bcialg_5.miz



    begin

    definition

      let X be BCI-algebra;

      let x,y be Element of X;

      let m,n be Nat;

      :: BCIALG_5:def1

      func Polynom (m,n,x,y) -> Element of X equals ((((x,(x \ y)) to_power (m + 1)),(y \ x)) to_power n);

      coherence ;

    end

    reserve X for BCI-algebra;

    reserve x,y,z for Element of X;

    reserve i,j,k,l,m,n for Nat;

    reserve f,g for sequence of the carrier of X;

    theorem :: BCIALG_5:1

    

     Th1: x <= y & y <= z implies x <= z by BCIALG_1: 3;

    theorem :: BCIALG_5:2

    

     Th2: x <= y & y <= x implies x = y by BCIALG_1:def 7;

    theorem :: BCIALG_5:3

    

     Th3: for X be BCK-algebra, x,y be Element of X holds (x \ y) <= x & ((x,y) to_power (n + 1)) <= ((x,y) to_power n)

    proof

      let X be BCK-algebra;

      let x,y be Element of X;

      ((((x,y) to_power n) \ y) \ ((x,y) to_power n)) = ((((x,y) to_power n) \ ((x,y) to_power n)) \ y) by BCIALG_1: 7

      .= (y ` ) by BCIALG_1:def 5

      .= ( 0. X) by BCIALG_1:def 8;

      then

       A1: (((x,y) to_power n) \ y) <= ((x,y) to_power n);

      ((x \ y) \ x) = ((x \ x) \ y) by BCIALG_1: 7

      .= (y ` ) by BCIALG_1:def 5

      .= ( 0. X) by BCIALG_1:def 8;

      hence thesis by A1, BCIALG_2: 4;

    end;

    theorem :: BCIALG_5:4

    

     Th4: for X be BCK-algebra, x be Element of X holds ((( 0. X),x) to_power n) = ( 0. X)

    proof

      let X be BCK-algebra;

      let x be Element of X;

      defpred P[ Nat] means $1 <= n implies ((( 0. X),x) to_power $1) = ( 0. X);

      now

        let k;

        assume

         A1: k <= n implies ((( 0. X),x) to_power k) = ( 0. X);

        set m = (k + 1);

        assume m <= n;

        

        then ((( 0. X),x) to_power m) = (x ` ) by A1, BCIALG_2: 4, NAT_1: 13

        .= ( 0. X) by BCIALG_1:def 8;

        hence ((( 0. X),x) to_power m) = ( 0. X);

      end;

      then

       A2: for k st P[k] holds P[(k + 1)];

      

       A3: P[ 0 ] by BCIALG_2: 1;

      for n holds P[n] from NAT_1:sch 2( A3, A2);

      hence thesis;

    end;

    theorem :: BCIALG_5:5

    

     Th5: for X be BCK-algebra, x,y be Element of X st m >= n holds ((x,y) to_power m) <= ((x,y) to_power n)

    proof

      let X be BCK-algebra;

      let x,y be Element of X;

      assume m >= n;

      then (m - n) is Element of NAT by NAT_1: 21;

      then

      consider k be Element of NAT such that

       A1: k = (m - n);

      (((x,y) to_power k) \ x) = (((x \ x),y) to_power k) by BCIALG_2: 7

      .= ((( 0. X),y) to_power k) by BCIALG_1:def 5

      .= ( 0. X) by Th4;

      then ((x,y) to_power k) <= x;

      then ((((x,y) to_power k),y) to_power n) <= ((x,y) to_power n) by BCIALG_2: 19;

      then ((x,y) to_power (k + n)) <= ((x,y) to_power n) by BCIALG_2: 10;

      hence thesis by A1;

    end;

    theorem :: BCIALG_5:6

    

     Th6: for X be BCK-algebra, x,y be Element of X st m > n & ((x,y) to_power n) = ((x,y) to_power m) holds for k be Nat st k >= n holds ((x,y) to_power n) = ((x,y) to_power k)

    proof

      let X be BCK-algebra;

      let x,y be Element of X;

      assume that

       A1: m > n and

       A2: ((x,y) to_power n) = ((x,y) to_power m);

      (m - n) is Element of NAT & (m - n) > (n - n) by A1, NAT_1: 21, XREAL_1: 9;

      then (m - n) >= 1 by NAT_1: 14;

      then ((m - n) + n) >= (1 + n) by XREAL_1: 6;

      then

       A3: ((x,y) to_power n) <= ((x,y) to_power (n + 1)) by A2, Th5;

      

       A4: ((x,y) to_power (n + 1)) <= ((x,y) to_power n) by Th3;

      for k be Nat st k >= n holds ((x,y) to_power n) = ((x,y) to_power k)

      proof

        let k be Nat;

        assume k >= n;

        then (k - n) is Element of NAT by NAT_1: 21;

        then

        consider k1 be Element of NAT such that

         A5: k1 = (k - n);

        ((x,y) to_power n) = ((((x,y) to_power n),y) to_power k1)

        proof

          defpred P[ Nat] means $1 <= k1 implies ((x,y) to_power n) = ((((x,y) to_power n),y) to_power $1);

          now

            let k;

            assume

             A6: k <= k1 implies ((x,y) to_power n) = ((((x,y) to_power n),y) to_power k);

            set m = (k + 1);

            

             A7: ((((x,y) to_power n),y) to_power m) = (((((x,y) to_power n),y) to_power k) \ y) by BCIALG_2: 4

            .= (((((x,y) to_power n) \ y),y) to_power k) by BCIALG_2: 7

            .= ((((x,y) to_power (n + 1)),y) to_power k) by BCIALG_2: 4

            .= ((((x,y) to_power n),y) to_power k) by A4, A3, Th2;

            assume m <= k1;

            hence ((x,y) to_power n) = ((((x,y) to_power n),y) to_power m) by A6, A7, NAT_1: 13;

          end;

          then

           A8: for k st P[k] holds P[(k + 1)];

          

           A9: P[ 0 ] by BCIALG_2: 1;

          for n holds P[n] from NAT_1:sch 2( A9, A8);

          hence thesis;

        end;

        then ((x,y) to_power n) = ((x,y) to_power (n + k1)) by BCIALG_2: 10;

        hence thesis by A5;

      end;

      hence thesis;

    end;

    theorem :: BCIALG_5:7

    

     Th7: ( Polynom ( 0 , 0 ,x,y)) = (x \ (x \ y))

    proof

      ( Polynom ( 0 , 0 ,x,y)) = ((x,(x \ y)) to_power ( 0 + 1)) by BCIALG_2: 1

      .= (x \ (x \ y)) by BCIALG_2: 2;

      hence thesis;

    end;

    theorem :: BCIALG_5:8

    ( Polynom (m,n,x,y)) = ((((( Polynom ( 0 , 0 ,x,y)),(x \ y)) to_power m),(y \ x)) to_power n)

    proof

      ((( Polynom ( 0 , 0 ,x,y)),(x \ y)) to_power m) = (((x \ (x \ y)),(x \ y)) to_power m) by Th7

      .= (((x,(x \ y)) to_power m) \ (x \ y)) by BCIALG_2: 7

      .= ((x,(x \ y)) to_power (m + 1)) by BCIALG_2: 4;

      hence thesis;

    end;

    theorem :: BCIALG_5:9

    

     Th9: ( Polynom ((m + 1),n,x,y)) = (( Polynom (m,n,x,y)) \ (x \ y))

    proof

      ( Polynom ((m + 1),n,x,y)) = ((((x,(y \ x)) to_power n),(x \ y)) to_power ((m + 1) + 1)) by BCIALG_2: 11

      .= (((((x,(y \ x)) to_power n),(x \ y)) to_power (m + 1)) \ (x \ y)) by BCIALG_2: 4

      .= (((((x,(x \ y)) to_power (m + 1)),(y \ x)) to_power n) \ (x \ y)) by BCIALG_2: 11;

      hence thesis;

    end;

    theorem :: BCIALG_5:10

    

     Th10: ( Polynom (m,(n + 1),x,y)) = (( Polynom (m,n,x,y)) \ (y \ x))

    proof

      consider f such that

       A1: ((((x,(x \ y)) to_power (m + 1)),(y \ x)) to_power (n + 1)) = (f . (n + 1)) and

       A2: (f . 0 ) = ((x,(x \ y)) to_power (m + 1)) and

       A3: for k st k < (n + 1) holds (f . (k + 1)) = ((f . k) \ (y \ x)) by BCIALG_2:def 1;

      consider g such that

       A4: ((((x,(x \ y)) to_power (m + 1)),(y \ x)) to_power n) = (g . n) and

       A5: (g . 0 ) = ((x,(x \ y)) to_power (m + 1)) and

       A6: for k st k < n holds (g . (k + 1)) = ((g . k) \ (y \ x)) by BCIALG_2:def 1;

      defpred P[ Nat] means $1 <= n implies (f . $1) = (g . $1);

      now

        let k;

        assume

         A7: k <= n implies (f . k) = (g . k);

        set m = (k + 1);

        assume

         A8: m <= n;

        then (k + 1) <= (n + 1) by NAT_1: 13;

        then k < (n + 1) by NAT_1: 13;

        then

         A9: (f . (k + 1)) = ((f . k) \ (y \ x)) by A3;

        k < n by A8, NAT_1: 13;

        hence (f . m) = (g . m) by A6, A7, A9;

      end;

      then

       A10: for k st P[k] holds P[(k + 1)];

      

       A11: P[ 0 ] by A2, A5;

      for n holds P[n] from NAT_1:sch 2( A11, A10);

      then (f . n) = (g . n);

      hence thesis by A1, A3, A4, XREAL_1: 29;

    end;

    theorem :: BCIALG_5:11

    ( Polynom ((n + 1),(n + 1),y,x)) <= ( Polynom (n,(n + 1),x,y))

    proof

      ((y \ x) \ (y \ x)) = ( 0. X) by BCIALG_1:def 5;

      then ((y \ (y \ x)) \ x) = ( 0. X) by BCIALG_1: 7;

      then (y \ (y \ x)) <= x;

      then (((y \ (y \ x)),(x \ y)) to_power (n + 1)) <= ((x,(x \ y)) to_power (n + 1)) by BCIALG_2: 19;

      then (((((y \ (y \ x)),(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) <= ((((x,(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) by BCIALG_2: 19;

      then (((((y \ (y \ x)),(y \ x)) to_power (n + 1)),(x \ y)) to_power (n + 1)) <= ((((x,(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) by BCIALG_2: 11;

      then ((((((y,(y \ x)) to_power 1),(y \ x)) to_power (n + 1)),(x \ y)) to_power (n + 1)) <= ((((x,(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) by BCIALG_2: 2;

      hence thesis by BCIALG_2: 10;

    end;

    theorem :: BCIALG_5:12

    ( Polynom (n,(n + 1),x,y)) <= ( Polynom (n,n,y,x))

    proof

      ((x \ y) \ (x \ y)) = ( 0. X) by BCIALG_1:def 5;

      then ((x \ (x \ y)) \ y) = ( 0. X) by BCIALG_1: 7;

      then (x \ (x \ y)) <= y;

      then (((x \ (x \ y)),(x \ y)) to_power n) <= ((y,(x \ y)) to_power n) by BCIALG_2: 19;

      then (((((x \ (x \ y)),(x \ y)) to_power n),(y \ x)) to_power (n + 1)) <= ((((y,(x \ y)) to_power n),(y \ x)) to_power (n + 1)) by BCIALG_2: 19;

      then ((((((x,(x \ y)) to_power 1),(x \ y)) to_power n),(y \ x)) to_power (n + 1)) <= ((((y,(x \ y)) to_power n),(y \ x)) to_power (n + 1)) by BCIALG_2: 2;

      then ((((x,(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) <= ((((y,(x \ y)) to_power n),(y \ x)) to_power (n + 1)) by BCIALG_2: 10;

      hence thesis by BCIALG_2: 11;

    end;

    definition

      let X be BCI-algebra;

