
STUDIES IN LOGIC, GRAMMAR AND RHETORIC 22 (35) 2010

Karol Pąk
University of Białystok
Institute of Computer Science, Białystok, Poland

THE ALGORITHMS FOR

IMPROVING AND REORGANIZING

NATURAL DEDUCTION PROOFS

Abstract: It can be observed in the course of analyzing nontrivial examples
of natural deduction proofs, either declarative or procedural, that the proofs
are often formulated in a chaotic way. Authors tend to create deductions which
are correct for computers, but hardly readable for humans, as they believe that
finding and removing inessential reasoning fragments, or shortening the proofs
is not so important as long as the computer accepts the proof script.
This article consists of two parts. In the first part, we present some types of unne-
cessary deductions and methods of reorganizing proof graphs in order to make
them closer to good quality informal mathematical reasoning. In the second
part, we describe tools implemented to solve the above-mentioned problems.
Next, we demonstrate their usability by analysing statistical data drawn from
the Mizar Mathematical Library.

1. Introduction

The databases of formalized mathematics are constantly growing and
have achieved considerable sizes through the addition of numerous articles.

Unfortunately, this enlargement of the databases is not always accompa-
nied by the improvement of the quality of the formalization of the articles.

Obviously, the legibility is a subjective notion and is an individual matter
for different authors.

There are various reasons of database’s illegibility. Firstly, the articles
are written not only by the users who know the content of the database and

are able to use it, but also by inexperienced users. These new users do not
know the whole database and because of that they prove unintentionally

theorems which have been already proved. Moreover, new users learn from
simple and not sophisticated articles which were written in the older versions

of the system. Because of this fact, inexperienced users are often repeating
the old proof strategies and do not use all possibilities of the database and

of the system for verifying correctness of the proofs.

ISBN 978–83–7431–273–8 ISSN 0860-150X 95

Karol Pąk

The second reason of the illegibility consists of the fact that the majority

of authors who develop and revise subsequent versions of a proof often
add statements that might have been useful at some point of revision, but

are not actually necessary for the final version of the proof. Finally, the
lack of the legibility of the database results from the fact that some proofs

are excessively large, often because of manual revisions which unwittingly
introduce unnecessary items.

To avoid this problem the uniform criteria of the proofs’ legibility must
be elaborated and then the tools which will cause that the theses criteria

will be fulfilled. There are two possibilities of doing it. Firstly, all articles can
be improved manually, what requires thousands of hours of work. Secondly,

it can be done with innovative programs which automatically shorten the
considerable part of this manual and arduous work. It is possible because

these auxiliary applications automatically standardize and shorten certain
steps of the deduction. The user of this application can establish the hie-

rarchy of the criteria which must be used during the reorganization of the
proof by this program. The criteria described in our paper are illustrated by

the Mizar system [6] in order to improve the quality of the Mizar Mathema-
tical Library (MML) [12]1. However, theses techniques are useful in every

declarative system based on the natural deduction, created by S. Jaśkowski
and F. B. Fitch [2, 3, 5].

The structure of this article is as follows. In Section 2 we present the
abstract representation of proofs in the form of a graph, based on natural

deduction of Jaśkowski. Subsequently, Section 3 presents selected types of
excessive steps of deduction, which can appear in declarative formal proofs.

This section also contains the description of problems occurring during the
elimination of these steps of deduction. The knowledge of the Mizar system

is not required to understand the problem even if the proofs which are
described are represented in the Mizar style. In Section 4 we present the

algorithms for the reorganization and elimination, and also we report the
statistical results obtained through the MML database.

