bvfunc14.miz



    begin

    reserve Y for non empty set,

G for Subset of ( PARTITIONS Y),

A,B,C,D,E,F for a_partition of Y;

    theorem :: BVFUNC14:1

    

     Th1: for z be Element of Y, PA,PB be a_partition of Y holds ( EqClass (z,(PA '/\' PB))) = (( EqClass (z,PA)) /\ ( EqClass (z,PB)))

    proof

      let z be Element of Y, PA,PB be a_partition of Y;

      

       A1: (( EqClass (z,PA)) /\ ( EqClass (z,PB))) c= ( EqClass (z,(PA '/\' PB)))

      proof

        set Z = ( EqClass (z,(PA '/\' PB)));

        let x be object;

        assume

         A2: x in (( EqClass (z,PA)) /\ ( EqClass (z,PB)));

        then

        reconsider x as Element of Y;

        

         A3: x in ( EqClass (x,PA)) by EQREL_1:def 6;

        x in ( EqClass (z,PA)) by A2, XBOOLE_0:def 4;

        then

         A4: ( EqClass (x,PA)) meets ( EqClass (z,PA)) by A3, XBOOLE_0: 3;

        

         A5: x in ( EqClass (x,PB)) by EQREL_1:def 6;

        (PA '/\' PB) = (( INTERSECTION (PA,PB)) \ { {} }) by PARTIT1:def 4;

        then Z in ( INTERSECTION (PA,PB)) by XBOOLE_0:def 5;

        then

        consider X,Y be set such that

         A6: X in PA and

         A7: Y in PB and

         A8: Z = (X /\ Y) by SETFAM_1:def 5;

        

         A9: z in (X /\ Y) by A8, EQREL_1:def 6;

        then z in ( EqClass (z,PB)) & z in Y by EQREL_1:def 6, XBOOLE_0:def 4;

        then Y meets ( EqClass (z,PB)) by XBOOLE_0: 3;

        then

         A10: Y = ( EqClass (z,PB)) by A7, EQREL_1:def 4;

        x in ( EqClass (z,PB)) by A2, XBOOLE_0:def 4;

        then

         A11: ( EqClass (x,PB)) meets ( EqClass (z,PB)) by A5, XBOOLE_0: 3;

        z in ( EqClass (z,PA)) & z in X by A9, EQREL_1:def 6, XBOOLE_0:def 4;

        then X meets ( EqClass (z,PA)) by XBOOLE_0: 3;

        then X = ( EqClass (z,PA)) by A6, EQREL_1:def 4;

        then

         A12: X = ( EqClass (x,PA)) by A4, EQREL_1: 41;

        x in (( EqClass (x,PA)) /\ ( EqClass (x,PB))) by A3, A5, XBOOLE_0:def 4;

        hence thesis by A11, A8, A10, A12, EQREL_1: 41;

      end;

      ( EqClass (z,(PA '/\' PB))) c= (( EqClass (z,PA)) /\ ( EqClass (z,PB)))

      proof

        let x be object;

        

         A13: ( EqClass (z,(PA '/\' PB))) c= ( EqClass (z,PA)) & ( EqClass (z,(PA '/\' PB))) c= ( EqClass (z,PB)) by BVFUNC11: 3;

        assume x in ( EqClass (z,(PA '/\' PB)));

        hence thesis by A13, XBOOLE_0:def 4;

      end;

      hence thesis by A1, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:2

    G = {A, B} & A <> B implies ( '/\' G) = (A '/\' B)

    proof

      assume that

       A1: G = {A, B} and

       A2: A <> B;

      

       A3: (A '/\' B) c= ( '/\' G)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A4: x in (A '/\' B);

        then

         A5: x <> {} by EQREL_1:def 4;

        x in (( INTERSECTION (A,B)) \ { {} }) by A4, PARTIT1:def 4;

        then

        consider a,b be set such that

         A6: a in A and

         A7: b in B and

         A8: x = (a /\ b) by SETFAM_1:def 5;

        set h0 = ((A,B) --> (a,b));

        

         A9: ( rng ((A,B) --> (a,b))) = {a, b} by A2, FUNCT_4: 64;

        ( rng h0) c= ( bool Y)

        proof

          let y be object;

          assume

           A10: y in ( rng h0);

          now

            per cases by A9, A10, TARSKI:def 2;

              case y = a;

              hence thesis by A6;

            end;

              case y = b;

              hence thesis by A7;

            end;

          end;

          hence thesis;

        end;

        then

        reconsider F = ( rng h0) as Subset-Family of Y;

        

         A11: xx c= ( Intersect F)

        proof

          let u be object;

          assume

           A12: u in xx;

          for y be set holds y in F implies u in y

          proof

            let y be set;

            assume

             A13: y in F;

            now

              per cases by A9, A13, TARSKI:def 2;

                case y = a;

                hence thesis by A8, A12, XBOOLE_0:def 4;

              end;

                case y = b;

                hence thesis by A8, A12, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          then u in ( meet F) by A9, SETFAM_1:def 1;

          hence thesis by A9, SETFAM_1:def 9;

        end;

        

         A14: for d be set st d in G holds (h0 . d) in d

        proof

          let d be set;

          assume

           A15: d in G;

          now

            per cases by A1, A15, TARSKI:def 2;

              case d = A;

              hence thesis by A2, A6, FUNCT_4: 63;

            end;

              case d = B;

              hence thesis by A7, FUNCT_4: 63;

            end;

          end;

          hence thesis;

        end;

        

         A16: ( rng h0) = {a, b} by A2, FUNCT_4: 64;

        ( Intersect F) c= xx

        proof

          let u be object;

          assume

           A17: u in ( Intersect F);

          

           A18: a in {a, b} by TARSKI:def 2;

          then a in F by A2, FUNCT_4: 64;

          then

           A19: ( Intersect F) = ( meet F) by SETFAM_1:def 9;

          b in {a, b} by TARSKI:def 2;

          then

           A20: u in b by A16, A17, A19, SETFAM_1:def 1;

          u in a by A16, A17, A18, A19, SETFAM_1:def 1;

          hence thesis by A8, A20, XBOOLE_0:def 4;

        end;

        then ( dom ((A,B) --> (a,b))) = {A, B} & x = ( Intersect F) by A11, FUNCT_4: 62, XBOOLE_0:def 10;

        hence thesis by A1, A14, A5, BVFUNC_2:def 1;

      end;

      ( '/\' G) c= (A '/\' B)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume x in ( '/\' G);

        then

        consider h be Function, F be Subset-Family of Y such that

         A21: ( dom h) = G and

         A22: ( rng h) = F and

         A23: for d be set st d in G holds (h . d) in d and

         A24: x = ( Intersect F) and

         A25: x <> {} by BVFUNC_2:def 1;

        

         A26: not x in { {} } by A25, TARSKI:def 1;

        A in ( dom h) by A1, A21, TARSKI:def 2;

        then

         A27: (h . A) in ( rng h) by FUNCT_1:def 3;

        

         A28: ((h . A) /\ (h . B)) c= xx

        proof

          let m be object;

          assume

           A29: m in ((h . A) /\ (h . B));

          

           A30: ( rng h) c= {(h . A), (h . B)}

          proof

            let u be object;

            assume u in ( rng h);

            then

            consider x1 be object such that

             A31: x1 in ( dom h) and

             A32: u = (h . x1) by FUNCT_1:def 3;

            now

              per cases by A1, A21, A31, TARSKI:def 2;

                case x1 = A;

                hence thesis by A32, TARSKI:def 2;

              end;

                case x1 = B;

                hence thesis by A32, TARSKI:def 2;

              end;

            end;

            hence thesis;

          end;

          for y be set holds y in ( rng h) implies m in y

          proof

            let y be set;

            assume

             A33: y in ( rng h);

            now

              per cases by A30, A33, TARSKI:def 2;

                case y = (h . A);

                hence thesis by A29, XBOOLE_0:def 4;

              end;

                case y = (h . B);

                hence thesis by A29, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          then m in ( meet ( rng h)) by A27, SETFAM_1:def 1;

          hence thesis by A22, A24, A27, SETFAM_1:def 9;

        end;

        B in G by A1, TARSKI:def 2;

        then

         A34: (h . B) in B by A23;

        A in G by A1, TARSKI:def 2;

        then

         A35: (h . A) in A by A23;

        B in ( dom h) by A1, A21, TARSKI:def 2;

        then

         A36: (h . B) in ( rng h) by FUNCT_1:def 3;

        xx c= ((h . A) /\ (h . B))

        proof

          let m be object;

          assume m in xx;

          then m in ( meet ( rng h)) by A22, A24, A27, SETFAM_1:def 9;

          then m in (h . A) & m in (h . B) by A27, A36, SETFAM_1:def 1;

          hence thesis by XBOOLE_0:def 4;

        end;

        then ((h . A) /\ (h . B)) = x by A28, XBOOLE_0:def 10;

        then x in ( INTERSECTION (A,B)) by A35, A34, SETFAM_1:def 5;

        then x in (( INTERSECTION (A,B)) \ { {} }) by A26, XBOOLE_0:def 5;

        hence thesis by PARTIT1:def 4;

      end;

      hence thesis by A3, XBOOLE_0:def 10;

    end;

    

     Lm1: for f be Function, C,D,c,d be object st C <> D holds (((f +* (C .--> c)) +* (D .--> d)) . C) = c

    proof

      let f be Function;

      let C,D,c,d be object;

      set h = ((f +* (C .--> c)) +* (D .--> d));

      assume C <> D;

      then not C in ( dom (D .--> d)) by TARSKI:def 1;

      then

       A2: (h . C) = ((f +* (C .--> c)) . C) by FUNCT_4: 11;

      C in ( dom (C .--> c)) by TARSKI:def 1;

      

      hence (h . C) = ((C .--> c) . C) by A2, FUNCT_4: 13

      .= c by FUNCOP_1: 72;

    end;

    

     Lm2: for B,C,D,b,c,d be object, h be Function st h = ((B,C,D) --> (b,c,d)) holds ( rng h) = {(h . B), (h . C), (h . D)}

    proof

      let B,C,D,b,c,d be object, h be Function;

      assume h = ((B,C,D) --> (b,c,d));

      then

       A1: ( dom h) = {B, C, D} by FUNCT_4: 128;

      then

       A2: B in ( dom h) by ENUMSET1:def 1;

      

       A3: ( rng h) c= {(h . B), (h . C), (h . D)}

      proof

        let t be object;

        assume t in ( rng h);

        then

        consider x1 be object such that

         A4: x1 in ( dom h) and

         A5: t = (h . x1) by FUNCT_1:def 3;

        now

          per cases by A1, A4, ENUMSET1:def 1;

            case x1 = D;

            hence thesis by A5, ENUMSET1:def 1;

          end;

            case x1 = B;

            hence thesis by A5, ENUMSET1:def 1;

          end;

            case x1 = C;

            hence thesis by A5, ENUMSET1:def 1;

          end;

        end;

        hence thesis;

      end;

      

       A6: C in ( dom h) by A1, ENUMSET1:def 1;

      

       A7: D in ( dom h) by A1, ENUMSET1:def 1;

       {(h . B), (h . C), (h . D)} c= ( rng h)

      proof

        let t be object;

        assume

         A8: t in {(h . B), (h . C), (h . D)};

        now

          per cases by A8, ENUMSET1:def 1;

            case t = (h . D);

            hence thesis by A7, FUNCT_1:def 3;

          end;

            case t = (h . B);

            hence thesis by A2, FUNCT_1:def 3;

          end;

            case t = (h . C);

            hence thesis by A6, FUNCT_1:def 3;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A3, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:3

    G = {B, C, D} & B <> C & C <> D & D <> B implies ( '/\' G) = ((B '/\' C) '/\' D)

    proof

      assume that

       A1: G = {B, C, D} and

       A2: B <> C and

       A3: C <> D and

       A4: D <> B;

      

       A5: ((B '/\' C) '/\' D) c= ( '/\' G)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A6: x in ((B '/\' C) '/\' D);

        then

         A7: x <> {} by EQREL_1:def 4;

        x in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A6, PARTIT1:def 4;

        then

        consider a,d be set such that

         A8: a in (B '/\' C) and

         A9: d in D and

         A10: x = (a /\ d) by SETFAM_1:def 5;

        a in (( INTERSECTION (B,C)) \ { {} }) by A8, PARTIT1:def 4;

        then

        consider b,c be set such that

         A11: b in B and

         A12: c in C and

         A13: a = (b /\ c) by SETFAM_1:def 5;

        set h = ((B,C,D) --> (b,c,d));

        

         A14: ( rng h) = {(h . B), (h . C), (h . D)} by Lm2

        .= {(h . D), (h . B), (h . C)} by ENUMSET1: 59;

        

         A15: (h . D) = d by FUNCT_7: 94;

        ( rng h) c= ( bool Y)

        proof

          let t be object;

          assume

           A16: t in ( rng h);

          now

            per cases by A14, A16, ENUMSET1:def 1;

              case t = (h . D);

              hence thesis by A9, A15;

            end;

              case t = (h . B);

              then t = b by A2, A4, FUNCT_4: 134;

              hence thesis by A11;

            end;

              case t = (h . C);

              then t = c by A3, Lm1;

              hence thesis by A12;

            end;

          end;

          hence thesis;

        end;

        then

        reconsider F = ( rng h) as Subset-Family of Y;

        

         A17: (h . C) = c by A3, Lm1;

        

         A18: for p be set st p in G holds (h . p) in p

        proof

          let p be set;

          assume

           A19: p in G;

          now

            per cases by A1, A19, ENUMSET1:def 1;

              case p = D;

              hence thesis by A9, FUNCT_7: 94;

            end;

              case p = B;

              hence thesis by A2, A4, A11, FUNCT_4: 134;

            end;

              case p = C;

              hence thesis by A3, A12, Lm1;

            end;

          end;

          hence thesis;

        end;

        

         A20: (h . B) = b by A2, A4, FUNCT_4: 134;

        

         A21: xx c= ( Intersect F)

        proof

          let u be object;

          assume

           A22: u in xx;

          for y be set holds y in F implies u in y

          proof

            let y be set;

            assume

             A23: y in F;

            now

              per cases by A14, A23, ENUMSET1:def 1;

                case y = (h . D);

                hence thesis by A10, A15, A22, XBOOLE_0:def 4;

              end;

                case

                 A24: y = (h . B);

                u in (b /\ (c /\ d)) by A10, A13, A22, XBOOLE_1: 16;

                hence thesis by A20, A24, XBOOLE_0:def 4;

              end;

                case

                 A25: y = (h . C);

                u in (c /\ (b /\ d)) by A10, A13, A22, XBOOLE_1: 16;

                hence thesis by A17, A25, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          then u in ( meet F) by A14, SETFAM_1:def 1;

          hence thesis by A14, SETFAM_1:def 9;

        end;

        

         A26: ( dom h) = {B, C, D} by FUNCT_4: 128;

        then D in ( dom h) by ENUMSET1:def 1;

        then

         A27: ( rng h) <> {} by FUNCT_1: 3;

        ( Intersect F) c= xx

        proof

          let t be object;

          assume t in ( Intersect F);

          then

           A28: t in ( meet ( rng h)) by A27, SETFAM_1:def 9;

          (h . C) in {(h . D), (h . B), (h . C)} by ENUMSET1:def 1;

          then t in (h . C) by A14, A28, SETFAM_1:def 1;

          then

           A29: t in c by A3, Lm1;

          (h . B) in {(h . D), (h . B), (h . C)} by ENUMSET1:def 1;

          then t in (h . B) by A14, A28, SETFAM_1:def 1;

          then t in b by A2, A4, FUNCT_4: 134;

          then

           A30: t in (b /\ c) by A29, XBOOLE_0:def 4;

          (h . D) in {(h . D), (h . B), (h . C)} by ENUMSET1:def 1;

          then t in (h . D) by A14, A28, SETFAM_1:def 1;

          hence thesis by A10, A13, A15, A30, XBOOLE_0:def 4;

        end;

        then x = ( Intersect F) by A21, XBOOLE_0:def 10;

        hence thesis by A1, A26, A18, A7, BVFUNC_2:def 1;

      end;

      ( '/\' G) c= ((B '/\' C) '/\' D)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume x in ( '/\' G);

        then

        consider h be Function, F be Subset-Family of Y such that

         A31: ( dom h) = G and

         A32: ( rng h) = F and

         A33: for d be set st d in G holds (h . d) in d and

         A34: x = ( Intersect F) and

         A35: x <> {} by BVFUNC_2:def 1;

        D in ( dom h) by A1, A31, ENUMSET1:def 1;

        then

         A36: (h . D) in ( rng h) by FUNCT_1:def 3;

        set m = ((h . B) /\ (h . C));

        B in ( dom h) by A1, A31, ENUMSET1:def 1;

        then

         A37: (h . B) in ( rng h) by FUNCT_1:def 3;

        C in ( dom h) by A1, A31, ENUMSET1:def 1;

        then

         A38: (h . C) in ( rng h) by FUNCT_1:def 3;

        

         A39: xx c= (((h . B) /\ (h . C)) /\ (h . D))

        proof

          let m be object;

          assume m in xx;

          then

           A40: m in ( meet ( rng h)) by A32, A34, A37, SETFAM_1:def 9;

          then m in (h . B) & m in (h . C) by A37, A38, SETFAM_1:def 1;

          then

           A41: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

          m in (h . D) by A36, A40, SETFAM_1:def 1;

          hence thesis by A41, XBOOLE_0:def 4;

        end;

        then m <> {} by A35;

        then

         A42: not m in { {} } by TARSKI:def 1;

        D in G by A1, ENUMSET1:def 1;

        then

         A43: (h . D) in D by A33;

        

         A44: not x in { {} } by A35, TARSKI:def 1;

        C in G by A1, ENUMSET1:def 1;

        then

         A45: (h . C) in C by A33;

        B in G by A1, ENUMSET1:def 1;

        then (h . B) in B by A33;

        then m in ( INTERSECTION (B,C)) by A45, SETFAM_1:def 5;

        then m in (( INTERSECTION (B,C)) \ { {} }) by A42, XBOOLE_0:def 5;

        then

         A46: m in (B '/\' C) by PARTIT1:def 4;

        (((h . B) /\ (h . C)) /\ (h . D)) c= xx

        proof

          let m be object;

          assume

           A47: m in (((h . B) /\ (h . C)) /\ (h . D));

          then

           A48: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

          

           A49: ( rng h) c= {(h . B), (h . C), (h . D)}

          proof

            let u be object;

            assume u in ( rng h);

            then

            consider x1 be object such that

             A50: x1 in ( dom h) and

             A51: u = (h . x1) by FUNCT_1:def 3;

            now

              per cases by A1, A31, A50, ENUMSET1:def 1;

                case x1 = B;

                hence thesis by A51, ENUMSET1:def 1;

              end;

                case x1 = C;

                hence thesis by A51, ENUMSET1:def 1;

              end;

                case x1 = D;

                hence thesis by A51, ENUMSET1:def 1;

              end;

            end;

            hence thesis;

          end;

          for y be set holds y in ( rng h) implies m in y

          proof

            let y be set;

            assume

             A52: y in ( rng h);

            now

              per cases by A49, A52, ENUMSET1:def 1;

                case y = (h . B);

                hence thesis by A48, XBOOLE_0:def 4;

              end;

                case y = (h . C);

                hence thesis by A48, XBOOLE_0:def 4;

              end;

                case y = (h . D);

                hence thesis by A47, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          then m in ( meet ( rng h)) by A37, SETFAM_1:def 1;

          hence thesis by A32, A34, A37, SETFAM_1:def 9;

        end;

        then (((h . B) /\ (h . C)) /\ (h . D)) = x by A39, XBOOLE_0:def 10;

        then x in ( INTERSECTION ((B '/\' C),D)) by A43, A46, SETFAM_1:def 5;

        then x in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A44, XBOOLE_0:def 5;

        hence thesis by PARTIT1:def 4;

      end;

      hence thesis by A5, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:4

    

     Th4: G = {A, B, C} & A <> B & C <> A implies ( CompF (A,G)) = (B '/\' C)

    proof

      assume that

       A1: G = {A, B, C} and

       A2: A <> B and

       A3: C <> A;

      per cases ;

        suppose

         A4: B = C;

        G = {B, C, A} by A1, ENUMSET1: 59

        .= {B, A} by A4, ENUMSET1: 30;

        

        hence ( CompF (A,G)) = B by A2, BVFUNC11: 7

        .= (B '/\' C) by A4, PARTIT1: 13;

      end;

        suppose

         A5: B <> C;

        

         A6: (G \ {A}) = (( {A} \/ {B, C}) \ {A}) by A1, ENUMSET1: 2

        .= (( {A} \ {A}) \/ ( {B, C} \ {A})) by XBOOLE_1: 42;

        ( not B in {A}) & not C in {A} by A2, A3, TARSKI:def 1;

        

        then

         A7: (G \ {A}) = (( {A} \ {A}) \/ {B, C}) by A6, ZFMISC_1: 63

        .= ( {} \/ {B, C}) by XBOOLE_1: 37

        .= {B, C};

        

         A8: ( '/\' (G \ {A})) c= (B '/\' C)

        proof

          let x be object;

          reconsider xx = x as set by TARSKI: 1;

          assume x in ( '/\' (G \ {A}));

          then

          consider h be Function, F be Subset-Family of Y such that

           A9: ( dom h) = (G \ {A}) and

           A10: ( rng h) = F and

           A11: for d be set st d in (G \ {A}) holds (h . d) in d and

           A12: x = ( Intersect F) and

           A13: x <> {} by BVFUNC_2:def 1;

          

           A14: not x in { {} } by A13, TARSKI:def 1;

          B in ( dom h) by A7, A9, TARSKI:def 2;

          then

           A15: (h . B) in ( rng h) by FUNCT_1:def 3;

          

           A16: ((h . B) /\ (h . C)) c= xx

          proof

            let m be object;

            assume

             A17: m in ((h . B) /\ (h . C));

            

             A18: ( rng h) c= {(h . B), (h . C)}

            proof

              let u be object;

              assume u in ( rng h);

              then

              consider x1 be object such that

               A19: x1 in ( dom h) and

               A20: u = (h . x1) by FUNCT_1:def 3;

              now

                per cases by A7, A9, A19, TARSKI:def 2;

                  case x1 = B;

                  hence thesis by A20, TARSKI:def 2;

                end;

                  case x1 = C;

                  hence thesis by A20, TARSKI:def 2;

                end;

              end;

              hence thesis;

            end;

            for y be set holds y in ( rng h) implies m in y

            proof

              let y be set;

              assume

               A21: y in ( rng h);

              now

                per cases by A18, A21, TARSKI:def 2;

                  case y = (h . B);

                  hence thesis by A17, XBOOLE_0:def 4;

                end;

                  case y = (h . C);

                  hence thesis by A17, XBOOLE_0:def 4;

                end;

              end;

              hence thesis;

            end;

            then m in ( meet ( rng h)) by A15, SETFAM_1:def 1;

            hence thesis by A10, A12, A15, SETFAM_1:def 9;

          end;

          C in (G \ {A}) by A7, TARSKI:def 2;

          then

           A22: (h . C) in C by A11;

          B in (G \ {A}) by A7, TARSKI:def 2;

          then

           A23: (h . B) in B by A11;

          C in ( dom h) by A7, A9, TARSKI:def 2;

          then

           A24: (h . C) in ( rng h) by FUNCT_1:def 3;

          xx c= ((h . B) /\ (h . C))

          proof

            let m be object;

            assume m in xx;

            then m in ( meet ( rng h)) by A10, A12, A15, SETFAM_1:def 9;

            then m in (h . B) & m in (h . C) by A15, A24, SETFAM_1:def 1;

            hence thesis by XBOOLE_0:def 4;

          end;

          then ((h . B) /\ (h . C)) = x by A16, XBOOLE_0:def 10;

          then x in ( INTERSECTION (B,C)) by A23, A22, SETFAM_1:def 5;

          then x in (( INTERSECTION (B,C)) \ { {} }) by A14, XBOOLE_0:def 5;

          hence thesis by PARTIT1:def 4;

        end;

        

         A25: (B '/\' C) c= ( '/\' (G \ {A}))

        proof

          let x be object;

          reconsider xx = x as set by TARSKI: 1;

          assume

           A26: x in (B '/\' C);

          then

           A27: x <> {} by EQREL_1:def 4;

          x in (( INTERSECTION (B,C)) \ { {} }) by A26, PARTIT1:def 4;

          then

          consider a,b be set such that

           A28: a in B and

           A29: b in C and

           A30: x = (a /\ b) by SETFAM_1:def 5;

          set h0 = ((B,C) --> (a,b));

          

           A31: ( dom h0) = (G \ {A}) by A7, FUNCT_4: 62;

          

           A32: ( rng h0) = {a, b} by A5, FUNCT_4: 64;

          ( rng h0) c= ( bool Y)

          proof

            let y be object;

            assume

             A33: y in ( rng h0);

            now

              per cases by A32, A33, TARSKI:def 2;

                case y = a;

                hence thesis by A28;

              end;

                case y = b;

                hence thesis by A29;

              end;

            end;

            hence thesis;

          end;

          then

          reconsider F = ( rng h0) as Subset-Family of Y;

          

           A34: xx c= ( Intersect F)

          proof

            let u be object;

            assume

             A35: u in xx;

            for y be set holds y in F implies u in y

            proof

              let y be set;

              assume

               A36: y in F;

              now

                per cases by A32, A36, TARSKI:def 2;

                  case y = a;

                  hence thesis by A30, A35, XBOOLE_0:def 4;

                end;

                  case y = b;

                  hence thesis by A30, A35, XBOOLE_0:def 4;

                end;

              end;

              hence thesis;

            end;

            then u in ( meet F) by A32, SETFAM_1:def 1;

            hence thesis by A32, SETFAM_1:def 9;

          end;

          

           A37: for d be set st d in (G \ {A}) holds (h0 . d) in d

          proof

            let d be set;

            assume

             A38: d in (G \ {A});

            now

              per cases by A7, A38, TARSKI:def 2;

                case d = B;

                hence thesis by A5, A28, FUNCT_4: 63;

              end;

                case d = C;

                hence thesis by A29, FUNCT_4: 63;

              end;

            end;

            hence thesis;

          end;

          ( Intersect F) c= xx

          proof

            let u be object;

            assume

             A39: u in ( Intersect F);

            

             A40: ( Intersect F) = ( meet F) by A32, SETFAM_1:def 9;

            b in F by A32, TARSKI:def 2;

            then

             A41: u in b by A39, A40, SETFAM_1:def 1;

            a in F by A32, TARSKI:def 2;

            then u in a by A39, A40, SETFAM_1:def 1;

            hence thesis by A30, A41, XBOOLE_0:def 4;

          end;

          then x = ( Intersect F) by A34, XBOOLE_0:def 10;

          hence thesis by A31, A37, A27, BVFUNC_2:def 1;

        end;

        ( CompF (A,G)) = ( '/\' (G \ {A})) by BVFUNC_2:def 7;

        hence thesis by A25, A8, XBOOLE_0:def 10;

      end;

    end;

    theorem :: BVFUNC14:5

    

     Th5: G = {A, B, C} & A <> B & B <> C implies ( CompF (B,G)) = (C '/\' A)

    proof

       {A, B, C} = {B, C, A} by ENUMSET1: 59;

      hence thesis by Th4;

    end;

    theorem :: BVFUNC14:6

    G = {A, B, C} & B <> C & C <> A implies ( CompF (C,G)) = (A '/\' B)

    proof

       {A, B, C} = {C, A, B} by ENUMSET1: 59;

      hence thesis by Th4;

    end;

    theorem :: BVFUNC14:7

    

     Th7: G = {A, B, C, D} & A <> B & A <> C & A <> D implies ( CompF (A,G)) = ((B '/\' C) '/\' D)

    proof

      assume that

       A1: G = {A, B, C, D} and

       A2: A <> B and

       A3: A <> C and

       A4: A <> D;

      per cases ;

        suppose

         A5: B = C;

        

        then G = {B, B, A, D} by A1, ENUMSET1: 71

        .= {B, A, D} by ENUMSET1: 31

        .= {A, B, D} by ENUMSET1: 58;

        

        hence ( CompF (A,G)) = (B '/\' D) by A2, A4, Th4

        .= ((B '/\' C) '/\' D) by A5, PARTIT1: 13;

      end;

        suppose

         A6: B = D;

        

        then G = {B, B, A, C} by A1, ENUMSET1: 69

        .= {B, A, C} by ENUMSET1: 31

        .= {A, B, C} by ENUMSET1: 58;

        

        hence ( CompF (A,G)) = (B '/\' C) by A2, A3, Th4

        .= ((B '/\' D) '/\' C) by A6, PARTIT1: 13

        .= ((B '/\' C) '/\' D) by PARTIT1: 14;

      end;

        suppose

         A7: C = D;

        

        then G = {C, C, A, B} by A1, ENUMSET1: 73

        .= {C, A, B} by ENUMSET1: 31

        .= {A, B, C} by ENUMSET1: 59;

        

        hence ( CompF (A,G)) = (B '/\' C) by A2, A3, Th4

        .= (B '/\' (C '/\' D)) by A7, PARTIT1: 13

        .= ((B '/\' C) '/\' D) by PARTIT1: 14;

      end;

        suppose

         A8: B <> C & B <> D & C <> D;

        (G \ {A}) = (( {A} \/ {B, C, D}) \ {A}) by A1, ENUMSET1: 4;

        then

         A9: (G \ {A}) = (( {A} \ {A}) \/ ( {B, C, D} \ {A})) by XBOOLE_1: 42;

        

         A10: not B in {A} by A2, TARSKI:def 1;

        

         A11: ( not C in {A}) & not D in {A} by A3, A4, TARSKI:def 1;

        ( {B, C, D} \ {A}) = (( {B} \/ {C, D}) \ {A}) by ENUMSET1: 2

        .= (( {B} \ {A}) \/ ( {C, D} \ {A})) by XBOOLE_1: 42

        .= (( {B} \ {A}) \/ {C, D}) by A11, ZFMISC_1: 63

        .= ( {B} \/ {C, D}) by A10, ZFMISC_1: 59

        .= {B, C, D} by ENUMSET1: 2;

        

        then

         A12: (G \ {A}) = ( {} \/ {B, C, D}) by A9, XBOOLE_1: 37

        .= {B, C, D};

        

         A13: ((B '/\' C) '/\' D) c= ( '/\' (G \ {A}))

        proof

          let x be object;

          reconsider xx = x as set by TARSKI: 1;

          assume

           A14: x in ((B '/\' C) '/\' D);

          then

           A15: x <> {} by EQREL_1:def 4;

          x in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A14, PARTIT1:def 4;

          then

          consider a,d be set such that

           A16: a in (B '/\' C) and

           A17: d in D and

           A18: x = (a /\ d) by SETFAM_1:def 5;

          a in (( INTERSECTION (B,C)) \ { {} }) by A16, PARTIT1:def 4;

          then

          consider b,c be set such that

           A19: b in B and

           A20: c in C and

           A21: a = (b /\ c) by SETFAM_1:def 5;

          set h = ((B,C,D) --> (b,c,d));

          

           A22: (h . D) = d by FUNCT_7: 94;

          

           A23: (h . C) = c by A8, Lm1;

          

           A24: ( rng h) = {(h . B), (h . C), (h . D)} by Lm2

          .= {(h . D), (h . B), (h . C)} by ENUMSET1: 59;

          

           A25: (h . B) = b by A8, FUNCT_4: 134;

          ( rng h) c= ( bool Y)

          proof

            let t be object;

            assume

             A26: t in ( rng h);

            now

              per cases by A24, A26, ENUMSET1:def 1;

                case t = (h . D);

                hence thesis by A17, A22;

              end;

                case t = (h . B);

                hence thesis by A19, A25;

              end;

                case t = (h . C);

                hence thesis by A20, A23;

              end;

            end;

            hence thesis;

          end;

          then

          reconsider F = ( rng h) as Subset-Family of Y;

          

           A27: xx c= ( Intersect F)

          proof

            let u be object;

            assume

             A28: u in xx;

            for y be set holds y in F implies u in y

            proof

              let y be set;

              assume

               A29: y in F;

              now

                per cases by A24, A29, ENUMSET1:def 1;

                  case y = (h . D);

                  hence thesis by A18, A22, A28, XBOOLE_0:def 4;

                end;

                  case

                   A30: y = (h . B);

                  u in (b /\ (c /\ d)) by A18, A21, A28, XBOOLE_1: 16;

                  hence thesis by A25, A30, XBOOLE_0:def 4;

                end;

                  case

                   A31: y = (h . C);

                  u in (c /\ (b /\ d)) by A18, A21, A28, XBOOLE_1: 16;

                  hence thesis by A23, A31, XBOOLE_0:def 4;

                end;

              end;

              hence thesis;

            end;

            then u in ( meet F) by A24, SETFAM_1:def 1;

            hence thesis by A24, SETFAM_1:def 9;

          end;

          

           A32: for p be set st p in (G \ {A}) holds (h . p) in p

          proof

            let p be set;

            assume

             A33: p in (G \ {A});

            now

              per cases by A12, A33, ENUMSET1:def 1;

                case p = D;

                hence thesis by A17, FUNCT_7: 94;

              end;

                case p = B;

                hence thesis by A8, A19, FUNCT_4: 134;

              end;

                case p = C;

                hence thesis by A8, A20, Lm1;

              end;

            end;

            hence thesis;

          end;

          

           A34: ( dom h) = {B, C, D} by FUNCT_4: 128;

          then D in ( dom h) by ENUMSET1:def 1;

          then

           A35: ( rng h) <> {} by FUNCT_1: 3;

          ( Intersect F) c= xx

          proof

            let t be object;

            assume t in ( Intersect F);

            then

             A36: t in ( meet ( rng h)) by A35, SETFAM_1:def 9;

            (h . D) in ( rng h) by A24, ENUMSET1:def 1;

            then

             A37: t in (h . D) by A36, SETFAM_1:def 1;

            (h . C) in ( rng h) by A24, ENUMSET1:def 1;

            then

             A38: t in (h . C) by A36, SETFAM_1:def 1;

            (h . B) in ( rng h) by A24, ENUMSET1:def 1;

            then t in (h . B) by A36, SETFAM_1:def 1;

            then t in (b /\ c) by A25, A23, A38, XBOOLE_0:def 4;

            hence thesis by A18, A21, A22, A37, XBOOLE_0:def 4;

          end;

          then x = ( Intersect F) by A27, XBOOLE_0:def 10;

          hence thesis by A12, A34, A32, A15, BVFUNC_2:def 1;

        end;

