used. A test network consisted of nearly six tourist at-
tractions. Execution time of a single query about the route attractive to tourists (with
drawn results on a map, geographic interface) does not exceed a few seconds, regardless
of the route length limit.

Fig. 1. Generating attractive tourist routes

None of Polish travel portals does not implement even one of the above function-
ality. In the literature you can find information about many solutions in systems with
attractive tourist route engine. Table.1 lists works which relate to the discussed issues
in this paper and noted that the consideration of functionality are included in them.
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Unfortunately, most of the work has not been completed and their effect are only pro-
totypes of the software. Logistical support "globetrotters" can be realized not only by
tools supporting planning travel routes, but also the software that enables the creation
of (organizing) group of travel and its continuous contact at the stage of determining
the organizational details of travel. IT support is also necessary to monitor the travel
in the course of the route, in terms of compliance with the planned trip parameters
actually implemented. However, it seems that the functionality associated with travel
arrangements and its monitoring are not as complex research problem as the process
of planning a route.

2.1 Tourist Tour Generating Problem

In this section we define the most complicated problem which we can defined for TTP
systems. We will called this problem Tourist Tour Generating Problem (TTGP). TTGP
is a significant generalization of the Team Orienteering Problem with Time Windows
(TOPTW) [19], which, in turn, is an extension of the Team Orienteering Problem
(TOP) [17]. TTGP is an original new problem with an empty set of solutions now.

authors solutions SaR PoR OPs OH SR PT BL DR MnT OT

V. W. Soo i S. H. Liang [14] 2001 X
Y. Suna i L. Lee [15] 2004 X
A. Maruyama et al [9] 2004 X X
K. Hagen et al [4] 2005 X X

T. Shiraishi et al [13] 2005 X X X X
T. Kinoshita et al [5] 2005 X X
M. Nagata et al [11] 2006 X X
L. Castillo et al [1] 2008 X X X X X X

A.S. Niaraki i K. Kim [11] 2009 X
C. S. Lee et al [7] 2009 X X
Table 1. Overview of the functionality of planning travel routes

Vansteenwegen et al [19] conducted a comprehensive analysis of solutions for OP
and its extensions. Tang [18] analysed the published approaches to solutions of the OP
family, which attracted the attention of many research teams in the last two years due
to practical applications and computation difficulty [17].

Since OP is a NP -hard problem, it is necessary to develop approximate solutions
also for all the extensions of the problem. Although many efficient hybrid approaches
solving TOP [19] have been presented in literature, those approaches do not have
efficient applications in solutions for TOPTW and TTGP . Until now, only few al-
gorithms solving TOPTW and only one algorithm for TTGP have been published;
besides, they are only for small networks (up to 200 nodes). The best approaches to
TOPTW solutions are used by: the AntColonySystem (ACS)proposed by Monteman-
niand Gambardella [18], local search heuristics (IteratedLocalSearch – ILS)] and the
method of V ariableNeighborhoodSearch (V NS) [2].

The application of TTGP in particular allows for generating a route that is at-
tractive from the tourist point of view (with the highest total of profits/scores of the
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objects) once the user has determined a system of constraints and route preferences,
i.e. tour duration or budget. If the route takes more than one day, the system also de-
termines optimal accommodation places. It is worth noting that all the test results for
varieties of OP available in literature only refer to small networks. Benchmarks used
for tests do not exceed 200 nodes for the problems of OP , TOP and TOPTW and 85
nodes for TTGP . On the other hand, applications of solutions to OP [17] problems
are a strong motivation for working on time-efficient solutions to those problems for
much larger networks, even up to 600 nodes (e.g. the ITRS system for Podlasie region
necessitates including about 600 POIs and accommodation places in the network).

Therefore: For further development of TTGP applications, it is essential to develop
efficient solutions to this problem dedicated to large networks. In the opinion of the
applicants, it is possible to create new efficient and universal algorithms solving TTGP ,
both for small and large networks, i.e. ones including up to 600 nodes.

The formal definition of TTGP is following:
Let G = (V,E) be a connected graph with kinds of vertices V = M∪N . R = {1, . . . ,m}
represents red (POIs in touristic planners) nodes,
B = {m+ 1, . . . ,m+ n} represents black nodes (hotels int touristic planners),
E = {(i, j) : i, j ∈ V } represents edges.
For ease of exposition, we assume that only one red node is selected for the entire tour.
However, our formulation and method can be extended to more general cases in which
more than one red node may be selected.
We define:
C – the total budget available for the tour,
d – the number of days available for the tour, and let D = 1, . . . , d,
Tk – the tour time available during the k-th part (k ∈ D),
i – the tour time that are spending at vertex i, i ∈ V , (i = 0 for i ∈ R),
(ai, bi) – the time period during is allowed to visit vertex i ∈ V , and we assume that
it is the same every part of the tour,
ci – the cost associated with visiting (or staying at) vertex i ∈ V ,
eij – the cost associated with the edge between site i and j , i, j ∈ V ,
Ui – the profit of visiting (or staying at) vertex i ∈ V ,
tij – the edge time between vertices i and j , i, j ∈ V .
TPP is to construct a d-part tour that maximizes the total profit of all nodes visited
while satisfying the following constraints:
-– the number of part for the tour is d;
-– for each part, the tour starts and ends at the red node;
-– each black node is visited no more than once;
-– the arrival and the departure time at each black node is restricted by its permitted
visiting time [ai, bi];
-– the cumulative tour time of the kth part does not exceed the available tour time Tk;
-– the total cost of the d-part tour does not exceed the budget C.
We now introduce the following decision variables:

xijk =

{
1 if the edge (i, j) belongs to the kth part of the tour
0 otherwise

yi =

{
1 if the node (i) belongs to the tour
0 otherwise
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zi =

{
1 if the red node (i) belongs to the tour
0 otherwise

ti = the time epoch at which the node i is start visit,
taik = the time epoch at which ends visit at the red node ion the kpart of the tour,
tbik = the time epoch at which the tourist starts visit at red node i on the kpart of the
tour.
TPP can be formulated as the following mixed integer linear programming (MILP):
max of the value

∑
i∈N Uiyi +

∑
i∈M Uizi (1)

such that
∑
i∈V xirk =

∑
j∈V xrjk r ∈ N, k ∈ D (2)

∑
i∈N xirk =

∑
j∈N xrjk r ∈M,k ∈ D (3)

yi ∈
∑
k∈D

∑
j∈V xijk i ∈ N (4)

zi = 1
d

∑
k∈D

∑
j∈N xijk i ∈M (5)

∑
i∈M zi = 1 (6)

ti + τi + tij − (1− xijk)Tk 6 tj i, j ∈ N, k ∈ D (7)

taik + tij − (1− xijk)Tk 6 tj i ∈M, j ∈ N, k ∈ D (8)

ti + τi + tij − (1− xijk)Tk 6 tbjk i ∈ N, j ∈M,k ∈ D (9)

ai 6 ti 6 bi i ∈ N (10)

ak 6 taik 6 tbik 6 bk i ∈M,k ∈ D (11)

∑
i∈N (ciyi +

∑
k∈D

∑
j∈V eijxijk) +

∑
i∈M (dcizi +

∑
k∈D

∑
j∈N eijxijk) 6 C(12)

xijk ∈ {0, 1} i, j ∈ V, k ∈ D (13)

yi ∈ {0, 1} i ∈ N (14)

zi ∈ {0, 1} i ∈M (15)
In the above MILP , the objective function (1) maximizes the total utility of all sites
visited by the tourist and the constraints are:
- Constraint (2) is the balance equation, which ensures that if the node is visited, it is
left,
- Constraint (3) ensures that each part of tour starts and ends at the same red node;
- Constraints (4) and (5) state the relationship between xijk, yi and zi;
- Constraint (6) ensures that only one red node is selected for the entire tour;
- Constraints (7)–(11) are the time constraints;
- Constraint (12) is the budget constraint.
We note that TTGP is related to the classical Vehicle Routing Problem (V RP ). In
V RP , the objective is to design the routes for a fleet of vehicles to service all customers
with minimum total cost, subject to vehicle capacity and time constraints. The cost
in V RP can be either the number of vehicles used or the total length of the routes.
In graphical theory terminology, V RP is to find a set of cycles with minimum total
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cost to cover all the vertices. By comparison, TTGP is to generate a fixed number
of cycles such that the total utility value of the vertices covered by these cycles is
maximized. 4. Conclusions and Future Work The set of problems which are applied
in TTP systems includes many versions of OP . Each of these versions is NP -hard, of
course and we need to develop approximate solutions for them, in particular for big
networks. The future work is planning as follows: 1) Development of algorithms solv-
ing TTGP Generally, two methods will be developed: an evolution algorithm and a
hybrid algorithm. The applicants have successfully used the evolutionary approach to
the solution of a specific version of TPP , i.e. OP . Although TPP has many additional
constraints in comparison to TOP and TOPTW , the use of the ideologically similar
evolutionary approach seems highly proper to the applicants. The other -– hybrid -–
approach results from the fact that the most efficient solutions to simplifications of
TTPG do not use a popularization strategy but actions aiming at changing an indi-
vidual copy of solutions. In the next phase,versions of evolution and hybrid algorithm
efficient for particular cases of TTGP , i.e. TOP and TOPTW , will be developed. 2)
Studying the efficiency of the developed algorithms The solutions will be efficiently
implemented and then thoroughly tested regarding the total profit of the route profile
and execution time. The tests will be conducted on two large networks (300 and 600
nodes) and benchmarks (up to 100 nodes) on which the solution of Zhu’s team and
solutions for specific TTGP cases were tested [20].

3 Conclusions and Future Work

The set of problems which are applied in TTP systems includes many versions of OP.
Each of these versions is NP -hard, of course and we need to develop approximate
solutions for them, in particular for big networks. The future work is planning as
follows:
1. Development of algorithms solving TTGP Generally, two methods will be devel-

oped: an evolution algorithm and a hybrid algorithm. The applicants have suc-
cessfully used the evolutionary approach to the solution of a specific version of
TPP , i.e. OP [17]. Although TPP has many additional constraints in comparison
to TOP and TOPTW , the use of the ideologically similar evolutionary approach
seems highly proper to the applicants. The other – hybrid – approach results from
the fact that the most efficient solutions to simplifications of TTPG do not use
a popularization strategy but actions aiming at changing an individual copy of
solutions. In the next phase,versions of evolution and hybrid algorithm efficient for
particular cases of TTGP , i.e. TOP and TOPTW , will be developed.

2. Studying the efficiency of the developed algorithms The solutions will be efficiently
implemented and then thoroughly tested regarding the total profit of the route
profile and execution time. The tests will be conducted on two large networks (300
and 600 nodes) and benchmarks (up to 100 nodes) on which the solution of Zhu’s
team and solutions for specific TTGP cases were tested [20].
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Combining Genetic Algorithm and Path
Relinking for Solving Orienteering Problem with

Time Windows

Joanna Karbowska-Chilińska and Paweł Zabielski

Białystok University of Technology, Faculty of Computer Science, Poland

Abstract. Path relinking is a search strategy that explores trajectories
connecting two solution to generate new best solutions. In this article two
options combining path relinking and genetic algorithm are investigated:
one introduced a path relinking between selected generations of popula-
tion, and the other applies path relinking when genetic algorithm solu-
tion trapped in a local optimum. These two strategies are applied with
the genetic algorithm solving orienteering problem with time windows.
Experiments carried out on benchmark instances show that proposed
methods obtain better solutions than standard genetic algorithm.

Keywords: orienteering problem with time windows, genetic algorithm, local opti-
mum, path relinking

1 Introduction

The path relinking strategy (PR) was proposed by Glover and Laguna [4] as a method
for intensification and diversification tabu search method. Path reliniking starts from
selecting initial and guiding solutions to represent the starting and the ending points
of the path. Attributes from the guiding solution are gradually introduced into the in-
termediate solutions, so that these solutions contain less characteristics from the initial
solution and more from the guiding solution. As a result, the selective moves between
initial and guiding solutions provide the better solutions than the input solutions.

In the literature conjunction PR with different metaheuristics for solving different
optimisation problems have been regarded e.g. with greedy randomized adaptive search
procedure (GRASP) [2], variable neighbour search (VNS) [14], genetic algorithms (GA)
[5], [13] and tabu search (TS) [6].
In this paper a hybrid heuristic is proposed by combining GA and PR and applying
this method to orienteering problem with time windows (OPTW). The OPTW is a
well-known optimization graph problem, which was first introduced by Kantor [7]. In
OPTW a given positive profit (score) and time interval are associated with each graph
vertex. The solution to the OPTW finds a route comprising a subset of the vertices,
with a fixed limit on length or travel time, that maximises the cumulative score of the
vertices visited in the predefined time intervals. Different application for this problem
can be found e. g. in logistics for planing optimal routes and delivers [15], in tourism-
to plan a most profitable tourist routes in a city [18], taking into account opening and
closing time points of interests. The OPTW is variant of the widely studied more general

Trends in Contemporary Computer Science, Podlasie 2014, ISBN 978-83-62582-58-7
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orienteering problem (OP) in which vertices could be visited in any time interval [17],
[8]. Another extension of OP is Team Orienteering Problem (TOP) in which m optimal
routes are build, each one satisfied a given cost limit [1]. Furthermore in the literature,
another variant with time windows so-called TOPTW is dealt [12], [11]. All these
problems are NP-hard [19] so exact solutions are time-consuming and not applicable in
practice. Therefore meta-heuristic approaches are usually used e. g. genetic algorithms
[9], local search methods [19], tabu search [16], ant colony optimisation approach [12],
variable neighbour search [11].

In our previous work we used path relinking instead a crossover in each iteration of
a genetic algorithm solving OPTW [10]. The proposed modification gave high quality
results for benchmark instances in comparison to the other heuristic methods and the
genetic algorithm with crossover. In this article we develop this idea. Two methods
are proposed: one introduced a path relinking between selected iterations of the GA,
the other method applies path relinking when GA trapped in a local optimum. The
numerous experiments are carried out on the benchmark instances and the results are
compared to the previous methods.

The remainder of the paper is organised as follows. Section 2 provides the prob-
lem definition and the example. Section 3 describes the concept of combining genetic
algorithm and path relinking. Section 4 presents the algorithm details. The results
of computational experiments run on benchmark datasets are discussed in Section 5.
Finally, section 6 concludes that article with closing remarks and plans for future work.

2 Formulation of the OPTW

The OPTW examined in this paper is defined as follows. Let G be a graph with n
vertices, each vertex i has a profit pi and a service time Ti. Moreover for each vertex
a time window [Oi, Ci] is assigned, where Oi and Ci denote the opening and closing
times of a vertex i. The early arrivals lead to waiting for service, whereas late arrivals
cause infeasibility. Let tij be a fixed cost associated to the edge between vertices i and
j. This value is interpreted as the time or length needed to travel between vertices. The
OPTW consists of determining a single route, from a starting point s to a fixed ending
point e, that visits some of the vertices within the fixed time windows and maximises
the total profit. In addition, the total time related to visiting vertices and edges on a
route must be less than the given limit tmax and each vertex on the route is visited
only once. The mathematical formulation of the OPTW problem can be found in [7].
To illustrate the problem a simple example of the weighted graph is showed in Figure 1.
The profit value pi and time windows [Oi, Ci] are marked next to each vertex. The tij
value is assigned on each edges. A visiting time for each vertex is given in the following
vector T=[0, 12, 18, 12, 6, 12, 3]. The value of tmax is 96. Let vertex 1 be the starting
point of the route as well as this vertex be the ending point. The best solution of the
OPTW is the route 1-7-2-3-5-1, with the total profit 70 and travel time equal to 81.

3 Combining genetic algorithm and path relinking

The presented approach is based on genetic algorithm (GA) for OPTW proposed by
us in [8]. The previous GA started from a population of randomly generated routes. A
route is coded as a sequence of vertices. In each generation, the fitness of every route
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Fig. 1. Graph example to illustrate the OPTW problem.

was evaluated. In each iteration of the algorithm the best routes were selected by a
tournament selection from the current population and the random routes were modi-
fied by a mutation and crossover. The algorithm terminated when maximum number
of generations was produced or earlier if it coverages. In the previous version of the al-
gorithm called GAPR [10], the PR method instead the crossover operator was applied
to GA. In the PR two routes were selected randomly. Next the vertices not presented
in one route are inserted in the best positions to the other. Moreover if shift resulting
from the new insertion exceed the time windows for vertices located after the newly
inserted then old vertices were removed to restore the possibility of inserting new ver-
tex. The process was continued until there were vertices that could be inserted. As a
result, this led to a more diverse route than in the crossover.

In this article the idea of the path relinking in combination with the GA is devel-
oped. Let B denotes the fixed number of the GA generations. In first approach, called
GAPR_B, the PR between the route with highest profit value from the population
and a new generated route is performed every B generations. In the second method,
called GAPR_ELO, the PR strategy is used when the GA solution is trapped in a
local optimum. When the GA solution does not improve for A generations, PR be-
tween random routes is performed to escape from the local optimum. Let Ng denotes
a number of generations, Psize describe the number of routes in the initial population
and best_profit(gen) denotes the value of best total profit in the generation gen. The
basic structure of GAPR_ELO is given as follows:

compute initial P_size routes; iter=0; not_imp=0;
while iter< Ng do

iter++;
evaluate the fitness value of each route;
make a tournament grouping selection;
perform crossover;
perform mutation;
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-----------------------------------------------------------
| if best_profit(gen)= best_profit(gen-1) then not_imp++; |
| else not_imp=0; |
|if not_imp > A then PR; |
------------------------------------------------------------
od

return the route with the highest profit value;

Structure of GAPR_B is similar to above but in the GAPR_B instead of instructions
in the box there are the following:

if iter mod B ==0 then
generate a new route R1;
perform PR between R1 and route with the highest profit;

if no improvements in last 100 iterations then break;

4 Algorithms details

4.1 Initial population

Each route is coded as a sequence of vertices. An initial population of Psize routes is
generated in the following way. First the route is initialized by the s and e vertices.
Then the following values are assigned sequentially to the initialized vertices: arrivei
– arrival time at vertex i, waiti – waiting time, if the arrival at the vertex i is before
opening time, starti and endi – starting and ending service time at vertex i. Moreover,
the maximum time the service of a visit i can be delayed without making other visits
infeasible is calculated for each location in the route as in [19]:MaxShifti = Min(Ci−
starti− Ti, waiti+1 +MaxShifti+1). Let l be the predecessor of vertex e in the route.
In the subsequent steps a set of vertices is prepared. Each vertex v from this set is
adjacent to vertex l and vertex e and will satisfy the following conditions after insertion:
(a) startv and endv are within the range [Ov, Cv]; (b) the locations after v could be
visited in the route; and (c) the current travel length does not exceed the given tmax
(including consumption time to insert the vertex v between l and e). A random vertex v
is selected from this set. The values arrivev, waitv, startv and endv are calculated and
the vertex v is inserted. After the insertion, the values arrivee, waite, starte and ende
are updated. Moreover, for each vertex in the tour (from vertex e to s) the MaxShift
value is updated as well. The tour generation is continued for as long as locations that
have not been included are present and tmax is not exceeded.

