Progress in the Formalization of Matiyasevich’s theorem in the Mizar system*

Karol Pąk
Institute of Computer Science,
University of Bialystok, Poland
karol@mizar.org

Abstract

We discuss the formal approach to the Matiyasevich’s theorem that is known as a negative solution of Hilbert’s tenth problem in the Mizar system. We present our formalization of a list of arithmetical properties that are directly used in the theorem in particular, that the equality \(y = x^z \) is Diophantine.

1 Introduction

Hilbert’s tenth problem is the question about the existence of a method (algorithm) that can decide whether a given polynomial equation with integer coefficients has an integral solution, or in a more modernist way, whether a given Diophantine equation has an integral solution.

The problem has an exceptional history that took seventy years to resolve, described in detail in [Mat93]. The main work to solve the problem has been done by Julia Robinson, Martin Davis and Hilary Putnam who spend a large part of their lives, over twenty years, trying to solve it. They have done a great progress to resolve it, by expressing the problem from computability theory in the notion of a Diophantine set from number theory. They proved the negative solution of Hilbert’s tenth problem but under an assumption that the exponential function can be defined in a diophantine way. Yuri Matiyasevich made the final and key step, eliminating this assumption, using Fibonacci numbers which tend to an exponential growth rate. Additionally, he improved his result, using a special case of Pell’s Equation, that has the form \(x^2 - (a^2 - 1)y^2 = 1 \), where \(a > 1 \) and integer numerical solutions are sought for \(x \) and \(y \), and finally he showed that \(y = x^z \) is Diophantine. In this way, he provided the crucial step that completed the proof of negative solution of Hilbert’s tenth problem theorem, known as the MRDP-theorem (due to Matiyasevich, Robinson, Davis, and Putnam).

As Pell’s Equation is more central to matters Diophantine, we decided to formalize Matiyasevich’s theorem in a post-Matiyasevich way where the Fibonacci sequence is replaced by Pell’s Equation and a Pell’s Sequence, as considered by Wiesław Sierpiński [Sie64].

2 Matiyasevich’s theorem in Mizar

The proof of Matiyasevich’s theorem is elementary but horribly complicated. As we mentioned above, the proof is based on two concepts: the special case of Pell’s Equation and Diophantine set that are elementarily-definable.

*The paper has been supported by the resources of the Polish National Science Center granted by decision no DEC-2015/19/D/ST6/01473.

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

Pell’s Equation

It is easy to see that $x_0(0) = 1$, $y_0(0) = 0$ is an obvious solution of the special case of Pell’s Equation. Additionally, if we know a solution of the Pell’s equation, we can determine infinitely many solutions as follows:

$$x_a(n + 1) = a \cdot x_a(n) + (a^2 - 1) \cdot y_a(n), \quad y_a(n + 1) = x_a(n) + a \cdot y_a(n).$$ \hspace{1cm} (1)

In particular, we get the first non-trivial solution easily $x_0(1) = a$, $y_0(1) = 1$, which is not easy to construct in the general case where the equation has form $x^2 - Dy^2 = 1$ and we only know that D is a non-square natural number. Note that the existence of such a non-trivial solution is listed as #39 at Freek Wiedijk’s list of “Top 100 mathematical theorems” [Fre100]. It is also important to note that Matiyasevich used dozens of properties of a special case of Pell’s Equation in his proof, but he also used the existence of a non-trivial solution in the general case (for more detail see [Sie64]). Therefore, we started our formalization of Matiyasevich’s theorem defining a solution of Pell’s Equation (see [AP17a, AP17]) as follows:

definition
let D be Nat;
mode Pell’s solution of D → Element of [:INT,INT:]
means :: PELLS_EQ:def 1
$(\text{it} ’1)^2 - D \cdot (\text{it} ’2)^2 = 1$;
end;

where we define a solution as a pair it of integers which fulfills the means condition where $\text{it} ’1$ denotes the first coordinate of it and $\text{it} ’2$ denotes the second ones.

Next we show that there is at least one pair of positive integers that is a non-trivial solution for a given D that is not a square

:: \S 39 Solutions to Pell’s Equation

theorem :: PELLS_EQ:16
for D be non square Nat
 $\exists p$ be Pell’s solution of D st p is positive;

as well as that there exist infinitely many solutions in positive integers for a given not square D

theorem :: PELLS_EQ:17
for D be non square Nat holds
 the set of all ab where ab is positive Pell’s solution of D
 is infinite;

Then, we introduce the concept of the least positive solution of Pell’s Equation. We call a pair (x_0, y_0) of natural numbers the least if is a positive solution of a given Pell’s Equation and for each pair (x_1, y_1) of natural numbers that also satisfies the equation holds $x_0 \leq x_1$ and $y_0 \leq y_1$. The order is partial and the least element does not have to exist in the general case, but we showed that the order is total on the set of positive solutions. We express this observation in the Mizar system as follows:

definition
let D be non square Nat;
func min_Pell’s_solution_of D → positive Pell’s_solution of D
means :: PELLS_EQ:def 3
for p be positive Pell’s_solution of D holds
 $\text{it} ’1 \leq p ’1$ & $\text{it} ’2 \leq p ’2$;
end;