        ( '/\' (G \ {A})) c= ((B '/\' C) '/\' D)

        proof

          let x be object;

          reconsider xx = x as set by TARSKI: 1;

          assume x in ( '/\' (G \ {A}));

          then

          consider h be Function, F be Subset-Family of Y such that

           A39: ( dom h) = (G \ {A}) and

           A40: ( rng h) = F and

           A41: for d be set st d in (G \ {A}) holds (h . d) in d and

           A42: x = ( Intersect F) and

           A43: x <> {} by BVFUNC_2:def 1;

          D in ( dom h) by A12, A39, ENUMSET1:def 1;

          then

           A44: (h . D) in ( rng h) by FUNCT_1:def 3;

          set m = ((h . B) /\ (h . C));

          B in ( dom h) by A12, A39, ENUMSET1:def 1;

          then

           A45: (h . B) in ( rng h) by FUNCT_1:def 3;

          C in ( dom h) by A12, A39, ENUMSET1:def 1;

          then

           A46: (h . C) in ( rng h) by FUNCT_1:def 3;

          

           A47: xx c= (((h . B) /\ (h . C)) /\ (h . D))

          proof

            let m be object;

            assume m in xx;

            then

             A48: m in ( meet ( rng h)) by A40, A42, A45, SETFAM_1:def 9;

            then m in (h . B) & m in (h . C) by A45, A46, SETFAM_1:def 1;

            then

             A49: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

            m in (h . D) by A44, A48, SETFAM_1:def 1;

            hence thesis by A49, XBOOLE_0:def 4;

          end;

          then m <> {} by A43;

          then

           A50: not m in { {} } by TARSKI:def 1;

          D in (G \ {A}) by A12, ENUMSET1:def 1;

          then

           A51: (h . D) in D by A41;

          

           A52: not x in { {} } by A43, TARSKI:def 1;

          C in (G \ {A}) by A12, ENUMSET1:def 1;

          then

           A53: (h . C) in C by A41;

          B in (G \ {A}) by A12, ENUMSET1:def 1;

          then (h . B) in B by A41;

          then m in ( INTERSECTION (B,C)) by A53, SETFAM_1:def 5;

          then m in (( INTERSECTION (B,C)) \ { {} }) by A50, XBOOLE_0:def 5;

          then

           A54: m in (B '/\' C) by PARTIT1:def 4;

          (((h . B) /\ (h . C)) /\ (h . D)) c= xx

          proof

            let m be object;

            assume

             A55: m in (((h . B) /\ (h . C)) /\ (h . D));

            then

             A56: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

            

             A57: ( rng h) c= {(h . B), (h . C), (h . D)}

            proof

              let u be object;

              assume u in ( rng h);

              then

              consider x1 be object such that

               A58: x1 in ( dom h) and

               A59: u = (h . x1) by FUNCT_1:def 3;

              now

                per cases by A12, A39, A58, ENUMSET1:def 1;

                  case x1 = B;

                  hence thesis by A59, ENUMSET1:def 1;

                end;

                  case x1 = C;

                  hence thesis by A59, ENUMSET1:def 1;

                end;

                  case x1 = D;

                  hence thesis by A59, ENUMSET1:def 1;

                end;

              end;

              hence thesis;

            end;

            for y be set holds y in ( rng h) implies m in y

            proof

              let y be set;

              assume

               A60: y in ( rng h);

              now

                per cases by A57, A60, ENUMSET1:def 1;

                  case y = (h . B);

                  hence thesis by A56, XBOOLE_0:def 4;

                end;

                  case y = (h . C);

                  hence thesis by A56, XBOOLE_0:def 4;

                end;

                  case y = (h . D);

                  hence thesis by A55, XBOOLE_0:def 4;

                end;

              end;

              hence thesis;

            end;

            then m in ( meet ( rng h)) by A45, SETFAM_1:def 1;

            hence thesis by A40, A42, A45, SETFAM_1:def 9;

          end;

          then (((h . B) /\ (h . C)) /\ (h . D)) = x by A47, XBOOLE_0:def 10;

          then x in ( INTERSECTION ((B '/\' C),D)) by A51, A54, SETFAM_1:def 5;

          then x in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A52, XBOOLE_0:def 5;

          hence thesis by PARTIT1:def 4;

        end;

        then ( '/\' (G \ {A})) = ((B '/\' C) '/\' D) by A13, XBOOLE_0:def 10;

        hence thesis by BVFUNC_2:def 7;

      end;

    end;

    theorem :: BVFUNC14:8

    

     Th8: G = {A, B, C, D} & A <> B & B <> C & B <> D implies ( CompF (B,G)) = ((A '/\' C) '/\' D)

    proof

       {A, B, C, D} = {B, A, C, D} by ENUMSET1: 65;

      hence thesis by Th7;

    end;

    theorem :: BVFUNC14:9

    G = {A, B, C, D} & A <> C & B <> C & C <> D implies ( CompF (C,G)) = ((A '/\' B) '/\' D)

    proof

       {A, B, C, D} = {C, A, B, D} by ENUMSET1: 67;

      hence thesis by Th7;

    end;

    theorem :: BVFUNC14:10

    G = {A, B, C, D} & A <> D & B <> D & C <> D implies ( CompF (D,G)) = ((A '/\' C) '/\' B)

    proof

       {A, B, C, D} = {D, A, C, B} by ENUMSET1: 70;

      hence thesis by Th7;

    end;

    theorem :: BVFUNC14:11

    for B,C,D,b,c,d be object holds ( dom ((B,C,D) --> (b,c,d))) = {B, C, D} by FUNCT_4: 128;

    theorem :: BVFUNC14:12

    for f be Function, C,D,c,d be object st C <> D holds (((f +* (C .--> c)) +* (D .--> d)) . C) = c by Lm1;

    theorem :: BVFUNC14:13

    for B,C,D,b,c,d be object st B <> C & D <> B holds (((B,C,D) --> (b,c,d)) . B) = b by FUNCT_4: 134;

    theorem :: BVFUNC14:14

    for B,C,D,b,c,d be object, h be Function st h = ((B,C,D) --> (b,c,d)) holds ( rng h) = {(h . B), (h . C), (h . D)} by Lm2;

    theorem :: BVFUNC14:15

    

     Th15: for h be Function, A9,B9,C9,D9 be object st A <> B & A <> C & A <> D & B <> C & B <> D & C <> D & h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9)) holds (h . B) = B9 & (h . C) = C9 & (h . D) = D9

    proof

      let h be Function;

      let A9,B9,C9,D9 be object;

      assume that

       A1: A <> B and

       A2: A <> C and

       A3: A <> D and

       A4: B <> C and

       A5: B <> D and

       A6: C <> D and

       A7: h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9));

       not D in ( dom (A .--> A9)) by A3, TARSKI:def 1;

      then

       A9: (h . D) = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) . D) by A7, FUNCT_4: 11;

       not C in ( dom (A .--> A9)) by A2, TARSKI:def 1;

      then

       A10: (h . C) = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) . C) by A7, FUNCT_4: 11;

       not C in ( dom (D .--> D9)) by A6, TARSKI:def 1;

      then

       A12: (h . C) = (((B .--> B9) +* (C .--> C9)) . C) by A10, FUNCT_4: 11;

       not B in ( dom (A .--> A9)) by A1, TARSKI:def 1;

      then

       A13: (h . B) = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) . B) by A7, FUNCT_4: 11;

       not B in ( dom (D .--> D9)) by A5, TARSKI:def 1;

      then

       A14: (h . B) = (((B .--> B9) +* (C .--> C9)) . B) by A13, FUNCT_4: 11;

       not B in ( dom (C .--> C9)) by A4, TARSKI:def 1;

      then (h . B) = ((B .--> B9) . B) by A14, FUNCT_4: 11;

      hence (h . B) = B9 by FUNCOP_1: 72;

      C in ( dom (C .--> C9)) by TARSKI:def 1;

      then (h . C) = ((C .--> C9) . C) by A12, FUNCT_4: 13;

      hence (h . C) = C9 by FUNCOP_1: 72;

      D in ( dom (D .--> D9)) by TARSKI:def 1;

      then (h . D) = ((D .--> D9) . D) by A9, FUNCT_4: 13;

      hence thesis by FUNCOP_1: 72;

    end;

    theorem :: BVFUNC14:16

    

     Th16: for A,B,C,D be object, h be Function, A9,B9,C9,D9 be object st h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9)) holds ( dom h) = {A, B, C, D}

    proof

      let A,B,C,D be object;

      let h be Function;

      let A9,B9,C9,D9 be object;

      assume

       A1: h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9));

      ( dom ((B .--> B9) +* (C .--> C9))) = (( dom (B .--> B9)) \/ ( dom (C .--> C9))) by FUNCT_4:def 1;

      then

       A2: ( dom (((B .--> B9) +* (C .--> C9)) +* (D .--> D9))) = ((( dom (B .--> B9)) \/ ( dom (C .--> C9))) \/ ( dom (D .--> D9))) by FUNCT_4:def 1;

      ( dom ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9))) = ((( {B} \/ ( dom (C .--> C9))) \/ ( dom (D .--> D9))) \/ ( dom (A .--> A9))) by A2, FUNCT_4:def 1

      .= ((( {B} \/ {C}) \/ ( dom (D .--> D9))) \/ ( dom (A .--> A9)))

      .= ((( {B} \/ {C}) \/ {D}) \/ ( dom (A .--> A9)))

      .= ( {A} \/ (( {B} \/ {C}) \/ {D}))

      .= ( {A} \/ ( {B, C} \/ {D})) by ENUMSET1: 1

      .= ( {A} \/ {B, C, D}) by ENUMSET1: 3

      .= {A, B, C, D} by ENUMSET1: 4;

      hence thesis by A1;

    end;

    theorem :: BVFUNC14:17

    

     Th17: for h be Function, A9,B9,C9,D9 be object st G = {A, B, C, D} & h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9)) holds ( rng h) = {(h . A), (h . B), (h . C), (h . D)}

    proof

      let h be Function;

      let A9,B9,C9,D9 be object;

      assume that

       A1: G = {A, B, C, D} and

       A2: h = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (A .--> A9));

      

       A3: ( dom h) = G by A1, A2, Th16;

      then

       A4: B in ( dom h) by A1, ENUMSET1:def 2;

      

       A5: ( rng h) c= {(h . A), (h . B), (h . C), (h . D)}

      proof

        let t be object;

        assume t in ( rng h);

        then

        consider x1 be object such that

         A6: x1 in ( dom h) and

         A7: t = (h . x1) by FUNCT_1:def 3;

        now

          per cases by A1, A3, A6, ENUMSET1:def 2;

            case x1 = A;

            hence thesis by A7, ENUMSET1:def 2;

          end;

            case x1 = B;

            hence thesis by A7, ENUMSET1:def 2;

          end;

            case x1 = C;

            hence thesis by A7, ENUMSET1:def 2;

          end;

            case x1 = D;

            hence thesis by A7, ENUMSET1:def 2;

          end;

        end;

        hence thesis;

      end;

      

       A8: D in ( dom h) by A1, A3, ENUMSET1:def 2;

      

       A9: C in ( dom h) by A1, A3, ENUMSET1:def 2;

      

       A10: A in ( dom h) by A1, A3, ENUMSET1:def 2;

       {(h . A), (h . B), (h . C), (h . D)} c= ( rng h)

      proof

        let t be object;

        assume

         A11: t in {(h . A), (h . B), (h . C), (h . D)};

        per cases by A11, ENUMSET1:def 2;

          suppose t = (h . A);

          hence thesis by A10, FUNCT_1:def 3;

        end;

          suppose t = (h . B);

          hence thesis by A4, FUNCT_1:def 3;

        end;

          suppose t = (h . C);

          hence thesis by A9, FUNCT_1:def 3;

        end;

          suppose t = (h . D);

          hence thesis by A8, FUNCT_1:def 3;

        end;

      end;

      hence thesis by A5, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:18

    for z,u be Element of Y, h be Function st G is independent & G = {A, B, C, D} & A <> B & A <> C & A <> D & B <> C & B <> D & C <> D holds ( EqClass (u,((B '/\' C) '/\' D))) meets ( EqClass (z,A))

    proof

      let z,u be Element of Y;

      let h be Function;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D} and

       A3: A <> B & A <> C & A <> D & B <> C & B <> D & C <> D;

      set h = ((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (A .--> ( EqClass (z,A))));

      

       A4: (h . B) = ( EqClass (u,B)) by A3, Th15;

      

       A5: (h . D) = ( EqClass (u,D)) by A3, Th15;

      

       A6: (h . C) = ( EqClass (u,C)) by A3, Th15;

      

       A7: ( rng h) = {(h . A), (h . B), (h . C), (h . D)} by A2, Th17;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume

         A8: t in ( rng h);

        per cases by A7, A8, ENUMSET1:def 2;

          suppose t = (h . A);

          then t = ( EqClass (z,A)) by FUNCT_7: 94;

          hence thesis;

        end;

          suppose t = (h . B);

          hence thesis by A4;

        end;

          suppose t = (h . C);

          hence thesis by A6;

        end;

          suppose t = (h . D);

          hence thesis by A5;

        end;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A9: ( dom h) = G by A2, Th16;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume

         A10: d in G;

        per cases by A2, A10, ENUMSET1:def 2;

          suppose

           A11: d = A;

          (h . A) = ( EqClass (z,A)) by FUNCT_7: 94;

          hence thesis by A11;

        end;

          suppose

           A12: d = B;

          (h . B) = ( EqClass (u,B)) by A3, Th15;

          hence thesis by A12;

        end;

          suppose

           A13: d = C;

          (h . C) = ( EqClass (u,C)) by A3, Th15;

          hence thesis by A13;

        end;

          suppose

           A14: d = D;

          (h . D) = ( EqClass (u,D)) by A3, Th15;

          hence thesis by A14;

        end;

      end;

      then ( Intersect FF) <> {} by A1, A9, BVFUNC_2:def 5;

      then

      consider m be object such that

       A15: m in ( Intersect FF) by XBOOLE_0:def 1;

      A in ( dom h) by A2, A9, ENUMSET1:def 2;

      then

       A16: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A17: m in ( meet FF) by A15, SETFAM_1:def 9;

      D in ( dom h) by A2, A9, ENUMSET1:def 2;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then

       A18: m in (h . D) by A17, SETFAM_1:def 1;

      C in ( dom h) by A2, A9, ENUMSET1:def 2;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A19: m in (h . C) by A17, SETFAM_1:def 1;

      B in ( dom h) by A2, A9, ENUMSET1:def 2;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in (h . B) by A17, SETFAM_1:def 1;

      then m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A4, A6, A19, XBOOLE_0:def 4;

      then

       A20: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A5, A18, XBOOLE_0:def 4;

      (h . A) = ( EqClass (z,A)) & m in (h . A) by A16, A17, FUNCT_7: 94, SETFAM_1:def 1;

      then m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (z,A))) by A20, XBOOLE_0:def 4;

      then

       A21: ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) meets ( EqClass (z,A)) by XBOOLE_0: 4;

      ( EqClass (u,((B '/\' C) '/\' D))) = (( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) by Th1;

      hence thesis by A21, Th1;

    end;

    theorem :: BVFUNC14:19

    for z,u be Element of Y st G is independent & G = {A, B, C, D} & A <> B & A <> C & A <> D & B <> C & B <> D & C <> D & ( EqClass (z,(C '/\' D))) = ( EqClass (u,(C '/\' D))) holds ( EqClass (u,( CompF (A,G)))) meets ( EqClass (z,( CompF (B,G))))

    proof

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D} and

       A3: A <> B and

       A4: A <> C & A <> D and

       A5: B <> C & B <> D and

       A6: C <> D and

       A7: ( EqClass (z,(C '/\' D))) = ( EqClass (u,(C '/\' D)));

      set h = ((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (A .--> ( EqClass (z,A))));

      set H = ( EqClass (z,( CompF (B,G))));

      

       A8: (A '/\' (C '/\' D)) = ((A '/\' C) '/\' D) by PARTIT1: 14;

      

       A9: ( rng h) = {(h . A), (h . B), (h . C), (h . D)} by A2, Th17;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume

         A10: t in ( rng h);

        per cases by A9, A10, ENUMSET1:def 2;

          suppose t = (h . A);

          then t = ( EqClass (z,A)) by FUNCT_7: 94;

          hence thesis;

        end;

          suppose t = (h . B);

          then t = ( EqClass (u,B)) by A3, A4, A5, A6, Th15;

          hence thesis;

        end;

          suppose t = (h . C);

          then t = ( EqClass (u,C)) by A3, A4, A5, A6, Th15;

          hence thesis;

        end;

          suppose t = (h . D);

          then t = ( EqClass (u,D)) by A3, A4, A5, A6, Th15;

          hence thesis;

        end;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      set I = ( EqClass (z,A)), GG = ( EqClass (u,((B '/\' C) '/\' D)));

      

       A11: GG = (( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) by Th1;

      

       A12: for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume

         A13: d in G;

        per cases by A2, A13, ENUMSET1:def 2;

          suppose

           A14: d = A;

          (h . A) = ( EqClass (z,A)) by FUNCT_7: 94;

          hence thesis by A14;

        end;

          suppose

           A15: d = B;

          (h . B) = ( EqClass (u,B)) by A3, A4, A5, A6, Th15;

          hence thesis by A15;

        end;

          suppose

           A16: d = C;

          (h . C) = ( EqClass (u,C)) by A3, A4, A5, A6, Th15;

          hence thesis by A16;

        end;

          suppose

           A17: d = D;

          (h . D) = ( EqClass (u,D)) by A3, A4, A5, A6, Th15;

          hence thesis by A17;

        end;

      end;

      ( dom h) = G by A2, Th16;

      then ( Intersect FF) <> {} by A1, A12, BVFUNC_2:def 5;

      then

      consider m be object such that

       A18: m in ( Intersect FF) by XBOOLE_0:def 1;

      

       A19: ( dom h) = G by A2, Th16;

      then A in ( dom h) by A2, ENUMSET1:def 2;

      then

       A20: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A21: m in ( meet FF) by A18, SETFAM_1:def 9;

      then

       A22: (h . A) = ( EqClass (z,A)) & m in (h . A) by A20, FUNCT_7: 94, SETFAM_1:def 1;

      D in ( dom h) by A2, A19, ENUMSET1:def 2;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then

       A23: m in (h . D) by A21, SETFAM_1:def 1;

      C in ( dom h) by A2, A19, ENUMSET1:def 2;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A24: m in (h . C) by A21, SETFAM_1:def 1;

      B in ( dom h) by A2, A19, ENUMSET1:def 2;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then

       A25: m in (h . B) by A21, SETFAM_1:def 1;

      (h . B) = ( EqClass (u,B)) & (h . C) = ( EqClass (u,C)) by A3, A4, A5, A6, Th15;

      then

       A26: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A25, A24, XBOOLE_0:def 4;

      (h . D) = ( EqClass (u,D)) by A3, A4, A5, A6, Th15;

      then m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A23, A26, XBOOLE_0:def 4;

      then m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (z,A))) by A22, XBOOLE_0:def 4;

      then (GG /\ I) <> {} by A11, Th1;

      then

      consider p be object such that

       A27: p in (GG /\ I) by XBOOLE_0:def 1;

      reconsider p as Element of Y by A27;

      set K = ( EqClass (p,(C '/\' D)));

      

       A28: p in GG by A27, XBOOLE_0:def 4;

      set L = ( EqClass (z,(C '/\' D)));

      

       A29: z in I by EQREL_1:def 6;

      GG = ( EqClass (u,(B '/\' (C '/\' D)))) by PARTIT1: 14;

      then

       A30: GG c= ( EqClass (u,(C '/\' D))) by BVFUNC11: 3;

      p in ( EqClass (p,(C '/\' D))) by EQREL_1:def 6;

      then K meets L by A7, A30, A28, XBOOLE_0: 3;

      then K = L by EQREL_1: 41;

      then z in K by EQREL_1:def 6;

      then

       A31: z in (I /\ K) by A29, XBOOLE_0:def 4;

      

       A32: p in K & p in I by A27, EQREL_1:def 6, XBOOLE_0:def 4;

      then p in (I /\ K) by XBOOLE_0:def 4;

      then (I /\ K) in ( INTERSECTION (A,(C '/\' D))) & not (I /\ K) in { {} } by SETFAM_1:def 5, TARSKI:def 1;

      then

       A33: (I /\ K) in (( INTERSECTION (A,(C '/\' D))) \ { {} }) by XBOOLE_0:def 5;

      ( CompF (B,G)) = ((A '/\' C) '/\' D) by A2, A3, A5, Th8;

      then (I /\ K) in ( CompF (B,G)) by A33, A8, PARTIT1:def 4;

      then

       A34: (I /\ K) = H or (I /\ K) misses H by EQREL_1:def 4;

      z in H by EQREL_1:def 6;

      then p in H by A32, A31, A34, XBOOLE_0: 3, XBOOLE_0:def 4;

      then p in (GG /\ H) by A28, XBOOLE_0:def 4;

      then GG meets H by XBOOLE_0: 4;

      hence thesis by A2, A3, A4, Th7;

    end;

    theorem :: BVFUNC14:20

    for z,u be Element of Y st G is independent & G = {A, B, C} & A <> B & B <> C & C <> A & ( EqClass (z,C)) = ( EqClass (u,C)) holds ( EqClass (u,( CompF (A,G)))) meets ( EqClass (z,( CompF (B,G))))

    proof

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C} and

       A3: A <> B and

       A4: B <> C and

       A5: C <> A and

       A6: ( EqClass (z,C)) = ( EqClass (u,C));

      set h = (((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (A .--> ( EqClass (z,A))));

      A in ( dom (A .--> ( EqClass (z,A)))) by TARSKI:def 1;

      then (h . A) = ((A .--> ( EqClass (z,A))) . A) by FUNCT_4: 13;

      then

       A8: (h . A) = ( EqClass (z,A)) by FUNCOP_1: 72;

      set H = ( EqClass (z,( CompF (B,G)))), I = ( EqClass (z,A)), GG = ( EqClass (u,(B '/\' C)));

      

       A9: (GG /\ I) = ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (z,A))) by Th1;

      ( dom ((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C))))) = (( dom (B .--> ( EqClass (u,B)))) \/ ( dom (C .--> ( EqClass (u,C))))) by FUNCT_4:def 1;

      then

       A10: ( dom (((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (A .--> ( EqClass (z,A))))) = ((( dom (B .--> ( EqClass (u,B)))) \/ ( dom (C .--> ( EqClass (u,C))))) \/ ( dom (A .--> ( EqClass (z,A))))) by FUNCT_4:def 1;

      

       A12: C in ( dom (C .--> ( EqClass (u,C)))) by TARSKI:def 1;

       not B in ( dom (A .--> ( EqClass (z,A)))) by A3, TARSKI:def 1;

      then

       A13: (h . B) = (((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) . B) by FUNCT_4: 11;

       not B in ( dom (C .--> ( EqClass (u,C)))) by A4, TARSKI:def 1;

      then (h . B) = ((B .--> ( EqClass (u,B))) . B) by A13, FUNCT_4: 11;

      then

       A14: (h . B) = ( EqClass (u,B)) by FUNCOP_1: 72;

       not C in ( dom (A .--> ( EqClass (z,A)))) by A5, TARSKI:def 1;

      then (h . C) = (((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) . C) by FUNCT_4: 11;

      then (h . C) = ((C .--> ( EqClass (u,C))) . C) by A12, FUNCT_4: 13;

      then

       A15: (h . C) = ( EqClass (u,C)) by FUNCOP_1: 72;

      

       A16: ( dom (((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (A .--> ( EqClass (z,A))))) = (( {A} \/ {B}) \/ {C}) by A10, XBOOLE_1: 4

      .= ( {A, B} \/ {C}) by ENUMSET1: 1

      .= {A, B, C} by ENUMSET1: 3;

      

       A17: ( rng h) c= {(h . A), (h . B), (h . C)}

      proof

        let t be object;

        assume t in ( rng h);

        then

        consider x1 be object such that

         A18: x1 in ( dom h) and

         A19: t = (h . x1) by FUNCT_1:def 3;

        now

          per cases by A16, A18, ENUMSET1:def 1;

            case x1 = A;

            hence thesis by A19, ENUMSET1:def 1;

          end;

            case x1 = B;

            hence thesis by A19, ENUMSET1:def 1;

          end;

            case x1 = C;

            hence thesis by A19, ENUMSET1:def 1;

          end;

        end;

        hence thesis;

      end;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume

         A20: t in ( rng h);

        now

          per cases by A17, A20, ENUMSET1:def 1;

            case t = (h . A);

            hence thesis by A8;

          end;

            case t = (h . B);

            hence thesis by A14;

          end;

            case t = (h . C);

            hence thesis by A15;

          end;

        end;

        hence thesis;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A21: z in H by EQREL_1:def 6;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume

         A22: d in G;

        now

          per cases by A2, A22, ENUMSET1:def 1;

            case d = A;

            hence thesis by A8;

          end;

            case d = B;

            hence thesis by A14;

          end;

            case d = C;

            hence thesis by A15;

          end;

        end;

        hence thesis;

      end;

      then ( Intersect FF) <> {} by A1, A2, A16, BVFUNC_2:def 5;

      then

      consider m be object such that

       A23: m in ( Intersect FF) by XBOOLE_0:def 1;

      A in ( dom h) by A16, ENUMSET1:def 1;

      then

       A24: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A25: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      C in ( dom h) by A16, ENUMSET1:def 1;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A26: m in (h . C) by A25, A23, SETFAM_1:def 1;

      B in ( dom h) by A16, ENUMSET1:def 1;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in (h . B) by A25, A23, SETFAM_1:def 1;

      then

       A27: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A14, A15, A26, XBOOLE_0:def 4;

      m in (h . A) by A24, A25, A23, SETFAM_1:def 1;

      then (GG /\ I) <> {} by A8, A9, A27, XBOOLE_0:def 4;

      then

      consider p be object such that

       A28: p in (GG /\ I) by XBOOLE_0:def 1;

      reconsider p as Element of Y by A28;

      set K = ( EqClass (p,C));

      

       A29: (I /\ K) in ( INTERSECTION (A,C)) by SETFAM_1:def 5;

      set L = ( EqClass (z,C));

      

       A30: p in ( EqClass (p,C)) by EQREL_1:def 6;

      

       A31: p in GG by A28, XBOOLE_0:def 4;

      p in K & p in I by A28, EQREL_1:def 6, XBOOLE_0:def 4;

      then

       A32: p in (I /\ K) by XBOOLE_0:def 4;

      then not (I /\ K) in { {} } by TARSKI:def 1;

      then (I /\ K) in (( INTERSECTION (A,C)) \ { {} }) by A29, XBOOLE_0:def 5;

      then

       A33: (I /\ K) in (A '/\' C) by PARTIT1:def 4;

      GG c= L by A6, BVFUNC11: 3;

      then K meets L by A31, A30, XBOOLE_0: 3;

      then K = L by EQREL_1: 41;

      then

       A34: z in K by EQREL_1:def 6;

      z in I by EQREL_1:def 6;

      then

       A35: z in (I /\ K) by A34, XBOOLE_0:def 4;

      ( CompF (B,G)) = (A '/\' C) by A2, A3, A4, Th5;

      then

       A36: (I /\ K) = H or (I /\ K) misses H by A33, EQREL_1:def 4;

      GG = ( EqClass (u,( CompF (A,G)))) by A2, A3, A5, Th4;

      hence thesis by A32, A31, A35, A21, A36, XBOOLE_0: 3;

    end;

    theorem :: BVFUNC14:21

    

     Th21: G = {A, B, C, D, E} & A <> B & A <> C & A <> D & A <> E implies ( CompF (A,G)) = (((B '/\' C) '/\' D) '/\' E)

    proof

      assume that

       A1: G = {A, B, C, D, E} and

       A2: A <> B and

       A3: A <> C and

       A4: A <> D and

       A5: A <> E;

      per cases ;

        suppose

         A6: B = C;

        

        then G = ( {A, B, B, D} \/ {E}) by A1, ENUMSET1: 10

        .= ( {B, B, A, D} \/ {E}) by ENUMSET1: 67

        .= {B, B, A, D, E} by ENUMSET1: 10

        .= {B, A, D, E} by ENUMSET1: 32

        .= {A, B, D, E} by ENUMSET1: 65;

        

        hence ( CompF (A,G)) = ((B '/\' D) '/\' E) by A2, A4, A5, Th7

        .= (((B '/\' C) '/\' D) '/\' E) by A6, PARTIT1: 13;

      end;

        suppose

         A7: B = D;

        

        then G = ( {A, B, C, B} \/ {E}) by A1, ENUMSET1: 10

        .= ( {B, B, A, C} \/ {E}) by ENUMSET1: 69

        .= {B, B, A, C, E} by ENUMSET1: 10

        .= {B, A, C, E} by ENUMSET1: 32

        .= {A, B, C, E} by ENUMSET1: 65;

        

        hence ( CompF (A,G)) = ((B '/\' C) '/\' E) by A2, A3, A5, Th7

        .= (((B '/\' D) '/\' C) '/\' E) by A7, PARTIT1: 13

        .= (((B '/\' C) '/\' D) '/\' E) by PARTIT1: 14;

      end;

        suppose

         A8: B = E;

        

        then G = ( {A} \/ {B, C, D, B}) by A1, ENUMSET1: 7

        .= ( {A} \/ {B, B, C, D}) by ENUMSET1: 63

        .= ( {A} \/ {B, C, D}) by ENUMSET1: 31

        .= {A, B, C, D} by ENUMSET1: 4;

        

        hence ( CompF (A,G)) = ((B '/\' C) '/\' D) by A2, A3, A4, Th7

        .= (((B '/\' E) '/\' C) '/\' D) by A8, PARTIT1: 13

        .= ((B '/\' E) '/\' (C '/\' D)) by PARTIT1: 14

        .= ((B '/\' (C '/\' D)) '/\' E) by PARTIT1: 14

        .= (((B '/\' C) '/\' D) '/\' E) by PARTIT1: 14;

      end;

        suppose

         A9: C = D;

        

        then G = ( {A, B, C, C} \/ {E}) by A1, ENUMSET1: 10

        .= ( {C, C, A, B} \/ {E}) by ENUMSET1: 73

        .= ( {C, A, B} \/ {E}) by ENUMSET1: 31

        .= {C, A, B, E} by ENUMSET1: 6

        .= {A, B, C, E} by ENUMSET1: 67;

        

        hence ( CompF (A,G)) = ((B '/\' C) '/\' E) by A2, A3, A5, Th7

        .= ((B '/\' (C '/\' D)) '/\' E) by A9, PARTIT1: 13

        .= (((B '/\' C) '/\' D) '/\' E) by PARTIT1: 14;

      end;

        suppose

         A10: C = E;

        

        then G = ( {A} \/ {B, C, D, C}) by A1, ENUMSET1: 7

        .= ( {A} \/ {C, C, B, D}) by ENUMSET1: 72

        .= ( {A} \/ {C, B, D}) by ENUMSET1: 31

        .= {A, C, B, D} by ENUMSET1: 4

        .= {A, B, C, D} by ENUMSET1: 62;

        

        hence ( CompF (A,G)) = ((B '/\' C) '/\' D) by A2, A3, A4, Th7

        .= ((B '/\' (C '/\' E)) '/\' D) by A10, PARTIT1: 13

        .= (B '/\' ((C '/\' E) '/\' D)) by PARTIT1: 14

        .= (B '/\' ((C '/\' D) '/\' E)) by PARTIT1: 14

        .= ((B '/\' (C '/\' D)) '/\' E) by PARTIT1: 14

        .= (((B '/\' C) '/\' D) '/\' E) by PARTIT1: 14;

      end;

        suppose

         A11: D = E;

        

        then G = ( {A} \/ {B, C, D, D}) by A1, ENUMSET1: 7

        .= ( {A} \/ {D, D, B, C}) by ENUMSET1: 73

        .= ( {A} \/ {D, B, C}) by ENUMSET1: 31

        .= {A, D, B, C} by ENUMSET1: 4

        .= {A, B, C, D} by ENUMSET1: 63;

        

        hence ( CompF (A,G)) = ((B '/\' C) '/\' D) by A2, A3, A4, Th7

        .= ((B '/\' C) '/\' (D '/\' E)) by A11, PARTIT1: 13

        .= (B '/\' (C '/\' (D '/\' E))) by PARTIT1: 14

        .= (B '/\' ((C '/\' D) '/\' E)) by PARTIT1: 14

        .= ((B '/\' (C '/\' D)) '/\' E) by PARTIT1: 14

        .= (((B '/\' C) '/\' D) '/\' E) by PARTIT1: 14;

      end;

        suppose

         A12: B <> C & B <> D & B <> E & C <> D & C <> E & D <> E;

        

         A13: ( not D in {A}) & not E in {A} by A4, A5, TARSKI:def 1;

        

         A14: not B in {A} by A2, TARSKI:def 1;

        (G \ {A}) = (( {A} \/ {B, C, D, E}) \ {A}) by A1, ENUMSET1: 7;

        then

         A15: (G \ {A}) = (( {A} \ {A}) \/ ( {B, C, D, E} \ {A})) by XBOOLE_1: 42;

        

         A16: not C in {A} by A3, TARSKI:def 1;

        A in {A} by TARSKI:def 1;

        then

         A17: ( {A} \ {A}) = {} by ZFMISC_1: 60;

        ( {B, C, D, E} \ {A}) = (( {B} \/ {C, D, E}) \ {A}) by ENUMSET1: 4

        .= (( {B} \ {A}) \/ ( {C, D, E} \ {A})) by XBOOLE_1: 42

        .= ( {B} \/ ( {C, D, E} \ {A})) by A14, ZFMISC_1: 59

        .= ( {B} \/ (( {C} \/ {D, E}) \ {A})) by ENUMSET1: 2

        .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \ {A}))) by XBOOLE_1: 42

        .= ( {B} \/ (( {C} \ {A}) \/ {D, E})) by A13, ZFMISC_1: 63

        .= ( {B} \/ ( {C} \/ {D, E})) by A16, ZFMISC_1: 59

        .= ( {B} \/ {C, D, E}) by ENUMSET1: 2;

        then

         A18: (G \ {A}) = (( {A} \ {A}) \/ {B, C, D, E}) by A15, ENUMSET1: 4;

        

