
Automated improving of proof legibility in the

Mizar system?

Karol P¡k

Institute of Computer Science,
University of Bialystok, Poland

pakkarol@uwb.edu.pl

Abstract. Both easily readable and obscure proof scripts can be found
in the bodies of formalisations around formal proof checking environ-
ments such as Mizar. The communities that use this system try to en-
courage writing legible texts by making available various solutions, e.g.,
by introduction of phrases and constructs that make formal deductions
look closer to the informal ones. Still, many authors do not want to invest
additional e�orts in enhancing readability of their scripts and assume this
can be handled automatically for them. Therefore, it is desirable to cre-
ate a tool that can automatically improve legibility of proofs. It turns out
that this goal is non-trivial since improving features of text that enhance
legibility is in general NP-complete.
The successful application of SMT technology to solving computationally
di�cult problems suggests that available SMT solvers can give progress
in legibility enhancement. In this paper we present the �rst experimental
results obtained with automated legibility improving tools for the Mizar
system that use Z3 solver in the backend.

Key words: Operations on languages, Legibility of proofs, Proof assis-
tants, SMT solvers

1 Introduction

1.1 Motivations

Analysing examples of declarative natural deduction proof scripts, especially long
and complicated ones, it can be observed that the proofs are often formulated in
a chaotic way. During the analysis of formalised proofs, we can obviously �nd that
some authors of proof scripts spend a lot of time on their readability, but there
are other ones who tend to create deductions that are correct for computers,
neglecting the legibility of their proof scripts. They believe that no one, with
the exception of a proof checker, will want to analyse them. The experience of
big proof development e�orts [8] shows that adapting or modifying the existing
proofs is unavoidable and requires reading of proof scripts [10]. Additionally, any

? The paper has been �nanced by the resources of the Polish National Science Center
granted by decision n◦DEC-2012/07/N/ST6/02147.

2 K. P¡k

attempt to analyse the details of the proof scripts created in this way, according
to the opinion of some proof writers, is extremely di�cult or even impossible.

The problem of formal deductions illegibility, which at �rst sight does not
seem to be di�cult, led to the abandonment or collapse of many formalisation
projects such as these carried by Bourbaki or Whitehead and Russell [28]. The
formalisation has become feasible only after the availability of computers [29]
increased, but even now it is still quite di�cult. Therefore, it comes as no surprise
that communities around formal proof checking environments such as Mizar
[18] and Isabelle/Isar [27] attempt to resolve this problem and often implement
various solutions aimed at raising the legibility of proof scripts. Adaptation of
informal mathematical language constructs to formal ones is the most natural
direction for research. Many of these implemented solutions [14, 26] are also
known from the programming language editor frameworks, where they proven
their usefulness (B. A. Myers shows that syntax highlighting or hint system
in programming languages can save up to 35% of time spent for search in the
code that is supposed to be modi�ed [13]). These e�orts are also focused on the
visualisation of proof scripts in the linked HTML form [25].

1.2 Proposed approach

In this paper we focus on another, still underdeveloped approach that concen-
trates on modi�cation of order between independent steps written in a proof
script. Based on a result of a long experience with the Mizar system and de-
velopment of Mizar Mathematical Library (MML) [19], an analysis of di�erent
opinions shared by users of MML as well as models of human cognitive percep-
tion of read material, we can conclude that there is a close relationship between
the reasoning legibility and grouping of steps into linear, directly connected
fragments. Naturally, legibility has di�erent meanings for di�erent people, but
in general the results obtained in this research complies with the expectations.
This research precisely demonstrates how important for human being �local de-
ductions� are in the analysing process of mathematical proofs.

This can be summarised with the Behaghel's First Law that elements that

belong close together intellectually should be placed close together [1]. This law
is also recognised in modern scienti�c literature concerning human perception
[15]. Note that every information used in justi�cation of a step had to be derived
before in the proof, but often we can manipulate the location of these premises
in deduction. With Behaghel's law in mind, we assume that a step where at
least part of required information is available in close neighborhood of the step
is more intelligible than a step in which all used information is far away in the
proof scripts. Obviously, close neighborhood can be de�ned in di�erent ways,
therefore we parametrise this notion with a �xed number n that counts the
number of preceding steps that are considered to be our close neighborhood.

An important case emerges for n = 1. In this case the general method of
referencing by means of labels can be replaced in the Mizar system by the then
construction. Additionally, in case where every reference to a step can be replaced
by the then construction, the label attached to this step in unnecessary and can

Automated improving of proof legibility in the Mizar system 3

be removed from proof scripts. In consequence, the number of labels in the proof
script can be brought smaller. Note that the human short-term memory is the
capacity for holding a small amount of information in mind in an active state, and
its capacity is 7 ± 2 elements [3, 17]. However, this capacity is prone to training
[5], and in the case of research on Mizar it has been shown that it is in the range
5-10 [16]. Therefore, it comes as no surprise that we want to choose an ordering
of steps that maximises the number of references in close neighbourhoods of
reference targets, where we understand by a close neighbourhood proof steps
that are supposed to be directly available from within the short-term memory.

In this paper we present the �rst experimental results obtained with auto-
mated legibility improving tools for Mizar that aim at realisation of the above-
described legibility criteria. Since improving legibility in most cases in NP-hard
[22], we also present the results obtained with the application of a SMT-solver Z3
[4]. The impact of these criteria and the other ones has been already recognised
by the scienti�c community of people who write proof scripts in Mizar [20, 21]
and in other systems [2, 12, 24].