2. The Proof Graph

When proofs written in a formal system are considered, graphs and

directed trees are often employed to express the intuitions connected with
the reasoning. In this section, on the basis of the natural deduction system,

1 Results of the improvement of the quality of the base MML, which contains more
than 1000 articles verified the Mizar proof checker, are on the website [10]

96

The Algorithms for Improving and Reorganizing Natural Deduction Proofs

we will attempt to give a definition of the proof graph, which will express

the most general approach to this question.
For analyzing the relations between consecutive steps in formal proofs

in the system of S. Jaśkowski, the interpretation of the proof graph as a
directed graph (digraph) of the reference R is often used, where the indi-

vidual steps of reasoning are the vertices and the directed edges define the
relations between an expression and a previously justified fact used as the

justification for that expression.
More precisely, the expressions α and β are connected with a directed

edge pointing directly from α to β, if and only if there exists set R, such
that α ∈ R and the computer system can verify the correctness of β using

premises from R Obviously, we would like that R not contain conclusions
from β (then such a graph does not have directed cycles) and the number

of R is possibly the least.
In such interpretation, the flow of information in the proof is well pre-

sented but the structure of the proofs is not preserved. In order to represent
the structure, it is necessary to extend the analyzed graph with the relations

describing the dependence between the expression and its proof.
Therefore, we can consider the proof D with possible nested lemma as

a finite sequence of families of proof graphs without nested lemma. To con-
struct such a sequence, the first family has to cosist of only one element

(the proof graph of D with cut nested lemma). In the second step, we create
a second family which consists of proof graph nested lemma cut from the

proof graph of D. In the third step, we cut the nested lemma from all proof
graphs from the second family and we create from it the third family. We

repeat the third step until the last family will not contain any nesting. Then,
to regain the lost relations between the expression and its proof, we intro-

duce an additional set of arcs, these we will call meta-edges. A meta-edge
leads from β to α if and only if β is one of the steps in the reasoning of the

proof of α.
The meta-edges describe relations between suitable vertices of families i

and i + 1. Obviously, the extended graph does not contain directed cycles,
and for an arbitrary arc resulting from the reference connected directly from

α belonging to the graph G from the n-family to β belonging to the graph
from the k-family we can say that

– n ≤ k,
– there exists a path directed to meta-edges joining β and a chosen vertex

in G.
This approach was created by Milewski [7] however, it does not describe

the sufficient number of relations necessary to proof’s reorganization.

97

Karol Pąk

As an illustration of the above-mentioned reasoning, let us consider the

following example based on the Fitch notation of natural deduction. This
exemple will demonstrate this lack of the relations.

1 ∃xP (x) premise

2 ∀x (P (x) → (R(x) ∨Q(x))) premise

3 ∀x (R(x) → S(x)) premise

4 x0 P (x0) assumption

5 P (x0) → (R(x0) ∨Q(x0)) ∀xe 2

6 R(x0) ∨Q(x0) →e 5,4

7 R(x0) assumption Q(x0) assumption

8 R(x0) → S(x0) ∀xe 3 S(x0) ∨Q(x0) ∨i2 7

9 S(x0) →e 9,8 ∃x (S(x) ∨Q(x)) ∃xi 8

10 S(x0) ∨Q(x0) ∨i1 9

11 ∃x (S(x) ∨Q(x)) ∃xi 10

12 ∃x (S(x) ∨Q(x)) ∨e 6,7-9;7-11

13 ∃x (S(x) ∨Q(x)) ∃xe 1, 4-12

The interpretation of the above-mentioned formal proof as a graph with
meta-edges has the following structure, where → arrows represent the refe-

rences and ։ arrows illustrate the meta-edges.

∃xP (x), ∀x(P (x)→(R(x)∨Q(x))), ∀x(R(x)→S(x))⊢∃x(S(x)∨Q(x))

∀x(R(x)→S(x))

∀x(P (x)→(R(x)∨Q(x)))

P (x0)→(R(x0)∨Q(x0))

∃xP (x)

∀x0
(P (x0)→∃x(S(x)∨Q(x)))

R(x0)∨Q(x0)

x0 P (x0)

R(x0)→S(x0)

R(x0)

S(x0)

S(x0)∨Q(x0)

R(x0)→∃x(S(x)∨Q(x))

∃x(S(x)∨Q(x))

∃x(S(x)∨Q(x))

Q(x0)→∃x(S(x)∨Q(x))

