finance3.miz



    begin

    

     Lemacik: for a,b,c be set st (a = 1 or a = 2 or a = 3 or a = 4) & (b = 1 or b = 2 or b = 3 or b = 4) & (c = 1 or c = 2 or c = 3 or c = 4) holds {a, b, c} c= {1, 2, 3, 4}

    proof

      let a,b,c be set;

      assume

       A1: (a = 1 or a = 2 or a = 3 or a = 4) & (b = 1 or b = 2 or b = 3 or b = 4) & (c = 1 or c = 2 or c = 3 or c = 4);

      for x be object st x in {a, b, c} holds x in {1, 2, 3, 4}

      proof

        let x be object;

        assume x in {a, b, c};

        then x = a or x = b or x = c by ENUMSET1:def 1;

        hence thesis by ENUMSET1:def 2, A1;

      end;

      hence thesis;

    end;

    

     Lemacik2: for a,b be set st (a = 1 or a = 2 or a = 3 or a = 4) & (b = 1 or b = 2 or b = 3 or b = 4) holds {a, b} c= {1, 2, 3, 4}

    proof

      let a,b be set;

      assume

       A1: (a = 1 or a = 2 or a = 3 or a = 4) & (b = 1 or b = 2 or b = 3 or b = 4);

      for x be object st x in {a, b} holds x in {1, 2, 3, 4}

      proof

        let x be object;

        assume x in {a, b};

        then x = a or x = b by TARSKI:def 2;

        hence thesis by ENUMSET1:def 2, A1;

      end;

      hence thesis;

    end;

    

     Lemacik3: for a be set st a = 1 or a = 2 or a = 3 or a = 4 holds {a} c= {1, 2, 3, 4}

    proof

      let a be set;

      assume

       A1: a = 1 or a = 2 or a = 3 or a = 4;

      for x be object st x in {a} holds x in {1, 2, 3, 4}

      proof

        let x be object;

        assume x in {a};

        then x = a by TARSKI:def 1;

        hence thesis by ENUMSET1:def 2, A1;

      end;

      hence thesis;

    end;

    

     The1: for A1 be SetSequence of {1, 2, 3, 4} st (ex n be Nat st (A1 . n) = {} ) holds ( Intersection A1) = {}

    proof

      let A1 be SetSequence of {1, 2, 3, 4};

      given n be Nat such that

       AB: (A1 . n) = {} ;

      assume ( Intersection A1) <> {} ;

      then

      consider x be object such that

       AA: x in ( Intersection A1) by XBOOLE_0:def 1;

      thus thesis by AB, PROB_1: 13, AA;

    end;

    

     EnLm1: {1} c= {1, 2, 3, 4} by Lemacik3;

    

     EnLm2: {2} c= {1, 2, 3, 4} by Lemacik3;

    

     EnLm3: {3} c= {1, 2, 3, 4} by Lemacik3;

    

     EnLm4: {4} c= {1, 2, 3, 4} by Lemacik3;

    theorem :: FINANCE3:1

    for a,b be object st a <> b holds {a} c< {a, b} by ZFMISC_1: 7, ZFMISC_1: 20;

    

     Lm1: {3, 4} c= {1, 2, 3, 4} by Lemacik2;

    

     Lm2: {1, 2} c= {1, 2, 3, 4} by Lemacik2;

    

     Lm3: ( {1, 2} /\ {3, 4}) = {}

    proof

      ( {1, 2} /\ {3, 4}) c= {}

      proof

        let x be object;

        x in ( {1, 2} /\ {3, 4}) iff (x in {1, 2} & x in {3, 4}) by XBOOLE_0:def 4;

        then x in ( {1, 2} /\ {3, 4}) iff ((x = 1 or x = 2) & (x = 3 or x = 4)) by TARSKI:def 2;

        hence thesis;

      end;

      hence thesis;

    end;

    

     Lem1: ( {1, 2, 3, 4} \ {1, 2}) = {3, 4}

    proof

      for x be object holds x in ( {1, 2, 3, 4} \ {1, 2}) iff x in {3, 4}

      proof

        let x be object;

        thus x in ( {1, 2, 3, 4} \ {1, 2}) implies x in {3, 4}

        proof

          assume x in ( {1, 2, 3, 4} \ {1, 2});

          then x in {1, 2, 3, 4} & not x in {1, 2} by XBOOLE_0:def 5;

          then (x = 1 or x = 2 or x = 3 or x = 4) & (x <> 1 & x <> 2) by TARSKI:def 2, ENUMSET1:def 2;

          hence thesis by TARSKI:def 2;

        end;

        assume x in {3, 4};

        then x = 3 or x = 4 by TARSKI:def 2;

        then x in {1, 2, 3, 4} & not x in {1, 2} by TARSKI:def 2, ENUMSET1:def 2;

        hence thesis by XBOOLE_0:def 5;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     Lem2: ( {1, 2, 3, 4} \ {3, 4}) = {1, 2}

    proof

      for x be object holds x in ( {1, 2, 3, 4} \ {3, 4}) iff x in {1, 2}

      proof

        let x be object;

        thus x in ( {1, 2, 3, 4} \ {3, 4}) implies x in {1, 2}

        proof

          assume x in ( {1, 2, 3, 4} \ {3, 4});

          then x in {1, 2, 3, 4} & not x in {3, 4} by XBOOLE_0:def 5;

          then (x = 1 or x = 2 or x = 3 or x = 4) & (x <> 3 & x <> 4) by TARSKI:def 2, ENUMSET1:def 2;

          hence thesis by TARSKI:def 2;

        end;

        assume x in {1, 2};

        then x = 1 or x = 2 by TARSKI:def 2;

        then x in {1, 2, 3, 4} & not x in {3, 4} by TARSKI:def 2, ENUMSET1:def 2;

        hence thesis by XBOOLE_0:def 5;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     B13: {1, 3} in ( bool {1, 2, 3, 4})

    proof

       {1, 3} c= {1, 2, 3, 4} by Lemacik2;

      hence thesis;

    end;

    

     B14: {1, 4} in ( bool {1, 2, 3, 4})

    proof

       {1, 4} c= {1, 2, 3, 4} by Lemacik2;

      hence thesis;

    end;

    

     B124: {1, 2, 4} in ( bool {1, 2, 3, 4})

    proof

       {1, 2, 4} c= {1, 2, 3, 4} by Lemacik;

      hence thesis;

    end;

    

     B134: {1, 3, 4} in ( bool {1, 2, 3, 4})

    proof

       {1, 3, 4} c= {1, 2, 3, 4} by Lemacik;

      hence thesis;

    end;

    

     B234: {2, 3, 4} in ( bool {1, 2, 3, 4})

    proof

       {2, 3, 4} c= {1, 2, 3, 4} by Lemacik;

      hence thesis;

    end;

    

     B123: {1, 2, 3} in ( bool {1, 2, 3, 4})

    proof

       {1, 2, 3} c= {1, 2, 3, 4} by Lemacik;

      hence thesis;

    end;

    

     B23: {2, 3} in ( bool {1, 2, 3, 4})

    proof

       {2, 3} c= {1, 2, 3, 4} by Lemacik2;

      hence thesis;

    end;