4.2 Selection

Tournament grouping selection is used, which yields better adapted routes than stan-
dard tournament selection [9]. A set of Psize routes is divided into k groups and the
tournaments are carried out sequentially in each of groups. tsize random routes are
removed from the group, the route with the highest value for the fitness function
TotalProfit3/TravelT ime is copied to the next population, and the tsize previously
chosen routes are returned to the old group. Selection from the group currently anal-
ysed has been repeated Psize/k times, Psize/k routes are chosen for a new population.



Genetic Algorithm and Path Relinking for Solving OP with Time Windows 139

Finally, when this step has been repeated in each of the remaining groups, a new
population is created, containing Psize routes.

4.3 Crossover

In the crossover stage, first two random routes are selected. Then we determine all
vertices which could be replaced without exceeding the time window conditions and
the tmax limit. We choose a set of vertices with similar time windows and start and
end of service. If there are no similar vertices, crossover is terminated (no changes are
applied). Otherwise, a random pair is selected from all similar pairs of vertices. This
pair is a point of crossover. Two new routes are created by exchanging routes fragments
(from the crossing point to the end of the route) from both parents. Next, for each
vertex i from the crossing point to vertex e, the values for arrivali, waiti, starti and
endi are updated and the new MaxShift values are calculated for each locations from
vertex e to s.

4.4 Mutation

In mutation phase a random route is selected from Psize routes. Two types of muta-
tion are possible – a gene insertion or gene removal (the probability of each is 0.5).
The mutation process is repeated on the selected route Nm times, where Nm is the
parameter. During the insertion mutation, all possibilities for inclusion of each new
vertex (not present in the route) are considered. We check whether the shift resulting
from the new insertion exceeds the constraints associated with the previously calcu-
lated wait and MaxShift values of the gene located directly after the newly inserted
one. The location u with the highest value of (pu)2/TravelT imeIncrease(u) is selected
for insertion. TravelT imeIncrease(u) is defined as the increased travel time after u is
included. This value also takes into account the waiting and visiting time of vertex u.
The selected gene u is inserted into the route and the values of arrivalu, waitu, startu
and endu are calculated. For each location after u the arrival time, waiting time, and
start and end of service are updated. Starting from the ending point, the MaxShift
value is updated for each location in the route.

In the deletion mutation we remove a randomly selected vertex (excluding the s
and e) in order to shorten the travel length. After the vertex is removed, all locations
after the removed vertex are shifted towards the beginning of the route. Furthermore,
the locations before and after the removed vertex should be updated as in the insertion
mutation.

4.5 Path relinking

Let R1 and R2 be the routes selected to the PR process. In GAPR_B route R1 is a
route with the highest profit value and R2 is a new generated route. In GAPR_ELO
R1 as well R2 are the random routes. VR1−R2 denotes the set of vertices present in
R1 and not in R2. VR2−R1 denotes the set of vertices present in R2 and not in R1.
During PR(R1, R2) we attempt to insert vertices from VR2−R1 into R1 in the best
possible positions. The total consumption time associated with inserting a vertex j
between vertex i and k is calculated as follows [19]: Shiftj = tij + waitj + Tj +
tjk − tik. In addition, we check whether the shift resulting from the new insertion
exceeds the constraints associated with the previously calculated wait and MaxShift
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values for the vertices located directly after the newly inserted one. If the shift exceeds
the constraints the vertices from VR1−R2 are removed to restore the possibility of
inserting new locations. For each vertex u from this set a ratio is calculated as follows:
RemovalRatio = (pu)2/(endu − arriveu). After this computation the vertex with the
smallest RemovalRatio is removed. This removal is repeated until we can insert some
vertices into the path. Finally the vertex u with the highest value for InsertionRatio =
(pu)2/Shiftu and not exceeded the mentioned constrains is selected for insertion. The
insertion is performed in the same as in the insertion mutation. The process is repeated
for as long as tmax is not exceeded and the set VR2−R1 is not empty. In the GAPR_B the
new route, being the result of PR, replace the route with the lowest fitness function from
population. Additionally in the GAPR_ELO, PR(R2, R1) is performed by inserting
vertices from VR1−R2 into R2. Two new routes are created as a result of PR(R1, R2)
and PR(R2, R1). If the fitness values of the new routes are higher than the fitness value
of R1 and R2, they replace them.
Figure 2 shows two routes R1: 1-3-4-5-1 and R2: 1-7-4-2-3-1 related to the graph in
Figure 1. The set VR2−R1 is {2, 7}. At the beginning of the PR(R1, R2) vertex 7 is
inserted to the route R1, because the vertex 2 does not meet all constraints. In the
next step the vertex 5 which is presented in R1 and not presented in R2 is removed
from R1 and the route is 1-7-3-4-1. It is the final result of PR(R1, R2).

Fig. 2. Example of the insertion and removal in path relinking process

5 Experimental Results

The GAPR_B and GAPR_ELO were coded in C++ and run on an Intel Core i7, 1.73
GHz CPU (turbo boost to 2.93 GHz). The algorithms were tested on Solomon [15]
and Cordeau [3] test instances for the OPTW. The number of vertices in the Solomon
instances is equal to 100 and different layouts for the vertices are considered: cluster (c),
random (r) and random-clustered (rc). The Solomon benchmarks c\r \rc200, have the
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same coordinates of vertices, profits and visiting times, but they have approximately
three times higher values of tmax and larger time windows than the c\r\rc100 instances.
The Cordeau instances vary between 48 and 288 vertices.
The parameter values of GAPR_B and GAPR_ELO which represent the best trade-
off between the quality of the solutions and the computational time are determined by
tests: Psize =150 (initial size of population), tsize=3 (number of routes selected from a
group in selection), k=15 (number of groups in selection), Ng=500 (maximum number
of iteration) and Nm=15 (number of mutations repeated on the selected route). In
GAPR_ELO the parameter A is set to 100. Moreover, during the testing of GAPR_B
we consider different B =2, 5, 10, 20. The differences between solutions for different
values of B are about 1%. We decide to use B=10 for the final comparison.

The solutions of GAPR_B and GAPR_ELO (and the previous version of GA [9]
and GAPR [10]) are obtained by performing sixteen runs simultaneously on each bench-
mark instance (two runs each on the eight processor cores). The OpenMP technology
is used for simultaneously tests. Tables 1 – 3 present detailed results of experiments:
the average profit and time (in seconds). Moreover they also show the percentage gap
between the best know solution values (BK) [11]. The values of BK are given in italic
if the optimal value is known. An empty cell denotes a gap equal to 0. Tests for which
our solutions improves the best known values are given in bold.

The results presented in Tables 1 – 3 indicate that combining PR and genetic algo-
rithm outperforms solutions of the GA. The average gap between GA and GAPR, GA
and GAPR_B, GA and GAPR_ELO is 3.3%, 3.4%, 2.6% respectively. The application
of PR instead crossover and the GAPR_B gives similar profit results and the execution
time. The GAPR_B gives the best results for benchmark instances with large time win-
dows and large values of tmax e.g. the groups r200 and rc200. For c\r \rc100 instances
(where time windows is narrow) the profit results of GAPR_B and GAPR_ELO are
comparable. Using PR when the algorithm trapped in local optimum causes the in-
crease of GAPR_ELO execution time (on average three times longer in c \ r \ rc100,
two times in c \ r \ rc200 and pr1-20 classes in comparison to the other methods).
Moreover PR causes that the solution space is extended to better results for p11, p13,
p15, p17 than the best know values so far.

6 Conclusions and Further Work

In this article two new methods using path relinking with genetic algorithm have been
investigated: GAPR_B has introduced the PR every B generations of the genetic
algorithm and GAPR_ELO has applied PR when the genetic algorithm trapped in
a local optimum. Computer experiments has shown that the proposed methods gives
better solutions in comparisons to the previous GA and similar to GAPR solutions
(the path relinikng instead of the crossover). To the best our knowledge the other GAs
for the considered version of OPTW has never been proposed in the literature. It is
worth mentioning that GAPR has outperformed other every fast and effective heuristics
e.g. iterated local search [10]. The proposed method can be tailored to solve realistic
problem of planning the most valuable routes for tourism (co-called tourist trip design
problem [18]). In our future research we intend to add some algorithm improvements
and to conduct experiments on the realistic database of points of interests in our city.
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Abstract. The paper compares three types of network weights repre-
sentations applied to solve the Time-Dependent Orienteering Problem
(TDOP). First variant uses real, time-dependent weights, second variant
uses mean weights and the third is a hybrid of the previous two variants.
A randomized, local search algorithm was used in this comparison and
tests were conducted on real public transport network of Białystok. The
results show importance of both detail and general properties of network
topology when solving TDOP.
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1 Introduction

The Time-Dependent Orienteering Problem (TDOP) is a variant of well known Orien-
teering Problem (OP). The problem name comes from the sport game of orienteering.
The competitors start and end the game at a specific control point. The task is to
collect as much points as possible at given checkpoints and return to the control point
within a given period of time. The problem has many practical applications including
tourist trip planning [14], [21] and logistics. In classic OP distances (weights) between
points are constant whereas in TDOP they vary with time.

Let G(V,E) be a directed, weighted graph where V is the set of vertices and E is
the set of time-dependent arcs (|V | = n, |E| = m). Each vertex i has a non-negative
profit pi and a non-negative visiting time ui for i = 1, ..., n. Each edge (i, j) has
associated time-dependent weights in a form of function wij(t) – it represents time
of travel from vertex i to vertex j which starts at time t (i, j = 1, ..., n). Given time
constraint tmax, travel start time t0 and a pair of vertices (s, e) the goal of the TDOP
is to determine a path from s to e which starts at time t0, visits a subset of vertices
from V and maximizes total collected profit. In addition its total cost (travel time plus
vertex visiting time) cannot exceed tmax. Each vertex on this path can be visited only
once. TDOP can be defined as a linear integer problem. Let xij(t) = 1 if a path include
direct travel from vertex i to vertex j which starts at time t (i, j = 1, ..., n). Otherwise
it is equal to zero. Let ri be a position of a vertex in a path (i = 1, ..., n). This variable
is assigned only to vertices visited during the tour. In mathematical terms the goal is
to maximize total profit (1) given constraints (2-8):
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max
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j
(xkj(t+ uk) = 1)) (5)

∑
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∑

j∈V

∑

t∈T
((wij(t) + ui) · xij(t)) + ue 6 tmax (6)

rs = 1 (7)

∀
i∈V, j∈V, t∈T

(xij(t) = 1⇒ rj = ri + 1) (8)

Constraint 2 forces the path to start in vertex s and end in vertex e while constraint 3
means that travel starts at time t0. Constraint 4 guarantee that every vertex is visited
at most once. Constraint 5 states that visit in any vertex k lasts exactly uk. Constraint
6 forces the travel time not to exceed tmax. Constraints 7 and 8 eliminates any subtours
from the path.

2 Literature review

Many different techniques were used to deal with the OP. It is an NP-hard problem
[7] and its solution space grows very fast with data size increase – therefore most
approaches were based on approximate methods. However, exact solutions (branch
and cut) were also introduced [3, 6, 12] for networks up to 400 nodes.

One of the first approximate approaches to OP was presented by Tsiligirides [19] –
his algorithm is based on Monte Carlo method. Many researchers concentrated on local
search methods with greedy procedures of path improving. Golden et al. [7] introduced
route construction which uses center of gravity and 2-opt path improvement phase.
Chao et al. [2] presented a greedy heuristic exploiting another geometrical feature –
search space was limited to vertices lying in an ellipse (tmax is a major axis length).
Vansteenwegen et al. [20] developed a guided local search (GLS) method which uses
improvement procedures (2-opt, insert, replace), center of gravity and penalty func-
tion for vertices. Greedy Randomized Adaptive Search Procedure with Path relinking
(GRASPwPR) was presented [15] to solve Team Orienteering Problem (TOP) and
later it was adopted to solve the OP [1]. It uses greedy-random path construction and
improvement. Afterwards path relinking is performed for all pairs of solutions it grad-
ually changes one path into another. It gives very satisfactory results for benchmark
instances.

Besides local search methods other successful approaches were introduced. Tasge-
tiren et al. [17] introduced the first genetic algorithm for OP. He used tournament
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selection, crossover and mutation which based on local search procedures (i. e. add,
replace, swap). Most of researchers concentrated on small and medium size graphs (32-
400 nodes in benchmark networks). Evolutionary algorithms gave satisfactory results
also for larger instances [8–10]. Ant-colony optimization [13] and tabu search [16] were
also among methods successfully used to deal with the OP.

While there were several approaches to the OP few works concentrated on TDOP
related problems. Li [11] introduced dynamic programming algorithm which finds exact
solutions for small instances. It solved Time-Dependent Team Orienteering Problem
(TDTOP) in which there can be more than one path in solution. Garcia et al. [4] was
first to apply and solve the problem for public transport network. The algorithm was
tested in San Sebastian. Additional option was inclusion of time windows – intervals in
which vertices could be visited (TDTOPTW problem). However the network was small
and the algorithm (Iterated Local Search – ILS) used static weights – computed as an
average of all daily time-dependent weights. Repair procedure was needed to shorten
the result paths (if they exceed tmax). Their second method based on time-dependent
weights but with assumptions that public transport service is periodic. However, in
real network frequencies of bus arrivals can change often during a day. Recently the
first approach which uses real time-dependent weights in public transport network was
presented [5]. Time discretization of 1 minute was applied – it gives 1440 states in a
day. Tests of two fast heuristics were conducted on network of Athens.

3 TDOP in public transport network

3.1 TDOP model

A good example of time-dependent graph is public transport network where travel
times between given points depend on bus/train/tram timetable. TDOP can be eas-
ily modelled in such a network – for example in tourism when visiting some points
of interests (POI) and using public transport to travel between these points. Here
are assumptions I made when applying TDOP problem to public transport and POI
network:
• Time is discrete and represent every minute of a day – arithmetic modulo 1440 is

used in time calculations. Minute discretization is consistent with bus schedules.
For a time-dependent network with n POIs there are 1440 · n2 weights.

• Each weight wij(t) is calculated as the shortest multimodal travel time from POI
i to POI j starting at time t.

• In a multimodal path both walk links and public transport links are allowed. Walk
links are allowed between POIs, between a POI and a bus stop and between bus
stops (as a transfer). However, they have limited lenght.

• Number of bus transfers when travelling between POIs is limited to a fixed number.
It is rarely greater than 2-3 in a medium-size city. However it depends on public
transport network topology.
Public transport network can be expressed mathematically. Let G(V,E) be a di-

rected, weighted graph where V is the set of vertices and E is the set of arcs (V =
V1 ∪V2, E = E1 ∪E2). Set of vertices is divided into POIs (V1) and bus stops (V2). Set
of edges is divided into walk links (E1) and bus links (E2). Here is formula for walk
link time (in minutes):

Wij = 60 · 6378.137 · acos(asin(lai) · sin(laj) + cos(lai) · cos(laj) · cos(loi − loj))
S
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Fig. 1. An exemplary 1-transfer path between two points. It consists of: walk link from
point A to bus stop, transport link (line x), walk link between bus stops (transfer),
transport link (line y) and walk link from bus stop to point B.

Where i, j are any vertices, S is a walker speed (in km/h) and lai, laj , loi, loj are
latitude and longitude of vertices given in radians. Walk time is rounded to the nearest
integer. If it is longer than a given walk limit then Wij is infinity.

When there is a direct bus course between any ordered pair of bus stops (i, j) we
say that there is a connection from i to j. Between any pair of bus stops there can be
a lot of connections during a day (associated with many bus lines and bus courses).
Each bus course is a set of connections and public transport schedule is a set of bus
courses. Let C be a set of all bus connections. Any connection c ∈ C has the following
properties:
• Starting bus stop (start(c))
• Ending bus stop (end(c))
• Start time (stime(c))
• Travel time (ttime(c))
Bus link time Bij(t) between any ordered pair of bus stops (i, j) at time t is the

shortest time needed to get by a direct bus from i to j assuming that arrival time at
bus i is t. In order to calculate Bij(t) all direct bus connections from i to j should be
considered. Bus link time takes into account both waiting time and time spent in a
bus. Thus, wait(t1, t2) should be introduced, which is waiting time for a bus arriving
at t2 assuming that a person arrived at a bus stop at time t1:

wait(t1, t2) =

{
t2 − t1 if t2 > t1
t2 − t1 + 1440 if t2 < t1

The above formula comes from the fact that bus arrival times are given in minutes
(interval 0-1439) and time arithmetic is performed modulo 1440. Now bus link time
Bij(t) can be computed as follows:

Bij(t) = min{T : ∃
c∈C

(start(c) = i ∧ end(c) = j ∧ T = wait(t, stime(c)) + ttime(c))}
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Bus link times are given in minutes (according to bus schedules). In practise the
best option (from options above) is usually the first connection (with shortest wait
time). If there are no direct connections from i to j then Bij(t) is infinity.