In Section 2 we introduce the notion of an abstract model of proofs and
its linearisation. In Section 3 we discuss selected methods to improve legibility
and we show the complexity of two so far open cases, transforming to them
known NP-complete problems. In Section 4 we discuss translations of legibility
problems to the Z3-solver and application of its responses to proof scripts. Then
in Section 5 we report the statistical results obtained for the MML database.
Finally, Section 6 concludes the paper and discusses the future work.

2 Graph representation of proofs

Mizar [19] is a mathematical language and a proof checker for the language that
are based on natural deduction created by S. Ja±kowski and F. B. Fitch [6, 11].
In this paper, we do not concentrate on a full explanation of Mizar. We will just
focus on a few easy-to-observe Mizar proof structure features presented in an
example (Fig. 1), where the statement a square matrix is invertible if and only

if it has non-zero determinant is proved. This example is contained in an article
by P¡k and Trybulec [23].

Note that symbols 0K, 1K represent the additive identity element and the
multiplicative identity element of a �eld K, respectively. Additionally, the Mizar
system uses only ASCII characters, therefore operations such as −1, ·, (·)T are
represented in Mizar as ", *, @ respectively, the labels MATRIX_6, MATRIX_7,
MATRIX11 are identi�ers of Mizar articles. An abstract model of the proof scripts
(see Fig. 2) was considered in detail in [20], but for our purposes we detail only
a sketch of its construction, focusing mainly on one-level deductions that ignore
nested lemmas. Generally we call a DAG P = 〈V,O∪M〉 abstract proof graph if
O,M are disjoint families of arcs, called ordered arcs andmeta-edges respectively,
and O contains a distinguished set of arcs R(P) ⊆ O, the elements of which
are called references. The vertices of P represent reasoning steps, ordered arcs
represent all kinds of additional constraints that force one step to precede another

4 K. P¡k

1: theorem Th34:
for n be Nat, M be Matrix of n,K st n >= 1 holds

M is invertible iff Det M <> 0K
proof

2: let n be Nat, M be Matrix of n,K such that

A1: n >= 1;
3: thus M is invertible implies Det M <> 0K

proof

4: assume M is invertible;
5: then consider Minv be Matrix of n,K such that

A2: M is_reverse_of Minv by MATRIX_6:def 3;
6: A3: M · Minv = 1.(K,n) by A2,MATRIX_6:def 2;
7: Det 1.(K,n) = 1K by A1,MATRIX_7:16;
8: then Det M · Det Minv = 1K by A1,A3,MATRIX11:62;
9: thus then Det M <> 0K;

end;

10: assume

A4: Det M <> 0K;
11: then

A5: M · ((Det M)−1 · (Matrix_of_Cofactor M)T) = 1.(K,n) by Th30;
12: (Det M)−1 · (Matrix_of_Cofactor M)T · M = 1.(K,n) by A4,Th33;
13: then M is_reverse_of (Det M)−1 · (Matrix_of_Cofactor M)

by A5,MATRIX_6:def 2;
14: thus then thesis by MATRIX_6:def 3;

end;

Fig. 1. The example of proof script written in the Mizar style.

one, and meta-edges represent dependence between a step that as a justi�cation
contains nested reasoning and each step of this reasoning. In Fig. 2 arrows �
represent meta-edges. Elements of R(P) ⊆ O correspond to solid arrows and
represent the information �ow between a step (the head of the arc, e.g., the
vertex 8) that use in the justi�cation premises formulated in a previously justi�ed
step (the tail of the arc, e.g., vertices 2, 6, 7). Other ordered arcs correspond to
dashed arrows and represent, e.g., the dependence between a step that introduces
a variable into the reasoning and a step that uses this variable in an expression
(e.g., the arc 〈5, 6〉 that corresponds to the use of the variable Minv). Ordered
arcs represent also the order of special kind reasoning steps in the Ja±kowski-style
natural-deduction proofs (for more detail see [9]) such as steps that introduce
quanti�er or implication; or indicate a conclusion (e.g., arcs 〈2, 3〉, 〈4, 9〉). Clearly,
every abstract proof graph does not contain labeled vertices and multiple arcs.
Labels and multiple arcs visible in Fig. 2 have been used here only to aid the
reader and simplify their identi�cation.

It is easily seen that digraph 〈V,M〉 is a forest, i.e., a disjointed union of
trees, in which every connected maximal tree is an arborescence (i.e., a rooted
tree where all arcs are directed from leaves to the root). Additionally, using the
notion of meta-edges we can de�ne formal equivalent of one-level deductions.

De�nition 1. Let P = 〈V,O ∪M〉 be an abstract proof graph and D be a sub-

graph of P induced by a set of vertices. We call D one-level deduction, if D is

induced by the set of all roots in the forest 〈V,M〉 or it is induced by N−〈V,M〉(v)

for some vertex v ∈ V .

Automated improving of proof legibility in the Mizar system 5

1

11

2 3 10 13 14

12

7

4 5 8 9

6

Fig. 2. The abstract proof graph illustrating the structure of reasoning presented in
Fig. 1.

