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Abstract13

We formally introduce a foundation for computer verified proofs based on higher-order Tarski-14

Grothendieck set theory. We show that this theory has a model if a 2-inaccessible cardinal exists.15

This assumption is the same as the one needed for a model of plain Tarski-Grothendieck set theory.16

The foundation allows the co-existence of proofs based on two major competing foundations for17

formal proofs: higher-order logic and TG set theory. We align two co-existing Isabelle libraries,18

Isabelle/HOL and Isabelle/Mizar, in a single foundation in the Isabelle logical framework. We do19

this by defining isomorphisms between the basic concepts, including integers, functions, lists, and20

algebraic structures that preserve the important operations. With this we can transfer theorems21

proved in higher-order logic to TG set theory and vice versa. We practically show this by formally22

transferring Lagrange’s four-square theorem, Fermat 3-4, and other theorems between the foundations23

in the Isabelle framework.24
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1 Introduction31

Various formal proof foundations combine higher-order logic with set theory [10,23,33,34].32

Such a combination offers a familiar mathematical foundation, while at the same time offering33

more powerful automation present in HOL. All the combinations have been presented without34

a model, even though models for the two separate foundations are well known and studied.35

In this paper we will give a model of such a combination and show some consequences of the36

existence of the model for practical formalizations.37

Today the libraries of proof assistants based on the two separate foundations are among38

the largest proof libraries available. The library of higher-order logic based Isabelle/HOL [43]39

together with the Archive of Formal Proofs consist of more than 100,000 theorems [9], while40

the Mizar Mathematical Library (MML) [6,15] based on set theory contains 59,000 theorems.41
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23:2 Higher-order Tarski Grothendieck

A number of results in the libraries are incomparable, for example among the theorems42

present in Wiedjik’s list of 100 important theorems to formalize Isabelle has 16 theorems not43

formalized in Mizar, while Mizar has 5 theorems absent in Isabelle (64 are formalized in both).44

The Mizar library includes results about lattice theory [7], topology, and manifolds [38] not45

present in the Isabelle library.46

A model for the higher-order Tarski-Grothendieck allows merging the results in the47

two libraries. This merging will be performed mostly manually. The reason for this, is48

that definitions for isomorphic concepts may be quite different in the usual approaches in49

these system. Consider the real numbers. In the MML their definition is performed in50

multiple steps. First, natural numbers are introduced using the set-theoretic successor. Next,51

positive rationals are created by adding fractions as pairs of irreducible naturals 〈n, k〉 (with52

k > 1). Finally, Dedekind cuts are used to obtain positive reals. The Isabelle approach is53

fundamentally different. Natural numbers are a subtype of the axiomatic type of individuals.54

Pairs of naturals are quotiented into integers and rationals. Finally, Cauchy sequences of55

rationals grant reals. The differences in the construction also imply differences in their56

behaviours. Every Mizar natural number is also an integer or real, while in Isabelle coercions57

are required. It is similar when it comes to mathematical structures (used by over 70% of the58

Mizar library). Their semantics [21] in Mizar is close to partial functions specified on named59

fields, which enables for example inheritance and this is used to realize the main algebraic60

structures. Isabelle records are quite similar, but it is type classes that are used to express61

algebra.62

We will propose a way to lift the merged elementary concepts to the more involved ones.63

By associating the Isabelle number 0 and the empty set and the corresponding successor64

operations, we will show a homomorphism between the set theoretic and higher-order natural65

numbers and later integers. We will show that this homomorphism preserves the basic66

operations, which will allow transporting basic number theorems, including Lagrange, and67

Bertrand, and cases of Fermat’s last theorem.68

We will also show that it is possible to show a mapping between the Isabelle type classes69

and the set theoretic structures corresponding basic algebra. This will allow merging the70

formalizations of groups and rings in the two libraries. This will again use some merged basic71

concepts, namely functions and binary operators. This brings us to Euclidean spaces where72

the Brouwer theorem for n-dimensional case (the fixed point theorem [36], the topological73

invariance of degree, and the topological invariance of dimension [37]), which are used to74

define topological manifolds.75

The rest of the paper is structured as follows. In Section 2 we review the higher-order logic76

foundations used later. Section 3 gives an axiomatization of higher-order Tarski-Grothendieck77

(HOTG). We first define it in a higher-order setting and then relate to the actual proof78

assistants based on this foundation. Section 4 presents our model of HOTG. Next, in Section79

5 we show the implications of the existence of the model for practical formalization: we align80

the proof libraries of Isabelle/HOL and Isabelle/Mizar by building isomorphisms between the81

various concepts present in these libraries and by translating theorems via the isomorphism.82

Section 6 discusses related work.83

2 Preliminaries84

We begin by reviewing the syntax and semantics of higher-order logic. The original presenta-85

tion of higher-order logic using simple type theory was due to Church [12] with a corresponding86

notion of semantics due to Henkin [18] (with an important correction by Andrews [2]). We87
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largely follow the notation and presentation style used in [5].88

Let B be a set of base types. We use β to range over the types in B. We next define types89

and use σ, τ to range over types. The set T of types is given by inductively extending B to90

include the type o (of truth values) and the type σ → τ (of functions from σ to τ) for all91

σ, τ ∈ T . We assume o /∈ B and that types are freely generated.92

For each type σ let Vσ be a countable set of variables of type σ, where we assume93