    

     B24: {2, 4} in ( bool {1, 2, 3, 4})

    proof

       {2, 4} c= {1, 2, 3, 4} by Lemacik2;

      hence thesis;

    end;

    

     B25: {1, 2} in ( bool {1, 2, 3, 4})

    proof

       {1, 2} c= {1, 2, 3, 4} by Lemacik2;

      hence thesis;

    end;

    

     B26: {3, 4} in ( bool {1, 2, 3, 4})

    proof

       {3, 4} c= {1, 2, 3, 4} by Lemacik2;

      hence thesis;

    end;

    

     WW1: {1, 2, 3} <> {3, 4}

    proof

      set z = 4;

       not z in {1, 2, 3} by ENUMSET1:def 1;

      hence thesis by TARSKI:def 2;

    end;

    

     The0: { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} <> ( bool {1, 2, 3, 4})

    proof

      set y = {1, 2, 3};

       not 4 in {1, 2, 3} by ENUMSET1:def 1;

      then

       b1: y <> {1, 2, 3, 4} by ENUMSET1:def 2;

      3 in {1, 2, 3} by ENUMSET1:def 1;

      then

       K1: y <> {1, 2} by TARSKI:def 2;

       not (y in { {} , {1, 2}} or y in { {3, 4}})

      proof

        ( not y in { {} }) & not y in { {1, 2}} by K1, TARSKI:def 1;

        then not y in ( { {} } \/ { {1, 2}}) by XBOOLE_0:def 3;

        hence thesis by TARSKI:def 1, WW1, ENUMSET1: 1;

      end;

      then not y in ( { {} , {1, 2}} \/ { {3, 4}}) by XBOOLE_0:def 3;

      then not (y in { {} , {1, 2}, {3, 4}} or y in { {1, 2, 3, 4}}) by b1, ENUMSET1: 3, TARSKI:def 1;

      then not y in ( { {} , {1, 2}, {3, 4}} \/ { {1, 2, 3, 4}}) by XBOOLE_0:def 3;

      hence thesis by B123, ENUMSET1: 6;

    end;

    set Omega3 = {1, 2, 3}, Omega4 = {1, 2, 3, 4};

    

     ATh102: {1, 2, 3} c< {1, 2, 3, 4}

    proof

      for x be object st x in Omega3 holds x in Omega4

      proof

        let x be object;

        assume x in Omega3;

        then x = 1 or x = 2 or x = 3 or x = 4 by ENUMSET1:def 1;

        hence thesis by ENUMSET1:def 2;

      end;

      then

       T1: Omega3 c= Omega4;

      Omega3 <> Omega4

      proof

        4 in {1, 2, 3, 4} by ENUMSET1:def 2;

        hence thesis by ENUMSET1:def 1;

      end;

      hence thesis by T1;

    end;

    set Omega2 = {1, 2};

    

     ATh101: {1, 2} c< {1, 2, 3}

    proof

      for x be object st x in Omega2 holds x in Omega3

      proof

        let x be object;

        assume x in Omega2;

        then x = 1 or x = 2 by TARSKI:def 2;

        hence thesis by ENUMSET1:def 1;

      end;

      then

       T1: Omega2 c= Omega3;

      Omega2 <> Omega3

      proof

        3 in {1, 2, 3} by ENUMSET1:def 1;

        hence thesis by TARSKI:def 2;

      end;

      hence thesis by T1;

    end;

    registration

      let I be non empty Subset of NAT ;

      cluster ( In (I,( bool REAL ))) -> non empty;

      coherence

      proof

        I c= REAL by NUMBERS: 19;

        hence thesis by SUBSET_1:def 8;

      end;

    end

    theorem :: FINANCE3:2

    for T be Nat holds { w where w be Element of NAT : w > 0 & w <= T } c= { w where w be Element of NAT : w <= T }

    proof

      let T be Nat;

      let x be object;

      assume x in { w where w be Element of NAT : w > 0 & w <= T };

      then

      consider w be Element of NAT such that

       B1: x = w & w > 0 & w <= T;

      thus thesis by B1;

    end;

    theorem :: FINANCE3:3

    for T be Nat holds { w where w be Element of NAT : w <= T } is non empty Subset of NAT

    proof

      let T be Nat;

      

       B1: { w where w be Element of NAT : w <= T } c= NAT

      proof

        let x be object;

        assume x in { w where w be Element of NAT : w <= T };

        then

        consider w be Element of NAT such that

         C1: x = w & w <= T;

        thus thesis by C1;

      end;

      T in { w where w be Element of NAT : w <= T }

      proof

        T in NAT by ORDINAL1:def 12;

        hence thesis;

      end;

      hence thesis by B1;

    end;

    theorem :: FINANCE3:4

    for T be Nat st T > 0 holds { w where w be Element of NAT : w > 0 & w <= T } is non empty Subset of NAT

    proof

      let T be Nat;

      assume

       A0: T > 0 ;

      

       B1: { w where w be Element of NAT : w > 0 & w <= T } c= NAT

      proof

        let x be object;

        assume x in { w where w be Element of NAT : w > 0 & w <= T };

        then

        consider w be Element of NAT such that

         C1: x = w & w > 0 & w <= T;

        thus thesis by C1;

      end;

      1 > 0 & 1 <= T

      proof

        T > 0 & T = (1 * T) by A0;

        hence thesis by NAT_1: 24;

      end;

      then 1 in { w where w be Element of NAT : w > 0 & w <= T };

      hence thesis by B1;

    end;

    theorem :: FINANCE3:5

    for d be Nat, phi be Real_Sequence, Omega be non empty set, F be SigmaField of Omega, X be non empty set, G be sequence of X, w be Element of Omega holds {( PortfolioValueFutExt (d,phi,F,G,w))} is Event of Borel_Sets by FINANCE2: 5;

    definition

      let d be Nat;

      let phi be Real_Sequence;

      let Omega be non empty set;

      let F be SigmaField of Omega;

      let X be non empty set;

      let G be sequence of X;

      let w be Element of Omega;

      :: original: PortfolioValueFutExt

      redefine

      func PortfolioValueFutExt (d,phi,F,G,w) -> Element of REAL ;

      coherence ;

    end

    definition

      let Omega be non empty set;

      let F be SigmaField of Omega;

      let X be non empty set;

      let G be sequence of X;

      let phi be Real_Sequence;

      let d be Nat;

      :: FINANCE3:def1

      func RVPortfolioValueFutExt (phi,F,G,d) -> Function of Omega, REAL means

      : Def2: for w be Element of Omega holds (it . w) = ( PortfolioValueFutExt (d,phi,F,G,w));

      existence

      proof

        deffunc U( Element of Omega) = ( PortfolioValueFutExt (d,phi,F,G,$1));

        consider f be Function of Omega, REAL such that

         A1: for d be Element of Omega holds (f . d) = U(d) from FUNCT_2:sch 4;

        take f;

        let n be Element of Omega;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let f1,f2 be Function of Omega, REAL ;

        assume that

         A2: for w be Element of Omega holds (f1 . w) = ( PortfolioValueFutExt (d,phi,F,G,w)) and

