
Improving Legibility of Proof Scripts Based on
Quantity of Introduced Labels?

Karol Pąk

Institute of Computer Science,
University of Bialystok, Poland

pakkarol@uwb.edu.pl

Abstract. Formal proof checking systems such as Mizar or Isabelle/Isar
can verify the correctness of proof scripts, both easily readable and ob-
scure. However for humans, e.g., those who analyse the main idea of a
formal proof or redevelop fragments of reasoning to make them stronger,
the legibility has substantial significance. Furthermore, proof writers cre-
ate still more and more complex deductions that cannot be shortened to
several steps by any tools currently available. Therefore, it is important
to better understand how we can facilitate the work of script readers
modifying the order of independent deduction steps or reorganise the
proof structure by extracting lemmas that are obtained automatically.
In this paper we present experimental result obtained with a method
that improves proof legibility based on human short-term memory and
we explore its impact for realisation of other, also popular methods.

Keywords: Operations on languages, Legibility of proofs, Proof assis-
tants

1 Introduction

1.1 Motivations

One of the most important tasks of proof assistants such as Mizar [17, 23] or Is-
abelle/Isar [24] is checking proof step correctness. Clearly, inferences that are obvious
for proof writers should be also obvious for checkers and vice versa. However, the notion
of “obviousness” has often different meaning for humans and checkers [5, 21]. Generally,
this difference is not so important problem if we do not need to analyze, adapt or mod-
ify the existing formal proofs scripts [10, 12]. According to the opinion of some proof
writers, repairing a justification in re-developed fragments of reasoning that ceased to
be acceptable, can be very difficult. We can observe similar situation in the area of proof
script legibility. A proof assistant can check correctness of every syntactically correct
formal proof scripts, even automatically generated, excessively large, or written in a
chaotic way. However, any attempt to analyse such scripts by a human is extremely
difficult or even impossible. The main reason for this situation is often the fact that
proof scripts are created in an artificial language which “tries” to be similar to the one

? The paper has been financed by the resources of the Polish National Science Center
granted by decision n◦DEC-2012/07/N/ST6/02147.

Trends in Contemporary Computer Science, Podlasie 2014, ISBN 978-83-62582-58-7
by A. Gomolińska, A. Grabowski, M. Hryniewicka, M. Kacprzak, E. Schmeidel (Eds.)

72 Karol Pąk

that occurs in the traditional mathematical practice. Another reason is that readability
does not come of zero cost on the side of proof script developers. Namely, the legibility
strongly depends on the amount of effort invested in enhancing the readability by the
author of a given proof script. Unfortunately, authors often do not care about legibility
of their proof scripts. It is often a consequence of their assumption that no one, with
the exception of a proof checker, will want to analyse their proof scripts. Furthermore if
somebody would want to do it, then some tool rather than themselves should improve
the legibility of their scripts. The experience with proof assistants shows that reading
proof script is often unavoidable, e.g., if we adapt or modify existing proofs [8, 11], or
if several authors cooperate on a common formalisation. The important point to note
here is that creating such a tool that enhances legibility can in general be NP-complete
[20].

1.2 Proposed approach
In this paper we present a next stage [18, 20] in the enhancing legibility of proof scripts
based on a modification of the order of independent deduction steps. We concentrate
on a modification that minimises the number of steps decorated by labels. Note that we
need to refer to a premise, if we want to use it in the justification of a step. But in some
cases to do this in the Mizar system we do not have to use the label of this premise.
Indeed, referencing a step by its label may be replaced in the Mizar system by the then
construction, if the step is located in the directly preceding step that refers to it (for
more detail see [9, 17]). Additionally, if each reference to a fixed step can be realised by
the then construction, then the label that decorates this step in unnecessary and can
be removed from the proof script. Therefore, it is possible to minimise the number of
labels that are introduced in proof scripts.