Naturally, one-level deductions do not have meta-edge. Consequently, focusing
only on such deductions results in a simpli�ed model of proof graphs. Negative
consequence of this simpli�cation is that hidden dependencies between steps
in one-level deductions may occur. Therefore, we have to carefully add such
dependencies to these digraphs. These dependencies was considered in detail in
[22]. Here we remind only that hidden dependency occur between vertices v, u if

(i) there exists a common one-level deduction that contains v and u,

(ii) the step that corresponds to u is justi�ed by a nesting lemma,

(iii) a step s of this nesting lemma uses in the expression a variable that is intro-
duced in a step v or the justi�cation of s refers to the statement formulated
in v, where v corresponds to v.

Additionally in the case, where the justi�cation of s refers to the statement
formulated in v we call 〈u, v〉 extended reference.

Let D = 〈VD, OD〉 be a one-level deduction of P . To simplify we assume
that the set of ordered arcs of D contains also every hidden dependency between
vertices of VD, and R(D) contains only original references of P that connect
vertices of VD. The set of reference and extended reference arcs of G is denoted
by R(D).

To study the general case, without the Mizar context, we assume only relation
between distinguished sets of arcs in D that R(D) ⊆ R(D) ⊆ OD. Therefore, in
the following considerations as a one-level deduction we take a DAG D = 〈V,A〉,
with two distinguished sets A1 ⊆ A2 ⊆ A that correspond to R(D) and R(D),
respectively. For simplicity, we assume also that A1-references can be replaced
in the Mizar system by the then construction.

6 K. P¡k

We identify here a modi�cation of independent steps order to improve proof
legibility with a modi�cation of a topological sorting of D. By topological sorting,
called also linearisation, we mean a one-to-one function σ : V → {1, 2, . . . |V|}
such that σ(u) < σ(v) for each arc 〈u, v〉 ∈ A. We denote by TS (D) the set
of all topological sortings. Let us consider σ ∈ TS (D). We call a vertex v of
V a then

A1(σ)�step if v corresponds to a vertex that is linked by A1 to the
directly preceding step in the linearisation σ (e.g., steps 5, 8, 9 in Fig. 1) or
more precisely:

v ∈ thenA1(σ)⇐⇒ σ(v) 6= 1 ∧ 〈σ−1(σ(v)−1), v〉 ∈ A1. (1)

We call a directed path p = 〈p0, p1, . . . pn〉 of D a σA1�linear reasoning if pk
is a thenA1(σ)�step (i.e., σ(pk) = 1 + σ(pk−1) and 〈pk−1, pk〉 ∈ A1) for each
k = 1, 2, . . . , n (p0 does not have to be a thenA1(σ)�step). A σA1�linear reason-
ing P is maximal if it is not a subsequence of any other σA1�linear reasoning.
In our considerations we also use a function that maps vertices of consecutive
maximal σA1�linear reasoning in linearisation σ to consecutive natural numbers.
Let Then : TS (D)× 2A×V → {1, 2, . . . , |V|} be given by the following recursive
de�nition:

ThenA1
σ (v) =

1 if σ(v) = 1,

ThenA1
σ (σ−1(σ(v)−1)) if v ∈ thenA1(σ),

ThenA1
σ (σ−1(σ(v)−1)) + 1 if v 6∈ thenA1(σ),

(2)

for an arbitrary v ∈ V, A1 ⊆ A, and σ ∈ TS (D).
Now we de�ne a formal equivalent of a label in proof graph formalism. We will

say that a vertex v of V has to have a label or is a labeled vertex in linearisation
σ if v is the tail of at most one A2 \ A1-arc (e.g., steps 2 in Fig. 1) or is the tail
of at most one A1-arc that corresponds to a link which does not connect two
steps located directly one after the other in the linearisation σ (e.g., step 6 in
Fig. 1). We write labA1,A2(σ) for the set of all labeled vertices given by

v ∈ lab
A1,A2(σ)⇐⇒ ∃

u∈V

(
〈v, u〉 ∈ A2 \ A1 ∨ (〈v, u〉 ∈ A1 ∧ σ(v) + 1 6= σ(u))

)
(3)

where v ∈ V. We de�ne also a function Lab : TS (D) × 2A × 2A × V →
{1, 2, . . . , |V|} that associates the number of all labeled vertices u such that
σ(u) < σ(v), with every vertex v ∈ V, de�ned as:

LabA1,A2
σ (v) =

0 if σ(v) = 1,

LabA1,A2
σ (σ−1(σ(v)−1)) if σ(v) 6= 1 ∧ v 6∈ labA1,A2(σ),

LabA1,A2
σ (σ−1(σ(v)−1)) + 1 if σ(v) 6= 1 ∧ v ∈ labA1,A2(σ).

(4)

At last we de�ne a metric dσ : V × V 7→ N for a linearisation σ, which is called
σ�distance and is determined by dσ(v, u) = |σ(v)−σ(u)| for each v, u ∈ V.

3 Methods of Improving Legibility

According to the approach presented in Section 1.2 we can formally de�ne criteria
of reasoning linearisation that quantify the legibility of obtained proof scripts.

Automated improving of proof legibility in the Mizar system 7

Since steps that refer to the preceding reasoning statements are perceived as
more intelligible, we expect that the set thenA1(σ) has the largest cardinal-
ity for the selected linearisation σ (1st MIL). Obviously, the length of σ�linear
reasoning is also important for proof readers, therefore the average length of σ�
linear reasoning should also have the maximal value. Note that optimisation of
this determinant is realised by 1stMIL de�ned below, since such average length

is equal to |VG|
|VG|−|thenA1 (σ)| .

