
A Brief Overview of MIZAR

Adam Naumowicz
adamn@mizar.org

Institute of Informatics,
University of Bialystok, Poland

August 19th, 2009

adamn@mizar.org


Outline

What is MIZAR ?

A bit of history
Language – system – database
Related projects

Theoretical foundations

The system of semantic correlates in MIZAR
Proof strategies
Types in MIZAR
More advanced language constructs
Recently implemented features

Practical usage

Running the system
Importing notions from the library (building the environment)
Enhancing MIZAR texts

Examples: formalizing the friendship puzzle

Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland

A Brief Overview of MIZAR

adamn@mizar.org


Outline

What is MIZAR ?

A bit of history
Language – system – database
Related projects

Theoretical foundations

The system of semantic correlates in MIZAR
Proof strategies
Types in MIZAR
More advanced language constructs
Recently implemented features

Practical usage

Running the system
Importing notions from the library (building the environment)
Enhancing MIZAR texts

Examples: formalizing the friendship puzzle

Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland

A Brief Overview of MIZAR

adamn@mizar.org


Outline

What is MIZAR ?

A bit of history
Language – system – database
Related projects

Theoretical foundations

The system of semantic correlates in MIZAR
Proof strategies
Types in MIZAR
More advanced language constructs
Recently implemented features

Practical usage

Running the system
Importing notions from the library (building the environment)
Enhancing MIZAR texts

Examples: formalizing the friendship puzzle

Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland

A Brief Overview of MIZAR

adamn@mizar.org


Outline

What is MIZAR ?

A bit of history
Language – system – database
Related projects

Theoretical foundations

The system of semantic correlates in MIZAR
Proof strategies
Types in MIZAR
More advanced language constructs
Recently implemented features

Practical usage

Running the system
Importing notions from the library (building the environment)
Enhancing MIZAR texts

Examples: formalizing the friendship puzzle

Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland

A Brief Overview of MIZAR

adamn@mizar.org


Outline

What is MIZAR ?

A bit of history
Language – system – database
Related projects

Theoretical foundations

The system of semantic correlates in MIZAR
Proof strategies
Types in MIZAR
More advanced language constructs
Recently implemented features

Practical usage

Running the system
Importing notions from the library (building the environment)
Enhancing MIZAR texts

Examples: formalizing the friendship puzzle

Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland

A Brief Overview of MIZAR

adamn@mizar.org


What is MIZAR ?

The MIZAR project started around 1973 as an attempt to
reconstruct mathematical vernacular in a computer-oriented
environment

A formal language for writing mathematical proofs
A computer system for verifying correctness of proofs
The library of formalized mathematics – MIZAR Mathematical
Library (MML)

For more information see http://mizar.org

The language’s grammar
The bibliography of the MIZAR project
Free download of binaries for several platforms
Discussion forum(s)
MIZAR User Service - e-mail contact point

Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland

A Brief Overview of MIZAR

http://mizar.org
adamn@mizar.org


What is MIZAR ?

The MIZAR project started around 1973 as an attempt to
reconstruct mathematical vernacular in a computer-oriented
environment

A formal language for writing mathematical proofs
A computer system for verifying correctness of proofs
The library of formalized mathematics – MIZAR Mathematical
Library (MML)

For more information see http://mizar.org

The language’s grammar
The bibliography of the MIZAR project
Free download of binaries for several platforms
Discussion forum(s)
MIZAR User Service - e-mail contact point

Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland

A Brief Overview of MIZAR

http://mizar.org
adamn@mizar.org


What is MIZAR ?

The MIZAR project started around 1973 as an attempt to
reconstruct mathematical vernacular in a computer-oriented
environment

A formal language for writing mathematical proofs
A computer system for verifying correctness of proofs
The library of formalized mathematics – MIZAR Mathematical
Library (MML)

For more information see http://mizar.org

The language’s grammar
The bibliography of the MIZAR project
Free download of binaries for several platforms
Discussion forum(s)
MIZAR User Service - e-mail contact point

Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland

A Brief Overview of MIZAR

http://mizar.org
adamn@mizar.org


The MIZAR language

The proof language is designed to be as close as possible to
“mathematical vernacular”

It is a reconstruction of the language of mathematics
It forms “a subset” of standard English used in mathematical texts
It is based on a declarative style of natural deduction
There are 27 special symbols, 110 reserved words
The language is highly structured - to ensure producing rigorous and
semantically unambiguous texts
It allows prefix, postfix, infix notations for predicates as well as
parenthetical notations for functors