Q(x0)

S(x0)∨Q(x0)

∃x(S(x0)∨Q(x0))∃x(S(x)∨Q(x))

98

The Algorithms for Improving and Reorganizing Natural Deduction Proofs

The structure defined in this way enables the use of known facts and al-

gorithms from the graph theory. In order to use this structure during the
reorganization of reasoning we have to extend it with the omitted depen-

dencies between steps of the type “the natural deduction way of reasoning”,
called “skeleton steps” in further parts of this article:

– the universal quantifier introduction and the introduction of the exi-
stential quantifier,

– the implication introduction and the indication of the thesis,
– the introduction of reasoning by cases.

There are also omitted relations between the place of introduction, use
and redefinition of type of variables(e.g. between x0 P (x0) and P (x0) →

(R(x0) ∨Q(x0))) and other dependencies characteristic to a particular sys-
tem (e.g. the Mizar system). The extension of the definitions to other

above-mentioned dependencies would limit the legibility of the definition,
and it would require the reader’s intuitive understanding of the dependencies

which can appear in the system of natural deduction. However, it is possible
to generalize the definition of a mode, were the definition is separated from

the notion of the proof. It contains only three conditions.
Let us take a non empty set V , and disjoint families M , E of ordered

pairs from V .

The Proof Graph

The structure P := 〈V,M,E〉 will be called the proof graph, if and

only if,
1. M := 〈V,M〉 is a forest, i.e. a disjoint union of trees, in which every con-

nected maximal tree is an arborescence, i.e a rooted tree with inverted
direction (all arcs go in the direction from leaves to the root) ([4]).

2. An arbitrary arc (u, v) in the directed graph E := 〈V,E〉 fulfills the
condition: every nearest successor of u is a predecessor of v in the forest

M.
3. The directed graph G := 〈V,M ∪ E〉 is acyclic.

The effect of inversion of direction consists in swapping the notions of child
and parent (or predecessor and successor) in comparison to the natural trees.

To explain why we use the definition of the forest, in which every connec-
ted maximal tree is an arborescence with the root and inverted directions,

let us define the auxiliary function l : V → N. The value of l(v) is equal to
the length of the directed path from v to the root plus one in the connected

maximal tree, which contains v.
Then the value of the function l represents vertices which belong to

the suitable family from the sequence of graphs (more exactly, the vertex v

99

Karol Pąk

belongs to l(v) the family). Additionally, graphs from individual families are

defined by the notion of the nearest successor (inverted relation of siblings).
Let us also notice that such introduction of the sequence of the families of

graphs on the basis of forestM, causes that meta-edges connect statements
of the family i + 1 with statements of the family i.

In graph theory the two conditions describe limitations imposed on
the formal proof. Namely, the second condition says that the statements of

reasoning of the provided theorem are invisible beyond that proof. Whereas,
the third condition rejects existence of directed cycles which is equivalent to

the application of provided theorem or conclusion from that theorem inside
the proof.

Inside the family of arcs E we can distinguish three subfamilies
– R – the arcs resulting from the use of facts which have been already

proved in the justification of another rule;
– V – arcs defining the dependence between the introduction of the varia-

ble and its use;
– S - arcs defining the order of skeleton steps.

Obviously, the above-mentioned families are not disjoint and they do not
exhaust the set E.

To illustrate the above-mentioned definition, let us consider the follow-
ing example. We will represent the drinker’s principle described in the ar-

ticle [14]. “This says that in every group of people one can point to one
person in the group such that if that person drinks, then all the people

in the group drink”. The quoted proof is not indispensable for the Mizar
system (an empty “semicolon” justification suffices to have it accepted by

the checker), but a proof graph based on this reasoning illustrates well the
subfamilies of the family E.