         A3: for w be Element of Omega holds (f2 . w) = ( PortfolioValueFutExt (d,phi,F,G,w));

        for w be Element of Omega holds (f1 . w) = (f2 . w)

        proof

          let w be Element of Omega;

          (f2 . w) = ( PortfolioValueFutExt (d,phi,F,G,w)) by A3;

          hence thesis by A2;

        end;

        hence thesis;

      end;

    end

    theorem :: FINANCE3:6

    for Omega be non empty set holds for F be SigmaField of Omega holds for G be sequence of ( set_of_random_variables_on (F, Borel_Sets )) holds for phi be Real_Sequence holds for d be Nat holds ( RVPortfolioValueFutExt (phi,F,G,d)) is random_variable of F, Borel_Sets

    proof

      let Omega be non empty set;

      let F be SigmaField of Omega;

      let G be sequence of ( set_of_random_variables_on (F, Borel_Sets ));

      let phi be Real_Sequence;

      let d be Nat;

      defpred J[ Nat] means ( RVPortfolioValueFutExt (phi,F,G,$1)) is random_variable of F, Borel_Sets ;

      ( ElementsOfPortfolioValueProb_fut (F,(G . 0 ))) is random_variable of F, Borel_Sets by FINANCE2: 28;

      then

       A1: ((phi . 0 ) (#) ( ElementsOfPortfolioValueProb_fut (F,(G . 0 )))) is random_variable of F, Borel_Sets by FINANCE2: 26;

      ( RVPortfolioValueFutExt (phi,F,G, 0 )) is random_variable of F, Borel_Sets

      proof

        for w be Element of Omega holds (( RVPortfolioValueFutExt (phi,F,G, 0 )) . w) = (((phi . 0 ) (#) ( ElementsOfPortfolioValueProb_fut (F,(G . 0 )))) . w)

        proof

          let w be Element of Omega;

          (( RVPortfolioValueFutExt (phi,F,G, 0 )) . w) = ( PortfolioValueFutExt ( 0 ,phi,F,G,w)) by Def2;

          

          then (( RVPortfolioValueFutExt (phi,F,G, 0 )) . w) = (( RVPortfolioValueFutExt_El (phi,F,G,w)) . 0 ) by SERIES_1:def 1

          .= (( RVElementsOfPortfolioValue_fut (phi,F,G, 0 )) . w) by FINANCE2:def 6

          .= ((phi . 0 ) * (( ElementsOfPortfolioValueProb_fut (F,(G . 0 ))) . w)) by FINANCE2:def 5;

          hence thesis by VALUED_1: 6;

        end;

        hence thesis by A1, FUNCT_2: 63;

      end;

      then

       J0: J[ 0 ];

      

       J1: for n be Nat st J[n] holds J[(n + 1)]

      proof

        let n be Nat;

        assume

         B1: J[n];

        

         C0: for w be Element of Omega holds (( RVPortfolioValueFutExt (phi,F,G,(n + 1))) . w) = ((( RVPortfolioValueFutExt (phi,F,G,n)) . w) + (( RVElementsOfPortfolioValue_fut (phi,F,G,(n + 1))) . w))

        proof

          let w be Element of Omega;

          (( RVPortfolioValueFutExt (phi,F,G,(n + 1))) . w) = ( PortfolioValueFutExt ((n + 1),phi,F,G,w)) by Def2;

          then

           D1: (( RVPortfolioValueFutExt (phi,F,G,(n + 1))) . w) = ((( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . n) + (( RVPortfolioValueFutExt_El (phi,F,G,w)) . (n + 1))) by SERIES_1:def 1;

          (( RVPortfolioValueFutExt (phi,F,G,n)) . w) = ( PortfolioValueFutExt (n,phi,F,G,w)) by Def2;

          hence thesis by FINANCE2:def 6, D1;

        end;

        

         K2: ( RVElementsOfPortfolioValue_fut (phi,F,G,(n + 1))) is random_variable of F, Borel_Sets by FINANCE2: 30;

        

         C2: ( dom ( RVPortfolioValueFutExt (phi,F,G,n))) = Omega by FUNCT_2:def 1;

        ( dom ( RVElementsOfPortfolioValue_fut (phi,F,G,(n + 1)))) = Omega by FUNCT_2:def 1;

        then ( dom ( RVPortfolioValueFutExt (phi,F,G,(n + 1)))) = (( dom ( RVPortfolioValueFutExt (phi,F,G,n))) /\ ( dom ( RVElementsOfPortfolioValue_fut (phi,F,G,(n + 1))))) & for c be object st c in ( dom ( RVPortfolioValueFutExt (phi,F,G,(n + 1)))) holds (( RVPortfolioValueFutExt (phi,F,G,(n + 1))) . c) = ((( RVPortfolioValueFutExt (phi,F,G,n)) . c) + (( RVElementsOfPortfolioValue_fut (phi,F,G,(n + 1))) . c)) by C0, FUNCT_2:def 1, C2;

        then ( RVPortfolioValueFutExt (phi,F,G,(n + 1))) = (( RVPortfolioValueFutExt (phi,F,G,n)) + ( RVElementsOfPortfolioValue_fut (phi,F,G,(n + 1)))) by VALUED_1:def 1;

        hence thesis by B1, K2, FINANCE2: 23;

      end;

      for n be Nat holds J[n] from NAT_1:sch 2( J0, J1);

      hence thesis;

    end;

    definition

      let d be Nat;

      let phi be Real_Sequence;

      let Omega be non empty set;

      let F be SigmaField of Omega;

      let X be non empty set;

      let G be sequence of X;

      let w be Element of Omega;

      :: original: PortfolioValueFut

      redefine

      :: FINANCE3:def2

      func PortfolioValueFut (d,phi,F,G,w) -> Real equals (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . (d - 1));

      correctness

      proof

        per cases ;

          suppose

           A0: d = 0 ;

          then not (d - 1) in ( dom ( Partial_Sums (( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1)));

          then

           A1: (( Partial_Sums (( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1)) . (d - 1)) = {} by FUNCT_1:def 2;

           not (d - 1) in ( dom ( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1))) by A0;

          hence thesis by A1, FUNCT_1:def 2;

        end;

          suppose

           A0: d <> 0 ;

          for k be Nat holds (( Partial_Sums (( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1)) . k) = (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . k)

          proof

            let k be Nat;

            defpred J[ Nat] means (( Partial_Sums (( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1)) . $1) = (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . $1);

            consider k be Nat such that

             B0: k = 0 ;

            (( Partial_Sums (( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1)) . k) = ((( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1) . k) by B0, SERIES_1:def 1;

            then

             B1: (( Partial_Sums (( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1)) . k) = (( ElementsOfPortfolioValue_fut (phi,F,w,G)) . (k + 1)) by NAT_1:def 3;

            (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . k) = ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . k) by B0, SERIES_1:def 1

