
A Guide to the Mizar Soft Type System

Adam Naumowicz1 Josef Urban2

Institute of Informatics
University of Bia lystok, Poland

adamn@mizar.org

Czech Technical University in Prague
Czech Republic

josef.urban@gmail.com

TYPES 2016, Novi Sad, May 23-26, 2016

adamn@mizar.org
josef.urban@gmail.com


What is Mizar ?

Mizar is a system for encoding and proof-checking mathematics
invented by Andrzej Trybulec (†2013) and developed since 1970s.

Its language tries to mimic standard mathematical practice.

Its verification engine is designed to preserve human understanding
of proof steps.

It is being used to build a centralized library of formalized
mathematical knowledge based on simple axioms (of set theory) -
Mizar Mathematical Library (MML).

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Is Mizar typed or untyped?

In a foundational sense, Mizar is based on untyped set theory.
No particular axiom system is imposed by the system (MML is based
on Tarski-Grothendieck set theory).
Its objects are “just one type” (no pre-imposed disjointness,
inclusion, or similar conditions on these objects via a foundational
mechanism decoupled from the underlying classical logic).

The objects can still have various properties (a number, ordinal
number, complex number, Conway number, a relation, function,
complex function, complex matrix) which require different
treatment, so they must be typed.
It is not enough to classify them into “sorts” or otherwise disjoint
“kinds”, because we want them to represent various (dependent)
predicates.
Types are used in quantified and qualifying formulas, for parsing,
semantic analysis, overloading resolution, and inferring object
properties.

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Is Mizar typed or untyped?

In a foundational sense, Mizar is based on untyped set theory.
No particular axiom system is imposed by the system (MML is based
on Tarski-Grothendieck set theory).
Its objects are “just one type” (no pre-imposed disjointness,
inclusion, or similar conditions on these objects via a foundational
mechanism decoupled from the underlying classical logic).

The objects can still have various properties (a number, ordinal
number, complex number, Conway number, a relation, function,
complex function, complex matrix) which require different
treatment, so they must be typed.
It is not enough to classify them into “sorts” or otherwise disjoint
“kinds”, because we want them to represent various (dependent)
predicates.
Types are used in quantified and qualifying formulas, for parsing,
semantic analysis, overloading resolution, and inferring object
properties.

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Is Mizar typed or untyped?

In a foundational sense, Mizar is based on untyped set theory.
No particular axiom system is imposed by the system (MML is based
on Tarski-Grothendieck set theory).
Its objects are “just one type” (no pre-imposed disjointness,
inclusion, or similar conditions on these objects via a foundational
mechanism decoupled from the underlying classical logic).

The objects can still have various properties (a number, ordinal
number, complex number, Conway number, a relation, function,
complex function, complex matrix) which require different
treatment, so they must be typed.
It is not enough to classify them into “sorts” or otherwise disjoint
“kinds”, because we want them to represent various (dependent)
predicates.
Types are used in quantified and qualifying formulas, for parsing,
semantic analysis, overloading resolution, and inferring object
properties.

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Mizar type system’s main features

The type system can be characterized by:

soft-typing with possibly “dynamic” type change,

typing information in a syntactically “elegant” way (resembling
mathematical practice, e.g. via using dependent types and
attributes)

types can have an empty list of arguments (most commonly they
have explicit and/or implicit arguments),
adjectives can also be expressed with their own visible arguments,
e.g., n-dimensional, or X-valued

types are non-empty by definition (to guarantee that the formalized
theory always has some denotation).

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Reconstructing the type system

There have been attempts to reconstruct elements of this type system in
order to translate the mathematical data encoded in MML into

common mathematical data exchange formats, e.g. OMDoc,

other proof assistants, e.g. HOL Light or Isabelle.

A particular advantage of the soft-typing approach is its straightforward
translation to first-order ATP formats (allows developing hammer-style
ITP methods).

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Mizar glossary

When any variable is introduced in Mizar, its type must be given
(the most general type being object).

For any term, the verifier computes its unique type.

Types in Mizar are constructed using modes and the constructors
of adjectives are called attributes (every attribute introduces two
adjectives, e.g. empty and non empty).

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Mizar type constructors

Mizar supports two kinds of mode definitions:

1 modes defined as a collection (called a cluster) of adjectives
associated with an already defined radix type to which they may be
applied, called expandable modes,

definition

let G,H be AddGroup;

mode Homomorphism of G,H is additive Function of G,H;

end;

2 modes that define a type with an explicit definiens that must be
fulfilled for an object to have that type.
definition

let G be AbGroup, K,L be Ring;

let J be Function of K,L;

let V be for LeftMod of K, W be LeftMod of L;

mode Homomorphism of J,V,W -> Function of V,W means

(for x,y being Vector of V holds it.(x+y) = it.x+it.y) &

for a being Scalar of K, x being Vector of V holds it.(a*x) = J.a*it.x;

end;

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Examples of attributes

Without implicit parameters:
definition

let R be Relation;

attr R is well_founded means

for Y being set st Y c= field R & Y <> {}

ex a being set st a in Y & R-Seg a misses Y;

end;

With an implicit parameter:
definition

let n be Nat, X be set;

attr X is n-at_most_dimensional means

for x being set st x in X holds card x c= n+1;

end;

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



The lattice of Mizar types

Types of mathematical objects defined in the Mizar library form a
sup-semilattice with widening (subtyping) relation as the order. There are
two hierarchies of types:

1 the main one based on the type set, and

2 the other based on the notion of structure.