Time-dependent weights between POIs can be computed based on walk links and
bus links. The shortest multimodal path from POI i to POI j at time t (weight wij(t))
consisting of at most k bus links is a direct walk link or the shortest (in terms of time)
from all paths in the form:

POIi → ST11 ⇒ ST12 → ST21 ⇒ ST22 → ...→ STz1 ⇒ STz2 → POIj

Where STij is a symbol of a bus stop, → is a symbol of a walk link and ⇒ is a
symbol of a bus link. Number of bus links (z) is not greater than k.

3.2 Precomputation of weights

Before TDOP algorithm is executed, time-dependent weights should be computed.
Once determined they can be used in multiple TDOP algorithm executions. Weights
are stored in RAM and can be retrieved by the algorithm in O(1) time. It prevents from
additional CPU time consumptions associated with calculating shortest multimodal
paths between given POIs. Weights precomputation is performed by effective, dynamic
programming algorithm. This process in not time consuming – it can determine all
1440n2 time-dependent weights for the city of Białystok (141 POIs, 693 bus stops, 37
bus lines) in 5 seconds (Intel Core i7 CPU).

4 TDOP local search algorithm

Once time-dependent weights are determined TDOP algorithm can be executed. A
randomized, local search method was applied to deal with the problem. It is based on
a random-start, multi-stage hill climbing procedure. After generation and improvement
of many paths the algorithm chooses the best one. The local search method was chosen
as it can be easily adopted to all weight representation variants and gives satisfactory
results within short execution time. Here is the algorithm pseudocode:

iteration=0;
resultPath=emptyPath();
while iteration < N do
begin

currentPath=randomInitialization();
shorteningPhase(currentPath);
p=p0;
while p>0 do
begin

improvement=true;
localOptimum=currentPath;
while improvement do
begin

removalPhase(currentPath);
insertionPhase(currentPath);
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if profit(currentPath)>profit(localOptimum) then
begin

localOptimum=currentPath;
improvement=true;

end
else
begin

currentPath=localOptimum;
improvement=false;

end
end
p-=dP;

end
if profit(currentPath)>profit(resultPath) then

resultPath=currentPath;
iteration++;

end

Algorithm parameters:
N – number of constructed paths
p – percentage of vertices removed from a path during removal phase
p0 – initial percentage p
dP – decrease of percentage p

4.1 Initialization

First, a random path is generated. Starting from vertex s and ending in vertex e the
algorithm adds to the path successive, random nodes as long as it is possible without
exceeding tmax constraint. When number of generated paths is large enough it enables
for good exploration of the solution space.

4.2 Path shortening

After initialization the algorithm performs operations which shorten a path without
changing its subset of vertices. At this stage operations of 2-opt and move are applied
multiply. 2-opt method changes edge arrangement in order to shorten the path. It
checks all pairs of non-adjacent edges (A→ B and C → D) and tries to replace them
with new pair of edges (A → C and B → D) – new edges are formed by vertices
exchange. The method choose the modification which shortens the path most. move
method modifies vertices order. It takes into account all vertices (except s and e) and
tries to move them to any other position in a path. From all these options the method
chooses the one which shortens the path as much as possible.

4.3 Profit improvement phase

First I init variable p, which is percentage of the path vertices to be removed from the
path during removal phase. During removing vertices with smallest profits are chosen.
Afterwards insertion phase is executed – it is a hill climbing procedure which adds
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new vertices to the path until no more addition is possible without violating tmax
constraint. During insertion all options are considered (any new vertex can be inserted
in any place in the path) and the best of them is chosen according to highest values of
heuristic h = profitGain2

costIncrease
. Removal and insertion phases are repeated until there is no

further improvement of profit. This procedure is executed multiple times for decreasing
values of percentage p – changes are smaller as the path is improved.

5 Algorithm variants

Three algorithm variants were tested. The main difference between them was network
weights representation.
• Time-dependent (TD) weights version. The local search algorithm uses time-dependent

weights wij(t) during computations.
• Mean weights version. For each pair of vertices one weight wij is computed as a

mean of all 1440 time-dependent weights in a day. The algorithm uses mean weights
during computations. After its execution each generated path is checked – its real
time-dependent cost is different from the cost obtained using mean weights. If the
real cost exceeds tmax constraint then the path is shortened according to greedy
removal heuristic. Otherwise the path is improved until no more vertices can be
added.

• Hybrid version. First the algorithm is executed on mean weights and generated
paths are repaired in the same way as in previous version. Afterwards another
local search procedure is executed for each path – this time the procedure uses real
time-dependent weights. In this version both general network properties (mean
weights) and network details (time-dependent weights) can be taken into account.

6 Experiment

The experiment was carried out on a public transport and POI network of BiaĹ‚ystok.
The public transport network consists of 693 bus stops and 37 bus lines. The POI
network has 141 vertices. During precomputation of shortest paths maximal number
of transfers was set to 5 and maximal length of walk links was set to 0.3 km (assum-
ing straight line distance between POIs and average speed of 3 km/h). Fig. 2 shows
structure of shortest paths. Shortest paths consisting of more than 3 bus transfers (4
transportation links) are very rare. In fact, most connections include not more than 1
transfer. Due to short walk link, a few POIs are not connected to the public transport
network. For the same reason number of direct walk connections is small.

Profits of vertices are random, integer numbers from interval [1, 100] and visit times
are random integer numbers from interval [1, 30]. For start point (s) and end point (e)
values of profit and visit time were set to 0. In [18] there is the precomputated, time-
dependent POI network of Białystok. After description of all 141 POIs (id, label, profit,
visit time, latitude and longitude) there are 1440 square matrices (each 141 × 141) of
distances between POIs. The i-th row and the j-th column of the k-th matrix represents
weight wij(k − 1). Number 65535 means there is no connection.

Experiment was conducted on Intel Core i7 CPU. Three different algorithm vari-
ants were tested. For smallest tmax value optimal results (OPT) were also computed.
Experiments were conducted for 4 different tmax values (180, 360, 720 and 1440 min-
utes), 4 different t0 values (0, 360, 720, 1080) and 3 different pairs of start and end
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Fig. 2. Occurrence frequency (%) of various forms of shortest paths.

Table 1. Results and execution time comparison (s = e = 34)

tmax t0 TD weights mean weights hybrid weights OPT

180

0 793 793 793 831
360 909 853 879 942
720 933 858 919 942
1080 931 858 900 938

avg. profit 891.5 840.5 872.8 913.2
avg. time 0.8 1 1.5 11600

360

0 1403 1375 1466 -
360 1508 1440 1509 -
720 1500 1507 1550 -
1080 1494 1486 1505 -

avg. profit 1476.3 1452 1507.5 -
avg. time 1.5 1.7 2.3 -

720

0 2449 2495 2454 -
360 2379 2473 2493 -
720 2382 2457 2486 -
1080 2318 2377 2398 -

avg. profit 2382 2450.5 2457.8 -
avg. time 3 3 5.2 -

1440

0 3747 3924 3971 -
360 3751 3894 3912 -
720 3726 3909 3960 -
1080 3686 3896 3956 -

avg. profit 3727.5 3905.8 3949.8 -
avg. time 8.4 8 13.1 -
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points (s = e = 34, s = 6 and e = 91, s = 1 and e = 51). Start and and points were
chosen according to their location: in the first case (s = e = 34) paths start and end
in the city center, in the second case (s = 6, e = 91) paths start in the northern part
of the city and end in its southern part and in the third case (s = 1, e = 51) paths
start in the western part of the city and end in its eastern part. Local search algorithm
parameters were: N=300, p0=30, dP=10. Execution time of algorithms was given in
seconds.

In tab. 1 there is a comparison between algorithm variants when both start and end
points of paths are 34. For shortest paths (tmax=180) time-dependent weights variant
gives the best average result while mean weights version is over 5 percent worse. It shows
the advantage of detail analysis (TD weights) over general analysis (mean weights) for
shorter paths. TD weights variant is on average 2.4 percent worse than the optimal
solution. Meanwhile hybrid weights version in terms of results is between other versions
with 2 percent loss to TD weights version.

Table 2. Results and execution time comparison (s = 6, e = 91).

tmax t0 TD weights mean weights hybrid weights OPT

180

0 613 613 613 613
360 702 684 702 702
720 734 694 734 753
1080 769 734 747 775

avg. profit 704.5 681.3 699 710.8
avg. time 0.6 0.8 0.8 96

360

0 1253 1367 1369 -
360 1373 1441 1444 -
720 1413 1419 1434 -
1080 1293 1314 1352 -

avg. profit 1333 1385.3 1399.8 -
avg. time 1.2 1.5 2 -

720

0 2308 2376 2362 -
360 2368 2375 2407 -
720 2246 2330 2341 -
1080 2216 2267 2314 -

avg. profit 2284.5 2337 2356 -
avg. time 2.6 2.5 4.5 -

1440

0 3575 3844 3833 -
360 3566 3794 3866 -
720 3679 3929 3953 -
1080 3546 3890 3911 -

avg. profit 3591.5 3864.3 3890.8 -
avg. time 7.3 7 12.5 -

For longer paths TD weights version is overtaken by other versions. The result
difference between TD and hybrid version grows from 2 to over 5 percent. The best
results are obtained by hybrid version, which uses both general and detail analysis. In
most cases it holds an average advantage of 1–5 percent over mean weight version (ex-
cept from tmax=720 where the difference is minimal). Short paths starting at midnight
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(t0=0) have smallest profits as a result of low rate of bus arrivals. The difference is
more pronounced for shortest paths as most of travel takes place at night.

Execution time of the algorithms are acceptable even for very long paths. Hybrid
version is more time-consuming than other versions (by 50-70 percent) because of two
stage local search. In fig. 3 there is a path generated by the hybrid algorithm version.

Tab. 2. shows results for paths starting in point 6 and ending in point 91. They look
similar to those in table 1. TD weights version holds advantage over other versions for
shortest paths but gives worse results for longer paths. However differences are smaller
and average results are lower than in table 1. This is due to high density of POIs in the
city center – paths from tab. 1. start and end in the city center. It should be noted that
for tmax = 180 TD weights version is on average only 0.9 percent worse than optimal
solution.

Table 3. Results and execution time comparison (s = 1, e = 51).

tmax t0 TD weights mean weights hybrid weights OPT

180

0 0 0 0 0
360 677 659 659 687
720 747 725 764 771
1080 730 763 763 763

avg. profit 538.5 536.8 546.5 555.2
avg. time 0.6 0.8 0.8 130

360

0 311 311 311 -
360 1398 1405 1415 -
720 1382 1352 1394 -
1080 1334 1353 1353 -

avg. profit 1106.3 1105.3 1118.3 -
avg. time 1.2 1.5 2 -

720

0 1707 1650 1699 -
360 2298 2409 2421 -
720 2402 2400 2381 -
1080 2139 2356 2371 -

avg. profit 2136.5 2203.8 2218 -
avg. time 2.5 2.7 4.7 -

1440

0 3262 3381 3390 -
360 3495 3877 3984 -
720 3592 3830 3902 -
1080 3628 3862 3937 -

avg. profit 3494.3 3737.5 3803.3 -
avg. time 7.3 6.5 11 -

Tab. 3. shows results for paths starting in point 1 and ending in point 51. In this
case the hybrid weights version holds advantage over other versions for all tmax values.
The average gap between optimal solution and hybrid weights version is 1.6 percent
(tmax=180).
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Fig. 3. An exemplary path (s = e = 34, tmax = 1440, t0 = 720). Sizes of vertices
are propotional to their profits and visited vertices are red. Yellow lines indicate path
edges. Black arrow points to vertex 34.

7 Conclusions and further research

Results show that TDOP local search algorithm which performs calculations only on
real time-dependent weights or solely on mean weights is not necessary the best option.
For shorter paths (lowest tmax values) TD weights version can give the best results as
detail analysis is very important when small modifications can result in significant result
change. However, for longer paths general analysis (mean weights) is also significant
– it can find important network patterns which could be unnoticed by TD weights
analysis. As a result hybrid weight analysis seems to be most complete method and
will be researched further.

Studies on how maximal number of transfers and walk link length affect network
topology and TDOP results are currently performed. Design and tests of an evolution-
ary algorithm is also planned as such methods were successful in static weights OP.
Tests on larger networks (with hundreds of POIs) and adding time windows are also
intended.
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Abstract. The metaset is a new approach to sets with partial mem-
bership relation. Metasets are designed to represent and process vague,
imprecise data, similarly to fuzzy sets or rough sets. They make it pos-
sible to express fractional certainty of membership, equality, and other
relations. In this paper we demonstrate an example of the application of
first-order metasets to solving the problem of finding the most appropri-
ate holiday destination for a tourist, taking his preferences into account.
The imprecise idea of ‘a perfect holiday destination’ is represented as a
metaset of places whose membership degrees in the metaset are inter-
preted as their qualities. Client preferences are functions which enable
real-number evaluation of the subjective rating of a given destination.

Keywords: metaset, partial membership, set theory

1 Introduction

The metaset is a new attempt at defining the notion of sets with partial membership
relation [10]. Metasets enable the representation and processing of vague, imprecise
data, similarly to fuzzy sets [16] or rough sets [8]. In addition to fractional certainty
of membership, equality or other set-theoretic relations and their negations, metasets
admit a hesitancy degree of membership [11, 14, 13], similarly to intuitionistic fuzzy sets
[1]. The general idea of the metaset is inspired by the method of forcing in classical set
theory [2]. Despite these abstract origins, the definitions of metaset and related notions
(i.e. set-theoretic relations or algebraic operations [12]) are directed towards efficient
computer implementations and applications [9].

The following paper introduces an example of the application of this new approach.
There are many real-life problems which require tools for modelling fractional satis-
faction of some properties. They are usually solved by modelling these properties with
the ‘fuzzy’ membership relation of a fuzzy or rough set. Here we try another theory,
that of metasets. Since the set of membership values for metasets constitutes a partial
order (in fact it is a Boolean algebra), there is great potential here for modelling of
imprecise phenomena.

The specific contribution of this paper is to show how metasets can be applied
to (software) tools which support decision-making. The problem we have selected is
evaluation of the attractiveness of tourist destinations. These may be destinations that
the user is considering in a tourist office as the best location for a holiday, but they may
also be tourist attractions located in one city, such as monuments, galleries, museums,

Trends in Contemporary Computer Science, Podlasie 2014, ISBN 978-83-62582-58-7
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etc. In both cases, the problem lies in the selection of one or more sites from among
numerous proposals. The input in this problem is a list of sites with the location and
a brief description of each. The output has to be a numeric score assigned to each
location that allows us to compare them and ultimately select the best one. Difficulties
that appear here include the following: (a) to select the most important attributes from
the description of the site, (b) to personalize tourist preferences and (c) to assign a
score that differentiates the locations in terms of tourist needs. In this paper we show
how to use metasets to describe tourist preferences and how this representation helps
to compute the degree of membership of a particular object in a set of perfect holiday
destinations. It is emphasized that this degree will be different for different types of
tourists and will be closely related to their preferences.

The proposed approach can be used in automated personalized tour-planning de-
vices. In particular, it can be used in solving Tourist Trip Design Problems, TTDP
(see e.g. [15]). The starting point in the TTDP is the orienteering problem (see e.g. [5,
6]). In this problem a set of nodes is given, each with a score. The goal is to determine
a path, limited in length, that visits some nodes and maximizes the sum of the col-
lected scores. However, before the solution to this problem is presented, values must
be assigned to the nodes. This is where the algorithm we propose may be helpful. If
the nodes represent locations, then by using metasets we can calculate scores which
represent the interest of a given tourist.

The remainder of the paper is structured as follows. Section 2 gives the theoretical
background, i.e., we briefly recall the main definitions and lemmas concerning metasets.
Section 3 presents the problem of assigning to tourist locations an evaluation of their
attractiveness and its solution in terms of metasets. Section 4 provides a generalization
of the concept introduced. Conclusions are given in Section 5.

2 Metasets

A metaset is a classical crisp set with a specific internal structure which encodes the
membership degrees of its members. Therefore, all Zermelo-Fraenkel [3, 7] axioms apply
to metasets as well. The membership degrees are expressed as nodes of the binary
tree T. All the possible membership values make up a Boolean algebra. They can be
evaluated as real numbers as well.

There are several fundamental notions associated with metasets which we recall
in this section. These allow the membership relation to be defined and evaluated. We
then use it to model the quality of tourist destinations and a client’s preferences.

2.1 Basic Definitions

For simplicity, in this paper we deal only with first-order metasets.3 A metaset of this
type is a relation between some set and the set of nodes of the binary tree T. Thus,
the structure we use to encode the degrees of membership is based on ordered pairs.
The first element of each pair is the member and the second element is a node of the
binary tree which contributes to the membership degree of the first element.

Definition 1. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a set, p ∈ T }
3 See section 4 for the introduction to metasets in general.
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is called a first-order metaset.

The class of first-order metasets is denoted by M1. The binary tree T is the set of
all finite binary sequences, i.e., functions whose domains are finite ordinals, valued in
2:4

T =
⋃

n∈N
2n . (1)

The ordering 6 in the tree T (see Fig. 1) is the reverse inclusion of functions: for
p, q ∈ T such that p : n 7→ 2 and q : m 7→ 2, we have p 6 q whenever p ⊇ q, i.e., n > m
and p�m = q. The root 1 being the empty function is the largest element of T in this
ordering. It is included in each sequence and for all p ∈ T we have p 6 1.

1

[0]
��
��

��1

[1]
PP

PP
PPi
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���

[01]
@

@@I

[10]
�
���

[11]
@
@@I

Fig. 1. The levels T0–T2 of the binary tree T and the ordering of nodes. Arrows point
at the larger element.

We denote binary sequences which are elements of T using square brackets, for
example: [00], [101]. If p ∈ T, then we denote its children with p · 0 and p · 1. A level in
T is the set of all finite binary sequences with the same length. The set 2n consisting
of sequences of the length n is the level n, denoted by Tn. The level 0 consists of the
empty sequence 1 only. A branch in T is an infinite binary sequence, i.e., a function
N 7→ 2. Abusing the notation we will write p ∈ C to mark, that the binary sequence
p ∈ T is a prefix of the branch C. A branch intersects all levels in T, and each of them
only once.