            .= (( RVPortfolioValueFutExt_El (phi,F,G,w)) . (k + 1)) by NAT_1:def 3

            .= (( RVElementsOfPortfolioValue_fut (phi,F,G,(k + 1))) . w) by FINANCE2:def 6;

            then (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . k) = ((( ElementsOfPortfolioValueProb_fut (F,(G . (k + 1)))) . w) * (phi . (k + 1))) by FINANCE2:def 5;

            then

             J0: J[ 0 ] by FINANCE1:def 10, B1, B0;

            

             J1: for n be Nat st J[n] holds J[(n + 1)]

            proof

              let n be Nat;

              assume

               C0: J[n];

              ((( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1) . (n + 1)) = (( ElementsOfPortfolioValue_fut (phi,F,w,G)) . ((n + 1) + 1)) by NAT_1:def 3

              .= ((( ElementsOfPortfolioValueProb_fut (F,(G . ((n + 1) + 1)))) . w) * (phi . ((n + 1) + 1))) by FINANCE1:def 10

              .= (( RVElementsOfPortfolioValue_fut (phi,F,G,((n + 1) + 1))) . w) by FINANCE2:def 5

              .= (( RVPortfolioValueFutExt_El (phi,F,G,w)) . ((n + 1) + 1)) by FINANCE2:def 6;

              then ((( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1) . (n + 1)) = ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . (n + 1)) by NAT_1:def 3;

              

              then (( Partial_Sums (( ElementsOfPortfolioValue_fut (phi,F,w,G)) ^\ 1)) . (n + 1)) = ((( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . n) + ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . (n + 1))) by SERIES_1:def 1, C0

              .= (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . (n + 1)) by SERIES_1:def 1;

              hence thesis;

            end;

            for n be Nat holds J[n] from NAT_1:sch 2( J0, J1);

            hence thesis;

          end;

          hence thesis by A0;

        end;

      end;

    end

    definition

      let d be Nat;

      let phi be Real_Sequence;

      let Omega be non empty set;

      let F be SigmaField of Omega;

      let X be non empty set;

      let G be sequence of X;

      let w be Element of Omega;

      :: original: PortfolioValueFut

      redefine

      func PortfolioValueFut (d,phi,F,G,w) -> Element of REAL ;

      coherence by XREAL_0:def 1;

    end

    definition

      let Omega be non empty set;

      let F be SigmaField of Omega;

      let X be non empty set;

      let G be sequence of X;

      let phi be Real_Sequence;

      let d be Nat;

      :: FINANCE3:def3

      func RVPortfolioValueFut (phi,F,G,d) -> Function of Omega, REAL means

      : Def4: for w be Element of Omega holds (it . w) = ( PortfolioValueFut ((d + 1),phi,F,G,w));

      existence

      proof

        deffunc U( Element of Omega) = ( PortfolioValueFut ((d + 1),phi,F,G,$1));

        consider f be Function of Omega, REAL such that

         A1: for d be Element of Omega holds (f . d) = U(d) from FUNCT_2:sch 4;

        take f;

        let n be Element of Omega;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let f1,f2 be Function of Omega, REAL ;

        assume that

         A2: for w be Element of Omega holds (f1 . w) = ( PortfolioValueFut ((d + 1),phi,F,G,w)) and

         A3: for w be Element of Omega holds (f2 . w) = ( PortfolioValueFut ((d + 1),phi,F,G,w));

        for w be Element of Omega holds (f1 . w) = (f2 . w)

        proof

          let w be Element of Omega;

          (f2 . w) = ( PortfolioValueFut ((d + 1),phi,F,G,w)) by A3;

          hence thesis by A2;

        end;

        hence thesis;

      end;

    end

    theorem :: FINANCE3:7

    for Omega be non empty set holds for F be SigmaField of Omega holds for G be sequence of ( set_of_random_variables_on (F, Borel_Sets )) holds for phi be Real_Sequence holds for d be Nat holds ( RVPortfolioValueFut (phi,F,G,d)) is random_variable of F, Borel_Sets

    proof

      let Omega be non empty set;

      let F be SigmaField of Omega;

      let G be sequence of ( set_of_random_variables_on (F, Borel_Sets ));

      let phi be Real_Sequence;

      let d be Nat;

      defpred J[ Nat] means ( RVPortfolioValueFut (phi,F,G,$1)) is random_variable of F, Borel_Sets ;

      ( ElementsOfPortfolioValueProb_fut (F,(G . ( 0 + 1)))) is random_variable of F, Borel_Sets by FINANCE2: 28;

      then

       A1: ((phi . ( 0 + 1)) (#) ( ElementsOfPortfolioValueProb_fut (F,(G . ( 0 + 1))))) is random_variable of F, Borel_Sets by FINANCE2: 26;

      ( RVPortfolioValueFut (phi,F,G, 0 )) is random_variable of F, Borel_Sets

      proof

        for w be Element of Omega holds (( RVPortfolioValueFut (phi,F,G, 0 )) . w) = (((phi . ( 0 + 1)) (#) ( ElementsOfPortfolioValueProb_fut (F,(G . ( 0 + 1))))) . w)

        proof

          let w be Element of Omega;

          consider k be Nat such that

           B0: k = 0 ;

          (( RVPortfolioValueFut (phi,F,G,k)) . w) = ( PortfolioValueFut ((k + 1),phi,F,G,w)) by Def4

          .= ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . k) by B0, SERIES_1:def 1

          .= (( RVPortfolioValueFutExt_El (phi,F,G,w)) . (k + 1)) by NAT_1:def 3

          .= (( RVElementsOfPortfolioValue_fut (phi,F,G,(k + 1))) . w) by FINANCE2:def 6;

          then (( RVPortfolioValueFut (phi,F,G, 0 )) . w) = ((( ElementsOfPortfolioValueProb_fut (F,(G . ( 0 + 1)))) . w) * (phi . ( 0 + 1))) by FINANCE2:def 5, B0;

          hence thesis by VALUED_1: 6;

        end;

        hence thesis by A1, FUNCT_2: 63;

      end;

      then

       J0: J[ 0 ];

      

       J1: for n be Nat st J[n] holds J[(n + 1)]

      proof

        let n be Nat;

        assume

         B1: J[n];

        

         C0: for w be Element of Omega holds (( RVPortfolioValueFut (phi,F,G,(n + 1))) . w) = ((( RVPortfolioValueFut (phi,F,G,n)) . w) + (( RVElementsOfPortfolioValue_fut (phi,F,G,((n + 1) + 1))) . w))

        proof

          let w be Element of Omega;

          set k = (n + 1);

          (( RVPortfolioValueFut (phi,F,G,k)) . w) = ( PortfolioValueFut ((k + 1),phi,F,G,w)) by Def4;

          then (( RVPortfolioValueFut (phi,F,G,k)) . w) = (( PortfolioValueFut ((n + 1),phi,F,G,w)) + ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . (n + 1))) by SERIES_1:def 1;

          

          then (( RVPortfolioValueFut (phi,F,G,k)) . w) = ((( RVPortfolioValueFut (phi,F,G,n)) . w) + ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . (n + 1))) by Def4

          .= ((( RVPortfolioValueFut (phi,F,G,n)) . w) + (( RVPortfolioValueFutExt_El (phi,F,G,w)) . ((n + 1) + 1))) by NAT_1:def 3;

          hence thesis by FINANCE2:def 6;

        end;