Vσ ∩ Vτ = ∅ whenever σ 6= τ . We use x, y, z to range over variables. For each type σ let Cσ94

be a set of constants of type σ, where again Cσ ∩ Cτ = ∅ whenever σ 6= τ . Furthermore, we95

assume Vσ ∩ Cτ = ∅. We use c, d to range over constants. A name is either a variable or a96

constant. We use ν to range over names.97

We now inductively define a family of sets Λσ of terms, using s, t, u to range over terms.98

For the base cases, Vσ ⊆ Λσ and Cσ ⊆ Λσ. There are two inductive cases: application99

and abstraction. If s ∈ Λσ→τ and t ∈ Λσ, then (st) ∈ Λτ . If x ∈ Vσ and t ∈ Λτ , then100

(λx.t) ∈ Λσ→τ . We often omit parenthesis with the convention that application associates to101

the left, so that stu means ((st)u). Terms of type o are also called formulas.102

We insist on the inclusion of certain constants called logical constants in the family C103

of constants. For simplicity of presentation, we take every logical constant we will use as a104

constant. In particular, we assume:105

¬ is a logical constant in Co→o. We write ¬(st) as ¬st.106

∧, ∨, ⇒ and ⇔ are logical constants in Co→o→o. We use infix notation for ∧, ∨, ⇒ and107

⇔, with priority in this order, and each one associating to the right.108

For each type σ Πσ and Σσ are a logical constants in C(σ→o)→o. We write Πσ(λx1. · · ·Πσ(λxn.t))109

as ∀x1 · · ·xn : σ.t and write Σσ(λx1. · · ·Σσ(λxn.t)) as ∃x1 · · ·xn : σ.t110

For each type σ =σ is a logical constant in Cσ→σ→o. We write =σ s t in infix as s = t.111

For each type σ εσ is a logical constant in C(σ→o)→σ.112

It is well-known that smaller sets of logical constants would be sufficient. For example, it is113

known that in (extensional) higher-order logic equality is sufficient to define the propositional114

constants and connectives as well as the existential and universal quantifiers at each type [1].115

We next turn to a review of Henkin semantics for our language [18] closely following the116

presentation style in [5]. A frame is a family Dσ of nonempty sets such that Do = {0, 1} and117

Dσ→τ ⊆ (Dτ )Dσ for each σ, τ ∈ T . A frame is called standard if Dσ→τ = (Dτ )Dσ for every118

σ, τ ∈ T . An assignment is a function I mapping every name of type σ to an element in119

Dσ. Given a variable x ∈ Vσ and element a ∈ Dσ let Ixa be the assignment agreeing with120

I except possibly on x where Ixa (x) = a. An assignment I is logical if for each σ ∈ T the121

following conditions hold:122

for a ∈ Do I(¬)(a) = 1 if and only if a = 0,123

for a, b ∈ Do I(∧)(a)(b) = 1 if and only if a = 1 and b = 1,124

for a, b ∈ Do I(∨)(a)(b) = 1 if and only if a = 1 or b = 1,125

for a, b ∈ Do I(⇒)(a)(b) = 1 if and only if a = 0 or b = 1,126

for a, b ∈ Do I(⇔)(a)(b) = 1 if and only if a = b,127

for f ∈ Dσ→o I(Πσ)(f) = 1 if and only if f(a) = 1 for all a ∈ Dσ,128

for f ∈ Dσ→o I(Σσ)(f) = 1 if and only if there is some a ∈ Dσ such that f(a) = 1,129

for a, b ∈ Dσ I(=σ)(a)(b) = 1 if and only if a = b, and130

for f ∈ Dσ→o f(I(εσ)(f)) = 1 if and only if there is some a ∈ Dσ such that f(a) = 1.131

In other words, I is logical if it interprets the logical constants appropriately.132

We lift an assignment I to be a partial function Î on terms as follows:133

For names ν, Î(ν) = I(ν).134

For s ∈ Λσ→τ and t ∈ Λσ, Î(st) = f(a) if Î(s) = f ∈ Dσ→τ and Î(t) = a ∈ Dσ.135
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For x ∈ Vσ and t ∈ Λτ , Î(λx.t) = f if f ∈ Dσ→τ and Îxa (t) = f(a) for all a ∈ Dσ.136

Note that for all s ∈ Λσ if Î(s) is defined, then Î(s) ∈ Dσ. If Î is a total function with137

domain
⋃
σ∈T , then I is called an interpretation.138

A (Henkin) model is a pair (D, I) where D is a frame and I is a logical interpretation.139

A model is called standard if the frame is standard. We say (D, I) satisfies a formula s if140

Î(s) = 1 and say (D, I) is a model for a set A of formulas if (D, I) satisfies every s ∈ A.141

To simplify the presentation above, some dependencies were left implicit. For each set B142

of base types (with o /∈ B), we obtain a set T B of types. Additionally, for each set B of base143

types and each family C of constants indexed by T B, we obtain a family ΛB,C of terms. The144

definition of a frame above technically depends on the set B of base types and we say D is a145

frame over B when this dependency needs to be explicit. Futhermore an assignment depends146

on both B and C and we say I is an assignment over B for C when these dependencies need147

to be explicit.148

A theory is a triple (B, C,A) where B is a set of base types, C is a family of sets of149

constants (which must include the logical constants) over the types T B and A ⊆ ΛB,C
o is a150

set of formulas called the axioms of the theory. A pair (D, I) is a model of a theory (B, C,A)151

if D is a frame over B, I is a logical interpretation over B for C and (D, I) is a model of the152

set A of formulas.153

It is known that the notion of a Henkin model provides a sound and complete semantics154

for a variety of proof calculi [5, 8, 11]. Our concern in this article is not with proof calculi155

directly, but with consistency of certain axiom sets for higher-order set theory. In this paper156

we will only consider one axiomatization of higher-order Tarski Grothendieck set theory.157