Analysing deductions contained in proof scripts of the Mizar Mathematical Library
(MML), one may reasonably conclude that the number of introduced labels in a reason-
ing can be rarely minimised so that a proof reader can keep them in human short-term
memory. However, minimisation to such a number is often possible in one-level deduc-
tions (i.e., substructures of a proof where nested lemmas are ignored) that are located
on all levels of nesting (see Fig. 2). Note that only 4.5% of one-level deductions that
occur in MML (Version 5.22.1191) have more than 7 labels. Additionally, G. A. Miller
shows that the capacity of human short-term memory is 7 ± 2 elements [15]. This limi-
tation is also recognised in modern scientific literature that concerns human perception
[3, 4]. Clearly, the capacity of memory decreases quickly with time and it is smaller in
the case of similar information [25]. However, this capacity can be extended through
training [6]. Therefore, small departure beyond the number 7 should be acceptable and
this is the case for MML where the number of labels is in the range 5-10 [14].

In this paper we represent experimental results obtained with minimisation of the
number of introduced labels. We combined this result with other criteria that improve
proof scripts legibility and have been already recognised by the scientific community
of people who write proof scripts in Mizar [18, 19] as well as in other systems [2, 13,
22]. Since, optimisation of legibility criteria in most cases is NP-hard [20], we present
readability enhancements obtained with the help of the SMT-solver Z3 [16].

2 Labeled steps in terms of proof graphs

To formulate a criterion that minimises the number of introduced labels and the in-
fluence of this criterion implementation for the realisation of other similarly popular

Improving Legibility of Proof Scripts 73

criteria, we need to set the terminology and notation. Let G = 〈V,A〉 be a DAG and a
vertex u ∈ V . We use the following notation:

N−G (u) :− {v ∈ V : 〈v, u〉 ∈ A} (incoming arcs),
N+
G (u) :− {v ∈ V : 〈u, v〉 ∈ A} (outgoing arcs). (1)

Let A1 be a subset of A. An arc 〈u, v〉 ∈ A is called an A1-arc if 〈u, v〉 ∈ A1. A
sequence p = 〈u1, u2, . . . , un〉 of vertices of G is called an A1–path if 〈u1, ui+1〉 is an
A1-arc for each i = 1, 2, . . . , n−1. We identify here topological sortings of G, called also
linearisations, with one-to-one functions τ : V → {1, 2, . . . , |V |}, where τ(u) < τ(v) for
each A–arc 〈u, v〉.

An abstract model of a proof graph that represents the structure of natural de-
duction proofs, even with potentially nested subreasonings is fully explained in [18,
20]. However for our purposes it is enough to consider a simplified model which is
represented by a DAG with the structure that ignores nested lemmas (i.e., one-level
deductions). It is worth pointing out that the number of introduced labels on a one-
level deduction in a proof script is independent of the number of introduced labels on
another one-level deduction of such script. A DAG D = 〈V,A〉 with a distinguished set
of arcs R(D) ⊆ A is called a simple abstract proof graph. The vertices of D represent
steps of the reasoning and A–arcs represent the flow of information between different
steps of the reasoning. A R(D)–arc, called a reference arc, represents the information
flow between a premise (the tail of the arc) and a place of its use (the head of the arc).
The other A-arcs represent all kinds of additional constraints that force one step to
precede another one, e.g., the dependence between a step that introduces a variable
into the reasoning and a step that uses this variable in its expression.

1: reserve i, n, m for Nat; theorem
1: fixes n m i::nat

theorem 2: shows "i ∈ {k::nat. 1<=k & k<=n}==>
2: i in Seg n implies i+m in Seg(n+m) i+m ∈ {k::nat. 1 <= k & k <= n+m}"

proof proof -
3: assume A1: i in Seg n; 3: assume A1: "i ∈ {k::nat. 1 <= k & k <= n}"
4: then A2: 1 <= i by FINSEQ_1:1; 4: then have A2: "1 <= i" by simp
5: i <= i+m by NAT_1:11; 5: have "i <= i+m" by simp
6: then A3: 1 <= i+m by A2,XXREAL_0:2; 6: then have A3: "1 <= i+m" using A2 by simp
7: i <= n by A1,FINSEQ_1:1; 7: have "i <= n" using A1 by simp
8: then i+m <= n+m by XREAL_1:7; 8: then have "i+m <= n+m" by simp
9: hence thesis by A3,FINSEQ_1:1; 9: then show ?thesis using A3 by simp

end; qed

Fig. 1. An example proof script written in the Mizar language that is contained in [1]
and its reformulation to the Isabelle/Isar language.