        

         K1: ( RVElementsOfPortfolioValue_fut (phi,F,G,((n + 1) + 1))) is random_variable of F, Borel_Sets by FINANCE2: 30;

        

         C2: ( dom ( RVPortfolioValueFut (phi,F,G,n))) = Omega by FUNCT_2:def 1;

        ( dom ( RVElementsOfPortfolioValue_fut (phi,F,G,((n + 1) + 1)))) = Omega by FUNCT_2:def 1;

        then ( dom ( RVPortfolioValueFut (phi,F,G,(n + 1)))) = (( dom ( RVPortfolioValueFut (phi,F,G,n))) /\ ( dom ( RVElementsOfPortfolioValue_fut (phi,F,G,((n + 1) + 1))))) & for c be object st c in ( dom ( RVPortfolioValueFut (phi,F,G,(n + 1)))) holds (( RVPortfolioValueFut (phi,F,G,(n + 1))) . c) = ((( RVPortfolioValueFut (phi,F,G,n)) . c) + (( RVElementsOfPortfolioValue_fut (phi,F,G,((n + 1) + 1))) . c)) by C0, FUNCT_2:def 1, C2;

        then ( RVPortfolioValueFut (phi,F,G,(n + 1))) = (( RVPortfolioValueFut (phi,F,G,n)) + ( RVElementsOfPortfolioValue_fut (phi,F,G,((n + 1) + 1)))) by VALUED_1:def 1;

        hence thesis by B1, K1, FINANCE2: 23;

      end;

      for n be Nat holds J[n] from NAT_1:sch 2( J0, J1);

      hence thesis;

    end;

    theorem :: FINANCE3:8

    for d be Nat, phi be Real_Sequence, Omega be non empty set, F be SigmaField of Omega, X be non empty set, G be sequence of X, w be Element of Omega holds ( PortfolioValueFut ((d + 1),phi,F,G,w)) = (( RVPortfolioValueFut (phi,F,G,d)) . w) & {( PortfolioValueFut ((d + 1),phi,F,G,w))} is Event of Borel_Sets by Def4, FINANCE2: 5;

    theorem :: FINANCE3:9

    for Omega be non empty set, F be SigmaField of Omega, X be non empty set, G be sequence of X, phi be Real_Sequence, d be Nat holds ( RVPortfolioValueFutExt (phi,F,G,(d + 1))) = (( RVPortfolioValueFut (phi,F,G,d)) + ( RVElementsOfPortfolioValue_fut (phi,F,G, 0 )))

    proof

      let Omega be non empty set;

      let F be SigmaField of Omega;

      let X be non empty set;

      let G be sequence of X;

      let phi be Real_Sequence;

      let d be Nat;

      

       C0: for w be Element of Omega holds (( RVPortfolioValueFutExt (phi,F,G,(d + 1))) . w) = ((( RVPortfolioValueFut (phi,F,G,d)) . w) + (( RVElementsOfPortfolioValue_fut (phi,F,G, 0 )) . w))

      proof

        let w be Element of Omega;

        

         A01: (( RVPortfolioValueFut (phi,F,G,d)) . w) = ( PortfolioValueFut ((d + 1),phi,F,G,w)) by Def4;

        for d be Nat holds (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . d) = ((( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . (d + 1)) - (( RVPortfolioValueFutExt_El (phi,F,G,w)) . 0 ))

        proof

          defpred J[ Nat] means (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . $1) = ((( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . ($1 + 1)) - (( RVPortfolioValueFutExt_El (phi,F,G,w)) . 0 ));

          

           B1: (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . 0 ) = ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . 0 ) by SERIES_1:def 1;

          (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . 0 ) = ((( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . ( 0 + 1)) - (( RVPortfolioValueFutExt_El (phi,F,G,w)) . 0 ))

          proof

            (( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . ( 0 + 1)) = ((( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . 0 ) + (( RVPortfolioValueFutExt_El (phi,F,G,w)) . ( 0 + 1))) by SERIES_1:def 1;

            then (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . 0 ) = ((( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . ( 0 + 1)) - (( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . 0 )) by NAT_1:def 3, B1;

            hence thesis by SERIES_1:def 1;

          end;

          then

           J0: J[ 0 ];

          

           J1: for n be Nat st J[n] holds J[(n + 1)]

          proof

            let n be Nat;

            assume

             Q0: J[n];

            (( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . (n + 1)) = ((( Partial_Sums (( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1)) . n) + ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . (n + 1))) by SERIES_1:def 1

            .= (((( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . (n + 1)) + ((( RVPortfolioValueFutExt_El (phi,F,G,w)) ^\ 1) . (n + 1))) - (( RVPortfolioValueFutExt_El (phi,F,G,w)) . 0 )) by Q0

            .= (((( Partial_Sums ( RVPortfolioValueFutExt_El (phi,F,G,w))) . (n + 1)) + (( RVPortfolioValueFutExt_El (phi,F,G,w)) . ((n + 1) + 1))) - (( RVPortfolioValueFutExt_El (phi,F,G,w)) . 0 )) by NAT_1:def 3;

            hence thesis by SERIES_1:def 1;

          end;

          for n be Nat holds J[n] from NAT_1:sch 2( J0, J1);

          hence thesis;

        end;

        

        then (( RVPortfolioValueFut (phi,F,G,d)) . w) = (( PortfolioValueFutExt ((d + 1),phi,F,G,w)) - (( RVPortfolioValueFutExt_El (phi,F,G,w)) . 0 )) by A01

        .= (( PortfolioValueFutExt ((d + 1),phi,F,G,w)) - (( RVElementsOfPortfolioValue_fut (phi,F,G, 0 )) . w)) by FINANCE2:def 6;

        hence thesis by Def2;

      end;

      

       C2: ( dom ( RVPortfolioValueFut (phi,F,G,d))) = Omega by FUNCT_2:def 1;

      ( dom ( RVElementsOfPortfolioValue_fut (phi,F,G, 0 ))) = Omega by FUNCT_2:def 1;

      then ( dom ( RVPortfolioValueFutExt (phi,F,G,(d + 1)))) = (( dom ( RVPortfolioValueFut (phi,F,G,d))) /\ ( dom ( RVElementsOfPortfolioValue_fut (phi,F,G, 0 )))) & for c be object st c in ( dom ( RVPortfolioValueFutExt (phi,F,G,(d + 1)))) holds (( RVPortfolioValueFutExt (phi,F,G,(d + 1))) . c) = ((( RVPortfolioValueFut (phi,F,G,d)) . c) + (( RVElementsOfPortfolioValue_fut (phi,F,G, 0 )) . c)) by C0, FUNCT_2:def 1, C2;

      hence thesis by VALUED_1:def 1;

    end;

    