Since a metaset is a relation, we may use the following standard notation. For the
given τ ∈ M1, the set dom(τ) = {σ : ∃p∈T 〈σ, p〉 ∈ τ } is called the domain of the
metaset τ , and the set ran(τ) =

{
p : ∃σ∈dom(τ) 〈σ, p〉 ∈ τ

}
is called the range of the

metaset τ .
A metaset is finite when it is finite as a set of ordered pairs. Consequently, its

domain and range are finite. The class of finite first-order metasets is denoted by MF1.
Thus,

τ ∈MF1 iff |dom(τ)| < ℵ0 ∧ |ran(τ)| < ℵ0 . (2)
This class is particularly important for computer applications where we deal with finite
objects exclusively.

2.2 Interpretations

An interpretation of a first-order metaset is a crisp set. It is produced out of a given
metaset using a branch of the binary tree. Different branches determine different inter-
4 For n ∈ N, let 2n = { f : n 7→ 2 } denote the set of all functions with the domain n
and the range 2 = { 0, 1 } – they are binary sequences of the length n.
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pretations of the metaset. All of them taken together make up a collection of sets with
specific internal dependencies, which represents the source metaset by means of its crisp
views. Properties of crisp sets which are interpretations of the given first-order metaset
determine the properties of the metaset itself. In particular we use interpretations to
define set-theoretic relations for metasets.

Definition 2. Let τ be a first-order metaset and let C be a branch. The set

τC = {σ ∈ dom(τ) : 〈σ, p〉 ∈ τ ∧ p ∈ C }

is called the interpretation of the first-order metaset τ given by the branch C.

An interpretation of the empty metaset is the empty set, independently of the
branch.

The process of producing an interpretation of a first-order metaset consists in two
stages. In the first stage we remove all the ordered pairs whose second elements are
nodes which do not belong to the branch C. The second stage replaces the remaining
pairs – whose second elements lie on the branch C – with their first elements. As the
result we obtain a crisp set contained in the domain of the metaset.

Example 1. Let p ∈ T and let τ = { 〈∅, p〉 }. If C is a branch, then

p ∈ C → τC = { ∅ } ,
p 6∈ C → τC = ∅ .

Depending on the branch the metaset τ acquires one of two different interpretations:
{ ∅ } or ∅. Note, that dom(τ) = { ∅ }.

As we see, a first-order metaset may have multiple different interpretations – each
branch in the tree determines one. Usually, most of them are pairwise equal, so the
number of different interpretations is much less than the number of branches. Finite
first-order metasets always have a finite number of different interpretations.

2.3 Partial Membership

We use interpretations for transferring set-theoretic relations from crisp sets onto me-
tasets.5 In this paper we discuss only the partial membership.

Definition 3. We say that the metaset σ belongs to the metaset τ under the condition
p ∈ T, whenever for each branch C containing p holds σC ∈ τC. We use the notation
σ εp τ .

Formally, we define an infinite number of membership relations: each p ∈ T spec-
ifies another relation εp. Any two metasets may be simultaneously in multiple mem-
bership relations qualified by different nodes: σ εp τ ∧ σ εq τ . Membership under the
root condition 1 resembles the full, unconditional membership of crisp sets, since it is
independent of branches.

The conditional membership reflects the idea that an element σ belongs to a metaset
τ whenever some conditions are fulfilled. The conditions are represented by nodes of
T. There are two substantial properties of this technique exposed by the following two
lemmas.
5 For the detailed discussion of the relations or their evaluation the reader is referred
to [12] or [14].
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Lemma 1. Let τ, σ ∈M1 and let p, q ∈ T. If σ εp τ and q 6 p, then σ εq τ .

Proof. If C is a branch containing q then also p ∈ C. Therefore σC ∈ τC .
Lemma 2. Let τ, σ ∈M1 and let p ∈ T. If ∀q<p σ εq τ , then σ εp τ .
Proof. If C 3 p, then it also contains some q < p. Therefore, σC ∈ τC .

In other words: σ εp τ is equivalent to σ εp · 0 τ ∧ σ εp · 1 τ , i.e., being a mem-
ber under the condition p is equivalent to being a member under both conditions
p · 0 and p · 1, which are the direct descendants of p. Indeed, by lemma 1 we have
σ εp τ → σ εp · 0 τ ∧ σ εp · 1 τ . And if σ εp · 0 τ , then again, by lemma 1 we have
∀q6p · 0 σ εq τ , and similarly for p · 1. Consequently, we have ∀q<p σ εq τ and by lemma
2 we obtain σ εp · 0 τ ∧ σ εp · 1 τ → σ εp τ .

Example 2. Recall, that the ordinal number 1 is the set { 0 } and 0 is just the empty
set ∅. Let τ = { 〈0, [0]〉 , 〈1, [1]〉 } and let σ = { 〈0, [1]〉 }. Let C0 3 [0] and C1 3 [1] be
arbitrary branches containing [0] and [1], respectively. Interpretations are: τC0 = { 0 },
τC1 = { 1 }, σC0 = 0 and σC1 = { 0 } = 1. We see that σ ε[0] τ and σ ε[1] τ . Also, σ ε1 τ
holds.

Note, that even though interpretations of τ and σ vary depending on the branch,
the metaset membership relation is preserved.

2.4 Evaluating Membership

Membership degrees for metasets are expressed as nodes of T. In fact, these nodes
determine the basis of the Boolean Algebra of closed-open sets in the Cantor space 2ω.
Indeed, a p ∈ T is just a prefix for all infinite binary sequences which form a clopen
subset of 2ω. Thus, the membership relation for metasets is valued in the Boolean
algebra. Nonetheless, for the sake of simplicity and in applications we usually refer to
the binary tree when talking about membership.

In applications we frequently need a numerical evaluation of membership degrees.
To define it first we consider the smallest subset of T consisting of elements which
determine the membership.

Definition 4. Let σ, τ ∈M1. The set

‖σ ∈ τ‖ = max { p ∈ T : σ εp τ }
is called the certainty grade for membership of σ in τ .

Note that by definition 3, ‖σ ∈ τ‖ = max { p ∈ T : ∀C3p σC ∈ τC }. Lemmas 1
and 2 justify definition 4. Indeed, if for q ∈ T the membership σ εq τ is satis-
fied, which means that for any branch C containing q it holds that σC ∈ τC , then
q ∈ { p ∈ T : ∀C3p σC ∈ τC }. Therefore, there exists a p ∈ ‖σ ∈ τ‖ such that q 6 p.
And by lemma 1, each such p implies that σ εq τ , for q 6 p. This means that all
the necessary membership information is contained in ‖σ ∈ τ‖. Moreover, no incorrect
membership information can be inferred from this set. If for r 6 s it is not true that
σ εr τ , then s ∈ ‖σ ∈ τ‖ would contradict lemma 1. Note also that if σ εq · 0 τ and
σ εq · 1 τ , then consequently for any r < q it holds that σ εr τ , and therefore by lemma
2 it holds that σ εq τ . Thus, the set of all p ∈ T such that σ εp τ consists of subtrees
whose roots are in ‖σ ∈ τ‖.

We define the numerical evaluation of membership by composing the membership
function valued in 2ω with the natural transformation 2ω 7→ [0, 1] as follows.



164 Magdalena Kacprzak, Bartłomiej Starosta

Definition 5. Let σ, τ ∈M1. The following value is called the certainty value of mem-
bership of σ in τ :

|σ ∈ τ | =
∑

p∈‖σ∈τ‖

1

2|p|
.

Recall that |p| is the length of the binary sequence p, which is equal to the number
of the level containing p. One may easily see that |σ ∈ τ | ∈ [0, 1].

For the sake of the main topic of the discussion it is worth noticing that in the above
definition we treat all the nodes within the same level uniformly, without distinguishing
one from another. All nodes on the given level contribute the same factor of 1

2|p|
to

the membership value. This will not be the case for the problem of evaluation of client
preferences, where we modify this function.

3 The Problem

In this section we show how use metasets to solve the problem of assigning to tourist
locations evaluations of their attractiveness. Here we will use a real data set from the
city of Białystok. In the problem that we want to solve, a set of locations is given.
We assume, that these are places that can be visited during a one-day trip. At this
point we disregard the questions of how many places a tourist may wish to choose, the
distance between them, and the means of arrival, focusing only on their attractiveness.
The places we choose from can be divided into the following categories: (a) buildings
(church, museum, gallery, etc.), (b) sports facilities (playgrounds, skate parks, etc.) and
(c) outdoor places (park, forest, river, etc.).

Example 3. We selected attributes that may be important for the selection on the
basis of interviews with potential tourists: (a) the possibility of eating something (Fast
food, Slow food), (b) a place to sit and rest (Physical rest), (c) sports infrastructure
(Sports), (d) the chance to explore the city (Sightseeing) and (e) a good place for hiking
(Hiking). Classification of two locations, the Resort of Water Sports in Dojlidy (RWS)
and Branicki Park & Planty (PBP), according to these attributes is shown in Table 1.

Fast food Slow food Physical rest Sports Sightseeing Hiking
RWS YES NO YES YES NO YES
PBP YES YES YES NO YES YES

Table 1. Classification of locations

3.1 Modelling with Metasets

Our goal is to differentiate these tourist locations according to their attractiveness.
To this end we build a binary tree designated by the expression ‘a perfect holiday
destination’. For most tourists a good place for a holiday is somewhere they can relax
and enjoy leisure activities (e.g., hiking, bike riding, sports). Therefore two branches
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extend from the root of this tree: Relaxation and Activity (see Fig. 2). Relaxation
requires a convenient location (node: Rest) as well as a place for dining (node: Food).
Places to rest include those that offer a respite for the body (beach, forest, etc.) (node:
Body) or the soul (restaurant with live music, performances, etc.) (node: Soul). Among
dining options we can distinguish between those which serve pizza, hamburgers or
hot dogs (node: Fast food) and those that offer regional, organic, vegetarian cuisine,
etc. (node: Slow food). Available activities can be classified as follows: sports (node:
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Fig. 2. The tree for Perfect holiday destination

Sports) and tourism more generally (node: Tourism). Sports require infrastructure
(node: Infrastructure). Sometimes it is also possible to take part in sporting events,
such as a marathon (node: Events). Tourism can be in an urban area, and then includes
visiting churches, galleries or architecturally interesting buildings (node: Urban). Some
tourists prefer such activities as walking in the mountains or strolling through a park
(node: Nature).

The reminder of the tree is built in a similar way. The greater the height of the
tree, the more detailed the feedback. Taking into account a large number of attributes
leads to more accurate assignment of locations to the tourist. The subtree for the
Infrastructure node is depicted in Fig. 3. Infrastructure consists of locations such as
swimming pools (node: Locations) and other facilities (node: Facilities). The most
important of these are buildings (node: Buildings) and the possibility of buying (node:
Buy) or renting (node: Rent) equipment. The tree we have built is only an example
and can be changed depending on specific applications and needs.

Let us return to the tourist. First we define his expectations. We can do this using
one of the following methods: (a) communication in natural language (a dialogue), (b)
human-computer communication using an appropriate application (e.g. implementa-
tion of formal dialogue games [4]), or (c) a survey. To give an example, let us postulate
two tourists with different expectations.

Example 4. Consider two sample tourists, Ann and Ben.
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Ann is an active person. She likes sports, especially running. She strongly prefers
nature to the city. She does not eat much, because she is constantly on a diet.

Ben prefers a relaxing holiday. Eating well is his highest priority. He does not like
fast food. He enjoys bus tours and sightseeing. He does not like to play sports, but he
is a fan of spectator sports. He enjoys watching concerts and shows.

We formalize the preferences of these tourists in example 5.
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Fig. 3. Subtree for Infrastructure node

3.2 Evaluating Client Preferences

Definition 5 assumes uniform distribution of values throughout the nodes in T: each
p ∈ ‖δ ∈ ∆‖ contributes the value of 1

2|p|
to |δ ∈ ∆|.

In the context discussed in the paper this might be interpreted as a client’s indif-
ference as to what to choose: all possible choices represented as nodes within the same
level are equally weighted.

For a p ∈ T both its children p · 0 and p · 1 contribute equally to the member-
ship evaluation. Usually, however, clients have some preferences concerning places or
activities and this preference may be expressed numerically.

To evaluate the quality of a destination taking client preferences into account we
modify the definition 5 slightly to obtain an evaluation function which increases the
impact of some nodes and decreases that of others. We build this function based on an
interview with the client.

Definition 6. We define client preference to be a function p : T 7→ [0, 1] such that

∀q∈T p(q · 0) + p(q · 1) = 1 . (3)

and we take p(1) = 1 for the root.

Now we may evaluate the quality of the destination δ taking preferences p into
account to obtain the subjective value of the quality of the destination as follows:



An Approach to Making Decisions with Metasets 167

Definition 7. Let δ be a destination and let ∆ be a metaset of destinations. The p-
quality of the destination δ is the following value:

|δ ∈ ∆|p =
∑

q∈‖δ∈∆‖

∏

06i6|q|
p(q�i) .

The symbol q�i , where 0 6 i 6 |q| denotes all the consecutive prefixes of the binary
sequence q, including the empty one (for i = 0) and q itself (for i = |q|, which is the
length of the sequence q). Note that q�|q| = q, since dom(q) = |q| and q�∅ = ∅ = 1.

The p-quality of a destination reflects a client’s preferences. For different clients
with different p preference functions it may result in different ratings for the given
destination. We discuss this and present examples in the following section.

3.3 Solution to the Problem

To demonstrate the advantages of our approach we take into account the preferences
of the clients mentioned in example 4 when comparing the two destinations defined in
example 3. We have two sample locations with opposite characteristics: ‘active’ (RWS)
and ‘non-active’ (PBP). There are also two clients: Ann, an active person, and Ben, who
has a sedentary lifestyle. We show that the evaluated client preferences for particular
locations are consistent with common sense: Ann prefers RWS while Ben prefers PBP.
In particular, we claim that

|PBP ∈ ∆|Ann 6 |RWS ∈ ∆|Ann , (4)

and
|RWS ∈ ∆|Ben 6 |PBP ∈ ∆|Ben . (5)

The expression |δ ∈ ∆|X is the real number representing the quality of δ as a ‘perfect
holiday destination’ (i.e. the membership value of δ in ∆), taking into account the
preferences of the client X. The above formulas formally express the fact that Ann
prefers active destinations and Ben non-active ones. In example 4 we expressed sample
preferences using natural language. We now demonstrate the p functions for these
clients, constructed following a detailed investigation of their preferences (personal
interview or computer-aided tool). The functions are depicted in Fig. 4 and Fig. 5.

Example 5. Ann prefers Activity to Relaxation. We found that this preference is ex-
pressed by the ratio 3/1, so we set p(Activity) = 0.75 and p(Relaxation) = 0.25 (see
Fig. 4). She likes playing sports and having a good rest afterwards. She professed a ra-
tio of 7/10 in favour of Sports over Tourism. Since she does not eat much, we assumed
a ratio of 1/5 between eating and resting. She prefers Nature to Urban tourism. We
assume here a ratio of 4/1 and therefore we set p(Nature) = 0.8 and p(Urban) = 0.2.
We know that she rarely attends sporting events and therefore we set p(Events) = 0.1
and p(Infrastructure) = 0.9. For all other nodes q 6= 1 we set p(q) = 0.5.

Let us now consider Ben. Since he dislikes any form ofActivity, we assume p(Activity) =
0.15 and p(Relaxation) = 0.85. Eating well is Ben’s most significant preference, so we
assume p(Food) = 0.75 and p(Rest) = 0.25. Because we know he values good food,
we assume p(Fast food) = 0.05 and p(Slow food) = 0.95. Ben’s detailed preferences are
depicted in Fig. 5.

The value of 0.5 may be interpreted as indifference towards a particular choice in
both cases.
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Fig. 4. Ann’s preferences (we used abbreviations in the last level).
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We now show how the preferences of the clients in example 4 affect the subjective
quality of a given destination. First, for reference, we calculate the numerical value of
the membership, which also represents the preferences of a totally indifferent client.

We consider the two locations, RWS and PBP, with the following attributes (cf.
Ex. 3).

RWS : Fast food,Body, Infrastructure,Nature , (6)
PBP : Food, Soul, Urban . (7)

First, let us calculate the degrees of membership of both places in the metaset ∆
consisting of perfect holiday destinations. They tell us the measure of objective quality
of these places, i.e. the degree to which the idea of a perfect holiday destination is
satisfied by these particular destinations. These degrees are also equal to those resulting
from evaluation of the preferences of a totally indifferent client.

‖RWS ∈ ∆‖ = {Fast food , Body , Infrastructure, Nature } , (8)
= { [000], [011], [100], [111] } , (9)

‖PBP ∈ ∆‖ = {Food , Soul , Urban } , (10)
= { [00], [010], [110] } . (11)

The numerical values for the quality of the destinations are as follows:

|RWS ∈ ∆| = 1

2|[000]| +
1

2|[011]| +
1

2|[100]| +
1

2|[111]| , (12)

=
1

23
+

1

23
+

1

23
+

1

23
=

4

8
= 0.5 , (13)

|PBP ∈ ∆| = 1

2|[00]| +
1

2|[010]| +
1

2|[110]| , (14)

=
1

22
+

1

23
+

1

23
=

4

8
= 0.5 . (15)

We now apply both client’s preferences to calculate subjective qualities:

|RWS ∈ ∆|Ann = 0.25 · 0.2 · 0.5 + 0.25 · 0.8 · 0.5
+ 0.75 · 0.7 · 0.9 + 0.75 · 0.3 · 0.8 (16)

= 0.025 + 0.1 + 0.4725 + 0.18 (17)
= 0.7775 , (18)

|PBP ∈ ∆|Ann = 0.25 · 0.2 + 0.25 · 0.8 · 0.5 + 0.75 · 0.3 · 0.2 (19)
= 0.05 + 0.1 + 0.045 (20)
= 0.195 , (21)

(22)

|RWS ∈ ∆|Ben = 0.85 · 0.75 · 0.05 + 0.85 · 0.25 · 0.2
+ 0.15 · 0.1 · 0.3 + 0.15 · 0.9 · 0.35 (23)

= 0.031875 + 0.0425 + 0.0045 + 0.04725 (24)
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= 0.126125 , (25)
|PBP ∈ ∆|Ben = 0.85 · 0.75 + 0.85 · 0.25 · 0.8 + 0.15 · 0.9 · 0.65 (26)

= 0.6375 + 0.17 + 0.08775 (27)
= 0.89525 . (28)

Thus, we obtained the value of 0.7775 as the measure of Ann’s interest in RWS and
the value of 0.195 representing her interest in PBP, which is much lower. The value
of 0.126125 confirms Ben’s aversion to spending time actively in comparison with the
value of 0.89525, which reflects his strong interest in destinations allowing for a good
rest and meals.