As an illustration, let us consider an example shown in Fig. 2 that represents
the structure of proof scripts presented in Fig. 1, where solid arrows correspond to
reference arcs that are also A-arcs, and dashed arrows correspond to A-arcs that are
not reference arcs. Additionally, the term Seg n that occurs in Fig. 1 represents the
set {1, 2, . . . , n}. Clearly, both arcs and nodes of the abstract proof graph are not
labeled. However we label each element in the actual graph only to simplify their
identification. Note that this graph contains two one-level deductions (vertices 1–2 and
vertices 3–9) and additionally� arrows that correspond to meta-edges of proof graphs,

74 Karol Pąk

which do not occur in our simplified model. We only recall that meta-edges represent
dependencies between one-level deductions, i.e., between a step (e.g., the vertex 2)
that as a justification contains the nested reasoning and each step of this reasoning
(e.g., vertices 3–9). It is easily seen that in such a simplified model we have to take into
consideration additional hidden dependencies that can occur between steps in one-level
deductions. As an illustration note that the 1st step has to occur before the 2nd step,
even if variables introduced in the 1st step do not occur in the statement of the 2nd step.
Indeed, e.g., the variable i is used in the statement of the 3rd step that occurs in the
nested reasoning that justify the 2nd step.

1 2

4 6

3 5 9

7 8

1st one-level deduction

2nd one-level deduction

i,n,m

i
,n

i,m

i

i,m

i,n,m

i,n
the

n
th
en

A1

A3

th
en

then

A2

Fig. 2. The abstract proof graph illustrating the structure of the reasoning presented
in Fig. 1.

Let D = 〈V,A〉 be a one-level deduction. For simplicity, we assume that A contains
additionally every hidden dependence between vertices of V, and denote by R(D) the
set of reference arcs and hidden ones. We mark by then(D) the set of references that
can be replaced by the then construction. However, to study the general case, without
the Mizar context, we will assume only the relation between distinguished sets of arcs in
D that then(D) ⊆ R(D) ⊆ A. Therefore, in further considerations we mean then(D),
R(D) simply as two sets A1, A2, respectively, where A1 ⊆ A2 ⊆ A.

Recall that we identify the arrangement of reasoning steps that correspond to V in
a proof script with a topological sortings of D. Let us consider σ ∈ TS(D). We define a
metric dσ : V×V → N that is called σ–distance and is given by dσ(v, u) = |σ(v)−σ(u)|
for all v, u ∈ V. We call a vertex v ∈ V a thenA1(σ)–step if v corresponds to a step
that refers to the directly preceding step using a A1–arc (e.g., the vertex 4). We denote
by thenA1(σ) the set of such steps given by

v ∈ thenA1(σ)⇐⇒
(
σ(v) 6= 1 ∧ 〈σ−1(σ(v)−1), v〉 ∈ A1

)
. (2)

We call a vertex v ∈ V σ–labeled if at least once we have to use a label to refer to the
statement of a step that corresponds to V (e.g., the vertex 3). The set of all σ–labeled

Improving Legibility of Proof Scripts 75

vertices, denoted by labA1,A2(σ), is defined as follows:

v ∈ labA1,A2(σ)⇐⇒ ∃
u∈V
〈v, u〉 ∈ A2 ∧

(
〈v, u〉 ∈ A1 =⇒ dσ(v, u) > 1

)
. (3)

However, according to an additional syntax restriction of Mizar that prohibits refer-
ring to steps that introduce variables into the reasoning, we have to consider also the
following set of σ–labeled vertices:

v ∈ labMIZA1,A2
(σ)⇐⇒ ∃

u∈V
〈v, u〉 ∈ A2 ∧

(
(〈v, u〉 ∈ A1 =⇒ dσ(v, u) > 1) ∨ (∃

w∈V
〈v, w〉 ∈ A \ A1)

)
. (4)

We call |labMIZA1,A2
| the lab–parameter.