     Lm1B: for Omega,Omega2 be non empty set, F be Function of Omega, Omega2, y be non empty set holds { z where z be Element of Omega : (F . z) is Element of y } = (F " y)

    proof

      let Omega,Omega2 be non empty set, F be Function of Omega, Omega2, y be non empty set;

      set D = { z where z be Element of Omega : (F . z) is Element of y };

      for x be object holds x in D iff x in (F " y)

      proof

        let x be object;

        hereby

          assume x in D;

          then

          consider z be Element of Omega such that

           A1: x = z & (F . z) is Element of y;

          z in Omega;

          then z in ( dom F) by FUNCT_2:def 1;

          hence x in (F " y) by FUNCT_1:def 7, A1;

        end;

        assume x in (F " y);

        then x in ( dom F) & (F . x) in y by FUNCT_1:def 7;

        hence x in D;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: FINANCE3:10

    

     1A5: for Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, s be Element of Omega2 holds (Omega --> s) is Sigma, Sigma2 -random_variable-like

    proof

      let Omega,Omega2 be non empty set;

      let Sigma be SigmaField of Omega;

      let Sigma2 be SigmaField of Omega2;

      let s be Element of Omega2;

      set X = (Omega --> s);

      let x be set;

      per cases ;

        suppose

         A1: s in x;

        for q be object holds q in { w where w be Element of Omega : (X . w) is Element of x } iff q in Omega

        proof

          let q be object;

          hereby

            assume q in { w where w be Element of Omega : (X . w) is Element of x };

            then ex w be Element of Omega st w = q & (X . w) is Element of x;

            hence q in Omega;

          end;

          assume q in Omega;

          then

          reconsider w = q as Element of Omega;

          (X . w) is Element of x by A1, FUNCOP_1: 7;

          hence thesis;

        end;

        then { w where w be Element of Omega : (X . w) is Element of x } = Omega by TARSKI: 2;

        then (X " x) = Omega by A1, Lm1B;

        then (X " x) is Element of Sigma by PROB_1: 23;

        hence thesis;

      end;

        suppose

         A3: not s in x;

        (X " x) c= {}

        proof

          let q be object;

          assume q in (X " x);

          then q in ( dom X) & (X . q) in x by FUNCT_1:def 7;

          hence q in {} by A3, FUNCOP_1: 7;

        end;

        then (X " x) = {} ;

        then (X " x) is Element of Sigma by PROB_1: 22;

        hence thesis;

      end;

    end;

    theorem :: FINANCE3:11

    for Omega be non empty set, Sigma be SigmaField of Omega, RV be random_variable of Sigma, Borel_Sets , K be Real holds (RV - (Omega --> K)) is random_variable of Sigma, Borel_Sets

    proof

      let Omega be non empty set, Sigma be SigmaField of Omega, RV be random_variable of Sigma, Borel_Sets , K be Real;

      reconsider KK = K as Element of REAL by XREAL_0:def 1;

      (Omega --> KK) is random_variable of Sigma, Borel_Sets by 1A5;

      hence thesis by FINANCE2: 24;

    end;

    definition

      let Omega be non empty set;

      let RV be Function of Omega, REAL ;

      let w be Element of Omega;

      :: FINANCE3:def4

      func SetForCall-Option (RV,w) -> Element of REAL equals

      : Def89: (RV . w) if (RV . w) >= 0

      otherwise 0 ;

      correctness by NUMBERS: 19;

    end

    definition

      let Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let RV be random_variable of Sigma, Borel_Sets ;

      let K be Real;

      :: FINANCE3:def5

      func Call-Option (RV,K) -> Function of Omega, REAL means for w be Element of Omega holds (((RV - (Omega --> K)) . w) >= 0 implies (it . w) = ((RV - (Omega --> K)) . w)) & (((RV - (Omega --> K)) . w) < 0 implies (it . w) = 0 );

      existence

      proof

        reconsider MyFunc = (RV - (Omega --> K)) as Function of Omega, REAL ;

        deffunc U( Element of Omega) = ( SetForCall-Option (MyFunc,$1));

        consider f be Function of Omega, REAL such that

         A1: for d be Element of Omega holds (f . d) = U(d) from FUNCT_2:sch 4;

        for w be Element of Omega holds ((MyFunc . w) >= 0 implies (f . w) = ((RV - (Omega --> K)) . w)) & ((MyFunc . w) < 0 implies (f . w) = 0 )

        proof

          let w be Element of Omega;

          thus (MyFunc . w) >= 0 implies (f . w) = ((RV - (Omega --> K)) . w)

          proof

            assume

             B1: (MyFunc . w) >= 0 ;

            (f . w) = ( SetForCall-Option (MyFunc,w)) by A1;

            hence thesis by Def89, B1;

          end;

          assume

           B1: (MyFunc . w) < 0 ;

          (f . w) = ( SetForCall-Option (MyFunc,w)) by A1;

          hence thesis by Def89, B1;

        end;

        hence thesis;

      end;

      uniqueness

      proof

        let f1,f2 be Function of Omega, REAL ;

        assume that

         A2: for w be Element of Omega holds (((RV - (Omega --> K)) . w) >= 0 implies (f1 . w) = ((RV - (Omega --> K)) . w)) & (((RV - (Omega --> K)) . w) < 0 implies (f1 . w) = 0 ) and

         A3: for w be Element of Omega holds (((RV - (Omega --> K)) . w) >= 0 implies (f2 . w) = ((RV - (Omega --> K)) . w)) & (((RV - (Omega --> K)) . w) < 0 implies (f2 . w) = 0 );

        for w be Element of Omega holds (f1 . w) = (f2 . w)

        proof

          let w be Element of Omega;

          per cases ;

            suppose

             A0: ((RV - (Omega --> K)) . w) >= 0 ;

            then (f1 . w) = ((RV - (Omega --> K)) . w) by A2;

            hence thesis by A0, A3;

          end;

            suppose

             A0: not ((RV - (Omega --> K)) . w) >= 0 ;

            then (f1 . w) = 0 by A2;

            hence thesis by A0, A3;

          end;

        end;

        hence thesis;

      end;

    end

    theorem :: FINANCE3:12

    

     SuperLemma1: for A1 be SetSequence of {1, 2, 3, 4}, w be Real st w = 1 or w = 3 holds (for n be Nat holds (A1 . n) = {} or (A1 . n) = {1, 2} or (A1 . n) = {3, 4} or (A1 . n) = {1, 2, 3, 4}) implies {w} <> ( Intersection A1)

    proof

      let A1 be SetSequence of {1, 2, 3, 4};

      let w be Real;

      assume

       KX: w = 1 or w = 3;

      assume

       S2: for n be Nat holds (A1 . n) = {} or (A1 . n) = {1, 2} or (A1 . n) = {3, 4} or (A1 . n) = {1, 2, 3, 4};

      per cases ;

        suppose ( Intersection A1) = {} ;

        hence thesis;

      end;

        suppose

         SUPP1: ( Intersection A1) <> {} ;

        ex x be object st (for n be Nat holds x in (A1 . n)) & not x in {w}

        proof

          per cases ;

            suppose ex j be Nat st (A1 . j) = {} ;

            then

            consider j be Nat such that

             J0: (A1 . j) = {} ;

            thus thesis by The1, J0, SUPP1;

          end;

            suppose

             USUPP1: for n be Nat holds (A1 . n) <> {} ;

            per cases ;

              suppose

               P1: for j be Nat holds {1, 2} c= (A1 . j);

              set x = 2;