The reasoning in the Mizar style:
ex x st P[x] implies for y holds P[y]

proof

per cases;

suppose A0: ex x st not P[x];

consider a such that A1: not P[a] by A0;

take a;

assume A2: P[a];

A3: contradiction by A1,A2;

thus A4: for y holds P[y] by A3;

end;

suppose A5: for x holds P[x];

take a=the set;

100

The Algorithms for Improving and Reorganizing Natural Deduction Proofs

thus P[a] implies for y holds P[y] by A5;

end;

end;

The proof graph looks like:

ex x st P[x] implies for y holds P[y]

par cases

case 1

suppose

ex x st not P[x]

consider a

not P[a]

take a

assume

P[a]

contradiction

thus

for y holds P[y]

case 2

suppose

for x holds P[x]

take

a=the set

thus

P[a] implies for y holds P[y]

where։ arrows are subordinated to meta-edges and the continuous, dashed
and dotted arrows are subordinated to suitable families R, V, S.

The large number of arcs reduces the legibility of the graph, but ena-
bles to reconstruct the dependencies in reasoning. Such a graph form gene-

rally does not enable an unambiguous reconstruction of the order of reason-
ing steps. In the above-mentioned example, when we close transitively the

graphs of individual cases, we obtain complete graphs, what one can easily
prove, impose an unambiguous order of steps, however the removal of the

arc “case 1 → case 2” enables changing the order of two cases.

3. The Chosen Forms of Inessential Steps of Deduction

The presentation of unnecessary types of deduction in declarative formal

proofs is hard to explain, but easy to illustrate. The basic types of redundant
steps of deduction, such as:

– unnecessary references used in the justification of an expression,
– references which can be replaced by all references used to justify state-

ments they point to,
– steps of deduction which are not used in any proof leading to the fact

that some thesis or steps of deduction have no references pointing to
them (vertices for which every thesis is not a successor in the proof

graph),

101

Karol Pąk

– steps of deduction which can be totally replaced by external references,

which can be found in justifications of these steps of deduction.
are already resolved (see [8]) and in this aim the necessary auxiliary ap-

plications (e.g. Relprem, Relinfer, Inacc or Trivdemo) have already been
created.

Theses auxiliary applications have enabled to discover the next impor-
tant problem that was not resolved. We can qualify it as “covered with &”.

To describe this problem let us consider two deductions merged by the au-
thor into one reasoning.

α1 implies αn β1 implies βn α1 & β1 implies αn & βn

proof proof proof

assume α1; assume β1; assume α1 & β1;

then α2; then β2; then α2 & β2;

then α3; then β3; then α3 & β3;...
...

...

then αn; then βn; then αn & βn;

hence thesis; hence thesis; hence thesis;

end end end

Such a merge does not cause mistakes in the reasoning, but can contain
some repeated expressions (if the lengths of deduction are different). Let us

also notice that in such a proof, e.g. to prove the rule αi+1 an unnecessary
step, βi, is used. Moreover, the rule αi & βi can be necessary in reasoning

despite the fact that one of the steps αi or βi is not necessary.
Another problem which can occur in the merged parallel deduction,

consists of removing by the author some part of the thesis (e.g. βn) with-
out changing the assumptions and proof. Such change limits, in an impor-

tant way, the statement, however the proof is still correct. None of the
above-mentioned auxiliary applications can detect such cases. It is easy to

notice that the creation of algoritm that could automatically find such ca-
ses is incomparably more difficult than the creation of the above-mentioned

auxiliary application. Such algoritm should consider all deductions and not
only one step as it is done by the auxiliary applications created until now.

Our auxiliary application enables resolving of much more complicated
problems, such as the following example illustrates:

α1 & β1 implies α4

proof

assume A1: α1 & β1;

α4 & β4

proof

102

The Algorithms for Improving and Reorganizing Natural Deduction Proofs

α2 & β2 by A1;

then α3 & β3;

then α4 & β4;

hence thesis;

end;

hence thesis;

end;

Our auxiliary application has found numerous cases of such problem not
only in lemma but also in 541 theorems in MML (it means, on average, one

in every 100 theorems).
The presented solution which consists of breaking chosen conjunctions

and removing unnecessary steps that were created in this way, in the whole
base MML, is the subject of Section 4 of this article. Is too easy to notice

that the majority of the steps of deduction which contain conjunctions has
become illegible. The analyzed proof of the step α1 & β1 implies αn & βn,

can look as follows:

α1 & β1 implies αn & βn

proof

assume that A1: α1 and A2: β1;

A3: α2 by A1;

A4: β2 by A2;

A5: α3 by A3;

A6: β3 by A4;

A7: α4 by A5;
...