      :: BCIALG_5:def2

      attr X is quasi-commutative means ex i,j,m,n be Element of NAT st for x,y be Element of X holds ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x));

    end

    registration

      cluster BCI-EXAMPLE -> quasi-commutative;

      coherence

      proof

        for x,y be Element of BCI-EXAMPLE holds ( Polynom ( 0 , 0 ,x,y)) = ( Polynom ( 0 , 0 ,y,x)) by STRUCT_0:def 10;

        hence thesis;

      end;

    end

    registration

      cluster quasi-commutative for BCI-algebra;

      existence

      proof

        take BCI-EXAMPLE ;

        thus thesis;

      end;

    end

    definition

      let i,j,m,n be Nat;

      :: BCIALG_5:def3

      mode BCI-algebra of i,j,m,n -> BCI-algebra means

      : Def3: for x,y be Element of it holds ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x));

      existence

      proof

        for x,y be Element of BCI-EXAMPLE holds ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) by STRUCT_0:def 10;

        hence thesis;

      end;

    end

    theorem :: BCIALG_5:13

    

     Th13: X is BCI-algebra of i, j, m, n iff X is BCI-algebra of m, n, i, j

    proof

      thus X is BCI-algebra of i, j, m, n implies X is BCI-algebra of m, n, i, j

      proof

        assume X is BCI-algebra of i, j, m, n;

        then for x,y be Element of X holds ( Polynom (m,n,x,y)) = ( Polynom (i,j,y,x)) by Def3;

        hence thesis by Def3;

      end;

      assume X is BCI-algebra of m, n, i, j;

      then for x,y be Element of X holds ( Polynom (m,n,y,x)) = ( Polynom (i,j,x,y)) by Def3;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:14

    

     Th14: for X be BCI-algebra of i, j, m, n holds for k be Element of NAT holds X is BCI-algebra of (i + k), j, m, (n + k)

    proof

      let X be BCI-algebra of i, j, m, n;

      let k be Element of NAT ;

      for x,y be Element of X holds ( Polynom ((i + k),j,x,y)) = ( Polynom (m,(n + k),y,x))

      proof

        let x,y be Element of X;

        

         A1: ((( Polynom (m,n,y,x)),(x \ y)) to_power k) = ( Polynom (m,(n + k),y,x)) by BCIALG_2: 10;

        ((( Polynom (i,j,x,y)),(x \ y)) to_power k) = ((((((x,(x \ y)) to_power (i + 1)),(x \ y)) to_power k),(y \ x)) to_power j) by BCIALG_2: 11

        .= ((((x,(x \ y)) to_power ((i + 1) + k)),(y \ x)) to_power j) by BCIALG_2: 10

        .= ( Polynom ((i + k),j,x,y));

        hence thesis by A1, Def3;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:15

    for X be BCI-algebra of i, j, m, n holds for k be Element of NAT holds X is BCI-algebra of i, (j + k), (m + k), n

    proof

      let X be BCI-algebra of i, j, m, n;

      let k be Element of NAT ;

      for x,y be Element of X holds ( Polynom (i,(j + k),x,y)) = ( Polynom ((m + k),n,y,x))

      proof

        let x,y be Element of X;

        

         A1: ((( Polynom (m,n,y,x)),(y \ x)) to_power k) = ((((((y,(y \ x)) to_power (m + 1)),(y \ x)) to_power k),(x \ y)) to_power n) by BCIALG_2: 11

        .= ((((y,(y \ x)) to_power ((m + 1) + k)),(x \ y)) to_power n) by BCIALG_2: 10

        .= ( Polynom ((m + k),n,y,x));

        ((( Polynom (i,j,x,y)),(y \ x)) to_power k) = ( Polynom (i,(j + k),x,y)) by BCIALG_2: 10;

        hence thesis by A1, Def3;

      end;

      hence thesis by Def3;

    end;

    registration

      cluster quasi-commutative for BCK-algebra;

      existence

      proof

        take BCI-EXAMPLE ;

        thus thesis;

      end;

    end

    registration

      let i,j,m,n be Nat;

      cluster being_BCK-5 for BCI-algebra of i, j, m, n;

      existence

      proof

        for x,y be Element of BCI-EXAMPLE holds ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) by STRUCT_0:def 10;

        then

        reconsider B = BCI-EXAMPLE as BCI-algebra of i, j, m, n by Def3;

        take B;

        thus thesis;

      end;

    end

    definition

      let i,j,m,n be Nat;

      mode BCK-algebra of i,j,m,n is being_BCK-5 BCI-algebra of i, j, m, n;

    end

    theorem :: BCIALG_5:16

    X is BCK-algebra of i, j, m, n iff X is BCK-algebra of m, n, i, j

    proof

      thus X is BCK-algebra of i, j, m, n implies X is BCK-algebra of m, n, i, j

      proof

        assume

         A1: X is BCK-algebra of i, j, m, n;

        then for x,y be Element of X holds ( Polynom (m,n,x,y)) = ( Polynom (i,j,y,x)) by Def3;

        hence thesis by A1, Def3;

      end;

      assume

       A2: X is BCK-algebra of m, n, i, j;

      then for x,y be Element of X holds ( Polynom (m,n,y,x)) = ( Polynom (i,j,x,y)) by Def3;

      hence thesis by A2, Def3;

    end;

    theorem :: BCIALG_5:17

    

     Th17: for X be BCK-algebra of i, j, m, n holds for k be Element of NAT holds X is BCK-algebra of (i + k), j, m, (n + k)

    proof

      let X be BCK-algebra of i, j, m, n;

      let k be Element of NAT ;

      for x,y be Element of X holds ( Polynom ((i + k),j,x,y)) = ( Polynom (m,(n + k),y,x))

      proof

        let x,y be Element of X;

        

         A1: ((( Polynom (m,n,y,x)),(x \ y)) to_power k) = ( Polynom (m,(n + k),y,x)) by BCIALG_2: 10;

        ((( Polynom (i,j,x,y)),(x \ y)) to_power k) = ((((((x,(x \ y)) to_power (i + 1)),(x \ y)) to_power k),(y \ x)) to_power j) by BCIALG_2: 11

        .= ((((x,(x \ y)) to_power ((i + 1) + k)),(y \ x)) to_power j) by BCIALG_2: 10

        .= ( Polynom ((i + k),j,x,y));

        hence thesis by A1, Def3;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:18

    

     Th18: for X be BCK-algebra of i, j, m, n holds for k be Element of NAT holds X is BCK-algebra of i, (j + k), (m + k), n

    proof

      let X be BCK-algebra of i, j, m, n;

      let k be Element of NAT ;

      for x,y be Element of X holds ( Polynom (i,(j + k),x,y)) = ( Polynom ((m + k),n,y,x))

      proof

        let x,y be Element of X;

        

         A1: ((( Polynom (m,n,y,x)),(y \ x)) to_power k) = ((((((y,(y \ x)) to_power (m + 1)),(y \ x)) to_power k),(x \ y)) to_power n) by BCIALG_2: 11

        .= ((((y,(y \ x)) to_power ((m + 1) + k)),(x \ y)) to_power n) by BCIALG_2: 10

        .= ( Polynom ((m + k),n,y,x));

        ((( Polynom (i,j,x,y)),(y \ x)) to_power k) = ( Polynom (i,(j + k),x,y)) by BCIALG_2: 10;

        hence thesis by A1, Def3;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:19

    

     Th19: for X be BCK-algebra of i, j, m, n holds for x,y be Element of X holds ((x,y) to_power (i + 1)) = ((x,y) to_power (n + 1))

    proof

      let X be BCK-algebra of i, j, m, n;

      let x,y be Element of X;

      

       A1: ((x \ y) \ x) = ((x \ x) \ y) by BCIALG_1: 7

      .= (y ` ) by BCIALG_1:def 5

      .= ( 0. X) by BCIALG_1:def 8;

      

      then

       A2: ( Polynom ((m + 1),n,(x \ y),x)) = (((x \ y),(x \ (x \ y))) to_power n) by BCIALG_2: 5

      .= (((x \ (x \ (x \ y))),(x \ (x \ y))) to_power n) by BCIALG_1: 8

      .= ((((x,(x \ (x \ y))) to_power 1),(x \ (x \ y))) to_power n) by BCIALG_2: 2

      .= ((x,(x \ (x \ y))) to_power (n + 1)) by BCIALG_2: 10

      .= ((x,y) to_power (n + 1)) by BCIALG_2: 8;

      X is BCI-algebra of m, n, i, j by Th13;

      then

       A3: X is BCI-algebra of (m + 1), n, i, (j + 1) by Th14;

      ( Polynom (i,(j + 1),x,(x \ y))) = ((x,(x \ (x \ y))) to_power (i + 1)) by A1, BCIALG_2: 5

      .= ((x,y) to_power (i + 1)) by BCIALG_2: 8;

      hence thesis by A2, A3, Def3;

    end;

    theorem :: BCIALG_5:20

    

     Th20: for X be BCK-algebra of i, j, m, n holds for x,y be Element of X holds ((x,y) to_power (j + 1)) = ((x,y) to_power (m + 1))

    proof

      let X be BCK-algebra of i, j, m, n;

      let x,y be Element of X;

      

       A1: ((x \ y) \ x) = ((x \ x) \ y) by BCIALG_1: 7

      .= (y ` ) by BCIALG_1:def 5

      .= ( 0. X) by BCIALG_1:def 8;

      

      then

       A2: ( Polynom ((i + 1),j,(x \ y),x)) = (((x \ y),(x \ (x \ y))) to_power j) by BCIALG_2: 5

      .= (((x \ (x \ (x \ y))),(x \ (x \ y))) to_power j) by BCIALG_1: 8

      .= ((((x,(x \ (x \ y))) to_power 1),(x \ (x \ y))) to_power j) by BCIALG_2: 2

      .= ((x,(x \ (x \ y))) to_power (j + 1)) by BCIALG_2: 10

      .= ((x,y) to_power (j + 1)) by BCIALG_2: 8;

      

       A3: X is BCI-algebra of (i + 1), j, m, (n + 1) by Th14;

      ( Polynom (m,(n + 1),x,(x \ y))) = ((x,(x \ (x \ y))) to_power (m + 1)) by A1, BCIALG_2: 5

