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Abstract. We describe the relationship between two versions of Tarski-
Grothendieck set theory: the �rst-order set theory of Mizar and the
higher-order set theory of Egal. We show how certain higher-order terms
and propositions in Egal have equivalent �rst-order presentations. We
then prove Tarski's Axiom A (an axiom in Mizar) in Egal and construct
a Grothendieck Universe operator (a primitive with axioms in Egal) in
Mizar.

Keywords: Formalized Mathematics, Theorem Proving, Set Theory,
Proof Checking, Mizar

1 Introduction

We compare two implemented versions of Tarski-Grothendieck (TG) set theory.
The �rst is the �rst-order TG implemented in Mizar [3,13] axiomatized using
Tarski's Axiom A [21,22]. The other is the higher-order TG implemented in
Egal [6] axiomatized using Grothendieck universes [15]. We discuss what would
be involved in porting Mizar developments into Egal and vice versa.

We use Egal's Grothendieck universes (along with a choice operator) to prove
Tarski's Axiom A in Egal. Consequently the Egal counterpart of each of Mizar's
axioms is provable in Egal and so porting from Mizar to Egal should always
be possible in principle. In practice one would need to make Mizar's implicit
reasoning using its type system explicit, a nontrivial task outside the scope of
this paper.

Porting from Egal to Mizar poses two challenges. One is that many de�nitions
and propositions in Egal make use of higher-order quanti�ers. In order to give
a Mizar counterpart, it is enough to give a �rst-order reformulation and prove
the two formulations equivalent in Egal. While this will not always be possible
in principle, it has been possible for the examples necessary for this paper. The
second challenge is to construct a Grothendieck universe operator in Mizar that
satis�es the properties of a corresponding operator in Egal. We have constructed
such an operator.

We give a brief introduction to Mizar and its version �rst-order Tarski-
Grothendieck in Section 2 and an introduction to Egal and its version of higher-
order Tarski-Grothendieck in Section 3. In Section 4 we give a few examples
of de�nitions and propositions in Egal that can be reformulated in equivalent
�rst-order forms. These �rst-order versions have counterparts in Mizar. Section 5
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discusses the Egal proof of Tarski's Axiom A. In Section 6 we discuss the con-
struction of a Grothendieck universe operator in Mizar.3

2 Mizar and FOTG

The Mizar system [14] from its beginning aimed to create a proof style that
simultaneously imitates informal mathematical proofs as much as possible and
and can be automatically veri�ed to be logically correct. A quite simple and
intuitive reasoning formalism and an intuitive soft type system play a major
role in the pursuit of Mizar's goals.

The Mizar proof style is mainly inspired by Ja±kowski [16] style of natural
deduction and most statements correspond to valid �rst-order predicate calcu-
lus formulas. Over time the Mizar community has also added support for syntax
that goes beyond traditional �rst-order terms and formulas. In particular, Mizar
supports schemes with predicate and function variables, su�cient to formulate
the Fraenkel replacement as one axiom in Mizar. This axiom is su�cient to con-
struct the set comprehension {Fx|x ∈ X,Px} (called Fraenkel terms) for a given
set X, function F and predicate P in the Mizar language but it is impossible to
de�ne such a functor for arbitrary X, F , P . Therefore, in response to the needs
of Mizar's users, support for Fraenkel terms has been built into the system. In
fact Mizar supports a generalized notation where the set membership relation
x ∈ X in the Fraenkel term has been replaced by the type membership x : Θ if
the Mizar type Θ has the sethood property. A Mizar type has the sethood prop-
erty if the collection of all objects of the type forms a set (as opposed to a class).
Semantically, Mizar types are simply unary �rst-order predicates over sets that
can be parameterized by sets. However, the type inference mechanisms make
Mizar signi�cantly more powerful and user-friendly. The rules available for au-
tomatic type inference are in�uenced by the author of a given script by choosing
the environ (i.e., environment, see [13]). By skillfully choosing the environment,
an author can make a Mizar article more concise and readable since the type
system will handle many inferences implicitly. Mizar types must be inhabited
and this obligation must be proven by a user directly in the de�nition of a given
type or before the �rst use if a type has the form of intersection of types.

Parallel to the system development, the Mizar community puts a signi�cant
e�ort into building the Mizar Mathematical Library (MML)[4]. The MML is
the comprehensive repository of currently formalized mathematics in the Mizar
system. The foundation of the library, up to some details discussed below, is
�rst-order Tarski-Grothendieck set theory (FOTG). This is a non-conservative
extension Zermelo�Fraenkel set theory (ZFC), where the axiom of in�nity has
been replaced by Tarski's Axiom A. The statement of Axiom A in Mizar is shown
in Figure 1.