         A19: (((B '/\' C) '/\' D) '/\' E) c= ( '/\' (G \ {A}))

        proof

          let x be object;

          reconsider xx = x as set by TARSKI: 1;

          assume

           A20: x in (((B '/\' C) '/\' D) '/\' E);

          then

           A21: x <> {} by EQREL_1:def 4;

          x in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A20, PARTIT1:def 4;

          then

          consider bcd,e be set such that

           A22: bcd in ((B '/\' C) '/\' D) and

           A23: e in E and

           A24: x = (bcd /\ e) by SETFAM_1:def 5;

          bcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A22, PARTIT1:def 4;

          then

          consider bc,d be set such that

           A25: bc in (B '/\' C) and

           A26: d in D and

           A27: bcd = (bc /\ d) by SETFAM_1:def 5;

          bc in (( INTERSECTION (B,C)) \ { {} }) by A25, PARTIT1:def 4;

          then

          consider b,c be set such that

           A28: b in B and

           A29: c in C and

           A30: bc = (b /\ c) by SETFAM_1:def 5;

          set h = ((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e));

          

           A32: C in ( dom (C .--> c)) by TARSKI:def 1;

          

           A34: D in ( dom (D .--> d)) by TARSKI:def 1;

          

           A35: not C in ( dom (D .--> d)) by A12, TARSKI:def 1;

          E in ( dom (E .--> e)) by TARSKI:def 1;

          then

           A37: (h . E) = ((E .--> e) . E) by FUNCT_4: 13;

          then

           A38: (h . E) = e by FUNCOP_1: 72;

           not C in ( dom (E .--> e)) by A12, TARSKI:def 1;

          then (h . C) = ((((B .--> b) +* (C .--> c)) +* (D .--> d)) . C) by FUNCT_4: 11;

          then (h . C) = (((B .--> b) +* (C .--> c)) . C) by A35, FUNCT_4: 11;

          then

           A39: (h . C) = ((C .--> c) . C) by A32, FUNCT_4: 13;

          then

           A40: (h . C) = c by FUNCOP_1: 72;

           not D in ( dom (E .--> e)) by A12, TARSKI:def 1;

          then (h . D) = ((((B .--> b) +* (C .--> c)) +* (D .--> d)) . D) by FUNCT_4: 11;

          then

           A41: (h . D) = ((D .--> d) . D) by A34, FUNCT_4: 13;

          then

           A42: (h . D) = d by FUNCOP_1: 72;

          

           A43: not B in ( dom (C .--> c)) by A12, TARSKI:def 1;

          

           A44: not B in ( dom (D .--> d)) by A12, TARSKI:def 1;

           not B in ( dom (E .--> e)) by A12, TARSKI:def 1;

          then (h . B) = ((((B .--> b) +* (C .--> c)) +* (D .--> d)) . B) by FUNCT_4: 11;

          then (h . B) = (((B .--> b) +* (C .--> c)) . B) by A44, FUNCT_4: 11;

          then

           A45: (h . B) = ((B .--> b) . B) by A43, FUNCT_4: 11;

          then

           A46: (h . B) = b by FUNCOP_1: 72;

          

           A47: for p be set st p in (G \ {A}) holds (h . p) in p

          proof

            let p be set;

            assume

             A48: p in (G \ {A});

            now

              per cases by A15, A17, A48, ENUMSET1:def 2;

                case p = D;

                hence thesis by A26, A41, FUNCOP_1: 72;

              end;

                case p = B;

                hence thesis by A28, A45, FUNCOP_1: 72;

              end;

                case p = C;

                hence thesis by A29, A39, FUNCOP_1: 72;

              end;

                case p = E;

                hence thesis by A23, A37, FUNCOP_1: 72;

              end;

            end;

            hence thesis;

          end;

          ( dom ((B .--> b) +* (C .--> c))) = (( dom (B .--> b)) \/ ( dom (C .--> c))) by FUNCT_4:def 1;

          then ( dom (((B .--> b) +* (C .--> c)) +* (D .--> d))) = ((( dom (B .--> b)) \/ ( dom (C .--> c))) \/ ( dom (D .--> d))) by FUNCT_4:def 1;

          then

           A49: ( dom ((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e))) = (((( dom (B .--> b)) \/ ( dom (C .--> c))) \/ ( dom (D .--> d))) \/ ( dom (E .--> e))) by FUNCT_4:def 1;

          

           A50: ( dom ((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e))) = ((( {B} \/ {C}) \/ {D}) \/ {E}) by A49

          .= (( {B, C} \/ {D}) \/ {E}) by ENUMSET1: 1

          .= ( {B, C, D} \/ {E}) by ENUMSET1: 3

          .= {B, C, D, E} by ENUMSET1: 6;

          then

           A51: D in ( dom h) by ENUMSET1:def 2;

          

           A52: ( rng h) c= {(h . D), (h . B), (h . C), (h . E)}

          proof

            let t be object;

            assume t in ( rng h);

            then

            consider x1 be object such that

             A53: x1 in ( dom h) and

             A54: t = (h . x1) by FUNCT_1:def 3;

            now

              per cases by A50, A53, ENUMSET1:def 2;

                case x1 = D;

                hence thesis by A54, ENUMSET1:def 2;

              end;

                case x1 = B;

                hence thesis by A54, ENUMSET1:def 2;

              end;

                case x1 = C;

                hence thesis by A54, ENUMSET1:def 2;

              end;

                case x1 = E;

                hence thesis by A54, ENUMSET1:def 2;

              end;

            end;

            hence thesis;

          end;

          ( rng h) c= ( bool Y)

          proof

            let t be object;

            assume

             A55: t in ( rng h);

            now

              per cases by A52, A55, ENUMSET1:def 2;

                case t = (h . D);

                hence thesis by A26, A42;

              end;

                case t = (h . B);

                hence thesis by A28, A46;

              end;

                case t = (h . C);

                hence thesis by A29, A40;

              end;

                case t = (h . E);

                hence thesis by A23, A38;

              end;

            end;

            hence thesis;

          end;

          then

          reconsider F = ( rng h) as Subset-Family of Y;

          

           A56: C in ( dom h) by A50, ENUMSET1:def 2;

          

           A57: E in ( dom h) by A50, ENUMSET1:def 2;

          

           A58: B in ( dom h) by A50, ENUMSET1:def 2;

          

           A59: {(h . D), (h . B), (h . C), (h . E)} c= ( rng h)

          proof

            let t be object;

            assume

             A60: t in {(h . D), (h . B), (h . C), (h . E)};

            now

              per cases by A60, ENUMSET1:def 2;

                case t = (h . D);

                hence thesis by A51, FUNCT_1:def 3;

              end;

                case t = (h . B);

                hence thesis by A58, FUNCT_1:def 3;

              end;

                case t = (h . C);

                hence thesis by A56, FUNCT_1:def 3;

              end;

                case t = (h . E);

                hence thesis by A57, FUNCT_1:def 3;

              end;

            end;

            hence thesis;

          end;

          then

           A61: {(h . D), (h . B), (h . C), (h . E)} = ( rng h) by A52, XBOOLE_0:def 10;

          reconsider h as Function;

          

           A62: xx c= ( Intersect F)

          proof

            let u be object;

            

             A63: (h . D) in {(h . D), (h . B), (h . C), (h . E)} by ENUMSET1:def 2;

            assume

             A64: u in xx;

            for y be set holds y in F implies u in y

            proof

              let y be set;

              assume

               A65: y in F;

              now

                per cases by A52, A65, ENUMSET1:def 2;

                  case

                   A66: y = (h . D);

                  u in (d /\ ((b /\ c) /\ e)) by A24, A27, A30, A64, XBOOLE_1: 16;

                  hence thesis by A42, A66, XBOOLE_0:def 4;

                end;

                  case

                   A67: y = (h . B);

                  u in ((c /\ (d /\ b)) /\ e) by A24, A27, A30, A64, XBOOLE_1: 16;

                  then u in (c /\ ((d /\ b) /\ e)) by XBOOLE_1: 16;

                  then u in (c /\ ((d /\ e) /\ b)) by XBOOLE_1: 16;

                  then u in ((c /\ (d /\ e)) /\ b) by XBOOLE_1: 16;

                  hence thesis by A46, A67, XBOOLE_0:def 4;

                end;

                  case

                   A68: y = (h . C);

                  u in ((c /\ (b /\ d)) /\ e) by A24, A27, A30, A64, XBOOLE_1: 16;

                  then u in (c /\ ((b /\ d) /\ e)) by XBOOLE_1: 16;

                  hence thesis by A40, A68, XBOOLE_0:def 4;

                end;

                  case y = (h . E);

                  hence thesis by A24, A38, A64, XBOOLE_0:def 4;

                end;

              end;

              hence thesis;

            end;

            then u in ( meet F) by A59, A63, SETFAM_1:def 1;

            hence thesis by A59, A63, SETFAM_1:def 9;

          end;

          

           A69: ( rng h) <> {} by A51, FUNCT_1: 3;

          ( Intersect F) c= xx

          proof

            let t be object;

            assume t in ( Intersect F);

            then

             A70: t in ( meet ( rng h)) by A69, SETFAM_1:def 9;

            (h . D) in ( rng h) by A61, ENUMSET1:def 2;

            then

             A71: t in (h . D) by A70, SETFAM_1:def 1;

            (h . C) in ( rng h) by A61, ENUMSET1:def 2;

            then

             A72: t in (h . C) by A70, SETFAM_1:def 1;

            (h . B) in ( rng h) by A61, ENUMSET1:def 2;

            then t in (h . B) by A70, SETFAM_1:def 1;

            then t in (b /\ c) by A46, A40, A72, XBOOLE_0:def 4;

            then

             A73: t in ((b /\ c) /\ d) by A42, A71, XBOOLE_0:def 4;

            (h . E) in ( rng h) by A61, ENUMSET1:def 2;

            then t in (h . E) by A70, SETFAM_1:def 1;

            hence thesis by A24, A27, A30, A38, A73, XBOOLE_0:def 4;

          end;

          then x = ( Intersect F) by A62, XBOOLE_0:def 10;

          hence thesis by A18, A17, A50, A47, A21, BVFUNC_2:def 1;

        end;

        ( '/\' (G \ {A})) c= (((B '/\' C) '/\' D) '/\' E)

        proof

          let x be object;

          reconsider xx = x as set by TARSKI: 1;

          assume x in ( '/\' (G \ {A}));

          then

          consider h be Function, F be Subset-Family of Y such that

           A74: ( dom h) = (G \ {A}) and

           A75: ( rng h) = F and

           A76: for d be set st d in (G \ {A}) holds (h . d) in d and

           A77: x = ( Intersect F) and

           A78: x <> {} by BVFUNC_2:def 1;

          D in ( dom h) by A18, A17, A74, ENUMSET1:def 2;

          then

           A79: (h . D) in ( rng h) by FUNCT_1:def 3;

          set mbc = ((h . B) /\ (h . C));

          

           A80: not x in { {} } by A78, TARSKI:def 1;

          E in (G \ {A}) by A18, A17, ENUMSET1:def 2;

          then

           A81: (h . E) in E by A76;

          D in (G \ {A}) by A18, A17, ENUMSET1:def 2;

          then

           A82: (h . D) in D by A76;

          C in (G \ {A}) by A18, A17, ENUMSET1:def 2;

          then

           A83: (h . C) in C by A76;

          E in ( dom h) by A18, A17, A74, ENUMSET1:def 2;

          then

           A84: (h . E) in ( rng h) by FUNCT_1:def 3;

          set mbcd = (((h . B) /\ (h . C)) /\ (h . D));

          B in ( dom h) by A18, A17, A74, ENUMSET1:def 2;

          then

           A85: (h . B) in ( rng h) by FUNCT_1:def 3;

          C in ( dom h) by A18, A17, A74, ENUMSET1:def 2;

          then

           A86: (h . C) in ( rng h) by FUNCT_1:def 3;

          

           A87: xx c= ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E))

          proof

            let m be object;

            assume m in xx;

            then

             A88: m in ( meet ( rng h)) by A75, A77, A85, SETFAM_1:def 9;

            then m in (h . B) & m in (h . C) by A85, A86, SETFAM_1:def 1;

            then

             A89: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

            m in (h . D) by A79, A88, SETFAM_1:def 1;

            then

             A90: m in (((h . B) /\ (h . C)) /\ (h . D)) by A89, XBOOLE_0:def 4;

            m in (h . E) by A84, A88, SETFAM_1:def 1;

            hence thesis by A90, XBOOLE_0:def 4;

          end;

          then mbcd <> {} by A78;

          then

           A91: not mbcd in { {} } by TARSKI:def 1;

          mbc <> {} by A78, A87;

          then

           A92: not mbc in { {} } by TARSKI:def 1;

          B in (G \ {A}) by A18, A17, ENUMSET1:def 2;

          then (h . B) in B by A76;

          then mbc in ( INTERSECTION (B,C)) by A83, SETFAM_1:def 5;

          then mbc in (( INTERSECTION (B,C)) \ { {} }) by A92, XBOOLE_0:def 5;

          then mbc in (B '/\' C) by PARTIT1:def 4;

          then mbcd in ( INTERSECTION ((B '/\' C),D)) by A82, SETFAM_1:def 5;

          then mbcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A91, XBOOLE_0:def 5;

          then

           A93: mbcd in ((B '/\' C) '/\' D) by PARTIT1:def 4;

          ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) c= xx

          proof

            let m be object;

            assume

             A94: m in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E));

            then

             A95: m in (((h . B) /\ (h . C)) /\ (h . D)) by XBOOLE_0:def 4;

            then

             A96: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

            

             A97: ( rng h) c= {(h . B), (h . C), (h . D), (h . E)}

            proof

              let u be object;

              assume u in ( rng h);

              then

              consider x1 be object such that

               A98: x1 in ( dom h) and

               A99: u = (h . x1) by FUNCT_1:def 3;

              now

                per cases by A15, A17, A74, A98, ENUMSET1:def 2;

                  case x1 = B;

                  hence thesis by A99, ENUMSET1:def 2;

                end;

                  case x1 = C;

                  hence thesis by A99, ENUMSET1:def 2;

                end;

                  case x1 = D;

                  hence thesis by A99, ENUMSET1:def 2;

                end;

                  case x1 = E;

                  hence thesis by A99, ENUMSET1:def 2;

                end;

              end;

              hence thesis;

            end;

            for y be set holds y in ( rng h) implies m in y

            proof

              let y be set;

              assume

               A100: y in ( rng h);

              now

                per cases by A97, A100, ENUMSET1:def 2;

                  case y = (h . B);

                  hence thesis by A96, XBOOLE_0:def 4;

                end;

                  case y = (h . C);

                  hence thesis by A96, XBOOLE_0:def 4;

                end;

                  case y = (h . D);

                  hence thesis by A95, XBOOLE_0:def 4;

                end;

                  case y = (h . E);

                  hence thesis by A94, XBOOLE_0:def 4;

                end;

              end;

              hence thesis;

            end;

            then m in ( meet ( rng h)) by A85, SETFAM_1:def 1;

            hence thesis by A75, A77, A85, SETFAM_1:def 9;

          end;

          then ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) = x by A87, XBOOLE_0:def 10;

          then x in ( INTERSECTION (((B '/\' C) '/\' D),E)) by A81, A93, SETFAM_1:def 5;

          then x in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A80, XBOOLE_0:def 5;

          hence thesis by PARTIT1:def 4;

        end;

        then ( '/\' (G \ {A})) = (((B '/\' C) '/\' D) '/\' E) by A19, XBOOLE_0:def 10;

        hence thesis by BVFUNC_2:def 7;

      end;

    end;

    theorem :: BVFUNC14:22

    

     Th22: G = {A, B, C, D, E} & A <> B & B <> C & B <> D & B <> E implies ( CompF (B,G)) = (((A '/\' C) '/\' D) '/\' E)

    proof

      assume that

       A1: G = {A, B, C, D, E} and

       A2: A <> B & B <> C & B <> D & B <> E;

       {A, B, C, D, E} = ( {A, B} \/ {C, D, E}) by ENUMSET1: 8;

      then G = {B, A, C, D, E} by A1, ENUMSET1: 8;

      hence thesis by A2, Th21;

    end;

    theorem :: BVFUNC14:23

    

     Th23: G = {A, B, C, D, E} & A <> C & B <> C & C <> D & C <> E implies ( CompF (C,G)) = (((A '/\' B) '/\' D) '/\' E)

    proof

      assume that

       A1: G = {A, B, C, D, E} and

       A2: A <> C & B <> C & C <> D & C <> E;

       {A, B, C, D, E} = ( {A, B, C} \/ {D, E}) by ENUMSET1: 9;

      then {A, B, C, D, E} = (( {A} \/ {B, C}) \/ {D, E}) by ENUMSET1: 2;

      then {A, B, C, D, E} = ( {A, C, B} \/ {D, E}) by ENUMSET1: 2;

      then {A, B, C, D, E} = (( {A, C} \/ {B}) \/ {D, E}) by ENUMSET1: 3;

      then {A, B, C, D, E} = ( {C, A, B} \/ {D, E}) by ENUMSET1: 3;

      then G = {C, A, B, D, E} by A1, ENUMSET1: 9;

      hence thesis by A2, Th21;

    end;

    theorem :: BVFUNC14:24

    

     Th24: G = {A, B, C, D, E} & A <> D & B <> D & C <> D & D <> E implies ( CompF (D,G)) = (((A '/\' B) '/\' C) '/\' E)

    proof

      assume that

       A1: G = {A, B, C, D, E} and

       A2: A <> D & B <> D & C <> D & D <> E;

       {A, B, C, D, E} = ( {A, B} \/ {C, D, E}) by ENUMSET1: 8;

      then {A, B, C, D, E} = ( {A, B} \/ ( {C, D} \/ {E})) by ENUMSET1: 3;

      then {A, B, C, D, E} = ( {A, B} \/ {D, C, E}) by ENUMSET1: 3;

      then G = {A, B, D, C, E} by A1, ENUMSET1: 8;

      hence thesis by A2, Th23;

    end;

    theorem :: BVFUNC14:25

    G = {A, B, C, D, E} & A <> E & B <> E & C <> E & D <> E implies ( CompF (E,G)) = (((A '/\' B) '/\' C) '/\' D)

    proof

      assume that

       A1: G = {A, B, C, D, E} and

       A2: A <> E & B <> E & C <> E & D <> E;

       {A, B, C, D, E} = ( {A, B, C} \/ {D, E}) by ENUMSET1: 9;

      then G = {A, B, C, E, D} by A1, ENUMSET1: 9;

      hence thesis by A2, Th24;

    end;

    theorem :: BVFUNC14:26

    

     Th26: for A,B,C,D,E be set, h be Function, A9,B9,C9,D9,E9 be set st A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E & h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9)) holds (h . A) = A9 & (h . B) = B9 & (h . C) = C9 & (h . D) = D9 & (h . E) = E9

    proof

      let A,B,C,D,E be set;

      let h be Function;

      let A9,B9,C9,D9,E9 be set;

      assume that

       A1: A <> B and

       A2: A <> C and

       A3: A <> D and

       A4: A <> E and

       A5: B <> C and

       A6: B <> D and

       A7: B <> E and

       A8: C <> D and

       A9: C <> E and

       A10: D <> E and

       A11: h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9));

      A in ( dom (A .--> A9)) by TARSKI:def 1;

      then

       A13: (h . A) = ((A .--> A9) . A) by A11, FUNCT_4: 13;

       not C in ( dom (A .--> A9)) by A2, TARSKI:def 1;

      then

       A14: (h . C) = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) . C) by A11, FUNCT_4: 11;

       not B in ( dom (D .--> D9)) by A6, TARSKI:def 1;

      then

       A16: ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) . B) = (((B .--> B9) +* (C .--> C9)) . B) by FUNCT_4: 11;

       not E in ( dom (A .--> A9)) by A4, TARSKI:def 1;

      then

       A17: (h . E) = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) . E) by A11, FUNCT_4: 11;

      E in ( dom (E .--> E9)) by TARSKI:def 1;

      then

       A19: (h . E) = ((E .--> E9) . E) by A17, FUNCT_4: 13;

       not C in ( dom (D .--> D9)) by A8, TARSKI:def 1;

      then

       A20: ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) . C) = (((B .--> B9) +* (C .--> C9)) . C) by FUNCT_4: 11;

       not C in ( dom (E .--> E9)) by A9, TARSKI:def 1;

      then

       A21: (h . C) = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) . C) by A14, FUNCT_4: 11;

      C in ( dom (C .--> C9)) by TARSKI:def 1;

      then

       A23: (h . C) = ((C .--> C9) . C) by A21, A20, FUNCT_4: 13;

       not D in ( dom (A .--> A9)) by A3, TARSKI:def 1;

      then

       A24: (h . D) = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) . D) by A11, FUNCT_4: 11;

       not D in ( dom (E .--> E9)) by A10, TARSKI:def 1;

      then

       A25: (h . D) = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) . D) by A24, FUNCT_4: 11;

      D in ( dom (D .--> D9)) by TARSKI:def 1;

      then

       A26: (h . D) = ((D .--> D9) . D) by A25, FUNCT_4: 13;

       not B in ( dom (A .--> A9)) by A1, TARSKI:def 1;

      then

       A27: (h . B) = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) . B) by A11, FUNCT_4: 11;

       not B in ( dom (E .--> E9)) by A7, TARSKI:def 1;

      then

       A28: (h . B) = ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) . B) by A27, FUNCT_4: 11;

       not B in ( dom (C .--> C9)) by A5, TARSKI:def 1;

      then (h . B) = ((B .--> B9) . B) by A28, A16, FUNCT_4: 11;

      hence thesis by A13, A23, A26, A19, FUNCOP_1: 72;

    end;

    theorem :: BVFUNC14:27

    

     Th27: for A,B,C,D,E be set, h be Function, A9,B9,C9,D9,E9 be set st h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9)) holds ( dom h) = {A, B, C, D, E}

    proof

      let A,B,C,D,E be set;

      let h be Function;

      let A9,B9,C9,D9,E9 be set;

      assume

       A1: h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9));

      ( dom ((B .--> B9) +* (C .--> C9))) = (( dom (B .--> B9)) \/ ( dom (C .--> C9))) by FUNCT_4:def 1;

      then ( dom (((B .--> B9) +* (C .--> C9)) +* (D .--> D9))) = ((( dom (B .--> B9)) \/ ( dom (C .--> C9))) \/ ( dom (D .--> D9))) by FUNCT_4:def 1;

      then ( dom ((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9))) = (((( dom (B .--> B9)) \/ ( dom (C .--> C9))) \/ ( dom (D .--> D9))) \/ ( dom (E .--> E9))) by FUNCT_4:def 1;

      then

       A3: ( dom (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9))) = ((((( dom (B .--> B9)) \/ ( dom (C .--> C9))) \/ ( dom (D .--> D9))) \/ ( dom (E .--> E9))) \/ ( dom (A .--> A9))) by FUNCT_4:def 1;

      ( dom (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9))) = ( {A} \/ ((( {B} \/ {C}) \/ {D}) \/ {E})) by A3

      .= ( {A} \/ (( {B, C} \/ {D}) \/ {E})) by ENUMSET1: 1

      .= ( {A} \/ ( {B, C, D} \/ {E})) by ENUMSET1: 3

      .= ( {A} \/ {B, C, D, E}) by ENUMSET1: 6

      .= {A, B, C, D, E} by ENUMSET1: 7;

      hence thesis by A1;

    end;

    theorem :: BVFUNC14:28

    

     Th28: for A,B,C,D,E be set, h be Function, A9,B9,C9,D9,E9 be set st h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9)) holds ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E)}

    proof

      let A,B,C,D,E be set;

      let h be Function;

      let A9,B9,C9,D9,E9 be set;

      assume h = (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (A .--> A9));

      then

       A1: ( dom h) = {A, B, C, D, E} by Th27;

      then

       A2: B in ( dom h) by ENUMSET1:def 3;

      

       A3: D in ( dom h) by A1, ENUMSET1:def 3;

      

       A4: C in ( dom h) by A1, ENUMSET1:def 3;

      

       A5: ( rng h) c= {(h . A), (h . B), (h . C), (h . D), (h . E)}

      proof

        let t be object;

        assume t in ( rng h);

        then

        consider x1 be object such that

         A6: x1 in ( dom h) and

         A7: t = (h . x1) by FUNCT_1:def 3;

        now

          per cases by A1, A6, ENUMSET1:def 3;

            case x1 = A;

            hence thesis by A7, ENUMSET1:def 3;

          end;

            case x1 = B;

            hence thesis by A7, ENUMSET1:def 3;

          end;

            case x1 = C;

            hence thesis by A7, ENUMSET1:def 3;

          end;

            case x1 = D;

            hence thesis by A7, ENUMSET1:def 3;

          end;

            case x1 = E;

            hence thesis by A7, ENUMSET1:def 3;

          end;

        end;

        hence thesis;

      end;

      

       A8: E in ( dom h) by A1, ENUMSET1:def 3;

      

       A9: A in ( dom h) by A1, ENUMSET1:def 3;

       {(h . A), (h . B), (h . C), (h . D), (h . E)} c= ( rng h)

      proof

        let t be object;

        assume

         A10: t in {(h . A), (h . B), (h . C), (h . D), (h . E)};

        now

          per cases by A10, ENUMSET1:def 3;

            case t = (h . A);

            hence thesis by A9, FUNCT_1:def 3;

          end;

            case t = (h . B);

            hence thesis by A2, FUNCT_1:def 3;

          end;

            case t = (h . C);

            hence thesis by A4, FUNCT_1:def 3;

          end;

            case t = (h . D);

            hence thesis by A3, FUNCT_1:def 3;

          end;

            case t = (h . E);

            hence thesis by A8, FUNCT_1:def 3;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A5, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:29

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E be a_partition of Y, z,u be Element of Y, h be Function st G is independent & G = {A, B, C, D, E} & A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E holds ( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) meets ( EqClass (z,A))

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E be a_partition of Y;

      let z,u be Element of Y;

      let h be Function;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E} and

       A3: A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E;

      set h = (((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (A .--> ( EqClass (z,A))));

      

       A4: (h . B) = ( EqClass (u,B)) by A3, Th26;

      

       A5: (h . D) = ( EqClass (u,D)) by A3, Th26;

      

       A6: (h . C) = ( EqClass (u,C)) by A3, Th26;

      

       A7: (h . E) = ( EqClass (u,E)) by A3, Th26;

      

       A8: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E)} by Th28;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume

         A9: t in ( rng h);

        now

          per cases by A8, A9, ENUMSET1:def 3;

            case t = (h . A);

            then t = ( EqClass (z,A)) by A3, Th26;

            hence thesis;

          end;

            case t = (h . B);

            hence thesis by A4;

          end;

            case t = (h . C);

            hence thesis by A6;

          end;

            case t = (h . D);

            hence thesis by A5;

          end;

            case t = (h . E);

            hence thesis by A7;

          end;

        end;

        hence thesis;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A10: ( dom h) = G by A2, Th27;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume

         A11: d in G;

        now

          per cases by A2, A11, ENUMSET1:def 3;

            case

             A12: d = A;

            (h . A) = ( EqClass (z,A)) by A3, Th26;

            hence thesis by A12;

          end;

            case

             A13: d = B;

            (h . B) = ( EqClass (u,B)) by A3, Th26;

            hence thesis by A13;

          end;

            case

             A14: d = C;

            (h . C) = ( EqClass (u,C)) by A3, Th26;

            hence thesis by A14;

          end;

            case

             A15: d = D;

            (h . D) = ( EqClass (u,D)) by A3, Th26;

            hence thesis by A15;

          end;

            case

             A16: d = E;

            (h . E) = ( EqClass (u,E)) by A3, Th26;

            hence thesis by A16;

          end;

        end;

        hence thesis;

      end;

      then ( Intersect FF) <> {} by A1, A10, BVFUNC_2:def 5;

      then

      consider m be object such that

       A17: m in ( Intersect FF) by XBOOLE_0:def 1;

      A in ( dom h) by A2, A10, ENUMSET1:def 3;

      then

       A18: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A19: m in ( meet FF) by A17, SETFAM_1:def 9;

      then

       A20: m in (h . A) by A18, SETFAM_1:def 1;

      D in ( dom h) by A2, A10, ENUMSET1:def 3;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then

       A21: m in (h . D) by A19, SETFAM_1:def 1;

      C in ( dom h) by A2, A10, ENUMSET1:def 3;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A22: m in (h . C) by A19, SETFAM_1:def 1;

      B in ( dom h) by A2, A10, ENUMSET1:def 3;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in (h . B) by A19, SETFAM_1:def 1;

      then m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A4, A6, A22, XBOOLE_0:def 4;

      then

       A23: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A5, A21, XBOOLE_0:def 4;

      E in ( dom h) by A2, A10, ENUMSET1:def 3;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in (h . E) by A19, SETFAM_1:def 1;

      then

       A24: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A7, A23, XBOOLE_0:def 4;

      set GG = ( EqClass (u,(((B '/\' C) '/\' D) '/\' E)));

      GG = (( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) by Th1;

      then

       A25: GG = ((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by Th1;

      (h . A) = ( EqClass (z,A)) by A3, Th26;

      then m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (z,A))) by A20, A24, XBOOLE_0:def 4;

      then (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) meets ( EqClass (z,A)) by XBOOLE_0: 4;

      hence thesis by A25, Th1;

    end;

    theorem :: BVFUNC14:30

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E be a_partition of Y, z,u be Element of Y st G is independent & G = {A, B, C, D, E} & A <> B & A <> C & A <> D & A <> E & B <> C & B <> D & B <> E & C <> D & C <> E & D <> E & ( EqClass (z,((C '/\' D) '/\' E))) = ( EqClass (u,((C '/\' D) '/\' E))) holds ( EqClass (u,( CompF (A,G)))) meets ( EqClass (z,( CompF (B,G))))

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E be a_partition of Y;

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E} and

       A3: A <> B and

       A4: A <> C & A <> D & A <> E and

       A5: B <> C & B <> D & B <> E and

       A6: C <> D & C <> E & D <> E and

       A7: ( EqClass (z,((C '/\' D) '/\' E))) = ( EqClass (u,((C '/\' D) '/\' E)));

      set h = (((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (A .--> ( EqClass (z,A))));

      

       A8: (h . B) = ( EqClass (u,B)) by A3, A4, A5, A6, Th26;

      

       A9: (h . E) = ( EqClass (u,E)) by A3, A4, A5, A6, Th26;

      

       A10: (h . D) = ( EqClass (u,D)) by A3, A4, A5, A6, Th26;

      

       A11: (h . C) = ( EqClass (u,C)) by A3, A4, A5, A6, Th26;

      

       A12: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E)} by Th28;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume

         A13: t in ( rng h);

        now

          per cases by A12, A13, ENUMSET1:def 3;

            case t = (h . A);

            then t = ( EqClass (z,A)) by A3, A4, A5, A6, Th26;

            hence thesis;

          end;

            case t = (h . B);

            hence thesis by A8;

          end;

            case t = (h . C);

            hence thesis by A11;

          end;

            case t = (h . D);

            hence thesis by A10;

          end;

            case t = (h . E);

            hence thesis by A9;

          end;

        end;

        hence thesis;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A14: ( dom h) = G by A2, Th27;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume

         A15: d in G;

        now

          per cases by A2, A15, ENUMSET1:def 3;

            case

             A16: d = A;

            (h . A) = ( EqClass (z,A)) by A3, A4, A5, A6, Th26;

            hence thesis by A16;

          end;

            case

             A17: d = B;

            (h . B) = ( EqClass (u,B)) by A3, A4, A5, A6, Th26;

            hence thesis by A17;

          end;

            case

             A18: d = C;

            (h . C) = ( EqClass (u,C)) by A3, A4, A5, A6, Th26;

            hence thesis by A18;

          end;

            case

             A19: d = D;

            (h . D) = ( EqClass (u,D)) by A3, A4, A5, A6, Th26;

            hence thesis by A19;

          end;

            case

             A20: d = E;

            (h . E) = ( EqClass (u,E)) by A3, A4, A5, A6, Th26;

            hence thesis by A20;

          end;

        end;

        hence thesis;

      end;

      then ( Intersect FF) <> {} by A1, A14, BVFUNC_2:def 5;

      then

      consider m be object such that

       A21: m in ( Intersect FF) by XBOOLE_0:def 1;

      A in ( dom h) by A2, A14, ENUMSET1:def 3;

      then

       A22: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A23: m in ( meet FF) by A21, SETFAM_1:def 9;

      then

       A24: m in (h . A) by A22, SETFAM_1:def 1;

      D in ( dom h) by A2, A14, ENUMSET1:def 3;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then

       A25: m in (h . D) by A23, SETFAM_1:def 1;

      C in ( dom h) by A2, A14, ENUMSET1:def 3;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A26: m in (h . C) by A23, SETFAM_1:def 1;

      B in ( dom h) by A2, A14, ENUMSET1:def 3;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in (h . B) by A23, SETFAM_1:def 1;

      then m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A8, A11, A26, XBOOLE_0:def 4;

      then

       A27: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A10, A25, XBOOLE_0:def 4;

      E in ( dom h) by A2, A14, ENUMSET1:def 3;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in (h . E) by A23, SETFAM_1:def 1;

      then

       A28: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A9, A27, XBOOLE_0:def 4;

      set GG = ( EqClass (u,(((B '/\' C) '/\' D) '/\' E)));

      set I = ( EqClass (z,A));

      GG = (( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) by Th1;

      then

       A29: GG = ((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by Th1;

      (h . A) = ( EqClass (z,A)) by A3, A4, A5, A6, Th26;

      then m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (z,A))) by A24, A28, XBOOLE_0:def 4;

      then (GG /\ I) <> {} by A29, Th1;

      then

      consider p be object such that

       A30: p in (GG /\ I) by XBOOLE_0:def 1;

      reconsider p as Element of Y by A30;

      set K = ( EqClass (p,((C '/\' D) '/\' E)));

      

       A31: p in GG by A30, XBOOLE_0:def 4;

      

       A32: z in I by EQREL_1:def 6;

      set L = ( EqClass (z,((C '/\' D) '/\' E)));

      

       A33: p in ( EqClass (p,((C '/\' D) '/\' E))) by EQREL_1:def 6;

      GG = ( EqClass (u,((B '/\' (C '/\' D)) '/\' E))) by PARTIT1: 14;

      then GG = ( EqClass (u,(B '/\' ((C '/\' D) '/\' E)))) by PARTIT1: 14;

      then GG c= L by A7, BVFUNC11: 3;

      then K meets L by A31, A33, XBOOLE_0: 3;

      then K = L by EQREL_1: 41;

      then z in K by EQREL_1:def 6;

      then

       A34: z in (I /\ K) by A32, XBOOLE_0:def 4;

      set H = ( EqClass (z,( CompF (B,G))));

      (A '/\' ((C '/\' D) '/\' E)) = ((A '/\' (C '/\' D)) '/\' E) by PARTIT1: 14;

      then

       A35: (A '/\' ((C '/\' D) '/\' E)) = (((A '/\' C) '/\' D) '/\' E) by PARTIT1: 14;