The results confirm the accuracy of our approach; they are consistent with common
sense. As expected, for Ann the metaset model suggests RWS, where she is able to
practise sports, and for Ben PBP, where he can have a rest and eat well. At this stage
of development we cannot determine whether or not the proposed method is better than
others. We will investigate this topic in the future and the results of the comparison
will be publicized.

4 Generalization and Further Results

The definitions of metaset and related notions used in the paper are simplified versions
of a much more general concept. Although first-order metasets are sufficient for the
simple application discussed, for completeness we cite below the general definitions of
metaset and interpretation (see [10] for a further discussion of metasets). The reader
familiar with the method of forcing in set theory [3, 7] will find some similarities here.
They are rather superficial, since the prototype was designed for an entirely different
purpose. Also, when applying metasets we are usually dealing with finite sets, which
makes no sense in the case of forcing.

Definition 8. A set which is either the empty set ∅ or which has the form:

τ = { 〈σ, p〉 : σ is a metaset, p ∈ T }

is called a metaset.

Formally, this is a definition by induction on the well-founded relation ∈ (see [7,
Ch. VII, §2] for a justification of this type of definitions). The general definition of
interpretation for metasets is recursive as well.

Definition 9. Let τ be a metaset and let C ⊂ T be a branch. The set

τC = {σC : 〈σ, p〉 ∈ τ ∧ p ∈ C }

is called the interpretation of the metaset τ given by the branch C.

For most applications, especially computer applications [9], first-order metasets -
even finite first-order metasets - are sufficient. All the results presented here, together
with the model itself, remain valid if we omit the assumption that the metasets involved
are first-order. The definitions given above are used in the general development of the
theory of metasets.
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5 Conclusions

In this paper we explained a simple application of the new concept of sets with partial
membership relation. We used metasets to model and solve the problem of selecting the
best holiday destination for a client with specific preferences regarding how he spends
his free time.

The metaset approach enables destinations and their properties to be rated using
natural human-language terms. The core of the idea lies in constructing a treelike
hierarchy of terms which describe the attributes of destinations and at the same time
the requirements of clients. The hierarchy involves a relationship between attributes of
the ‘generalization-specialization’ type.

Metasets are the perfect tool for evaluating imprecise expressions. The example
we investigated here is that of a ‘perfect holiday destination’. Of course there is no
one perfect place, just as there are no two persons having the same taste. The ideal
place for one person to relax may give rise to resentment in another. This is a problem
frequently encountered by the designers of mobile applications such as mobile tourist
guides, which attempt to automatically determine which places to visit in a given
region. The easiest way to determine the perfect location is to evaluate its popularity,
i.e. how many people visit it or how many recommend it in polls or on Internet forums.
In this way we overlook people with unusual preferences. Our approach eliminates this
disadvantage, because the starting point of our algorithm is to identify user preferences
and describe them in the form of a tree. Then the algorithm selects a location to suit
those preferences. In addition, the test objects are set in a partial order, which will
precisely take into account the needs of a specific person. Of course, the final decision
belongs to the user, but our algorithm can provide professional support. In our further
work we will compare the approach presented in this paper with algorithms described
in the research literature which are used for similar problems in logistics or tourism.
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Abstract. We present CDCTL?K, a temporal logic to specify knowl-
edge, correct functioning behaviour, and different social commitments
in multi-agent systems (MAS). We interpret the formulae of the logic
over models generated by Communication Deontic Interpreted Systems
(CDIS). Furthermore, we investigate a SAT-based bounded model check-
ing (BMC) technique for the existential fragments of CDCTL?K (called
ECDCTL?K) and for CDIS. Finally, we exemplify the use of the tech-
nique by means of the NetBill protocol, a popular example in the MAS
literature related to modelling of business processes.

1 Introduction

Multi-agent systems (MASs) [19] are distributed systems in which computational com-
ponents (called agents) are autonomous and self-interested entities. The agents are
able to communicate, negotiate, coordinate, and control their own behaviour in the
furtherance of their own goals.

During the last two decades, a plethora of social techniques that aim to define
a formal semantics for agent communication languages (ACLs) have been proposed,
e.g., [16, 6]. These approaches particularly target to tackle the shortcomings of ACLs
semantics defined by means of mental approaches [22]; the mental semantics is ex-
pressed in terms of the agents’ internal mental states such as believes, goals, desires
and intentions. Some of these social approaches use (communicative) commitments to
model multi-agent interactions [7, 16] or to represent business contracts [2]. Following
[7], in the paper we consider CDCTL?K, which is a new ACL that extends CTL? [4]
with modalities for knowledge [10], correct functioning behaviour [11], commitments
[7], group commitment, and conditional deontic (group) commitment.

The formalism of interpreted systems (IS) [10] provides a useful framework to model
MASs and to verify various classes of temporal and epistemic properties. The formalism
of deontic interpreted systems (DIS) [11] is an extension of ISs, which makes possible
reasoning about temporal, epistemic and correct functioning behaviour of MASs. The
formalism of communication interpreted systems (CIS) [7] is an extension of ISs, which
makes possible reasoning about temporal, epistemic and social behaviour of MASs. In
the paper we consider a new formalism of communication deontic interpreted systems
(CDIS) which is a fusion of DIS and CIS, and thereby it allows for reasoning about
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temporal, epistemic, correct functioning behaviour, and social behaviour of MASs.
CDIS provides a computationally grounded semantics for CDCTL?K.

Verification and modelling of commitment properties of MASs was first investigated
by Venkatraman and Singh [18]. Then, it was further investigated, among others, in
[5, 1, 6]. However, all the verification approaches that were developed in this line of
research are translation-based. Thus, they do not offer dedicated model-checking al-
gorithms for verification of social properties of MASs. Moreover, they do not provide
dedicated modalities with computationally grounded semantics for commitments and
related concepts. A direct methods via either developing a dedicated model checker
from scratch or extending an existing model checker with new algorithms for commit-
ments and their fulfillment and violation have been proposed in [14, 7].

Bounded model checking (BMC) [3, 15] is an automatic verification technique that
takes advantage of the immense success of SAT-solvers, and that consists in translating
the model checking problem [4] for a modal logic (i.e., the problem of determining
whether a given logical formula representing a specification is satisfied in a particular
formal model representing the executions of a system) to the satisfiability problem of a
propositional formula. Originally developed for the verification of Boolean circuits and
for LTL properties [3], during the last decade, BMC has become an active subject of
research in the area of MASs [15, 12, 21]. The aim of this paper is to report on recent
progress on the application of the SAT-based BMC to verifying no just temporal and
epistemic, but also social and deontic properties of MAS. In particular, we propose a
SAT-based BMC for CDIS and for ECDCTL?K, which is the existential fragment of
CDCTL?K.

The rest of the paper is organised as follows. In Section 2 we introduce CDIS
together with its Kripke model, and the CDCTL?K language together with its two
subsets: ACDCTL?K and ECDCTL?K. Moreover, we define the unbounded semantics
for the whole language, and a bounded semantics for the ECDCTL?K subset. In Sec-
tion 3 we provide a SAT-based BMC method for ECDCTL?K. In Section 4 we apply
the BMC technique to the NetBill protocol. In the last section we conclude the paper
with a short discussion and an outline of our future work.

2 Preliminaries

Let us start by fixing some notation used through the paper. Let A = {1, . . . , n, E} be
the non-empty and finite set of agents, PV the set of propositional variables, and Z
the set of integers.

Interpreted Systems (IS). The standard formal definition of IS assumes that
MASs consist of n agents and the special agent E that is used to model the environment
in which the other agents operate. Furthermore, IS=({ιc, Lc, Actc, Pc, tc,Vc}c∈A) which
means that each agent c ∈ A is modelled by using a non-empty set Lc of local states, a
non-empty set ιc ⊆ Lc of initial local states, a non-empty set Actc of possible actions, a
protocol function Pc : Lc → 2Actc defining the action selection mechanism, a (partial)
evolution function tc : Lc×Act→ Lc (each element of Act =

∏
c∈AActc, as usually, is

called joint action), and a valuation function Vc : Lc → 2PV that assigns to each local
state a set of propositional variables that are assumed to be true at that state.

The local states Lc model the instantaneous configuration of the agent c in MAS.
The content varies according to what we need to model, e.g. it may be the values of
some (local) variables. The environment E captures relevant information that is not
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specific to any individual agent, e.g. messages in transit in a communication channel;
it is assumed that local states for E are public. Furthermore, as in [10], we represent
the instantaneous snapshot of MAS at a given time by means of global states. Namely,
a set of all possible global states is defined as S = L1 × . . . × Ln × LE . We will write
lc(s) to denote the local state of agent c ∈ A in a global state s = (`1, . . . , `n, `E).

For each agent c ∈ A we define a standard indistinguishability relation ∼c⊆ S × S
as: s ∼c s′ iff lc(s′) = lc(s). We will use this relation to give the computationally
grounded semantics for standard epistemic properties of MAS. Moreover, we define a
global evolution function t : S × Act→ S as follows: t(s, a) = s′ iff tc(lc(s), a) = lc(s′)
for all c ∈ A. In brief we write the above as s a−→ s′.

Deontic Interpreted Systems (DIS). In DIS it is assumed that for each agent
c ∈ A, its set of local states Lc can be partitioned into two disjoint sets: a non-empty set
‖Φ‖c of faultless (green) states and a setRc of faulty (red) states. Thus, Lc = ‖Φ‖c∪Rc

and DIS is defined as the following tuple: ({ιc, Lc, ‖Φ‖c, Actc, Pc, tc,Vc}c∈A).
As in [11], we make the following assumption on the set S of all possible global

states: Lc ⊇ ‖Φ‖c for each c ∈ A. Furthermore, for each agent c ∈ A we define a
deontic relation ./c⊆ S × S as: s ./c s′ iff lc(s′) ∈ ‖Φ‖c. We will use this relation to
give the computationally grounded semantics for the deontic properties of MAS.

Communication Interpreted Systems (CIS). In CIS it is assumed that a
finite set V arc of local integer variables is associated with each agent c ∈ A. These
variables are used to represent communication channels through which messages are
sent and received, and then to define the social accessibility relation, which in turn
will be used to define the computationally grounded semantics of communication and
deontic commitments. Each local state ` ∈ Lc of agent c is associated with different
values obtained from different assignments to variables in V arc, and CIS is defined as
the following tuple: ({ιc, Lc, V arc, Actc, Pc, tc,Vc}c∈A).

Let s = (`1, . . . , `n, `E) ∈ S be a global state. As in [7], we denote the value of a
variable x ∈ V arc at local state lc(s) by lxc (s), and we assume that if lc(s) = lc(s′), then
lxc (s) = lxc (s′) for all x ∈ V arc. Furthermore, for each pair (c1, c2) of agents in A we
define a social accessibility relation ∼c1→c2⊆ S × S as: s ∼c1→c2 s

′ iff lc1(s) = lc1(s′),
and V arc1 ∩ V arc2 6= ∅ such that ∀x ∈ V arc1 ∩ V arc2 we have lxc1(s) = lxc2(s′) and
∀y ∈ V arc2−V arc1 we have lyc2(s) = lyc2(s′), and s a−→ s′.

The intuition behind the definition of the social accessibility relation ∼c1→c2 is
the following. The states s and s′ are indistinguishable for c1 (lc1(s) = lc1(s′)), since
c1 initiates the communication and it does not learn any new information. There is a
communication channel between c1 and c2 (V arc1 ∩ V arc2 6= ∅). The channel is filled
in by c1 in state s, and in state s′ c2 receives the information, which makes the value
of the shared variable the same for c1 and c2 (lxc1(s) = lxc2(s′)). The states s and s′ are
indistinguishable for c2 with regard to the variables that have not been communicated
by c1, i.e., unshared variables (∀y ∈ V arc2−V arc1)lyc2(s) = lyc2(s′).

Communication Deontic Interpreted Systems (CDIS). A formalism of
CDIS is defined as the following tuple: ({ιc, Lc, ‖Φ‖c, V arc, Actc, Pc, tc,Vc}c∈A).

Model. Let c ∈ A and vc : V arc → Z be a valuation function that assigns to each vari-
able x ∈ V arc an integer value vc(x). Moreover, let cmax (cmin) be the maximal (min-
imal) value that can be assign to variable x ∈ ⋃c∈A V arc, and C = {cmin, . . . , cmax}.
C|V arc| is the finite set of all the valuations for agent c that are induced by the function
vc. Then, for a given CDIS we define a model as a tupleM = (S, ι, T,V,∼c, ./c,∼c1→c2

), where
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• S =
∏

c∈A Lc is the set of all possible global states such that Lc ⊇ ‖Φ‖c and
Lc ⊆ C|V arc| for each c ∈ A,

• ι =
∏

c∈A ιc is the set of all possible initial global states,
• T ⊆ S × S is a total transition relation on S defined by: (s, s′) ∈ T iff there exists

an action a ∈ Act such that s a−→ s′,
• V : S → 2PV is the valuation function defined as V(s) =

⋃
c∈A Vc(lc(s)),

• ∼c⊆ S × S is the indistinguishability relation defined as above for IS,
• ./c⊆ S × S is the deontic relation defined as above for DIS, and
• ∼c1→c2⊆ S × S is the social accessibility relation defined as above for CIS.

A path in M is an infinite sequence π = (s0, s1, . . .) of states such that (sm, sm+1) ∈ T
for each m ∈ N. Now, let m ∈ N. Then, π(m) = sm and it denotes the m-th state of
π. πm = (sm, sm+1, . . .) and it denotes the m-th suffix of π. Π(s) denotes the set of
all the paths starting at s ∈ S, and Π =

⋃
s0∈ιΠ(s0) denotes the set of all the paths

starting at initial states.

Syntax of CDCTL?K. Let p ∈ PV be a propositional variable, c1, c2 ∈ A, Γ ⊆ A.
The syntax of CDCTL?K, which is a combination of branching time CTL? [9, 8] with
standard epistemic modalities, the deontic notion due to [11], social commitments due
to [7], and with new modalities for group social commitments and conditional deontic
(group) commitment, is defined as follows:

ϕ ::=true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Aφ | Kcφ | EΓφ | DΓφ | CΓφ |
Ocφ | K̂c2

c1φ | Ci→jφ | Ci→Γφ | Di→jφ | Di→Γφ

φ ::=ϕ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | φRφ

where ϕ is a state formula and φ is a path formula, A is the universal quantifier on
paths, X, U, and R are CTL? path modalities standing for next, until, and release
respectively. The modalities Kc,DΓ ,EΓ , and CΓ represent, respectively, knowledge
of agent c, distributed knowledge in the group Γ , everyone in Γ knows, and com-
mon knowledge among agents in Γ . The modalities Oc and K̂c2

c1 represent, respec-
tively, the correctly functioning circumstances (with respect to some protocol) of agent
c and knowledge of agent c1 under the assumption that c2 is functioning correctly.
The modalities Ci→j and Ci→Γ stand for commitment and group commitment, respec-
tively. The modalities Di→j and Di→Γ stand for conditional deontic commitment and
conditional deontic group commitment, respectively. CDCTL?K consists of the set of
state formulae generated by the above grammar. For more details on commitment
modality Ci→j we refer to [7]. Other temporal, epistemic and deontic modalities are
given by their usual abbreviations, i.e. Fφ

def
= trueUφ, Gφ

def
= falseRφ, Kcφ

def
= ¬Kc¬φ,

DΓφ
def
= ¬DΓ¬φ, EΓφ

def
= ¬EΓ¬φ, CΓφ

def
= ¬CΓ¬φ, Ocφ

def
= ¬Oc¬φ, K̂

c2

c1
φ

def
= ¬K̂c2

c1¬φ,
Ci→jφ

def
= ¬Ci→j¬φ, Ci→Γφ

def
= ¬Ci→Γ¬φ, Di→jφ

def
= ¬Di→j¬φ, Di→Γφ

def
= ¬Di→Γ¬φ.

In this logic, Ci→jφ is read as agent i commits towards agent j that φ, or equivalently
as φ is committed to by i towards j. Ci→Γφ is read as agent i commits towards group
of agent Γ that φ, or equivalently as φ is committed to by i towards group of agent
Γ . Furthermore, Di→jφ is read as agent i commits towards agent j that φ if, and only
if agent j is functioning correctly, or equivalently as φ is committed to by i towards
j if, and only if agent j is functioning correctly. Di→Γφ is read as agent i commits
towards group of agent Γ that φ if, and only if the group Γ is functioning correctly,
or equivalently as φ is committed to by i towards group of agent Γ if, and only if the
group Γ is functioning correctly.

We find useful to consider the universal and the existential fragments of CDCTL?K,
which we denote by ACDCTL?K and ECDCTL?K, respectively. The universal frag-
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ment is used to express properties of a system in question. The negations of these
properties can be expressed in the existential fragment, and therefore they can be ver-
ified by means of the bounded model checking method that is presented in the next
section.
ACDCTL?K is defined by the following grammar: ϕ ::= true | false | p | ¬p | ϕ∧ϕ | ϕ∨
ϕ | Aφ | Kcφ | EΓφ | DΓφ | CΓφ | Ocφ | K̂c2

c1φ | Ci→jφ | Ci→Γφ | Di→jφ | Di→Γφ;
φ ::= ϕ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | φRφ.