      .= ((x,y) to_power (m + 1)) by BCIALG_2: 8;

      hence thesis by A2, A3, Def3;

    end;

    theorem :: BCIALG_5:21

    

     Th21: for X be BCK-algebra of i, j, m, n holds X is BCK-algebra of i, j, j, n

    proof

      let X be BCK-algebra of i, j, m, n;

      for x,y be Element of X holds ( Polynom (i,j,x,y)) = ( Polynom (j,n,y,x))

      proof

        let x,y be Element of X;

        ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) by Def3;

        hence thesis by Th20;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:22

    

     Th22: for X be BCK-algebra of i, j, m, n holds X is BCK-algebra of n, j, m, n

    proof

      let X be BCK-algebra of i, j, m, n;

      for x,y be Element of X holds ( Polynom (n,j,x,y)) = ( Polynom (m,n,y,x))

      proof

        let x,y be Element of X;

        ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) by Def3;

        hence thesis by Th19;

      end;

      hence thesis by Def3;

    end;

    definition

      let i, j, m, n;

      :: BCIALG_5:def4

      func min (i,j,m,n) -> ExtReal equals ( min (( min (i,j)),( min (m,n))));

      correctness ;

      :: BCIALG_5:def5

      func max (i,j,m,n) -> ExtReal equals ( max (( max (i,j)),( max (m,n))));

      correctness ;

    end

    theorem :: BCIALG_5:23

    ( min (i,j,m,n)) = i or ( min (i,j,m,n)) = j or ( min (i,j,m,n)) = m or ( min (i,j,m,n)) = n

    proof

      

       A1: ( min (m,n)) = m or ( min (m,n)) = n by XXREAL_0: 15;

      ( min (i,j)) = i or ( min (i,j)) = j by XXREAL_0: 15;

      hence thesis by A1, XXREAL_0: 15;

    end;

    theorem :: BCIALG_5:24

    ( max (i,j,m,n)) = i or ( max (i,j,m,n)) = j or ( max (i,j,m,n)) = m or ( max (i,j,m,n)) = n

    proof

      

       A1: ( max (m,n)) = m or ( max (m,n)) = n by XXREAL_0: 16;

      ( max (i,j)) = i or ( max (i,j)) = j by XXREAL_0: 16;

      hence thesis by A1, XXREAL_0: 16;

    end;

    theorem :: BCIALG_5:25

    

     Th25: i = ( min (i,j,m,n)) implies i <= j & i <= m & i <= n

    proof

      

       A1: ( min (m,n)) <= n by XXREAL_0: 17;

      assume i = ( min (i,j,m,n));

      then

       A2: i <= ( min (i,j)) & i <= ( min (m,n)) by XXREAL_0: 17;

      ( min (i,j)) <= j & ( min (m,n)) <= m by XXREAL_0: 17;

      hence thesis by A2, A1, XXREAL_0: 2;

    end;

    theorem :: BCIALG_5:26

    

     Th26: ( max (i,j,m,n)) >= i & ( max (i,j,m,n)) >= j & ( max (i,j,m,n)) >= m & ( max (i,j,m,n)) >= n

    proof

      

       A1: ( max (m,n)) >= m & ( max (m,n)) >= n by XXREAL_0: 25;

      

       A2: ( max (i,j,m,n)) >= ( max (i,j)) & ( max (i,j,m,n)) >= ( max (m,n)) by XXREAL_0: 25;

      ( max (i,j)) >= i & ( max (i,j)) >= j by XXREAL_0: 25;

      hence thesis by A1, A2, XXREAL_0: 2;

    end;

    theorem :: BCIALG_5:27

    

     Th27: for X be BCK-algebra of i, j, m, n st i = ( min (i,j,m,n)) holds (i = j implies X is BCK-algebra of i, i, i, i)

    proof

      let X be BCK-algebra of i, j, m, n;

      assume

       A1: i = ( min (i,j,m,n));

      assume

       A2: i = j;

      

       A3: for x,y be Element of X holds ( Polynom (i,i,x,y)) <= ( Polynom (i,i,y,x))

      proof

        let x,y be Element of X;

        i <= n by A1, Th25;

        then

         A4: ((((y,(y \ x)) to_power (i + 1)),(x \ y)) to_power n) <= ((((y,(y \ x)) to_power (i + 1)),(x \ y)) to_power i) by Th5;

        i <= m by A1, Th25;

        then (i + 1) <= (m + 1) by XREAL_1: 6;

        then

         A5: ((((y,(y \ x)) to_power (m + 1)),(x \ y)) to_power n) <= ((((y,(y \ x)) to_power (i + 1)),(x \ y)) to_power n) by Th5, BCIALG_2: 19;

        ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) by Def3;

        hence thesis by A2, A5, A4, Th1;

      end;

      for x,y be Element of X holds ( Polynom (i,i,y,x)) = ( Polynom (i,i,x,y))

      proof

        let x,y be Element of X;

        ( Polynom (i,i,x,y)) <= ( Polynom (i,i,y,x)) by A3;

        then

         A6: (( Polynom (i,i,x,y)) \ ( Polynom (i,i,y,x))) = ( 0. X);

        ( Polynom (i,i,y,x)) <= ( Polynom (i,i,x,y)) by A3;

        then (( Polynom (i,i,y,x)) \ ( Polynom (i,i,x,y))) = ( 0. X);

        hence thesis by A6, BCIALG_1:def 7;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:28

    for X be BCK-algebra of i, j, m, n st i = ( min (i,j,m,n)) holds (i < j & i < n implies X is BCK-algebra of i, (i + 1), i, (i + 1))

    proof

      let X be BCK-algebra of i, j, m, n;

      assume

       A1: i = ( min (i,j,m,n));

      assume that

       A2: i < j and

       A3: i < n;

      for x,y be Element of X holds ( Polynom (i,(i + 1),x,y)) = ( Polynom (i,(i + 1),y,x))

      proof

        (n - i) is Element of NAT & (n - i) > (i - i) by A3, NAT_1: 21, XREAL_1: 9;

        then (n - i) >= 1 by NAT_1: 14;

        then

         A4: ((n - i) + i) >= (1 + i) by XREAL_1: 6;

        m >= i by A1, Th25;

        then

         A5: (m + 1) >= (i + 1) by XREAL_1: 6;

        (j - i) is Element of NAT & (j - i) > (i - i) by A2, NAT_1: 21, XREAL_1: 9;

        then (j - i) >= 1 by NAT_1: 14;

        then

         A6: ((j - i) + i) >= (1 + i) by XREAL_1: 6;

        let x,y be Element of X;

        

         A7: (i + 1) < (n + 1) by A3, XREAL_1: 6;

        ((y,(y \ x)) to_power (i + 1)) = ((y,(y \ x)) to_power (n + 1)) by Th19;

        then

         A8: ((y,(y \ x)) to_power (i + 1)) = ((y,(y \ x)) to_power (m + 1)) by A7, A5, Th6;

        

         A9: ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) & ((((y,(y \ x)) to_power (i + 1)),(x \ y)) to_power (i + 1)) = ((((y,(y \ x)) to_power (i + 1)),(x \ y)) to_power (n + 1)) by Def3, Th19;

        ((((x,(x \ y)) to_power (i + 1)),(y \ x)) to_power (i + 1)) = ((((x,(x \ y)) to_power (i + 1)),(y \ x)) to_power (n + 1)) by Th19;

        then ((((x,(x \ y)) to_power (i + 1)),(y \ x)) to_power (i + 1)) = ((((x,(x \ y)) to_power (i + 1)),(y \ x)) to_power j) by A7, A6, Th6;

        hence thesis by A7, A8, A9, A4, Th6;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:29

    for X be BCK-algebra of i, j, m, n st i = ( min (i,j,m,n)) holds (i = n & i = m implies X is BCK-algebra of i, i, i, i)

    proof

      let X be BCK-algebra of i, j, m, n;

      assume

       A1: i = ( min (i,j,m,n));

      assume

       A2: i = n & i = m;

      then for x,y be Element of X holds ( Polynom (i,i,x,y)) = ( Polynom (i,j,y,x)) by Def3;

      then

       A3: X is BCK-algebra of i, i, i, j by Def3;

      i = ( min (i,i,i,j)) by A1, A2;

      hence thesis by A3, Th27;

    end;

    theorem :: BCIALG_5:30

    for X be BCK-algebra of i, j, m, n st i = n & m < j holds X is BCK-algebra of i, (m + 1), m, i

    proof

      let X be BCK-algebra of i, j, m, n;

      assume that

       A1: i = n and

       A2: m < j;

      for x,y be Element of X holds ( Polynom (i,(m + 1),x,y)) = ( Polynom (m,i,y,x))

      proof

        (j - m) is Element of NAT & (j - m) > (m - m) by A2, NAT_1: 21, XREAL_1: 9;

        then (j - m) >= 1 by NAT_1: 14;

        then

         A3: ((j - m) + m) >= (1 + m) by XREAL_1: 6;

        let x,y be Element of X;

        

         A4: (m + 1) < (j + 1) by A2, XREAL_1: 6;

        ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) & ((((x,(x \ y)) to_power (i + 1)),(y \ x)) to_power (j + 1)) = ((((x,(x \ y)) to_power (i + 1)),(y \ x)) to_power (m + 1)) by Def3, Th20;

        hence thesis by A1, A4, A3, Th6;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:31

    for X be BCK-algebra of i, j, m, n st i = n holds X is BCK-algebra of i, j, j, i

    proof

      let X be BCK-algebra of i, j, m, n;

      assume i = n;

      then

      reconsider X as BCK-algebra of i, j, m, i;

      for x,y be Element of X holds ( Polynom (i,j,x,y)) = ( Polynom (j,i,y,x))

      proof

        let x,y be Element of X;

        ( Polynom (i,j,x,y)) = ( Polynom (m,i,y,x)) by Def3;

        hence thesis by Th20;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:32

    for X be BCK-algebra of i, j, m, n st l >= j & k >= n holds X is BCK-algebra of k, l, l, k

    proof

      let X be BCK-algebra of i, j, m, n;

      assume that

       A1: l >= j and

       A2: k >= n;

      (l - j) is Element of NAT by A1, NAT_1: 21;

      then

      consider t be Element of NAT such that

       A3: t = (l - j);

      (k - n) is Element of NAT by A2, NAT_1: 21;

      then

      consider t1 be Element of NAT such that

       A4: t1 = (k - n);

      X is BCK-algebra of n, j, m, n by Th22;

      then X is BCK-algebra of n, j, j, n by Th21;

      then X is BCK-algebra of (n + t1), j, j, (n + t1) by Th17;

      then X is BCK-algebra of k, (j + t), (j + t), k by A4, Th18;

      hence thesis by A3;

    end;

    theorem :: BCIALG_5:33

    for X be BCK-algebra of i, j, m, n st k >= ( max (i,j,m,n)) holds X is BCK-algebra of k, k, k, k

    proof

      let X be BCK-algebra of i, j, m, n;

      assume

       A1: k >= ( max (i,j,m,n));

