
Extending Numeric Automation for Number
Theory Formalizations in Mizar

Adam Naumowicz

Institute of Computer Science
University of Bia lystok, Poland

adamn@mizar.org

CICM 2023, September 5, 2023

adamn@mizar.org


Outline

1 Introducing an experimental version of the Mizar proof checker
equipped with new built-in routines for automating common numeric
computations.

2 Evaluating the potential of automating parts of simple number
theory proofs in the Mizar Mathematical Library (MML).

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Introduction

Mizar is a proof assistant best known for:

its underlying proof language primarily designed to closely resemble
the mathematical vernacular,
the pioneering long-term development of a repository of formalized
mathematics, Mizar Mathematical Library (MML), established in
1989.

For several decades the development of MML has been conducted in
parallel to the evolution of the proof checking system.

Since its inception in 1973, Mizar has been designed to be used by
mathematicians, not programmers (implementing extensions by
typical users is not possible).

Various features of the system have been implemented by the system
developers in response to specific needs that emerged during
the formalization of particular theories.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Formalizing Sierpinski’s Book

A formalization project started as a tribute to Wac law Sierpiński
aims at encoding his book ‘250 Problems in Elementary Number
Theory’.

The initial Mizar formalizations related to that effort were done in
2020 and the resulting dataset based on 10 initial problems was
presented at CICM 2020.
Naumowicz, A.: Dataset Description: Formalization of Elementary
Number Theory in Mizar. In: Benzmüller, C., Miller, B.R. (eds.):
CICM 2020. LNCS, vol. 12236, pp. 303–308. Springer, Heidelberg
(2020).

To date, the joint formalization work resulted in developing a
sequence of Mizar articles submitted to MML which cover more than
100 of the problems.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Formalizing Sierpinski’s Book

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Formalizing Sierpinski’s Book

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Formalizing Sierpinski’s Book

Sierpinski had numerous contributions to many fields of
mathematics, but number theory was his first main area of interest.

Sierpinski’s prolific and diverse research resulted in over 700 papers
and 50 books.

The content of the book covers the following chapters:

I. Divisibility of Numbers,
II. Relatively Prime Numbers,
III. Arithmetic Progressions,
IV. Prime and Composite Numbers,
V. Diophantine Equations,
VI. Miscellanea.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Standard Numeric Automation in Mizar

Mizar checker supports direct calculations on rational complex
numbers (complex numbers with rational coefficients).

This functionality is switched on by inputting the, so called,
requirements ARITHM directive in the environ part of the Mizar text
being developed.

Mizar checker performs polynomial elimination and accepts numeric
operations as obvious, so the users do not need to provide any
justification for the parts of their proofs based on such computations.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



NUMBER* and XPRIME* Articles

Formalizing numerous facts related to elementary number theory,
the authors often needed to refer to, e.g., the basic divisibility
properties of concrete (sometimes quite big) numbers, or to prove
whether a particular number is prime or not.
To facilitate writing such proofs on top of the current MML, A.
Kornilowicz of the Mizar library committee generated a set of
‘encyclopedic’ articles identifying all prime numbers in the range up
to 10,000.
These articles contain a handy set of referential facts that authors
may potentially need when formalizing various theorems in number
theory.
Drawback: the massive files (almost 800K lines of Mizar text in
total) cause serious performance problems, especially when
processing the whole library is required.
Solution: our extended automation is devised to eliminate the users’
need to directly reference facts from these articles by making them
obvious for the Mizar checker.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



New Directive: requirements INT D

All the presented automatized notions have their definitions in two
Mizar articles, (INT 1 and INT 2), so the corresponding new library
file dubbed int d.dre (’d’ for divisibility) provides the following
signature and links between respective MML constructors and the
numbers of the built-in requirement type in the Mizar code:
<?xml version="1.0"?>
<Requirements>
<Signature>
<ArticleID name="HIDDEN"/>
<ArticleID name="INT_1"/>
<ArticleID name="INT_2"/>
</Signature>
<Requirement constrkind="K" constrnr="4" nr="35"/>
<Requirement constrkind="K" constrnr="5" nr="36"/>
<Requirement constrkind="R" constrnr="3" nr="37"/>
<Requirement constrkind="K" constrnr="7" nr="38"/>
<Requirement constrkind="K" constrnr="8" nr="39"/>
<Requirement constrkind="V" constrnr="3" nr="40"/>
</Requirements>