ECDCTL?K is defined by the following grammar: ϕ ::= true | false | p | ¬p | ϕ∧ϕ | ϕ∨
ϕ | Eφ | Kcφ | EΓφ | DΓφ | CΓφ | Ocφ | K̂

c2

c1
φ | Ci→jφ | Ci→Γφ | Di→jφ | Di→Γφ;

φ ::= ϕ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | φRφ.

Semantics of CDCTL?K. The semantics of CDCTL?K formulae is defined with
respect to the modelM = (S, ι, T,V,∼c, ./c,∼c1→c2) as defined above. In the semantics
we assume the following definitions of epistemic relations: ∼EΓ

def
=
⋃

c∈Γ ∼c, ∼CΓ
def
= (∼EΓ

)+ (the transitive closure of ∼EΓ ), ∼DΓ
def
=
⋂

c∈Γ ∼c, where Γ ⊆ A.
Let M be a model, s a state of M , π a path in M , and m ∈ N. For a state formula

α over PV, the notation M, s |= α means that α holds at the state s in the model M .
Similarly, for a path formula ϕ over PV, the notation M,π |= ϕ means that ϕ holds
along the path π in the modelM . Moreover, let p ∈ PV be a propositional variable, α, β
be state formulae of CDCTL?K, and ϕ, ψ be path formulae of CDCTL?K. The relation
|= is defined inductively with the classical rules for the CTL? fragment of CDCTL?K,
and with the following rules for epistemic, deontic and commitment modalities:
M, s |= Kcα iff (∀π ∈ Π)(∀i > 0)(s ∼c π(i) implies M,πi |= α),
M, s |= YΓα iff (∀π ∈ Π)(∀i > 0)(s ∼YΓ π(i) implies M,πi |= α),

with Y ∈ {D,E,C},
M, s |= Ocα iff (∀π ∈ Π)(∀i > 0)(s ∝c π(i) implies M,πi |= α),
M, s |= K̂c2

c1α iff (∀π ∈ Π)(∀i > 0)((s ∼c1 π(i) and s ./c2 π(i))
implies M,πi |= α),

M, s |= Ci→jα iff (∀π ∈ Π)(∀i > 0)(s ∼c1→c2 π(i) implies M,πi |= α)
M, s |= Ci→Γα iff (∀π ∈ Π)(∀i > 0)(∀c2 ∈ Γ )(s ∼c1→c2 π(i) implies M,πi |= α)
M, s |= Di→jα iff (∀π ∈ Π)(∀i > 0)((s ∼c1→c2 π(i) and s ./c2 π(i))

implies M,πi |= α)
M, s |= Di→Γα iff (∀π ∈ Π)(∀i > 0)(∀c2 ∈ Γ )((s ∼c1→c2 π(i) and s ./c2 π(i))

implies M,πi |= α).

A CDCTL?K state formula α is valid in M , denoted by M |= α, iff for each s ∈ ι,
M, s |= α, i.e., α holds at every initial state of M . The model checking problem asks
whether M |= α.

Bounded Semantics of ECDCTL?K. Let M be a model, k ∈ N, and 0 6 l 6 k.
A k-path is a pair (π, l), also denoted by πl, where π is a finite sequence π = (s0, . . . , sk)
of states such that (sj , sj+1) ∈ T for each 0 6 j < k. A k-path πl is a loop if l < k and
π(k) = π(l). If a k-path πl is a loop it represents the infinite path of the form uvω,
where u = (π(0), . . . , π(l)) and v = (π(l+ 1), . . . , π(k)). We denote this unique path by
%(πl). Note that for each j ∈ N, %(πl)

l+j = %(πl)
k+j . Moreover, Πk(s) denotes the set

of all the k-paths starting at s ∈ S, and Πk =
⋃
s0∈ιΠk(s0) denotes the set of all the

paths starting at initial states.
Let s be a state of M and πl a k-path in Πk. For a state formula α over PV, the

notationM, s |=k α means that α is k-true at the state s in the modelM . Similarly, for
a path formula ϕ over PV, the notation M,πml |=k ϕ, where 0 6 m 6 k, means that ϕ
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is k-true along the suffix (π(m), . . . , π(k)) of π. The relation |=k is defined inductively
with the [23] rules for the ECTL? fragment of ECDCTL?K, and with the following
rules for epistemic, deontic and commitment modalities:
M, s |=k Kcα iff (∃π ∈ Π)(∃i > 0)(s ∼c π(i) and M,πil |=k α),
M, s |=k Y Γα iff (∃π ∈ Π)(∃i > 0)(s ∼YΓ π(i) and M,πil |=k α) and Y ∈{D,E,C},
M, s |=k Ocα iff (∃π ∈ Π)(∃i > 0)(s ∝c π(i) and M,πil |=k α),
M, s |=k K̂

c2

c1
α iff (∃π ∈ Π)(∃i > 0)(s ∼c1 π(i) and s ./c2 π(i) and M,πil |=k α),

M, s |=k Ci→jα iff (∃π ∈ Π)(∃i > 0)(s ∼c1→c2 π(i) and M,πil |=k α),
M, s |=k Ci→Γα iff (∃π ∈ Π)(∃i > 0)(∀c2 ∈ Γ )(s ∼c1→c2 π(i) and M,πil |=k α),
M, s |=k Di→jα iff (∃π ∈ Π)(∃i > 0)(s ∼c1→c2 π(i) and s ./c2 π(i)

and M,πil |=k α),
M, s |=k Di→Γα iff (∃π ∈ Π)(∃i > 0)(∀c2 ∈ Γ )(s ∼c1→c2 π(i) and s ./c2 π(i)

and M,πil |=k α).
An ECDCTL?K state formula α is k-valid (true) in M , denoted M |=k ϕ, iff for

each s ∈ ι, M, s |=k ϕ. The bounded model checking problem asks whether there exists
k ∈ N such that M |=k ϕ.

The following theorem states that for a given modelM and an ECDCTL?K formula
α there exists a bound such that the model checking problem can be reduced to the
bounded model checking problem.

Theorem 1. Let M be a model and α an ECDCTL?K state formula. Then, for each
s ∈ ι, M, s |= α iff M, s |=k α for some k ∈ N.

3 Bounded Model Checking

In the following section we present a propositional encoding of the BMC problem for
ECDCTL?K and for CDIS. The encoding is based on the BMC encoding introduced
in [20, 23, 13]. In [23] a propositional encoding of the BMC problem for ECTL∗ and
for standard Kripke models has been introduced and experimentally evaluated. Next,
in [20] a propositional encoding of the BMC problem for RTCTLKD and for deontic
interleaved interpreted systems has been introduced and experimentally evaluated.
Further, in [13] a SAT- and BDD-based encoding of the BMC problem for LTLK and
for (interleaved) interpreted systems has been introduced and experimentally evaluated.

Translation to the propositional satisfiability problem. LetM = (S, ι, T,V,
∼c, ./c,∼c1→c2) be a model, α an ECDCTL?K state formula, and k ∈ N a bound. The
propositional encoding of the BMC problem for ECDCTL?K and for CDIS, as usually,
relies on defining the following propositional formula:

[M,α]k := [Mα,ι]k ∧ [α]M,k (1)

which is satisfiable if and only if M |=k α holds.
The definition of [Mα,ι]k assumes that the states and the joint actions of M are

encoded symbolically, which is possible, since both the set of states and the set of joint
actions are finite. Formally, let c ∈ A. Then, each state s = (`1, . . . , `n, `E) ∈ S is
represented by a symbolic state which is a vector w = (w1, . . . , wn, wE) of symbolic local
states. Each symbolic local state wc is a vector of propositional variables (called state
variables) whose length t is equal to |V arc| · c with c = max{|cmin|, |cmax|}+ 1. Next,
each joint action a = (a1, . . . , an, aE) ∈ Act is represented by a symbolic action which
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is a vector a = (a1, . . . , an, aE) of symbolic local actions. Each symbolic local action ac
is a vector of propositional variables (called action variables) whose length depends on
the number of actions of agent c. Moreover, by u = (u1, . . . , uy) we denote a vector of
natural variables of length y = max(1, dlog2(k+1)e), which we call a symbolic number.

Letw andw′ be two different symbolic states, a a symbolic action, and u a symbolic
number. We assume definitions of the following auxiliary propositional formulae:
• p(w) – encodes a set of states of M in which proposition variable p ∈ PV holds.
• Is(w) – encodes the state s of the model M .
• H(w,w′) – encodes equality of two symbolic states, i.e. it expresses that the sym-

bolic states w and w′ represent the same states.
• Hc(w,w′) – encodes that the local states of agent c are the same in the symbolic

states w and w′.
• Oc(w) – encodes that the local states of agent c in the global state represented by

w is green,
• Ĥc2

c1 (w,w′) := Hc(w,w′) ∧Oc(w′),
• A(a) – encodes that each symbolic local action ac of a has to be executed by each

agent in which it appears.
• Tc(wc,a, w

′
c) – encodes the local evolution function of agent c.

• T (w,a,w′) :=
∧

c∈A Tc(wc,a, w
′
c) ∧ A(a) – encodes the transition relation of the

model M . We refer to [24] for more details on the definition of the formula.
• N∼

j (u) – encodes that the value j is in the arithmetic relation ∼∈ {<,>,6,=,>}
with the value represented by the symbolic number u.

• Sc1→c2(w,w′) – encodes the social accessibility relation.
Furthermore, we define the j-th symbolic k-path πj as: (w0,j

a1,j−→ w1,j

a2,j−→ . . .
ak,j−→

wk,j ,u), where wi,j are symbolic states, and ai,j are symbolic actions, for 0 6 i 6 k
and 1 6 j 6 fk(α), and u is the symbolic number; the function fk is defined bellow.
Moreover, we take Llk(πn) := N

=
l (un) ∧H(wk,n,wl,n).

Let p ∈ PV and Y ∈ {Kc,DΓ ,EΓ ,Oc, K̂
c2

c1
,Cc1→c2 ,Dc1→c2 ,E,Cc1→Γ ,Dc1→Γ }.

The function fk : ECDCTL?K → N specifies the number of k-paths of the model M
that are sufficient to validate an ECDCTL?K formula, and it is defined as follows:
fk(true) = fk(false) = fk(p) = fk(¬p) = 0, fk(ϕ ∧ φ) = fk(ϕ) + fk(φ), fk(ϕ ∨ φ) =
max{fk(ϕ), fk(φ)}, fk(Xϕ) = fk(ϕ), fk(ϕUφ) = k · fk(ϕ) + fk(φ), fk(ϕRφ) = (k+ 1) ·
fk(φ) + fk(ϕ), fk(CΓϕ) = fk(ϕ) + k, fk(Y ϕ) = fk(ϕ) + 1.

The formula [Mα,ι]k, which encodes the unfolding of the transition relation of the
model M fk(α)-times to the depth k, is defined as follows:

[Mα,ι]k :=
∨

s∈ι
Is(w0,0) ∧

fk(α)∧

j=1

k∨

l=0

N
=
l (uj) ∧

fk(α)∧

j=1

k−1∧

i=0

T (wi,j ,ai,j ,wi+1,j)

where wi,j , ai,j , and uj are, respectively, symbolic states, symbolic actions, and sym-
bolic numbers, for 0 6 i 6 k and 1 6 j 6 fk(α).

Then, the next step is a translation of an ECDCTL?K state formula α to a propo-
sitional formula [α]M,k. Observe that since ECDCTL?K is an epistemic, deontic and
commitment extension of ECTL?, our definition of [α]M,k agrees with the one presented
in [23] on the part where α is an ECTL? formula.

Let α be an ECDCTL?K state formula, A ⊂ N+ a set of numbers of symbolic
k-paths such that |A| = fk(α), and gs(A) denote the set A \ {min(A)}. If n ∈ N−A
and 0 6 m 6 k, then by 〈α〉[m,n,A]

k we denote the translation of an ECDCTL?K state
formula α at the symbolic state wm,n by using the set A. Let ϕ be an ECDCTL?K
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path formula, and A ⊂ N+ a set of numbers of symbolic k-paths such that |A| = fk(ϕ).
If n ∈ N−A and 0 6 m 6 k, then by [ϕ]

[m,n,A]
k we denote the translation of an

ECDCTL?K path formula ϕ along the symbolic k-path πn with starting point m by
using the set A.

The translation of ECDCTL?K formulae to a propositional formula is defined in-
ductively with the [23] rules for the ECTL? fragment of ECDCTL?K, and with the
following rules for epistemic, deontic and commitment modalities:

•
〈
Kcα

〉[m,n,A]

k
:= Is ∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧Hc(wm,n,wj,n′)),

•
〈
DΓα

〉[m,n,A]

k
:= Is ∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧∧c∈Γ Hc(wm,n,wj,n′)),

•
〈
EΓα

〉[m,n,A]

k
:= Is ∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧∨c∈Γ Hc(wm,n,wj,n′)),

•
〈
CΓα

〉[m,n,A]

k
:=
〈∨k

j=1(EΓ )jα
〉[m,n,A]

k
,

•
〈
Ocα

〉[m,n,A]

k
:= Is ∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧Oc(wj,n′)),

•
〈

K̂
c2

c1
α
〉[m,n,A]

k
:= Is ∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧ Ĥc2

c1 (wm,n,wj,n′)),

•
〈
Cc1→c2α

〉[m,n,A]

k
:= Is ∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧ Sc1→c2(wm,n,wj,n′)),

•
〈
Cc1→Γα

〉[m,n,A]

k
:= Is ∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧∧c2∈Γ Sc1→c2(wm,n,wj,n′)),

•
〈
Dc1→c2α

〉[m,n,A]

k
:= Is ∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧Oc2(wj,n′) ∧ Sc1→c2(wm,n,wj,n′)),

•
〈
Dc1→Γα

〉[m,n,A]

k
:= Is∧

∨k
j=0([α]

[j,n′,gs(A)]
k ∧∧c2∈Γ (Sc1→c2(wm,n,wj,n′)∧Oc2(wj,n′)),

where n′ = min(A), and Is denotes the formula
∨
s∈ι Is(w0,min(A)).

Now let α be an ECDCTL?K state formula. Then [α]M,k := 〈α〉[0,0,Fk(α)]
k , where

Fk(α) = {j ∈ N | 1 6 j 6 fk(α)}.

Theorem 2. Let M be a model and α be an ECDCTL?K state formula. Then for
every k ∈ N and for every s ∈ ι, M, s |=k α if, and only if, the propositional formula
[M,α]k is satisfiable.

4 Example – the NB protocol

The NetBill (NB) protocol [17] is an electronic commerce protocol designed to be used
for the selling and delivery of low-priced information goods over the Internet. The
NB transaction model involves three agents: the customer (Cus), the merchant (Mer)
and the NetBill transaction server (NB). A transaction involves three phases: price
negotiation, goods delivery, and payment. The basic protocol consists of eight steps:
1. Cus⇒Mer: Price request
2. Mer ⇒ Cus: Price quote
3. Cus⇒Mer: Goods request
4. Mer ⇒ Cus: Goods, encrypted with a key K
5. Cus⇒Mer: Signed electronic payment order (EPO)
6. Mer ⇒ NB: Endorsed EPO (including K)
7. NB ⇒Mer: Signed result (including K)
8. Mer ⇒ Cus: Signed result (including K)

In this section we are interested in applying our SAT-based BMC method for CDIS
to verify a version of the NB protocol, where Mer does not operate as it is supposed
to. Specifically, we consider the possibility that Mer may send the receipt without
delivering the goods.
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Modelling the NB protocol. We used the model M = (S, ι, T,V,∼c, ./c,∼c1→c2

), that is shown in Fig. 1 to model the behaviour of the violated NB protocol. The
associated CDIS = ({ιc, Lc, ‖Φ‖c, V arc, Actc, Pc, tc,Vc}c∈A) is defined in the next
paragraph. The NB protocol begins at s0 with a customer (Cus) requesting a price
for some desired goods (e.g. journal articles). This request is followed by the merchant
(Mer) reply with sending an offer (the price quote), which means creating a commit-
ment. Cus can either reject this offer, which means releasing this offer at s7, or accept
this offer, which means creating a commitment at s3. Cus’s commitment means that if
Mer delivers the requested goods, then he is willing to pay for the goods. At this state,
Cus has two possibilities: to withdraw his commitment at s7 or to delegate it to his
bank to pay Mer on his behalf. When Cus pays for the requested goods Cus has two
possibilities: either Mer delivers goods or not. If Mer delivers goods at s5 (i.e., Mer
fulfills his commitment), then he sends the receipt to Cus at s6. If Mer withdraw his
offer, then Mer violates his commitment at s8 and either moves to the failure state s9

after refunding the payment to Cus or moves to the state s6 after sending erroneously
the receipt to Cus. This protocol can be extended to any number n of agents greater
than two.

Fig. 1. The model of NB; the solid lines refer to the temporal rela-
tion; the social accessibility relation is: ∼Cus→Mer= {(s0, s0), (s1, s1),
(s2, s2), (s5, s5), (s6, s6), (s7, s7), (s8, s8), (s9, s9), (s3, s4), }, ∼Mer→Cus= {(s0, s0),
(s1, s1), (s2, s2), (s5, s5), (s6, s6), (s7, s7), (s8, s8), (s9, s9), (s4, s5), }.

In the CDIS setting the NB protocol involves three agents: the merchant (Mer)
and the customer (Cus), and the NetBill transaction server (NB). Each agent of the
protocol can be modelled by considering its set of local states, set of local initial state,
set of green states, finite set of local integer variables, set of local actions, local protocol,
local evolution function, and local valuation function.