The 1st Method of Improving Legibility (1st MIL):

Instance: A DAG D = 〈V,A〉, a subset A1 of A, a positive integer K ≤ |V|.
Question: Does there exist a topological sorting σ of D for which |thenA1(σ)| ≥ K?

In addition we consider a parameterised version of the above-mentioned prob-
lem, since a close neighborhood of a step in proof scripts can be extended from
the directly preceding step to last n preceding steps.

The 1st Method of Improving Legibility for n (1st MILn):
Instance: A DAG D = 〈V,A〉, a subset A2 of A, a positive integer K ≤ |A2|.
Question: Does there exist a topological sorting σ of D for which

then
A2
≤n(σ) := {〈v, u〉 ∈ A2 : dσ(v, u) ≤ n}

has size at most K?

It is also desirable that fragments of reasoning that are maximal σ�linear
subsequences should be pieces of reasoning with dense information �ow.

Therefore, this �ow has to be maximal in legible proof scripts or equivalently,
the information �ow between maximal σ�linear reasonings has to be minimal.
This can be formulated as follows:

The 2st Method of Improving Legibility (2st MIL):
Instance: A DAG D = 〈V,A〉, subsets A1⊆A2⊆A, a positive integer K ≤ |A2|.
Question: Does there exist a topological sorting σ of D for which

{〈v, u〉 ∈ A2 : ThenA1
σ (v) 6= ThenA1

σ (u)}

has size at most K?

In a similar way we obtain that the number of labeled vertices in the se-
lected linearisation σ should be the smallest (3rdMIL), the same as sum of all
σ�distances between vertices linked by A2-arcs (4

th
MIL).

The 3rd Method of Improving Legibility (3nd MIL):

Instance: A DAG D = 〈V,A〉, subsets A1⊆A2⊆A, a positive integer K ≤ |V |.
Question: Does there exist a topological sorting σ of D for which |labA1,A2(σ)| ≤ K?

The 4th Method of Improving Legibility (4th MIL):

Instance: A DAG D = 〈V,A〉, a subset A2 of A, a positive integer K ≤
(
|V|+1

3

)
.

Question: Does there exist a topological sorting σ of D for which∑
〈u,v〉∈A2

dσ(v, u) ≤ K?

8 K. P¡k

Referring to the short-term memory limitation of humans we formulated the
last method that maximises the number of more intelligible references. We rely
here on the assumption that a reference to a labeled vertex is more intelligible,
if the number of statements that correspond to labeled vertices between linked
by this reference vertices can be remembered by a reader.

The 5th Method of Improving Legibility for n (5th MILn):
Instance: A DAG D = 〈V,A〉, subsets A1⊆A2⊆A, a positive integer K ≤ |A2|.
Question: Does there exist a topological sorting σ of D for which

RA1,A2(σ) := {〈v, u〉 ∈ A2 : LabA1,A2
σ (u)− LabA1,A2

σ (v) ≤ n}

has size at last K?

It is easy to see that the 4thMIL is NP-complete, since it generalises a known
NP-complete problem Directed Optimal Linear Arrangement (see GT43 in [7] for
A2 = A). NP-completeness has been shown also for problems 1st, 2ndMIL, even
for restricted instances A1 = A2 = A [22]. Additionally, for every instance of
these problems in this case, there exists a Mizar proof script that contains a one-
level deduction whose structure is that instance [22]. Therefore, realisation of 1st,
2nd, and 4th methods for one-level deductions potentially occurring in MML is
NP-hard. In consequence, realisations of such methods for abstract proof graphs
are also NP-hard, as one-level deductions are its substructures.

The problem 3rdMIL is also NP-complete in the general case, but for in-
stances limited to ones that can actually occur in MML it is solvable in poly-
nomial time [22]. Consequently, it is possible to e�ectively minimise the number
of labels in Mizar proof scripts. These limits are a consequence of an additional
syntax restriction of Mizar to use the then construct.

We show in Theorems 1, 2 below that problems 1stMILn and 5thMILn are
also NP-complete. However, we do not focus on details of these proofs and we
present only sketches.

Theorem 1. The 1stMIL problem is reducible to the 1stMILn problem for each

natural number n.

Proof. It is easily seen that the 1st MIL and the 1stMIL1 are equivalent, if we
take A1 = A2. Therefore, we can clearly assume that n > 1. Let D = 〈V,A〉,
A1 ⊆ A, K ≤ |V| be an instance I of the 1stMIL. We can clearly construct
in logspace a digraph D′ = 〈V ∪ V ′,A ∪ A′〉, a subset A′2 = A1 ∪ A′, and
K ′ = K + (n−1) · |V| as follows:

V ′ := {vi : v ∈ V ∧ 1 ≤ i < n}, A′ := {〈vi, v〉 : v ∈ V ∧ 1 ≤ i < n} (5)

and consider it to be an instance I ′ of the 1stMILn. Let us take σ ∈ TS (D)
that is a solution of the 1stMIL problem for I and de�ne a topological sorting
σ′ ∈ TS (D′) as σ′(v) := n · σ(v), σ′(vi) := i + (n−1) · σ(v) for each v ∈ V
and 1 ≤ i < n. Obviously, A′ ⊆ then

A′2
≤n(σ

′) since a segment that contains

Automated improving of proof legibility in the Mizar system 9

all vertices of the form vi for i = 1, 2, . . . , n − 1 directly precedes v for each
v ∈ V. Additionally, dσ(v, u) = 1 if and only if dσ′(v, u) = n, hence �nally

|thenA
′
2

≤n(σ
′)| ≤ K ′ and σ′ is a solution of I ′.