The most general type in Mizar (to which both sets and structures
widen) is called object.

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Mizar structural types

Structures model mathematical notions like groups, topological
spaces, categories, etc. which are usually represented as tuples.
A structure definition contains, therefore, a list of selectors to
denote its fields, characterized by their name and type.
Mizar supports multiple inheritance of structures that makes a
whole hierarchy of interrelated structures available in the library,
with the 1-sorted structure being the common ancestor of almost
all other structures.
One can define structures parameterized by arbitrary sets, or other
structures.

definition

let F be 1-sorted;

struct(addLoopStr) ModuleStr over F

(# carrier -> set,

addF -> BinOp of the carrier,

ZeroF -> Element of the carrier,

lmult -> Function of [:the carrier of F, the carrier:], the carrier #);

end;

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Type change mechanisms

The effective (semantic) type of a given Mizar term is determined by a
number of factors - most importantly, by the available (imported from
the library or introduced earlier in the same formalization) redefinitions
and adjective registrations.
Redefinitions are used to change the definiens or type for some
constructor if such a change is provable with possibly more specific
arguments. Depending on the kind of the redefined constructor and the
redefined part, each redefinition induces a corresponding correctness
condition that guarantees that the new definition is compatible with the
old one.
Registrations refer to several kinds of Mizar features connected with
automatic processing of the type information based on adjectives.
Grouping adjectives in so called clusters (hence the keyword cluster

used in their syntax) enables automation of some type inference rules.
Existential registrations are used to secure the nonemptiness of Mizar
types. The dependencies of adjectives recorded as conditional
registrations are used automatically by the Mizar verifier.

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Example of a mode redefinition

Original definition:
definition

let X;

mode Element of X -> set means

it in X if X is non empty otherwise it is empty;

end;

A redefinition:
definition

let A, B be non empty set;

let r be non empty Relation of A, B;

redefine mode Element of r -> Element of [:A,B:];

end;

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Example of an attribute redefinition

Original definition:
definition

let R be Relation;

attr R is co-well_founded means

R~ is well_founded;

end;

A redefinition:
definition

let R be Relation;

redefine attr R is co-well_founded means

for Y being set st Y c= field R & Y <> {}

ex a being object st a in Y & for b being object st b in Y & a <> b

holds not [a,b] in R;

end;

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Examples of registrations

Existential:
registration

let n be Nat;

cluster n-at_most_dimensional subset-closed non empty for set;

end;

Conditional:
registration

let n be Nat;

cluster n-at_most_dimensional -> finite-membered for set;

end;

Functorial (term):
registration

let n be Nat;

let X, Y be n-at_most_dimensional set;

cluster X \/ Y -> n-at_most_dimensional;

end;

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Explicit type change

For syntactic (identification) purposes, e.g. to force the system use
one of a number of matching redefinitions, the type of a term can
be explicitely qualified to one which is less specific, e.g.
1 qua real number

whereas in standard environments the constant has the type
natural number and then appropriate (more specific) definitions
apply to it.

The reconsider statement forces the system to treat any given
term as if its type was the one stated (with extra justification
provided), e.g.
reconsider R as Field

whereas the actual type of the variable R might be Ring. It is
usually used if a particular type is required by some construct (e.g.
definitional expansion) and the fact that a term has this type
requires extra reasoning after the term is introduced in a proof.

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Types in Mizar inference checking

During the proof-checking phase, Mizar uses a non-trivial
dependent congruence-closure algorithm (equalizer) that merges
terms that are known to be semantically equal, merging also their
(dependent) soft-types – occasionally deriving a contradiction from
adjectives like “empty” and “non-empty” – and propagating such
mergers up the term and type hierarchy.

The refutational Mizar proof checker takes advantage of this, by
doing all its work on the resulting semantic aggregated
equivalence classes of terms, each having many properties –
“superclusters” derived by the type system and the congruence
closure algorithm, i.e., by calculating a transitive closure of all
available registrations over the merged terms.

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



Miscellaneous type system features

The global choice construction, e.g. the natural number, allows
to introduce the unique constants for each well-defined type.

Selected types can have a special sethood property registered. This
property means that all objects of the type for which the property is
declared are elements of some set and in consequence it is valid to
use them within a Fraenkel term (set comprehension) operator.

The construction the set of all is an abbreviation for Fraenkel
terms defining sets of terms where the terms do not have to satisfy
any additional constraints, e.g. the set of all n where n is

natural number.

Selected types have extra processing in the Mizar verifier (switched
on by the so called requirements directives) in order to automate
some typical tasks and exploit their properties to make routine
inferences obvious, e.g. the computational processing of objects
whose type widens to the type complex number.

A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System



A. Naumowicz and J. Urban

A Guide to the Mizar Soft Type System