In order to present this problem precisely, let us consider a simple
Mizar-style proof, whose proof graph well illustrates typical situations met

during the reorganization of the proof.

theorem

i in Seg n implies i+m in Seg(n+m)

proof

assume i in Seg n;

then 1 <= i & i <= n & i <= i+m by NAT 1:11,FINSEQ 1:3;

then 1 <= i+m & i+m <= n+m by XREAL 1:9,XXREAL 0:2;

hence thesis by FINSEQ 1:3;

end;

were i, n, m are natural numbers and Seg n={1,...,n}. We can also ana-
lyze the above-mentioned reasoning in a different system, e.g. in the Isabelle

style [11]:

103

Karol Pąk

lemma

fixes n i m :: nat

assumes a: "i \<in> {k :: nat . 1 <= k & k <= n}"

shows "i + m \<in> {k :: nat . 1 <= k & k <= n + m}"

proof -

have "1 <= i & i <= n & i <= i+m" using a by auto

then have "1 <= i+m & i+m <= n+m" by auto

then show ?thesis by auto

qed

Having broken all conjunctions of the reasoning and having simplified

the lists of the reference, we obtain:

theorem

i in Seg n implies i+m in Seg (n+m)

proof

assume A1:i in Seg n;

then A2:1 <= i by FINSEQ 1:3;

A3:i <= n by A1,FINSEQ 1:3;

i <= i+m by NAT 1:11;

then A4:1 <= i+m by A2,XXREAL 0:2;

i+m <= n+m by A3,XREAL 1:9;

hence thesis by A4,FINSEQ 1:3;

end;

and proof graph:

i in Seg n implies i+m in Seg (n+m)

assume

i in Seg n

1 <= i i <= i+m i <= n

1 <= i+m i+m <= n+m

thus

thesis

104

The Algorithms for Improving and Reorganizing Natural Deduction Proofs

We have left in the above-mentioned graph only the arcs resulting from refe-

rences in order to enable simple understanding of the next steps of reasoning
and finding references used in consecutive steps.

The presentation of the above-mentioned graph in equally legible way
in the system of natural deduction is a crucial idea of the proof’s reorga-

nization. This essential point consists of determining the criteria which can
improve the legibility of formal proofs in the system of natural deduction.

Having analyzed the different opinions of users of database we propose the
following four criteria of legibility of deduction:

1. maximization of the length of the paths in which every consecutive
justification should refer to a previous line and, if it is possible, to

a minimal number of different labels,
2. minimization of the quantity of introduced labels,

3. minimization of the total length of jumps to distant, previously justified
facts,

4. presentation, in the coherent entirety of the proof, of reasoning steps
which in the proof graph locally create the sub-deduction.

As it has been mentioned in the introduction, establishing of the degree of
importance of particular criteria is a controversial matter. So we created a

flexible application which can be used even by users with opposed criteria’s
hierarchy of legibility. The users chose the most often two first criteria or the

third one as the predominant. If we compare the results obtained for theses
two different situations, we get two various figures, which are presented

below:

theorem theorem

i in Seg n implies i in Seg n implies

i+m in Seg(n+m) i+m in Seg(n+m)

proof proof

A1: i<=i+m by NAT 1:11; assume A1: i in Seg n;

assume A2: i in Seg n; then A2: 1<=i by FINSEQ 1:3;

then i<=n by FINSEQ 1:3; i<=n by A1,FINSEQ 1:3;

then A3: i+m<=n+m by XREAL 1:9; then A3: i+m<=n+m by XREAL 1:9;