Based on the notions described above we can formulate the method of improving
legibility that corresponds to the lab-parameter as the following decision problems:

The 1st Method of Improving Legibility (MILlab):
Instance: A DAG D=〈V,A〉, subsets A1⊆A2⊆A, and a positive integer K 6 |V|.
Question: Does there exist σ ∈ TS(D) for which |labA1,A2(σ)| 6 K?

The 1st Method of Improving Legibility limited to the Mizar system (MILMIZ
lab):

Instance: A DAG D=〈V,A〉, subsets A1⊆A2⊆A, and a positive integer K 6 |V|.
Question: Does there exist σ ∈ TS(D) for which |labMIZA1,A2

(σ)| 6 K?

3 Optimisation of the lab–parameter

The complexity problem of improving legibility methods that corresponds to the lab–
parameter optimisation has been studied in [20]. It has been shown that MILlab is
NP-complete and MILMIZ

lab is solvable in polynomial time. Here we concentrate first
on properties of the polynomial time procedure that optimises the lab–parameter for
Mizar proof scripts. Then we show that the MILlab method for one-level deductions
that potentially occur in Isabelle proof scrips is NP-hard.

3.1 The lab–parameter in the Mizar system

Let us fix a one-level deduction DAG D=〈V,A〉 with two distinguished subsets of arcs
A1⊆A2⊆A. First note that some of the vertices of D have to be σ–labeled regardless
of the σ choice. Indeed, every v ∈ V for which at last one of the following properties
holds:
(i) |N+

〈V,A1〉(v)| > 1,
(ii) |N+

〈V,A2〉(v)| > |N+
〈V,A1〉(v)|,

(iii) |N+
D (v)| > |N+

〈V,A2〉(v)| > 0,
has to be σ–labeled in all σ ∈ TS(D). Mark the set of such vertices by LMIZ

A1,A2
. Note

also that if we remove all A–arcs outgoing from vertices of LMIZ
A1,A2

then the digraph
obtained in this way, denoted by D′, is a forest where every connected maximal tree
is an arborescence (i.e., a rooted tree where all arcs are directed from leaves to the
root). Additionally, every arc of D′ is simultaneously A2–arc, A1–arc, and A–arc, hence

76 Karol Pąk

labMIZA1,A2
(σ) \ LMIZ

A1,A2
has to contain at least |N+

D′(v)| − 1 elements of N+
D′(v) if only

N+
D′(v) is nonempty for each v ∈ V. As it has been proven in [20], for each set of vertices

that contain LMIZ
A1,A2

and exactly |N+
D′(v)| − 1 elements of every nonempty N+

D′(v),
there exists a topological sorting σ ∈ TS(D) for which labMIZA1,A2

(σ) is equal to this set.
Clearly, in this topological sorting every non-selected vertex u ∈ N+

D′(v) \ labMIZA1,A2
(σ)

has to be located in the directly preceding step v, since u is not decorated by a label.
Additionally, this holds for each choice of |N+

D′(v)| − 1 elements of N+
D′(v). Therefore,

we can modify this choice in such a way that an arbitrary step of N+
D′(v) can become

not labeled. Hence from this we can conclude that the lab–parameter is minimal if each
vertex v that “refers” to at least one “premise” with exactly one incoming A-arc, has
to contain at least one such premise that is located directly before v or more precisely:

Proposition 1. Let D = 〈V,A〉 be a DAG with two distinguished sets of arcs A1 ⊆
A2 ⊆ A. Then labMIZA1,A2

(σ) has the smallest possible size if and only if, for every v ∈ V
it holds that

N−D (v) ∩ L 6= ∅ =⇒ σ−1(σ(v)−1) ∈ L, (5)

where σ ∈ TS(D) and L = {v ∈ V : |N+
〈V,A1〉(v)| = |N+

〈V,A〉(v)| = 1}.