FOTG was not the only foundation considered for the library. One of the
main reasons it was chosen is the usefulness of the Axiom A in the formaliza-

3 At http://grid01.ciirc.cvut.cz/~chad/twosettheories.tgz one can �nd Egal,
the Egal formalization �les and the Mizar formalization �les.

http://grid01.ciirc.cvut.cz/~chad/twosettheories.tgz


A Tale of Two Set Theories 3

reserve N,M,X,Y,Z for set;
theorem :: TARSKI_A:1

ex M st N in M &

(for X,Y holds X in M & Y c= X implies Y in M) &

(for X st X in M ex Z st Z in M & for Y st Y c= X holds Y in Z) &

(for X holds X c= M implies X,M are_equipotent or X in M);

Fig. 1. Tarski's Axiom A in Mizar

tion of category theory. Namely, FOTG provides many universes that that have
properties analogous to those that have classes of all sets. In particular, every
axiom of ZFC remains true if we relativize quanti�ers to the given universe.

The axiom of choice can be proven in FOTG. Bancerek used Axiom A to
prove Zermelo's well-ordering theorem and the axiom of choice [2]. Later changes
to Mizar also yielded the axiom of choice in a more direct way. While working
with category theory in the Mizar system, Trybulec decided to introduce a so-
phisticated construction called permissive de�nition (implemented in Mizar-2 in
the 80's [14]). Permissive de�nitions allowed an author to introduce an inhabited
type morphism of a,b under the assumption that there exists a morphism from
a to b. It is important to note that this construction, in contrast to Fraenkel
terms, cannot be semantically justi�ed in FOTG since the construction allows
the de�nition of a choice operator for any type Θ of a,b,... in the following way:

definition
let a,b,... such that C: contradiction;
func choose(a,b,...) → Θ of a,b,... means contradiction;
existence by C; uniqueness by C;

end;
To avoid repetition of such de�nitions, in 2012, the Mizar syntax was extended
by the explicit operator the (e.g., the Θ of a,b,... ). This new operator behaves
similarly to a Hilbert ε-operator, which corresponds to have a global choice
operator on the universe of sets (cf. p. 72 of [11]). ZFC extended with a global
choice operator is known to be conservative over ZFC [10]. The situation with
FOTG is analogous to that of ZFC, and we conjecture FOTG extended with a
global choice operator (the) is conservative over FOTG. Regardless of the truth
of this conjecture, we take the proper foundation of the MML to be FOTG
extended with a global choice operator (see [17]).

3 Egal and HOTG

Egal [6] is a proof checker for higher-order Tarski-Grothendieck (HOTG) set the-
ory. The idea of combining higher-order logic and set theory is not new [12,18,20].
Egal di�ers from previous e�orts by restricting the �higher-order logic� to a sim-
ple type theory in the style of Church [8] with no complicating additions such
as type de�nitions. In addition, Egal places an emphasis on proof terms and
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proof checking. Egal proof scripts are presented in a way similar to Coq [5] and
instruct Egal how to construct a proof term.

The base of the Egal system includes simply typed λ-calculus with a type
of propositions along with a λ-calculus for proof terms. There is a base type of
individuals ι (thought of as sets), a based type of propositions o and function
types σ → τ . Egal is designed to have its foundational framework simple while
still allowing nontrivial formalizations.

Without extra axioms, the logic of Egal is intentional intuitionistic higher-
order logic. On top of this logic we add constants and axioms that yield an
extensional classical higher-order set theory.

To be precise let T be the set of types generated freely via the grammar
o|ι|σ → τ . We use σ, τ to range over types. For each σ ∈ T let Vσ be a countably
in�nite set of variables and assume Vσ ∩ Vτ = ∅ whenever σ 6= τ . We use
x, y, z,X, Y, f, g, p, q, P,Q, . . . to range over variables. For each σ ∈ T let Cσ be
a set of constants. We use c, c1, c2 to range over constants. We consider only a
�xed family of constants given as follows:

� εσ is a constant in C(σ→o)→σ for each type σ.
� In is a constant in Cι→ι→o.
� Empty is a constant in Cι.
� Union is a constant in Cι→ι.
� Power is a constant in Cι→ι.
� Repl is a constant in Cι→(ι→ι)→ι.
� UnivOf is a constant in Cι→ι.

No other constants are allowed. We assume none of these constants are variables.
We next de�ne a family (Λσ)σ∈T of typed terms as follows. We use s, t and

u to range over terms.

� If x ∈ Vσ, then x ∈ Λσ.
� If c ∈ Cσ, then c ∈ Λσ.
� If s ∈ Λσ→τ and t ∈ Λσ, then (st) ∈ Λτ .
� If x ∈ Vσ and t ∈ Λτ , then (λx.t) ∈ Λσ→τ .
� If s ∈ Λo and t ∈ Λo, then (s⇒ t) ∈ Λo.
� If x ∈ Vσ and t ∈ Λo, then (∀x.t) ∈ Λo.

Each member of Λσ is a term of type σ. Terms of type o are also called proposi-

tions. We sometimes use ϕ, ψ and ξ to range over propositions. It is easy to see
that Λσ and Λτ are disjoint for σ 6= τ . That is, each term has at most one type.

We omit parentheses when possible, with application associating to the left
and implication associating to the right: stu means ((st)u) and ϕ ⇒ ψ ⇒ ξ
means (ϕ ⇒ (ψ ⇒ ξ)). Binders are often combined: λxyz.s means λx.λy.λz.s
and ∀xyz.ϕ means ∀x.∀y.∀z.ϕ. To present the types of variables concisely, we
often annotate variables in binders with their types, as in λx : σ.s to assert
x ∈ Vσ. When the type of a variable is omitted entirely, it is ι.