      

       A36: p in K & p in I by A30, EQREL_1:def 6, XBOOLE_0:def 4;

      then p in (I /\ K) by XBOOLE_0:def 4;

      then (I /\ K) in ( INTERSECTION (A,((C '/\' D) '/\' E))) & not (I /\ K) in { {} } by SETFAM_1:def 5, TARSKI:def 1;

      then

       A37: (I /\ K) in (( INTERSECTION (A,((C '/\' D) '/\' E))) \ { {} }) by XBOOLE_0:def 5;

      ( CompF (B,G)) = (((A '/\' C) '/\' D) '/\' E) by A2, A3, A5, Th22;

      then (I /\ K) in ( CompF (B,G)) by A37, A35, PARTIT1:def 4;

      then

       A38: (I /\ K) = H or (I /\ K) misses H by EQREL_1:def 4;

      z in H by EQREL_1:def 6;

      then p in H by A36, A34, A38, XBOOLE_0: 3, XBOOLE_0:def 4;

      then p in (GG /\ H) by A31, XBOOLE_0:def 4;

      then GG meets H by XBOOLE_0: 4;

      hence thesis by A2, A3, A4, Th21;

    end;

    theorem :: BVFUNC14:31

    

     Th31: G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F implies ( CompF (A,G)) = ((((B '/\' C) '/\' D) '/\' E) '/\' F)

    proof

      assume that

       A1: G = {A, B, C, D, E, F} and

       A2: A <> B and

       A3: A <> C and

       A4: A <> D & A <> E and

       A5: A <> F and

       A6: B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F;

      

       A7: (G \ {A}) = (( {A} \/ {B, C, D, E, F}) \ {A}) by A1, ENUMSET1: 11

      .= (( {A} \ {A}) \/ ( {B, C, D, E, F} \ {A})) by XBOOLE_1: 42;

      

       A8: not F in {A} by A5, TARSKI:def 1;

      

       A9: ( not D in {A}) & not E in {A} by A4, TARSKI:def 1;

      

       A10: not C in {A} by A3, TARSKI:def 1;

      

       A11: not B in {A} by A2, TARSKI:def 1;

      A in {A} by TARSKI:def 1;

      then

       A12: ( {A} \ {A}) = {} by ZFMISC_1: 60;

      

       A13: ( {B, C, D, E, F} \ {A}) = (( {B} \/ {C, D, E, F}) \ {A}) by ENUMSET1: 7

      .= (( {B} \ {A}) \/ ( {C, D, E, F} \ {A})) by XBOOLE_1: 42

      .= ( {B} \/ ( {C, D, E, F} \ {A})) by A11, ZFMISC_1: 59

      .= ( {B} \/ (( {C} \/ {D, E, F}) \ {A})) by ENUMSET1: 4

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E, F} \ {A}))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ (( {D, E} \/ {F}) \ {A}))) by ENUMSET1: 3

      .= ( {B} \/ (( {C} \ {A}) \/ (( {D, E} \ {A}) \/ ( {F} \ {A})))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ ( {F} \ {A})))) by A9, ZFMISC_1: 63

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ {F}))) by A8, ZFMISC_1: 59

      .= ( {B} \/ ( {C} \/ ( {D, E} \/ {F}))) by A10, ZFMISC_1: 59

      .= ( {B} \/ ( {C} \/ {D, E, F})) by ENUMSET1: 3

      .= ( {B} \/ {C, D, E, F}) by ENUMSET1: 4

      .= {B, C, D, E, F} by ENUMSET1: 7;

      

       A14: ((((B '/\' C) '/\' D) '/\' E) '/\' F) c= ( '/\' (G \ {A}))

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A15: x in ((((B '/\' C) '/\' D) '/\' E) '/\' F);

        then

         A16: x <> {} by EQREL_1:def 4;

        x in (( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) \ { {} }) by A15, PARTIT1:def 4;

        then

        consider bcde,f be set such that

         A17: bcde in (((B '/\' C) '/\' D) '/\' E) and

         A18: f in F and

         A19: x = (bcde /\ f) by SETFAM_1:def 5;

        bcde in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A17, PARTIT1:def 4;

        then

        consider bcd,e be set such that

         A20: bcd in ((B '/\' C) '/\' D) and

         A21: e in E and

         A22: bcde = (bcd /\ e) by SETFAM_1:def 5;

        bcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A20, PARTIT1:def 4;

        then

        consider bc,d be set such that

         A23: bc in (B '/\' C) and

         A24: d in D and

         A25: bcd = (bc /\ d) by SETFAM_1:def 5;

        bc in (( INTERSECTION (B,C)) \ { {} }) by A23, PARTIT1:def 4;

        then

        consider b,c be set such that

         A26: b in B and

         A27: c in C and

         A28: bc = (b /\ c) by SETFAM_1:def 5;

        set h = (((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e)) +* (F .--> f));

        

         A29: (h . B) = b by A6, Th26;

        

         A30: (h . E) = e by A6, Th26;

        

         A31: (h . F) = f by A6, Th26;

        

         A32: ( dom (((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e)) +* (F .--> f))) = {F, B, C, D, E} by Th27

        .= ( {F} \/ {B, C, D, E}) by ENUMSET1: 7

        .= {B, C, D, E, F} by ENUMSET1: 10;

        then

         A33: C in ( dom h) by ENUMSET1:def 3;

        

         A34: F in ( dom h) by A32, ENUMSET1:def 3;

        

         A35: E in ( dom h) by A32, ENUMSET1:def 3;

        

         A36: (h . C) = c by A6, Th26;

        

         A37: ( rng h) c= {(h . D), (h . B), (h . C), (h . E), (h . F)}

        proof

          let t be object;

          assume t in ( rng h);

          then

          consider x1 be object such that

           A38: x1 in ( dom h) and

           A39: t = (h . x1) by FUNCT_1:def 3;

          now

            per cases by A32, A38, ENUMSET1:def 3;

              case x1 = D;

              hence thesis by A39, ENUMSET1:def 3;

            end;

              case x1 = B;

              hence thesis by A39, ENUMSET1:def 3;

            end;

              case x1 = C;

              hence thesis by A39, ENUMSET1:def 3;

            end;

              case x1 = E;

              hence thesis by A39, ENUMSET1:def 3;

            end;

              case x1 = F;

              hence thesis by A39, ENUMSET1:def 3;

            end;

          end;

          hence thesis;

        end;

        

         A40: (h . D) = d by A6, Th26;

        ( rng h) c= ( bool Y)

        proof

          let t be object;

          assume

           A41: t in ( rng h);

          now

            per cases by A37, A41, ENUMSET1:def 3;

              case t = (h . D);

              hence thesis by A24, A40;

            end;

              case t = (h . B);

              hence thesis by A26, A29;

            end;

              case t = (h . C);

              hence thesis by A27, A36;

            end;

              case t = (h . E);

              hence thesis by A21, A30;

            end;

              case t = (h . F);

              hence thesis by A18, A31;

            end;

          end;

          hence thesis;

        end;

        then

        reconsider FF = ( rng h) as Subset-Family of Y;

        

         A42: D in ( dom h) by A32, ENUMSET1:def 3;

        then (h . D) in ( rng h) by FUNCT_1:def 3;

        then

         A43: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

        

         A44: B in ( dom h) by A32, ENUMSET1:def 3;

         {(h . D), (h . B), (h . C), (h . E), (h . F)} c= ( rng h)

        proof

          let t be object;

          assume

           A45: t in {(h . D), (h . B), (h . C), (h . E), (h . F)};

          now

            per cases by A45, ENUMSET1:def 3;

              case t = (h . D);

              hence thesis by A42, FUNCT_1:def 3;

            end;

              case t = (h . B);

              hence thesis by A44, FUNCT_1:def 3;

            end;

              case t = (h . C);

              hence thesis by A33, FUNCT_1:def 3;

            end;

              case t = (h . E);

              hence thesis by A35, FUNCT_1:def 3;

            end;

              case t = (h . F);

              hence thesis by A34, FUNCT_1:def 3;

            end;

          end;

          hence thesis;

        end;

        then

         A46: ( rng h) = {(h . D), (h . B), (h . C), (h . E), (h . F)} by A37, XBOOLE_0:def 10;

        

         A47: xx c= ( Intersect FF)

        proof

          let u be object;

          assume

           A48: u in xx;

          for y be set holds y in FF implies u in y

          proof

            let y be set;

            assume

             A49: y in FF;

            now

              per cases by A37, A49, ENUMSET1:def 3;

                case

                 A50: y = (h . D);

                u in ((d /\ ((b /\ c) /\ e)) /\ f) by A19, A22, A25, A28, A48, XBOOLE_1: 16;

                then

                 A51: u in (d /\ (((b /\ c) /\ e) /\ f)) by XBOOLE_1: 16;

                y = d by A6, A50, Th26;

                hence thesis by A51, XBOOLE_0:def 4;

              end;

                case

                 A52: y = (h . B);

                u in (((c /\ (d /\ b)) /\ e) /\ f) by A19, A22, A25, A28, A48, XBOOLE_1: 16;

                then u in ((c /\ ((d /\ b) /\ e)) /\ f) by XBOOLE_1: 16;

                then u in ((c /\ ((d /\ e) /\ b)) /\ f) by XBOOLE_1: 16;

                then u in (c /\ (((d /\ e) /\ b) /\ f)) by XBOOLE_1: 16;

                then u in (c /\ ((d /\ e) /\ (f /\ b))) by XBOOLE_1: 16;

                then u in ((c /\ (d /\ e)) /\ (f /\ b)) by XBOOLE_1: 16;

                then

                 A53: u in (((c /\ (d /\ e)) /\ f) /\ b) by XBOOLE_1: 16;

                y = b by A6, A52, Th26;

                hence thesis by A53, XBOOLE_0:def 4;

              end;

                case

                 A54: y = (h . C);

                u in (((c /\ (b /\ d)) /\ e) /\ f) by A19, A22, A25, A28, A48, XBOOLE_1: 16;

                then u in ((c /\ ((b /\ d) /\ e)) /\ f) by XBOOLE_1: 16;

                then

                 A55: u in (c /\ (((b /\ d) /\ e) /\ f)) by XBOOLE_1: 16;

                y = c by A6, A54, Th26;

                hence thesis by A55, XBOOLE_0:def 4;

              end;

                case y = (h . E);

                then

                 A56: y = e by A6, Th26;

                u in ((((b /\ c) /\ d) /\ f) /\ e) by A19, A22, A25, A28, A48, XBOOLE_1: 16;

                hence thesis by A56, XBOOLE_0:def 4;

              end;

                case y = (h . F);

                hence thesis by A19, A31, A48, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          then u in ( meet FF) by A46, SETFAM_1:def 1;

          hence thesis by A46, SETFAM_1:def 9;

        end;

        

         A57: for p be set st p in (G \ {A}) holds (h . p) in p

        proof

          let p be set;

          assume

           A58: p in (G \ {A});

          now

            per cases by A7, A12, A58, ENUMSET1:def 3;

              case p = D;

              hence thesis by A6, A24, Th26;

            end;

              case p = B;

              hence thesis by A6, A26, Th26;

            end;

              case p = C;

              hence thesis by A6, A27, Th26;

            end;

              case p = E;

              hence thesis by A6, A21, Th26;

            end;

              case p = F;

              hence thesis by A6, A18, Th26;

            end;

          end;

          hence thesis;

        end;

        ( Intersect FF) c= xx

        proof

          let t be object;

          assume

           A59: t in ( Intersect FF);

          (h . C) in ( rng h) by A46, ENUMSET1:def 3;

          then

           A60: t in c by A36, A43, A59, SETFAM_1:def 1;

          (h . B) in ( rng h) by A46, ENUMSET1:def 3;

          then t in b by A29, A43, A59, SETFAM_1:def 1;

          then

           A61: t in (b /\ c) by A60, XBOOLE_0:def 4;

          (h . D) in ( rng h) by A46, ENUMSET1:def 3;

          then t in d by A40, A43, A59, SETFAM_1:def 1;

          then

           A62: t in ((b /\ c) /\ d) by A61, XBOOLE_0:def 4;

          (h . E) in ( rng h) by A46, ENUMSET1:def 3;

          then t in e by A30, A43, A59, SETFAM_1:def 1;

          then

           A63: t in (((b /\ c) /\ d) /\ e) by A62, XBOOLE_0:def 4;

          (h . F) in ( rng h) by A46, ENUMSET1:def 3;

          then t in f by A31, A43, A59, SETFAM_1:def 1;

          hence thesis by A19, A22, A25, A28, A63, XBOOLE_0:def 4;

        end;

        then x = ( Intersect FF) by A47, XBOOLE_0:def 10;

        hence thesis by A7, A13, A12, A32, A57, A16, BVFUNC_2:def 1;

      end;

      

       A64: ( '/\' (G \ {A})) c= ((((B '/\' C) '/\' D) '/\' E) '/\' F)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume x in ( '/\' (G \ {A}));

        then

        consider h be Function, FF be Subset-Family of Y such that

         A65: ( dom h) = (G \ {A}) and

         A66: ( rng h) = FF and

         A67: for d be set st d in (G \ {A}) holds (h . d) in d and

         A68: x = ( Intersect FF) and

         A69: x <> {} by BVFUNC_2:def 1;

        

         A70: C in (G \ {A}) by A7, A13, A12, ENUMSET1:def 3;

        then

         A71: (h . C) in C by A67;

        set mbc = ((h . B) /\ (h . C));

        

         A72: B in (G \ {A}) by A7, A13, A12, ENUMSET1:def 3;

        then (h . B) in B by A67;

        then

         A73: mbc in ( INTERSECTION (B,C)) by A71, SETFAM_1:def 5;

        set mbcd = (((h . B) /\ (h . C)) /\ (h . D));

        

         A74: E in (G \ {A}) by A7, A13, A12, ENUMSET1:def 3;

        then

         A75: (h . E) in ( rng h) by A65, FUNCT_1:def 3;

        

         A76: (h . B) in ( rng h) by A65, A72, FUNCT_1:def 3;

        then

         A77: ( Intersect FF) = ( meet ( rng h)) by A66, SETFAM_1:def 9;

        

         A78: (h . C) in ( rng h) by A65, A70, FUNCT_1:def 3;

        

         A79: F in (G \ {A}) by A7, A13, A12, ENUMSET1:def 3;

        then

         A80: (h . F) in ( rng h) by A65, FUNCT_1:def 3;

        

         A81: D in (G \ {A}) by A7, A13, A12, ENUMSET1:def 3;

        then

         A82: (h . D) in ( rng h) by A65, FUNCT_1:def 3;

        

         A83: xx c= (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F))

        proof

          let m be object;

          assume

           A84: m in xx;

          then m in (h . B) & m in (h . C) by A68, A76, A78, A77, SETFAM_1:def 1;

          then

           A85: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

          m in (h . D) by A68, A82, A77, A84, SETFAM_1:def 1;

          then

           A86: m in (((h . B) /\ (h . C)) /\ (h . D)) by A85, XBOOLE_0:def 4;

          m in (h . E) by A68, A75, A77, A84, SETFAM_1:def 1;

          then

           A87: m in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) by A86, XBOOLE_0:def 4;

          m in (h . F) by A68, A80, A77, A84, SETFAM_1:def 1;

          hence thesis by A87, XBOOLE_0:def 4;

        end;

        then mbcd <> {} by A69;

        then

         A88: not mbcd in { {} } by TARSKI:def 1;

        

         A89: ( rng h) <> {} by A65, A72, FUNCT_1: 3;

        (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) c= xx

        proof

          let m be object;

          assume

           A90: m in (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F));

          then

           A91: m in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) by XBOOLE_0:def 4;

          then

           A92: m in (((h . B) /\ (h . C)) /\ (h . D)) by XBOOLE_0:def 4;

          then

           A93: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

          

           A94: ( rng h) c= {(h . B), (h . C), (h . D), (h . E), (h . F)}

          proof

            let u be object;

            assume u in ( rng h);

            then

            consider x1 be object such that

             A95: x1 in ( dom h) and

             A96: u = (h . x1) by FUNCT_1:def 3;

            now

              per cases by A7, A12, A65, A95, ENUMSET1:def 3;

                case x1 = B;

                hence thesis by A96, ENUMSET1:def 3;

              end;

                case x1 = C;

                hence thesis by A96, ENUMSET1:def 3;

              end;

                case x1 = D;

                hence thesis by A96, ENUMSET1:def 3;

              end;

                case x1 = E;

                hence thesis by A96, ENUMSET1:def 3;

              end;

                case x1 = F;

                hence thesis by A96, ENUMSET1:def 3;

              end;

            end;

            hence thesis;

          end;

          for y be set holds y in ( rng h) implies m in y

          proof

            let y be set;

            assume

             A97: y in ( rng h);

            now

              per cases by A94, A97, ENUMSET1:def 3;

                case y = (h . B);

                hence thesis by A93, XBOOLE_0:def 4;

              end;

                case y = (h . C);

                hence thesis by A93, XBOOLE_0:def 4;

              end;

                case y = (h . D);

                hence thesis by A92, XBOOLE_0:def 4;

              end;

                case y = (h . E);

                hence thesis by A91, XBOOLE_0:def 4;

              end;

                case y = (h . F);

                hence thesis by A90, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          hence thesis by A68, A89, A77, SETFAM_1:def 1;

        end;

        then

         A98: (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) = x by A83, XBOOLE_0:def 10;

        mbc <> {} by A69, A83;

        then not mbc in { {} } by TARSKI:def 1;

        then mbc in (( INTERSECTION (B,C)) \ { {} }) by A73, XBOOLE_0:def 5;

        then

         A99: mbc in (B '/\' C) by PARTIT1:def 4;

        (h . D) in D by A67, A81;

        then mbcd in ( INTERSECTION ((B '/\' C),D)) by A99, SETFAM_1:def 5;

        then mbcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A88, XBOOLE_0:def 5;

        then

         A100: mbcd in ((B '/\' C) '/\' D) by PARTIT1:def 4;

        set mbcde = ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E));

        

         A101: not x in { {} } by A69, TARSKI:def 1;

        mbcde <> {} by A69, A83;

        then

         A102: not mbcde in { {} } by TARSKI:def 1;

        (h . E) in E by A67, A74;

        then mbcde in ( INTERSECTION (((B '/\' C) '/\' D),E)) by A100, SETFAM_1:def 5;

        then mbcde in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A102, XBOOLE_0:def 5;

        then

         A103: mbcde in (((B '/\' C) '/\' D) '/\' E) by PARTIT1:def 4;

        (h . F) in F by A67, A79;

        then x in ( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) by A98, A103, SETFAM_1:def 5;

        then x in (( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) \ { {} }) by A101, XBOOLE_0:def 5;

        hence thesis by PARTIT1:def 4;

      end;

      ( CompF (A,G)) = ( '/\' (G \ {A})) by BVFUNC_2:def 7;

      hence thesis by A14, A64, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:32

    

     Th32: G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F implies ( CompF (B,G)) = ((((A '/\' C) '/\' D) '/\' E) '/\' F)

    proof

      assume that

       A1: G = {A, B, C, D, E, F} and

       A2: A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F;

       {A, B, C, D, E, F} = ( {B, A} \/ {C, D, E, F}) by ENUMSET1: 12;

      then G = {B, A, C, D, E, F} by A1, ENUMSET1: 12;

      hence thesis by A2, Th31;

    end;

    theorem :: BVFUNC14:33

    

     Th33: G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F implies ( CompF (C,G)) = ((((A '/\' B) '/\' D) '/\' E) '/\' F)

    proof

      

       A1: {A, B, C, D, E, F} = ( {A, B, C} \/ {D, E, F}) by ENUMSET1: 13

      .= (( {A} \/ {B, C}) \/ {D, E, F}) by ENUMSET1: 2

      .= ( {A, C, B} \/ {D, E, F}) by ENUMSET1: 2

      .= {A, C, B, D, E, F} by ENUMSET1: 13;

      assume G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F;

      hence thesis by A1, Th32;

    end;

    theorem :: BVFUNC14:34

    

     Th34: G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F implies ( CompF (D,G)) = ((((A '/\' B) '/\' C) '/\' E) '/\' F)

    proof

      

       A1: {A, B, C, D, E, F} = ( {A, B} \/ {C, D, E, F}) by ENUMSET1: 12

      .= ( {A, B} \/ ( {C, D} \/ {E, F})) by ENUMSET1: 5

      .= ( {A, B} \/ {D, C, E, F}) by ENUMSET1: 5

      .= {A, B, D, C, E, F} by ENUMSET1: 12;

      assume G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F;

      hence thesis by A1, Th33;

    end;

    theorem :: BVFUNC14:35

    

     Th35: G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F implies ( CompF (E,G)) = ((((A '/\' B) '/\' C) '/\' D) '/\' F)

    proof

      

       A1: {A, B, C, D, E, F} = ( {A, B, C} \/ {D, E, F}) by ENUMSET1: 13

      .= ( {A, B, C} \/ ( {D, E} \/ {F})) by ENUMSET1: 3

      .= ( {A, B, C} \/ {E, D, F}) by ENUMSET1: 3

      .= {A, B, C, E, D, F} by ENUMSET1: 13;

      assume G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F;

      hence thesis by A1, Th34;

    end;

    theorem :: BVFUNC14:36

    G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F implies ( CompF (F,G)) = ((((A '/\' B) '/\' C) '/\' D) '/\' E)

    proof

      

       A1: {A, B, C, D, E, F} = ( {A, B, C, D} \/ {E, F}) by ENUMSET1: 14

      .= {A, B, C, D, F, E} by ENUMSET1: 14;

      assume G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F;

      hence thesis by A1, Th35;

    end;

    theorem :: BVFUNC14:37

    

     Th37: for A,B,C,D,E,F be set, h be Function, A9,B9,C9,D9,E9,F9 be set st A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F & h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9)) holds (h . A) = A9 & (h . B) = B9 & (h . C) = C9 & (h . D) = D9 & (h . E) = E9 & (h . F) = F9

    proof

      let A,B,C,D,E,F be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9 be set;

      assume that

       A1: A <> B and

       A2: A <> C and

       A3: A <> D and

       A4: A <> E and

       A5: A <> F and

       A6: B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F and

       A7: h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9));

      A in ( dom (A .--> A9)) by TARSKI:def 1;

      then

       A9: (h . A) = ((A .--> A9) . A) by A7, FUNCT_4: 13;

       not C in ( dom (A .--> A9)) by A2, TARSKI:def 1;

      then

       A10: (h . C) = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) . C) by A7, FUNCT_4: 11;

       not F in ( dom (A .--> A9)) by A5, TARSKI:def 1;

      

      then

       A11: (h . F) = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) . F) by A7, FUNCT_4: 11

      .= F9 by A6, Th26;

       not E in ( dom (A .--> A9)) by A4, TARSKI:def 1;

      

      then

       A12: (h . E) = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) . E) by A7, FUNCT_4: 11

      .= E9 by A6, Th26;

       not D in ( dom (A .--> A9)) by A3, TARSKI:def 1;

      

      then

       A13: (h . D) = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) . D) by A7, FUNCT_4: 11

      .= D9 by A6, Th26;

       not B in ( dom (A .--> A9)) by A1, TARSKI:def 1;

      

      then (h . B) = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) . B) by A7, FUNCT_4: 11

      .= B9 by A6, Th26;

      hence thesis by A6, A9, A10, A13, A12, A11, Th26, FUNCOP_1: 72;

    end;

    theorem :: BVFUNC14:38

    

     Th38: for A,B,C,D,E,F be set, h be Function, A9,B9,C9,D9,E9,F9 be set st h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9)) holds ( dom h) = {A, B, C, D, E, F}

    proof

      let A,B,C,D,E,F be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9 be set;

      assume

       A1: h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9));

      

       A2: ( dom (A .--> A9)) = {A};

      ( dom (((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9))) = {F, B, C, D, E} by Th27

      .= ( {F} \/ {B, C, D, E}) by ENUMSET1: 7

      .= {B, C, D, E, F} by ENUMSET1: 10;

      

      then ( dom ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9))) = ( {B, C, D, E, F} \/ {A}) by A2, FUNCT_4:def 1

      .= {A, B, C, D, E, F} by ENUMSET1: 11;

      hence thesis by A1;

    end;

    theorem :: BVFUNC14:39

    

     Th39: for A,B,C,D,E,F be set, h be Function, A9,B9,C9,D9,E9,F9 be set st h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9)) holds ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F)}

    proof

      let A,B,C,D,E,F be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9 be set;

      assume h = ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (A .--> A9));

      then

       A1: ( dom h) = {A, B, C, D, E, F} by Th38;

      then

       A2: B in ( dom h) by ENUMSET1:def 4;

      

       A3: ( rng h) c= {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F)}

      proof

        let t be object;

        assume t in ( rng h);

        then

        consider x1 be object such that

         A4: x1 in ( dom h) and

         A5: t = (h . x1) by FUNCT_1:def 3;

        now

          per cases by A1, A4, ENUMSET1:def 4;

            case x1 = A;

            hence thesis by A5, ENUMSET1:def 4;

          end;

            case x1 = B;

            hence thesis by A5, ENUMSET1:def 4;

          end;

            case x1 = C;

            hence thesis by A5, ENUMSET1:def 4;

          end;

            case x1 = D;

            hence thesis by A5, ENUMSET1:def 4;

          end;

            case x1 = E;

            hence thesis by A5, ENUMSET1:def 4;

          end;

            case x1 = F;

            hence thesis by A5, ENUMSET1:def 4;

          end;

        end;

        hence thesis;

      end;

      

       A6: D in ( dom h) by A1, ENUMSET1:def 4;

      

       A7: C in ( dom h) by A1, ENUMSET1:def 4;

      

       A8: F in ( dom h) by A1, ENUMSET1:def 4;

      

       A9: E in ( dom h) by A1, ENUMSET1:def 4;

      

       A10: A in ( dom h) by A1, ENUMSET1:def 4;

       {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F)} c= ( rng h)

      proof

        let t be object;

        assume

         A11: t in {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F)};

        now

          per cases by A11, ENUMSET1:def 4;

            case t = (h . A);

            hence thesis by A10, FUNCT_1:def 3;

          end;

            case t = (h . B);

            hence thesis by A2, FUNCT_1:def 3;

          end;

            case t = (h . C);

            hence thesis by A7, FUNCT_1:def 3;

          end;

            case t = (h . D);

            hence thesis by A6, FUNCT_1:def 3;

          end;

            case t = (h . E);

            hence thesis by A9, FUNCT_1:def 3;

          end;

            case t = (h . F);

            hence thesis by A8, FUNCT_1:def 3;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A3, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:40

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F be a_partition of Y, z,u be Element of Y, h be Function st G is independent & G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F holds ( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F))) meets ( EqClass (z,A))

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F be a_partition of Y;

      let z,u be Element of Y;

      let h be Function;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E, F} and

       A3: A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F;

      set h = ((((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (F .--> ( EqClass (u,F)))) +* (A .--> ( EqClass (z,A))));

      

       A4: (h . A) = ( EqClass (z,A)) by A3, Th37;

      set GG = ( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F)));

      GG = (( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) /\ ( EqClass (u,F))) by Th1;

      then GG = ((( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by Th1;

      then GG = (((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by Th1;

      then

       A5: (GG /\ ( EqClass (z,A))) = (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (z,A))) by Th1;

      

       A6: (h . B) = ( EqClass (u,B)) by A3, Th37;

      

       A7: (h . D) = ( EqClass (u,D)) by A3, Th37;

      

       A8: (h . C) = ( EqClass (u,C)) by A3, Th37;

      

       A9: (h . F) = ( EqClass (u,F)) by A3, Th37;

      

       A10: (h . E) = ( EqClass (u,E)) by A3, Th37;

      

       A11: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F)} by Th39;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume

         A12: t in ( rng h);

        now

          per cases by A11, A12, ENUMSET1:def 4;

            case t = (h . A);

            hence thesis by A4;

          end;

            case t = (h . B);

            hence thesis by A6;

          end;

            case t = (h . C);

            hence thesis by A8;

          end;

            case t = (h . D);

            hence thesis by A7;

          end;

            case t = (h . E);

            hence thesis by A10;

          end;

            case t = (h . F);

            hence thesis by A9;

          end;

        end;

        hence thesis;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A13: ( dom h) = G by A2, Th38;

      then A in ( dom h) by A2, ENUMSET1:def 4;

      then

       A14: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A15: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume

         A16: d in G;

        now

          per cases by A2, A16, ENUMSET1:def 4;

            case d = A;

            hence thesis by A4;

          end;

            case d = B;

            hence thesis by A6;

          end;

            case d = C;

            hence thesis by A8;

          end;

            case d = D;

            hence thesis by A7;

          end;

            case d = E;

            hence thesis by A10;

          end;

            case d = F;

            hence thesis by A9;

          end;

        end;

        hence thesis;

      end;

      then ( Intersect FF) <> {} by A1, A13, BVFUNC_2:def 5;

      then

      consider m be object such that

       A17: m in ( Intersect FF) by XBOOLE_0:def 1;

      C in ( dom h) by A2, A13, ENUMSET1:def 4;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A18: m in ( EqClass (u,C)) by A8, A15, A17, SETFAM_1:def 1;

      B in ( dom h) by A2, A13, ENUMSET1:def 4;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,B)) by A6, A15, A17, SETFAM_1:def 1;

      then

       A19: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A18, XBOOLE_0:def 4;

      D in ( dom h) by A2, A13, ENUMSET1:def 4;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,D)) by A7, A15, A17, SETFAM_1:def 1;

      then

       A20: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A19, XBOOLE_0:def 4;

      E in ( dom h) by A2, A13, ENUMSET1:def 4;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,E)) by A10, A15, A17, SETFAM_1:def 1;

      then

       A21: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A20, XBOOLE_0:def 4;

      F in ( dom h) by A2, A13, ENUMSET1:def 4;

      then (h . F) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,F)) by A9, A15, A17, SETFAM_1:def 1;

      then

       A22: m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by A21, XBOOLE_0:def 4;

      m in ( EqClass (z,A)) by A4, A14, A15, A17, SETFAM_1:def 1;

      then m in (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (z,A))) by A22, XBOOLE_0:def 4;

      hence thesis by A5, XBOOLE_0:def 7;

    end;

    theorem :: BVFUNC14:41

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F be a_partition of Y, z,u be Element of Y, h be Function st G is independent & G = {A, B, C, D, E, F} & A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F & ( EqClass (z,(((C '/\' D) '/\' E) '/\' F))) = ( EqClass (u,(((C '/\' D) '/\' E) '/\' F))) holds ( EqClass (u,( CompF (A,G)))) meets ( EqClass (z,( CompF (B,G))))

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F be a_partition of Y;

      let z,u be Element of Y;

      let h be Function;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E, F} and

       A3: A <> B & A <> C & A <> D & A <> E & A <> F & B <> C & B <> D & B <> E & B <> F & C <> D & C <> E & C <> F & D <> E & D <> F & E <> F and

       A4: ( EqClass (z,(((C '/\' D) '/\' E) '/\' F))) = ( EqClass (u,(((C '/\' D) '/\' E) '/\' F)));

      set h = ((((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (F .--> ( EqClass (u,F)))) +* (A .--> ( EqClass (z,A))));

      

       A5: (h . A) = ( EqClass (z,A)) by A3, Th37;

      set I = ( EqClass (z,A)), GG = ( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F)));

      set H = ( EqClass (z,( CompF (B,G))));

      

       A6: (A '/\' (((C '/\' D) '/\' E) '/\' F)) = ((A '/\' ((C '/\' D) '/\' E)) '/\' F) by PARTIT1: 14

      .= (((A '/\' (C '/\' D)) '/\' E) '/\' F) by PARTIT1: 14

      .= ((((A '/\' C) '/\' D) '/\' E) '/\' F) by PARTIT1: 14;

      GG = (( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) /\ ( EqClass (u,F))) by Th1;

      then GG = ((( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by Th1;

      then GG = (((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by Th1;

      then

       A7: (GG /\ I) = (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (z,A))) by Th1;

      

       A8: (h . B) = ( EqClass (u,B)) by A3, Th37;

      

       A9: (h . F) = ( EqClass (u,F)) by A3, Th37;

      

       A10: (h . E) = ( EqClass (u,E)) by A3, Th37;

      

       A11: (h . D) = ( EqClass (u,D)) by A3, Th37;

      

       A12: (h . C) = ( EqClass (u,C)) by A3, Th37;

      

       A13: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F)} by Th39;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume

         A14: t in ( rng h);

        now

          per cases by A13, A14, ENUMSET1:def 4;

            case t = (h . A);

            hence thesis by A5;

          end;

            case t = (h . B);

            hence thesis by A8;

          end;

            case t = (h . C);

            hence thesis by A12;

          end;

            case t = (h . D);

            hence thesis by A11;

          end;

            case t = (h . E);

            hence thesis by A10;

          end;

            case t = (h . F);

            hence thesis by A9;

          end;

        end;

        hence thesis;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A15: ( dom h) = G by A2, Th38;

      then A in ( dom h) by A2, ENUMSET1:def 4;

      then

       A16: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A17: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume

         A18: d in G;

        now

          per cases by A2, A18, ENUMSET1:def 4;

            case d = A;

            hence thesis by A5;

          end;

            case d = B;

            hence thesis by A8;

          end;

            case d = C;

            hence thesis by A12;

          end;

            case d = D;

            hence thesis by A11;

          end;

            case d = E;

            hence thesis by A10;

          end;

            case d = F;

            hence thesis by A9;

          end;

        end;

        hence thesis;

      end;

      then ( Intersect FF) <> {} by A1, A15, BVFUNC_2:def 5;

      then

      consider m be object such that

       A19: m in ( Intersect FF) by XBOOLE_0:def 1;

      D in ( dom h) by A2, A15, ENUMSET1:def 4;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then m in (h . D) by A17, A19, SETFAM_1:def 1;

      then

       A20: m in ( EqClass (u,D)) by A3, Th37;

      C in ( dom h) by A2, A15, ENUMSET1:def 4;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then m in (h . C) by A17, A19, SETFAM_1:def 1;

      then

       A21: m in ( EqClass (u,C)) by A3, Th37;

      B in ( dom h) by A2, A15, ENUMSET1:def 4;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in (h . B) by A17, A19, SETFAM_1:def 1;

      then m in ( EqClass (u,B)) by A3, Th37;

      then m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A21, XBOOLE_0:def 4;

      then

       A22: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A20, XBOOLE_0:def 4;