3.2 The lab–parameter in the Isabelle/Isar system

Now we show that the minimisation of the lab–parameter for Isabelle/Isar proof scripts
is NP-hard. To achieve this we indicate a family of correct proof scripts for which the
minimisation of the lab–parameter is equally hard as the minimisation of the size of a
vertex cover.

In this paper, we do not concentrate on a full explanation of how the known NP-
complete problem Vertex Cover (see GT1 in [7]) is reducible to the MILlab problem (for
more details see [20]). We present only a way to create proofs written in the Isabelle/Isar
system that have structures described by graphs obtained in this reduction. In this way
we show that difficult proof structures are indeed representable there.
Vertex Cover (VC):

Instance: An (undirected) graph G = 〈V,E〉 and a positive integer K 6 |V |.
Question: Is there a vertex cover of size at most K, i.e., a subset V ′ ⊆ V of size

at most K such that for each edge {u, v} ∈ E at least one of u or v belongs to V ′?

Let G = 〈V,E〉, K 6 |V | be an instance of VC. For simplicity we assume that
V = {1, 2 . . . , |V |}. The instance of MILlab that is used in the reduction of VC to MILlab

is defined as follows. We construct a digraph D = 〈V,A〉 and subsets A1⊆A2⊆A given
by:

V :− V × {0, 1},
A1 :− {〈〈v, 0〉, 〈v, 1〉〉 : v ∈ V },
A2 :− {〈〈v, 0〉, 〈v, 1〉〉 : v ∈ V } ∪ {〈〈v, 0〉, 〈u, 1〉〉 : {v, u} ∈ E},
A :− A2.

(6)

Obviously, D, A1, and A2 determine a one-level deduction with two distinguished
subsets of arcs. Additionally, this deduction together with K is an instance of MILlab

problem. Let us remind that the main idea of this reduction based on the fact that to
obtain a vertex cover, for every edge {v, u} ∈ E, at least one of 〈v, 0〉, 〈u, 0〉, has to
belong to labA1,A2(σ) for each σ ∈ TS(D).

To create Isabelle/Isar proof scripts that correspond to the constructed deduction,
we associate:

Improving Legibility of Proof Scripts 77

obtain xi::nat where Ai: "xi=i" by simp

with every vertex of the form 〈i, 0〉 and

have "xi=i & (xj1=xj1 & . . . & xjn=xjn)" using Ai by simp

with every vertex of the form 〈i, 1〉, where i ∈ V , {j1, j2, . . . , jn} = N−〈V,A2\A1〉(v). For
illustration, an example of a reasoning that follows this pattern is presented in Fig. 3.
It is simple to observe that every topological sorting of D organises such steps in the
reasoning acceptable by the proof checker, since every occurring statement is “obvious”.
Additionally, this linearisation ensures that none of the variables and label identifers
is used before their introduction in the reasoning. This completes the justification that
computationally difficult instances can potentially occur in Isabelle/Isar proof scrips.

1

2 3

G

D
〈1, 0〉

〈1, 1〉
〈2, 0〉

〈2, 1〉

〈3, 0〉

〈3, 1〉
x1 x3

x1 x3

x2 x2

x1 A1

x2 A2

x3 then

〈1, 0〉: obtain x1::nat where
A1: "x1=1" by simp

〈2, 0〉: obtain x2::nat where
A2: "x2=2" by simp

〈3, 0〉 : obtain x3::nat where
"x3=3" by simp

〈3, 1〉 : then have"x3=3 & (x1=x1 & x2=x2)"
by simp

〈1, 1〉 : have "x1=1 & (x2=x2 & x3=x3)"
using A1 by simp

〈2, 1〉 : have "x2=2 & (x1=x1 & x3=x3)"
using A2 by simp

Fig. 3. An example that illustrates the construction from Section 4, where considered
vertex cover is equal to {1, 2} and corresponds to vertices 〈1, 0〉, 〈2, 0〉, represented as
steps decorated by A1 and A2, respectively.