For Cus, it is enough to consider 11 possible local states. Since we are not admitting
the possibility of faults, its local states are all green. Thus, w have: LCus = {c0, . . . , c10},
RCus = ∅, and ‖Φ‖Cus = LCus. Further, ιCus = {c0}. For Mer, it is also enough
to consider 11 possible local states, i.e., LMer = {m0, . . . ,m10}, and ιMer = {m0}.
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Since we assume that it is possible that a faulty receipt was sent before the goods
was delivered, we classify the local states of Mer as follow: ‖Φ‖Mer = LMer \ {m8}
and RMer = {m8}. For NB, to simplify the presentation, we shall to consider just
one local state: LNB = {·} = ιNB . Moreover, we assume that LNB = ‖Φ‖NB ,
RNB = ∅. Now we can define the set of possible global states S for the scenario
as the product LCus ×LMer ×LNB , and we consider the following set of initial states
ι = {(c0,m0, ·)}. The set of boolean (integer) variables available to the agents are as fol-
lows: V arCus = {x1, x2, x3, x4}, V arMer = {x1, x2, x5, x6}, V arNB = {x3, x4, x5, x6}.
The set of actions available to the agents are as follows:
ActCus = {SendPriceRequest, ReceivePriceQuote, SendAcceptOffer,
ReceiveReceipt, ReceiveRefund, SendRejectOffer, SendWithdraw,
SendDelegateToBank, ReceiveGoods, ReceiveNoGoods, End, λ},
ActMer = {ReceivePriceRequest, SendPriceQuote, SendNotDeliver,
ReceiveAcceptOffer, ReceiveRejectOffer, ReceiveWithdrawOffer,
ReceiveDelegateToBank, SendDeliver, SendRefund,ReceivePay, SendReceipt,End,
λ}, ActNB = {SendPay, λ}, where λ stands for no action. The local protocols of the
agents are the following:
• PCus(c0) = {SendPriceRequest}, PCus(c1) = {ReceivePriceQuote},
PCus(c2) = {SendAcceptOffer, SendRejectOffer},
PCus(c3) = {SendWithdraw, SendDelegateToBank},
PCus(c4) = {ReceiveNoGoods,ReceiveGoods}, PCus(c5) = {ReceiveReceipt},
PCus(c6) = {λ}, PCus(c7) = {End},
PCus(c8) = {ReceiveReceipt, ReceiveRefund},
PCus(c9) = {λ}, PCus(c10) = {λ}.

• PMer(m0) = {ReceivePriceRequest}, PMer(m1) = {SendPriceQuote},
PMer(m2) = {ReceiveAcceptOffer,ReceiveRejectOffer},
PMer(m3) = {ReceiveWithdrawOffer,ReceiveDelegateToBank},
PMer(m4) = {SendDeliver, SendNotDeliver},
PMer(m5) = {SendReceipt}, PMer(m6) = {End}, PMer(m7) = {λ},
PMer(m8) = {SendReceipt, SendRefund}, PMer(m9) = {End},
PMer(m10) = {ReceivePay}.

• PNB(·) = ActNB .
Given Fig. 1 and the above protocol functions, it should be straightforward to infer
the local evolution function of the agents. Furthermore, in the Kripke model of the NB
protocol, we assume the following set of proposition variables: PV = {Pay, Deliver,
Price, Accept} with the following interpretation:
(M, s) |= Pay if lCus(s) = c4, (M, s) |= Accept if lCus(s) = c3,
(M, s) |= Deliver if lMer(s) = m5, (M, s) |= Price if lMer(s) = m2.

Some temporal, deontic and social properties we may be interested in checking for
the example above are the following (we express them in the universal language, but
we verify their negations, i.e., existential properties):
1. ϕ1 = AG(Pay → FDeliver) – Cus pay for the goods, then the goods will eventu-

ally be delivered.
2. ϕ2 = AG(CCus→MerAccept→ FPay) - whenever Cus commits towards Mer that

he accept the offer, then Cus will eventually pay for the offer.
3. ϕ3 = AG(DCus→MerPay → FDeliver) - whenever Cus commits towards Mer

under the assumption thatMer is functioning correctly that he pays for the goods
then Cus will eventually receive the goods.
Having the above description of the NB protocol, we can easily infer propositional

formulae that encode both the model and all the properties mentioned above. Further,
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checking that the NB satisfies the properties 1–3 can now be done by feeding a SAT
solver with the propositional formulae generated in the way explained above.

5 Conclusions

We proposed the SAT-based BMC for ECDCTL?K and for CDIS. The BMC of the
CDIS may also be performed by means of Ordered Binary Diagrams (OBDD). This will
be explored in the future. Moreover, our future work include an implementation of the
algorithm presented here, a careful evaluation of experimental results to be obtained,
and a comparison of the OBDD- and SAT-based BMC method for CDIS.
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Abstract. Action rule is an implication rule that shows the expected
change in a decision value of an object as

1 Introduction

Recently we can observe very dynamic growth in the field of computer-based medi-
cal systems. It resulted from noticeable improvements in medical care, from ease of
storage and access of digital imaging through gathering of computerized medical data
to accessing on-line literature, patient monitoring, observing online surgeries, or com-
puter support for most medical diagnosis. Similarly to other domains, decision-support
systems have proven to be valuable tools that help professionals in facing challenging
medical problems, such as diagnosis and therapy. The etiology of dysphonia is very
diverse and rarely monocausal. For example, in the course of allergic rhinitis occurs
edema of nasal, sinuses and larynx mucosa which leads to frequent inflammations of
these structures, and even organic changes of the larynx: reincke edema, laryngeal
polyps, chronic hypertrophic laryngitis and voice nodules [8]. There is strong associa-
tion between gastroesophageal reflux and pharyngolaryngeal reflux as factors leading to
respiratory disease, manifested as dysphonia, wheezing, coughing, recurrent laryngitis
[21], [22], [23]. Given that stakes happen to be extremely high, support of decision-
making plays an extremely wide role in the field of medicine. Due to a number of
diseases which symptom is hoarseness is possible to make an incorrect diagnosis (mis-
diagnosis). Incorrect diagnosis leads to treatment that means waste of many resources,
time and sometimes even of human life. Automating those processes that can be cap-
tured by focus on characteristic symptoms and signs, minimalize human error and
leads to overall improvements in the quality of medical care. The primary purpose of
this information system is to improve diagnostic accuracy for hoarseness (dysphonia),
reduce inappropriate antibiotic use, reduce inappropriate steroid use, reduce inappro-
priate use of anti-reflux medications, reduce inappropriate use of radiographic imaging,
and promote appropriate use of laryngoscopy, voice therapy, and surgery – according
to clinical practice guideline [19], [21].
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2 Larynx disorders as suggested area for computer-aided
diagnostics

The domain of larynx diseases is especially suited to application of computer-based
methods and there are several reasons for high expectations from computer-aided diag-
nosis. Firstly, the number of cases of throat and larynx cancers is on the rise. Secondly,
correct diagnosis, especially in early stages of disease, is difficult. There is variety of
diseases that manifests with similar symptoms. Finally, early diagnosis is critical, as
in some cases damage to the vocal cords caused by an untreated disorder may by ir-
reversible. Typically, a patient suffering from symptoms suggesting of hoarseness seeks
help of a family doctor. Primary care physicians face the daunting task of determining
the source of discomfort connected with abnormal sound, based on patient-reported
data and physical examination, possibly enhanced with the results of basic medical
tests. According to Ruitz et al. [18], many physician are willing to empirically prescribe
reflux medication as primary therapy to patients with chronic hoarseness of unknown
origin, even when symptoms of gastroesophageal reflux disease are not present [19]. Ac-
cording to Traister et al., vocal cord dysfunction is often misdiagnosed and mistreated
as asthma, which can lead to increased and unnecessary medication use and increased
health care utilization [21].

Correct diagnosis under these circumstances is not easy and accuracy can be low.
This rather low diagnostic performance is caused by several etiological and organi-
zational factors. These include the nature of the larynx. Numerous conditions can
cause hoarseness, ranging from simple inflammatory processes to more serious sys-
temic, neurologic, or cancerous conditions involving the larynx. Evaluation of a patient
with hoarseness includes a careful history, physical examination, and in many cases,
laryngoscopy [3], [9]. Any patient with hoarseness lasting longer than two weeks in the
absence of an apparent benign cause requires a thorough evaluation of the larynx by
direct or indirect laryngoscopy. Visualization of vocal fold vibration is essential for as-
sessing the causes of voice quality disorders, the so-called dysphonia. In clinical practice
endoscopic and stroboscopic laryngeal methods are widely used [5], [7]. Detailed infor-
mation related to vocal folds is obtained through application of the high-speed digital
video recording method [5], [6]. The management of hoarseness includes identification
and treatment of any underlying conditions, vocal hygiene, voice therapy, and specific
treatment of vocal cord lesions. Referral for surgical or other targeted interventions is
indicated when conservative management of vocal cord pathology is unsuccessful, when
dysplasia or carcinoma is suspected, or when significant airway obstruction is present.

3 New computer supported diagnosis system

The system is creating in collaboration between the Department of Mechanics and
Computer Science at Bialystok University of Technology and physicians at the Depart-
ment of Clinical Phonoaudiology and Logopedics at Medical University of Bialystok,
and Laryngologic Medical Centre. The system allows for systematic collection and pro-
cessing of clinical data of hoarseness patients diagnosed and treated in the medical
centre. The system is equipped with a diagnostic module built around several statisti-
cal methods that have been found useful in diagnosis. An integral part of the system
is database, created in 90s and thoroughly maintained. The current database contains
approximately 500 patients records – with the ultimate diagnosis verified by means of
blood tests, laryngoscopy, CT scan, biopsy, x-rays. Each case is described by over 30
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different medical findings, such as patient self-reported data, results of physical exam-
ination, laboratory tests and finally a histopatologically verified diagnosis. The system
includes the module supporting the physicians in making a diagnosis and it can be
treated as database system because decision rules used there relay mainly on informa-
tion extracted from the database. The patients from this database have been classified
by clinicians into several adequate throat and larynx diseases. The support of diagnosis
in the system is based on a comparison of a new patient case with similar cases from its
database. This paper presents how new ideas with computer-aided diagnosis can im-
prove typical medical diagnosis of patients with throat and larynx diseases, especially
with hoarseness.

4 Action rules mining

Finding useful rules is an important task of a knowledge discovery process. Most re-
searchers focus on techniques for generating classification or association rules. They
assume that it is user’s responsibility to analyze the connections in order to infer so-
lutions for specific problems within a given domain. The classical knowledge discovery
algorithms have the potential to identify enormous number of significant patterns from
data. But at the same time people are overwhelmed by a large number of uninteresting
patterns and it is very difficult for a human being to analyze them, because of the huge
time consuming tasks. Therefore, a need for new methods with the ability to assist
users in analyzing a large number of rules for a useful knowledge [1] is seeking.

An action rule is a rule extracted from a decision system that describes a possible
transition of objects from one state to another with respect to a distinguished attribute
called a decision attribute [11]. We assume that attributes used to describe objects in
a decision system are partitioned into stable and flexible. Values of flexible attributes
can be changed. This change can be influenced and controlled by users. Action rules
mining initially was based on comparing profiles of two groups of targeted objects –
those that are desirable and those that are undesirable [1], [2], [11], [12].

An action rule was defined as a term

r = [ω ∗ (α→ β)]→ (ϕ→ ψ)],

where ω, α, β, ϕ, ψ are descriptions of objects, in our case seen as patients. The term r
states that when a fixed condition ω is satisfied and the changeable behavior (α→ β)
occurs in patients registered in a database so does the expectation (ϕ→ ψ). This paper
proposes a method for constructing action rules directly from single classification rules.
This method (ARAS algorithm) has been implemented as one of the modules in new
computer aided support system, which consists of a medical database and a set of
tests and procedures, facilitating decision-making process for patients with throat and
larynx disorders.

Action rules introduced in [14] has been further investigated in [1], [2], [16], [11],
[12], [13]. Paper [12] was the first attempt towards formally introducing the prob-
lem of mining action rules without pre-existing classification rules. Authors explicitly
formulated it as a search problem in a support-confidence-cost framework. The algo-
rithm proposed by them has some similarity with Apriori [10]. The definition of an
action rule in [12] allows changes on flexible attributes. However changing the value
of an attribute, is directly linked with a cost [13]. In this paper we propose a very
simple LERS-type algorithm for constructing action rules from a single classification
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rule. LERS is a classical example of a bottom-up strategy which constructs rules with
a conditional part of the length k + 1 after all rules with a conditional part of the
length k have been constructed [4]. Relations representing rules produced by LERS are
marked. System ARAS assumes that LERS is used to extract classification rules. This
way system ARAS has to check if these relations are marked by LERS. The same, if
we use LERS as a pre-processing module for ARAS, then the overall complexity of the
algorithm is decreased [11], [12]. An action rule can be constructed in ARAS from two
classification rules only if both of them belong to the same cluster and one of them is
a target classification rule.

5 Action rules in support diagnosis medical system

Tested database contains information about 500 patients described by 28 attributes
(including 14 laboratory tests with values discretized to: below normal, normal, above
normal). It has 10 stable attributes.

The decision attribute has the following values:
A – normal,
B – vocal cord polyps,
C1 – voice nodules,
C2 – voice nodules and reflux disease,
D – functional dysphonia,
E – larynx-cancer.

The diagnosis of larynx disease depends on a combination of patient’s history, phys-
ical examinations, laboratory tests, radiological tests, and frequently a larynx biopsy.
Blood tests should be analysed along with the patient’s history and physical exam-
ination. A medical treatment is naturally associated with reclassification of patients
from one decision class into another one. In our research we are mainly interested in
the reclassification of patients from the class C2 into class C1 and from class C1 to
class A. Obviously database in our system has many missing values so we decided to
remove all its attributes with more than 0.80 of null values. We do the same also with
subjective attributes (like history of smoking). We used classical null value imputation
techniques based on ERID algorithm [1] and applied RSES software to find d-reducts
[1], [2]. For the testing purpose, we have chosen the same d-reduct. By d-reduct we
mean a minimal subset of attributes which by itself can fully characterize the knowl-
edge about attribute d in the database. The description of attributes (tests) listed in
system R is given below:

R = {a, g, ii, sa, ya, is, h, sp, hh, bi, vi, ad, ph, vw, sd},

where
a – age,
g – gender,
ii – inhalation injuries,
sa – seasonal allergy,
ya – year-round allergy,
is – irritating substances,
h – hoarseness,
sp – surgeries in the past,
hh – history of hospitalization,
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bi – bacterial infection,
vi – viral infection,
ad – autoimmune diseases,
ph – pH level,
vw – voice work,
sd – special diet.

Many action rules have been discovered. Two of them with high confidence (close
to 90) are given below:

[(hh, 1) ∗ (g, 2) ∗ (h, 1)] ∗ (sd, 2→ 1) ∗ (ph, 2→ 1)→ (d,C2→ C1).

The first rule is applicable to women with a history of hospitalization. It says that if
we change the diet into special one and we change the level of ph, then we should be
able to reclassify such patients from the category C2 to C1.

[(hh, 1) ∗ (g, 1)] ∗ (vw, 2→ 1) ∗ (sa, 2→ 1)→ (dd,C1→ A1).

The second rule is applicable to men with history of hospitalization. It says that if
we minimize seasonal allergy and we minimize voice expose then we should be able to
reclassify such patients from the category C1 to A1.

6 Conclusion

Action rules mining can be successfully applied in other medical databases. We previ-
ously built system to support flat feet treatment [1]. In this model authors suggested
that the arch height correction is increased by age and place of living, and decreased
as body mass increased. Therefore changing body mass is one of the main purposes to
obtain promising results.

The paper presents preliminary results which finally will lead us to the full con-
struction of diagnostic system for improving fast throat disorders diagnoses. In future
the authors will construct a flexible temporal feature retrieval system based on group-
ing patients of similar visiting frequencies with connection to an action-rules engine,
which will consist of four modules: a data grouping device, a temporal feature extrac-
tion engine, a decision tree classification device, and an action rules generation device.
The data grouping device is to filter out less relevant records in terms of visiting dura-
tion patterns measured from the initial visits. The temporal feature extraction engine
is to project temporal information into patient-based records for classic classifiers to
learn effects of treatment upon patients. The decision tree classification device is to
generate classification rules. The action rules generation device is to build action rules
from certain pairs of classification rules.
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Abstract. The study is focused on structural analysis of musical pieces,
based on specialized grammars covering music information. The analy-
sis may be performed on a single musical piece, where one searches for
leitmotifs. A comparative analysis may also be performed, where a com-
parison of rhythmic and melodic motives is performed. Rhythmic motives
are regarded here as patterns of notes’ durations of various length, start-
ing at length one, that allows for a simple distribution of notes length for
a piece. The operators allow to relativize rhythmic and melodic motives
of length 2 and more so they became more universal. In this paper we fo-
cus on searching for transformed and non-transformed motives, analysing
melodic and rhythmic sequences, structure discovery and comparative
analysis of musical pieces.
Keywords: music information, searching, knowledge discovery, knowl-
edge understanding, syntactic structuring, querying.

1 Introduction

In this paper we analyze structured spaces of music information. The study is performed
on Western-style music mostly, however it is possible to apply the same methodic for
another music-styles, as long as they are based on a specific scale.

The study is focused on structural analysis of musical pieces [1], [4], [5], based on
operators proposed in [7]. The analysis may be performed on a single musical piece,
where one searches for lait-motives. A comparative analysis may be performed, regard-
ing rhythmic and melodic motives [6]. The study is based on proposed operators, that
serve for extensive searching related to querying as detailed in the authors’ previous
work: [8]. The idea is implemented basically on standard paginal music notation rep-
resented in Music XML form [2], but may be adopted to other formats of describing
music information, like Braille music description [10], MIDI [11] etc. The subject could
be seen as a continuation of the new issue of “automatic image understanding” raised
by R. Tadeusiewicz a few years ago, c.f. [12] [13].

Section 2 presents the proposed simplified searching-oriented grammar and three
operators for detection of melodic and rhythmic transformations. Section 3 discuses
advanced searching in spaces of music information with the use of proposed operators
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and grammar. Section 4 presents methodology and examples for searching for leitmotifs,
rhythmic analysis and melodic analysis. Finally, section 5 concludes the paper and
proposes future work.