Soundness implies it is sufficient to find models of these axiom sets to infer consistency, and158

for this purpose constructing a standard model is enough. In future work we plan to consider159

different axiomatizations of higher-order Tarski Grothendieck (e.g., the one in [23]) and plan160

to use soundness and completeness with respect to Henkin models to prove the two versions161

of Tarski Grothendieck are equivalent.162

3 An Axiomatization of Higher-Order Tarski Grothendieck163

In this section we give a formulation of higher-order Tarski Grothendieck (HOTG) set theory164

by giving a theory HOTG. The theory is identical to the one implemented by the first165

author in the Egal system [10] and specified an operator that explicitly gives the Grothenieck166

universe of a set [16]. In the presence of the axiom of choice, this is equivalent to specifying167

that such a universe exists for every set, which is the approach used in the Mizar system168

as specified by Trybulec [42]. In the below axiomatization and in the model in the next169

section, we will use the explicit universe operation, as it makes the presentation simpler,170

but our intention is to use it both for explicit universes and implicit ones, as specified in171

Isabelle/Mizar by Kaliszyk and Pąk [23] using Tarski’s Axiom A [41] and used in Section 5.172

We first describe the theory HOTG as given by the triple (B, C,A). Here B be the173

singleton {ι} and the base type ι is intended to be the type of sets. The typed constants C174

consists precisely of the logical constants and the following additional constants:175

In in Cι→ι→o. We write In s t in infix as s ∈ t.176

Empty in Cι.177

Un in Cι→ι.178

Pow in Cι→ι.179

Repl in Cι→(ι→ι)→ι.180

Univ in Cι→ι.181
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To state the axioms, we will use three abbreviations. Let Subq be the term

λX.λY.∀z : ι.z ∈ X ⇒ z ∈ Y

of type ι→ ι→ o. We write Subq s t as s ⊆ t. Let TransSet be the term

λU.∀X : ι.X ∈ U ⇒ X ⊆ U

of type ι→ o. Let ZFclosed be the term

λU. (∀X : ι.X ∈ U ⇒ Un X ∈ U) ∧ (∀X : ι.X ∈ U ⇒ Pow X ∈ U)
∧(∀X : ι.∀F : ι→ ι.X ∈ U ⇒ (∀x : ι.x ∈ X ⇒ F x ∈ U)⇒ Repl X F ∈ U)

of type ι→ o.182

The set A of axioms consists of the following formulas:183

Extensionality: ∀XY : ι.X ⊆ Y → Y ⊆ X → X = Y .184

∈-Induction: ∀P : ι→ o.(∀X : ι.(∀x : ι.x ∈ X → Px)→ PX)→ ∀X : ι.PX.185

Empty: ¬∃x : ι.x ∈ Empty.186

Union: ∀X : ι.∀x : ι.x ∈ Un X ⇔ ∃Y : ι.x ∈ Y ∧ Y ∈ X.187

Power: ∀XY : ι.Y ∈ Pow X ⇔ Y ⊆ X.188

Replacement: ∀X : ι.∀F : ι→ ι.∀y : ι.y ∈ Repl X F ⇔ ∃x : ι.x ∈ X ∧ y = Fx.189

UnivIn: ∀N : ι.N ∈ UnivN190

UnivTransSet: ∀N : ι.TransSet (UnivN).191

UnivZF: ∀N : ι.ZFclosed (UnivN).192

UnivMin: ∀N U : ι.N ∈ U → TransSet U → ZFclosed U → UnivN ⊆ U .193

4 A Model of Higher-Order Set Theory194

We will make heavy use of the von Neumann hierarchy (see for example [27]). By ordinal195

induction we define the set Vα for ordinals α as V∅ = ∅, Vα+1 = ℘(Vα) and Vλ =
⋃
α<λ Vα.196

Since we work in a well-founded set theory, for every set X there is some ordinal α such that197

X ⊆ Vα (and so X ∈ Vα+1).198

A cardinal κ is inaccessible if it is regular and λ < κ implies 2λ < κ. A cardinal κ is199

2-inaccessible if it is a regular limit of inaccessible cardinals. Note that if κ is 2-inaccessible,200

then for every λ < κ there is some inaccessible κ′ with λ < κ′ < κ. It easily follows every201

2-inaccessible is also inaccessible.202

The following proposition can be found in Kanamori (see Proposition 2.1 in [26]).203

I Proposition 1. Let κ be inaccessible.204

1. x ⊆ Vκ implies x ∈ Vκ iff |x| < κ.205

2. Vκ |= ZFC206

We define universes following Grothendieck [16].207

I Definition 2. Let U be a set. We say U is a universe if four conditions hold:208

U is transitive.209

If x, y ∈ U , then {x, y} ∈ U .210

If X ∈ U , then ℘(X) ∈ U .211

If I ∈ U and Xi ∈ U for each i ∈ I, then
⋃
i∈I Xi ∈ U .212

The fact that every inaccessible yields a universe follows easily from Proposition 1.213
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I Proposition 3. If κ is inaccessible, then Vκ is a universe.214