      F in ( dom h) by A2, A15, ENUMSET1:def 4;

      then (h . F) in ( rng h) by FUNCT_1:def 3;

      then m in (h . F) by A17, A19, SETFAM_1:def 1;

      then

       A23: m in ( EqClass (u,F)) by A3, Th37;

      E in ( dom h) by A2, A15, ENUMSET1:def 4;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in (h . E) by A17, A19, SETFAM_1:def 1;

      then m in ( EqClass (u,E)) by A3, Th37;

      then m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A22, XBOOLE_0:def 4;

      then

       A24: m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by A23, XBOOLE_0:def 4;

      m in (h . A) by A16, A17, A19, SETFAM_1:def 1;

      then m in ( EqClass (z,A)) by A3, Th37;

      then (GG /\ I) <> {} by A7, A24, XBOOLE_0:def 4;

      then

      consider p be object such that

       A25: p in (GG /\ I) by XBOOLE_0:def 1;

      reconsider p as Element of Y by A25;

      

       A26: p in GG by A25, XBOOLE_0:def 4;

      set L = ( EqClass (z,(((C '/\' D) '/\' E) '/\' F)));

      GG = ( EqClass (u,(((B '/\' (C '/\' D)) '/\' E) '/\' F))) by PARTIT1: 14;

      then GG = ( EqClass (u,((B '/\' ((C '/\' D) '/\' E)) '/\' F))) by PARTIT1: 14;

      then GG = ( EqClass (u,(B '/\' (((C '/\' D) '/\' E) '/\' F)))) by PARTIT1: 14;

      then

       A27: GG c= L by A4, BVFUNC11: 3;

      

       A28: z in H by EQREL_1:def 6;

      set K = ( EqClass (p,(((C '/\' D) '/\' E) '/\' F)));

      p in K & p in I by A25, EQREL_1:def 6, XBOOLE_0:def 4;

      then

       A29: p in (I /\ K) by XBOOLE_0:def 4;

      then (I /\ K) in ( INTERSECTION (A,(((C '/\' D) '/\' E) '/\' F))) & not (I /\ K) in { {} } by SETFAM_1:def 5, TARSKI:def 1;

      then (I /\ K) in (( INTERSECTION (A,(((C '/\' D) '/\' E) '/\' F))) \ { {} }) by XBOOLE_0:def 5;

      then

       A30: (I /\ K) in (A '/\' (((C '/\' D) '/\' E) '/\' F)) by PARTIT1:def 4;

      p in ( EqClass (p,(((C '/\' D) '/\' E) '/\' F))) by EQREL_1:def 6;

      then K meets L by A27, A26, XBOOLE_0: 3;

      then K = L by EQREL_1: 41;

      then

       A31: z in K by EQREL_1:def 6;

      z in I by EQREL_1:def 6;

      then

       A32: z in (I /\ K) by A31, XBOOLE_0:def 4;

      ( CompF (B,G)) = ((((A '/\' C) '/\' D) '/\' E) '/\' F) by A2, A3, Th32;

      then

       A33: (I /\ K) = H or (I /\ K) misses H by A30, A6, EQREL_1:def 4;

      GG = ( EqClass (u,( CompF (A,G)))) by A2, A3, Th31;

      hence thesis by A29, A26, A32, A28, A33, XBOOLE_0: 3;

    end;

    begin

    reserve Y for non empty set,

G for Subset of ( PARTITIONS Y),

A,B,C,D,E,F,J,M for a_partition of Y,

x,x1,x2,x3,x4,x5,x6,x7,x8,x9 for set;

    theorem :: BVFUNC14:42

    

     Th42: G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J implies ( CompF (A,G)) = (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J)

    proof

      assume that

       A1: G = {A, B, C, D, E, F, J} and

       A2: A <> B and

       A3: A <> C and

       A4: A <> D & A <> E and

       A5: A <> F & A <> J and

       A6: B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J;

      

       A7: (G \ {A}) = (( {A} \/ {B, C, D, E, F, J}) \ {A}) by A1, ENUMSET1: 16;

      ( not D in {A}) & not E in {A} by A4, TARSKI:def 1;

      then

       A8: ( {D, E} \ {A}) = {D, E} by ZFMISC_1: 63;

      

       A9: ( not F in {A}) & not J in {A} by A5, TARSKI:def 1;

      

       A10: not C in {A} by A3, TARSKI:def 1;

      

       A11: not B in {A} by A2, TARSKI:def 1;

      ( {B, C, D, E, F, J} \ {A}) = (( {B} \/ {C, D, E, F, J}) \ {A}) by ENUMSET1: 11

      .= (( {B} \ {A}) \/ ( {C, D, E, F, J} \ {A})) by XBOOLE_1: 42

      .= ( {B} \/ ( {C, D, E, F, J} \ {A})) by A11, ZFMISC_1: 59

      .= ( {B} \/ (( {C} \/ {D, E, F, J}) \ {A})) by ENUMSET1: 7

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E, F, J} \ {A}))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ (( {D, E} \/ {F, J}) \ {A}))) by ENUMSET1: 5

      .= ( {B} \/ (( {C} \ {A}) \/ (( {D, E} \ {A}) \/ ( {F, J} \ {A})))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ {F, J}))) by A9, A8, ZFMISC_1: 63

      .= ( {B} \/ ( {C} \/ ( {D, E} \/ {F, J}))) by A10, ZFMISC_1: 59

      .= ( {B} \/ ( {C} \/ {D, E, F, J})) by ENUMSET1: 5

      .= ( {B} \/ {C, D, E, F, J}) by ENUMSET1: 7

      .= {B, C, D, E, F, J} by ENUMSET1: 11;

      

      then

       A12: (G \ {A}) = (( {A} \ {A}) \/ {B, C, D, E, F, J}) by A7, XBOOLE_1: 42

      .= ( {} \/ {B, C, D, E, F, J}) by XBOOLE_1: 37;

      

       A13: ( '/\' (G \ {A})) c= (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume x in ( '/\' (G \ {A}));

        then

        consider h be Function, FF be Subset-Family of Y such that

         A14: ( dom h) = (G \ {A}) and

         A15: ( rng h) = FF and

         A16: for d be set st d in (G \ {A}) holds (h . d) in d and

         A17: x = ( Intersect FF) and

         A18: x <> {} by BVFUNC_2:def 1;

        

         A19: C in (G \ {A}) by A12, ENUMSET1:def 4;

        then

         A20: (h . C) in C by A16;

        set mbcd = (((h . B) /\ (h . C)) /\ (h . D));

        

         A21: E in (G \ {A}) by A12, ENUMSET1:def 4;

        then

         A22: (h . E) in ( rng h) by A14, FUNCT_1:def 3;

        set mbc = ((h . B) /\ (h . C));

        

         A23: B in (G \ {A}) by A12, ENUMSET1:def 4;

        then (h . B) in B by A16;

        then

         A24: mbc in ( INTERSECTION (B,C)) by A20, SETFAM_1:def 5;

        

         A25: (h . B) in ( rng h) by A14, A23, FUNCT_1:def 3;

        then

         A26: ( Intersect FF) = ( meet ( rng h)) by A15, SETFAM_1:def 9;

        

         A27: (h . C) in ( rng h) by A14, A19, FUNCT_1:def 3;

        

         A28: F in (G \ {A}) by A12, ENUMSET1:def 4;

        then

         A29: (h . F) in ( rng h) by A14, FUNCT_1:def 3;

        set mbcdef = (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F));

        set mbcde = ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E));

        

         A30: not x in { {} } by A18, TARSKI:def 1;

        

         A31: J in (G \ {A}) by A12, ENUMSET1:def 4;

        then

         A32: (h . J) in ( rng h) by A14, FUNCT_1:def 3;

        

         A33: D in (G \ {A}) by A12, ENUMSET1:def 4;

        then

         A34: (h . D) in ( rng h) by A14, FUNCT_1:def 3;

        

         A35: xx c= ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J))

        proof

          let m be object;

          assume

           A36: m in xx;

          then m in (h . B) & m in (h . C) by A17, A25, A27, A26, SETFAM_1:def 1;

          then

           A37: m in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

          m in (h . D) by A17, A34, A26, A36, SETFAM_1:def 1;

          then

           A38: m in (((h . B) /\ (h . C)) /\ (h . D)) by A37, XBOOLE_0:def 4;

          m in (h . E) by A17, A22, A26, A36, SETFAM_1:def 1;

          then

           A39: m in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) by A38, XBOOLE_0:def 4;

          m in (h . F) by A17, A29, A26, A36, SETFAM_1:def 1;

          then

           A40: m in (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) by A39, XBOOLE_0:def 4;

          m in (h . J) by A17, A32, A26, A36, SETFAM_1:def 1;

          hence thesis by A40, XBOOLE_0:def 4;

        end;

        then mbcd <> {} by A18;

        then

         A41: not mbcd in { {} } by TARSKI:def 1;

        ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) c= xx

        proof

          

           A42: ( rng h) c= {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J)}

          proof

            let u be object;

            assume u in ( rng h);

            then

            consider x1 be object such that

             A43: x1 in ( dom h) and

             A44: u = (h . x1) by FUNCT_1:def 3;

            x1 = B or x1 = C or x1 = D or x1 = E or x1 = F or x1 = J by A12, A14, A43, ENUMSET1:def 4;

            hence thesis by A44, ENUMSET1:def 4;

          end;

          let m be object;

          assume

           A45: m in ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J));

          then

           A46: m in (h . J) by XBOOLE_0:def 4;

          

           A47: m in (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) by A45, XBOOLE_0:def 4;

          then

           A48: m in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) by XBOOLE_0:def 4;

          then

           A49: m in (h . E) by XBOOLE_0:def 4;

          

           A50: m in (((h . B) /\ (h . C)) /\ (h . D)) by A48, XBOOLE_0:def 4;

          then

           A51: m in (h . D) by XBOOLE_0:def 4;

          m in ((h . B) /\ (h . C)) by A50, XBOOLE_0:def 4;

          then

           A52: m in (h . B) & m in (h . C) by XBOOLE_0:def 4;

          m in (h . F) by A47, XBOOLE_0:def 4;

          then for y be set holds y in ( rng h) implies m in y by A52, A51, A49, A46, A42, ENUMSET1:def 4;

          hence thesis by A17, A25, A26, SETFAM_1:def 1;

        end;

        then

         A53: ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) = x by A35, XBOOLE_0:def 10;

        mbc <> {} by A18, A35;

        then not mbc in { {} } by TARSKI:def 1;

        then mbc in (( INTERSECTION (B,C)) \ { {} }) by A24, XBOOLE_0:def 5;

        then

         A54: mbc in (B '/\' C) by PARTIT1:def 4;

        (h . D) in D by A16, A33;

        then mbcd in ( INTERSECTION ((B '/\' C),D)) by A54, SETFAM_1:def 5;

        then mbcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A41, XBOOLE_0:def 5;

        then

         A55: mbcd in ((B '/\' C) '/\' D) by PARTIT1:def 4;

        mbcde <> {} by A18, A35;

        then

         A56: not mbcde in { {} } by TARSKI:def 1;

        (h . E) in E by A16, A21;

        then mbcde in ( INTERSECTION (((B '/\' C) '/\' D),E)) by A55, SETFAM_1:def 5;

        then mbcde in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A56, XBOOLE_0:def 5;

        then

         A57: mbcde in (((B '/\' C) '/\' D) '/\' E) by PARTIT1:def 4;

        mbcdef <> {} by A18, A35;

        then

         A58: not mbcdef in { {} } by TARSKI:def 1;

        (h . F) in F by A16, A28;

        then mbcdef in ( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) by A57, SETFAM_1:def 5;

        then mbcdef in (( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) \ { {} }) by A58, XBOOLE_0:def 5;

        then

         A59: mbcdef in ((((B '/\' C) '/\' D) '/\' E) '/\' F) by PARTIT1:def 4;

        (h . J) in J by A16, A31;

        then x in ( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) by A53, A59, SETFAM_1:def 5;

        then x in (( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) \ { {} }) by A30, XBOOLE_0:def 5;

        hence thesis by PARTIT1:def 4;

      end;

      

       A60: (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) c= ( '/\' (G \ {A}))

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A61: x in (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J);

        then

         A62: x <> {} by EQREL_1:def 4;

        x in (( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) \ { {} }) by A61, PARTIT1:def 4;

        then

        consider bcdef,j be set such that

         A63: bcdef in ((((B '/\' C) '/\' D) '/\' E) '/\' F) and

         A64: j in J and

         A65: x = (bcdef /\ j) by SETFAM_1:def 5;

        bcdef in (( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) \ { {} }) by A63, PARTIT1:def 4;

        then

        consider bcde,f be set such that

         A66: bcde in (((B '/\' C) '/\' D) '/\' E) and

         A67: f in F and

         A68: bcdef = (bcde /\ f) by SETFAM_1:def 5;

        bcde in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A66, PARTIT1:def 4;

        then

        consider bcd,e be set such that

         A69: bcd in ((B '/\' C) '/\' D) and

         A70: e in E and

         A71: bcde = (bcd /\ e) by SETFAM_1:def 5;

        bcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A69, PARTIT1:def 4;

        then

        consider bc,d be set such that

         A72: bc in (B '/\' C) and

         A73: d in D and

         A74: bcd = (bc /\ d) by SETFAM_1:def 5;

        bc in (( INTERSECTION (B,C)) \ { {} }) by A72, PARTIT1:def 4;

        then

        consider b,c be set such that

         A75: b in B & c in C and

         A76: bc = (b /\ c) by SETFAM_1:def 5;

        set h = ((((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e)) +* (F .--> f)) +* (J .--> j));

        

         A77: (h . B) = b by A6, Th37;

        

         A78: ( dom h) = {J, B, C, D, E, F} by Th38

        .= ( {J} \/ {B, C, D, E, F}) by ENUMSET1: 11

        .= {B, C, D, E, F, J} by ENUMSET1: 15;

        then D in ( dom h) by ENUMSET1:def 4;

        then

         A79: (h . D) in ( rng h) by FUNCT_1:def 3;

        

         A80: for p be set st p in (G \ {A}) holds (h . p) in p

        proof

          let p be set;

          assume p in (G \ {A});

          then p = B or p = C or p = D or p = E or p = F or p = J by A12, ENUMSET1:def 4;

          hence thesis by A6, A64, A67, A70, A73, A75, Th37;

        end;

        E in ( dom h) by A78, ENUMSET1:def 4;

        then

         A81: (h . E) in ( rng h) by FUNCT_1:def 3;

        C in ( dom h) by A78, ENUMSET1:def 4;

        then

         A82: (h . C) in ( rng h) by FUNCT_1:def 3;

        

         A83: (h . C) = c by A6, Th37;

        

         A84: ( rng h) c= {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J)}

        proof

          let t be object;

          assume t in ( rng h);

          then

          consider x1 be object such that

           A85: x1 in ( dom h) and

           A86: t = (h . x1) by FUNCT_1:def 3;

          x1 = B or x1 = C or x1 = D or x1 = E or x1 = F or x1 = J by A78, A85, ENUMSET1:def 4;

          hence thesis by A86, ENUMSET1:def 4;

        end;

        J in ( dom h) by A78, ENUMSET1:def 4;

        then

         A87: (h . J) in ( rng h) by FUNCT_1:def 3;

        F in ( dom h) by A78, ENUMSET1:def 4;

        then

         A88: (h . F) in ( rng h) by FUNCT_1:def 3;

        B in ( dom h) by A78, ENUMSET1:def 4;

        then

         A89: (h . B) in ( rng h) by FUNCT_1:def 3;

         {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J)} c= ( rng h) by A79, A89, A82, A81, A88, A87, ENUMSET1:def 4;

        then

         A90: ( rng h) = {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J)} by A84, XBOOLE_0:def 10;

        

         A91: (h . J) = j by A6, Th37;

        

         A92: (h . F) = f by A6, Th37;

        

         A93: (h . E) = e by A6, Th37;

        

         A94: (h . D) = d by A6, Th37;

        ( rng h) c= ( bool Y)

        proof

          let t be object;

          assume t in ( rng h);

          then t = (h . D) or t = (h . B) or t = (h . C) or t = (h . E) or t = (h . F) or t = (h . J) by A84, ENUMSET1:def 4;

          hence thesis by A64, A67, A70, A73, A75, A94, A77, A83, A93, A92, A91;

        end;

        then

        reconsider FF = ( rng h) as Subset-Family of Y;

        

         A95: ( dom ((((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e)) +* (F .--> f)) +* (J .--> j))) = {J, B, C, D, E, F} by Th38

        .= ( {J} \/ {B, C, D, E, F}) by ENUMSET1: 11

        .= {B, C, D, E, F, J} by ENUMSET1: 15;

        reconsider h as Function;

        

         A96: xx c= ( Intersect FF)

        proof

          let u be object;

          assume

           A97: u in xx;

          for y be set holds y in FF implies u in y

          proof

            let y be set;

            assume

             A98: y in FF;

            now

              per cases by A84, A98, ENUMSET1:def 4;

                case

                 A99: y = (h . D);

                u in (((d /\ ((b /\ c) /\ e)) /\ f) /\ j) by A65, A68, A71, A74, A76, A97, XBOOLE_1: 16;

                then u in ((d /\ (((b /\ c) /\ e) /\ f)) /\ j) by XBOOLE_1: 16;

                then u in (d /\ ((((b /\ c) /\ e) /\ f) /\ j)) by XBOOLE_1: 16;

                hence thesis by A94, A99, XBOOLE_0:def 4;

              end;

                case

                 A100: y = (h . B);

                u in ((((c /\ (d /\ b)) /\ e) /\ f) /\ j) by A65, A68, A71, A74, A76, A97, XBOOLE_1: 16;

                then u in (((c /\ ((d /\ b) /\ e)) /\ f) /\ j) by XBOOLE_1: 16;

                then u in (((c /\ ((d /\ e) /\ b)) /\ f) /\ j) by XBOOLE_1: 16;

                then u in ((c /\ (((d /\ e) /\ b) /\ f)) /\ j) by XBOOLE_1: 16;

                then u in (c /\ ((((d /\ e) /\ b) /\ f) /\ j)) by XBOOLE_1: 16;

                then u in (c /\ (((d /\ e) /\ (f /\ b)) /\ j)) by XBOOLE_1: 16;

                then u in (c /\ ((d /\ e) /\ ((f /\ b) /\ j))) by XBOOLE_1: 16;

                then u in (c /\ ((d /\ e) /\ (f /\ (j /\ b)))) by XBOOLE_1: 16;

                then u in ((c /\ (d /\ e)) /\ (f /\ (j /\ b))) by XBOOLE_1: 16;

                then u in (((c /\ (d /\ e)) /\ f) /\ (j /\ b)) by XBOOLE_1: 16;

                then u in ((((c /\ (d /\ e)) /\ f) /\ j) /\ b) by XBOOLE_1: 16;

                hence thesis by A77, A100, XBOOLE_0:def 4;

              end;

                case

                 A101: y = (h . C);

                u in ((((c /\ (d /\ b)) /\ e) /\ f) /\ j) by A65, A68, A71, A74, A76, A97, XBOOLE_1: 16;

                then u in (((c /\ ((d /\ b) /\ e)) /\ f) /\ j) by XBOOLE_1: 16;

                then u in (((c /\ ((d /\ e) /\ b)) /\ f) /\ j) by XBOOLE_1: 16;

                then u in ((c /\ (((d /\ e) /\ b) /\ f)) /\ j) by XBOOLE_1: 16;

                then u in (c /\ ((((d /\ e) /\ b) /\ f) /\ j)) by XBOOLE_1: 16;

                hence thesis by A83, A101, XBOOLE_0:def 4;

              end;

                case

                 A102: y = (h . E);

                u in ((((b /\ c) /\ d) /\ (f /\ e)) /\ j) by A65, A68, A71, A74, A76, A97, XBOOLE_1: 16;

                then u in (((b /\ c) /\ d) /\ ((f /\ e) /\ j)) by XBOOLE_1: 16;

                then u in (((b /\ c) /\ d) /\ ((f /\ j) /\ e)) by XBOOLE_1: 16;

                then u in ((((b /\ c) /\ d) /\ (f /\ j)) /\ e) by XBOOLE_1: 16;

                hence thesis by A93, A102, XBOOLE_0:def 4;

              end;

                case

                 A103: y = (h . F);

                u in (((((b /\ c) /\ d) /\ e) /\ j) /\ f) by A65, A68, A71, A74, A76, A97, XBOOLE_1: 16;

                hence thesis by A92, A103, XBOOLE_0:def 4;

              end;

                case y = (h . J);

                hence thesis by A65, A91, A97, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          then u in ( meet FF) by A90, SETFAM_1:def 1;

          hence thesis by A90, SETFAM_1:def 9;

        end;

        

         A104: ( Intersect FF) = ( meet ( rng h)) by A79, SETFAM_1:def 9;

        ( Intersect FF) c= xx

        proof

          let t be object;

          assume

           A105: t in ( Intersect FF);

          (h . C) in ( rng h) by A90, ENUMSET1:def 4;

          then

           A106: t in c by A83, A104, A105, SETFAM_1:def 1;

          (h . B) in ( rng h) by A90, ENUMSET1:def 4;

          then t in b by A77, A104, A105, SETFAM_1:def 1;

          then

           A107: t in (b /\ c) by A106, XBOOLE_0:def 4;

          (h . D) in ( rng h) by A90, ENUMSET1:def 4;

          then t in d by A94, A104, A105, SETFAM_1:def 1;

          then

           A108: t in ((b /\ c) /\ d) by A107, XBOOLE_0:def 4;

          (h . E) in ( rng h) by A90, ENUMSET1:def 4;

          then t in e by A93, A104, A105, SETFAM_1:def 1;

          then

           A109: t in (((b /\ c) /\ d) /\ e) by A108, XBOOLE_0:def 4;

          (h . F) in ( rng h) by A90, ENUMSET1:def 4;

          then t in f by A92, A104, A105, SETFAM_1:def 1;

          then

           A110: t in ((((b /\ c) /\ d) /\ e) /\ f) by A109, XBOOLE_0:def 4;

          (h . J) in ( rng h) by A90, ENUMSET1:def 4;

          then t in j by A91, A104, A105, SETFAM_1:def 1;

          hence thesis by A65, A68, A71, A74, A76, A110, XBOOLE_0:def 4;

        end;

        then x = ( Intersect FF) by A96, XBOOLE_0:def 10;

        hence thesis by A12, A95, A80, A62, BVFUNC_2:def 1;

      end;

      ( CompF (A,G)) = ( '/\' (G \ {A})) by BVFUNC_2:def 7;

      hence thesis by A60, A13, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:43

    

     Th43: G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J implies ( CompF (B,G)) = (((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J)

    proof

       {A, B, C, D, E, F, J} = ( {A, B} \/ {C, D, E, F, J}) by ENUMSET1: 17

      .= {B, A, C, D, E, F, J} by ENUMSET1: 17;

      hence thesis by Th42;

    end;

    theorem :: BVFUNC14:44

    

     Th44: G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J implies ( CompF (C,G)) = (((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J)

    proof

       {A, B, C, D, E, F, J} = ( {A, B, C} \/ {D, E, F, J}) by ENUMSET1: 18

      .= (( {A} \/ {B, C}) \/ {D, E, F, J}) by ENUMSET1: 2

      .= ( {A, C, B} \/ {D, E, F, J}) by ENUMSET1: 2

      .= (( {A, C} \/ {B}) \/ {D, E, F, J}) by ENUMSET1: 3

      .= ( {C, A, B} \/ {D, E, F, J}) by ENUMSET1: 3

      .= {C, A, B, D, E, F, J} by ENUMSET1: 18;

      hence thesis by Th42;

    end;

    theorem :: BVFUNC14:45

    

     Th45: G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J implies ( CompF (D,G)) = (((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J)

    proof

       {A, B, C, D, E, F, J} = ( {A, B} \/ {C, D, E, F, J}) by ENUMSET1: 17

      .= ( {A, B} \/ ( {C, D} \/ {E, F, J})) by ENUMSET1: 8

      .= ( {A, B} \/ {D, C, E, F, J}) by ENUMSET1: 8

      .= {A, B, D, C, E, F, J} by ENUMSET1: 17;

      hence thesis by Th44;

    end;

    theorem :: BVFUNC14:46

    

     Th46: G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J implies ( CompF (E,G)) = (((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J)

    proof

       {A, B, C, D, E, F, J} = ( {A, B, C} \/ {D, E, F, J}) by ENUMSET1: 18

      .= ( {A, B, C} \/ ( {D, E} \/ {F, J})) by ENUMSET1: 5

      .= ( {A, B, C} \/ {E, D, F, J}) by ENUMSET1: 5

      .= {A, B, C, E, D, F, J} by ENUMSET1: 18;

      hence thesis by Th45;

    end;

    theorem :: BVFUNC14:47

    

     Th47: G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J implies ( CompF (F,G)) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J)

    proof

       {A, B, C, D, E, F, J} = ( {A, B, C, D} \/ {E, F, J}) by ENUMSET1: 19

      .= ( {A, B, C, D} \/ {F, E, J}) by ENUMSET1: 58

      .= {A, B, C, D, F, E, J} by ENUMSET1: 19;

      hence thesis by Th46;

    end;

    theorem :: BVFUNC14:48

    G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J implies ( CompF (J,G)) = (((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F)

    proof

       {A, B, C, D, E, F, J} = ( {A, B, C, D, E} \/ {F, J}) by ENUMSET1: 20

      .= {A, B, C, D, E, J, F} by ENUMSET1: 20;

      hence thesis by Th47;

    end;

    theorem :: BVFUNC14:49

    

     Th49: for A,B,C,D,E,F,J be set, h be Function, A9,B9,C9,D9,E9,F9,J9 be set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J & h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9)) holds (h . A) = A9 & (h . B) = B9 & (h . C) = C9 & (h . D) = D9 & (h . E) = E9 & (h . F) = F9 & (h . J) = J9

    proof

      let A,B,C,D,E,F,J be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9 be set;

      assume that

       A1: A <> B and

       A2: A <> C and

       A3: A <> D and

       A4: A <> E and

       A5: A <> F and

       A6: A <> J and

       A7: B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J and

       A8: h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9));

      A in ( dom (A .--> A9)) by TARSKI:def 1;

      then

       A10: (h . A) = ((A .--> A9) . A) by A8, FUNCT_4: 13;

       not J in ( dom (A .--> A9)) by A6, TARSKI:def 1;

      

      then

       A11: (h . J) = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) . J) by A8, FUNCT_4: 11

      .= J9 by A7, Th37;

       not F in ( dom (A .--> A9)) by A5, TARSKI:def 1;

      

      then

       A12: (h . F) = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) . F) by A8, FUNCT_4: 11

      .= F9 by A7, Th37;

       not E in ( dom (A .--> A9)) by A4, TARSKI:def 1;

      

      then

       A13: (h . E) = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) . E) by A8, FUNCT_4: 11

      .= E9 by A7, Th37;

       not D in ( dom (A .--> A9)) by A3, TARSKI:def 1;

      

      then

       A14: (h . D) = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) . D) by A8, FUNCT_4: 11

      .= D9 by A7, Th37;

       not C in ( dom (A .--> A9)) by A2, TARSKI:def 1;

      

      then

       A15: (h . C) = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) . C) by A8, FUNCT_4: 11

      .= C9 by A7, Th37;

       not B in ( dom (A .--> A9)) by A1, TARSKI:def 1;

      

      then (h . B) = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) . B) by A8, FUNCT_4: 11

      .= B9 by A7, Th37;

      hence thesis by A10, A15, A14, A13, A12, A11, FUNCOP_1: 72;

    end;

    theorem :: BVFUNC14:50

    

     Th50: for A,B,C,D,E,F,J be set, h be Function, A9,B9,C9,D9,E9,F9,J9 be set st h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9)) holds ( dom h) = {A, B, C, D, E, F, J}

    proof

      let A,B,C,D,E,F,J be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9 be set;

      assume h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9));

      

      then ( dom h) = (( dom ((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9))) \/ ( dom (A .--> A9))) by FUNCT_4:def 1

      .= ( {J, B, C, D, E, F} \/ ( dom (A .--> A9))) by Th38

      .= (( {B, C, D, E, F} \/ {J}) \/ {A}) by ENUMSET1: 11

      .= ( {B, C, D, E, F, J} \/ {A}) by ENUMSET1: 15

      .= {A, B, C, D, E, F, J} by ENUMSET1: 16;

      hence thesis;

    end;

    theorem :: BVFUNC14:51

    

     Th51: for A,B,C,D,E,F,J be set, h be Function, A9,B9,C9,D9,E9,F9,J9 be set st h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9)) holds ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J)}

    proof

      let A,B,C,D,E,F,J be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9 be set;

      assume h = (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (A .--> A9));

      then

       A1: ( dom h) = {A, B, C, D, E, F, J} by Th50;

      then B in ( dom h) by ENUMSET1:def 5;

      then

       A2: (h . B) in ( rng h) by FUNCT_1:def 3;

      F in ( dom h) by A1, ENUMSET1:def 5;

      then

       A3: (h . F) in ( rng h) by FUNCT_1:def 3;

      E in ( dom h) by A1, ENUMSET1:def 5;

      then

       A4: (h . E) in ( rng h) by FUNCT_1:def 3;

      D in ( dom h) by A1, ENUMSET1:def 5;

      then

       A5: (h . D) in ( rng h) by FUNCT_1:def 3;

      C in ( dom h) by A1, ENUMSET1:def 5;

      then

       A6: (h . C) in ( rng h) by FUNCT_1:def 3;

      J in ( dom h) by A1, ENUMSET1:def 5;

      then

       A7: (h . J) in ( rng h) by FUNCT_1:def 3;

      

       A8: ( rng h) c= {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J)}

      proof

        let t be object;

        assume t in ( rng h);

        then

        consider x1 be object such that

         A9: x1 in ( dom h) and

         A10: t = (h . x1) by FUNCT_1:def 3;

        x1 = A or x1 = B or x1 = C or x1 = D or x1 = E or x1 = F or x1 = J by A1, A9, ENUMSET1:def 5;

        hence thesis by A10, ENUMSET1:def 5;

      end;

      A in ( dom h) by A1, ENUMSET1:def 5;

      then

       A11: (h . A) in ( rng h) by FUNCT_1:def 3;

       {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J)} c= ( rng h) by A11, A2, A6, A5, A4, A3, A7, ENUMSET1:def 5;

      hence thesis by A8, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:52

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J be a_partition of Y, z,u be Element of Y st G is independent & G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J holds ( EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) meets ( EqClass (z,A))

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J be a_partition of Y;

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E, F, J} and

       A3: A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J;

      set h = (((((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (F .--> ( EqClass (u,F)))) +* (J .--> ( EqClass (u,J)))) +* (A .--> ( EqClass (z,A))));

      

       A4: (h . A) = ( EqClass (z,A)) by A3, Th49;

      reconsider GG = ( EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) as set;

      reconsider I = ( EqClass (z,A)) as set;

      GG = (( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F))) /\ ( EqClass (u,J))) by Th1;

      then GG = ((( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by Th1;

      then GG = (((( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by Th1;

      then GG = ((((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by Th1;

      then

       A5: (GG /\ I) = ((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (z,A))) by Th1;

      

       A6: (h . B) = ( EqClass (u,B)) by A3, Th49;

      

       A7: (h . F) = ( EqClass (u,F)) by A3, Th49;

      

       A8: (h . E) = ( EqClass (u,E)) by A3, Th49;

      

       A9: (h . J) = ( EqClass (u,J)) by A3, Th49;

      

       A10: (h . D) = ( EqClass (u,D)) by A3, Th49;

      

       A11: (h . C) = ( EqClass (u,C)) by A3, Th49;

      

       A12: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J)} by Th51;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume t in ( rng h);

        then t = (h . A) or t = (h . B) or t = (h . C) or t = (h . D) or t = (h . E) or t = (h . F) or t = (h . J) by A12, ENUMSET1:def 5;

        hence thesis by A4, A6, A11, A10, A8, A7, A9;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A13: ( dom h) = G by A2, Th50;

      then A in ( dom h) by A2, ENUMSET1:def 5;

      then

       A14: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A15: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume d in G;

        then d = A or d = B or d = C or d = D or d = E or d = F or d = J by A2, ENUMSET1:def 5;

        hence thesis by A4, A6, A11, A10, A8, A7, A9;

      end;

      then ( Intersect FF) <> {} by A1, A13, BVFUNC_2:def 5;

      then

      consider m be object such that

       A16: m in ( Intersect FF) by XBOOLE_0:def 1;

      C in ( dom h) by A2, A13, ENUMSET1:def 5;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A17: m in ( EqClass (u,C)) by A11, A15, A16, SETFAM_1:def 1;

      B in ( dom h) by A2, A13, ENUMSET1:def 5;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,B)) by A6, A15, A16, SETFAM_1:def 1;

      then

       A18: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A17, XBOOLE_0:def 4;

      D in ( dom h) by A2, A13, ENUMSET1:def 5;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,D)) by A10, A15, A16, SETFAM_1:def 1;

      then

       A19: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A18, XBOOLE_0:def 4;

      E in ( dom h) by A2, A13, ENUMSET1:def 5;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,E)) by A8, A15, A16, SETFAM_1:def 1;

      then

       A20: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A19, XBOOLE_0:def 4;

      F in ( dom h) by A2, A13, ENUMSET1:def 5;

      then (h . F) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,F)) by A7, A15, A16, SETFAM_1:def 1;

      then

       A21: m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by A20, XBOOLE_0:def 4;

      J in ( dom h) by A2, A13, ENUMSET1:def 5;

      then (h . J) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,J)) by A9, A15, A16, SETFAM_1:def 1;

      then

       A22: m in (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by A21, XBOOLE_0:def 4;

      m in ( EqClass (z,A)) by A4, A14, A15, A16, SETFAM_1:def 1;

      then m in (( EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) /\ ( EqClass (z,A))) by A5, A22, XBOOLE_0:def 4;

      hence thesis by XBOOLE_0:def 7;

    end;

    theorem :: BVFUNC14:53

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J be a_partition of Y, z,u be Element of Y st G is independent & G = {A, B, C, D, E, F, J} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J & ( EqClass (z,((((C '/\' D) '/\' E) '/\' F) '/\' J))) = ( EqClass (u,((((C '/\' D) '/\' E) '/\' F) '/\' J))) holds ( EqClass (u,( CompF (A,G)))) meets ( EqClass (z,( CompF (B,G))))

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J be a_partition of Y;

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E, F, J} and

       A3: A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & C <> D & C <> E & C <> F & C <> J & D <> E & D <> F & D <> J & E <> F & E <> J & F <> J and