              

               Z1: not x in {w} by TARSKI:def 1, KX;

              for n be Nat holds x in (A1 . n)

              proof

                let n be Nat;

                per cases by S2;

                  suppose (A1 . n) = {} ;

                  hence thesis by USUPP1;

                end;

                  suppose (A1 . n) = {1, 2};

                  hence thesis by TARSKI:def 2;

                end;

                  suppose

                   J0: (A1 . n) = {3, 4};

                  x in {1, 2} by TARSKI:def 2;

                  then not {1, 2} c= (A1 . n) by J0, TARSKI:def 2;

                  hence thesis by P1;

                end;

                  suppose (A1 . n) = {1, 2, 3, 4};

                  hence thesis by ENUMSET1:def 2;

                end;

              end;

              hence thesis by Z1;

            end;

              suppose ex j be Nat st not {1, 2} c= (A1 . j);

              then

              consider j be Nat such that

               BSUPP1: not {1, 2} c= (A1 . j);

              per cases ;

                suppose

                 P1: for n be Nat holds {3, 4} c= (A1 . n);

                set x = 4;

                

                 Z1: not x in {w} by TARSKI:def 1, KX;

                for n be Nat holds x in (A1 . n)

                proof

                  let n be Nat;

                  per cases by S2;

                    suppose (A1 . n) = {} ;

                    hence thesis by USUPP1;

                  end;

                    suppose (A1 . n) = {3, 4};

                    hence thesis by TARSKI:def 2;

                  end;

                    suppose

                     J0: (A1 . n) = {1, 2};

                    x in {3, 4} by TARSKI:def 2;

                    then not {3, 4} c= (A1 . n) by J0, TARSKI:def 2;

                    hence thesis by P1;

                  end;

                    suppose (A1 . n) = {1, 2, 3, 4};

                    hence thesis by ENUMSET1:def 2;

                  end;

                end;

                hence thesis by Z1;

              end;

                suppose ex k be Nat st not {3, 4} c= (A1 . k);

                then

                consider k be Nat such that

                 CSUPP1: not {3, 4} c= (A1 . k);

                

                 ZW1: ((A1 . k) /\ (A1 . j)) = {}

                proof

                  per cases by S2, Lm2, BSUPP1;

                    suppose

                     DSUPP1: (A1 . j) = {3, 4};

                    (A1 . k) = {1, 2} or (A1 . k) = {} by S2, CSUPP1, Lm1;

                    hence thesis by Lm3, DSUPP1;

                  end;

                    suppose (A1 . j) = {} ;

                    hence thesis;

                  end;

                end;

                ( Intersection A1) = {}

                proof

                  ( Intersection A1) c= ((A1 . k) /\ (A1 . j))

                  proof

                    for x be object st x in ( Intersection A1) holds x in ((A1 . k) /\ (A1 . j))

                    proof

                      let x be object;

                      assume x in ( Intersection A1);

                      then x in (A1 . k) & x in (A1 . j) by PROB_1: 13;

                      hence thesis by XBOOLE_0:def 4;

                    end;

                    hence thesis;

                  end;

                  hence thesis by ZW1;

                end;

                hence thesis by SUPP1;

              end;

            end;

          end;

        end;

        hence thesis by PROB_1: 13;

      end;

    end;

    theorem :: FINANCE3:13

    

     SuperLemma2: for A1 be SetSequence of {1, 2, 3, 4}, w be Real st w = 2 or w = 4 holds (for n be Nat holds (A1 . n) = {} or (A1 . n) = {1, 2} or (A1 . n) = {3, 4} or (A1 . n) = {1, 2, 3, 4}) implies {w} <> ( Intersection A1)

    proof

      let A1 be SetSequence of {1, 2, 3, 4};

      let w be Real;

      assume

       KX: w = 2 or w = 4;

      assume

       S2: for n be Nat holds (A1 . n) = {} or (A1 . n) = {1, 2} or (A1 . n) = {3, 4} or (A1 . n) = {1, 2, 3, 4};

      per cases ;

        suppose ( Intersection A1) = {} ;

        hence thesis;

      end;

        suppose

         SUPP1: ( Intersection A1) <> {} ;

        ex x be object st (for n be Nat holds x in (A1 . n)) & not x in {w}

        proof

          per cases ;

            suppose ex j be Nat st (A1 . j) = {} ;

            then

            consider j be Nat such that

             J0: (A1 . j) = {} ;

            thus thesis by The1, J0, SUPP1;

          end;

            suppose

             USUPP1: for n be Nat holds (A1 . n) <> {} ;

            per cases ;

              suppose

               P1: for j be Nat holds {1, 2} c= (A1 . j);

              set x = 1;

              

               Z1: not x in {w} by TARSKI:def 1, KX;

              for n be Nat holds x in (A1 . n)

              proof

                let n be Nat;

                per cases by S2;

                  suppose (A1 . n) = {} ;

                  hence thesis by USUPP1;

                end;

                  suppose (A1 . n) = {1, 2};

                  hence thesis by TARSKI:def 2;

                end;

                  suppose

                   J0: (A1 . n) = {3, 4};

                  x in {1, 2} by TARSKI:def 2;

                  then not {1, 2} c= (A1 . n) by J0, TARSKI:def 2;

                  hence thesis by P1;

                end;

                  suppose (A1 . n) = {1, 2, 3, 4};

                  hence thesis by ENUMSET1:def 2;

                end;

              end;

              hence thesis by Z1;

            end;

              suppose ex j be Nat st not {1, 2} c= (A1 . j);

              then

              consider j be Nat such that

               BSUPP1: not {1, 2} c= (A1 . j);

              per cases ;

                suppose

                 P1: for n be Nat holds {3, 4} c= (A1 . n);

                set x = 3;

                

                 Z1: not x in {w} by TARSKI:def 1, KX;

                for n be Nat holds x in (A1 . n)

                proof

                  let n be Nat;

                  per cases by S2;

                    suppose (A1 . n) = {} ;

                    hence thesis by USUPP1;

                  end;

                    suppose (A1 . n) = {3, 4};

                    hence thesis by TARSKI:def 2;

                  end;

                    suppose

                     J0: (A1 . n) = {1, 2};

                    x in {3, 4} by TARSKI:def 2;

                    then not {3, 4} c= (A1 . n) by J0, TARSKI:def 2;

                    hence thesis by P1;

                  end;

                    suppose (A1 . n) = {1, 2, 3, 4};

                    hence thesis by ENUMSET1:def 2;

                  end;

                end;

                hence thesis by Z1;

              end;

                suppose ex k be Nat st not {3, 4} c= (A1 . k);

                then

                consider k be Nat such that

                 CSUPP1: not {3, 4} c= (A1 . k);

                

                 ZW1: ((A1 . k) /\ (A1 . j)) = {}

                proof

                  per cases by S2, Lm2, BSUPP1;

                    suppose

                     DSUPP1: (A1 . j) = {3, 4};

                    per cases by CSUPP1, Lm1, S2;

                      suppose (A1 . k) = {1, 2};

                      hence thesis by Lm3, DSUPP1;

                    end;

                      suppose (A1 . k) = {} ;

                      hence thesis;

                    end;

                  end;

                    suppose (A1 . j) = {} ;

                    hence thesis;

                  end;

                end;