The following proposition will ensure that universes satisfy the properties in the definition215

of ZFclosed.216

I Proposition 4. Let U be a universe.217

1. If X ∈ U , then
⋃
X ∈ U .218

2. If X ∈ U and f : X → U , then {f(x)|x ∈ X} ∈ U .219

Proof. Suppose X ∈ U . We know
⋃
X ∈ U since

⋃
X =

⋃
x∈X{x}. Now suppose X ∈ U220

and f : X → U . We know {f(x)|x ∈ X} ∈ U since {f(x)|x ∈ X} =
⋃
x∈X{f(x)}. J221

To interpret the constant Univ we will not only need universes, but a global function222

uniformly giving the least universe containing a given set.223

I Definition 5. Let α > 0 be an ordinal. A universe function for α is a function U : Vα → Vα224

such that for all A ∈ Vα we have A ∈ U(A), U(A) is a universe and U(A) ⊆ U for all225

universes U ∈ Vα with A ∈ U .226

I Definition 6. Let α > 0 be an ordinal and U be a universe function for α. Let Dαι be Vα,227

Dαo = {0, 1} and Dασ→τ = (Dατ )Dα
σ for each σ, τ ∈ T B. Note that Vα 6= ∅ since α > 0 and228

so Dα is a standard frame over B. We call Dα the standard set-theoretic frame for α. An229

assignment I over B for C into Dα is called a standard set-theoretic interpretation for α230

and U if I is a logical interpretation and the following properties hold:231

I(In)(a)(A) = 1 if and only if a ∈ A for a,A ∈ Dαι .232

I(Empty) = ∅233

I(Un)(A) =
⋃
A for every A ∈ Dαι .234

I(Pow)(A) = ℘(A) for every A ∈ Dαι .235

I(Repl)(A)(f) = {f(a)|a ∈ A} for every A ∈ Dαι and f ∈ Dαι→ι.236

I(Univ) = U .237

I Theorem 7. Let α > 0 be an ordinal, U be a universe function for α and Dα be the238

standard set-theoretic frame for α. If I is a standard set-theoretic interpretation for α and239

U , then (Dα, I) is a model of the theory HOTG.240

Proof. Assume I is a standard set-theoretic interpretation for α and U . We only need to241

prove I maps every formula in A to 1.242

Extensionality: The fact that

I(∀XY : ι.X ⊆ Y → Y ⊆ X → X = Y ) = 1

follows easily from the fact that A = B whenever A ⊆ B and B ⊆ A for A,B ∈ Vα.243

∈-Induction: In order to prove

I(∀P : ι→ o.(∀X : ι.(∀x : ι.x ∈ X → Px)→ PX)→ ∀X : ι.PX) = 1

it suffices to prove that C = Vα for every C ⊆ Vα such that A ∈ C for every A ∈ Vα with244

A ⊆ C. Let C ⊆ Vα be given and assume A ∈ C for every A ∈ Vα with A ⊆ C. Consider245

Vα \ C. Assume Vα 6= C. In this case Vα \ C must be nonempty. By regularity there is246

an element A ∈ Vα \ C such that A ∩ (Vα \ C) = ∅. Since Vα is transitive A ⊆ Vα and247

so A ∩ (Vα \ C) = ∅ implies A ⊆ C. By our assumption about C, we must have A ∈ C,248

contradicting A ∈ Vα \ C.249

Empty: We know I(¬∃x : ι.x ∈ Empty) = 1 since I(Empty) = ∅.250
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Union: We know I(∀X : ι.∀x : ι.x ∈ Un X ⇔ ∃Y : ι.x ∈ Y ∧ Y ∈ X) = 1 since251

I(Un)(A) =
⋃
A.252

Power: We know I(∀XY : ι.Y ∈ Pow X ⇔ Y ⊆ X) = 1 since I(Pow)(A) = ℘A.253

Replacement: We can easily prove I(∀X : ι.∀F : ι → ι.∀y : ι.y ∈ Repl X F ⇔ ∃x : ι.x ∈254

X ∧ y = Fx) = 1 using the fact that I(Repl)(A)(f) = {f(a)|a ∈ A} for every A ∈ Vα and255

every f : Vα → Vα.256

UnivIn: Since U is a universe function we know A ∈ U(A) for every A ∈ Vα. Hence257

I(∀N : ι.N ∈ UnivN) = 1.258

UnivTransSet: Since U is a universe function, U(A) is a universe (and hence transitive) for259

every A ∈ Vα. Hence I(∀N : ι.TransSet (UnivN)) = 1.260

UnivZF: It is easy to see I(∀N : ι.ZFclosed (UnivN)) = 1 using Definitions 2 and 5 and261

Proposition 4.262

UnivMin: Suppose A,U ∈ Vα where A ∈ U , U is transitive and I(ZFclosed)(U) = 1. We
argue that U is a universe. We know U is transitive. The fact that ℘(X) ∈ U whenever
X ∈ U follows directly from I(ZFclosed)(U) = 1. In particular, since A ∈ U , we know
℘(A) ∈ U and ℘(℘(A)) ∈ U . Let x, y ∈ U be given. Let f : ℘(℘(A))→ U be the function

f(X) =
{
x if A ∈ X
y otherwise

Since f(A) = x and f(∅) = y, we know {x, y} = {f(X)|X ∈ ℘(℘(A))}. Using263

I(ZFclosed)(U) = 1 we conclude {x, y} ∈ U . Now let I ∈ U and a family Xi ∈ U for264

each i ∈ I be given. Let g : I → U be the function g(i) = Xi. Using I(ZFclosed)(U) = 1265

we know {g(i)|i ∈ I} ∈ U and then
⋃
i∈I Xi =

⋃
{g(i)|i ∈ I} ∈ U . Hence U is a universe.266

Since U is a universe with A ∈ U , we conclude U(A) ⊆ U from Definition 5.267

J268

For a general ordinal α there will be no universe function U . For 2-inaccessible cardinals269

there is a universe function and a corresponding standard set-theoretic interpretation.270