Now let σ′ ∈ TS (D′) be a solution of the 1stMILn problem for I ′. Note that
the maximal value of σ′(V ′) is obtained for a vertex of V. Denote it is as v. Let i
be the index for which σ′(vi) has the smallest value among each i = 1, 2, . . . , n−1.

We show that we can move all vertices of V ′v := V ′ \ {v, v1, v2, . . . , vn−1} that
are located between vk and v, before vk in σ

′ for each k = 1, 2, . . . , n− 1 so that

the arrangement between vertices of V ′v is preserved and the size of then
A′2
≤n(σ

′
1) is

not reduced, where σ′1 is the new linearisation obtained in this way. Note that to

compare size of then
A′2
≤n(σ

′) and then
A′2
≤n(σ

′
1) we can clearly compare only A′2-arcs

in-going to v included therein, which can be at most n in both sets. Suppose,

contrary to our claim, that then
A′2
≤n(σ

′) has more such arcs. But then
A′2
≤n(σ

′
1)

contains 〈vj , v〉 for each j = 1, 2, . . . , n− 1, hence then
A′2
≤n(σ

′) contains exactly n
such arcs.

Thus, then
A′2
≤n(σ

′) contains the arcs 〈u, v〉 that have to be A′2-arcs, where u
is the last vertex of V before v in σ. But then dσ′1(u, v) = n and in consequence

〈u, v〉 ∈ then
A′2
≤n(σ

′
1). This contradicts our assumption that then

A′2
≤n(σ

′) has more

arcs in-going to v than then
A′2
≤n(σ

′
1).

In a similar way, we can arrange vertices before the second, the third, the
fourth, . . . , |V|-th up to the last vertex of V in σ′1, σ

′
2, . . . , σ

′
|V|−1, creating a se-

quence σ′2, σ
′
3, . . . , σ

′
|V|, respectively. Additionally, a topological sort σ|V| ∈ TS (D)

that preserves the order of vertices of V in σ′|V| is a solution of I, since

K′ ≤ then
A′2
≤n(σ

′) ≤ then
A′2
≤n(σ

′
|V|) = then

A1(σ|V|) + (n−1) · |V|, (6)

and the proof is completed.

Theorem 2. The 1stMILn problem is reducible to the 5thMILn problem.

Proof. Let D = 〈V,A〉, A2 ⊆ A, K ≤ |A2| be an instance I of the 1st MIL. Let
D′ = 〈V ∪ V ′,A ∪A′ ∪ A′′〉, A′1 = ∅, A′2 = A2 ∪ A′, K ′ = K de�ned as follows:

V ′ := {v1, v2, . . . , vn+1}, A′ := {〈u, vn+1〉 : u ∈ V},
A′′ := {〈u, v1〉 : u ∈ V} ∪ {〈vi, vi+1〉 : 1 ≤ i ≤ n},

(7)

be an instance I ′ of the 5thMILn. Let us consider σ ∈ TS (D′). Note that
A′∩RA′1,A′2(σ) = ∅. Indeed, for every A′-arcs 〈u, vn+1〉 we have dσ(u, vn+1) > n,
since σ(u) < σ(v1) < σ(v2) < . . . < σ(vn+1). The main task ofA′�arcs is labeling
every vertex of V. Consequently, we obtain that Lab

A′1,A
′
2

σ (w1)−Lab
A′1,A

′
2

σ (w2) =
σ(w1)− σ(w2) for each w1, w2 ∈ V. Note also that every vertex of V ′ has to be
located after all vertices of V in σ and in unique order (σ(vi) = |V|+i for each
i = 1, 2, . . . , n+1). Hence RA

′
1,A
′
2(σ) = then

A′2
≤n(σ) = thenA2

≤n(σ|V), where σ|V
is a topological sorting of D obtained by restricting σ to V. Now the proof is
immediate.

10 K. P¡k

4 Automated improving of legibility as support for Mizar

proof authors

When we restrict our focus to methods based on a modi�cation of the order of
independent steps, the presented techniques agree in most cases with the needs of
Mizar users. However, it is controversial what the particular hierarchy of criteria
should be applied, i.e., which criteria should be considered to be more important.
Additionally, it can be observed in proof scripts of MML that application of a
method to improve legibility can degrade the parameter optimised by another
method. Therefore, we created a �exible application which can be used even by
users with con�icting hierarchies of criteria for legibility. To use this application
on a proof script, author needs simply to indicate a one-level deduction by typing
a pragma ::$IL 〈strategy〉 {〈method〉}∗ at the beginning of this deduction (e.g.,
directly after proof, see Fig. 2) and run it, where:

〈strategy〉 : := Z3 : 〈time〉 | BF : 〈number〉 | auto : 〈number〉 : 〈time〉 ,
〈method〉 : := 〈criterion〉 : 〈condition〉 [: 〈parameter〉] ,
〈criterion〉 : := Then | Flow | Lab | SumRef | LabRef ,
〈condition〉 : := = | < | 〈number〉,
〈parameter〉 : := 〈number〉 .