1<=i by A2,FINSEQ 1:3; i<=i+m by NAT 1:11;

then 1<=i+m by A1,XXREAL 0:2; then 1<=i+m by A2,XXREAL 0:2;

hence thesis by A3,FINSEQ 1:3; hence thesis by A3,FINSEQ 1:3;

end; end;

In the first case, we find two chains of three elements, whereas in the

second case there is only one chain of three elements and two chains con-
taining two elements. The first criterion does not define whether it is more

natural to create one maximal chain with many, often one-element chains,

105

Karol Pąk

or to formulate several chains of average length, without chains containing

only one-element.
Having analyzed the total distance of jumps between a label and its

use, we observe that creating longer chains enlarged the total distance of
jumps exactly by 2.

If we count the number of labels in the above-mentioned reasoning, we
see that there are exactly three in both cases. We can prove that this is the

minimal number of labels for this proof. Moreover, a maximal anti-chain
in the transitive, closed proof graph of this reasoning has at most three

elements. This dependence is often a loose relationship. The number of
labels can be just a little smaller, e.g. in graphs of references which look as

in the first example, or many times larger (the second example).

α1

β1 α2

β2

β1 β2

α1 α2 α3

γ1 γ2

βn

αn δ

γn

(in the second example, an arbitrary maximal anti-chain has at most two

elements, but the number of labels is estimated by 2 · n).
The best way of estimating the number of labels in a reference graph

consists of counting the vertices whose outdegree is at least two; and the
number of the arcs (u, v) for which the indegree of v is at least two and

the vertex v does not have yet the label (the number of entering arcs with-
out a label is at the most). If we take into consideration all arcs in the

proof graph, it enlarges, in the general case, the number of labels counted
in this way.

4. Auxiliary Applications and Statistical Results

The problems described in the previous section can be solved with two
independent sets of programs. The aim of the first one consists of finding and

removing as many as possible unnecessary steps of reasoning hidden in “&”.
To this end, the existing utilities have been extended with five programs,

which we describe below. The aim of the second sort of programs is the reor-
ganization of the order of proof steps. This sorting was made with the appli-

cation SortItem, which preserves correctness of the reasoning and relations
in the proof graph. Statistical results were obtained on the MML database

version 4.121.1054 and were introduced to the version 4.127.1060 [10].

106

The Algorithms for Improving and Reorganizing Natural Deduction Proofs

BreakBinaryAnd

The application breaks in a simple way (with some not so impor-

tant exceptions) all statements that contain a conjunction. The applica-
tion changes the sequence of expressions joint with the conjunction into the

sequences of consecutive steps of reasoning, which include the suitable ele-
ments of that sequence of expressions and the identical list of the reference

used in the reasoning. Breaking all of the above-mentioned conjunctions has
enabled finding in MML of 767139 unnecessary references in the justifica-

tions, which caused a transmission of unnecessary sequences of conjunctions.
Moreover, we found 39745 steps in deductions which were unnecessary for

their correctness and we could remove it.

DelBlock

The application significantly breaks the proofs of conjunction state-
ments which do not contain implicit universal quantifiers. Moreover, the

deductions cannot contain the elimination of a universal or existential quan-
tifier and the introduction of reasoning per cases.

We can describe the transformation made in the general case in the
following style:

Lab1: α & β

proof

... ...

thus α; Thus1: α;

... ...

thus β; Thus2: β;

end; Lab1: α & β by Thus1,Thus2;

RenInfer

The application collaborates with the auxiliary application RELINREF.

The program changes selected references for which Relinfer reports the mes-
sage “604” (it means references which can be replaced by all references used

to their justification). The program creates a list of labels sorted using three
criteria with decreasing signification, such as:

1. the number of references to a particular label without the message “604”
is minimal,

2. the number of all references to a particular label is minimal,
3. the number of references with message “604”, used as justification for

the statement assigned to this label, is minimal.