I Theorem 8. Let κ be 2-inaccessible and Dκ be the standard set-theoretic frame for κ.271

There is a universe function U for κ and there is a standard set-theoretic interpretation I272

for κ and U .273

Proof. We first construct the universe function. For each A ∈ Vκ, let A′ = {U ∈274

Vκ|U is a universe and A ∈ U}. We argue A′ is always nonempty. Since A ∈ Vκ there275

must be some α < κ such that A ∈ Vα. Since κ is 2-inaccessible there must be some276

inaccessible κ′ < κ with α < κ′. By Proposition 3 Vκ′ is a universe and so Vκ′ ∈ A′. Since A′
277

is a nonempty set,
⋂
A′ is well-defined and we can take U(A) to be

⋂
A′. A simple inspection278

of Definition 2 reveals that the intersection of a nonempty set of universes is itself a universe.279

Thus U(A) is the least universe with A as a member and U is a universe function for κ.280

Next we turn to the interpretation I. The axiom of choice states that there is a function
e : ℘(Vκ+ω)\{∅} → Vκ+ω such that e(A) ∈ A for every A ∈ ℘(Vκ+ω)\{∅}. An easy induction
on types shows Dκσ ∈ Vκ+ω for each σ ∈ T B. Hence Dκσ ∈ ℘(Vκ+ω) \ {∅} for each σ ∈ T B

since Vκ+ω is transitive. We can simply define I(x) = e(Dκσ) ∈ Dκσ for each variable x ∈ Vσ.
For the logical constants c other than εσ we take the obvious value I(c) so that I will be a
logical interpretation. In each case this value is in Dκσ since Dκ is a standard frame. We take
I(εσ) to be the function g ∈ Dκ(σ→o)→σ such that for f ∈ Dκσ→o we have

g(f) =
{

e({a ∈ Dκσ|f(a) = 1}) if f(a) = 1 for some a ∈ Dκσ
e(Dκσ) otherwise.
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It only remains to give values I(c) for the nonlogical constants in C. For In, Empty, Un, Pow281

and Repl there is at most one corresponding value that might possibly satisfy the conditions282

in Definition 6. Since we know Dκι = Vκ is a universe, each of these values is in Dκσ in each283

respective case. Finally we take I(Univ) to be the universe function U constructed above.284

By the choice of I it is easy to see that I is a standard set-theoretic interpretation for κ. J285

As an easy corollary of Theorems 7 and 8 we have the following relative satisfiability286

result.287

I Theorem 9. If there is a 2-inaccessible cardinal, then HOTG is satisfiable.288

5 Proof Integration289

The model defined in the previous section allows us to use the higher-order library and290

set theoretic library simultaneously. We will do this in the Isabelle logical framework, by291

importing various results from the two libraries in the same environment and define transfer292

methods between these results. This will allow us to use theorems proved in one of the293

foundations using the term language of the other.294

All the definitions and theorems presented in this section have been formalized in Isabelle295

and will be presented close to the Isabelle notation. The Isabelle environment will import296

both Isabelle/HOL [32] and Isabelle/Mizar [23] object logics along with a number of results297

formalized in the standard libraries of the two. The notations will follow first-order style298

notations. In particular the symbols =H and =S will refer to the HOL and set-theoretic299

equality operations respectively. Finally be is the Mizar infix operator for specifying the type300

of a set in the Mizar intersection type system [24].301

To combine two types we will first define bijections between these types. We will next302

show that the bijection preserves various constants and operators. This will allow us to303

transfer results using higher-order rewriting, in the style of quotient packages for HOL [19,25]304

and the Isabelle transfer package [20]. In the MML set theory it is common to reason both305

about the type of the natural numbers and the elements of the set of natural numbers. This is306

necessary, since the arguments of all operations must be sets, while at the same inference can307

be performed efficiently for types [6]. We therefore define operators for specifying bijections308

between HOL types and either set theoretic types and sets. The definitions are analogous309

and we show only the one for types. An isomorphism between X and Y will be defined as a310

pair of two morphisms f : X → Y , g : Y → X such that f ◦ g = idY and g ◦ f = idX .311

I Definition 10. Let σ be type, d ∈ Λι be set, function s2h ∈ Λι→σ, function h2s ∈ Λσ→ι.312

The predicate beIsoS〈h2s, s2h, σ, d〉 holds whenever all of the following hold:313

∀x : σ.s2h(h2s(x)) = x,314

∀x : ι.x ∈ d→ h2s(s2h(x)) = x,315

∀x : ι.h2s(s2h(x)) ∈ Λσ,316

∀x : σ.s2h(x) ∈ d.317

We will derive the above predicate to show an isomorphisms between a higher-order318

type and a set-theoretic type. The existence of a bijection does not immediately imply319

the inhabitation of the of the type/set. However, as types need to be non-empty in both320

formalisms, we can derive this result as below. For space reasons we only present the321

statements, all the theorems have proofs in our formalization.322

theorem beIsoS-d:323

beIsoS(h2 s,s2h,d) =⇒ d is non empty324
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5.1 Natural numbers and integers325

The Isabelle/Mizar natural numbers are defined as the smallest limit ordinal. The existence326

of this set is a consequence of the Tarski universe property. The formal definition is as327

follows:328

mdef ordinal1-def-11 (omega) where329

func omega → set means (λit.330

0S in it ∧ it be limit-ordinal ∧ it be Ordinal ∧331

(∀A:Ordinal. 0S in A ∧ A is limit-ordinal −→ it ⊆ A))332

While Isabelle naturals are a subtype of the type of individuals. In order to merge these
two different approaches we specified an isomorphisms that preserves zero and the successor.
Note that the isomorphism is specified only for the type of the natural numbers which in
Isabelle/HOL is implicit, but in the softly-typed set theory needs to be written and checked
explicitly. This is the reason for having an undefined case, which as we will see later, still
gives an isomorphism.

h2sN(n) =S

{
0S if n =H 0H,

SS(h2sN(k)) if n =H SH(k) for some H-natural k.

s2hN(n) =H


0H if n =S 0S ,

SH(s2hN(k)) if n =S SS(k) for some S-natural k,
undefined otherwise.