This application tries to �nd in three stages a more legible linearisation
of a deduction decorated with this pragma. First, we create an abstract proof
graph of this deduction. In the second stage, depending on the speci�ed strat-
egy, we describe the proof graph and the selected methods as a list of asser-
tions and we check satis�ability by the Z3 solver for a given number of seconds
(Z3 : 〈time〉); use a brute-force attack with the limited number of checked lin-
earisations (BF : 〈number〉); or check the number of linearisations and depend-
ing on the result we select the �rst (for greater than the limit) or the second
(otherwise) strategy (auto : 〈number〉 : 〈time〉). In the third stage, we adapt the
obtained solution to the considered proof script, if we get a more legible lin-
earisation. Criteria correspond to the 1stMILn, 2

nd, 3rd, 4thMILs, 5thMILn
problems respectively. Moreover, Then criterion with parameter 0 corresponds
to the 1stMIL problem. The condition �eld set to < instructs the tool to search
for a linearisation in which the optimised parameter given as the 〈criterion〉 tag
is improved when compared with the initial situation. The condition �eld set to
= instructs the tool not to make the parameter worse. Finally, condition �eld set
to 〈number〉 de�nes the degree of the criterion in selected hierarchy.

The choice of the brute-force method is a consequence of the fact that 96,2%
of one-level deductions in MML have at most one million possible linearisations
that can be checked in this way �e�ectively�. A vast majority of such deductions is
located on deeply nested levels of proofs. Note that the other 3,8% of deductions
cannot be omitted in the process of improving legibility, since this small group
in MML is mainly located on shallow levels of proofs theorems (46% of this
group is located on the �rst level, 25% on the second one, 14% on the third
one). Additionally, when we try to analyse the main idea of reasoning we often
concentrate the focus more on the �rst few levels than deeper ones (the deepest
level of MML, 21, is used in the Mizar article JGRAPH_6).

Automated improving of proof legibility in the Mizar system 11

Our translation of proof graph structure D = 〈V,A〉, A1 ⊆ A2 ⊆ A for an
optimisation method strongly depends on the method. Generally, we de�ne the
search linearisation as follows:

1: (declare-constn Int) (assert (=n �|V|�))
2: (declare-funS (Int) Int) (declare-funSinv (Int) Int)
3: (assert (forall ((x Int))

(=> (and (<= 1x) (<= xn)) (and (<= 1 (Sx)) (<= (Sx)n)))))
4: (assert (forall ((x Int) (y Int))

(!(=> (and(and (<= 1x) (<=x n)) (= (Sx)(Sy))) (=xy))
:pattern ((Sx) (Sy)))))

5: (assert (forall ((x Int))
(!(=> (and (<= 1x)(<=xn)) (=x (Sinv (Sx)))):pattern ((Sx)))))

where Sinv corresponds to S−1 and is introduced only for selected MILs prob-
lems. We also assert (<(S �x�) (S �y�)) where 〈x, y〉 ∈ A and every path of D
directed form x to y has length at most 1.

The choice of the interpretation of MIL problems in Z3 assertions, generally
requires to carry out initial research on the impact of the translation choice on the
time of solution search. We often obtain signi�cant reduction of the searching
time when we replace an assertion with a quanti�er (e.g., ∀1≤x≤n ϕ(x)) by a
list of assertions that represent individual cases (e.g., ϕ(1), ϕ(2), . . . , ϕ(n)). As
an illustration, let us consider the 1st interpretation of the 1stMIL de�ned as
follows:

1: (declare-funT (Int) Bool)
2: (assert (= (T (Sinv 1)) false))
3: (assert (forall ((x Int))(= (T (Sinv x))

(ite (and(and (< 1x)(<=xn))(= (selectA1(Sinv (-x 1))(Sinvx)) true))
true false))))

4: (declare-funSumT (Int) Int)
5: (assert (= (SumT 0) 0))
6: (assert (forall ((x Int))(= (SumTx)(ite(and(and(< 0x)(<=xn))(= (Tx) true))

(+ 1 (SumT (-x 1)))(SumT (-x 1))))))

where A1 is the incidence matrix of the family of A1-arcs ((declare-constA1
(Array Int Int Bool))). An analysis of 285 one-level deductions contained in the
proof script of [23] (e.g., Fig. 1) shows that we can speed up the search process
(see Fig. 3) on average 37 times if we replace the assertion in the 6th row by a
sequence of assentations like:

(assert (= (SumT �i+1�)
(ite(= (T (Sinv �i+1�))true) (+ 1 (SumT �i�)) (SumT �i�))))

for i = 1, 2, . . . ,n (the 2nd interpretation). Note that we replace a quanti�er in
this assertion by a list of individual cases and we count the number of �true�
values of T in the order determined by S−1. This result can be improved further
on average 2.57 times, if we remove an intermediate function T, using a sequence
of assentations like:

(assert (= (SumT �i+1�)
(ite (= (selectA1 (Sinv �i�)(Sinv �i+1�)) true)(+ 1 (SumT �i�))(SumT �i�))))

12 K. P¡k

(the 3rd interpretation). Note that the number of unresolved cases that remain
unresolved after 10 minutes was reduced from 31 to 10 and 7 respectively. Ad-
ditionally, the average time to solve newly resolved cases were 38.2 and 16.9
seconds respectively.

Similar speed up in searches was obtained with removal of quanti�ers from
interpretations of the other methods. It comes as no surprise since functions
de�ned in one interpretation are used in other ones. Note that the function
SumT is used indirectly in the interpretation of the 2ndMIL problem, since
there exists a relationship between the values of SumT and a relation determined
by belonging of two vertices to the same maximal linear reasoning.