Similar ideas:

MV (Mathematical Vernacular - N. G. de Bruijn)
CML (Common Mathematical Language)
QED Project (http://www-unix.mcs.anl.gov/qed/) - The QED
Manifesto from 1994
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Key features of the MIZAR system

The system uses classical first-order logic

Statements with free second-order variables (e.g. the induction scheme)
are supported

The system uses natural deduction for doing conditional proofs

S. Jaśkowski, On the rules of supposition formal logic. Studia
Logica, 1, 1934.
F. B. Fitch, Symbolic Logic. An Introduction. The Ronald Press
Company, 1952.
K. Ono, On a practical way of describing formal deductions. Nagoya
Mathematical Journal, 21, 1962.

The system uses a declarative style of writing proofs (mostly forward
reasoning) - resembling mathematical practice

A system of semantic correlates is used for processing formulas (as
introduced by R. Suszko in his investigations of non-Fregean logic)

The system as such is independent of the axioms of set theory
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Related systems

Systems influenced by MIZAR comprise:

Mizar mode for HOL (J. Harrison)

Declare (D. Syme)

Isar (M. Wenzel)

Mizar-light for HOL-light (F. Wiedijk)

MMode/DPL - declarative proof language for Coq (P. Corbineau)

...
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MIZAR Mathematical Library - MML

“A good system without a library is useless. A good library for a bad
system is still very interesting... So the library is what counts.”
(F. Wiedijk, Estimating the Cost of a Standard Library for a
Mathematical Proof Checker.)

A systematic collection of articles started around 1989

Current MML version - 4.117.1046

includes 1047 articles written by 219 authors
48199 theorems
9262 definitions
757 schemes
8573 registrations

The library is based on the axioms of Tarski-Grothendieck set theory
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Basic kinds of MIZAR formulas

⊥ contradiction
¬α not α
α ∧ β α & β
α ∨ β α or β
α → β α implies β
α ↔ β α iff β
∀xα(x) for x holds α(x)
∃xα(x) ex x st α(x)
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MIZAR’s main logical module - the CHECKER

There is no set of inference rules - M. Davis’s concept of
“obviousness w.r.t an algorithm”

The de Bruijn criterion of a small checker is not preserved

The deductive power is still being strengthened (CAS and DS
integration)

new computation mechanisms added
more automation in the equality calculus
experiments with more than one general statement in an inference
(“Scordev’s device”)
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MIZAR as a disprover

An inference of the form
α1, . . . , αk

β
is transformed to

α1, . . . , αk ,¬β

⊥
A disjunctive normal form (DNF) of the premises is then created and the
system tries to refute it

([¬]α1,1 ∧ · · · ∧ [¬]α1,k1) ∨ · · · ∨ ([¬]αn,1 ∧ · · · ∧ [¬]αn,kn )

⊥
where αi,j are atomic or universal sentences (negated or not) - for the inference
to be accepted, all disjuncts must be refuted. So in fact n inferences are
checked

[¬]α1,1 ∧ · · · ∧ [¬]α1,k1

⊥
...

[¬]αn,1 ∧ · · · ∧ [¬]αn,kn

⊥
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The system of MIZAR’s semantic correlates

Internally, all MIZAR formulas are expressed in a simplified “canonical”
form - their semantic correlates using only VERUM, not, & and for
holds together with atomic formulas.

VERUM is the neutral element of the conjunction

Double negation rule is used

de Morgan’s laws are used for disjunction and existential quantifiers

α implies β is changed into not(α & not β)

α iff β is changed into α implies β & β implies α, i.e. not(α &
not β) & not(β & not α)

conjunction is associative but not commutative
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Basic proof strategies – Propositional calculus

Deduction rule

A implies B :: thesis = A implies B
proof
assume A; :: thesis = B
...
thus B; :: thesis = {}
end;

Adjunction rule

A & B :: thesis = A & B
proof
...
thus A; :: thesis = B
...
thus B; :: thesis = {}
end;
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Basic proof strategies – Quantifier calculus

Generalization rule

for x holds A(x) :: thesis = for x holds A(x)
proof
let a; :: thesis = A(a)
...
thus A(a); :: thesis = {}
end;

Exemplification rule

ex x st A(x) :: thesis = ex x st A(x)
proof
take a; :: thesis = A(a)
...
thus A(a); :: thesis = {}
end;
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More proof strategies

A :: thesis = A
proof
assume not A; :: thesis = contradiction
...
thus contradiction; :: thesis = {}
end;

... :: thesis = ...
proof
assume not thesis; :: thesis = contradiction
...
thus contradiction; :: thesis = {}
end;
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More proof strategies – ctd.