Although the only logical connectives as part of the de�nition of terms are im-
plication and universal quanti�cation, it is well-known how to de�ne the other
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connectives and quanti�ers in a way that even works in an intuitionistic set-
ting [7]. For this reason we freely write propositions (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ),
(ϕ⇔ ψ), (∃x.ϕ) and (s = t) (for s, t ∈ Λσ). Again, we omit parentheses and use
common binder abbreviations in obvious ways.

We also use special notations for terms built using the constants. We write
s ∈ t for In s t. We write ∀x ∈ s.ϕ for ∀x.x ∈ s⇒ ϕ and ∃x ∈ s.ϕ for ∃x.x ∈ s∧ϕ.
We write εx : σ.ϕ for εσ(λx : σ.ϕ) and εx ∈ s.ϕ for εx.x ∈ s ∧ ϕ. We also write
∅ for Empty,

⋃
s for Union s, ℘s for Power s, {s|x ∈ t} for Repl s (λx.t) and UN

for UnivOf s.
In general new names can be introduced to abbreviate terms of a given type.

In many cases we introduce new corresponding notations as well. The following
abbreviations are used in the statements of the axioms below:

� TransSet : ι → o is λU.∀X ∈ U.X ⊆ U . Informally we say U is transitive to
mean TransSet U .

� Union_closed : ι → o is λU.∀X ∈ U.
⋃
X ∈ U . Informally we say U is⋃

-closed to mean Union_closed U .
� Power_closed : ι→ o is λU.∀X ∈ U.℘X ∈ U . Informally we say U is ℘-closed
to mean Power_closed U .

� Repl_closed : ι → o is λU.∀X ∈ U.∀F : ι → ι.(∀x ∈ X.Fx ∈ U) ⇒
{Fx|x ∈ X} ∈ U . Informally we say U is closed under replacement to mean
Repl_closed U .

� ZF_closed : ι→ o is λU.Union_closed U ∧Power_closed U ∧Repl_closed U .
Informally we say U is ZF-closed to mean ZF_closed U .

The deduction system for Egal includes a set A of closed propositions we call
axioms. The speci�c members of the set A are as follows:

Prop. Ext. ∀PQ : o.(P ⇔ Q)⇒ P = Q,
Func. Ext. ∀fg : σ → τ.(∀x : σ.fx = gx)⇒ f = g (for types σ and τ),
Choice ∀p : σ → o.∀x : σ.px⇒ p(εx : σ.px) (for each type σ),
Set Ext. ∀XY.X ⊆ Y ⇒ Y ⊆ X ⇒ X = Y ,
∈-Induction ∀P : ι→ o.(∀X.(∀x ∈ X.Px)⇒ PX)⇒ ∀X.PX,
Empty ¬∃x.x ∈ ∅,
Union ∀Xx.x ∈

⋃
X ⇔ ∃Y.x ∈ Y ∧ Y ∈ X,

Power ∀XY.Y ∈ ℘X ⇔ Y ⊆ X,
Replacement ∀X.∀F : ι→ ι.∀y.y ∈ {Fx|x ∈ X} ⇔ ∃x ∈ X.y = Fx,
Universe In ∀N.N ∈ UN ,
Universe Transitive ∀N.TransSet UN ,
Universe ZF closed ∀N.ZFclosed UN and
Universe Min ∀NU.N ∈ U ⇒ TransSet U ⇒ ZFclosed U ⇒ UN ⊆ U .

The axiom set would be �nite if it were not for functional extensionality and
choice. There are well-known ways to formulate functional extensionality and
choice as rules in the deduction calculus that would allow them to be removed
as axioms while keeping the same set of theorems. We take them as axioms here
to keep the deduction system faithful to the implementation in Egal.
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The notions of free and bound variables are de�ned as usual, as is the notion
of a variable x being free in a term s. We consider terms equal up to bound
variables names. As usual there are notions of capture-avoiding substitution and
we write sxt to be the result of subsituting t for x in s. We have the usual notions
of β-conversion and η-conversion: (λx.s)t β-reduces to sxt and (λx.sx) η-reduces
to s if x is not free in s. The relation s ∼βη t on terms s, t ∈ Λσ is the least
congruence relation closed under β-conversion and η-conversion.

The underlying deduction system for Egal is natural deduction with proof
terms. We do not discuss proof terms here, but give the corresponding natural
deduction calculus without proof terms in Figure 2. The calculus de�nes when
Γ ` ϕ is derivable where Γ is a �nite set of propositions and ϕ is a proposition.