100 101 102 103 104 105 106
100

101

102

103

Number of Linearisations

S
p
e
e
d
u
p
o
f
S
e
a
rc
h
P
ro
c
e
s
s

100 101 102 103 104 105 106

100

101

Number of Linearisations

S
p
e
e
d
u
p
o
f
S
e
a
rc
h
P
ro
c
e
s
s

Fig. 3. The proportion between times of linearisation search with Z3 strategy re-
alised through 1st and 3rd interpretation (on the left side) and through 2nd and
3rd interpretation (on the right side) on one-level deductions in proof scripts of [23].

As an illustration, let us consider one-level deductions contained in the ab-
stract proof graph presented in Fig. 2, induced by vertices 2, 3, 10�14 and 4�9
respectively. Note that the largest number of then-steps is equal to 3 in both
deductions and this this value is obtained in the proof script presented in Fig. 1.
However, the Z3 solver verify the possibility of increasing the number of then-
steps in the 1st interpretation of the 1stMIL for 6.10 and 0.43 seconds, in the
2nd interpretation for 0.08 and 0.06 seconds, and in the 3rd interpretation for
0.02 and 0.01 seconds respectively.

5 Statistical Results

The e�ectiveness of Z3 and BF strategies was studies on the MML database
version 5.22.1191 including 208590 one-level deductions. We present here only
statistical results that were obtained for two most popular criteria that corre-
spond to the 1st and the 4thMIL problem. The results for other criteria have
proved to be similar to those selected ones. This resemblance is mainly due to
similar problem translation to Z3 solver. Running the optimisation program on
the whole MML base with pragmas:

Automated improving of proof legibility in the Mizar system 13

(1) ::$IL Z3:600 Then:<:0 , (2) ::$IL Z3:600 SumRef:< ,
(3) ::$IL BF:1000000 Then:<:0 , (4) ::$IL BF:1000000 SumRef:< ,

takes 62.5h, 16.4h, 2.4h, and 16 min respectively, on a platform with 16 Intel
Xeon E5520 Processors and 24 GB of RAM. Using both strategies only 1.92%,
0.03% of problems were left unsolved, for Then and SumRef criterion respec-
tively. Clearly, BF strategy turns out to be signi�cantly better than Z3, but this
holds only whole MML base is taken as the subject of the test case. When we
take into consideration only deductions that possess at least ten million possible
linearisations, the e�ectiveness in both cases becomes comparable. Additionally,
the e�ectiveness of the strategy Z3 is more highlighted when we analyse it in
terms of the deductions length (see Fig. 4, 5). As we expected, application of
SMT technology to long deductions, where the computationally hardest part
of legibility improvement is concentrated, was fully justi�ed. Additionally, this
situation is evident even for deductions that have at least 25 steps.

1-
6

7-
12

13
-1
8
19
-2
4
25
-3
0
31
-3
6
37
-4
2
43
-4
8
49
-5
4
55
-6
0

61
-3
00

0

50

100

Length of Deductions

P
er
ce
n
t
o
f
F
a
st
er

O
b
ta
in
ed

S
o
lu
ti
o
n
s Z3

BF

Fig. 4. The percent of one-level deductions, where the search time with Z3:600 and
BF:10000000 strategies is compared depending on the deduction length, for criterion
SumRef:<. Naturally, we limited results to cases, in which at least one strategy solved
the problem.

6 Conclusions

In this paper we describe a next stage in the research on methods that improve
proof legibility based on the modifying the order of independent deduction steps.
The Mizar users need a �push-button� tool that automatically facilitates local-
isation of premises in deduction and highlights local subdeductions. However,
creating such a tool is a non-trivial task, since the realisation of these expecta-
tions leads to NP-hard optimisation.

We presented initial results obtained with such a tool that uses the Z3 solver.
This research showed that such tools can improve the legibility of deductions,

14 K. P¡k

1-
6

7-
12

13
-1
8
19
-2
4
25
-3
0
31
-3
6
37
-4
2
43
-4
8
49
-5
4
55
-6
0

61
-3
00

0

50

100

Length of Deductions

P
er
ce
n
t
o
f
F
a
st
er

O
b
ta
in
ed

S
o
lu
ti
o
n
s Z3

BF

Fig. 5. The percent of one-level deductions, where the search time with Z3:600 and
BF:10000000 strategies is compared depending on the deduction length, for criterion
Then:<:0. Clearly, we limited results to cases, in which at least one strategy solved
the problem.

even in the case they are long. De�nitely, our result suggests the need of further
work on the choice of interpretation of MIL problems in Z3 to speed up the
search process

Note that we encounter computationally di�cult problems, similarly as for
MIL, when we try to improve the legibility of proof scripts based, e.g. on auto-
mated look-up of passages from long reasoning and extracting them as a lemma.
Therefore, by successful application of the SMT-solver Z3 to solving MIL prob-
lems we we expect similar results to other methods of legibility enhancement.

References

1. O. Behaghel. Beziehungen zwischen Umfang und Reihenfolge von Satzgliedern.
Indogermanische Forschungen, 25:110�142, 1909.

2. J. C. Blanchette. Redirecting Proofs by Contradiction. In Third International
Workshop on Proof Exchange for Theorem Proving, PxTP 2013, volume 14 of
EPiC Series, pages 11�26. EasyChair, 2013.