... :: thesis = ...
proof
assume not thesis; :: thesis = contradiction
...
thus thesis; :: thesis = {}
end;

A & B implies C :: thesis = A & B implies C
proof
assume A; :: thesis = B implies C
...
assume B; :: thesis = C
...
thus C; :: thesis = {}
end;
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More proof strategies – ctd.

A implies (B implies C):: thesis = A implies (B implies C)
proof
assume A; :: thesis = B implies C
...
assume B; :: thesis = C
...
thus C; :: thesis = {}
end;

A or B or C or D :: thesis = A or B or C or D
proof
assume not A :: thesis = B or C or D
...
assume not B; :: thesis = C or D
...
thus C or D; :: thesis = {}
end;Adam Naumowicz adamn@mizar.org Institute of Informatics, University of Bialystok, Poland
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Types in MIZAR

A hierarchy based on the “widening” relation with set being the
widest type
Function of X,Y Â PartFunc of X,Y Â Relation of X,Y Â
Subset of [:X,Y:] Â Element of bool [:X,Y:] Â set

MIZAR types are refined using adjectives (“key linguistic entities
used to represent mathematical concepts” according to N.G. de
Bruijn)
one-to-one Function of X,Y
finite non empty proper Subset of X

Adjectives are processed to enable automatic deriving of type
information (so called “registrations”)

Types also play a syntactic role - e.g. enable overloading of notations

The type of a variable can be “reserved” and then not used
explicitely

MIZAR types are required to have a non-empty denotation
(existence must be proved when defining a type)
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Types in MIZAR – ctd.

Dependent types

definition
let C be Category

a,b,c be Object of C,
f be Morphism of a,b,
g be Morphism of b,c;

assume Hom(a,b)<>{} & Hom(b,c)<>{};
func g*f -> Morphism of a,c equals

:: CAT_1:def 13
g*f;

...correctness...
end;
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Types in MIZAR – ctd.

Structural types (with a sort of polimorfic inheritance) - abstract vs.
concrete part of MML

definition
let F be 1-sorted;
struct(LoopStr) VectSpStr over F
(#
carrier -> set,

add -> BinOp of the carrier,
ZeroF -> Element of the carrier,
lmult -> Function of
[:the carrier of F,the carrier:],the carrier

#);
end;
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More advanced language constructs

Iterative equalities

Schemes

Redefinitions

Synonyms/antonyms

“properties”

E.g. commutativity, reflexivity, etc.

’‘requirements”

E.g. the built-in arithmetic on complex numbers
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Recently implemented features

Identifying (formally different, but equal) constructors

Support for global choice in the language

Adjective completion in equality classes

Adjectives with visible arguments

E.g. n-dimensional, NAT-valued, etc.
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Running the system

Logical modules (passes) of the MIZAR verifier

parser (tokenizer + identification of so-called “long terms”)
analyzer (+ reasoner)
checker (preparator, prechecker, equalizer, unifier) + schematizer

Communication with the database

accommodator
exporter + transferer
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Running the system – ctd.

The interface (CLI, Emacs Mizar Mode by Josef Urban, “remote
processing”)

The way Mizar reports errors resembles a compiler’s errors and
warnings
Top-down approach
Stepwise refinement
It’s possible to check correctness of incomplete texts
One can postpone a proof or its more complicated part
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Enhancing MIZAR texts

Utilities detecting irrelevant parts of proofs

relprem

relinfer

reliters

trivdemo

...

Checking new versions of system implementation
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Importing notions from the library

The structure of MIZAR input files
environ

.....
begin

.....