The isomorphism and its inverse are formally defined in Isabelle as follows333

fun h2sn :: nat ⇒ Set (h2 sIN(-)) where334

h2 sIN(0 ::nat) =S 0S | h2 sIN(Suc(x)) =S succ h2 sIN(x)335

function s2hn :: Set ⇒ nat (s2hIN(-)) where336

¬x be Nat =⇒ s2hIN(x) =H undefined337

| s2hIN(0S) =H 0338

| x be Nat =⇒ s2hIN(succ(x)) =H Suc(s2hIN(x))339

Note that h2 sIN is defined only on the HOL natural numbers, while s2hIN is defined on all340

sets and its definition is only meaningful for arguments that are of the type nat. The soft-type341

system of Mizar requires us to give this assumption explicitly here, but it can normally be342

hidden in the contexts where the argument type is restricted appropriately. Isabelle requires343

us to prove the termination of the definition, which can be done using the proper subset344

relation defined on natural numbers in the Peano sense.345

Using induction principles (both the HOL one and the Mizar one) we can show various346

properties of the isomorphism. In particular it gives a bijection (note the hidden type347

restriction to sets of type nat) and preserve the basic operations on the natural numbers348

including addition, multiplication, comparison operators, division, primality, etc. Excerpt of349

the statements proved in the Isabelle formalization is as follows:350

theorem Nat-to-Nat:351

fixes x::nat and y::nat352

assumes n be Nat and m be Nat353

shows h2 sIN(x +H y) =S h2 sIN(x) +S IN h2 sIN(y)354

s2hIN(n +S IN m) =H s2hIN(n) +H s2hIN(m)355

h2 sIN(x ∗H y) =S h2 sIN(x) ∗S IN h2 sIN(y)356

s2hIN(n ∗S IN m) =H s2hIN(n) ∗H s2hIN(m)357

x < y ←→ h2 sIN(x) ⊂ h2 sIN(y)358
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n ⊂ m ←→ s2hIN(n) < s2hIN(m)359

x dvd y ←→ h2 sIN(x) divides h2 sIN(y)360

n divides m ←→ s2hIN(n) dvd s2hIN(m)361

prime(x) ←→ h2 sIN(x) is primeS362

n is primeS ←→ prime(s2hIN(n))363

It is now possible to translate the Lagrange’s Four Squares theorem and Bertrand’s postu-364

late between the libraries. We can prove the Isabelle/Mizar counterpart of the Isabelle/HOL365

theorem only using higher-order rewriting and the above properties.366

theorem LagrangeFourSquares:367

∀n:Nat. ∃ a,b,c,d:Nat.368

a ∗S INa +S IN b ∗S INb +S IN c ∗S INc +S IN d ∗S INd =S n369

theorem Bertrand:370

∀n:Nat. 1S ⊂ n −→371

(∃ p:Nat. p be primeS ∧ n ⊂ p ∧ p ⊂ (2S ∗S IN n))372

Integers can be handled in an analogous way: the definitions are again different but it is373

straightforward to define a bijection between the two, and show that is preserves all the basic374

operators. For operators that are missing in one of the libraries, it is possible to actually lift375

their definitions. For example the exponentiation operation, which has not been considered in376

the Isabelle/Mizar library so far, can be defined as TransformHS(s2hZZ,s2hIN,h2 sZZ,(^ )), where377

definition TransformHS where378

func TransformHS(s2hX1,s2hX2,h2 sY,HFun,x1,x2 ) → set equals379

h2 sY (HFun(s2hX1 (x1 ),s2hX2 (x2 )))380

This allows translating the proved Fermat’s last theorem for powers divisible by 3 and381

4 from Isabelle/HOL to Isabelle/Mizar. The proof involved quite some computation and382

therefore has not been attempted in Mizar so far.383

theorem Fermat-divides-3-4 :384

∀ x,y,z:Integer . ∀n:Nat.385

(3S divides n ∨ 4S divides n) ∧ x |^ n +SZZ y |^ n =S z |^ n386

−→ x ∗SZZ y ∗SZZ z =S 0S387

5.2 Polymorphic types and lists388

Isabelle/HOL lists are realized as a polymorphic algebraic datatype, corresponding to389

functional programming language lists. MML lists (called finite sequences, FinSequence)390

are functions from an initial segment of the natural numbers. Higher-order lists behave like391

stacks, with access to the top of the stack, whereas for the set theoretic ones the natural392

operations are the restriction or extension of the domain.393

To build a bijection between these types, we note that the Cons operator corresponds394

to the concatenation of a singleton list and the second argument. At the type of lists is a395

polymorphic type, in order to build this bijection, we also need to map the actual elements396

of the list. Therefore the bijection on lists will be parametric on a bijection on elements:397