Based on the above functor, we define formally two sequences $\{x_a(n)\}_{n=0}^\infty$, $\{y_a(n)\}_{n=0}^\infty$ defined recursively above as two function $Px(a,n)$, $Py(a,n)$, as follow:

definition
let a, n be Nat;
assume a is non trivial;
func $Px(a,n)$ → Nat means :: HILB10_1: def 1
 $\exists y$ be Nat st
it + y*sqrt (a^2-'1) =
((min_Pell’s_solution_of (a^2-'1))'1 +
(min_Pell’s_solution_of (a^2-'1))'2*sqrt(a^2-'1)) |^ n;

func Py(a,n) → Nat means :: HILB10_1:def 2
Px(a,n) + it*sqrt(a^2-'1) =
((min_Pell’s_solution_of (a^2-'1))'1 +
(min_Pell’s_solution_of (a^2-'1))'2*sqrt((a^2-'1))) |^ n;

and we show the simultaneous recursion equations

theorem :: HILB10_1:5
[a,1] = min_Pell’s_solution_of (a^2-'1);

theorem :: HILB10_1:6
Px(a,n+1) = Px(a,n)*a + Py(a,n)*(a^2-'1) &
Py(a,n+1) = Px(a,n) + Py(a,n)*a;

as well as we prove many dependencies between individual solutions to show congruence rules

theorem :: HILB10_1:33
Py(a,n1),Py(a,n2) are_congruent_mod Px(a,n) & n>0
implies
n1,n2 are_congruent_mod 2*n or n1,-n2 are_congruent_mod 2*n;

theorem :: HILB10_1:37
Py(a,k)^2 divides Py(a,n) implies Py(a,k) divides n;

Based on this properties we provide that the equality Py(a,z) = y is Diophantine. For this purpose we justify that for a given a, z, y holds Py(a,z) = y if and only if the following system has a solution for natural numbers x, x1, y1, A, x2, y2:

a>1 &
[x,y] is Pell’s_solution of (a^2-'1) &
[x1,y1] is Pell’s_solution of (a^2-'1) &
y1 >= y & A > y & y >= z &
[x2,y2] is Pell’s_solution of (A^2-'1) &
y2, y are_congruent_mod x1 &
A, a are_congruent_mod x1 &
y2, z are_congruent_mod 2*y &
A, 1 are_congruent_mod 2*y &
y1, 0 are_congruent_mod y^2;

Next, based on this result we prove that the equality y = x^z is also Diophantine.

theorem :: HILB10_1:39
for x,y,z be Nat holds
y = x|^z
iff
(y = 1 & z = 0) or (x = 0 & y = 0 & z > 0) or (x = 1 & y = 1 & z > 0)
or (x > 1 & z > 0 &
ex y1,y2,y3,K be Nat st
y1 = Py(x,z+1) & K > 2*z*y1 & y2 = Py(K,z+1) & y3 = Py(K*x,z+1) &
(0 <= y-y3/y2 <1/2 or 0 <= y3/y2-y < 1/2));

Note that complete formal proofs are available in [Pak17].

Diophantine sets

Diophantine sets are defined in informal mathematical practice as the set of all solutions of a Diophantine equation of the form \(P(x_1,\ldots,x_j,y_1,\ldots,y_k) = 0 \) (often denoted briefly by \(P(x,y) = 0 \)) where \(P \) is a \(n + k \)-variable
polynomial with integer coefficients. However, Diophantine set is parameterized only by natural number n that plays the role of the dimension. Let us consider a subset D of all finite sequences of length n numbered from 0 developed in the Mizar Mathematical Library [BBGKMP] as n-element XFinSequence. D is called Diophantine if there exist a natural number k and a $n + k$-variable polynomial p such that each coefficient is an integer number and

$$\forall x : n \rightarrow \mathbb{N} \exists y : n \rightarrow \mathbb{N} p(x, y) = 0.$$ \hspace{1cm} (2)

Our Mizar version of the definition is already formulated in [Pak18] as follows:

```
definition
let n be Nat;
let D be Subset of n -xtuples_of Nat;
attr D is diophantine means :: HILB10_2:def 6
  ex m being Nat, p being INT-valued Polynomial of n+m,F_Real st
  for s be object holds
    s in D iff ex x being n-element XFinSequence of Nat,
        y being m-element XFinSequence of Nat st
    s = x & eval(p,@(x^y)) = 0;
en;
```

Now we are ready to express and to prove algebraic equivalence formulated above in terms of Diophantine sets as follows.

```
theorem :: HILB10_3:23
for n be Nat
for i1,i2,i3 be Element of n holds
  {p where p is n-element XFinSequence of Nat: p.i1 = Py(p.i2,p.i3) & p.i2 > 1}
  is diophantine Subset of n -xtuples_of Nat;
```

```
theorem :: HILB10_3:24
for n be Nat
for i1,i2,i3 be Element of n holds
  {p where p is n-element XFinSequence of Nat: p.i2 = (p.i1) |^ (p.i3)}
  is diophantine Subset of n -xtuples_of Nat;
```

Note that these two theorems can be found in the proof script HILB10_3.miz available at the authors’ web site http://alioth.uwb.edu.pl/~pakkarol/FMM2018/.

3 Conclusions

Our formalization has so far focused on the Diophantine property of two equations. We showed formally in the Mizar system that from the diophantine standpoint these equations can be obtained from lists of several basic Diophantine relations. We introduced also a concept of Diophantine set and we checked the usability of our concept proving that these equations are Diophantine. Now we are working on the next equations explored in Matiyasevich’s theorem to show finally that Every computably enumerable set is Diophantine.

References

[Fre100] Freek Wiedijk. *Formalizing 100 Theorems*.