Library directives

vocabularies (using symbols)
constructors (using introduced objects)
notations (using notations of objects)
theorems (referencing theorems)
schemes (referencing schemes)
definitions (automated unfolding of definitions)
registrations (automated processing of adjectives)
requirements (using built-in enhancements for certain constructors,
e.g. complex numbers)

Using a local database
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Exemplary students’ tasks

reserve R,S,T for Relation;

R is transitive implies R*R c= R
proof

assume a: R is transitive;
let a,b;
assume [a,b] in R*R; then
consider c such that
c: [a,c] in R & [c,b] in R

by RELATION:def 7;
thus [a,b] in R by c,a,RELATION:def 12;

end;

ex R,S,T st not R*(S \ T) c= (R*S) \ (R*T)
proof

reconsider R={[1,2],[1,3]} as Relation
by RELATION:2;

reconsider S={[2,1]} as Relation
by RELATION:1;

reconsider T={[3,1]} as Relation
by RELATION:1;

take R,S,T;
b: [1,2] in R by ENUMSET:def 4;
d: [2,1] in S by ENUMSET:def 3;
[2,1] <> [3,1] by ENUMSET:2; then
not [2,1] in T by ENUMSET:def 3; then
[2,1] in S \ T by d,RELATION:def 6; then
a: [1,1] in R*(S \ T) by b,RELATION:def 7;
e: [1,3] in R by ENUMSET:def 4;
[3,1] in T by ENUMSET:def 3; then
[1,1] in R*T by e,RELATION:def 7; then
not [1,1] in (R*S) \ (R*T) by RELATION:def 6;
hence not R*(S \ T) c= (R*S) \ (R*T)

by RELATION:def 9,a;
end;
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Exemplary students’ tasks

reserve i,j,k,l,m,n for natural number;

i+k = j+k implies i=j;
proof

defpred P[natural number] means
i+$1 = j+$1 implies i=j;

A1: P[0]
proof
assume B0: i+0 = j+0;
B1: i+0 = i by INDUCT:3;
B2: j+0 = j by INDUCT:3;
hence thesis by B0,B1,B2;

end;
A2: for k st P[k] holds P[succ k]
proof

let l such that C1: P[l];
assume C2: i+succ l=j+succ l;
then C3: succ(i+l) = j+succ l by C2,INDUCT:4
.= succ(j+l) by INDUCT:4;
hence thesis by C1,INDUCT:2;

end;
for k holds P[k] from INDUCT:sch 1(A1,A2);
hence thesis;

end;
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Formalizing the friendship puzzle

In any cocktail party with two or more people, there must be at least two
people who have the same number of friends. Assume that friend is
symmetric - if x is a friend of y, then y is a friend of x.

scheme Friendship {P()->finite non trivial set,Friends[set,set]}:
ex x,y being Element of P() st x<>y &
card {z where z is Element of P() : Friends[x,z]} =
card {z where z is Element of P() : Friends[y,z]}

provided
for x holds not Friends[x,x] and
for x,y st Friends[x,y] holds Friends[y,x]
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Miscelanea

Formalized Mathematics - FM (http://mizar.org/fm)

XML-ized presentation of MIZAR articles
(http://mizar.uwb.edu.pl/version/current/html)

MMLQuery - search engine for MML
(http://mmlquery.mizar.org)

MIZAR TWiki (http://wiki.mizar.org)

MIZAR mode for GNU Emacs
(http://wiki.mizar.org/twiki/bin/view/Mizar/MizarMode)

MoMM - interreduction and retrieval of matching theorems from
MML (http://wiki.mizar.org/twiki/bin/view/Mizar/MoMM)

MIZAR Proof Advisor (http://wiki.mizar.org/twiki/bin/
view/Mizar/MizarProofAdvisor)
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Recommended reading

P. Rudnicki, To type or not to type, QED Workshop II, Warsaw
1995. (ftp://ftp.mcs.anl.gov/pub/qed/workshop95/
by-person/10piotr.ps)

A. Trybulec, Checker (a collection of e-mails compiled by F.
Wiedijk). (http://www.cs.ru.nl/~freek/mizar/by.ps.gz)

M. Wenzel and F. Wiedijk, A comparison of the mathematical proof
languages Mizar and Isar.
(http://www4.in.tum.de/~wenzelm/papers/romantic.pdf)

F. Wiedijk, Mizar: An Impression.
(http://www.cs.ru.nl/~freek/mizar/mizarintro.ps.gz)

F. Wiedijk, Writing a Mizar article in nine easy steps.
(http://www.cs.ru.nl/~freek/mizar/mizman.ps.gz)

F. Wiedijk (ed.), The Seventeen Provers of the World. LNAI 3600,
Springer Verlag 2006.
(http://www.cs.ru.nl/~freek/comparison/comparison.pdf)
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