Ax
ϕ ∈ A
Γ ` ϕ

Hyp
ϕ ∈ Γ
Γ ` ϕ

β
Γ ` ψ ψ ∼βη ϕ

Γ ` ϕ
⇒I

Γ ∪ {ϕ} ` ψ
Γ ` ϕ⇒ ψ

⇒E
Γ ` ϕ⇒ ψ Γ ` ϕ

Γ ` ψ
∀I

Γ ` ϕxy y ∈ Vσ is not free in Γ ∪ {ϕ}
Γ ` ∀x : σ.ϕ

∀E
Γ ` ∀x : σ.ϕ t ∈ Λσ

Γ ` ϕxt

Fig. 2. Natural deduction sytem

In addition to the constants and axioms of the system, we import a num-
ber of constructions and results from the library distributed with Egal. Some
of the constructions are de�nitions of logical connectives, equality and existen-
tial quanti�cation as well as basic theorems about their properties. Negation of
equality, negation of set membership and subset are imported, de�ned in the
obvious ways. We use the notation s 6= t, s 6∈ t and s ⊆ t for the corresponding
propositions. The de�nitions TransSet, Union_closed, Power_closed, Repl_closed
and ZF_closed are imported. In addition the following de�nitions are imported:

� ordinal : ι→ o is λα.TransSet α ∧ ∀β ∈ α.TransSet β. Informally we say β is

an ordinal to mean ordinal β.
� famunion : ι → (ι → ι) → ι is λXF.

⋃
{Fx|x ∈ X}. We write

⋃
x∈s t for

famunion s (λx.t).

We also import the following objects in an opaque way, so that we will only be
able to use properties imported from the library and not the actual de�nitions.

� Sep : ι → (ι → o) → ι. We write {x ∈ X|ϕ} for Sep X (λx.ϕ). Results are
imported to ensure ∀z.z ∈ {x ∈ X|ϕ} ⇔ z ∈ X ∧ ϕxz is provable.

� ReplSep : ι → (ι → o) → (ι → ι) → ι. We write {s|x ∈ X such that ϕ} for
ReplSep X (λx.ϕ) (λx.s). Results are imported to ensure the provability of
∀z.z ∈ {s|x ∈ X such that ϕ} ⇔ ∃y ∈ X.ϕxy ∧ z = sxy .
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� UPair : ι → ι → ι. We write {x, y} for UPair x y. Results are imported to
ensure ∀z.z ∈ {x, y} ⇔ z = x ∨ z = y is provable.

� Sing : ι → ι. We write {x} for Sing x. Results are imported to ensure
∀z.z ∈ {x} ⇔ z = x is provable.

� R : (ι→ (ι→ ι)→ ι)→ ι→ ι. The R operator is used to de�ne functions by
∈-recursion over the universe. Its construction is discussed in [7] but here we
will only need the fundamental property imported as Proposition 5 below.
Its use will be essential in proving Tarski's Axiom A in Section 5.

We will freely make use of these imported terms to form new terms below.
Less than 60 results proven in the library need to be imported in order to

prove the results discussed in this paper. Most of those results are basic results
about logic and set theory and we will leave them implicit here. The choice axiom
and the extensionality axioms make the logic extensional and classical [9]. We
import excluded middle and the double negation law from the library.

The following imported results are worth making explicit:

Proposition 1. ∀x.x /∈ x.

Proposition 2 (Regularity). ∀Xx.x ∈ X ⇒ ∃Y ∈ X.¬∃z ∈ X.z ∈ Y .

Proposition 3. ∀α.ordinal α⇒ ∀β ∈ α.ordinal β.

Proposition 4. ∀αβ.ordinal α⇒ ordinal β ⇒ α ∈ β ∨ α = β ∨ β ∈ α.

The fundamental property of R is imported from the library:

Proposition 5 (cf. Theorem 1 in [7]).

∀Φ : ι→ (ι→ ι)→ ι.(∀X.∀gh : ι→ ι.(∀x ∈ X.gx = hx)⇒ Φ X g = Φ X h)
→ ∀X.R Φ X = Φ X (R Φ)

4 Higher-order vs. First-order Representations

Tarski's Axiom A (Figure 1) informally states that every set is in a Tarski uni-
verse. The most interesting condition in the de�nition of a Tarski universe is that
every subset of the universe is either a member of the universe or is equipotent
with the universe. The notion of equipotence of two sets can be represented in
di�erent ways. In �rst-order one can de�ne when sets X and Y are equipotent
as follows: there is a set R of Kuratowski pairs which essentially encodes the
graph of a bijection from X to Y . In order to state Axiom A in Mizar, one must
�rst de�ne Kuratowski pairs and then equipotence. This �rst-order de�nition of
equipotence can of course be made in Egal as well. We omit the details, except
to say we easily obtain an Egal abbreviation equip of type ι → ι → o with a
de�nition analogous to the de�nition of equipotence in Mizar.

There is an alternative way to characterize equipotence in Egal without rely-
ing on the set theoretic encoding of pairs and functions. We simply use functions
of type ι→ ι given by the underlying simple type theory.
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Let bij : ι→ ι→ (ι→ ι)→ o be

λXY.λf : ι→ ι.(∀u ∈ X.fu ∈ Y ) ∧ (∀uv ∈ X.fu = fv ⇒ u = v)
∧(∀w ∈ Y.∃u ∈ X.fu = w).

Informally we say f is a bijection taking X onto Y to mean bij X Y f .
It is straightforward to prove equip X Y ⇔ ∃f : ι → ι.bij X Y f in Egal.