       A4: ( EqClass (z,((((C '/\' D) '/\' E) '/\' F) '/\' J))) = ( EqClass (u,((((C '/\' D) '/\' E) '/\' F) '/\' J)));

      set h = (((((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (F .--> ( EqClass (u,F)))) +* (J .--> ( EqClass (u,J)))) +* (A .--> ( EqClass (z,A))));

      

       A5: (h . A) = ( EqClass (z,A)) by A3, Th49;

      reconsider L = ( EqClass (z,((((C '/\' D) '/\' E) '/\' F) '/\' J))) as set;

      reconsider GG = ( EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) as set;

      reconsider I = ( EqClass (z,A)) as set;

      GG = (( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F))) /\ ( EqClass (u,J))) by Th1;

      then GG = ((( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by Th1;

      then GG = (((( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by Th1;

      then GG = ((((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by Th1;

      then

       A6: (GG /\ I) = ((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (z,A))) by Th1;

      

       A7: ( CompF (A,G)) = (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) by A2, A3, Th42;

      reconsider HH = ( EqClass (z,( CompF (B,G)))) as set;

      

       A8: z in HH by EQREL_1:def 6;

      

       A9: (A '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J)) = ((A '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J) by PARTIT1: 14

      .= (((A '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J) by PARTIT1: 14

      .= ((((A '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J) by PARTIT1: 14

      .= (((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) by PARTIT1: 14;

      

       A10: (h . B) = ( EqClass (u,B)) by A3, Th49;

      

       A11: (h . F) = ( EqClass (u,F)) by A3, Th49;

      

       A12: (h . E) = ( EqClass (u,E)) by A3, Th49;

      

       A13: (h . J) = ( EqClass (u,J)) by A3, Th49;

      

       A14: (h . D) = ( EqClass (u,D)) by A3, Th49;

      

       A15: (h . C) = ( EqClass (u,C)) by A3, Th49;

      

       A16: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J)} by Th51;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume t in ( rng h);

        then t = (h . A) or t = (h . B) or t = (h . C) or t = (h . D) or t = (h . E) or t = (h . F) or t = (h . J) by A16, ENUMSET1:def 5;

        hence thesis by A5, A10, A15, A14, A12, A11, A13;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A17: ( dom h) = G by A2, Th50;

      then A in ( dom h) by A2, ENUMSET1:def 5;

      then

       A18: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A19: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume d in G;

        then d = A or d = B or d = C or d = D or d = E or d = F or d = J by A2, ENUMSET1:def 5;

        hence thesis by A5, A10, A15, A14, A12, A11, A13;

      end;

      then ( Intersect FF) <> {} by A1, A17, BVFUNC_2:def 5;

      then

      consider m be object such that

       A20: m in ( Intersect FF) by XBOOLE_0:def 1;

      C in ( dom h) by A2, A17, ENUMSET1:def 5;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A21: m in ( EqClass (u,C)) by A15, A19, A20, SETFAM_1:def 1;

      B in ( dom h) by A2, A17, ENUMSET1:def 5;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,B)) by A10, A19, A20, SETFAM_1:def 1;

      then

       A22: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A21, XBOOLE_0:def 4;

      D in ( dom h) by A2, A17, ENUMSET1:def 5;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,D)) by A14, A19, A20, SETFAM_1:def 1;

      then

       A23: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A22, XBOOLE_0:def 4;

      E in ( dom h) by A2, A17, ENUMSET1:def 5;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,E)) by A12, A19, A20, SETFAM_1:def 1;

      then

       A24: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A23, XBOOLE_0:def 4;

      F in ( dom h) by A2, A17, ENUMSET1:def 5;

      then (h . F) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,F)) by A11, A19, A20, SETFAM_1:def 1;

      then

       A25: m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by A24, XBOOLE_0:def 4;

      J in ( dom h) by A2, A17, ENUMSET1:def 5;

      then (h . J) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,J)) by A13, A19, A20, SETFAM_1:def 1;

      then

       A26: m in (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by A25, XBOOLE_0:def 4;

      m in ( EqClass (z,A)) by A5, A18, A19, A20, SETFAM_1:def 1;

      then

       A27: (GG /\ I) <> {} by A6, A26, XBOOLE_0:def 4;

      then

      consider p be object such that

       A28: p in (GG /\ I) by XBOOLE_0:def 1;

      (GG /\ I) in ( INTERSECTION (A,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) & not (GG /\ I) in { {} } by A27, SETFAM_1:def 5, TARSKI:def 1;

      then (GG /\ I) in (( INTERSECTION (A,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) \ { {} }) by XBOOLE_0:def 5;

      then (GG /\ I) in (A '/\' (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J)) by PARTIT1:def 4;

      then

      reconsider p as Element of Y by A28;

      

       A29: p in GG by A28, XBOOLE_0:def 4;

      reconsider K = ( EqClass (p,((((C '/\' D) '/\' E) '/\' F) '/\' J))) as set;

      

       A30: p in ( EqClass (p,((((C '/\' D) '/\' E) '/\' F) '/\' J))) by EQREL_1:def 6;

      GG = ( EqClass (u,((((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J))) by PARTIT1: 14;

      then GG = ( EqClass (u,(((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J))) by PARTIT1: 14;

      then GG = ( EqClass (u,((B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J))) by PARTIT1: 14;

      then GG = ( EqClass (u,(B '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J)))) by PARTIT1: 14;

      then GG c= L by A4, BVFUNC11: 3;

      then K meets L by A29, A30, XBOOLE_0: 3;

      then K = L by EQREL_1: 41;

      then

       A31: z in K by EQREL_1:def 6;

      p in K & p in I by A28, EQREL_1:def 6, XBOOLE_0:def 4;

      then

       A32: p in (I /\ K) by XBOOLE_0:def 4;

      then (I /\ K) in ( INTERSECTION (A,((((C '/\' D) '/\' E) '/\' F) '/\' J))) & not (I /\ K) in { {} } by SETFAM_1:def 5, TARSKI:def 1;

      then (I /\ K) in (( INTERSECTION (A,((((C '/\' D) '/\' E) '/\' F) '/\' J))) \ { {} }) by XBOOLE_0:def 5;

      then

       A33: (I /\ K) in (A '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J)) by PARTIT1:def 4;

      z in I by EQREL_1:def 6;

      then z in (I /\ K) by A31, XBOOLE_0:def 4;

      then

       A34: (I /\ K) meets HH by A8, XBOOLE_0: 3;

      ( CompF (B,G)) = (((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) by A2, A3, Th43;

      then p in HH by A32, A33, A34, A9, EQREL_1:def 4;

      hence thesis by A7, A29, XBOOLE_0: 3;

    end;

    theorem :: BVFUNC14:54

    

     Th54: G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M implies ( CompF (A,G)) = ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)

    proof

      assume that

       A1: G = {A, B, C, D, E, F, J, M} and

       A2: A <> B and

       A3: A <> C and

       A4: A <> D & A <> E and

       A5: A <> F & A <> J and

       A6: A <> M and

       A7: B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M;

      

       A8: not B in {A} by A2, TARSKI:def 1;

      (G \ {A}) = (( {A} \/ {B, C, D, E, F, J, M}) \ {A}) by A1, ENUMSET1: 22;

      then

       A9: (G \ {A}) = (( {A} \ {A}) \/ ( {B, C, D, E, F, J, M} \ {A})) by XBOOLE_1: 42;

      

       A10: ( not D in {A}) & not E in {A} by A4, TARSKI:def 1;

      

       A11: not C in {A} by A3, TARSKI:def 1;

      

       A12: not M in {A} by A6, TARSKI:def 1;

      

       A13: ( not F in {A}) & not J in {A} by A5, TARSKI:def 1;

      ( {B, C, D, E, F, J, M} \ {A}) = (( {B} \/ {C, D, E, F, J, M}) \ {A}) by ENUMSET1: 16

      .= (( {B} \ {A}) \/ ( {C, D, E, F, J, M} \ {A})) by XBOOLE_1: 42

      .= ( {B} \/ ( {C, D, E, F, J, M} \ {A})) by A8, ZFMISC_1: 59

      .= ( {B} \/ (( {C} \/ {D, E, F, J, M}) \ {A})) by ENUMSET1: 11

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E, F, J, M} \ {A}))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ (( {D, E} \/ {F, J, M}) \ {A}))) by ENUMSET1: 8

      .= ( {B} \/ (( {C} \ {A}) \/ (( {D, E} \ {A}) \/ ( {F, J, M} \ {A})))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ ( {F, J, M} \ {A})))) by A10, ZFMISC_1: 63

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ (( {F, J} \/ {M}) \ {A})))) by ENUMSET1: 3

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ (( {F, J} \ {A}) \/ ( {M} \ {A}))))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ ( {F, J} \/ ( {M} \ {A}))))) by A13, ZFMISC_1: 63

      .= ( {B} \/ ( {C} \/ ( {D, E} \/ ( {F, J} \/ ( {M} \ {A}))))) by A11, ZFMISC_1: 59

      .= ( {B} \/ ( {C} \/ ( {D, E} \/ ( {F, J} \/ {M})))) by A12, ZFMISC_1: 59

      .= ( {B} \/ ( {C} \/ ( {D, E} \/ {F, J, M}))) by ENUMSET1: 3

      .= ( {B} \/ ( {C} \/ {D, E, F, J, M})) by ENUMSET1: 8

      .= ( {B} \/ {C, D, E, F, J, M}) by ENUMSET1: 11

      .= {B, C, D, E, F, J, M} by ENUMSET1: 16;

      then

       A14: (G \ {A}) = ( {} \/ {B, C, D, E, F, J, M}) by A9, XBOOLE_1: 37;

      

       A15: ( '/\' (G \ {A})) c= ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume x in ( '/\' (G \ {A}));

        then

        consider h be Function, FF be Subset-Family of Y such that

         A16: ( dom h) = (G \ {A}) and

         A17: ( rng h) = FF and

         A18: for d be set st d in (G \ {A}) holds (h . d) in d and

         A19: x = ( Intersect FF) and

         A20: x <> {} by BVFUNC_2:def 1;

        

         A21: C in (G \ {A}) by A14, ENUMSET1:def 5;

        then

         A22: (h . C) in C by A18;

        set mbcdef = (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F));

        set mbcde = ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E));

        set mbcdefj = ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J));

        

         A23: not x in { {} } by A20, TARSKI:def 1;

        

         A24: J in (G \ {A}) by A14, ENUMSET1:def 5;

        then

         A25: (h . J) in ( rng h) by A16, FUNCT_1:def 3;

        set mbc = ((h . B) /\ (h . C));

        

         A26: B in (G \ {A}) by A14, ENUMSET1:def 5;

        then (h . B) in B by A18;

        then

         A27: mbc in ( INTERSECTION (B,C)) by A22, SETFAM_1:def 5;

        

         A28: (h . B) in ( rng h) by A16, A26, FUNCT_1:def 3;

        then

         A29: ( Intersect FF) = ( meet ( rng h)) by A17, SETFAM_1:def 9;

        

         A30: (h . C) in ( rng h) by A16, A21, FUNCT_1:def 3;

        

         A31: F in (G \ {A}) by A14, ENUMSET1:def 5;

        then

         A32: (h . F) in ( rng h) by A16, FUNCT_1:def 3;

        set mbcd = (((h . B) /\ (h . C)) /\ (h . D));

        

         A33: E in (G \ {A}) by A14, ENUMSET1:def 5;

        then

         A34: (h . E) in ( rng h) by A16, FUNCT_1:def 3;

        

         A35: M in (G \ {A}) by A14, ENUMSET1:def 5;

        then

         A36: (h . M) in ( rng h) by A16, FUNCT_1:def 3;

        

         A37: D in (G \ {A}) by A14, ENUMSET1:def 5;

        then

         A38: (h . D) in ( rng h) by A16, FUNCT_1:def 3;

        

         A39: xx c= (((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M))

        proof

          let p be object;

          assume

           A40: p in xx;

          then p in (h . B) & p in (h . C) by A19, A28, A30, A29, SETFAM_1:def 1;

          then

           A41: p in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

          p in (h . D) by A19, A38, A29, A40, SETFAM_1:def 1;

          then

           A42: p in (((h . B) /\ (h . C)) /\ (h . D)) by A41, XBOOLE_0:def 4;

          p in (h . E) by A19, A34, A29, A40, SETFAM_1:def 1;

          then

           A43: p in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) by A42, XBOOLE_0:def 4;

          p in (h . F) by A19, A32, A29, A40, SETFAM_1:def 1;

          then

           A44: p in (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) by A43, XBOOLE_0:def 4;

          p in (h . J) by A19, A25, A29, A40, SETFAM_1:def 1;

          then

           A45: p in ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) by A44, XBOOLE_0:def 4;

          p in (h . M) by A19, A36, A29, A40, SETFAM_1:def 1;

          hence thesis by A45, XBOOLE_0:def 4;

        end;

        then mbcd <> {} by A20;

        then

         A46: not mbcd in { {} } by TARSKI:def 1;

        (((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M)) c= xx

        proof

          

           A47: ( rng h) c= {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)}

          proof

            let u be object;

            assume u in ( rng h);

            then

            consider x1 be object such that

             A48: x1 in ( dom h) and

             A49: u = (h . x1) by FUNCT_1:def 3;

            x1 = B or x1 = C or x1 = D or x1 = E or x1 = F or x1 = J or x1 = M by A14, A16, A48, ENUMSET1:def 5;

            hence thesis by A49, ENUMSET1:def 5;

          end;

          let p be object;

          assume

           A50: p in (((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M));

          then

           A51: p in (h . M) by XBOOLE_0:def 4;

          

           A52: p in ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) by A50, XBOOLE_0:def 4;

          then

           A53: p in (h . J) by XBOOLE_0:def 4;

          

           A54: p in (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) by A52, XBOOLE_0:def 4;

          then

           A55: p in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) by XBOOLE_0:def 4;

          then

           A56: p in (h . E) by XBOOLE_0:def 4;

          

           A57: p in (((h . B) /\ (h . C)) /\ (h . D)) by A55, XBOOLE_0:def 4;

          then

           A58: p in (h . D) by XBOOLE_0:def 4;

          p in ((h . B) /\ (h . C)) by A57, XBOOLE_0:def 4;

          then

           A59: p in (h . B) & p in (h . C) by XBOOLE_0:def 4;

          p in (h . F) by A54, XBOOLE_0:def 4;

          then for y be set holds y in ( rng h) implies p in y by A59, A58, A56, A53, A51, A47, ENUMSET1:def 5;

          hence thesis by A19, A28, A29, SETFAM_1:def 1;

        end;

        then

         A60: (((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M)) = x by A39, XBOOLE_0:def 10;

        mbc <> {} by A20, A39;

        then not mbc in { {} } by TARSKI:def 1;

        then mbc in (( INTERSECTION (B,C)) \ { {} }) by A27, XBOOLE_0:def 5;

        then

         A61: mbc in (B '/\' C) by PARTIT1:def 4;

        (h . D) in D by A18, A37;

        then mbcd in ( INTERSECTION ((B '/\' C),D)) by A61, SETFAM_1:def 5;

        then mbcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A46, XBOOLE_0:def 5;

        then

         A62: mbcd in ((B '/\' C) '/\' D) by PARTIT1:def 4;

        mbcde <> {} by A20, A39;

        then

         A63: not mbcde in { {} } by TARSKI:def 1;

        (h . E) in E by A18, A33;

        then mbcde in ( INTERSECTION (((B '/\' C) '/\' D),E)) by A62, SETFAM_1:def 5;

        then mbcde in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A63, XBOOLE_0:def 5;

        then

         A64: mbcde in (((B '/\' C) '/\' D) '/\' E) by PARTIT1:def 4;

        mbcdef <> {} by A20, A39;

        then

         A65: not mbcdef in { {} } by TARSKI:def 1;

        (h . F) in F by A18, A31;

        then mbcdef in ( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) by A64, SETFAM_1:def 5;

        then mbcdef in (( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) \ { {} }) by A65, XBOOLE_0:def 5;

        then

         A66: mbcdef in ((((B '/\' C) '/\' D) '/\' E) '/\' F) by PARTIT1:def 4;

        mbcdefj <> {} by A20, A39;

        then

         A67: not mbcdefj in { {} } by TARSKI:def 1;

        (h . J) in J by A18, A24;

        then mbcdefj in ( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) by A66, SETFAM_1:def 5;

        then mbcdefj in (( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) \ { {} }) by A67, XBOOLE_0:def 5;

        then

         A68: mbcdefj in (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) by PARTIT1:def 4;

        (h . M) in M by A18, A35;

        then x in ( INTERSECTION ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J),M)) by A60, A68, SETFAM_1:def 5;

        then x in (( INTERSECTION ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J),M)) \ { {} }) by A23, XBOOLE_0:def 5;

        hence thesis by PARTIT1:def 4;

      end;

      

       A69: ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) c= ( '/\' (G \ {A}))

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A70: x in ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M);

        then

         A71: x <> {} by EQREL_1:def 4;

        x in (( INTERSECTION ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J),M)) \ { {} }) by A70, PARTIT1:def 4;

        then

        consider bcdefj,m be set such that

         A72: bcdefj in (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) and

         A73: m in M and

         A74: x = (bcdefj /\ m) by SETFAM_1:def 5;

        bcdefj in (( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) \ { {} }) by A72, PARTIT1:def 4;

        then

        consider bcdef,j be set such that

         A75: bcdef in ((((B '/\' C) '/\' D) '/\' E) '/\' F) and

         A76: j in J and

         A77: bcdefj = (bcdef /\ j) by SETFAM_1:def 5;

        bcdef in (( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) \ { {} }) by A75, PARTIT1:def 4;

        then

        consider bcde,f be set such that

         A78: bcde in (((B '/\' C) '/\' D) '/\' E) and

         A79: f in F and

         A80: bcdef = (bcde /\ f) by SETFAM_1:def 5;

        bcde in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A78, PARTIT1:def 4;

        then

        consider bcd,e be set such that

         A81: bcd in ((B '/\' C) '/\' D) and

         A82: e in E and

         A83: bcde = (bcd /\ e) by SETFAM_1:def 5;

        bcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A81, PARTIT1:def 4;

        then

        consider bc,d be set such that

         A84: bc in (B '/\' C) and

         A85: d in D and

         A86: bcd = (bc /\ d) by SETFAM_1:def 5;

        bc in (( INTERSECTION (B,C)) \ { {} }) by A84, PARTIT1:def 4;

        then

        consider b,c be set such that

         A87: b in B & c in C and

         A88: bc = (b /\ c) by SETFAM_1:def 5;

        set h = (((((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e)) +* (F .--> f)) +* (J .--> j)) +* (M .--> m));

        

         A89: (h . B) = b by A7, Th49;

        

         A90: ( dom (((((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e)) +* (F .--> f)) +* (J .--> j)) +* (M .--> m))) = {M, B, C, D, E, F, J} by Th50

        .= ( {M} \/ {B, C, D, E, F, J}) by ENUMSET1: 16

        .= {B, C, D, E, F, J, M} by ENUMSET1: 21;

        then

         A91: E in ( dom h) & F in ( dom h) by ENUMSET1:def 5;

        

         A92: D in ( dom h) by A90, ENUMSET1:def 5;

        then

         A93: (h . D) in ( rng h) by FUNCT_1:def 3;

        

         A94: J in ( dom h) & M in ( dom h) by A90, ENUMSET1:def 5;

        

         A95: B in ( dom h) & C in ( dom h) by A90, ENUMSET1:def 5;

        

         A96: {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} c= ( rng h)

        proof

          let t be object;

          assume t in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)};

          then t = (h . D) or t = (h . B) or t = (h . C) or t = (h . E) or t = (h . F) or t = (h . J) or t = (h . M) by ENUMSET1:def 5;

          hence thesis by A92, A95, A91, A94, FUNCT_1:def 3;

        end;

        

         A97: for p be set st p in (G \ {A}) holds (h . p) in p

        proof

          let p be set;

          assume p in (G \ {A});

          then p = D or p = B or p = C or p = E or p = F or p = J or p = M by A14, ENUMSET1:def 5;

          hence thesis by A7, A73, A76, A79, A82, A85, A87, Th49;

        end;

        

         A98: (h . C) = c by A7, Th49;

        

         A99: (h . M) = m by A7, Th49;

        

         A100: (h . J) = j by A7, Th49;

        

         A101: (h . F) = f by A7, Th49;

        

         A102: ( rng h) c= {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)}

        proof

          let t be object;

          assume t in ( rng h);

          then

          consider x1 be object such that

           A103: x1 in ( dom h) and

           A104: t = (h . x1) by FUNCT_1:def 3;

          x1 = D or x1 = B or x1 = C or x1 = E or x1 = F or x1 = J or x1 = M by A90, A103, ENUMSET1:def 5;

          hence thesis by A104, ENUMSET1:def 5;

        end;

        then

         A105: ( rng h) = {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by A96, XBOOLE_0:def 10;

        

         A106: (h . E) = e by A7, Th49;

        

         A107: (h . D) = d by A7, Th49;

        ( rng h) c= ( bool Y)

        proof

          let t be object;

          assume t in ( rng h);

          then t = (h . D) or t = (h . B) or t = (h . C) or t = (h . E) or t = (h . F) or t = (h . J) or t = (h . M) by A102, ENUMSET1:def 5;

          hence thesis by A73, A76, A79, A82, A85, A87, A107, A89, A98, A106, A101, A100, A99;

        end;

        then

        reconsider FF = ( rng h) as Subset-Family of Y;

        reconsider h as Function;

        

         A108: xx c= ( Intersect FF)

        proof

          let u be object;

          assume

           A109: u in xx;

          for y be set holds y in FF implies u in y

          proof

            let y be set;

            assume

             A110: y in FF;

            now

              per cases by A102, A110, ENUMSET1:def 5;

                case

                 A111: y = (h . D);

                u in ((((d /\ ((b /\ c) /\ e)) /\ f) /\ j) /\ m) by A74, A77, A80, A83, A86, A88, A109, XBOOLE_1: 16;

                then u in (((d /\ (((b /\ c) /\ e) /\ f)) /\ j) /\ m) by XBOOLE_1: 16;

                then u in ((d /\ ((((b /\ c) /\ e) /\ f) /\ j)) /\ m) by XBOOLE_1: 16;

                then u in (d /\ (((((b /\ c) /\ e) /\ f) /\ j) /\ m)) by XBOOLE_1: 16;

                hence thesis by A107, A111, XBOOLE_0:def 4;

              end;

                case

                 A112: y = (h . B);

                u in (((((c /\ (d /\ b)) /\ e) /\ f) /\ j) /\ m) by A74, A77, A80, A83, A86, A88, A109, XBOOLE_1: 16;

                then u in ((((c /\ ((d /\ b) /\ e)) /\ f) /\ j) /\ m) by XBOOLE_1: 16;

                then u in ((((c /\ ((d /\ e) /\ b)) /\ f) /\ j) /\ m) by XBOOLE_1: 16;

                then u in (((c /\ (((d /\ e) /\ b) /\ f)) /\ j) /\ m) by XBOOLE_1: 16;

                then u in ((c /\ ((((d /\ e) /\ b) /\ f) /\ j)) /\ m) by XBOOLE_1: 16;

                then u in ((c /\ (((d /\ e) /\ (f /\ b)) /\ j)) /\ m) by XBOOLE_1: 16;

                then u in ((c /\ ((d /\ e) /\ ((f /\ b) /\ j))) /\ m) by XBOOLE_1: 16;

                then u in ((c /\ ((d /\ e) /\ (f /\ (j /\ b)))) /\ m) by XBOOLE_1: 16;

                then u in (((c /\ (d /\ e)) /\ (f /\ (j /\ b))) /\ m) by XBOOLE_1: 16;

                then u in ((((c /\ (d /\ e)) /\ f) /\ (j /\ b)) /\ m) by XBOOLE_1: 16;

                then u in (((((c /\ (d /\ e)) /\ f) /\ j) /\ b) /\ m) by XBOOLE_1: 16;

                then u in (((((c /\ (d /\ e)) /\ f) /\ j) /\ m) /\ b) by XBOOLE_1: 16;

                hence thesis by A89, A112, XBOOLE_0:def 4;

              end;

                case

                 A113: y = (h . C);

                u in (((((c /\ (d /\ b)) /\ e) /\ f) /\ j) /\ m) by A74, A77, A80, A83, A86, A88, A109, XBOOLE_1: 16;

                then u in ((((c /\ ((d /\ b) /\ e)) /\ f) /\ j) /\ m) by XBOOLE_1: 16;

                then u in ((((c /\ ((d /\ e) /\ b)) /\ f) /\ j) /\ m) by XBOOLE_1: 16;

                then u in (((c /\ (((d /\ e) /\ b) /\ f)) /\ j) /\ m) by XBOOLE_1: 16;

                then u in ((c /\ ((((d /\ e) /\ b) /\ f) /\ j)) /\ m) by XBOOLE_1: 16;

                then u in (c /\ (((((d /\ e) /\ b) /\ f) /\ j) /\ m)) by XBOOLE_1: 16;

                hence thesis by A98, A113, XBOOLE_0:def 4;

              end;

                case

                 A114: y = (h . E);

                u in (((((b /\ c) /\ d) /\ (f /\ e)) /\ j) /\ m) by A74, A77, A80, A83, A86, A88, A109, XBOOLE_1: 16;

                then u in ((((b /\ c) /\ d) /\ ((f /\ e) /\ j)) /\ m) by XBOOLE_1: 16;

                then u in ((((b /\ c) /\ d) /\ ((f /\ j) /\ e)) /\ m) by XBOOLE_1: 16;

                then u in (((((b /\ c) /\ d) /\ (f /\ j)) /\ e) /\ m) by XBOOLE_1: 16;

                then u in (((((b /\ c) /\ d) /\ (f /\ j)) /\ m) /\ e) by XBOOLE_1: 16;

                hence thesis by A106, A114, XBOOLE_0:def 4;

              end;

                case

                 A115: y = (h . F);

                u in ((((((b /\ c) /\ d) /\ e) /\ j) /\ f) /\ m) by A74, A77, A80, A83, A86, A88, A109, XBOOLE_1: 16;

                then u in ((((((b /\ c) /\ d) /\ e) /\ j) /\ m) /\ f) by XBOOLE_1: 16;

                hence thesis by A101, A115, XBOOLE_0:def 4;

              end;

                case

                 A116: y = (h . J);

                u in ((((((b /\ c) /\ d) /\ e) /\ f) /\ m) /\ j) by A74, A77, A80, A83, A86, A88, A109, XBOOLE_1: 16;

                hence thesis by A100, A116, XBOOLE_0:def 4;

              end;

                case y = (h . M);

                hence thesis by A74, A99, A109, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          then u in ( meet FF) by A105, SETFAM_1:def 1;

          hence thesis by A105, SETFAM_1:def 9;

        end;

        

         A117: ( Intersect FF) = ( meet ( rng h)) by A93, SETFAM_1:def 9;

        ( Intersect FF) c= xx

        proof

          let t be object;

          assume

           A118: t in ( Intersect FF);

          (h . C) in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by ENUMSET1:def 5;

          then

           A119: t in c by A98, A96, A117, A118, SETFAM_1:def 1;

          (h . B) in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by ENUMSET1:def 5;

          then t in b by A89, A96, A117, A118, SETFAM_1:def 1;

          then

           A120: t in (b /\ c) by A119, XBOOLE_0:def 4;

          (h . D) in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by ENUMSET1:def 5;

          then t in d by A107, A96, A117, A118, SETFAM_1:def 1;

          then

           A121: t in ((b /\ c) /\ d) by A120, XBOOLE_0:def 4;

          (h . E) in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by ENUMSET1:def 5;

          then t in e by A106, A96, A117, A118, SETFAM_1:def 1;

          then

           A122: t in (((b /\ c) /\ d) /\ e) by A121, XBOOLE_0:def 4;

          (h . F) in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by ENUMSET1:def 5;

          then t in f by A101, A96, A117, A118, SETFAM_1:def 1;

          then

           A123: t in ((((b /\ c) /\ d) /\ e) /\ f) by A122, XBOOLE_0:def 4;

          (h . J) in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by ENUMSET1:def 5;

          then t in j by A100, A96, A117, A118, SETFAM_1:def 1;

          then

           A124: t in (((((b /\ c) /\ d) /\ e) /\ f) /\ j) by A123, XBOOLE_0:def 4;

          (h . M) in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by ENUMSET1:def 5;

          then t in m by A99, A96, A117, A118, SETFAM_1:def 1;

          hence thesis by A74, A77, A80, A83, A86, A88, A124, XBOOLE_0:def 4;

        end;

        then x = ( Intersect FF) by A108, XBOOLE_0:def 10;

        hence thesis by A14, A90, A97, A71, BVFUNC_2:def 1;

      end;

      ( CompF (A,G)) = ( '/\' (G \ {A})) by BVFUNC_2:def 7;

      hence thesis by A69, A15, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:55

    

     Th55: G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M implies ( CompF (B,G)) = ((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)

    proof

       {A, B, C, D, E, F, J, M} = ( {A, B} \/ {C, D, E, F, J, M}) by ENUMSET1: 23

      .= {B, A, C, D, E, F, J, M} by ENUMSET1: 23;

      hence thesis by Th54;

    end;

    theorem :: BVFUNC14:56

    

     Th56: G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M implies ( CompF (C,G)) = ((((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)

    proof

       {A, B, C, D, E, F, J, M} = ( {A, B, C} \/ {D, E, F, J, M}) by ENUMSET1: 24

      .= (( {A} \/ {B, C}) \/ {D, E, F, J, M}) by ENUMSET1: 2

      .= ( {A, C, B} \/ {D, E, F, J, M}) by ENUMSET1: 2

      .= {A, C, B, D, E, F, J, M} by ENUMSET1: 24;

      hence thesis by Th55;

    end;

    theorem :: BVFUNC14:57

    

     Th57: G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M implies ( CompF (D,G)) = ((((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M)

    proof

       {A, B, C, D, E, F, J, M} = ( {A, B} \/ {C, D, E, F, J, M}) by ENUMSET1: 23

      .= ( {A, B} \/ ( {C, D} \/ {E, F, J, M})) by ENUMSET1: 12

      .= ( {A, B} \/ {D, C, E, F, J, M}) by ENUMSET1: 12

      .= {A, B, D, C, E, F, J, M} by ENUMSET1: 23;

      hence thesis by Th56;

    end;

    theorem :: BVFUNC14:58

    

     Th58: G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M implies ( CompF (E,G)) = ((((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M)

    proof

       {A, B, C, D, E, F, J, M} = ( {A, B, C} \/ {D, E, F, J, M}) by ENUMSET1: 24

      .= ( {A, B, C} \/ ( {D, E} \/ {F, J, M})) by ENUMSET1: 8

      .= ( {A, B, C} \/ {E, D, F, J, M}) by ENUMSET1: 8

      .= {A, B, C, E, D, F, J, M} by ENUMSET1: 24;

      hence thesis by Th57;

    end;

    theorem :: BVFUNC14:59

    

     Th59: G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M implies ( CompF (F,G)) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M)

    proof

       {A, B, C, D, E, F, J, M} = ( {A, B, C, D} \/ {E, F, J, M}) by ENUMSET1: 25

      .= ( {A, B, C, D} \/ ( {E, F} \/ {J, M})) by ENUMSET1: 5

      .= ( {A, B, C, D} \/ {F, E, J, M}) by ENUMSET1: 5

      .= {A, B, C, D, F, E, J, M} by ENUMSET1: 25;

      hence thesis by Th58;

    end;

    theorem :: BVFUNC14:60

    

     Th60: G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M implies ( CompF (J,G)) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M)

    proof

       {A, B, C, D, E, F, J, M} = ( {A, B, C, D, E} \/ {F, J, M}) by ENUMSET1: 26

      .= ( {A, B, C, D, E} \/ ( {J, F} \/ {M})) by ENUMSET1: 3

      .= ( {A, B, C, D, E} \/ {J, F, M}) by ENUMSET1: 3

      .= {A, B, C, D, E, J, F, M} by ENUMSET1: 26;

      hence thesis by Th59;

    end;

    theorem :: BVFUNC14:61

    G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M implies ( CompF (M,G)) = ((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J)

    proof

       {A, B, C, D, E, F, J, M} = ( {A, B, C, D, E, F} \/ {J, M}) by ENUMSET1: 27

      .= {A, B, C, D, E, F, M, J} by ENUMSET1: 27;

      hence thesis by Th60;

    end;

    theorem :: BVFUNC14:62

    

     Th62: for A,B,C,D,E,F,J,M be set, h be Function, A9,B9,C9,D9,E9,F9,J9,M9 be set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M & h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9)) holds (h . B) = B9 & (h . C) = C9 & (h . D) = D9 & (h . E) = E9 & (h . F) = F9 & (h . J) = J9

    proof

      let A,B,C,D,E,F,J,M be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9,M9 be set;

      assume that

       A1: A <> B and

       A2: A <> C and

       A3: A <> D and

       A4: A <> E and

       A5: A <> F and

       A6: A <> J and

       A7: B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M and

       A8: h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9));

       not C in ( dom (A .--> A9)) by A2, TARSKI:def 1;

      then

       A10: (h . C) = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) . C) by A8, FUNCT_4: 11;

       not J in ( dom (A .--> A9)) by A6, TARSKI:def 1;

      

      then

       A11: (h . J) = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) . J) by A8, FUNCT_4: 11

      .= J9 by A7, Th49;

       not F in ( dom (A .--> A9)) by A5, TARSKI:def 1;

      

      then

       A12: (h . F) = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) . F) by A8, FUNCT_4: 11

      .= F9 by A7, Th49;

       not E in ( dom (A .--> A9)) by A4, TARSKI:def 1;

      

      then

       A13: (h . E) = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) . E) by A8, FUNCT_4: 11

      .= E9 by A7, Th49;

       not D in ( dom (A .--> A9)) by A3, TARSKI:def 1;

      

      then

       A14: (h . D) = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) . D) by A8, FUNCT_4: 11

      .= D9 by A7, Th49;

       not B in ( dom (A .--> A9)) by A1, TARSKI:def 1;

      

      then (h . B) = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) . B) by A8, FUNCT_4: 11

      .= B9 by A7, Th49;

      hence thesis by A7, A10, A14, A13, A12, A11, Th49;

    end;

    theorem :: BVFUNC14:63

    

     Th63: for A,B,C,D,E,F,J,M be set, h be Function, A9,B9,C9,D9,E9,F9,J9,M9 be set st h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9)) holds ( dom h) = {A, B, C, D, E, F, J, M}

    proof

      let A,B,C,D,E,F,J,M be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9,M9 be set;

      assume

       A1: h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9));

      

       A2: ( dom (A .--> A9)) = {A};

      ( dom (((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9))) = {M, B, C, D, E, F, J} by Th50