fun h2sfs :: (a ⇒ Set) ⇒ a List.list ⇒ Set (h2 sL(-,-))where398

h2 sL(h2 s, Nil) =S <∗>399

| h2 sL(h2 s, Cons(h, t)) =S ((<∗h2 s(h)∗>) ^ (h2 sL(h2 s, t)))400

The converse operation needs to separate the first element of a sequence from the rest401

and shift it by one. We define this operation in Isabelle/Mizar and complete the definition.402
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Isabelle will again require us to show the termination of the function, which can be done by403

induction on the length of the list/sequence:404

function s2hl :: (Set ⇒ a) ⇒ Set ⇒a List.list (s2hL(-,-)) where405

¬ x be FinSequence =⇒ s2hL(s2h,x) =H undefined406

| s2hL(s2h,<∗>) =H Nil407

| x be FinSequence =⇒ x 6= <∗> =⇒408

s2hL(s2h,x) =H Cons (s2h(x.1S), s2hL(s2h,x/^1S ))409

For the transformation introduced as above, we can show that if we have a good homo-410

morphism between the elements of the lists, then lists over this type are homomorphic with411

finite sequences.412

We can again show that this homomorphism preserves various basic operations, such as413

concatenation, the selection of n-th element, length, etc.414

theorem s2hL-Prop:415

assumes p be FinSequence and q be FinSequence416

and n be Nat and n in len p417

shows size(s2hL(s2h,p)) =H s2hIN(len p)418

s2hL(s2h,p^q) =H s2hL(s2h,p) @ s2hL(s2h,q)419

s2hL(s2h,p) ! s2hIN(n) =H s2h(p. (succ n))420

One of the most general polymorphic types is the type of functions. We can naturally421

show that set theoretic functions (sets of pairs) correspond to higher-order function and that422

this homomorphism preserves function application.423

theorem HtoSappl:424

assumes beIsoS(h2 sd,s2hd,d) and beIsoS(h2 sr,s2hr,r)425

shows h2 sf (s2hd,h2 sr,d,f ).h2 sd(x) =S h2 sr(f (x))426

5.3 Algebra427

The structure representation used in higher-order logic and set theories are usually different.428

This will be particularly visible when it comes to algebraic structures. In the Isabelle/HOL429

formalization algebraic structures are type-classes while in set theory a common approach430

would be partial functions. We will illustrate the difference on the example of groups. A type431

α forms a group when we can indicate a binary function on this type that will serve as the the432

group operation satisfying the group axioms. On the other hand, in the usual set-theoretic433

approach a group in set theory would consist of an explicitly given set (the carrier), and434

the group operation. With an intersection type system, the fact that the given set with435

an operation is a group is specified by intersecting the type of structures with the types436

that specify their individual properties (i.e. a group is a non-empty associative Group-like437

multMagma)438

There are two more differences in the particular formalizations we consider, that we439

will not focus on, but we will only hint them in this paragraph and consider them only in440

the formalization. First, the existence and uniqueness of the neutral element can be either441

assumed in the group specification or derived from the axioms. Will not focus on that, as442

this is only the choice of a group axiomatization. Second, in the Mizar library there are443

two theories of groups: additive groups and multiplicative groups. Rings and fields inherit444

the latter, while some group-theoretic results are derived only for the former. Even if the445

Isabelle/HOL group includes a field for the unit, we will ignore it in the morphism, since the446

set theoretic definition does not use one. The neutral element along with the other properties447
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is however necessary to justify that the result of the morphism is a group in the set theoretic448

sense.449

definition h2sg (h2 sG(-,-,-,-)) where450

h2 sG(s2hc,h2 sc,c,g) =S [#451

carrier 7→ c;452

multF 7→ h2 sBinOp(s2hc,h2 sc,c,mult(g)) #]453

definition s2hg (s2hG(-,-,-)) where454

s2hG(s2hc,h2 sc,g) =H Igroup(455

Collect(λx. h2 sc(x) in the carrier of g),456

s2hBinOp(s2hc,h2 sc,the multF of g),457

s2hc(1 .g))458

For the dual morphism, we indicate the result of the operation selecting the neutral459

element (1 .g) as the element needed in the construction of the type-class element. With its460

help, we can justify that the fields of the translated structure are translation of the fields.461

theorem s2hg-Prop:462

assumes beIsoS(h2 sc,s2hc,c) and g be Group463

and the carrier of g =S c464

and x ∈ carrierI (s2hG(s2hc, h2 sc, g))465

y ∈ carrierI (s2hG(s2hc, h2 sc, g))466

shows one(s2hG(s2hc,h2 sc,g)) =H s2hc(1 .g)467

x ⊗s2hG(s2hc,h2 sc,g) y =H s2hc(h2 sc(x) ⊗g h2 sc(y))468

group (s2hG(s2hc,h2 sc,g))469

A number of proof assistant systems based both on higher-order logic (including Isa-470

belle/HOL) and set theory (including Mizar) support inheritance between their algebraic471

structures. As part of our work aligning the libraries we also want to verify that such472

inheritance is supported in the combined library. For this, we align the ring structures473

present in the two libraries. The isomorphism between the structures is defined in a similar474

way to the one for groups, we refer the interested reader to our formalization.475