107

Karol Pąk

Then, for a label selected in this way, the program replaces some of its uses

by all references used to justify the expressions joined with the label.
Obviously, every time such a label is chosen, the labels of the statement

whose list of justifications will be modified, are ignored in the next search.
The described algorithm does not remove all “604” messages. After one use

of the program, on average 88,7% of messages “604” is removed, and all
theses messages are removed on average after 1,532 uses of this program.

TrivConsider

This application found 6154 cases in which removing introduced varia-
bles was possible using construction “consider” (the incorrectness in modi-

fied reasoning occurred only in two cases). Such introduction of existential
quantifiers enabled finding new unnecessary steps in the deductions. It is

interesting to notice that after removing unnecessary steps, the application
could find other 59 cases.

MergeItems

The program finds statements always used together in the reasoning,
and then it tries to merge them into a conjunction. Obviously, none of

the statements can be a successor of the other one in the proof graph. To
avoid creating long list of references, which can lengthen the time needed to

verify joint statements, in the justification of joint statements it is required
that the lists of the references are compatible. The level of comptibility is

determined by users.
The use of the five above-mentioned programs enabled finding in MML

the theorems with unnecessary assumptions. Removing these assumptions
enabled finding next unnecessary steps and statements in the deduction.

The statistical results are presented in the following table:

Unnecessary Message Unnecessary s Altered Altered
Stages

references “604” inferences articles theorems

1 755196 37304 38944 1017 461

2 1640 23 633 118 64

3 596 2 168 55 16

SortItem

The program creates a proof graph for a particular article and, on the

basis of it, it reorganizes the order of statements in reasoning. The algorithm

108

The Algorithms for Improving and Reorganizing Natural Deduction Proofs

of reorganization is based on a successive recurrent joining of sequences of

sub-deduction chosen with the imposed criteria which do not cause the
conflict in the graph (i.e. no vertex from first reasoning is the predecessor of

a vertex from the second reasoning). Using a greedy algorithm, which solves
the problem of making the locally optimal choice at each stage, often does

not enable to find the global solution, but in contrast to other algorithms,
enables a oherent presentation of local sub-deduction.

Let us introduce the auxiliary functions for a proof graph, in order to
describe the basic criteria in a legible way 〈V,M,E〉.

Let us take a subset A of the set E. We define functions:

deg−A(v) = |{w : w ∈ V ∧ (w, v) ∈ A}|,

deg+
A(v) = |{w : w ∈ V ∧ (v,w) ∈ A}|,

IA(F) = |{(i, j) : 1 ≤ i, j ≤ n : ∧(F (i), F (j)) ∈ A},

where v is an arbitrary vertex, and F is an n-length sequence of vertices

from the family E.
In this case the minimization of the number of labels on the base of two

basis criteria with decreasing significance is important (were Fi is i-sequence
of the ni-length).

1. The aim of of the first criterion is finding the pairs of sequences for
which the following condition is fulfilled: (F1(n1), F2(1)) ∈ R, and than

it chooses the pairs for which the values of function

deg+
R(F1(n1)),

(

n1
∑

i=1

deg+
R(F1(i))

)

− IR(F1)

are minimal.
2. The aim of the second criterion is finding the two pairs of sequences

for which the number of dysfunctions (i.e. the increase of total distance
between places of introduction of the label and its uses) created after

merging these sequences is minimal. The number of dysfunctions is de-
scribed on the basis of the relation:

n1 ·

(

n2
∑

i=1

deg−R(F2(i))

)

+n2 ·

(

n1
∑

i=1

deg+
R(F1(i))

)

− (n1 +n2) · IR(F⌢
1 F2).

Apart from the main criteria there are several auxiliary criteria, quite diffi-
cult to describe. Thanks to all these criteria the order of writing the proof

tree becomes much more unequivocal.

109

Karol Pąk

Statistical Results

Having measured (in tokens) the length of articles we observe that de-

spite an important number of modifications, the length of articles did not
change in a significant way (the articles were reduced on average by 0,31%).