      ( max (i,j,m,n)) >= n by Th26;

      then (k - n) is Element of NAT by A1, NAT_1: 21, XXREAL_0: 2;

      then

      consider t1 be Element of NAT such that

       A2: t1 = (k - n);

      ( max (i,j,m,n)) >= j by Th26;

      then (k - j) is Element of NAT by A1, NAT_1: 21, XXREAL_0: 2;

      then

      consider t be Element of NAT such that

       A3: t = (k - j);

      X is BCK-algebra of n, j, m, n by Th22;

      then X is BCK-algebra of n, j, j, n by Th21;

      then X is BCK-algebra of (n + t1), j, j, (n + t1) by Th17;

      then X is BCK-algebra of k, (j + t), (j + t), k by A2, Th18;

      hence thesis by A3;

    end;

    theorem :: BCIALG_5:34

    for X be BCK-algebra of i, j, m, n st i <= m & j <= n holds X is BCK-algebra of i, j, i, j

    proof

      let X be BCK-algebra of i, j, m, n;

      assume that

       A1: i <= m and

       A2: j <= n;

      

       A3: for x,y be Element of X holds ( Polynom (i,j,x,y)) <= ( Polynom (i,j,y,x))

      proof

        let x,y be Element of X;

        (i + 1) <= (m + 1) by A1, XREAL_1: 6;

        then

         A4: ((((y,(y \ x)) to_power (m + 1)),(x \ y)) to_power n) <= ((((y,(y \ x)) to_power (i + 1)),(x \ y)) to_power n) by Th5, BCIALG_2: 19;

        ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) & ((((y,(y \ x)) to_power (i + 1)),(x \ y)) to_power n) <= ((((y,(y \ x)) to_power (i + 1)),(x \ y)) to_power j) by A2, Def3, Th5;

        hence thesis by A4, Th1;

      end;

      for x,y be Element of X holds ( Polynom (i,j,y,x)) = ( Polynom (i,j,x,y))

      proof

        let x,y be Element of X;

        ( Polynom (i,j,x,y)) <= ( Polynom (i,j,y,x)) by A3;

        then

         A5: (( Polynom (i,j,x,y)) \ ( Polynom (i,j,y,x))) = ( 0. X);

        ( Polynom (i,j,y,x)) <= ( Polynom (i,j,x,y)) by A3;

        then (( Polynom (i,j,y,x)) \ ( Polynom (i,j,x,y))) = ( 0. X);

        hence thesis by A5, BCIALG_1:def 7;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:35

    for X be BCK-algebra of i, j, m, n holds (i <= m & i < n implies X is BCK-algebra of i, j, i, (i + 1))

    proof

      let X be BCK-algebra of i, j, m, n;

      assume that

       A1: i <= m and

       A2: i < n;

      for x,y be Element of X holds ( Polynom (i,j,x,y)) = ( Polynom (i,(i + 1),y,x))

      proof

        (n - i) is Element of NAT & (n - i) > (i - i) by A2, NAT_1: 21, XREAL_1: 9;

        then (n - i) >= 1 by NAT_1: 14;

        then

         A3: ((n - i) + i) >= (1 + i) by XREAL_1: 6;

        let x,y be Element of X;

        

         A4: (i + 1) < (n + 1) by A2, XREAL_1: 6;

        

         A5: ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) & ((((y,(y \ x)) to_power (m + 1)),(x \ y)) to_power (i + 1)) = ((((y,(y \ x)) to_power (m + 1)),(x \ y)) to_power (n + 1)) by Def3, Th19;

        ((y,(y \ x)) to_power (i + 1)) = ((y,(y \ x)) to_power (n + 1)) & (m + 1) >= (i + 1) by A1, Th19, XREAL_1: 6;

        then ((y,(y \ x)) to_power (i + 1)) = ((y,(y \ x)) to_power (m + 1)) by A4, Th6;

        hence thesis by A4, A5, A3, Th6;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:36

    

     Th36: X is BCI-algebra of i, j, (j + k), (i + k) implies X is BCK-algebra

    proof

      assume

       A1: X is BCI-algebra of i, j, (j + k), (i + k);

      for y be Element of X holds (( 0. X) \ y) = ( 0. X)

      proof

        let y be Element of X;

        

         A2: ((((y,y) to_power ((j + k) + 1)),(( 0. X) \ y)) to_power (i + k)) = (((((y,y) to_power (j + k)) \ y),(( 0. X) \ y)) to_power (i + k)) by BCIALG_2: 4

        .= (((((y \ y),y) to_power (j + k)),(( 0. X) \ y)) to_power (i + k)) by BCIALG_2: 7

        .= ((((( 0. X),y) to_power (j + k)),(( 0. X) \ y)) to_power (i + k)) by BCIALG_1:def 5

        .= ((((( 0. X),(( 0. X) \ y)) to_power (i + k)),y) to_power (j + k)) by BCIALG_2: 11

        .= (((((( 0. X),( 0. X)) to_power (i + k)) \ ((( 0. X),y) to_power (i + k))),y) to_power (j + k)) by BCIALG_2: 18

        .= (((( 0. X) \ ((( 0. X),y) to_power (i + k))),y) to_power (j + k)) by BCIALG_2: 6

        .= (((( 0. X),y) to_power (j + k)) \ ((( 0. X),y) to_power (i + k))) by BCIALG_2: 7

        .= (((((( 0. X),y) to_power j),y) to_power k) \ ((( 0. X),y) to_power (i + k))) by BCIALG_2: 10

        .= (((((( 0. X),y) to_power j),y) to_power k) \ ((((( 0. X),y) to_power i),y) to_power k)) by BCIALG_2: 10;

        

         A3: (((((( 0. X),y) to_power j),y) to_power k) \ ((((( 0. X),y) to_power i),y) to_power k)) <= (((( 0. X),y) to_power j) \ ((( 0. X),y) to_power i)) by BCIALG_2: 21;

        ( Polynom (i,j,( 0. X),y)) = ( Polynom ((j + k),(i + k),y,( 0. X))) by A1, Def3;

        then ((((( 0. X),(( 0. X) \ y)) to_power (i + 1)),y) to_power j) = ((((y,(y \ ( 0. X))) to_power ((j + k) + 1)),(( 0. X) \ y)) to_power (i + k)) by BCIALG_1: 2;

        then ((((( 0. X),(( 0. X) \ y)) to_power (i + 1)),y) to_power j) = ((((y,y) to_power ((j + k) + 1)),(( 0. X) \ y)) to_power (i + k)) by BCIALG_1: 2;

        then

         A4: ((((( 0. X),y) to_power j),(( 0. X) \ y)) to_power (i + 1)) = ((((y,y) to_power ((j + k) + 1)),(( 0. X) \ y)) to_power (i + k)) by BCIALG_2: 11;

        ((((( 0. X),y) to_power j),(( 0. X) \ y)) to_power (i + 1)) = ((((( 0. X),(( 0. X) \ y)) to_power (i + 1)),y) to_power j) by BCIALG_2: 11

        .= (((((( 0. X),( 0. X)) to_power (i + 1)) \ ((( 0. X),y) to_power (i + 1))),y) to_power j) by BCIALG_2: 18

        .= (((( 0. X) \ ((( 0. X),y) to_power (i + 1))),y) to_power j) by BCIALG_2: 6

        .= (((( 0. X),y) to_power j) \ ((( 0. X),y) to_power (i + 1))) by BCIALG_2: 7;

        then ((((( 0. X),y) to_power j) \ ((( 0. X),y) to_power (i + 1))) \ (((( 0. X),y) to_power j) \ ((( 0. X),y) to_power i))) = ( 0. X) by A4, A2, A3;

        then (( 0. X) \ (((( 0. X),y) to_power i) \ ((( 0. X),y) to_power (i + 1)))) = ( 0. X) by BCIALG_1: 11;

        then

         A5: ( 0. X) <= (((( 0. X),y) to_power i) \ ((( 0. X),y) to_power (i + 1)));

        (((( 0. X),y) to_power i) \ ((( 0. X),y) to_power (i + 1))) = (((( 0. X),y) to_power i) \ (((( 0. X),y) to_power i) \ y)) by BCIALG_2: 4

        .= (((( 0. X),y) to_power i) \ (((( 0. X) \ y),y) to_power i)) by BCIALG_2: 7;

        then (((( 0. X),y) to_power i) \ ((( 0. X),y) to_power (i + 1))) <= (( 0. X) \ (( 0. X) \ y)) by BCIALG_2: 21;

        then ( 0. X) <= (( 0. X) \ (( 0. X) \ y)) by A5, Th1;

        then (( 0. X) \ (( 0. X) \ (( 0. X) \ y))) = ( 0. X);

        hence thesis by BCIALG_1: 8;

      end;

      then for x be Element of X holds (x ` ) = ( 0. X);

      hence thesis by BCIALG_1:def 8;

    end;

    theorem :: BCIALG_5:37

    

     Th37: X is BCI-algebra of 0 , 0 , 0 , 0 iff X is BCK-algebra of 0 , 0 , 0 , 0

    proof

      thus X is BCI-algebra of 0 , 0 , 0 , 0 implies X is BCK-algebra of 0 , 0 , 0 , 0

      proof

        assume

         A1: X is BCI-algebra of 0 , 0 , 0 , 0 ;

        then X is BCI-algebra of 0 , 0 , ( 0 + 0 ), ( 0 + 0 );

        then

        reconsider X as BCK-algebra by Th36;

        for x,y be Element of X holds ( Polynom ( 0 , 0 ,x,y)) = ( Polynom ( 0 , 0 ,y,x)) by A1, Def3;

        hence thesis by Def3;

      end;

      thus thesis;

    end;

    theorem :: BCIALG_5:38

    

     Th38: X is commutative BCK-algebra iff X is BCI-algebra of 0 , 0 , 0 , 0

    proof

      thus X is commutative BCK-algebra implies X is BCI-algebra of 0 , 0 , 0 , 0

      proof

        assume

         A1: X is commutative BCK-algebra;

        for x,y be Element of X holds ( Polynom ( 0 , 0 ,x,y)) = ( Polynom ( 0 , 0 ,y,x))

        proof

          let x,y be Element of X;

          

           A2: (x \ (x \ y)) = (y \ (y \ x)) by A1, BCIALG_3:def 1;

          ((((x,(x \ y)) to_power 1),(y \ x)) to_power 0 ) = ((x,(x \ y)) to_power 1) by BCIALG_2: 1

          .= (y \ (y \ x)) by A2, BCIALG_2: 2

          .= ((y,(y \ x)) to_power 1) by BCIALG_2: 2

          .= ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by BCIALG_2: 1;

          hence thesis;

        end;

        hence thesis by Def3;

      end;

      assume

       A3: X is BCI-algebra of 0 , 0 , 0 , 0 ;

      for x,y be Element of X holds (x \ (x \ y)) = (y \ (y \ x))

      proof

        let x,y be Element of X;

        

         A4: ( Polynom ( 0 , 0 ,x,y)) = ( Polynom ( 0 , 0 ,y,x)) by A3, Def3;