When proving Axiom A in Egal (see Theorem 5) we will use ∃f : ι→ ι.bij X Y f
to represent equipotence. To obtain the �rst-order formulation Axiom A, the
equivalence of the two formulations of equipotence can be used.

A similar issue arises when considering the notion of being ZF-closed in
Mizar. The de�nition of ZF_closed relies on Repl_closed. Repl_closed relies on
the higher-order Repl operator and quanti�es over the type ι→ ι. An alternative
�rst-order de�nition of U being ZF-closed is to say U is ℘-closed and U is closed
under internal family unions. The internal family union of a set I and a set f is
de�ned as the set famunionintern I f such that w ∈ famunionintern I f if and only
if ∃i ∈ I.∃X.[i,X] ∈ f ∧w ∈ X where [i,X] is the Kuratowski pair {{i}, {i,X}}.
It is easy to prove such a set exists, in both Egal and Mizar. Closure of U
under internal family unions states that if I ∈ U , f is a set of Kuratowski pairs
representing the graph of a function from I into U , then famunionintern I f ∈ U .

We say U is ZF-closed in the FO sense if U is ℘-closed and closed under
internal family unions. In Egal it is straightforward to prove that for transitive
sets U , U is ZF-closed if and only if U is ZF-closed in the FO sense. Grothendieck
universes in Egal are transitive ZF-closed sets. Grothendieck universes in Mizar
are transitive sets that are ZF-closed in the FO sense. By the equivalence result,
we know these two notions of Grothendieck universes are equivalent in Egal.

5 Tarski's Axiom A in Egal

We will now describe the HOTG proof of Tarski's Axiom A in Egal.
We begin by using the recursion operator to de�ne an operator returning the

set of all sets up to a given rank.

� V : ι→ ι is R(λXv.
⋃
x∈X ℘(vx)). We will write VX for V applied to X.

Using Proposition 5 it is easy to prove the following:

Theorem 1. ∀X.VX =
⋃
x∈X .℘(Vx)

It is then straightforward to prove a sequence of results.

Theorem 2. The following facts hold.

1. ∀yxX.x ∈ X ⇒ y ⊆ Vx ⇒ y ∈ VX .

2. ∀yX.y ∈ VX ⇒ ∃x ∈ X.y ⊆ Vx.

3. ∀X.X ⊆ VX .

4. ∀XY.X ⊆ VY ⇒ VX ⊆ VY .

5. ∀XY.X ∈ VY ⇒ VX ∈ VY .

6. ∀XY.X ∈ VY ∨VY ⊆ VX .



A Tale of Two Set Theories 9

7. ∀XY.VX ∈ VY ∨VY ⊆ VX .

Proof. Parts 1 and 2 are easy consequences of Theorem 1 and properties of
powersets and family unions. Part 3 follows by ∈-induction using Part 1. Part 4
also follows by ∈-induction using Parts 1 and 2. Part 5 follows easily from Parts 1,
2 and 4. Part 6 follows by ∈-induction using classical reasoning and Parts 1 and
2. Part 7 follows from Part 5 and 6.

Let V_closed of type ι → o be λU.∀X ∈ U.VX ∈ U . Informally we say
U if V-closed to mean V_closed U . The following theorem is easy to prove by
∈-induction using Theorem 1.

Theorem 3. If U is transitive and ZF-closed, then U is V-closed.

Using the choice operator it is straightforward to construct the inverse of a
bijection taking X onto Y and obtain a bijection taking Y onto X.

Theorem 4. ∀XY.∀f : ι→ ι.bij X Y f ⇒ bij Y X (λy.εx ∈ X.fx = y).

We now turn to the most complicated Egal proof. More than half of the �le
ending with the proof of Axiom A is made up of the proof of Lemma 1. For this
reason we describe the proof in some detail (though informally) and make some
comments about the corresponding formal proof in Egal along the way.

Lemma 1. Let U be a ZF-closed transitive set and X be such that X ⊆ U and

X 6∈ U . There is a bijection f : ι→ ι taking {α ∈ U |ordinal α} onto X.

Proof. In the Egal proof we begin by introducing the local names U and X and
making the corresponding assumptions.

let U. assume HT: TransSet U. assume HZ: ZF_closed U.

let X. assume HXsU: X c= U. assume HXniU: X /:e U.

We next make six local abbreviations. Let

� λ be {α ∈ U |ordinal α},
� P : ι→ ι→ (ι→ ι)→ o be λαxf.x ∈ X ∧ ∀β ∈ α.fβ 6= x,
� Q : ι→ (ι→ ι)→ ι→ o be λαfx.P α x f ∧ ∀y.P α y f ⇒ Vx ⊆ Vy,
� F : ι→ (ι→ ι)→ ι be λαf.εx.Q αfx,
� f : ι→ ι be RF and
� g : ι→ ι be λy.εα ∈ λ.fα = y.

In the Egal proof three of these local de�nitions are given as follows:

set lambda : set := {alpha :e U|ordinal alpha}.

...

set f : set->set := In_rec F.

set g : set->set := fun y => some alpha :e lambda, f alpha = y.