The values of the constrnr XML attributes represent the
numbering derived from the imported MML signature, whereas the
nr attributes refer to hard-coded requirements.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Functors div and mod

The numeric constant calculations make use of simple routines that
compute the div and mod operations that must exactly match the
semantics of the library definitions (including the floor operation for
div and the mod 0 variant):

definition

let i1,i2 be Integer;

func i1 div i2 -> Integer equals :: INT_1:def 9

[\ i1 / i2 /];

func i1 mod i2 -> Integer equals :: INT_1:def 10

i1 - (i1 div i2) * i2 if i2 <> 0

otherwise 0;

end;

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Functors lcm and gcd

Operations for calculating the least common multiple and the
greatest common divisor of two integer values must match the
general Mizar definitions:

definition

let a,b be Integer;

func a lcm b -> Nat means :: INT_2:def 1

a divides it & b divides it &

for m being Integer st a divides m & b divides m holds

it divides m;

func a gcd b -> Nat means :: INT_2:def 2

it divides a & it divides b &

for m being Integer st m divides a & m divides b holds

m divides it;

end;

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Predicate divides

The next automatized definition denotes the integer divisibility:

definition

let i1,i2 be Integer;

pred i1 divides i2 means :: INT_1:def 3

ex i3 st i2 = i1 * i3;

end;

Such predicative definitions can be automatized using definitional
expansions, but then a typical proof context looks this way:

30 = 2*15;

then 2 divides 30;

Note the lack of references in both proof steps, yet the first
inference is necessary to provide the witness for the expansion of the
divides definition.

Our automation eliminates the need to input such intermediate steps
whatsoever.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Attribute prime

The notion of primality is defined the standard way, but technically
applicable to any integer number:

definition

let p be Integer;

attr p is prime means :: INT_2:def 4

p > 1 & for n being Nat st n divides p

holds n = 1 or n = p;

end;

Our automation saves users from having to refer to the encyclopedic
articles of the XPRIME* collection.

Note: it might still be worthwhile that the available proofs be
maintained by the MML committee as a sort of low-level complete
proof data or for regression testing purposes.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Example Problem Statement

76. Find three least positive integers n such that there are no
primes between n and n + 10, and three least positive integers m
such that there are no primes between 10m and 10(m + 1).
definition

let n be Nat;
pred n satisfies_Sierpinski_problem_76a means
for x being Nat st n < x < n+10 holds x is non prime;

end;
let m be Nat;
pred m satisfies_Sierpinski_problem_76b means
for x being Nat st 10*m < x < 10*(m+1) holds x is non prime;

end;

theorem
113 satisfies_Sierpinski_problem_76a
proof

let x be Nat;
assume 113 < x < 113+10;
then 113 < x < 122+1;
then 113+1 <= x <= 122 by NAT_1:13;
then x = 114 or ... or x = 122;
hence thesis by XPRIMES0:114,115,116,117,118,119,120,121,122;

end;

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Performance Gain

[a.naumowicz@esperanto test]$ time ./verifier text/xprimes2.miz
Verifier based on More Strict Mizar Processor, Mizar Ver. 8.1.12 (Linux/FPC)
Copyright (c) 1990-2023 Association of Mizar Users
Processing: text/xprimes2.miz

Parser [453831] 1:05
MSM [453830] 1:50
Analyzer [453831] 13:47
Checker [453831] 1.18:58
Time of mizaring:1.35:40

real 95m41.361s
user 92m24.645s
sys 2m23.118s
[a.naumowicz@esperanto test]$

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar



Notes and Conclusions

The proposed extension of the Mizar system and library can be used
by a simple user import command in any Mizar text that develops a
theory requiring extensive use of integer divisibility.

The usefulness of its application is clear from the big number of
automated proof steps in typical article-sized Mizar formalizations
similar to the NUMBER* series.

Standard Mizar utilities (e.g., relprem) equipped with the enhanced
checker reveal hundreds of unnecessary references in the original
scripts.

Just as with the other requirements, its use should not to imposed
on the users, especially if the possibility of developing proofs in full
detail may be beneficial, e.g., for didactic purposes.

A. Naumowicz

Extending Numeric Automation for Number Theory Formalizations in Mizar