        (x \ (x \ y)) = ((x,(x \ y)) to_power 1) by BCIALG_2: 2

        .= ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by A4, BCIALG_2: 1

        .= ((y,(y \ x)) to_power 1) by BCIALG_2: 1

        .= (y \ (y \ x)) by BCIALG_2: 2;

        hence thesis;

      end;

      hence thesis by A3, Th37, BCIALG_3:def 1;

    end;

    notation

      let X be BCI-algebra;

      synonym p-Semisimple-part (X) for AtomSet (X);

    end

    reserve B,P for non empty Subset of X;

    theorem :: BCIALG_5:39

    for X be BCI-algebra st B = ( BCK-part X) & P = ( p-Semisimple-part X) holds (B /\ P) = {( 0. X)}

    proof

      let X be BCI-algebra;

      assume that

       A1: B = ( BCK-part X) and

       A2: P = ( p-Semisimple-part X);

      thus (B /\ P) c= {( 0. X)}

      proof

        let x be object;

        assume

         A3: x in (B /\ P);

        then

         A4: x in P by XBOOLE_0:def 4;

        

         A5: x in B by A3, XBOOLE_0:def 4;

        then

         A6: ex x1 be Element of X st x = x1 & ( 0. X) <= x1 by A1;

        reconsider x as Element of X by A1, A5;

        

         A7: (( 0. X) \ x) = ( 0. X) by A6;

        ex x2 be Element of X st x = x2 & x2 is minimal by A2, A4;

        then x = ( 0. X) by A7;

        hence thesis by TARSKI:def 1;

      end;

      ( 0. X) in ( BCK-part X) & ( 0. X) in ( p-Semisimple-part X) by BCIALG_1: 19;

      then ( 0. X) in (B /\ P) by A1, A2, XBOOLE_0:def 4;

      then for x be object st x in {( 0. X)} holds x in (B /\ P) by TARSKI:def 1;

      hence thesis;

    end;

    theorem :: BCIALG_5:40

    for X be BCI-algebra st P = ( p-Semisimple-part X) holds (X is BCK-algebra iff P = {( 0. X)})

    proof

      let X be BCI-algebra;

      assume

       A1: P = ( p-Semisimple-part X);

      thus X is BCK-algebra implies P = {( 0. X)}

      proof

        assume

         A2: X is BCK-algebra;

        thus P c= {( 0. X)}

        proof

          let x be object;

          assume

           A3: x in P;

          then

           A4: ex x1 be Element of X st x = x1 & x1 is minimal by A1;

          reconsider x as Element of X by A1, A3;

          (( 0. X) \ x) = (x ` )

          .= ( 0. X) by A2, BCIALG_1:def 8;

          then x = ( 0. X) by A4;

          hence thesis by TARSKI:def 1;

        end;

        ( 0. X) in P by A1;

        then for x be object st x in {( 0. X)} holds x in P by TARSKI:def 1;

        hence thesis;

      end;

      assume

       A5: P = {( 0. X)};

      for x be Element of X holds (( 0. X) \ x) = ( 0. X)

      proof

        let x be Element of X;

        ( 0. X) in P by A5, TARSKI:def 1;

        then (( 0. X) \ x) in P by A1, BCIALG_1: 33;

        hence thesis by A5, TARSKI:def 1;

      end;

      then for x be Element of X holds (x ` ) = ( 0. X);

      hence thesis by BCIALG_1:def 8;

    end;

    theorem :: BCIALG_5:41

    for X be BCI-algebra st B = ( BCK-part X) holds (X is p-Semisimple BCI-algebra iff B = {( 0. X)})

    proof

      let X be BCI-algebra;

      assume

       A1: B = ( BCK-part X);

      thus X is p-Semisimple BCI-algebra implies B = {( 0. X)}

      proof

        assume

         A2: X is p-Semisimple BCI-algebra;

        thus B c= {( 0. X)}

        proof

          let x be object;

          assume

           A3: x in B;

          then

           A4: ex x1 be Element of X st x = x1 & ( 0. X) <= x1 by A1;

          reconsider x as Element of X by A1, A3;

          ((x ` ) ` ) = x by A2, BCIALG_1:def 26;

          then (( 0. X) ` ) = x by A4;

          then x = ( 0. X) by BCIALG_1:def 5;

          hence thesis by TARSKI:def 1;

        end;

        let x be object;

        assume

         A5: x in {( 0. X)};

        then

        reconsider x as Element of X by TARSKI:def 1;

        x = ( 0. X) by A5, TARSKI:def 1;

        then (x ` ) = ( 0. X) by BCIALG_1:def 5;

        then ( 0. X) <= x;

        hence thesis by A1;

      end;

      assume

       A6: B = {( 0. X)};

      for x be Element of X holds ((x ` ) ` ) = x

      proof

        let x be Element of X;

        (( 0. X) \ (x \ (( 0. X) \ (( 0. X) \ x)))) = ((( 0. X),(x \ (( 0. X) \ (( 0. X) \ x)))) to_power 1) by BCIALG_2: 2

        .= (((( 0. X),x) to_power 1) \ ((( 0. X),(( 0. X) \ (( 0. X) \ x))) to_power 1)) by BCIALG_2: 18

        .= (((( 0. X),x) to_power 1) \ ((( 0. X),x) to_power 1)) by BCIALG_2: 8

        .= ( 0. X) by BCIALG_1:def 5;

        then ( 0. X) <= (x \ (( 0. X) \ (( 0. X) \ x)));

        then (x \ (( 0. X) \ (( 0. X) \ x))) in B by A1;

        then

         A7: (x \ (( 0. X) \ (( 0. X) \ x))) = ( 0. X) by A6, TARSKI:def 1;

        ((( 0. X) \ (( 0. X) \ x)) \ x) = ((( 0. X) \ x) \ (( 0. X) \ x)) by BCIALG_1: 7

        .= ( 0. X) by BCIALG_1:def 5;

        hence thesis by A7, BCIALG_1:def 7;

      end;

      hence thesis by BCIALG_1: 54;

    end;

    theorem :: BCIALG_5:42

    

     Th42: X is p-Semisimple BCI-algebra implies X is BCI-algebra of 0 , 1, 0 , 0

    proof

      assume

       A1: X is p-Semisimple BCI-algebra;

      for x,y be Element of X holds ( Polynom ( 0 ,1,x,y)) = ( Polynom ( 0 , 0 ,y,x))

      proof

        let x,y be Element of X;

        ((((x,(x \ y)) to_power 1),(y \ x)) to_power 1) = (((x \ (x \ y)),(y \ x)) to_power 1) by BCIALG_2: 2

        .= ((y,(y \ x)) to_power 1) by A1, BCIALG_1:def 26

        .= ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by BCIALG_2: 1;

        hence thesis;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:43

    X is p-Semisimple BCI-algebra implies X is BCI-algebra of (n + j), n, m, ((m + j) + 1)

    proof

      assume

       A1: X is p-Semisimple BCI-algebra;

      

       A2: for x,y be Element of X holds ( Polynom (n,n,x,y)) = y

      proof

        let x,y be Element of X;

        defpred P[ Nat] means $1 <= n implies ( Polynom ($1,$1,x,y)) = y;

        now

          let k;

          assume

           A3: k <= n implies ( Polynom (k,k,x,y)) = y;

          set m = (k + 1);

          

           A4: ( Polynom (m,m,x,y)) = (( Polynom (k,(k + 1),x,y)) \ (x \ y)) by Th9

          .= ((( Polynom (k,k,x,y)) \ (y \ x)) \ (x \ y)) by Th10;

          assume m <= n;

          then ( Polynom (m,m,x,y)) = (x \ (x \ y)) by A1, A3, A4, BCIALG_1:def 26, NAT_1: 13;

          hence ( Polynom (m,m,x,y)) = y by A1, BCIALG_1:def 26;

        end;

        then

         A5: for k st P[k] holds P[(k + 1)];

        ( Polynom ( 0 , 0 ,x,y)) = (x \ (x \ y)) by Th7

        .= y by A1, BCIALG_1:def 26;

        then

         A6: P[ 0 ];

        for n holds P[n] from NAT_1:sch 2( A6, A5);

        hence thesis;

      end;

      

       A7: for x,y be Element of X holds ( Polynom (m,(m + 1),x,y)) = x

      proof

        let x,y be Element of X;

        defpred P[ Nat] means $1 <= m implies ( Polynom ($1,($1 + 1),x,y)) = x;

        now

          let k;

          assume

           A8: k <= m implies ( Polynom (k,(k + 1),x,y)) = x;

          set l = (k + 1);

          

           A9: ( Polynom (l,(l + 1),x,y)) = (( Polynom (k,((k + 1) + 1),x,y)) \ (x \ y)) by Th9

          .= ((( Polynom (k,(k + 1),x,y)) \ (y \ x)) \ (x \ y)) by Th10;

          assume l <= m;

          

          then ( Polynom (l,(l + 1),x,y)) = ((x \ (x \ y)) \ (y \ x)) by A8, A9, BCIALG_1: 7, NAT_1: 13

          .= (y \ (y \ x)) by A1, BCIALG_1:def 26;

          hence ( Polynom (l,(l + 1),x,y)) = x by A1, BCIALG_1:def 26;

        end;

        then

         A10: for k st P[k] holds P[(k + 1)];

        ( Polynom ( 0 ,1,x,y)) = (( Polynom ( 0 , 0 ,x,y)) \ (y \ x)) by Th10

        .= ((x \ (x \ y)) \ (y \ x)) by Th7

        .= (y \ (y \ x)) by A1, BCIALG_1:def 26

        .= x by A1, BCIALG_1:def 26;

        then

         A11: P[ 0 ];

        for m holds P[m] from NAT_1:sch 2( A11, A10);

        hence thesis;

      end;

      for x,y be Element of X holds ( Polynom ((n + j),n,x,y)) = ( Polynom (m,((m + j) + 1),y,x))

      proof

        let x,y be Element of X;

        defpred P[ Nat] means $1 <= j implies ( Polynom ((n + $1),n,x,y)) = ( Polynom (m,((m + $1) + 1),y,x));

        now

          let k;

          assume

           A12: k <= j implies ( Polynom ((n + k),n,x,y)) = ( Polynom (m,((m + k) + 1),y,x));

          set l = (k + 1);

          assume l <= j;

          

          then ( Polynom ((n + l),n,x,y)) = (( Polynom (m,((m + k) + 1),y,x)) \ (x \ y)) by A12, Th9, NAT_1: 13

          .= ( Polynom (m,(((m + k) + 1) + 1),y,x)) by Th10;

          hence ( Polynom ((n + l),n,x,y)) = ( Polynom (m,((m + l) + 1),y,x));

        end;

        then

         A13: for k st P[k] holds P[(k + 1)];

        ( Polynom ((n + 0 ),n,x,y)) = y by A2

        .= ( Polynom (m,((m + 0 ) + 1),y,x)) by A7;

        then

         A14: P[ 0 ];

        for j holds P[j] from NAT_1:sch 2( A14, A13);

        hence thesis;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:44

    X is associative BCI-algebra implies X is BCI-algebra of 0 , 1, 0 , 0 & X is BCI-algebra of 1, 0 , 0 , 0

    proof

      assume

       A1: X is associative BCI-algebra;

      for x be Element of X holds ((x ` ) ` ) = x

      proof

        let x be Element of X;