We will prove the following claims:
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∀α.fα = F α f (1)

∀α ∈ λ.Q α f (fα) (2)

∀α ∈ λ.fα ∈ X (3)

∀αβ ∈ λ.fα = fβ ⇒ α = β (4)

bij {f α|α ∈ λ} λ g (5)

λ = {g y|y ∈ {f α|α ∈ λ}} (6)

∀x ∈ X.∃α ∈ λ.fα = x (7)

Note that (3), (4) and (7) imply f is a bijection taking λ onto X, which will
complete the proof.

We begin by proving (1). In the Egal proof we express (1) as a claim and
then using { to open a subproof.

claim Lfeq: forall alpha, f alpha = F alpha f.

The subproof proceeds by making and proving the following subclaims.

∀α.∀hk : ι→ ι.(∀β ∈ α.hβ = kβ)⇒ ∀x.Pαxh⇒ Pαxk (8)

∀α.∀hk : ι→ ι.(∀β ∈ α.hβ = kβ)⇒ ∀x.Pαxk ⇒ Pαxh (9)

∀α.∀hk : ι→ ι.(∀β ∈ α.hβ = kβ)⇒ ∀x.Qαhx⇒ Qαkx (10)

∀α.∀hk : ι→ ι.(∀β ∈ α.hβ = kβ)⇒ Qαh = Qαk (11)

∀α.∀hk : ι→ ι.(∀β ∈ α.hβ = kβ)⇒ Fαh = Fαk. (12)

To prove (8) let α, h, k and x such that ∀β ∈ α.hβ = kβ and P α x h
be given. By the de�nition of P we know x ∈ X and ∀β ∈ α.hβ 6= x. Using
∀β ∈ α.hβ = kβ we conclude ∀β ∈ α.kβ 6= x as well and so P α x k. By
interchanging the role of h and k we can infer (9) from (8). To prove (10) let α,
h, k and x such that ∀β ∈ α.hβ = kβ and Q α h x be given. Then we know
P α x h and ∀y.P α y h ⇒ Vx ⊆ Vy. We know P α x k by (8). It remains to
prove ∀y.P α y k ⇒ Vx ⊆ Vy. Let y such that P α y k be given. By (9) we
know P α y h and so Vx ⊆ Vy as desired. We can infer (11) from (10) using
extensionality principles (of the higher-order logic, not the set theory). Once we
have (11) we can infer (12) by rewriting underneath the choice operator de�ning
F. Finally, (1) follows from (12) and Proposition 5. In the Egal proof, we use }
to close the subproof of the claim Lfeq.

We next proceed with proving (2), (3), (4), (5), (6) and (7). In each case in
Egal a corresponding claim statement is made and a subproof of the claim is
given. In some cases the subproof involves subclaims (described below).

We prove (2) by ∈-induction. Let α be given and assume as inductive hy-
pothesis ∀γ.γ ∈ α ⇒ γ ∈ λ ⇒ Q γ f (fγ). Assume α ∈ λ, i.e., α ∈ U and
ordinal α. Under these assumptions we prove the following subclaims:

∀β ∈ α.Q β f (fβ) (13)

∀β ∈ α.fβ ∈ X (14)

{fβ|β ∈ α} ⊆ X (15)

{fβ|β ∈ α} ∈ U (16)

∃x.P α x f (17)

∃x.Q α f x (18)

Q α f (F α f) (19)

The �rst claim (13) follows immediately from the inductive hypothesis for β ∈ α
using Proposition 3 and transitivity of U . The next claim (14) follows from (13)
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and the de�nitions of Q and P. From (14) we know fβ ∈ X ⊆ U for each β ∈ α.
Hence (15) and (16) follow, using closure of U under replacement for (16).

We prove (17) by contradiction. Assume ¬∃x.P α x f . Under this assumption
we can prove {fβ|β ∈ α} = X which contradicts (16) and the assumption that
X 6∈ U . By (15) it su�ces to prove X ⊆ {fβ|β ∈ α}. Let x ∈ X be given.
Assume x 6∈ {fβ|β ∈ α}. This assumption can be reformulated as ∀β ∈ α.fβ 6= x.
Combining this with x ∈ X we have P α x f , contradicting the assumption that
no such x exists. We conclude (17).

We next prove (18). Let Y be {Vx|x ∈ X such that ∀β ∈ α.fβ 6= x}. By
(17) there is a w such that P α w f . That is, w ∈ X and ∀β ∈ α.fβ 6= w.
Clearly Vw ∈ Y. By Regularity (Proposition 2) there is some Z ∈ Y such that
¬∃z ∈ Y.z ∈ Z. Since Z ∈ Y there must be some x ∈ X such that Z = Vx and
∀β ∈ α.fβ 6= x. We will prove Q α f x for this x. We know P α x f since x ∈ X
and ∀β ∈ α.fβ 6= x. It remains only to prove ∀y.P α y f ⇒ Vx ⊆ Vy. Let y such
that P α y f be given. By Theorem 2:7 either Vy ∈ Vx or Vx ⊆ Vy. It su�ces
to prove Vy ∈ Vx yields a contradiction. We know Vy ∈ Y since P α y f . If
Vy ∈ Vx, then Vy ∈ Z (since Z = Vx), contradicting ¬∃z ∈ Y.z ∈ Z.