      .= ( {M} \/ {B, C, D, E, F, J}) by ENUMSET1: 16

      .= {B, C, D, E, F, J, M} by ENUMSET1: 21;

      

      then ( dom ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9))) = ( {B, C, D, E, F, J, M} \/ {A}) by A2, FUNCT_4:def 1

      .= {A, B, C, D, E, F, J, M} by ENUMSET1: 22;

      hence thesis by A1;

    end;

    theorem :: BVFUNC14:64

    

     Th64: for A,B,C,D,E,F,J,M be set, h be Function, A9,B9,C9,D9,E9,F9,J9,M9 be set st h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9)) holds ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)}

    proof

      let A,B,C,D,E,F,J,M be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9,M9 be set;

      assume h = ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (A .--> A9));

      then

       A1: ( dom h) = {A, B, C, D, E, F, J, M} by Th63;

      then B in ( dom h) by ENUMSET1:def 6;

      then

       A2: (h . B) in ( rng h) by FUNCT_1:def 3;

      M in ( dom h) by A1, ENUMSET1:def 6;

      then

       A3: (h . M) in ( rng h) by FUNCT_1:def 3;

      J in ( dom h) by A1, ENUMSET1:def 6;

      then

       A4: (h . J) in ( rng h) by FUNCT_1:def 3;

      F in ( dom h) by A1, ENUMSET1:def 6;

      then

       A5: (h . F) in ( rng h) by FUNCT_1:def 3;

      E in ( dom h) by A1, ENUMSET1:def 6;

      then

       A6: (h . E) in ( rng h) by FUNCT_1:def 3;

      

       A7: ( rng h) c= {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)}

      proof

        let t be object;

        assume t in ( rng h);

        then

        consider x1 be object such that

         A8: x1 in ( dom h) and

         A9: t = (h . x1) by FUNCT_1:def 3;

        x1 = A or x1 = B or x1 = C or x1 = D or x1 = E or x1 = F or x1 = J or x1 = M by A1, A8, ENUMSET1:def 6;

        hence thesis by A9, ENUMSET1:def 6;

      end;

      D in ( dom h) by A1, ENUMSET1:def 6;

      then

       A10: (h . D) in ( rng h) by FUNCT_1:def 3;

      C in ( dom h) by A1, ENUMSET1:def 6;

      then

       A11: (h . C) in ( rng h) by FUNCT_1:def 3;

      A in ( dom h) by A1, ENUMSET1:def 6;

      then

       A12: (h . A) in ( rng h) by FUNCT_1:def 3;

       {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} c= ( rng h) by A12, A2, A11, A10, A6, A5, A4, A3, ENUMSET1:def 6;

      hence thesis by A7, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:65

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M be a_partition of Y, z,u be Element of Y st G is independent & G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M holds (( EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) /\ ( EqClass (z,A))) <> {}

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M be a_partition of Y;

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E, F, J, M} and

       A3: A <> B & A <> C & A <> D & A <> E & A <> F & A <> J and

       A4: A <> M and

       A5: B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M;

      set h = ((((((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (F .--> ( EqClass (u,F)))) +* (J .--> ( EqClass (u,J)))) +* (M .--> ( EqClass (u,M)))) +* (A .--> ( EqClass (z,A))));

      

       A6: (h . B) = ( EqClass (u,B)) by A3, A5, Th62;

      reconsider GG = ( EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) as set;

      reconsider I = ( EqClass (z,A)) as set;

      GG = (( EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) /\ ( EqClass (u,M))) by Th1;

      then GG = ((( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by Th1;

      then GG = (((( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by Th1;

      then GG = ((((( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by Th1;

      then GG = (((((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by Th1;

      then

       A7: (GG /\ I) = (((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (z,A))) by Th1;

      

       A8: (h . A) = ( EqClass (z,A)) by FUNCT_7: 94;

      

       A9: (h . C) = ( EqClass (u,C)) by A3, A5, Th62;

      

       A10: (h . M) = ( EqClass (u,M)) by A4, Lm1;

      

       A11: (h . J) = ( EqClass (u,J)) by A3, A5, Th62;

      

       A12: (h . F) = ( EqClass (u,F)) by A3, A5, Th62;

      

       A13: (h . E) = ( EqClass (u,E)) by A3, A5, Th62;

      

       A14: (h . D) = ( EqClass (u,D)) by A3, A5, Th62;

      

       A15: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by Th64;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume t in ( rng h);

        then t = (h . A) or t = (h . B) or t = (h . C) or t = (h . D) or t = (h . E) or t = (h . F) or t = (h . J) or t = (h . M) by A15, ENUMSET1:def 6;

        hence thesis by A8, A6, A9, A14, A13, A12, A11, A10;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A16: ( dom h) = G by A2, Th63;

      then A in ( dom h) by A2, ENUMSET1:def 6;

      then

       A17: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A18: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume d in G;

        then d = A or d = B or d = C or d = D or d = E or d = F or d = J or d = M by A2, ENUMSET1:def 6;

        hence thesis by A8, A6, A9, A14, A13, A12, A11, A10;

      end;

      then ( Intersect FF) <> {} by A1, A16, BVFUNC_2:def 5;

      then

      consider m be object such that

       A19: m in ( Intersect FF) by XBOOLE_0:def 1;

      C in ( dom h) by A2, A16, ENUMSET1:def 6;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A20: m in ( EqClass (u,C)) by A9, A18, A19, SETFAM_1:def 1;

      B in ( dom h) by A2, A16, ENUMSET1:def 6;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,B)) by A6, A18, A19, SETFAM_1:def 1;

      then

       A21: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A20, XBOOLE_0:def 4;

      D in ( dom h) by A2, A16, ENUMSET1:def 6;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,D)) by A14, A18, A19, SETFAM_1:def 1;

      then

       A22: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A21, XBOOLE_0:def 4;

      E in ( dom h) by A2, A16, ENUMSET1:def 6;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,E)) by A13, A18, A19, SETFAM_1:def 1;

      then

       A23: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A22, XBOOLE_0:def 4;

      F in ( dom h) by A2, A16, ENUMSET1:def 6;

      then (h . F) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,F)) by A12, A18, A19, SETFAM_1:def 1;

      then

       A24: m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by A23, XBOOLE_0:def 4;

      J in ( dom h) by A2, A16, ENUMSET1:def 6;

      then (h . J) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,J)) by A11, A18, A19, SETFAM_1:def 1;

      then

       A25: m in (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by A24, XBOOLE_0:def 4;

      M in ( dom h) by A2, A16, ENUMSET1:def 6;

      then (h . M) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,M)) by A10, A18, A19, SETFAM_1:def 1;

      then

       A26: m in ((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by A25, XBOOLE_0:def 4;

      m in ( EqClass (z,A)) by A8, A17, A18, A19, SETFAM_1:def 1;

      hence thesis by A7, A26, XBOOLE_0:def 4;

    end;

    theorem :: BVFUNC14:66

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M be a_partition of Y, z,u be Element of Y st G is independent & G = {A, B, C, D, E, F, J, M} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M & ( EqClass (z,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) = ( EqClass (u,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) holds ( EqClass (u,( CompF (A,G)))) meets ( EqClass (z,( CompF (B,G))))

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M be a_partition of Y;

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E, F, J, M} and

       A3: A <> B & A <> C & A <> D & A <> E & A <> F & A <> J and

       A4: A <> M and

       A5: B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & C <> D & C <> E & C <> F & C <> J & C <> M & D <> E & D <> F & D <> J & D <> M & E <> F & E <> J & E <> M & F <> J & F <> M & J <> M and

       A6: ( EqClass (z,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) = ( EqClass (u,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)));

      set h = ((((((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (F .--> ( EqClass (u,F)))) +* (J .--> ( EqClass (u,J)))) +* (M .--> ( EqClass (u,M)))) +* (A .--> ( EqClass (z,A))));

      

       A7: (h . B) = ( EqClass (u,B)) by A3, A5, Th62;

      set HH = ( EqClass (z,( CompF (B,G)))), I = ( EqClass (z,A)), GG = ( EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)));

      

       A8: GG = ( EqClass (u,( CompF (A,G)))) by A2, A3, A4, A5, Th54;

      GG = (( EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) /\ ( EqClass (u,M))) by Th1;

      then GG = ((( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by Th1;

      then GG = (((( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by Th1;

      then GG = ((((( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by Th1;

      then GG = (((((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by Th1;

      then

       A9: (GG /\ I) = (((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (z,A))) by Th1;

      

       A10: (h . A) = ( EqClass (z,A)) by FUNCT_7: 94;

      

       A11: (h . C) = ( EqClass (u,C)) by A3, A5, Th62;

      

       A12: (h . M) = ( EqClass (u,M)) by A4, Lm1;

      

       A13: (h . J) = ( EqClass (u,J)) by A3, A5, Th62;

      

       A14: (h . F) = ( EqClass (u,F)) by A3, A5, Th62;

      

       A15: (h . E) = ( EqClass (u,E)) by A3, A5, Th62;

      

       A16: (h . D) = ( EqClass (u,D)) by A3, A5, Th62;

      

       A17: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M)} by Th64;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume t in ( rng h);

        then t = (h . A) or t = (h . B) or t = (h . C) or t = (h . D) or t = (h . E) or t = (h . F) or t = (h . J) or t = (h . M) by A17, ENUMSET1:def 6;

        hence thesis by A10, A7, A11, A16, A15, A14, A13, A12;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A18: ( dom h) = G by A2, Th63;

      then A in ( dom h) by A2, ENUMSET1:def 6;

      then

       A19: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A20: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume d in G;

        then d = A or d = B or d = C or d = D or d = E or d = F or d = J or d = M by A2, ENUMSET1:def 6;

        hence thesis by A10, A7, A11, A16, A15, A14, A13, A12;

      end;

      then ( Intersect FF) <> {} by A1, A18, BVFUNC_2:def 5;

      then

      consider m be object such that

       A21: m in ( Intersect FF) by XBOOLE_0:def 1;

      C in ( dom h) by A2, A18, ENUMSET1:def 6;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A22: m in ( EqClass (u,C)) by A11, A20, A21, SETFAM_1:def 1;

      B in ( dom h) by A2, A18, ENUMSET1:def 6;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,B)) by A7, A20, A21, SETFAM_1:def 1;

      then

       A23: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A22, XBOOLE_0:def 4;

      D in ( dom h) by A2, A18, ENUMSET1:def 6;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,D)) by A16, A20, A21, SETFAM_1:def 1;

      then

       A24: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A23, XBOOLE_0:def 4;

      E in ( dom h) by A2, A18, ENUMSET1:def 6;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,E)) by A15, A20, A21, SETFAM_1:def 1;

      then

       A25: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A24, XBOOLE_0:def 4;

      F in ( dom h) by A2, A18, ENUMSET1:def 6;

      then (h . F) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,F)) by A14, A20, A21, SETFAM_1:def 1;

      then

       A26: m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by A25, XBOOLE_0:def 4;

      J in ( dom h) by A2, A18, ENUMSET1:def 6;

      then (h . J) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,J)) by A13, A20, A21, SETFAM_1:def 1;

      then

       A27: m in (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by A26, XBOOLE_0:def 4;

      M in ( dom h) by A2, A18, ENUMSET1:def 6;

      then (h . M) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,M)) by A12, A20, A21, SETFAM_1:def 1;

      then

       A28: m in ((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by A27, XBOOLE_0:def 4;

      m in ( EqClass (z,A)) by A10, A19, A20, A21, SETFAM_1:def 1;

      then (GG /\ I) <> {} by A9, A28, XBOOLE_0:def 4;

      then

      consider p be object such that

       A29: p in (GG /\ I) by XBOOLE_0:def 1;

      reconsider p as Element of Y by A29;

      reconsider K = ( EqClass (p,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) as set;

      

       A30: p in GG by A29, XBOOLE_0:def 4;

      reconsider L = ( EqClass (z,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) as set;

      

       A31: p in ( EqClass (p,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) by EQREL_1:def 6;

      GG = ( EqClass (u,(((((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J) '/\' M))) by PARTIT1: 14;

      then GG = ( EqClass (u,((((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J) '/\' M))) by PARTIT1: 14;

      then GG = ( EqClass (u,(((B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J) '/\' M))) by PARTIT1: 14;

      then GG = ( EqClass (u,((B '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J)) '/\' M))) by PARTIT1: 14;

      then GG = ( EqClass (u,(B '/\' (((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)))) by PARTIT1: 14;

      then GG c= L by A6, BVFUNC11: 3;

      then K meets L by A30, A31, XBOOLE_0: 3;

      then K = L by EQREL_1: 41;

      then

       A32: z in K by EQREL_1:def 6;

      

       A33: z in HH by EQREL_1:def 6;

      z in I by EQREL_1:def 6;

      then z in (I /\ K) by A32, XBOOLE_0:def 4;

      then

       A34: (I /\ K) meets HH by A33, XBOOLE_0: 3;

      

       A35: (A '/\' (((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) = ((A '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J)) '/\' M) by PARTIT1: 14

      .= (((A '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J) '/\' M) by PARTIT1: 14

      .= ((((A '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J) '/\' M) by PARTIT1: 14

      .= (((((A '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J) '/\' M) by PARTIT1: 14

      .= ((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) by PARTIT1: 14;

      p in K & p in I by A29, EQREL_1:def 6, XBOOLE_0:def 4;

      then

       A36: p in (I /\ K) by XBOOLE_0:def 4;

      then (I /\ K) in ( INTERSECTION (A,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) & not (I /\ K) in { {} } by SETFAM_1:def 5, TARSKI:def 1;

      then (I /\ K) in (( INTERSECTION (A,(((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) \ { {} }) by XBOOLE_0:def 5;

      then

       A37: (I /\ K) in (A '/\' (((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) by PARTIT1:def 4;

      ( CompF (B,G)) = ((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) by A2, A3, A4, A5, Th55;

      then p in HH by A36, A37, A34, A35, EQREL_1:def 4;

      hence thesis by A8, A30, XBOOLE_0: 3;

    end;

    

     Lm3: {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9})

    proof

      now

        let x be object;

        

         A1: x in {x5, x6, x7, x8, x9} iff x = x5 or x = x6 or x = x7 or x = x8 or x = x9 by ENUMSET1:def 3;

        x in {x1, x2, x3, x4} iff x = x1 or x = x2 or x = x3 or x = x4 by ENUMSET1:def 2;

        hence x in {x1, x2, x3, x4, x5, x6, x7, x8, x9} iff x in ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by A1, ENUMSET1:def 7, XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: BVFUNC14:67

    

     Th67: for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (A,G)) = (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

      assume that

       A1: G = {A, B, C, D, E, F, J, M, N} and

       A2: A <> B and

       A3: A <> C and

       A4: A <> D & A <> E and

       A5: A <> F & A <> J and

       A6: A <> M & A <> N and

       A7: B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N and

       A8: M <> N;

      

       A9: not B in {A} by A2, TARSKI:def 1;

      ( not D in {A}) & not E in {A} by A4, TARSKI:def 1;

      then

       A10: ( {D, E} \ {A}) = {D, E} by ZFMISC_1: 63;

      

       A11: ( not F in {A}) & not J in {A} by A5, TARSKI:def 1;

      

       A12: not C in {A} by A3, TARSKI:def 1;

      (G \ {A}) = (( {A} \/ {B, C, D, E, F, J, M, N}) \ {A}) by A1, ENUMSET1: 77;

      then

       A13: (G \ {A}) = (( {A} \ {A}) \/ ( {B, C, D, E, F, J, M, N} \ {A})) by XBOOLE_1: 42;

      

       A14: ( not M in {A}) & not N in {A} by A6, TARSKI:def 1;

      ( {B, C, D, E, F, J, M, N} \ {A}) = (( {B} \/ {C, D, E, F, J, M, N}) \ {A}) by ENUMSET1: 22

      .= (( {B} \ {A}) \/ ( {C, D, E, F, J, M, N} \ {A})) by XBOOLE_1: 42

      .= ( {B} \/ ( {C, D, E, F, J, M, N} \ {A})) by A9, ZFMISC_1: 59

      .= ( {B} \/ (( {C} \/ {D, E, F, J, M, N}) \ {A})) by ENUMSET1: 16

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E, F, J, M, N} \ {A}))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ (( {D, E} \/ {F, J, M, N}) \ {A}))) by ENUMSET1: 12

      .= ( {B} \/ (( {C} \ {A}) \/ (( {D, E} \ {A}) \/ ( {F, J, M, N} \ {A})))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ (( {F, J} \/ {M, N}) \ {A})))) by A10, ENUMSET1: 5

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ (( {F, J} \ {A}) \/ ( {M, N} \ {A}))))) by XBOOLE_1: 42

      .= ( {B} \/ (( {C} \ {A}) \/ ( {D, E} \/ ( {F, J} \/ ( {M, N} \ {A}))))) by A11, ZFMISC_1: 63

      .= ( {B} \/ ( {C} \/ ( {D, E} \/ ( {F, J} \/ ( {M, N} \ {A}))))) by A12, ZFMISC_1: 59

      .= ( {B} \/ ( {C} \/ ( {D, E} \/ ( {F, J} \/ {M, N})))) by A14, ZFMISC_1: 63

      .= ( {B} \/ ( {C} \/ ( {D, E} \/ {F, J, M, N}))) by ENUMSET1: 5

      .= ( {B} \/ ( {C} \/ {D, E, F, J, M, N})) by ENUMSET1: 12

      .= ( {B} \/ {C, D, E, F, J, M, N}) by ENUMSET1: 16

      .= {B, C, D, E, F, J, M, N} by ENUMSET1: 22;

      then

       A15: (G \ {A}) = ( {} \/ {B, C, D, E, F, J, M, N}) by A13, XBOOLE_1: 37;

      

       A16: ( '/\' (G \ {A})) c= (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume x in ( '/\' (G \ {A}));

        then

        consider h be Function, FF be Subset-Family of Y such that

         A17: ( dom h) = (G \ {A}) and

         A18: ( rng h) = FF and

         A19: for d be set st d in (G \ {A}) holds (h . d) in d and

         A20: x = ( Intersect FF) and

         A21: x <> {} by BVFUNC_2:def 1;

        

         A22: C in (G \ {A}) by A15, ENUMSET1:def 6;

        then

         A23: (h . C) in C by A19;

        set mbcd = (((h . B) /\ (h . C)) /\ (h . D));

        

         A24: E in (G \ {A}) by A15, ENUMSET1:def 6;

        then

         A25: (h . E) in ( rng h) by A17, FUNCT_1:def 3;

        

         A26: N in (G \ {A}) by A15, ENUMSET1:def 6;

        then

         A27: (h . N) in ( rng h) by A17, FUNCT_1:def 3;

        set mbc = ((h . B) /\ (h . C));

        

         A28: B in (G \ {A}) by A15, ENUMSET1:def 6;

        then (h . B) in B by A19;

        then

         A29: mbc in ( INTERSECTION (B,C)) by A23, SETFAM_1:def 5;

        

         A30: (h . B) in ( rng h) by A17, A28, FUNCT_1:def 3;

        then

         A31: ( Intersect FF) = ( meet ( rng h)) by A18, SETFAM_1:def 9;

        

         A32: (h . C) in ( rng h) by A17, A22, FUNCT_1:def 3;

        

         A33: F in (G \ {A}) by A15, ENUMSET1:def 6;

        then

         A34: (h . F) in ( rng h) by A17, FUNCT_1:def 3;

        

         A35: M in (G \ {A}) by A15, ENUMSET1:def 6;

        then

         A36: (h . M) in ( rng h) by A17, FUNCT_1:def 3;

        

         A37: J in (G \ {A}) by A15, ENUMSET1:def 6;

        then

         A38: (h . J) in ( rng h) by A17, FUNCT_1:def 3;

        

         A39: D in (G \ {A}) by A15, ENUMSET1:def 6;

        then

         A40: (h . D) in ( rng h) by A17, FUNCT_1:def 3;

        

         A41: xx c= ((((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M)) /\ (h . N))

        proof

          let p be object;

          assume

           A42: p in xx;

          then p in (h . B) & p in (h . C) by A20, A30, A32, A31, SETFAM_1:def 1;

          then

           A43: p in ((h . B) /\ (h . C)) by XBOOLE_0:def 4;

          p in (h . D) by A20, A40, A31, A42, SETFAM_1:def 1;

          then

           A44: p in (((h . B) /\ (h . C)) /\ (h . D)) by A43, XBOOLE_0:def 4;

          p in (h . E) by A20, A25, A31, A42, SETFAM_1:def 1;

          then

           A45: p in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) by A44, XBOOLE_0:def 4;

          p in (h . F) by A20, A34, A31, A42, SETFAM_1:def 1;

          then

           A46: p in (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) by A45, XBOOLE_0:def 4;

          p in (h . J) by A20, A38, A31, A42, SETFAM_1:def 1;

          then

           A47: p in ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) by A46, XBOOLE_0:def 4;

          p in (h . M) by A20, A36, A31, A42, SETFAM_1:def 1;

          then

           A48: p in (((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M)) by A47, XBOOLE_0:def 4;

          p in (h . N) by A20, A27, A31, A42, SETFAM_1:def 1;

          hence thesis by A48, XBOOLE_0:def 4;

        end;

        then mbcd <> {} by A21;

        then

         A49: not mbcd in { {} } by TARSKI:def 1;

        mbc <> {} by A21, A41;

        then not mbc in { {} } by TARSKI:def 1;

        then mbc in (( INTERSECTION (B,C)) \ { {} }) by A29, XBOOLE_0:def 5;

        then

         A50: mbc in (B '/\' C) by PARTIT1:def 4;

        (h . D) in D by A19, A39;

        then mbcd in ( INTERSECTION ((B '/\' C),D)) by A50, SETFAM_1:def 5;

        then mbcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A49, XBOOLE_0:def 5;

        then

         A51: mbcd in ((B '/\' C) '/\' D) by PARTIT1:def 4;

        set mbcdefjm = (((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M));

        set mbcdefj = ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J));

        

         A52: not x in { {} } by A21, TARSKI:def 1;

        set mbcdef = (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F));

        set mbcde = ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E));

        mbcdef <> {} by A21, A41;

        then

         A53: not mbcdef in { {} } by TARSKI:def 1;

        mbcde <> {} by A21, A41;

        then

         A54: not mbcde in { {} } by TARSKI:def 1;

        ((((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M)) /\ (h . N)) c= xx

        proof

          

           A55: ( rng h) c= {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)}

          proof

            let u be object;

            assume u in ( rng h);

            then

            consider x1 be object such that

             A56: x1 in ( dom h) and

             A57: u = (h . x1) by FUNCT_1:def 3;

            x1 = B or x1 = C or x1 = D or x1 = E or x1 = F or x1 = J or x1 = M or x1 = N by A15, A17, A56, ENUMSET1:def 6;

            hence thesis by A57, ENUMSET1:def 6;

          end;

          let p be object;

          assume

           A58: p in ((((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M)) /\ (h . N));

          then

           A59: p in (h . N) by XBOOLE_0:def 4;

          

           A60: p in (((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M)) by A58, XBOOLE_0:def 4;

          then

           A61: p in ((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) by XBOOLE_0:def 4;

          then

           A62: p in (h . J) by XBOOLE_0:def 4;

          

           A63: p in (h . M) by A60, XBOOLE_0:def 4;

          

           A64: p in (((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) by A61, XBOOLE_0:def 4;

          then

           A65: p in ((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) by XBOOLE_0:def 4;

          then

           A66: p in (h . E) by XBOOLE_0:def 4;

          

           A67: p in (((h . B) /\ (h . C)) /\ (h . D)) by A65, XBOOLE_0:def 4;

          then

           A68: p in (h . D) by XBOOLE_0:def 4;

          p in ((h . B) /\ (h . C)) by A67, XBOOLE_0:def 4;

          then

           A69: p in (h . B) & p in (h . C) by XBOOLE_0:def 4;

          p in (h . F) by A64, XBOOLE_0:def 4;

          then for y be set holds y in ( rng h) implies p in y by A69, A68, A66, A62, A63, A59, A55, ENUMSET1:def 6;

          hence thesis by A20, A30, A31, SETFAM_1:def 1;

        end;

        then

         A70: ((((((((h . B) /\ (h . C)) /\ (h . D)) /\ (h . E)) /\ (h . F)) /\ (h . J)) /\ (h . M)) /\ (h . N)) = x by A41, XBOOLE_0:def 10;

        (h . E) in E by A19, A24;

        then mbcde in ( INTERSECTION (((B '/\' C) '/\' D),E)) by A51, SETFAM_1:def 5;

        then mbcde in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A54, XBOOLE_0:def 5;

        then

         A71: mbcde in (((B '/\' C) '/\' D) '/\' E) by PARTIT1:def 4;

        (h . F) in F by A19, A33;

        then mbcdef in ( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) by A71, SETFAM_1:def 5;

        then mbcdef in (( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) \ { {} }) by A53, XBOOLE_0:def 5;

        then

         A72: mbcdef in ((((B '/\' C) '/\' D) '/\' E) '/\' F) by PARTIT1:def 4;

        mbcdefj <> {} by A21, A41;

        then

         A73: not mbcdefj in { {} } by TARSKI:def 1;

        (h . J) in J by A19, A37;

        then mbcdefj in ( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) by A72, SETFAM_1:def 5;

        then mbcdefj in (( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) \ { {} }) by A73, XBOOLE_0:def 5;

        then

         A74: mbcdefj in (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) by PARTIT1:def 4;

        mbcdefjm <> {} by A21, A41;

        then

         A75: not mbcdefjm in { {} } by TARSKI:def 1;

        (h . M) in M by A19, A35;

        then mbcdefjm in ( INTERSECTION ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J),M)) by A74, SETFAM_1:def 5;

        then mbcdefjm in (( INTERSECTION ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J),M)) \ { {} }) by A75, XBOOLE_0:def 5;

        then

         A76: mbcdefjm in ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) by PARTIT1:def 4;

        (h . N) in N by A19, A26;

        then x in ( INTERSECTION (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M),N)) by A70, A76, SETFAM_1:def 5;

        then x in (( INTERSECTION (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M),N)) \ { {} }) by A52, XBOOLE_0:def 5;

        hence thesis by PARTIT1:def 4;

      end;

      

       A77: (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N) c= ( '/\' (G \ {A}))

      proof

        let x be object;

        reconsider xx = x as set by TARSKI: 1;

        assume

         A78: x in (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N);

        then

         A79: x <> {} by EQREL_1:def 4;

        x in (( INTERSECTION (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M),N)) \ { {} }) by A78, PARTIT1:def 4;

        then

        consider bcdefjm,n be set such that

         A80: bcdefjm in ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) and

         A81: n in N and

         A82: x = (bcdefjm /\ n) by SETFAM_1:def 5;

        bcdefjm in (( INTERSECTION ((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J),M)) \ { {} }) by A80, PARTIT1:def 4;

        then

        consider bcdefj,m be set such that

         A83: bcdefj in (((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) and

         A84: m in M and

         A85: bcdefjm = (bcdefj /\ m) by SETFAM_1:def 5;

        bcdefj in (( INTERSECTION (((((B '/\' C) '/\' D) '/\' E) '/\' F),J)) \ { {} }) by A83, PARTIT1:def 4;

        then

        consider bcdef,j be set such that

         A86: bcdef in ((((B '/\' C) '/\' D) '/\' E) '/\' F) and

         A87: j in J and

         A88: bcdefj = (bcdef /\ j) by SETFAM_1:def 5;

        bcdef in (( INTERSECTION ((((B '/\' C) '/\' D) '/\' E),F)) \ { {} }) by A86, PARTIT1:def 4;

        then

        consider bcde,f be set such that

         A89: bcde in (((B '/\' C) '/\' D) '/\' E) and

         A90: f in F and

         A91: bcdef = (bcde /\ f) by SETFAM_1:def 5;

        bcde in (( INTERSECTION (((B '/\' C) '/\' D),E)) \ { {} }) by A89, PARTIT1:def 4;

        then

        consider bcd,e be set such that

         A92: bcd in ((B '/\' C) '/\' D) and

         A93: e in E and

         A94: bcde = (bcd /\ e) by SETFAM_1:def 5;

        bcd in (( INTERSECTION ((B '/\' C),D)) \ { {} }) by A92, PARTIT1:def 4;

        then

        consider bc,d be set such that

         A95: bc in (B '/\' C) and

         A96: d in D and

         A97: bcd = (bc /\ d) by SETFAM_1:def 5;

        bc in (( INTERSECTION (B,C)) \ { {} }) by A95, PARTIT1:def 4;

        then

        consider b,c be set such that

         A98: b in B and

         A99: c in C and

         A100: bc = (b /\ c) by SETFAM_1:def 5;

        set h = ((((((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e)) +* (F .--> f)) +* (J .--> j)) +* (M .--> m)) +* (N .--> n));

        

         A101: (h . N) = n by FUNCT_7: 94;

        

         A102: ( dom ((((((((B .--> b) +* (C .--> c)) +* (D .--> d)) +* (E .--> e)) +* (F .--> f)) +* (J .--> j)) +* (M .--> m)) +* (N .--> n))) = {N, B, C, D, E, F, J, M} by Th63

        .= ( {N} \/ {B, C, D, E, F, J, M}) by ENUMSET1: 22

        .= {B, C, D, E, F, J, M, N} by ENUMSET1: 28;

        then

         A103: C in ( dom h) by ENUMSET1:def 6;

        

         A104: for p be set st p in (G \ {A}) holds (h . p) in p

        proof

          let p be set;

          assume p in (G \ {A});

          then p = B or p = C or p = D or p = E or p = F or p = J or p = M or p = N by A15, ENUMSET1:def 6;

          hence thesis by A7, A8, A81, A84, A87, A90, A93, A96, A98, A99, Lm1, Th62, FUNCT_7: 94;

        end;

        

         A105: D in ( dom h) by A102, ENUMSET1:def 6;

        then

         A106: (h . D) in ( rng h) by FUNCT_1:def 3;

        

         A107: N in ( dom h) by A102, ENUMSET1:def 6;

        

         A108: M in ( dom h) by A102, ENUMSET1:def 6;

        

         A109: J in ( dom h) by A102, ENUMSET1:def 6;

        

         A110: F in ( dom h) by A102, ENUMSET1:def 6;

        

         A111: (h . B) = b by A7, Th62;

        

         A112: ( rng h) c= {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)}

        proof

          let t be object;

          assume t in ( rng h);

          then

          consider x1 be object such that

           A113: x1 in ( dom h) and

           A114: t = (h . x1) by FUNCT_1:def 3;

          now

            per cases by A102, A113, ENUMSET1:def 6;

              case x1 = D;

              hence thesis by A114, ENUMSET1:def 6;

            end;

              case x1 = B;

              hence thesis by A114, ENUMSET1:def 6;

            end;

              case x1 = C;

              hence thesis by A114, ENUMSET1:def 6;

            end;

              case x1 = E;

              hence thesis by A114, ENUMSET1:def 6;

            end;

              case x1 = F;

              hence thesis by A114, ENUMSET1:def 6;

            end;

              case x1 = J;

              hence thesis by A114, ENUMSET1:def 6;

            end;

              case x1 = M;

              hence thesis by A114, ENUMSET1:def 6;

            end;

              case x1 = N;

              hence thesis by A114, ENUMSET1:def 6;

            end;

          end;

          hence thesis;

        end;

        

         A115: (h . J) = j by A7, Th62;

        

         A116: (h . F) = f by A7, Th62;

        

         A117: (h . M) = m by A8, Lm1;

        

         A118: (h . E) = e by A7, Th62;

        

         A119: (h . C) = c by A7, Th62;

        

         A120: (h . D) = d by A7, Th62;

        ( rng h) c= ( bool Y)

        proof

          let t be object;

          assume

           A121: t in ( rng h);

          now

            per cases by A112, A121, ENUMSET1:def 6;

              case t = (h . D);

              hence thesis by A96, A120;

            end;

              case t = (h . B);

              hence thesis by A98, A111;

            end;

              case t = (h . C);

              hence thesis by A99, A119;

            end;

              case t = (h . E);

              hence thesis by A93, A118;

            end;

              case t = (h . F);

              hence thesis by A90, A116;

            end;

              case t = (h . J);

              hence thesis by A87, A115;

            end;

              case t = (h . M);

              hence thesis by A84, A117;

            end;

              case t = (h . N);

              hence thesis by A81, A101;

            end;

          end;

          hence thesis;

        end;

        then

        reconsider FF = ( rng h) as Subset-Family of Y;

        

         A122: E in ( dom h) by A102, ENUMSET1:def 6;

        

         A123: B in ( dom h) by A102, ENUMSET1:def 6;

         {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)} c= ( rng h)

        proof

          let t be object;

          assume

           A124: t in {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)};

          now

            per cases by A124, ENUMSET1:def 6;

              case t = (h . D);

              hence thesis by A105, FUNCT_1:def 3;

            end;

              case t = (h . B);

              hence thesis by A123, FUNCT_1:def 3;

            end;

              case t = (h . C);

              hence thesis by A103, FUNCT_1:def 3;

            end;

              case t = (h . E);

              hence thesis by A122, FUNCT_1:def 3;

            end;

              case t = (h . F);

              hence thesis by A110, FUNCT_1:def 3;

            end;

              case t = (h . J);

              hence thesis by A109, FUNCT_1:def 3;

            end;

              case t = (h . M);

              hence thesis by A108, FUNCT_1:def 3;

            end;

              case t = (h . N);

              hence thesis by A107, FUNCT_1:def 3;

            end;

          end;

          hence thesis;

        end;

        then

         A125: ( rng h) = {(h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)} by A112, XBOOLE_0:def 10;

        reconsider h as Function;

        