4 The lab-parameter in the process of improving other
determinants of legibility

Our research is focused on the impact of the methods presented above on other popular
methods such as increasing the number of then constructions (called then–parameter)
or reducing the sum of all σ–distances of references (called dist–parameter). These
methods of improving legibility of proofs can be formulated as the following two prob-
lems:

The 2nd Method of Improving Legibility (MILthen):
Instance: A DAG D=〈V,A〉, a subset A1⊆A, and a positive integer K6 |V|.

78 Karol Pąk

Question: Does there exist σ ∈ TS(D) for which |thenA1(σ)| > K?

The 3rd Method of Improving Legibility (MILdist):
Instance: A DAG D = 〈V,A〉, a subset A2 ⊆ A, and a positive integer K 6(
|V|+ 1

3

)
.

Question: Does there exist σ ∈ TS(D) for which
∑

〈v,u〉∈A2

σ(u)−σ(v) 6 K?

This impact has been studied on the MML database Version 5.22.1191 that in-
cludes 208590 one-level deductions. To obtain the result we use a brute-force method
to check the existence of a solution for simple instances of this problem (e.g., one-level
deductions that have at most 1000000 of possible linearisations) and the SMT-solver
Z3 [16] to check more computationally complex ones, since both problems, MILthen and
MILdist, are NP-complete [20]. There was a time limit of 10 minutes set for each com-
bination of the transformation strategies. With this threshold only 1.92% and 0.03%
remained untransformed in then and dist parameters optimisation, respectively.

Using a polynomial time algorithm that is sketched in Prop. 1, we reduced the
number of labeled steps only in 4.49% of deductions. Additionally, these deductions
were mainly located in proof scripts recently added to the MML database. This obser-
vation is a simple consequence of the fact that the lab–parameter in older scripts was
reduced in a revision of MML database Version 4.121.1054 and obtained results were
introduced to the Version 4.127.1060 [18]. Note that this situation was not inten-
tional, since the main aim of this revision was not to minimise the lab–parameter, but
generally to increase the then–parameter in proof scripts based on a greedy algorithm.
However, topological sortings obtained by this algorithm fulfil the conditions (5).

then–parameter dist–parameter
Improved 1.19% 8.27%
Unchanged 76.36% 74.42%
Worsened 22.45% 17.31%

Table 1. Modification of then and dist parameters obtained by a polynomial time
algorithm, sketched in Section 4, in comparison to the initial situation.

then–parameter dist–parameter
Improved 6.02% 18.66%
Unchanged 93.89% 80.89%
Worsened 0.09% 0.45%

Table 2. Modification of then and dist parameters obtained by a brute-force method
or Z3 solver, if we restrict the search to the linearisation with optimal lab–parameter,
in comparison to the initial situation. Clearly, we limited results to cases, in which at
least one strategy solved the problem.

Improving Legibility of Proof Scripts 79

Analysing the impact of this polynomial time algorithm application for then and
lab parameters, we observe that this parameters are more often worsened than im-
proved. These results are summarised in Tab. 1. However, since we can determine
efficiently the lab–parameter, we explored also the improvement of these parameters
among such topological sortings that have optimal lab–parameter (see Tab. 2).

It is important to pay attention to the 0.45% percent of deductions for which it
is certainly impossible to obtain the optimal value for both, lab and dist parameters
simultaneously. More precisely, the analysis shows also that these 0.45% of deductions
constitute only part (18.91%) of 2.37% cases where we cannot obtain the optimal dist-
parameter if we have optimal lab-parameter. The other 79.36% and 1.73% of 2.37%
cases are obtained for deductions where, despite optimal value of lab-parameter, we
can improve or unchange respectively the dist-parameter in comparison to the initial
situation.