3. N. Cowan. The magical number 4 in short-term memory: A reconsideration of
mental storage capacity. Behavioral and Brain Sciences, 24(1):87�114, 2001.

4. L. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In C. R. Ramakrishnan
and J. Rehof, editors, Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, volume 4963 of Lecture
Notes in Computer Science, pages 337�340. Springer-Verlag, 2008.

5. K. A. Ericsson. Analysis of memory performance in terms of memory skill, vol-
ume 4 of Advances in the psychology of human intelligence. Hillsdale, NJ: Lawrence
Erlbaum Associates Ins., 1988.

6. F. B. Fitch. Symbolic Logic: an Introduction. The Ronald Press Co., 1952.
7. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. A Series of Books in the Mathematical Science. W.
H. Freeman and Company, New York, 1979.

Automated improving of proof legibility in the Mizar system 15

8. G. Gonthier. Formal Proof�The Four-Color Theorem. Notices of the AMS,
55(11):1382�1393, 2008.

9. A. Grabowski, A. Korniªowicz, and A. Naumowicz. Mizar in a Nutshell. Journal
of Formalized Reasoning, 3(2):153�245, 2010.

10. A. Grabowski and Ch. Schwarzweller. Improving Representation of Knowledge
within the Mizar Library. Studies in Logic, Grammar and Rhetoric, 18(31):35�50,
2009.

11. S. Ja±kowski. On the Rules of Supposition in Formal Logic. Studia Logica, 1934.
Warszawa Reprinted in Polish Logic, ed. S.McCall, Clarendon Press, Oxford 1967.

12. C. Kaliszyk and J. Urban. PRocH: Proof Reconstruction for HOL Light. In
M. P. Bonacina, editor, 24th International Conference on Automated Deduction,
CADE-24, volume 7898 of Lecture Notes in Computer Science, pages 267�274.
Springer-Verlag, 2013.

13. A. J. Ko, B. A. Myers, M. J. Coblenz, and Htet Htet Aung. An Exploratory Study
of How Developers Seek, Relate, and Collect Relevant Information during Software
Maintenance Tasks. IEEE Transactions On Software Engineering, 32(12):971�988,
2006.

14. A. Korniªowicz. Tentative Experiments with Ellipsis in Mizar. In J. Jeuring, J. A.
Campbell, J. Carette, Gabriel G. Dos Reis, P. Sojka, M. Wenzel, and V. Sorge,
editors, Intelligent Computer Mathematics 11th International Conference, volume
7362 of Lecture Notes in Arti�cial Intelligence, pages 453�457. Springer-Verlag,
2012.

15. R. Levy. Expectation-based syntactic comprehension. Cognition, 106(2008):1126�
1177, 2007.

16. R. Matuszewski. On Automatic Translation of Texts from Mizar-QC language
into English. Studies in Logic, Grammar and Rhetoric, 4, 1984.

17. G. A. Miller. The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information. Psychological Review, 63:81�97, 1956.

18. A. Naumowicz and A. Korniªowicz. A Brief Overview of Mizar. In TPHOLs'09,
Lecture Notes in Computer Science, vol. 5674, pages 67�72. Springer-Verlag, 2009.

19. A. Naumowicz and A. Korniªowicz. A Brief Overview of Mizar. In S. Berghofer,
T. Nipkow, Ch. Urban, and M. Wenzel, editors, Theorem Proving in Higher Or-
der Logics, Lecture Notes in Computer Science, vol. 5674, pages 67�72. Springer-
Verlag, 2009.

20. K. P¡k. The Algorithms for Improving and Reorganizing Natural Deduction
Proofs. Studies in Logic, Grammar and Rhetoric, 22(35):95�112, 2010.

21. K. P¡k. Methods of Lemma Extraction in Natural Deduction Proofs. Journal of
Automated Reasoning, 50(2):217�228, 2013.

22. K. P¡k. The Algorithms for Improving Legibility of Natural Deduction Proofs. PhD
thesis, University of Warsaw, 2013.

23. K. P¡k and A. Trybulec. Laplace Expansion. Formalized Mathematics,
15(3):143�150, 2008.

24. S. J. Smolka and J. C. Blanchette. Robust, Semi-Intelligible Isabelle Proofs from
ATP Proofs. In Third International Workshop on Proof Exchange for Theorem
Proving, PxTP 2013, volume 14 of EPiC Series, pages 117�132. EasyChair, 2013.

25. J. Urban. XML-izing Mizar: Making Semantic Processing and Presentation of
MML Easy. In M. P. Bonacina, editor, 4th International Conference Mathematical
Knowledge Management 2005, MKM'05, volume 3863 of Lecture Notes in Com-
puter Science, pages 346�360. Springer-Verlag, 2005.

26. J. Urban. MizarMode - An Integrated Proof Assistance Tool for the Mizar Way
of Formalizing Mathematics. Journal of Applied Logic, 4(4):414�427, 2006.

16 K. P¡k

27. M. Wenzel. The Isabelle/Isar Reference Manual. University of Cambridge, 2011.
28. A. N. Whitehead and B. Russell. Principia Mathematica to *56. Cambridge

Mathematical Library. Cambridge University Press, 1910.
29. V. Zammit. On the Readability of Machine Checkable Formal Proofs. PhD thesis,

The University of Kent at Canterbury, March 1999.