        (x ` ) = x by A1, BCIALG_1: 47;

        hence thesis;

      end;

      then

       A2: X is p-Semisimple by BCIALG_1: 54;

      for x,y be Element of X holds ( Polynom (1, 0 ,x,y)) = ( Polynom ( 0 , 0 ,y,x))

      proof

        let x,y be Element of X;

        (x \ (x \ y)) = y by A2;

        then

         A3: ((x \ (x \ y)) \ (x \ y)) = (y \ (y \ x)) by A1, BCIALG_1: 48;

        ((((x,(x \ y)) to_power (1 + 1)),(y \ x)) to_power 0 ) = ((x,(x \ y)) to_power 2) by BCIALG_2: 1

        .= ((x \ (x \ y)) \ (x \ y)) by BCIALG_2: 3

        .= ((y,(y \ x)) to_power 1) by A3, BCIALG_2: 2

        .= ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by BCIALG_2: 1;

        hence thesis;

      end;

      hence thesis by A2, Def3, Th42;

    end;

    theorem :: BCIALG_5:45

    X is weakly-positive-implicative BCI-algebra implies X is BCI-algebra of 0 , 1, 1, 1

    proof

      assume

       A1: X is weakly-positive-implicative BCI-algebra;

      for x,y be Element of X holds ( Polynom ( 0 ,1,x,y)) = ( Polynom (1,1,y,x))

      proof

        let x,y be Element of X;

        

         A2: ((x \ (x \ y)) \ (y \ x)) = (((y \ (y \ x)) \ (y \ x)) \ (x \ y)) by A1, BCIALG_1: 85;

        ((((x,(x \ y)) to_power 1),(y \ x)) to_power 1) = (((x,(x \ y)) to_power 1) \ (y \ x)) by BCIALG_2: 2

        .= ((x \ (x \ y)) \ (y \ x)) by BCIALG_2: 2

        .= ((((y \ (y \ x)) \ (y \ x)),(x \ y)) to_power 1) by A2, BCIALG_2: 2

        .= ((((y,(y \ x)) to_power 2),(x \ y)) to_power 1) by BCIALG_2: 3;

        hence thesis;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:46

    X is positive-implicative BCI-algebra implies X is BCI-algebra of 0 , 1, 1, 1

    proof

      assume

       A1: X is positive-implicative BCI-algebra;

      for x,y be Element of X holds ( Polynom ( 0 ,1,x,y)) = ( Polynom (1,1,y,x))

      proof

        let x,y be Element of X;

        

         A2: ((x \ (x \ y)) \ (y \ x)) = (((y \ (y \ x)) \ (y \ x)) \ (x \ y)) by A1, BCIALG_1: 85;

        ((((x,(x \ y)) to_power 1),(y \ x)) to_power 1) = (((x,(x \ y)) to_power 1) \ (y \ x)) by BCIALG_2: 2

        .= ((x \ (x \ y)) \ (y \ x)) by BCIALG_2: 2

        .= ((((y \ (y \ x)) \ (y \ x)),(x \ y)) to_power 1) by A2, BCIALG_2: 2

        .= ((((y,(y \ x)) to_power 2),(x \ y)) to_power 1) by BCIALG_2: 3;

        hence thesis;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:47

    X is implicative BCI-algebra implies X is BCI-algebra of 0 , 1, 0 , 0

    proof

      assume

       A1: X is implicative BCI-algebra;

      for x,y be Element of X holds ( Polynom ( 0 ,1,x,y)) = ( Polynom ( 0 , 0 ,y,x))

      proof

        let x,y be Element of X;

        

         A2: ((x \ (x \ y)) \ (y \ x)) = (y \ (y \ x)) by A1, BCIALG_1:def 24;

        ((((x,(x \ y)) to_power 1),(y \ x)) to_power 1) = (((x \ (x \ y)),(y \ x)) to_power 1) by BCIALG_2: 2

        .= ((x \ (x \ y)) \ (y \ x)) by BCIALG_2: 2

        .= ((y,(y \ x)) to_power 1) by A2, BCIALG_2: 2

        .= ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by BCIALG_2: 1;

        hence thesis;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:48

    X is alternative BCI-algebra implies X is BCI-algebra of 0 , 1, 0 , 0

    proof

      assume

       A1: X is alternative BCI-algebra;

      for x,y be Element of X holds ( Polynom ( 0 ,1,x,y)) = ( Polynom ( 0 , 0 ,y,x))

      proof

        let x,y be Element of X;

        

         A2: ((x \ (x \ y)) \ (y \ x)) = (y \ (y \ x)) by A1, BCIALG_1: 76;

        ((((x,(x \ y)) to_power 1),(y \ x)) to_power 1) = (((x \ (x \ y)),(y \ x)) to_power 1) by BCIALG_2: 2

        .= ((x \ (x \ y)) \ (y \ x)) by BCIALG_2: 2

        .= ((y,(y \ x)) to_power 1) by A2, BCIALG_2: 2

        .= ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by BCIALG_2: 1;

        hence thesis;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:49

    

     Th49: X is BCK-positive-implicative BCK-algebra iff X is BCK-algebra of 0 , 1, 0 , 1

    proof

      thus X is BCK-positive-implicative BCK-algebra implies X is BCK-algebra of 0 , 1, 0 , 1

      proof

        assume

         A1: X is BCK-positive-implicative BCK-algebra;

        for x,y be Element of X holds ( Polynom ( 0 ,1,x,y)) = ( Polynom ( 0 ,1,y,x))

        proof

          let x,y be Element of X;

          ((x \ y) \ (x \ y)) = ( 0. X) by BCIALG_1:def 5;

          then ((x \ (x \ y)) \ y) = ( 0. X) by BCIALG_1: 7;

          then

           A2: (x \ (x \ y)) <= y;

          (x \ (x \ y)) = ((x \ (x \ y)) \ (x \ y)) by A1, BCIALG_3: 28;

          then (x \ (x \ y)) <= (y \ (x \ y)) by A2, BCIALG_1: 5;

          then ((x \ (x \ y)) \ (y \ x)) <= ((y \ (x \ y)) \ (y \ x)) by BCIALG_1: 5;

          then

           A3: ((x \ (x \ y)) \ (y \ x)) <= ((y \ (y \ x)) \ (x \ y)) by BCIALG_1: 7;

          ((y \ x) \ (y \ x)) = ( 0. X) by BCIALG_1:def 5;

          then ((y \ (y \ x)) \ x) = ( 0. X) by BCIALG_1: 7;

          then (y \ (y \ x)) <= x;

          then

           A4: ((y \ (y \ x)) \ (y \ x)) <= (x \ (y \ x)) by BCIALG_1: 5;

          (y \ (y \ x)) = ((y \ (y \ x)) \ (y \ x)) by A1, BCIALG_3: 28;

          then ((y \ (y \ x)) \ (x \ y)) <= ((x \ (y \ x)) \ (x \ y)) by A4, BCIALG_1: 5;

          then ((y \ (y \ x)) \ (x \ y)) <= ((x \ (x \ y)) \ (y \ x)) by BCIALG_1: 7;

          then

           A5: ((x \ (x \ y)) \ (y \ x)) = ((y \ (y \ x)) \ (x \ y)) by A3, Th2;

          ((((x,(x \ y)) to_power 1),(y \ x)) to_power 1) = (((x,(x \ y)) to_power 1) \ (y \ x)) by BCIALG_2: 2

          .= ((x \ (x \ y)) \ (y \ x)) by BCIALG_2: 2

          .= (((y \ (y \ x)),(x \ y)) to_power 1) by A5, BCIALG_2: 2

          .= ((((y,(y \ x)) to_power 1),(x \ y)) to_power 1) by BCIALG_2: 2;

          hence thesis;

        end;

        hence thesis by A1, Def3;

      end;

      assume

       A6: X is BCK-algebra of 0 , 1, 0 , 1;

      for x,y be Element of X holds (x \ y) = ((x \ y) \ y)

      proof

        let x,y be Element of X;

        

         A7: ( Polynom ( 0 ,1,x,(x \ y))) = ( Polynom ( 0 ,1,(x \ y),x)) by A6, Def3;

        

         A8: ((x \ y) \ x) = ((x \ x) \ y) by BCIALG_1: 7

        .= (y ` ) by BCIALG_1:def 5

        .= ( 0. X) by A6, BCIALG_1:def 8;

        

        then

         A9: (((x \ y) \ ((x \ y) \ x)) \ (x \ (x \ y))) = ((x \ y) \ (x \ (x \ y))) by BCIALG_1: 2

        .= ((x \ (x \ (x \ y))) \ y) by BCIALG_1: 7

        .= ((x \ y) \ y) by BCIALG_1: 8;

        

         A10: ((x \ (x \ (x \ y))) \ ((x \ y) \ x)) = ((x \ y) \ ((x \ y) \ x)) by BCIALG_1: 8

        .= (x \ y) by A8, BCIALG_1: 2;

        ((x \ (x \ (x \ y))) \ ((x \ y) \ x)) = (((x,(x \ (x \ y))) to_power 1) \ ((x \ y) \ x)) by BCIALG_2: 2

        .= (((((x \ y),((x \ y) \ x)) to_power 1),(x \ (x \ y))) to_power 1) by A7, BCIALG_2: 2

        .= ((((x \ y) \ ((x \ y) \ x)),(x \ (x \ y))) to_power 1) by BCIALG_2: 2

        .= (((x \ y) \ ((x \ y) \ x)) \ (x \ (x \ y))) by BCIALG_2: 2;

        hence thesis by A10, A9;

      end;

      hence thesis by A6, BCIALG_3: 28;

    end;

    theorem :: BCIALG_5:50

    

     Th50: X is BCK-implicative BCK-algebra iff X is BCK-algebra of 1, 0 , 0 , 0

    proof

      thus X is BCK-implicative BCK-algebra implies X is BCK-algebra of 1, 0 , 0 , 0

      proof

        assume

         A1: X is BCK-implicative BCK-algebra;

        for x,y be Element of X holds ( Polynom (1, 0 ,x,y)) = ( Polynom ( 0 , 0 ,y,x))

        proof

          let x,y be Element of X;

          

           A2: ((x \ (x \ y)) \ (x \ y)) = (y \ (y \ x)) by A1, BCIALG_3: 35;

          ((((x,(x \ y)) to_power (1 + 1)),(y \ x)) to_power 0 ) = ((x,(x \ y)) to_power 2) by BCIALG_2: 1

          .= ((x \ (x \ y)) \ (x \ y)) by BCIALG_2: 3

          .= ((y,(y \ x)) to_power 1) by A2, BCIALG_2: 2

          .= ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by BCIALG_2: 1;

          hence thesis;

        end;

        hence thesis by A1, Def3;

      end;

      assume

       A3: X is BCK-algebra of 1, 0 , 0 , 0 ;

      for x,y be Element of X holds ((x \ (x \ y)) \ (x \ y)) = (y \ (y \ x))

      proof

        let x,y be Element of X;