As an illustration of such a conflict between lab and dist parameters, let us con-
sider a simple abstract proof graph that is presented in Fig. 4. It is easy to see that
this graph has exactly two possible linearisations σ: 1, 2, 3, 4 and 2, 1, 3, 4. Additionally,
the number od σ-labeled steps is equal to 2 and 1 respectively, but the sum of all
σ–distances of references is equal to 6 and 7, respectively.

1 2

3

4

Fig. 4. A simple abstract proof graph for which the conflict between lab and dist
parameters occurs.

Let us note also that the situation where we have to reduce then-parameter to
obtain optimal lab-parameter is a rare situation that occurs mainly in a complex one-
level deductions of MML. Additionally, existing examples of this conflict have more
than one million of possible linearisations. However, to illustrate the conflict between
lab and dist parameter, we can consider an artificial simple abstract proof graph,
presented in Fig. 5 that can potentially occur in Mizar proof scripts. Based on the
analysis carried out in Section 4 and Prop. 1 we infer that every topological sorting
of this deduction has to have at last 5 labeled steps and this value is obtained, e.g.,
for an arrangement 1, 2, 4, 5, 7, 8, 3, 6, 9. Indeed, vertices 1, 2, 4, 5 have to be labelled,
since there exist at least two tail endpoints references arc adjacent to these vertices.
Additionally, at most one of the references to premises that correspond to vertices 6, 8
can be realised without a label. The analysis of all possible, 42, topological sortings
shows that the maximal value of then-parameter is equal to 6 and it is obtained in
exactly two arrangements 1, 2, . . . , 9 and 1, 4, 7, 2, 5, 8, 3, 6, 9 where there exist exactly
6 labeled steps. This shows that the conflict between lab and then parameters can
occur even in “small” one-level deductions.

80 Karol Pąk

1

4 2

7 5 3

8 6

9

Fig. 5. A simple abstract proof graph for which the conflict between lab and then
parameter occurs.

5 Conclusion

In this paper we have focused on reducing the number of labels introduced to formal
reasoning in the process that improves legibility of proof scripts. We have showed that
such a reduction can be NP-hard in a formal proof checking environment, even if it is
computationally easy in another. Additionally, initial experiments with proof scripts
occurring in the MML database show that optimisation of the labeled steps number can
be in a conflict with other frequently employed methods of improving proof legibility.
However, the presented research shows that this conflict occurs not so often and it
appears mainly in deductions that have complex structures.

References

1. Bancerek, G., Hryniewicki, K.: Segments of Natural Numbers and Finite Sequences.
Formalized Mathematics (1), 107–114 (1990)

2. Blanchette, J.C.: Redirecting Proofs by Contradiction. In: Third International
Workshop on Proof Exchange for Theorem Proving, PxTP 2013. EPiC Series,
vol. 14, pp. 11–26. EasyChair (2013)

3. Cowan, N.: Attention and Memory: An Integrated Framework. Oxford University
Press (1998)

4. Cowan, N.: The magical number 4 in short-term memory: A reconsideration of
mental storage capacity. Behavioral and Brain Sciences 24(1), 87–114 (2001)

5. Davis, M.: Obvious Logical Inferences. In: Proc. of the 7th International Joint
Conference on Artificial Intelligence. pp. 530–531. William Kaufmann (1981)

6. Ericsson, K.A.: Analysis of memory performance in terms of memory skill, Ad-
vances in the psychology of human intelligence, vol. 4. Hillsdale, NJ: Lawrence
Erlbaum Associates Ins. (1988)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the The-
ory of NP-Completeness. A Series of Books in the Mathematical Science, W. H.
Freeman and Company, New York (1979)