We can show that the morphisms form an isomorphism and derive some basic preservation476

properties. The most basic one is the fact that the isomorphism preserves being a ring.477

theorem s2hr-Prop:478

assumes beIsoS(h2 sc,s2hc,c) and r be Ring479

and the carrier of r =S c480

and x ∈ carrierI (s2hR(s2hc,h2 sc,r))481

y ∈ carrierI (s2hR(s2hc,h2 sc,r))482

shows zero(s2hR(s2hc,h2 sc,r)) =H s2hc(0 r)483

one(s2hR(s2hc,h2 sc,r)) =H s2hc(1 r)484

x ⊕s2hR(s2hc,h2 sc,r) y =H s2hc(h2 sc(x) ⊕r h2 sc(y))485

x ⊗s2hR(s2hc,h2 sc,r) y =H s2hc(h2 sc(x) ⊗r h2 sc(y))486

ring (s2hR(s2hc,h2 sc,r))487

Finally, we introduce the equivalent of the definition of the integer ring introduced in the488

MML in [40]. We show that s2hR and h2 iR determine an isomorphism between the fields of489

the rings developed in Isabelle/HOL and the Mizar Mathematical Library.490

mdef int-3-def-3 (ZZ-ring) where491

func ZZ-ring → strict(doubleLoopStr) equals [#492

carrier 7→ INT ;493

addF 7→ addint;494

ZeroF 7→ 0S ;495
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multF 7→ multint;496

OneF 7→ 1S#]497

theorem H-Zring-to-S-Zring:498

h2 sR(s2hZZ, h2 sZZ,INT,Z) =S ZZ-ring499

s2hR(s2hZZ, h2 sZZ, ZZ-ring) =H Z500

6 Related Work501

As proof assistants based on plain higher-order logic lack the full expressivity of set theory,502

the idea of adding set theory axioms on top of HOL (without a model) has been tried multiple503

times. Obua has proposed HOLZF [33], where Zermelo-Fraenkel axioms are added on top504

of Isabelle/HOL. With this, he was able to show results on partisan games, that would be505

hard to show in plain higher-order logic. Later, as part of the ProofPeer project [34], the506

combination of HOL with ZF became the basis for an LCF system, reducing the proofs in507

higher-order logic part to a minimum (again, since there was no guarantee, that combining508

the results is safe). Kunčar [29] attempted to import the Tarski-Grothendieck-based library509

into HOL Light. Here, the set-theoretic concepts were immediately mapped to their HOL510

counterparts, but it soon came out that without adding the axioms of set theory they system511

was not strong enough. The first author, Brown [10] proposed the Egal system which again512

combines a specification of higher-order logic with the axioms of set theory. The system uses513

explicit universes, which is in fact the same presentation as given in this work. This work514

therefore also gives a model for the Egal system. Finally, second and third authors [23] have515

specified and imported [22] significant parts of the Mizar library into Isabelle. In this work516

we only use the specification of Mizar in Isabelle and the re-formalized parts of the MML.517

The idea to combine proof assistant libraries across different foundations also arose in the518

Flyspeck project [17] formalizing the proof of the Kepler conjecture. There, the dependency519

on Coq has been eliminated and an ad-hoc justification for the concepts moved between520

Isabelle and HOL was specified. Logical frameworks allow importing multiple libraries at the521

same time, again without a model. In the Dedukti framework, Assaf and Cauderlier [3,4]522

have combined properties originating from the Coq library and the HOL library. Both523

were imported in the same system, based on the λΠ calculus modulo, however the two524

parts of the library relied on different rewrite rules. Krauss and Schropp [28] specified and525

implemented a translation from Isabelle/HOL proof terms to set theoretic proved theorems.526

The translation is sound and only relies on the Isabelle/ZF logic, however it is too slow to be527

useful in practice, in fact it is not possible to translate the basic Main library of Isabelle/HOL528

into set theory in reasonable time. It also possible to deep embed multiple libraries in a529

single meta-theory. Rabe [39] does this practically in the MMT framework deep embedding530

various proof assistant foundations and providing category-theoretic mappings between some531

foundations.532

Most implementation of set theory in logical frameworks could implicitly use some higher-533

order features of the framework, as this is already used for the definition of the object logic.534

The definition of the Zermelo-Fraenkel object logic [35] in Isabelle uses lambda abstractions535

and higher-order applications for example to specify the quantifiers. This is also the case in536

Isabelle/TLA [30]. These object logics are normally careful to restrict the use of higher-order537

features to a minimum, however the system itself does not restrict this usage.538

The second author together with Gauthier [14] has previously proposed heuristics for539

automatically finding alignments across proof assistant libraries. Such alignments, even540

without merging the libraries can be useful for conjecturing new properties [31] as well as to541
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improve proof assistant automation [13].542

7 Conclusion543

We have defined a model of higher-order Tarski-Grothendieck. The model relies on a 2-544

inaccessible cardinal, which is the same assumption as the one required for a model of a TG545

set theory. This model shows that it is safe to combine higher-order features with the axioms546

of set theory, which has already been done by a number of developments [10,23,33,34].547

Moreover, thanks to the model we can safely combine results proved in TG set theory548

with ones proved in plain higher-order logic. We benefit from this, by combining two of the549

largest proof assistant libraries: the Mizar Mathematical library and the Isabelle/HOL library.550

Above the theorems and proofs coming from both, we define a number of isomorphisms that551

allow us to translate theorems proved in of these part of the library and use them in the552

other part.553

As part of the library merging we have formally defined and proved in Isabelle the554

necessary concepts. This involved 18 definitions and 135 theorems, which amounts to 2667555

lines of proofs. The formalization is available at:556

CK will pack at the end
557

http://cl-informatik.uibk.ac.at/cek/itp19/558

Apart from higher-order and set-theoretic foundations, the third most commonly used559

foundation is dependent type theory. The most important future work would be to investigate560

the consistency of a theory that imports such foundations as well.561
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