2 Searching-oriented grammar

In paper [7] we simplified the graphically oriented grammar proposed in our previous
work [8] for paginated music notation (mostly of graphical characteristic). The pro-
posed grammar may be seen as searching-oriented grammar. The searching regards
melodic and rhythmic dependencies, typical to music spaces of information, and there-
fore disregard any graphical aspects of music notation.

For this purpose we propose to omit most graphical components typical to pagi-
nated music notation (e.g. page, stave, barline, clef). Searching is much easier in con-
tinuous notes space, with no artificial divisions, therefore traditionally fundamental
<measure> tag is also disregarded. For the same reason we propose to convert indis-
pensable music notation symbols connected with stave or measures into granular note
attributes and disregard the unnecessary ones.

In order to simplify searching in space of music information three new operators
were proposed, described in detail in the sections below. We propose to append to note
the values produced by the operators as additional properties useful in searching.

2.1 Rhythm ratio operator

In order to efficiently process searching for rhythm-transformed patterns we propose
an operator designated rhythm ratio (qrh) defined as the ratio of the current note
duration to the previous note duration (for example: 16th preceded by 8th would have
qrh value of 0.5). We consider rests as intrinsic element of rhythm, therefore they are
processed in the same way, except that the ratios values for rests are negative. That
allows for easy differentiation in between notes and rests, as qrh for notes are always
positive. The qrh is defined for all notes/rests in the particular voice except for the first
one.

2.2 Scalar difference operator

We introduce an operator designated scalar difference (ds) that defines the difference
of the current note to the previous note, expressed in diatonic scale degrees. The ds is
defined for all notes in particular voice except for the first one, providing that the key
(scale) is defined. Please note that the ds value could be also a fraction for accidental
note (a note outside of defined scale). For this operator rests are ignored, as arbitrarily
they do not contribute to the melody. Operator ds is similar tomelodic diatonic interval
in music theory (but more convenient).

2.3 Halftone difference operator

Similarly we introduce an operator designated halftone difference (d1/2) that defines
the difference of the current note to the previous note, expressed in halftones. The
d1/2 would be defined for all notes in particular voice except for the first one. For
this operator rests are ignored, as arbitrarily they do not contribute to the melody.
Operator d1/2 is very similar to melodic enharmonic interval in music theory.



Similarity-based Searching in Structured Spaces of Music Information 197

2.4 Exemplary values of the three operators

The exemplary values of the three operators are depicted in Fig. 1. Boxes represent
identical melodic patterns (3 notes) for d1/2 and ds and identical rhythmic pattern (4
notes) for qrh.

Fig. 1. Three proposed operators used on a motive from Promenade (Pictures at an
Exhibition) by Modest Mussorgsky (please note the lack of measures)

2.5 Context-free productions of proposed grammar

A raw description of the searching-oriented music notation could be approximated
by the set of context-free productions [9] given below. Components of the grammar
G = (V, T, P, S) are as follows. The set of nonterminals includes all identifiers in triangle
brackets printed in italic. The nonterminal <score> is the initial symbol of G. The set
of terminals includes all non bracketed identifiers.
<score> → <score_part> <score> | <score_part>
<score_part> → <voice> <score_part> | <voice>
<voice> → <chord> <voice> | note <voice> | rest <voice> | <voice>
<chord> → note <chord> | note

Grammar description and comments: <score> may consist of one or sev-
eral elements of type <score_part>, that represent subsequent parts of score in time
dimension. It is preferable that <score_part> would be maintained in the constant
key, as searching (when including diatonic transpositions of pattern) may depend on
scale. Each <score_part> consists of one or several elements of type <voice>, that
represent voices (in the sense of instrumental parts, polyphonic voices, leading motive,
accompaniment, etc.), performed simultaneously for a given <score_part>. <voice>
may contain terminals note, rest or non-terminal <chord>, that represent subsequent
vertical events in time dimension. Definition of <chord> cannot be strict in practice, as
it may contain notes of various durations and even rests (depending on the strictness
of <voice> definition). Terminal rest contains obligatory attribute duration. Terminal
note contains obligatory attributes pitch and duration and may contain non-obligatory
attributes, for example related to articulation or dynamics. We also propose to include
meta-data attributes: values of proposed operators: ds, d1/2 and qrh.
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3 Advanced searching in spaces of music information

Searching is an operation of locating instance(s) matching a given pattern, i.e. locating
instance(s) identical or similar to the pattern. The operation search in the space of mu-
sic information concerns a pattern, which is a structure of music information. Searched
pattern is usually a result of another non-trivial operation: selection.

Searching in more general context could be seen as a particular querying operation.
According to the Cambridge Dictionaries Online query is a question, often expressing
doubt about something or looking for an answer from an authority, c.f. [3]. In this
paper we assume that answer from an authority is also understood as accomplishment
of an operation for a given request.Querying in spaces of music information could
signify operations like: selecting, searching, copying, replacing, pasting, transposing
etc. In this work we are interested in advanced searching operations with regard to
melody transpositions and rhythm transformations. Please note that the searching for
transformed patterns may occur in the same <voice>, for different <voice> derivation
branches and for different <score> derivation trees (representing musical pieces).

3.1 Melodic transformations

This section discuses melodic transformation and searches in this dimension using two
introduced operators ds and d1/2. For the discussion we propose the following melodic
transformations taxonomy:
1. exact melodic match;
2. ottava-type transposition (all’ ottava, all’ ottava bassa, etc.) - a particular case of

transposition;
3. diatonic transposition (maintaining the diatonic intervals, what could result in

slight change of the number of halftones between the corresponding notes);
4. chromatic transposition (maintaining the exact number of halftones between the

corresponding notes);
5. irregular melodic transformations (variation type).

Exact melody match is detected with a given ds (or d1/2) sequence and at least
one corresponding note being identical. Please note that due to lack of artificial divi-
sions (alike measures, staves, pages, etc.) it is relatively easy to query the structure of
information. Longer motives could also start in different moments of measure, what is
natural for the proposed representation.

Chromatic transposition With d1/2 it is very easy to detect chromatic transpo-
sition, as sequence of identical values would signify chromatically transposed melody
fragments.

Diatonic transposition With ds it is very easy to detect scalar transposition, as
identical sequences would signify similar melody fragments with regard to the defined
key (the exact number of halftones can vary however).

Ottava-type transpositions are detected with a given ds (or d1/2) sequence and
at least one corresponding note name (excluding octave designation) being identical.
This is an alternative to matching of note names sequences. It is more potent approach
as ottava-type transpositions could be detected during general transposition searches.
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Irregular melodic transformations (as for example tonal answer in fugue) may
be detected with the use of similarity measures for the compared sequences. Such sim-
ilarity measures may be for example Levenstein editing distance, as occasional interval
modifications may occur due to harmonic relations, not alternating the most sequence.
This is a frequent case for fugae tonal answer (comes) Using such similarity measure on
an unfixed-length sub-sequence affects heavily the computational complexity, therefore
we propose to limit the possible alternations to a small amount (1 to 3, depending on
the length).

3.2 Rhythm transformations

This section discuses rhythmic transformation and searches in duration dimension us-
ing introduced operator qrh. For the discussion we propose the following rhythmic
transformations taxonomy:
1. exact match
2. diminution - a melodic pattern is presented in shorter note durations than previ-

ously used (usually twice);
3. augmentation - a melodic pattern is presented in longer note durations than pre-

viously used (usually twice);
4. irregular rhythmic transformations (of variation type).

Exact rhythmic match is detected with a given qrh sequence and at least one
corresponding duration being identical.

Diminutions and augmentations With qrh it is very easy to detect diminutions
as well as augmentations of any kind, as sequence of identical qrh values would signify
identical rhythm dependencies.

Irregular rhythm transformations may be detected with the use of similarity
measures for the compared sequences.

3.3 Generalization of proposed operators

The three proposed operators are the most potent for a single voice line, however they
are applicable as well to chords and even whole musical pieces. Chords sequences could
be processed in the following ways:
• parallel calculations: assuming the equal number of notes in each chord, oper-

ators could be determined in parallel. That would be useful for frequent thirds or
sixths sequences.

• each-to-each calculations: each-to-each relations are determined and stored.
That increases the amount of data to be generated and could result in arbitrary
false searching matches.
Advantage of the each-to-each calculations: the whole musical piece could be an-

alyzed at once, disregarding voice selection. It could be very useful for missing, in-
complete or erroneous voice data (resulted frequently from automatic transcription or
conversion) and may serve as meta-information for discovering structures.

3.4 Similarity-based searching

The melodic and rhythmic transformations described above - when combined - could
be complex. It is important to consider intrinsic structure of musical piece, that heav-
ily affects the variability and repeatability of motives. One such example is fugae, that
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is dedicated to repeating motives, frequently transformed melodically and rhythmi-
cally. A common fugae structure is one voice presenting the subject (main theme), and
then another voice coming with the answer usually altered harmonically (what implies
melodic transformations). Another example is musical form Variation, where the alter-
ation of main motive are multiple and combined, including rhythm, melody, harmony,
structure, dynamics etc.

Searching at two planes simultaneously (melodic and rhythmic planes) may be
difficult regarding the unknown length of motives and the fact that motive may be
heavily transformed. This is simplified by using the proposed operators, that are of
relative character and do not depend on absolute values (pitch and duration). The pro-
posed grammar largely simplifies searching, as operator values may be seen as (mostly
parallel) sequences of floating point values. The task of identifying unknown-length
sub-sequences in a long sequences (including two or three dimensions of values) is com-
putationally complex. Possible transformations induce the need for efficient similarity
measures, that will overlook small changes but react to large ones.

4 Methodology and examples

In this section we present examples of advanced searching with a short analysis of
operators’ values and motives similarity. The analysis is based on an short except (18
measures in 5 voices) from W. A. Mozart work, presented in Fig. 2. The musical piece
is an interesting example because of its slightly variational characteristic.

Fig. 2. Quintet for Clarinet and Strings (the beginning), K.581, W. A. Mozart

The presented fragment consists of 5 instrumental parts, described by proposed
operators as in Fig. 3.

The most viable method for rhythm or melody analysis would be to analyze each
part of music piece separately, as specific parts differ in character depending on musical
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Fig. 3. Rhythmic motives detected in different voices by operator qrh and verified by
ds

genre, form, composer and epoque. One may define various metrics for characterization
of instrumental (vocal) part ;

With a method for part characterization one may specify various comparisons:
• comparison of instrumental (vocal) parts in a single musical piece;
• comparison of two musical pieces, taken as a whole;
• comparison of specific instrumental (vocal) parts from two musical pieces; for ex-

ample leading voices of two songs;
• comparison of two groups of musical pieces, for example works of two composers

or comparison of fugaes to preludes;

4.1 Searching for leitmotives

Searching for leitmotifs, especially transformed ones, may be greatly facilitated with
the use of proposed operators. Rhythmic and melodic analysis should be performed
in parallel for that cause. An exemplary search for leitmotifs for the musical piece
presented in Fig. 2 (only the beginning, due to the lack of space) and Fig. 3 follows in
this section.

Main motive occurs mostly in top and second voice. The operator qrh may be used
to detect several similar rhythmic patterns (5 notes long), that correspond to the main
motive (consisting of two five-notes movements). When analyzing corresponding ds
values, one may see two occurrences of main melodic motive in top voice, and a single
modified occurrence in second voice. Coda seems to be appearing in second voice and
seems to be similar to second part of main motive. Rhythmic pattern in the middle of
the second voice seem to be misleading as melodic pattern is totally different from the
main motive.

As one can see the operators can partially detect modified patterns, however in
order to fully match them a strict measures of similarity of the operator-generated
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sequences should be defined. Such similarity measure could match corresponding op-
erators’ values. It may even employ harmony knowledge (inherent relations between
pitches of simultaneous or close notes).

4.2 Rhythmic analysis

Analysis of rhythm of music part (or the whole piece) may be done and presented using
various (strictly domain-dependent) features, as proposed in the following enumeration,
with graphical examples in Fig 4:

Fig. 4. Rhythmic analysis: a) note lengths; b) qrh distribution; c) oriented graph rep-
resenting threesome notes with transitions

1. statistics of occurrences of lengths for separate notes and rests, example in Fig 4a.
Five parts are presented, it is easy to identify the role of each part: voice 1 consists
mostly of eight-notes, signifying that most of the leading melody occurs in the
voice. Voices 3, 4 and 5 consist mostly of quarters and serve as accompaniment.
Voice 2 is in-between, as it accompanies voice 1, but has also leading moments,
what could be seen in the graph, where quarter-notes and eighth-notes are of equal
count.

2. statistics of occurrences of separate qrh ratios, it corresponds to pairs of consequent
notes/rests example in Fig 4b. Only voice 1 is shown for clarity reasons. The rhythm
is mostly uniform, with occasional slight changes, mostly doubling or dichotomizing
(values 2 and 1/2).

3. statistics of occurrences of two consequent qrh ratios, it corresponds to three-
some consequent notes/rests. This could be quite efficiently shown as a directed
graph, where nodes are qrh ratios and branches are labeled with popularity of the
transition from one qrh ratio value to another. An simplified (disregarding rare
transitions) example for voice 1 is shown in Fig 4c.
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4. longer sequences of qrh ratios corresponding to rhythmic patterns may be seen as
equivalent to real-number time series, as seen in the Fig. 3, qrh values. The problem
however may be simplified at various points:
• These theoretically real-numbers in practice are a small set, as length differ-

ences of notes/rests are limited in practice. Similarly complicated rhythms
resulting from non-standard note/rest lengths are rather rare.

• the length of a pattern corresponding to a musical motive (regarding rhythm)
is limited in practice to approximated values [2;15].

• noisiness of the data is usually absent, as the data is precise, providing that
the data source is music notation. In a rare case that the data source is a live
capturing that involves approximation however (like MIDI capturing of live
music performance or music notation acquirement from raw sound files, alike
PCM), the noise may be present.

Basing on the features similarity metrics may be developed. For the above-mentioned
cases a) and b) similarity may be measured as for a feature vector of a fixed length,
with a plethora of distances proposed in the literature [14]. One may consider if a
kind of weighting should be defined for specific vector elements, regarding them as
more/less important than others. Similarity for case c) may be seen as comparison
of two weighted bi-directional graphs. Finally, the most complicated case d) may be
simplified using the above-mentioned domain-dependent knowledge.

4.3 Melodic analysis

Melodic analysis is quite similar to rhythm analysis. Melody however could be defined as
a sequence of notes of specified pitch, therefore it is unlikely to regard melody of a single
note. Regarding rhythm, a single note length could be seen in relation to a unforeseen
standard length (usually music pieces use 2 to 4 quarter-notes for a measure, therefore
a quarter-note may be seen as a substantial portion of a measure, while sixteenth-note
may be see as a not-so-important one. The separate pitches of notes however are more
likely to carry the harmonic information than the melodic one.

For melodic analysis both operators (scalar differences ds and halftone difference
d1/2, introduced in section 2) may be of great help, however regarding the Western
music (strictly related to major/minor scales) scalar differences ds is much more viable.
Therefore it is used for the following considerations and examples. Likewise, melodic
analysis of a music part (or the whole piece) may be done and presented using various
(strictly domain-dependent) features, as proposed in the following enumeration, with
graphical examples in Fig 5:
1. statistics of occurrences of separate scalar differences ds, it corresponds to pairs

of consequent notes. An example is shown in Fig 5a. Such information may be
interpreted to find out the overall melody character: is it smooth with lots of small
differences or repetitions (ds values close to 0) voices 1, 2 and 3 or jumpy with a
significant amount of larger differences (voices 4 and 5)? It may be also smoothly
progressing upwards and jumping down, what could be seen as negative skewness
of the histogram (voice 1). Descriptive statistics may be easily used to gather
the melody characteristics, based on this simple feature. Various bin sizes may be
used to gather slightly less detailed and more general tendencies. We propose to
use domain dependent bins, that will more efficiently describe the data. Examples
of such bins are given in Fig 5b-d. Bins defined as in Fig 5b and c may serve
as a detector of melody progression, with the second one being more detailed.
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Fig. 5. Melodic analysis: a) ds distribution; b) c) d) domain-dependent bins

Bins defined as in Fig 5d may detect overall characteristics of the part, slight
changes hint leading melody, while large jumps are more likely to signal passaged
accompaniment.

2. statistics of occurrences of two consequent scalar differences ds, it corresponds to a
melodic progress of three notes, related to the specific scale. Similarly to rhythm, a
directed graph, where nodes are ds differences and branches represent transitions,
would be visually inefficient, due to a large amount of nodes and lots of branches.
It could be however still processed digitally. We propose to use mentioned-above
domain-dependent bins, that will more efficiently describe the data.

3. longer sequences of ds ratios corresponding to melodic patterns may be seen as
equivalent to real-number time series, with remarks as above for rhythmic patterns.
Basing on the features similarity metrics may be developed, with parallel method-

ology as described above for rhythmic patterns.

5 Conclusions and future work

In this paper we present methodology and examples for analysis of rhythmic and
melodic sequences as well as searching for leitmotives. For the purpose we use special-
ized grammar oriented at advanced searching (described in details in [7]) with three
operators that describe relations between neighboring notes, regarding melody and
rhythm. The resulting values are attached to notes as properties, for use in searches.

Further applications of proposed searching-oriented grammar may include knowl-
edge discovery by automated searches in whole musical pieces. Disregarding voice selec-
tion it could be performed by using generalizations of proposed operators (as described
in section 3.3). The melodic and rhythmic analysis using proposed operators could
be used to detect the structure of musical work e.g. divide it into separate voices of
consistent constitution.

This study continues construction of specialized grammars covering music informa-
tion. The grammar is searching-oriented but other orientation could be more suitable in
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some applications. Future work in this domain include: a) developing details of another
specialized grammars, b) research on semantics, i.e. developing methods of construc-
tion of valuation relation, as a key issue in automation of querying, c) development of
Select and Replace operations for music notation, d) development of similarity metrics
to detect irregular transformations.
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