We conclude (19) by (18) and the property of the choice operator used in the
de�nition of F. By (19) and (1) we have Q α f (fα). Recall that this was proven
under an inductive hypothesis for α. We now discharge this inductive hypothesis
and conclude (2).

We can now easily infer (3) from (2) and the de�nitions of Q and P.
We next prove (4). Let α, β ∈ λ such that fα = fβ be given. By Proposition 4

either α ∈ β, α = β or β ∈ α. To infer α = β it su�ces to prove a contradiction
in the other two cases. By (2) we know Q α f (fα) and Q β f (fβ). Hence
P α (fα) f and P β (fβ) f . If α ∈ β, then P β (fβ) f contradicts fα = fβ. If
β ∈ α, then P α (fα) f contradicts fα = fβ.

By (4) we know bij λ {f α|α ∈ λ} f . Using Theorem 4 we know (5). From
(5) and set extensionality it is easy to prove (6).

Finally we prove (7). Let x ∈ X be given. Assume ¬∃α ∈ λ.fα = x. We will
prove λ ∈ λ, contradicting Proposition 1. It is easy to prove λ is an ordinal, so
it su�ces to prove λ ∈ U . This is proven via the following subgoals:

∀α ∈ λ.Pαxf (20) ∀α ∈ λ.Vfα ⊆ Vx (21) {fα|α ∈ λ} ∈ U (22)

Since x ∈ X to prove (20) it is enough to argue ∀α ∈ λ.∀β ∈ α.fβ 6= x. If
α ∈ λ, β ∈ α and fβ = x, then β ∈ λ (by Proposition 3) contradicting our
assumption that ¬∃α ∈ λ.fα = x. To prove (21) let α ∈ λ be given. By (2) we
know Q α f (fα) and so ∀y.P α y f → Vfα ⊆ Vy. Applying this with x and
(20) we have (21). Since x ∈ X ⊆ U we know Vx ∈ U by Theorem 3. Hence
℘(℘(Vx)) ∈ U since U is ℘-closed. For each α ∈ λ, fα ⊆ Vfα by Theorem 2:3
and so fα ⊆ Vx by (21). Hence {fα|α ∈ λ} ∈ ℘(℘(Vx)). Since U is transitive
we conclude (22). Since U is closed under replacement we know λ ∈ U by (22),
(5) and (6).

We can now easily conclude Tarski's Axiom A in Egal.
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Theorem 5 (Tarski A). For each set N there exists an M such that

1. N ∈M ,

2. ∀X ∈M.∀Y ⊆ X.Y ∈M ,

3. ∀X ∈M.∃Z ∈M.∀Y ⊆ X.Y ∈ Z and

4. ∀X ⊆M.(∃f : ι→ ι.bij X M f) ∨X ∈M .

Proof. We use U := UN as the witness forM . We know N ∈ UN , UN is transitive
and ZF-closed by the axioms of our set theory. All the properties except the last
follow easily from these facts. We focus on the last property. Let X ⊆ U be
given. Since we are in a classical setting it is enough to assume X /∈ U and prove
there is some bijection f : ι → ι taking X onto U . Since U ⊆ U and U /∈ U
(using Proposition 1), we know there is a bijection g taking {α ∈ U |ordinal α}
onto U by Lemma 1. Since X ⊆ U and X /∈ U , we know there is a bijection h
taking {α ∈ U |ordinal α} onto X by Lemma 1. By Theorem 4 there is a bijection
g−1 taking X onto {α ∈ U |ordinal α}. The composition of g−1 and h yields a
bijection f taking X onto U as desired.

6 Grothendieck Universes in Mizar

In this section we construct Grothendieck universes using notions introduced in
the MML articles CLASSES1 and CLASSES2 [1,19] primarily by Bancerek. For this
purpose, �rst, we brie�y introduce the relevant constructions done by Bancerek.
We then de�ne the notion of a Grothendieck universe of a set A as a Mizar
type, the type of all transitive sets with A as a member that are closed under
power sets and internal family unions. Since Mizar types must be nonempty,
we are required to construct such a universe. We �nally introduce a functor
GrothendieckUniverse A that returns the least set of the type. Additionally, we
show that every such Grothendieck universe is closed under replacement formu-
lating the property as a Mizar scheme.

To simplify notation we present selected Mizar operators in more natural
ways closer to informal mathematical practice. In particular, we use ∅, ∈, ⊆, ℘,
| · |,

⋃
to represent Mizar symbols as {}, in, c=, bool, card, union, respectively.

Following Bancerek, we will start with the construction of the least Tarski
universe that contains a given set A. Tarski's Axiom A directly implies that
there exists a Tarski set TA that contains A where Tarski is a Mizar attribute (for
more details see [13]) de�ned as follows:

attr T is Tarski means :: CLASSES1:def 2

T is subset-closed & (for X holds X ∈ T implies ℘(X)∈ T) &
for X holds X ⊆ T implies X,T are_equipotent or X ∈ T;

Informally we say that T is Tarski to mean T is closed under subset, power and
each subset of T is a member of T or is equipotent with T . Then one shows that⋂
{X|A ∈ X ⊆ TA, X is Tarski set} is the least (with respect to the inclusion)

Tarski set that contains A, denoted by Tarski-Class A.
By de�nition it is easy to prove the following:
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Theorem 6. The following facts hold.