        

         A4: ( Polynom (1, 0 ,x,y)) = ( Polynom ( 0 , 0 ,y,x)) by A3, Def3;

        ((x \ (x \ y)) \ (x \ y)) = ((x,(x \ y)) to_power 2) by BCIALG_2: 3

        .= ((((x,(x \ y)) to_power (1 + 1)),(y \ x)) to_power 0 ) by BCIALG_2: 1

        .= ((y,(y \ x)) to_power 1) by A4, BCIALG_2: 1

        .= (y \ (y \ x)) by BCIALG_2: 2;

        hence thesis;

      end;

      hence thesis by A3, BCIALG_3: 35;

    end;

    registration

      cluster BCK-implicative -> commutative for BCK-algebra;

      coherence by BCIALG_3: 34;

      cluster BCK-implicative -> BCK-positive-implicative for BCK-algebra;

      coherence by BCIALG_3: 34;

    end

    theorem :: BCIALG_5:51

    X is BCK-algebra of 1, 0 , 0 , 0 iff X is BCK-algebra of 0 , 0 , 0 , 0 & X is BCK-algebra of 0 , 1, 0 , 1

    proof

      thus X is BCK-algebra of 1, 0 , 0 , 0 implies X is BCK-algebra of 0 , 0 , 0 , 0 & X is BCK-algebra of 0 , 1, 0 , 1

      proof

        assume X is BCK-algebra of 1, 0 , 0 , 0 ;

        then X is BCK-implicative BCK-algebra by Th50;

        hence thesis by Th38, Th49;

      end;

      assume X is BCK-algebra of 0 , 0 , 0 , 0 & X is BCK-algebra of 0 , 1, 0 , 1;

      then X is commutative BCK-algebra & X is BCK-positive-implicative BCK-algebra by Th38, Th49;

      then X is BCK-implicative BCK-algebra by BCIALG_3: 34;

      hence thesis by Th50;

    end;

    theorem :: BCIALG_5:52

    for X be quasi-commutative BCK-algebra holds (X is BCK-algebra of 0 , 1, 0 , 1 iff for x,y be Element of X holds (x \ y) = ((x \ y) \ y)) by BCIALG_3: 28, Th49;

    theorem :: BCIALG_5:53

    for X be quasi-commutative BCK-algebra holds (X is BCK-algebra of n, (n + 1), n, (n + 1) iff for x,y be Element of X holds ((x,y) to_power (n + 1)) = ((x,y) to_power (n + 2)))

    proof

      let X be quasi-commutative BCK-algebra;

      thus X is BCK-algebra of n, (n + 1), n, (n + 1) implies for x,y be Element of X holds ((x,y) to_power (n + 1)) = ((x,y) to_power (n + 2))

      proof

        assume

         A1: X is BCK-algebra of n, (n + 1), n, (n + 1);

        for x,y be Element of X holds ((x,y) to_power (n + 1)) = ((x,y) to_power (n + 2))

        proof

          let x,y be Element of X;

          

           A2: ((x \ y) \ x) = ((x \ x) \ y) by BCIALG_1: 7

          .= (y ` ) by BCIALG_1:def 5

          .= ( 0. X) by BCIALG_1:def 8;

          

          then

           A3: ((((x,(x \ (x \ y))) to_power (n + 1)),((x \ y) \ x)) to_power (n + 1)) = ((((x,y) to_power (n + 1)),( 0. X)) to_power (n + 1)) by BCIALG_2: 8

          .= ((x,y) to_power (n + 1)) by BCIALG_2: 5;

          

           A4: (((((x \ y),((x \ y) \ x)) to_power (n + 1)),(x \ (x \ y))) to_power (n + 1)) = (((x \ y),(x \ (x \ y))) to_power (n + 1)) by A2, BCIALG_2: 5

          .= (((x,(x \ (x \ y))) to_power (n + 1)) \ y) by BCIALG_2: 7

          .= (((x,y) to_power (n + 1)) \ y) by BCIALG_2: 8

          .= ((x,y) to_power ((n + 1) + 1)) by BCIALG_2: 4;

          ( Polynom (n,(n + 1),x,(x \ y))) = ( Polynom (n,(n + 1),(x \ y),x)) by A1, Def3;

          hence thesis by A3, A4;

        end;

        hence thesis;

      end;

      assume

       A5: for x,y be Element of X holds ((x,y) to_power (n + 1)) = ((x,y) to_power (n + 2));

      for x,y be Element of X holds ( Polynom (n,(n + 1),x,y)) = ( Polynom (n,(n + 1),y,x))

      proof

        let x,y be Element of X;

        ((x \ y) \ (x \ y)) = ( 0. X) by BCIALG_1:def 5;

        then ((x \ (x \ y)) \ y) = ( 0. X) by BCIALG_1: 7;

        then (x \ (x \ y)) <= y;

        then (((x \ (x \ y)),(x \ y)) to_power (n + 1)) <= ((y,(x \ y)) to_power (n + 1)) by BCIALG_2: 19;

        then ((((x,(x \ y)) to_power 1),(x \ y)) to_power (n + 1)) <= ((y,(x \ y)) to_power (n + 1)) by BCIALG_2: 2;

        then

         A6: ((x,(x \ y)) to_power (1 + (n + 1))) <= ((y,(x \ y)) to_power (n + 1)) by BCIALG_2: 10;

        ((y \ x) \ (y \ x)) = ( 0. X) by BCIALG_1:def 5;

        then ((y \ (y \ x)) \ x) = ( 0. X) by BCIALG_1: 7;

        then (y \ (y \ x)) <= x;

        then (((y \ (y \ x)),(y \ x)) to_power (n + 1)) <= ((x,(y \ x)) to_power (n + 1)) by BCIALG_2: 19;

        then ((((y,(y \ x)) to_power 1),(y \ x)) to_power (n + 1)) <= ((x,(y \ x)) to_power (n + 1)) by BCIALG_2: 2;

        then

         A7: ((y,(y \ x)) to_power (1 + (n + 1))) <= ((x,(y \ x)) to_power (n + 1)) by BCIALG_2: 10;

        ((y,(y \ x)) to_power (n + 1)) = ((y,(y \ x)) to_power (n + 2)) by A5;

        then ((((y,(y \ x)) to_power (n + 1)),(x \ y)) to_power (n + 1)) <= ((((x,(y \ x)) to_power (n + 1)),(x \ y)) to_power (n + 1)) by A7, BCIALG_2: 19;

        then

         A8: ((((y,(y \ x)) to_power (n + 1)),(x \ y)) to_power (n + 1)) <= ((((x,(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) by BCIALG_2: 11;

        ((x,(x \ y)) to_power (n + 1)) = ((x,(x \ y)) to_power (n + 2)) by A5;

        then ((((x,(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) <= ((((y,(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) by A6, BCIALG_2: 19;

        then ((((x,(x \ y)) to_power (n + 1)),(y \ x)) to_power (n + 1)) <= ((((y,(y \ x)) to_power (n + 1)),(x \ y)) to_power (n + 1)) by BCIALG_2: 11;

        hence thesis by A8, Th2;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:54

    X is BCI-algebra of 0 , 1, 0 , 0 implies X is BCI-commutative BCI-algebra

    proof

      assume

       A1: X is BCI-algebra of 0 , 1, 0 , 0 ;

      for x,y be Element of X st (y \ x) = ( 0. X) holds y = (x \ (x \ y))

      proof

        let x,y be Element of X;

        ( Polynom ( 0 ,1,x,y)) = ( Polynom ( 0 , 0 ,y,x)) by A1, Def3;

        then (((x,(x \ y)) to_power 1) \ (y \ x)) = ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by BCIALG_2: 2;

        then ((x \ (x \ y)) \ (y \ x)) = ((((y,(y \ x)) to_power 1),(x \ y)) to_power 0 ) by BCIALG_2: 2;

        then

         A2: ((x \ (x \ y)) \ (y \ x)) = ((y,(y \ x)) to_power 1) by BCIALG_2: 1;

        assume (y \ x) = ( 0. X);

        then ((x \ (x \ y)) \ ( 0. X)) = (y \ ( 0. X)) by A2, BCIALG_2: 2;

        then y = ((x \ (x \ y)) \ ( 0. X)) by BCIALG_1: 2;

        hence thesis by BCIALG_1: 2;

      end;

      then for x,y be Element of X st (x \ y) = ( 0. X) holds x = (y \ (y \ x));

      hence thesis by BCIALG_3:def 4;

    end;

    theorem :: BCIALG_5:55

    X is BCI-algebra of n, 0 , m, m implies X is BCI-commutative BCI-algebra

    proof

      

       A1: for x,y be Element of X st (x \ y) = ( 0. X) holds ((y,(y \ x)) to_power (m + 1)) <= ((y,(y \ x)) to_power 1)

      proof

        let x,y be Element of X;

        defpred P[ Nat] means $1 <= m implies ((y,(y \ x)) to_power ($1 + 1)) <= ((y,(y \ x)) to_power 1);

        assume

         A2: (x \ y) = ( 0. X);

        now

          ((( 0. X),(y \ x)) to_power 1) = (((( 0. X),y) to_power 1) \ ((( 0. X),x) to_power 1)) by BCIALG_2: 18;

          then (( 0. X) \ (y \ x)) = (((( 0. X),y) to_power 1) \ ((( 0. X),x) to_power 1)) by BCIALG_2: 2;

          then

           A3: (( 0. X) \ (y \ x)) = ((( 0. X) \ y) \ ((( 0. X),x) to_power 1)) by BCIALG_2: 2;

          let k;

          assume

           A4: k <= m implies ((y,(y \ x)) to_power (k + 1)) <= ((y,(y \ x)) to_power 1);

          (((( 0. X) \ y) \ (( 0. X) \ x)) \ (x \ y)) = ( 0. X) by BCIALG_1: 1;

          then ((( 0. X) \ y) \ (( 0. X) \ x)) = ( 0. X) by A2, BCIALG_1: 2;

          then (( 0. X) \ (y \ x)) = ( 0. X) by A3, BCIALG_2: 2;

          then ((y \ y) \ (y \ x)) = ( 0. X) by BCIALG_1:def 5;

          then ((y \ (y \ x)) \ y) = ( 0. X) by BCIALG_1: 7;

          then (y \ (y \ x)) <= y;

          then (((y \ (y \ x)),(y \ x)) to_power (k + 1)) <= ((y,(y \ x)) to_power (k + 1)) by BCIALG_2: 19;

          then ((((y,(y \ x)) to_power 1),(y \ x)) to_power (k + 1)) <= ((y,(y \ x)) to_power (k + 1)) by BCIALG_2: 2;

          then

           A5: ((y,(y \ x)) to_power ((k + 1) + 1)) <= ((y,(y \ x)) to_power (k + 1)) by BCIALG_2: 10;

          set m1 = (k + 1);

          assume m1 <= m;

          hence ((y,(y \ x)) to_power (m1 + 1)) <= ((y,(y \ x)) to_power 1) by A4, A5, Th1, NAT_1: 13;

        end;

        then

         A6: for k st P[k] holds P[(k + 1)];