         A126: xx c= ( Intersect FF)

        proof

          let u be object;

          assume

           A127: u in xx;

          for y be set holds y in FF implies u in y

          proof

            let y be set;

            assume

             A128: y in FF;

            now

              per cases by A112, A128, ENUMSET1:def 6;

                case

                 A129: y = (h . D);

                u in (((((d /\ ((b /\ c) /\ e)) /\ f) /\ j) /\ m) /\ n) by A82, A85, A88, A91, A94, A97, A100, A127, XBOOLE_1: 16;

                then u in ((((d /\ (((b /\ c) /\ e) /\ f)) /\ j) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((d /\ ((((b /\ c) /\ e) /\ f) /\ j)) /\ m) /\ n) by XBOOLE_1: 16;

                then u in ((d /\ (((((b /\ c) /\ e) /\ f) /\ j) /\ m)) /\ n) by XBOOLE_1: 16;

                then u in (d /\ ((((((b /\ c) /\ e) /\ f) /\ j) /\ m) /\ n)) by XBOOLE_1: 16;

                hence thesis by A120, A129, XBOOLE_0:def 4;

              end;

                case

                 A130: y = (h . B);

                u in ((((((c /\ (d /\ b)) /\ e) /\ f) /\ j) /\ m) /\ n) by A82, A85, A88, A91, A94, A97, A100, A127, XBOOLE_1: 16;

                then u in (((((c /\ ((d /\ b) /\ e)) /\ f) /\ j) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((((c /\ ((d /\ e) /\ b)) /\ f) /\ j) /\ m) /\ n) by XBOOLE_1: 16;

                then u in ((((c /\ (((d /\ e) /\ b) /\ f)) /\ j) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((c /\ ((((d /\ e) /\ b) /\ f) /\ j)) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((c /\ (((d /\ e) /\ (f /\ b)) /\ j)) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((c /\ ((d /\ e) /\ ((f /\ b) /\ j))) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((c /\ ((d /\ e) /\ (f /\ (j /\ b)))) /\ m) /\ n) by XBOOLE_1: 16;

                then u in ((((c /\ (d /\ e)) /\ (f /\ (j /\ b))) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((((c /\ (d /\ e)) /\ f) /\ (j /\ b)) /\ m) /\ n) by XBOOLE_1: 16;

                then u in ((((((c /\ (d /\ e)) /\ f) /\ j) /\ b) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((((c /\ (d /\ e)) /\ f) /\ j) /\ (m /\ b)) /\ n) by XBOOLE_1: 16;

                then u in ((((c /\ (d /\ e)) /\ f) /\ j) /\ ((m /\ b) /\ n)) by XBOOLE_1: 16;

                then u in ((((c /\ (d /\ e)) /\ f) /\ j) /\ (m /\ (b /\ n))) by XBOOLE_1: 16;

                then u in (((((c /\ (d /\ e)) /\ f) /\ j) /\ m) /\ (n /\ b)) by XBOOLE_1: 16;

                then u in ((((((c /\ (d /\ e)) /\ f) /\ j) /\ m) /\ n) /\ b) by XBOOLE_1: 16;

                hence thesis by A111, A130, XBOOLE_0:def 4;

              end;

                case

                 A131: y = (h . C);

                u in ((((((c /\ (d /\ b)) /\ e) /\ f) /\ j) /\ m) /\ n) by A82, A85, A88, A91, A94, A97, A100, A127, XBOOLE_1: 16;

                then u in (((((c /\ ((d /\ b) /\ e)) /\ f) /\ j) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((((c /\ ((d /\ e) /\ b)) /\ f) /\ j) /\ m) /\ n) by XBOOLE_1: 16;

                then u in ((((c /\ (((d /\ e) /\ b) /\ f)) /\ j) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((c /\ ((((d /\ e) /\ b) /\ f) /\ j)) /\ m) /\ n) by XBOOLE_1: 16;

                then u in ((c /\ (((((d /\ e) /\ b) /\ f) /\ j) /\ m)) /\ n) by XBOOLE_1: 16;

                then u in (c /\ ((((((d /\ e) /\ b) /\ f) /\ j) /\ m) /\ n)) by XBOOLE_1: 16;

                hence thesis by A119, A131, XBOOLE_0:def 4;

              end;

                case

                 A132: y = (h . E);

                u in ((((((b /\ c) /\ d) /\ (f /\ e)) /\ j) /\ m) /\ n) by A82, A85, A88, A91, A94, A97, A100, A127, XBOOLE_1: 16;

                then u in (((((b /\ c) /\ d) /\ ((f /\ e) /\ j)) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((((b /\ c) /\ d) /\ ((f /\ j) /\ e)) /\ m) /\ n) by XBOOLE_1: 16;

                then u in ((((((b /\ c) /\ d) /\ (f /\ j)) /\ e) /\ m) /\ n) by XBOOLE_1: 16;

                then u in (((((b /\ c) /\ d) /\ (f /\ j)) /\ (e /\ m)) /\ n) by XBOOLE_1: 16;

                then u in ((((b /\ c) /\ d) /\ (f /\ j)) /\ ((m /\ e) /\ n)) by XBOOLE_1: 16;

                then u in ((((b /\ c) /\ d) /\ (f /\ j)) /\ (m /\ (n /\ e))) by XBOOLE_1: 16;

                then u in (((((b /\ c) /\ d) /\ (f /\ j)) /\ m) /\ (n /\ e)) by XBOOLE_1: 16;

                then u in ((((((b /\ c) /\ d) /\ (f /\ j)) /\ m) /\ n) /\ e) by XBOOLE_1: 16;

                hence thesis by A118, A132, XBOOLE_0:def 4;

              end;

                case

                 A133: y = (h . F);

                u in (((((((b /\ c) /\ d) /\ e) /\ j) /\ f) /\ m) /\ n) by A82, A85, A88, A91, A94, A97, A100, A127, XBOOLE_1: 16;

                then u in (((((((b /\ c) /\ d) /\ e) /\ j) /\ m) /\ f) /\ n) by XBOOLE_1: 16;

                then u in (((((((b /\ c) /\ d) /\ e) /\ j) /\ m) /\ n) /\ f) by XBOOLE_1: 16;

                hence thesis by A116, A133, XBOOLE_0:def 4;

              end;

                case

                 A134: y = (h . J);

                u in (((((((b /\ c) /\ d) /\ e) /\ f) /\ m) /\ j) /\ n) by A82, A85, A88, A91, A94, A97, A100, A127, XBOOLE_1: 16;

                then u in (((((((b /\ c) /\ d) /\ e) /\ f) /\ m) /\ n) /\ j) by XBOOLE_1: 16;

                hence thesis by A115, A134, XBOOLE_0:def 4;

              end;

                case

                 A135: y = (h . M);

                u in (((((((b /\ c) /\ d) /\ e) /\ f) /\ j) /\ n) /\ m) by A82, A85, A88, A91, A94, A97, A100, A127, XBOOLE_1: 16;

                hence thesis by A117, A135, XBOOLE_0:def 4;

              end;

                case y = (h . N);

                hence thesis by A82, A101, A127, XBOOLE_0:def 4;

              end;

            end;

            hence thesis;

          end;

          then u in ( meet FF) by A125, SETFAM_1:def 1;

          hence thesis by A125, SETFAM_1:def 9;

        end;

        

         A136: ( Intersect FF) = ( meet ( rng h)) by A106, SETFAM_1:def 9;

        ( Intersect FF) c= xx

        proof

          let t be object;

          assume

           A137: t in ( Intersect FF);

          (h . C) in ( rng h) by A125, ENUMSET1:def 6;

          then

           A138: t in c by A119, A136, A137, SETFAM_1:def 1;

          (h . B) in ( rng h) by A125, ENUMSET1:def 6;

          then t in b by A111, A136, A137, SETFAM_1:def 1;

          then

           A139: t in (b /\ c) by A138, XBOOLE_0:def 4;

          (h . D) in ( rng h) by A125, ENUMSET1:def 6;

          then t in d by A120, A136, A137, SETFAM_1:def 1;

          then

           A140: t in ((b /\ c) /\ d) by A139, XBOOLE_0:def 4;

          (h . E) in ( rng h) by A125, ENUMSET1:def 6;

          then t in e by A118, A136, A137, SETFAM_1:def 1;

          then

           A141: t in (((b /\ c) /\ d) /\ e) by A140, XBOOLE_0:def 4;

          (h . F) in ( rng h) by A125, ENUMSET1:def 6;

          then t in f by A116, A136, A137, SETFAM_1:def 1;

          then

           A142: t in ((((b /\ c) /\ d) /\ e) /\ f) by A141, XBOOLE_0:def 4;

          (h . J) in ( rng h) by A125, ENUMSET1:def 6;

          then t in j by A115, A136, A137, SETFAM_1:def 1;

          then

           A143: t in (((((b /\ c) /\ d) /\ e) /\ f) /\ j) by A142, XBOOLE_0:def 4;

          (h . M) in ( rng h) by A125, ENUMSET1:def 6;

          then t in m by A117, A136, A137, SETFAM_1:def 1;

          then

           A144: t in ((((((b /\ c) /\ d) /\ e) /\ f) /\ j) /\ m) by A143, XBOOLE_0:def 4;

          (h . N) in ( rng h) by A125, ENUMSET1:def 6;

          then t in n by A101, A136, A137, SETFAM_1:def 1;

          hence thesis by A82, A85, A88, A91, A94, A97, A100, A144, XBOOLE_0:def 4;

        end;

        then x = ( Intersect FF) by A126, XBOOLE_0:def 10;

        hence thesis by A15, A102, A104, A79, BVFUNC_2:def 1;

      end;

      ( CompF (A,G)) = ( '/\' (G \ {A})) by BVFUNC_2:def 7;

      hence thesis by A77, A16, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:68

    

     Th68: for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (B,G)) = (((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

       {A, B, C, D, E, F, J, M, N} = ( {A, B} \/ {C, D, E, F, J, M, N}) by ENUMSET1: 78

      .= {B, A, C, D, E, F, J, M, N} by ENUMSET1: 78;

      hence thesis by Th67;

    end;

    theorem :: BVFUNC14:69

    

     Th69: for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (C,G)) = (((((((A '/\' B) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

       {A, B, C, D, E, F, J, M, N} = ( {A, B, C} \/ {D, E, F, J, M, N}) by ENUMSET1: 79

      .= (( {A} \/ {B, C}) \/ {D, E, F, J, M, N}) by ENUMSET1: 2

      .= ( {A, C, B} \/ {D, E, F, J, M, N}) by ENUMSET1: 2

      .= {A, C, B, D, E, F, J, M, N} by ENUMSET1: 79;

      hence thesis by Th68;

    end;

    theorem :: BVFUNC14:70

    

     Th70: for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (D,G)) = (((((((A '/\' B) '/\' C) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

       {A, B, C, D, E, F, J, M, N} = ( {A, B} \/ {C, D, E, F, J, M, N}) by ENUMSET1: 78

      .= ( {A, B} \/ ( {C, D} \/ {E, F, J, M, N})) by ENUMSET1: 17

      .= ( {A, B} \/ {D, C, E, F, J, M, N}) by ENUMSET1: 17

      .= {A, B, D, C, E, F, J, M, N} by ENUMSET1: 78;

      hence thesis by Th69;

    end;

    theorem :: BVFUNC14:71

    

     Th71: for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (E,G)) = (((((((A '/\' B) '/\' C) '/\' D) '/\' F) '/\' J) '/\' M) '/\' N)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

       {A, B, C, D, E, F, J, M, N} = ( {A, B, C} \/ {D, E, F, J, M, N}) by ENUMSET1: 79

      .= ( {A, B, C} \/ ( {D, E} \/ {F, J, M, N})) by ENUMSET1: 12

      .= ( {A, B, C} \/ {E, D, F, J, M, N}) by ENUMSET1: 12

      .= {A, B, C, E, D, F, J, M, N} by ENUMSET1: 79;

      hence thesis by Th70;

    end;

    theorem :: BVFUNC14:72

    

     Th72: for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (F,G)) = (((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' J) '/\' M) '/\' N)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

       {A, B, C, D, E, F, J, M, N} = ( {A, B, C, D} \/ {E, F, J, M, N}) by Lm3

      .= ( {A, B, C, D} \/ ( {E, F} \/ {J, M, N})) by ENUMSET1: 8

      .= ( {A, B, C, D} \/ {F, E, J, M, N}) by ENUMSET1: 8

      .= {A, B, C, D, F, E, J, M, N} by Lm3;

      hence thesis by Th71;

    end;

    theorem :: BVFUNC14:73

    

     Th73: for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (J,G)) = (((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' M) '/\' N)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

       {A, B, C, D, E, F, J, M, N} = ( {A, B, C, D, E} \/ {F, J, M, N}) by ENUMSET1: 81

      .= ( {A, B, C, D, E} \/ ( {J, F} \/ {M, N})) by ENUMSET1: 5

      .= ( {A, B, C, D, E} \/ {J, F, M, N}) by ENUMSET1: 5

      .= {A, B, C, D, E, J, F, M, N} by ENUMSET1: 81;

      hence thesis by Th72;

    end;

    theorem :: BVFUNC14:74

    

     Th74: for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (M,G)) = (((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' N)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

       {A, B, C, D, E, F, J, M, N} = ( {A, B, C, D, E, F} \/ {J, M, N}) by ENUMSET1: 82

      .= ( {A, B, C, D, E, F} \/ ( {J, M} \/ {N})) by ENUMSET1: 3

      .= ( {A, B, C, D, E, F} \/ {M, J, N}) by ENUMSET1: 3

      .= {A, B, C, D, E, F, M, J, N} by ENUMSET1: 82;

      hence thesis by Th73;

    end;

    theorem :: BVFUNC14:75

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y st G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds ( CompF (N,G)) = (((((((A '/\' B) '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

       {A, B, C, D, E, F, J, M, N} = ( {A, B, C, D, E, F, J} \/ {M, N}) by ENUMSET1: 83

      .= {A, B, C, D, E, F, J, N, M} by ENUMSET1: 83;

      hence thesis by Th74;

    end;

    theorem :: BVFUNC14:76

    

     Th76: for A,B,C,D,E,F,J,M,N be set, h be Function, A9,B9,C9,D9,E9,F9,J9,M9,N9 be set st A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N & h = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9)) holds (h . A) = A9 & (h . B) = B9 & (h . C) = C9 & (h . D) = D9 & (h . E) = E9 & (h . F) = F9 & (h . J) = J9 & (h . M) = M9 & (h . N) = N9

    proof

      let A,B,C,D,E,F,J,M,N be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9,M9,N9 be set;

      assume that

       A1: A <> B and

       A2: A <> C and

       A3: A <> D and

       A4: A <> E and

       A5: A <> F and

       A6: A <> J and

       A7: A <> M and

       A8: A <> N and

       A9: B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N and

       A10: M <> N and

       A11: h = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9));

      A in ( dom (A .--> A9)) by TARSKI:def 1;

      then

       A13: (h . A) = ((A .--> A9) . A) by A11, FUNCT_4: 13;

       not E in ( dom (A .--> A9)) by A4, TARSKI:def 1;

      

      then

       A14: (h . E) = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) . E) by A11, FUNCT_4: 11

      .= E9 by A9, Th62;

       not N in ( dom (A .--> A9)) by A8, TARSKI:def 1;

      

      then

       A15: (h . N) = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) . N) by A11, FUNCT_4: 11

      .= N9 by FUNCT_7: 94;

       not D in ( dom (A .--> A9)) by A3, TARSKI:def 1;

      

      then

       A16: (h . D) = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) . D) by A11, FUNCT_4: 11

      .= D9 by A9, Th62;

       not C in ( dom (A .--> A9)) by A2, TARSKI:def 1;

      then

       A17: (h . C) = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) . C) by A11, FUNCT_4: 11;

       not J in ( dom (A .--> A9)) by A6, TARSKI:def 1;

      

      then

       A18: (h . J) = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) . J) by A11, FUNCT_4: 11

      .= J9 by A9, Th62;

       not F in ( dom (A .--> A9)) by A5, TARSKI:def 1;

      

      then

       A19: (h . F) = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) . F) by A11, FUNCT_4: 11

      .= F9 by A9, Th62;

       not M in ( dom (A .--> A9)) by A7, TARSKI:def 1;

      

      then

       A20: (h . M) = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) . M) by A11, FUNCT_4: 11

      .= M9 by A10, Lm1;

       not B in ( dom (A .--> A9)) by A1, TARSKI:def 1;

      

      then (h . B) = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) . B) by A11, FUNCT_4: 11

      .= B9 by A9, Th62;

      hence thesis by A9, A13, A17, A16, A14, A19, A18, A20, A15, Th62, FUNCOP_1: 72;

    end;

    theorem :: BVFUNC14:77

    

     Th77: for A,B,C,D,E,F,J,M,N be set, h be Function, A9,B9,C9,D9,E9,F9,J9,M9,N9 be set st h = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9)) holds ( dom h) = {A, B, C, D, E, F, J, M, N}

    proof

      let A,B,C,D,E,F,J,M,N be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9,M9,N9 be set;

      assume

       A1: h = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9));

      

       A2: ( dom (A .--> A9)) = {A};

      ( dom ((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9))) = {N, B, C, D, E, F, J, M} by Th63

      .= ( {N} \/ {B, C, D, E, F, J, M}) by ENUMSET1: 22

      .= {B, C, D, E, F, J, M, N} by ENUMSET1: 28;

      

      then ( dom (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9))) = ( {B, C, D, E, F, J, M, N} \/ {A}) by A2, FUNCT_4:def 1

      .= {A, B, C, D, E, F, J, M, N} by ENUMSET1: 77;

      hence thesis by A1;

    end;

    theorem :: BVFUNC14:78

    

     Th78: for A,B,C,D,E,F,J,M,N be set, h be Function, A9,B9,C9,D9,E9,F9,J9,M9,N9 be set st h = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9)) holds ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)}

    proof

      let A,B,C,D,E,F,J,M,N be set;

      let h be Function;

      let A9,B9,C9,D9,E9,F9,J9,M9,N9 be set;

      assume h = (((((((((B .--> B9) +* (C .--> C9)) +* (D .--> D9)) +* (E .--> E9)) +* (F .--> F9)) +* (J .--> J9)) +* (M .--> M9)) +* (N .--> N9)) +* (A .--> A9));

      then

       A1: ( dom h) = {A, B, C, D, E, F, J, M, N} by Th77;

      then

       A2: B in ( dom h) by ENUMSET1:def 7;

      

       A3: M in ( dom h) by A1, ENUMSET1:def 7;

      

       A4: J in ( dom h) by A1, ENUMSET1:def 7;

      

       A5: N in ( dom h) by A1, ENUMSET1:def 7;

      

       A6: D in ( dom h) by A1, ENUMSET1:def 7;

      

       A7: C in ( dom h) by A1, ENUMSET1:def 7;

      

       A8: ( rng h) c= {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)}

      proof

        let t be object;

        assume t in ( rng h);

        then

        consider x1 be object such that

         A9: x1 in ( dom h) and

         A10: t = (h . x1) by FUNCT_1:def 3;

        now

          per cases by A1, A9, ENUMSET1:def 7;

            case x1 = A;

            hence thesis by A10, ENUMSET1:def 7;

          end;

            case x1 = B;

            hence thesis by A10, ENUMSET1:def 7;

          end;

            case x1 = C;

            hence thesis by A10, ENUMSET1:def 7;

          end;

            case x1 = D;

            hence thesis by A10, ENUMSET1:def 7;

          end;

            case x1 = E;

            hence thesis by A10, ENUMSET1:def 7;

          end;

            case x1 = F;

            hence thesis by A10, ENUMSET1:def 7;

          end;

            case x1 = J;

            hence thesis by A10, ENUMSET1:def 7;

          end;

            case x1 = M;

            hence thesis by A10, ENUMSET1:def 7;

          end;

            case x1 = N;

            hence thesis by A10, ENUMSET1:def 7;

          end;

        end;

        hence thesis;

      end;

      

       A11: F in ( dom h) by A1, ENUMSET1:def 7;

      

       A12: E in ( dom h) by A1, ENUMSET1:def 7;

      

       A13: A in ( dom h) by A1, ENUMSET1:def 7;

       {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)} c= ( rng h)

      proof

        let t be object;

        assume

         A14: t in {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)};

        now

          per cases by A14, ENUMSET1:def 7;

            case t = (h . A);

            hence thesis by A13, FUNCT_1:def 3;

          end;

            case t = (h . B);

            hence thesis by A2, FUNCT_1:def 3;

          end;

            case t = (h . C);

            hence thesis by A7, FUNCT_1:def 3;

          end;

            case t = (h . D);

            hence thesis by A6, FUNCT_1:def 3;

          end;

            case t = (h . E);

            hence thesis by A12, FUNCT_1:def 3;

          end;

            case t = (h . F);

            hence thesis by A11, FUNCT_1:def 3;

          end;

            case t = (h . J);

            hence thesis by A4, FUNCT_1:def 3;

          end;

            case t = (h . M);

            hence thesis by A3, FUNCT_1:def 3;

          end;

            case t = (h . N);

            hence thesis by A5, FUNCT_1:def 3;

          end;

        end;

        hence thesis;

      end;

      hence thesis by A8, XBOOLE_0:def 10;

    end;

    theorem :: BVFUNC14:79

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y, z,u be Element of Y st G is independent & G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N holds (( EqClass (u,(((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) /\ ( EqClass (z,A))) <> {}

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E, F, J, M, N} and

       A3: A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N;

      set h = (((((((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (F .--> ( EqClass (u,F)))) +* (J .--> ( EqClass (u,J)))) +* (M .--> ( EqClass (u,M)))) +* (N .--> ( EqClass (u,N)))) +* (A .--> ( EqClass (z,A))));

      

       A4: (h . A) = ( EqClass (z,A)) by A3, Th76;

      set GG = ( EqClass (u,(((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)));

      GG = (( EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) /\ ( EqClass (u,N))) by Th1;

      then GG = ((( EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then GG = (((( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then GG = ((((( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then GG = (((((( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then GG = ((((((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then

       A5: (GG /\ ( EqClass (z,A))) = ((((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) /\ ( EqClass (z,A))) by Th1;

      

       A6: (h . B) = ( EqClass (u,B)) by A3, Th76;

      

       A7: (h . F) = ( EqClass (u,F)) by A3, Th76;

      

       A8: (h . E) = ( EqClass (u,E)) by A3, Th76;

      

       A9: (h . M) = ( EqClass (u,M)) by A3, Th76;

      

       A10: (h . J) = ( EqClass (u,J)) by A3, Th76;

      

       A11: (h . N) = ( EqClass (u,N)) by A3, Th76;

      

       A12: (h . D) = ( EqClass (u,D)) by A3, Th76;

      

       A13: (h . C) = ( EqClass (u,C)) by A3, Th76;

      

       A14: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)} by Th78;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume t in ( rng h);

        then t = (h . A) or t = (h . B) or t = (h . C) or t = (h . D) or t = (h . E) or t = (h . F) or t = (h . J) or t = (h . M) or t = (h . N) by A14, ENUMSET1:def 7;

        hence thesis by A4, A6, A13, A12, A8, A7, A10, A9, A11;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A15: ( dom h) = G by A2, Th77;

      then A in ( dom h) by A2, ENUMSET1:def 7;

      then

       A16: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A17: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume d in G;

        then d = A or d = B or d = C or d = D or d = E or d = F or d = J or d = M or d = N by A2, ENUMSET1:def 7;

        hence thesis by A4, A6, A13, A12, A8, A7, A10, A9, A11;

      end;

      then ( Intersect FF) <> {} by A1, A15, BVFUNC_2:def 5;

      then

      consider m be object such that

       A18: m in ( Intersect FF) by XBOOLE_0:def 1;

      C in ( dom h) by A2, A15, ENUMSET1:def 7;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A19: m in ( EqClass (u,C)) by A13, A17, A18, SETFAM_1:def 1;

      B in ( dom h) by A2, A15, ENUMSET1:def 7;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,B)) by A6, A17, A18, SETFAM_1:def 1;

      then

       A20: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A19, XBOOLE_0:def 4;

      D in ( dom h) by A2, A15, ENUMSET1:def 7;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,D)) by A12, A17, A18, SETFAM_1:def 1;

      then

       A21: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A20, XBOOLE_0:def 4;

      E in ( dom h) by A2, A15, ENUMSET1:def 7;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,E)) by A8, A17, A18, SETFAM_1:def 1;

      then

       A22: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A21, XBOOLE_0:def 4;

      F in ( dom h) by A2, A15, ENUMSET1:def 7;

      then (h . F) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,F)) by A7, A17, A18, SETFAM_1:def 1;

      then

       A23: m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by A22, XBOOLE_0:def 4;

      J in ( dom h) by A2, A15, ENUMSET1:def 7;

      then (h . J) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,J)) by A10, A17, A18, SETFAM_1:def 1;

      then

       A24: m in (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by A23, XBOOLE_0:def 4;

      M in ( dom h) by A2, A15, ENUMSET1:def 7;

      then (h . M) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,M)) by A9, A17, A18, SETFAM_1:def 1;

      then

       A25: m in ((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by A24, XBOOLE_0:def 4;

      N in ( dom h) by A2, A15, ENUMSET1:def 7;

      then (h . N) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,N)) by A11, A17, A18, SETFAM_1:def 1;

      then

       A26: m in (((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by A25, XBOOLE_0:def 4;

      m in ( EqClass (z,A)) by A4, A16, A17, A18, SETFAM_1:def 1;

      hence thesis by A5, A26, XBOOLE_0:def 4;

    end;

    theorem :: BVFUNC14:80

    for G be Subset of ( PARTITIONS Y), A,B,C,D,E,F,J,M,N be a_partition of Y, z,u be Element of Y st G is independent & G = {A, B, C, D, E, F, J, M, N} & A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N & ( EqClass (z,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) = ( EqClass (u,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) holds ( EqClass (u,( CompF (A,G)))) meets ( EqClass (z,( CompF (B,G))))

    proof

      let G be Subset of ( PARTITIONS Y);

      let A,B,C,D,E,F,J,M,N be a_partition of Y;

      let z,u be Element of Y;

      assume that

       A1: G is independent and

       A2: G = {A, B, C, D, E, F, J, M, N} and

       A3: A <> B & A <> C & A <> D & A <> E & A <> F & A <> J & A <> M & A <> N & B <> C & B <> D & B <> E & B <> F & B <> J & B <> M & B <> N & C <> D & C <> E & C <> F & C <> J & C <> M & C <> N & D <> E & D <> F & D <> J & D <> M & D <> N & E <> F & E <> J & E <> M & E <> N & F <> J & F <> M & F <> N & J <> M & J <> N & M <> N and

       A4: ( EqClass (z,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) = ( EqClass (u,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)));

      set h = (((((((((B .--> ( EqClass (u,B))) +* (C .--> ( EqClass (u,C)))) +* (D .--> ( EqClass (u,D)))) +* (E .--> ( EqClass (u,E)))) +* (F .--> ( EqClass (u,F)))) +* (J .--> ( EqClass (u,J)))) +* (M .--> ( EqClass (u,M)))) +* (N .--> ( EqClass (u,N)))) +* (A .--> ( EqClass (z,A))));

      

       A5: (h . A) = ( EqClass (z,A)) by A3, Th76;

      set L = ( EqClass (z,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)));

      set GG = ( EqClass (u,(((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)));

      reconsider I = ( EqClass (z,A)) as set;

      GG = (( EqClass (u,((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M))) /\ ( EqClass (u,N))) by Th1;

      then GG = ((( EqClass (u,(((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then GG = (((( EqClass (u,((((B '/\' C) '/\' D) '/\' E) '/\' F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then GG = ((((( EqClass (u,(((B '/\' C) '/\' D) '/\' E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then GG = (((((( EqClass (u,((B '/\' C) '/\' D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then GG = ((((((( EqClass (u,(B '/\' C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by Th1;

      then

       A6: (GG /\ I) = ((((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) /\ ( EqClass (z,A))) by Th1;

      

       A7: ( CompF (A,G)) = (((((((B '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N) by A2, A3, Th67;

      reconsider HH = ( EqClass (z,( CompF (B,G)))) as set;

      

       A8: z in HH by EQREL_1:def 6;

      

       A9: (A '/\' ((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)) = ((A '/\' (((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) '/\' N) by PARTIT1: 14

      .= (((A '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J)) '/\' M) '/\' N) by PARTIT1: 14

      .= ((((A '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J) '/\' M) '/\' N) by PARTIT1: 14

      .= (((((A '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J) '/\' M) '/\' N) by PARTIT1: 14

      .= ((((((A '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N) by PARTIT1: 14

      .= (((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N) by PARTIT1: 14;

      

       A10: (h . B) = ( EqClass (u,B)) by A3, Th76;

      

       A11: (h . N) = ( EqClass (u,N)) by A3, Th76;

      

       A12: (h . D) = ( EqClass (u,D)) by A3, Th76;

      

       A13: (h . C) = ( EqClass (u,C)) by A3, Th76;

      

       A14: (h . M) = ( EqClass (u,M)) by A3, Th76;

      

       A15: (h . J) = ( EqClass (u,J)) by A3, Th76;

      

       A16: (h . F) = ( EqClass (u,F)) by A3, Th76;

      

       A17: (h . E) = ( EqClass (u,E)) by A3, Th76;

      

       A18: ( rng h) = {(h . A), (h . B), (h . C), (h . D), (h . E), (h . F), (h . J), (h . M), (h . N)} by Th78;

      ( rng h) c= ( bool Y)

      proof

        let t be object;

        assume t in ( rng h);

        then t = (h . A) or t = (h . B) or t = (h . C) or t = (h . D) or t = (h . E) or t = (h . F) or t = (h . J) or t = (h . M) or t = (h . N) by A18, ENUMSET1:def 7;

        hence thesis by A5, A10, A13, A12, A17, A16, A15, A14, A11;

      end;

      then

      reconsider FF = ( rng h) as Subset-Family of Y;

      

       A19: ( dom h) = G by A2, Th77;

      then A in ( dom h) by A2, ENUMSET1:def 7;

      then

       A20: (h . A) in ( rng h) by FUNCT_1:def 3;

      then

       A21: ( Intersect FF) = ( meet ( rng h)) by SETFAM_1:def 9;

      for d be set st d in G holds (h . d) in d

      proof

        let d be set;

        assume d in G;

        then d = A or d = B or d = C or d = D or d = E or d = F or d = J or d = M or d = N by A2, ENUMSET1:def 7;

        hence thesis by A5, A10, A13, A12, A17, A16, A15, A14, A11;

      end;

      then ( Intersect FF) <> {} by A1, A19, BVFUNC_2:def 5;

      then

      consider m be object such that

       A22: m in ( Intersect FF) by XBOOLE_0:def 1;

      C in ( dom h) by A2, A19, ENUMSET1:def 7;

      then (h . C) in ( rng h) by FUNCT_1:def 3;

      then

       A23: m in ( EqClass (u,C)) by A13, A21, A22, SETFAM_1:def 1;

      B in ( dom h) by A2, A19, ENUMSET1:def 7;

      then (h . B) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,B)) by A10, A21, A22, SETFAM_1:def 1;

      then

       A24: m in (( EqClass (u,B)) /\ ( EqClass (u,C))) by A23, XBOOLE_0:def 4;

      D in ( dom h) by A2, A19, ENUMSET1:def 7;

      then (h . D) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,D)) by A12, A21, A22, SETFAM_1:def 1;

      then

       A25: m in ((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) by A24, XBOOLE_0:def 4;

      E in ( dom h) by A2, A19, ENUMSET1:def 7;

      then (h . E) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,E)) by A17, A21, A22, SETFAM_1:def 1;

      then

       A26: m in (((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) by A25, XBOOLE_0:def 4;

      F in ( dom h) by A2, A19, ENUMSET1:def 7;

      then (h . F) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,F)) by A16, A21, A22, SETFAM_1:def 1;

      then

       A27: m in ((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) by A26, XBOOLE_0:def 4;

      J in ( dom h) by A2, A19, ENUMSET1:def 7;

      then (h . J) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,J)) by A15, A21, A22, SETFAM_1:def 1;

      then

       A28: m in (((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) by A27, XBOOLE_0:def 4;

      M in ( dom h) by A2, A19, ENUMSET1:def 7;

      then (h . M) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,M)) by A14, A21, A22, SETFAM_1:def 1;

      then

       A29: m in ((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) by A28, XBOOLE_0:def 4;

      N in ( dom h) by A2, A19, ENUMSET1:def 7;

      then (h . N) in ( rng h) by FUNCT_1:def 3;

      then m in ( EqClass (u,N)) by A11, A21, A22, SETFAM_1:def 1;

      then

       A30: m in (((((((( EqClass (u,B)) /\ ( EqClass (u,C))) /\ ( EqClass (u,D))) /\ ( EqClass (u,E))) /\ ( EqClass (u,F))) /\ ( EqClass (u,J))) /\ ( EqClass (u,M))) /\ ( EqClass (u,N))) by A29, XBOOLE_0:def 4;

      m in ( EqClass (z,A)) by A5, A20, A21, A22, SETFAM_1:def 1;

      then (GG /\ I) <> {} by A6, A30, XBOOLE_0:def 4;

      then

      consider p be object such that

       A31: p in (GG /\ I) by XBOOLE_0:def 1;

      reconsider p as Element of Y by A31;

      set K = ( EqClass (p,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)));

      

       A32: p in GG by A31, XBOOLE_0:def 4;

      

       A33: p in ( EqClass (p,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) by EQREL_1:def 6;

      GG = ( EqClass (u,((((((B '/\' (C '/\' D)) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) by PARTIT1: 14;

      then GG = ( EqClass (u,(((((B '/\' ((C '/\' D) '/\' E)) '/\' F) '/\' J) '/\' M) '/\' N))) by PARTIT1: 14;

      then GG = ( EqClass (u,((((B '/\' (((C '/\' D) '/\' E) '/\' F)) '/\' J) '/\' M) '/\' N))) by PARTIT1: 14;

      then GG = ( EqClass (u,(((B '/\' ((((C '/\' D) '/\' E) '/\' F) '/\' J)) '/\' M) '/\' N))) by PARTIT1: 14;

      then GG = ( EqClass (u,((B '/\' (((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M)) '/\' N))) by PARTIT1: 14;

      then GG = ( EqClass (u,(B '/\' ((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N)))) by PARTIT1: 14;

      then GG c= L by A4, BVFUNC11: 3;

      then K meets L by A32, A33, XBOOLE_0: 3;

      then K = L by EQREL_1: 41;

      then

       A34: z in K by EQREL_1:def 6;

      p in K & p in I by A31, EQREL_1:def 6, XBOOLE_0:def 4;

      then

       A35: p in (I /\ K) by XBOOLE_0:def 4;

      then (I /\ K) in ( INTERSECTION (A,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) & not (I /\ K) in { {} } by SETFAM_1:def 5, TARSKI:def 1;

      then

       A36: (I /\ K) in (( INTERSECTION (A,((((((C '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N))) \ { {} }) by XBOOLE_0:def 5;

      z in I by EQREL_1:def 6;

      then z in (I /\ K) by A34, XBOOLE_0:def 4;

      then

       A37: (I /\ K) meets HH by A8, XBOOLE_0: 3;

      ( CompF (B,G)) = (((((((A '/\' C) '/\' D) '/\' E) '/\' F) '/\' J) '/\' M) '/\' N) by A2, A3, Th68;

      then (I /\ K) in ( CompF (B,G)) by A36, A9, PARTIT1:def 4;

      then p in HH by A35, A37, EQREL_1:def 4;

      hence thesis by A7, A32, XBOOLE_0: 3;

    end;