1. ∀A. A ∈ Tarski-ClassA,
2. ∀AX Y. Y ⊆ X ∧X ∈ Tarski-ClassA⇒ Y ∈ Tarski-ClassA,
3. ∀AX. Y ∈ Tarski-Class A⇒ ℘(X) ∈ Tarski-Class A,
4. ∀AX. X ⊆ Tarski-ClassA ∧ |X| < |Tarski-ClassA| ⇒ X ∈ Tarski-ClassA.

Tarski universes, as opposed to Grothendieck universes, might not be transi-
tive (called epsilon-transitive in the MML) but via trans�nite induction Bancerek
proved that Tarski-Class A is transitive if A is transitive (cf. Theorems 22 and
23 in [1]). Therefore, in our construction we take the transitive closure of A prior
to the application of the Tarski-Class functor. Using a recursion scheme we know
for a given set A there exists a recursive sequence f such that f(0) = A and
∀k ∈ N. f(k + 1) =

⋃
f(k). For such an f ,

⋃
{f(n)|n ∈ N} is the least (with

respect to the inclusion) transitive set that includes A (or contains A if we start
with f(0) = {A}). The operator is de�ned in [1] as follows:

func the_transitive-closure_of A → set means :: CLASSES1:def 7

for x holds x ∈ it iff ex f being Function, n being Nat st
x ∈ f.n & dom f = N & f.0 = A & for k being Nat holds f.(k+1) =

⋃
f.k;

We now turn to a formulation of ZF-closed property in Mizar. It is obvious
that ℘-closed,

⋃
-closed properties can we expressed as as two Mizar types as

follows:

attr X is power-closed means for A being set st A ∈ X holds ℘(A) ∈ X;
attr X is union-closed means for A being set st A ∈ X holds

⋃
(A) ∈ X;

Note that we cannot express the closure under replacement as a Mizar type
since each condition that occurs after means has to be a �rst-order statement.
We must therefore use an alternative approach that uses closure under internal
family unions using the notion of a function but also its domain (dom) and range
(rng) as follows:
attr X is FamUnion-closed means
for A being set for f being Function st dom f = A & rng f ⊆ X & A ∈ X
holds

⋃
rng f ∈ X;

Comparing the properties of Tarski and Grothendieck universes we can prove
the following:

Theorem 7. The following facts hold.

1. ∀X.X is Tarski⇒ X is subset-closed power-closed,
2. ∀X.X is epsilon-transitive Tarski⇒ X is union-closed,
3. ∀X.X is epsilon-transitive Tarski⇒ X is FamUnion-closed.

Proof. Part 1 is an easy consequences of the Tarski de�nition and properties
of powersets. Part 2 ia a direct conclusion of the MML theorem CLASSES2:59
proven by Bancerek. To prove 3 letX be epsilon-transitive Tarski set, A be set and
f be function such that dom f = A, rng f ⊆ X, A ∈ X. Since X is subset-closed
as a Tarski set and A ∈ X, we know that ℘(A) ⊆ X. By Cantor's theorem
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we conclude that |A| < |℘(A)| and consequently |A| < |X|. Since |rng f | ≤
|dom f | = |A|, we know that rng f is not equipotent with X. Then rng f ∈ X
since X is Tarski and rng f ⊆ X, and �nally

⋃
rng f ∈ X by Part 2.

We can now easy infer from Theorem 7 that the term:

Tarski-Class(the_transitive-closure_of {A}) (23)

is suitable to prove that the following Mizar type is inhabited:

mode Grothendieck of A → set means
A ∈ it & it is epsilon-transitive power-closed FamUnion-closed;

Now it is a simple matter to construct the Grothendieck universe of a given set
A (GrothendieckUniverse A) since

⋂
{X|X ⊆ GA, X is Grothendieck of A} is the

least (with respect to the inclusion) Grothendieck of A, where GA denotes the
term (23).

As we noted earlier, we cannot express the closure under replacement prop-
erty as a Mizar type or even assumption in a Mizar theorem. However we can
express and prove that every Grothendieck of A satis�es this property as follows:

scheme ClosedUnderReplacement
{A() → set, U() → Grothendieck of A(),F(set) → set}:

{F(x) where x is Element of A(): x ∈ A()} ∈ U()
provided
for X being set st X ∈ A() holds F(X) ∈ U()

The proof uses a function that maps each x in A() to {F(x)}.

7 Conclusion

We have presented the foundational work required in order to port formalizations
from Mizar to Egal or Egal to Mizar. In Egal this required a nontrivial proof of
Tarski's Axiom A, an axiom in Mizar. In Mizar this required �nding equivalent
�rst-order representations for the relevant higher-order terms and propositions
used in Egal and then constructing a Grothendieck universe operator in Mizar.
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