        (((y,(y \ x)) to_power ( 0 + 1)) \ ((y,(y \ x)) to_power 1)) = ( 0. X) by BCIALG_1:def 5;

        then

         A7: P[ 0 ] by BCIALG_1:def 11;

        for m holds P[m] from NAT_1:sch 2( A7, A6);

        hence thesis;

      end;

      assume

       A8: X is BCI-algebra of n, 0 , m, m;

      for x,y be Element of X st (x \ y) = ( 0. X) holds x = (y \ (y \ x))

      proof

        let x,y be Element of X;

        assume

         A9: (x \ y) = ( 0. X);

        ( Polynom (n, 0 ,x,y)) = ( Polynom (m,m,y,x)) by A8, Def3;

        then ((x,(y \ x)) to_power 0 ) = ((((y,(y \ x)) to_power (m + 1)),( 0. X)) to_power m) by A9, BCIALG_2: 5;

        then ((x,(y \ x)) to_power 0 ) = (((((y,(y \ x)) to_power (m + 1)),( 0. X)) to_power m) \ ( 0. X)) by BCIALG_1: 2;

        then ((x,(y \ x)) to_power 0 ) = ((((y,(y \ x)) to_power (m + 1)),( 0. X)) to_power (m + 1)) by BCIALG_2: 4;

        then ((x,(y \ x)) to_power 0 ) = ((y,(y \ x)) to_power (m + 1)) by BCIALG_2: 5;

        then x = ((y,(y \ x)) to_power (m + 1)) by BCIALG_2: 1;

        then x <= ((y,(y \ x)) to_power 1) by A1, A9;

        then

         A10: x <= (y \ (y \ x)) by BCIALG_2: 2;

        ((y \ (y \ x)) \ x) = ((y \ x) \ (y \ x)) by BCIALG_1: 7;

        then ((y \ (y \ x)) \ x) = ( 0. X) by BCIALG_1:def 5;

        then (y \ (y \ x)) <= x;

        hence thesis by A10, Th2;

      end;

      hence thesis by BCIALG_3:def 4;

    end;

    theorem :: BCIALG_5:56

    for X be BCK-algebra of i, j, m, n holds (j = 0 & m > 0 implies X is BCK-algebra of 0 , 0 , 0 , 0 )

    proof

      let X be BCK-algebra of i, j, m, n;

      assume that

       A1: j = 0 and

       A2: m > 0 ;

      for x,y be Element of X holds ( Polynom ( 0 , 0 ,x,y)) = ( Polynom ( 0 ,n,y,x))

      proof

        let x,y be Element of X;

        

         A3: ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) by Def3;

        

         A4: (i + 1) >= (j + 1) by A1, XREAL_1: 6;

        ((x,(x \ y)) to_power (j + 1)) = ((x,(x \ y)) to_power (m + 1)) & (j + 1) < (m + 1) by A1, A2, Th20, XREAL_1: 6;

        then ((x,(x \ y)) to_power (i + 1)) = ((x,(x \ y)) to_power ( 0 + 1)) by A1, A4, Th6;

        hence thesis by A1, A3, Th20;

      end;

      then

      reconsider X as BCK-algebra of 0 , 0 , 0 , n by Def3;

      

       A5: for x,y be Element of X holds ( Polynom ( 0 , 0 ,x,y)) <= ( Polynom ( 0 , 0 ,y,x))

      proof

        let x,y be Element of X;

        ( Polynom ( 0 , 0 ,x,y)) = ( Polynom ( 0 ,n,y,x)) by Def3;

        hence thesis by Th5;

      end;

      for x,y be Element of X holds ( Polynom ( 0 , 0 ,y,x)) = ( Polynom ( 0 , 0 ,x,y))

      proof

        let x,y be Element of X;

        ( Polynom ( 0 , 0 ,x,y)) <= ( Polynom ( 0 , 0 ,y,x)) by A5;

        then

         A6: (( Polynom ( 0 , 0 ,x,y)) \ ( Polynom ( 0 , 0 ,y,x))) = ( 0. X);

        ( Polynom ( 0 , 0 ,y,x)) <= ( Polynom ( 0 , 0 ,x,y)) by A5;

        then (( Polynom ( 0 , 0 ,y,x)) \ ( Polynom ( 0 , 0 ,x,y))) = ( 0. X);

        hence thesis by A6, BCIALG_1:def 7;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:57

    for X be BCK-algebra of i, j, m, n holds (m = 0 & j > 0 implies X is BCK-algebra of 0 , 1, 0 , 1)

    proof

      let X be BCK-algebra of i, j, m, n;

      reconsider X as BCK-algebra of (i + 1), j, m, (n + 1) by Th17;

      assume that

       A1: m = 0 and

       A2: j > 0 ;

      for x,y be Element of X holds ( Polynom ( 0 ,1,x,y)) = ( Polynom ( 0 ,1,y,x))

      proof

        let x,y be Element of X;

        

         A3: ((i + 1) + 1) > ((m + 1) + 0 ) by A1, XREAL_1: 8;

        

         A4: ((((x,(x \ y)) to_power ( 0 + 1)),(y \ x)) to_power (j + 1)) = ((((x,(x \ y)) to_power ( 0 + 1)),(y \ x)) to_power (m + 1)) by Th20;

        

         A5: (j + 1) > (m + 1) by A1, A2, XREAL_1: 6;

        (n + 1) >= (m + 1) & ((((y,(y \ x)) to_power ( 0 + 1)),(x \ y)) to_power (j + 1)) = ((((y,(y \ x)) to_power ( 0 + 1)),(x \ y)) to_power (m + 1)) by A1, Th20, XREAL_1: 6;

        then

         A6: ((((y,(y \ x)) to_power ( 0 + 1)),(x \ y)) to_power ( 0 + 1)) = ((((y,(y \ x)) to_power ( 0 + 1)),(x \ y)) to_power (n + 1)) by A1, A5, Th6;

        ( Polynom ((i + 1),j,x,y)) = ( Polynom (m,(n + 1),y,x)) & ((x,(x \ y)) to_power (j + 1)) = ((x,(x \ y)) to_power (m + 1)) by Def3, Th20;

        then ((((x,(x \ y)) to_power ( 0 + 1)),(y \ x)) to_power j) = ((((y,(y \ x)) to_power ( 0 + 1)),(x \ y)) to_power (n + 1)) by A1, A5, A3, Th6;

        hence thesis by A1, A5, A6, A4, Th6, NAT_1: 14;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:58

    for X be BCK-algebra of i, j, m, n holds (n = 0 & i <> 0 implies X is BCK-algebra of 0 , 0 , 0 , 0 )

    proof

      let X be BCK-algebra of i, j, m, n;

      assume that

       A1: n = 0 and

       A2: i <> 0 ;

      for x,y be Element of X holds ( Polynom ( 0 ,j,x,y)) = ( Polynom ( 0 , 0 ,y,x))

      proof

        let x,y be Element of X;

        

         A3: ( Polynom (i,j,x,y)) = ( Polynom (m,n,y,x)) by Def3;

        

         A4: (m + 1) >= (n + 1) by A1, XREAL_1: 6;

        ((y,(y \ x)) to_power (n + 1)) = ((y,(y \ x)) to_power (i + 1)) & (n + 1) < (i + 1) by A1, A2, Th19, XREAL_1: 6;

        then ((y,(y \ x)) to_power (m + 1)) = ((y,(y \ x)) to_power ( 0 + 1)) by A1, A4, Th6;

        hence thesis by A1, A3, Th19;

      end;

      then

      reconsider X as BCK-algebra of 0 , j, 0 , 0 by Def3;

      

       A5: for x,y be Element of X holds ( Polynom ( 0 , 0 ,y,x)) <= ( Polynom ( 0 , 0 ,x,y))

      proof

        let x,y be Element of X;

        ( Polynom ( 0 ,j,x,y)) = ( Polynom ( 0 , 0 ,y,x)) by Def3;

        hence thesis by Th5;

      end;

      for x,y be Element of X holds ( Polynom ( 0 , 0 ,y,x)) = ( Polynom ( 0 , 0 ,x,y))

      proof

        let x,y be Element of X;

        ( Polynom ( 0 , 0 ,x,y)) <= ( Polynom ( 0 , 0 ,y,x)) by A5;

        then

         A6: (( Polynom ( 0 , 0 ,x,y)) \ ( Polynom ( 0 , 0 ,y,x))) = ( 0. X);

        ( Polynom ( 0 , 0 ,y,x)) <= ( Polynom ( 0 , 0 ,x,y)) by A5;

        then (( Polynom ( 0 , 0 ,y,x)) \ ( Polynom ( 0 , 0 ,x,y))) = ( 0. X);

        hence thesis by A6, BCIALG_1:def 7;

      end;

      hence thesis by Def3;

    end;

    theorem :: BCIALG_5:59

    for X be BCK-algebra of i, j, m, n holds (i = 0 & n <> 0 implies X is BCK-algebra of 0 , 1, 0 , 1)

    proof

      let X be BCK-algebra of i, j, m, n;

      reconsider X as BCK-algebra of i, (j + 1), (m + 1), n by Th18;

      assume that

       A1: i = 0 and

       A2: n <> 0 ;

      for x,y be Element of X holds ( Polynom ( 0 ,1,x,y)) = ( Polynom ( 0 ,1,y,x))

      proof

        let x,y be Element of X;

        

         A3: ((m + 1) + 1) > ((i + 1) + 0 ) by A1, XREAL_1: 8;

        

         A4: ((((y,(y \ x)) to_power ( 0 + 1)),(x \ y)) to_power (i + 1)) = ((((y,(y \ x)) to_power ( 0 + 1)),(x \ y)) to_power (n + 1)) by Th19;

        

         A5: (n + 1) > (i + 1) by A1, A2, XREAL_1: 6;

        (j + 1) >= (i + 1) & ((((x,(x \ y)) to_power ( 0 + 1)),(y \ x)) to_power (n + 1)) = ((((x,(x \ y)) to_power ( 0 + 1)),(y \ x)) to_power (i + 1)) by A1, Th19, XREAL_1: 6;

        then

         A6: ((((x,(x \ y)) to_power ( 0 + 1)),(y \ x)) to_power ( 0 + 1)) = ((((x,(x \ y)) to_power ( 0 + 1)),(y \ x)) to_power (j + 1)) by A1, A5, Th6;

        ( Polynom (i,(j + 1),x,y)) = ( Polynom ((m + 1),n,y,x)) & ((y,(y \ x)) to_power (n + 1)) = ((y,(y \ x)) to_power (i + 1)) by Def3, Th19;

        then ((((x,(x \ y)) to_power ( 0 + 1)),(y \ x)) to_power (j + 1)) = ((((y,(y \ x)) to_power ( 0 + 1)),(x \ y)) to_power n) by A1, A5, A3, Th6;

        hence thesis by A1, A5, A6, A4, Th6, NAT_1: 14;

      end;

      hence thesis by Def3;

    end;