8. Gonthier, G.: Formal Proof—The Four-Color Theorem. Notices of the AMS 55(11),
1382–1393 (2008)

9. Grabowski, A., Korniłowicz, A., Naumowicz, A.: Mizar in a Nutshell. Journal of
Formalized Reasoning 3(2), 153–245 (2010)

Improving Legibility of Proof Scripts 81

10. Grabowski, A., Schwarzweller, C.: Revisions as an Essential Tool to Maintain
Mathematical Repositories. In: Proceedings of the 14th symposium on Towards
Mechanized Mathematical Assistants: 6th International Conference, Lecture Notes
in Computer Science, vol. 4573. pp. 235–249. Springer-Verlag (2007)

11. Grabowski, A., Schwarzweller, C.: Improving Representation of Knowledge within
the Mizar Library. Studies in Logic, Grammar and Rhetoric 18(31), 35–50 (2009)

12. Grabowski, A., Schwarzweller, C.: On duplication in mathematical repositories.
In: Autexier, S., Calmet, J.e.a. (eds.) Intelligent Computer Mathematics, 10th
International Conference, AISC 2010, 17th Symposium, Calculemus 2010, and 9th
International Conference, MKM 2010, Lecture Notes in Artificial Intelligence, vol.
6167, pp. 300–314. Springer-Verlag (2010)

13. Kaliszyk, C., Urban, J.: PRocH: Proof Reconstruction for HOL Light. In: Bonacina,
M.P. (ed.) 24th International Conference on Automated Deduction, CADE-24.
Lecture Notes in Computer Science, vol. 7898, pp. 267–274. Springer-Verlag (2013)

14. Matuszewski, R.: On Automatic Translation of Texts from Mizar-QC language
into English. Studies in Logic, Grammar and Rhetoric 4 (1984)

15. Miller, G.A.: The Magical Number Seven, Plus or Minus Two: Some Limits on
Our Capacity for Processing Information. Psychological Review 63, 81–97 (1956)

16. de Moura, L., Bjørner, N.: Z3: An effcient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems, 14th International Conference, TACAS 2008. Lecture Notes in Computer
Science, vol. 4963, pp. 337–340. Springer-Verlag (2008)

17. Naumowicz, A., Korniłowicz, A.: A Brief Overview of Mizar. In: TPHOLs’09, Lec-
ture Notes in Computer Science, vol. 5674. pp. 67–72. Springer-Verlag (2009)

18. Pąk, K.: The Algorithms for Improving and Reorganizing Natural Deduction
Proofs. Studies in Logic, Grammar and Rhetoric 22(35), 95–112 (2010)

19. Pąk, K.: Methods of Lemma Extraction in Natural Deduction Proofs. Journal of
Automated Reasoning 50(2), 217–228 (2013)

20. Pąk, K.: The Algorithms for Improving Legibility of Natural Deduction Proofs.
Ph.D. thesis, University of Warsaw (2013)

21. Rudnicki, P.: Obvious Inferences. Journal of Automated Reasoning 3(4), 383–393
(1987)

22. Smolka, S.J., Blanchette, J.C.: Robust, Semi-Intelligible Isabelle Proofs from ATP
Proofs. In: Third International Workshop on Proof Exchange for Theorem Proving,
PxTP 2013. EPiC Series, vol. 14, pp. 117–132. EasyChair (2013)

23. Trybulec, A., Korniłowicz, A., Naumowicz, A., Kuperberg, K.: Formal mathematics
for mathematicians. Journal of Automated Reasoning 50(2), 119–121 (February
2013), http://dx.doi.org/10.1007/s10817-012-9268-z

24. Wenzel, M.: The Isabelle/Isar Reference Manual. University of Cambridge (2013),
http://isabelle.in.tum.de/dist/Isabelle2013-2/doc/isar-ref.pdf

25. Wicknes, D.D., Born, D.G., Allen, C.K.: Proactive Inhibition and Item Similarity
in Short-Term Memory. Journal of Verbal Learning and Verbal Behavior 2, 440–445
(1963)

82 Karol Pąk