On the other hand, having analyzed the new form of the articles, we obse-
rved that the modification caused a reduction of the length of formulas on

average by 3,12%, but the length of the references was extended by 3,7%.
The verification time of an article (time of mizaring) is another measure

which can be used to describe the modifications. This time on average was
reduced by 5,13%.

Fig. 1. The change of article length

Fig. 2. The change of verification time

Final Remarks

Thanks to algorithms presented in our paper many advantages have
been obtained. Firstly, our algorithms constitute one of the first (and the

first in the Mizar system) fully automatic ways of standardizing the reason-
ing’s structure that is based on the imposed criteria in the aim of legi-

bility’s improvement (so far, it was done mainly manually). Secondly, the

110

The Algorithms for Improving and Reorganizing Natural Deduction Proofs

reasoning’s structure was improved in an important way and the particular

steps of the deduction have became more readable for users of the database.
In consequent, using the database has become easier. Thirdly, our algo-

rithm of the proof’s reorganization can be used independently to introducte
of the results of different experiments which have not been able to maintain

the readable proof’s structure. It is really important because databases are
public and the perseverance of the high level of quality is a priority. It does

not change the fact that our algorithms are the first complex tool which
enable both the shortening of the database and than perseverance and even

improvement of its legibility. Fourthly, an average time of the verification of
articles of the database has been shortened. And last but not least, shorten-

ing of the number of steps of the deduction (about 3%) and the reduction
of the number of assumptions in about 1% theorems may does not seem at

a first glance an impressive result. However, the time necessary to obtain
such effects manually is comparable with time of manual calculation of 35

decimals of π by Ludolph van Ceulen.

R E F E R E N C E S

[1] E. Bonarska, An Introduction to PC Mizar, Fondation Ph. le Hodey, Brussels,
1990.

[2] F. B. Fitch. Symbolic Logic: an Introduction. The Ronald Press Co., New York,
1952.

[3] S. Jaśkowski, On the Rules of Supposition in Formal Logic, Studia Logica I,
1934, Warszawa Reprinted in Polish Logic, ed. S. McCall, Clarendon Press,
Oxford 1967.

[4] B. Jorgen, G. Gregory, Digraphs: Theory, Algorithms and Applications, Sprin-
ger, ISBN 1-85233-268-9, (2000).

[5] W. Marciszewski, A Jaśkowski-Style System of Computer-Assisted Reasoning,
Philosophical Logic in Poland, Kluwer, 1993.

[6] R. Matuszewski, P. Rudnicki, MIZAR: the first 30 years, Mechanized Mathe-
matics and Its Applications, 4 (1), pp. 3–24, 2005.

[7] R. Milewski, Algorithms analyzing formal deduction support systems – PhD
thesis, The Computer Science Faculty of Białystok Technical University, Bia-
łystok 2008.

[8] R. Milewski, New Auxiliary Software for MML Database Management Mecha-
nized Mathematics and Its Applications, ISSN 1345-8272 1345-8272, Vol. 5,
No. 2: 1–10, 2006.

[9] R. Milewski, Transformations of MML Database’s Elements Lecture Notes in
Computer Science, Springer-Verlag, ISSN 0302-9743, Vol. 3863/2006: 376–388,
2006.

111

Karol Pąk

[10] Mizar Home Page, http://mizar.uwb.edu.pl/.

[11] L. C. Paulson, The Isabelle Reference Manual, 2000.

[12] P. Rudnicki, An Overview of the Mizar Project, Proceedings of the 1992 Work-
shop on Types for Proofs and Programs, Chalmers University of Technology,
Bastad, 1992.

[13] A. Trybulec, Some features of the Mizar language, Presented at a workshop
in Turin, Italy, 1993.

[14] F. Wiedijk, Mizar Light for HOL Light, Proceedings of the 14th International
Conference on Theorem Proving in Higher Order Logics, p. 378–394, Septem-
ber 03–06, 2001.

Karol Pąk
University of Białystok,

Institute of Computer Science,
Białystok, Poland

pakkarol@uwb.edu.pl

112