                ( Intersection A1) = {}

                proof

                  ( Intersection A1) c= ((A1 . k) /\ (A1 . j))

                  proof

                    for x be object st x in ( Intersection A1) holds x in ((A1 . k) /\ (A1 . j))

                    proof

                      let x be object;

                      assume x in ( Intersection A1);

                      then x in (A1 . k) & x in (A1 . j) by PROB_1: 13;

                      hence thesis by XBOOLE_0:def 4;

                    end;

                    hence thesis;

                  end;

                  hence thesis by ZW1;

                end;

                hence thesis by SUPP1;

              end;

            end;

          end;

        end;

        hence thesis by PROB_1: 13;

      end;

    end;

    theorem :: FINANCE3:14

    for MySigmaField,A1,A2 be set st MySigmaField = { {} , {1, 2, 3, 4}} & A1 in MySigmaField & A2 in MySigmaField holds (A1 /\ A2) in MySigmaField

    proof

      let MySigmaField,A1,A2 be set;

      assume

       A0: MySigmaField = { {} , {1, 2, 3, 4}} & A1 in MySigmaField & A2 in MySigmaField;

      then (A1 = {} or A1 = {1, 2, 3, 4}) & (A2 = {} or A2 = {1, 2, 3, 4}) by TARSKI:def 2;

      hence thesis by A0;

    end;

    theorem :: FINANCE3:15

    

     Lm700000: for A1 be SetSequence of {1, 2, 3, 4} st (for n be Nat, k be Nat holds not (((A1 . n) /\ (A1 . k)) = {} )) & ( rng A1) c= { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} holds (( Intersection A1) = {} or ( Intersection A1) = {1, 2} or ( Intersection A1) = {3, 4} or ( Intersection A1) = {1, 2, 3, 4})

    proof

      let A1 be SetSequence of {1, 2, 3, 4};

      assume

       GENASS0: (for n be Nat, k be Nat holds not ((A1 . n) /\ (A1 . k)) = {} ) & ( rng A1) c= { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}};

      set MyOmega = { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}};

      

       D1: ( dom A1) = NAT by FUNCT_2:def 1;

      

       S20: for n be Nat holds (A1 . n) in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}}

      proof

        let n be Nat;

        n in ( dom A1) by D1, ORDINAL1:def 12;

        hence thesis by FUNCT_1: 3, GENASS0;

      end;

      

       S2: for n be Nat holds (A1 . n) = {} or (A1 . n) = {1, 2} or (A1 . n) = {3, 4} or (A1 . n) = {1, 2, 3, 4}

      proof

        let n be Nat;

        (A1 . n) in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} by S20;

        hence thesis by ENUMSET1:def 2;

      end;

      

       Fin1: for n be Nat holds ( Intersection A1) c= (A1 . n) by PROB_1: 13;

      per cases ;

        suppose ( Intersection A1) = {1, 2, 3, 4};

        hence thesis;

      end;

        suppose

         MYSUPP0: ( Intersection A1) <> {1, 2, 3, 4};

        

         W0: ( Intersection A1) c= {} or ( Intersection A1) c= {1, 2} or ( Intersection A1) c= {3, 4}

        proof

          ( Intersection A1) = {} or ( Intersection A1) = {1, 2} or ( Intersection A1) = {3, 4}

          proof

            per cases ;

              suppose

               ASS1: for n be Nat holds (A1 . n) = {1, 2, 3, 4};

              ( Intersection A1) = {1, 2, 3, 4}

              proof

                for x be object holds x in ( Intersection A1) iff x in {1, 2, 3, 4}

                proof

                  let x be object;

                  (for n be Nat holds x in (A1 . n)) iff x in {1, 2, 3, 4}

                  proof

                    (for n be Nat holds x in (A1 . n)) implies x in {1, 2, 3, 4}

                    proof

                      assume for n be Nat holds x in (A1 . n);

                      then x in (A1 . 0 );

                      then

                      consider k be Nat such that

                       N10: x in (A1 . k);

                      thus thesis by N10;

                    end;

                    hence thesis by ASS1;

                  end;

                  hence thesis by PROB_1: 13;

                end;

                hence thesis by TARSKI: 2;

              end;

              hence thesis by MYSUPP0;

            end;

              suppose ex n be Nat st (A1 . n) <> {1, 2, 3, 4};

              then

              consider n be Nat such that

               KK: (A1 . n) <> {1, 2, 3, 4};

              per cases by S2;

                suppose (A1 . n) = {} ;

                hence thesis by The1;

              end;

                suppose

                 JSUPP1: (A1 . n) = {1, 2};

                ( Intersection A1) = {} or ( Intersection A1) = {1, 2}

                proof

                  per cases ;

                    suppose ( Intersection A1) = {1, 2};

                    hence thesis;

                  end;

                    suppose ( Intersection A1) <> {1, 2};

                    then ( Intersection A1) = {1} or ( Intersection A1) = {2} or ( Intersection A1) = {} by ZFMISC_1: 36, JSUPP1, Fin1;

                    hence thesis by SuperLemma2, SuperLemma1, S2;

                  end;

                end;

                hence thesis;

              end;

                suppose

                 SUPP1: (A1 . n) = {3, 4};

                ( Intersection A1) = {} or ( Intersection A1) = {3, 4}

                proof

                  per cases ;

                    suppose ( Intersection A1) = {3, 4};

                    hence thesis;

                  end;

                    suppose ( Intersection A1) <> {3, 4};

                    then ( Intersection A1) = {3} or ( Intersection A1) = {4} or ( Intersection A1) = {} by SUPP1, Fin1, ZFMISC_1: 36;

                    hence thesis by SuperLemma1, S2, SuperLemma2;

                  end;

                end;

                hence thesis;

              end;

                suppose (A1 . n) = {1, 2, 3, 4};

                hence thesis by KK;

              end;

            end;

          end;

          hence thesis;

        end;

        per cases by W0;

          suppose ( Intersection A1) c= {} ;

          hence thesis;

        end;

          suppose

           ZW10: ( Intersection A1) c= {1, 2};

          per cases ;

            suppose ( Intersection A1) = {1, 2};

            hence thesis;

          end;

            suppose ( Intersection A1) <> {1, 2};

            then ( Intersection A1) = {1} or ( Intersection A1) = {2} or ( Intersection A1) = {} by ZW10, ZFMISC_1: 36;

            hence thesis by SuperLemma1, S2, SuperLemma2;

          end;

        end;

          suppose

           ZW10: ( Intersection A1) c= {3, 4};

          per cases ;

            suppose ( Intersection A1) = {3, 4};

            hence thesis;

          end;

            suppose ( Intersection A1) <> {3, 4};

            then ( Intersection A1) = {3} or ( Intersection A1) = {4} or ( Intersection A1) = {} by ZW10, ZFMISC_1: 36;

            hence thesis by SuperLemma1, S2, SuperLemma2;

          end;

        end;

      end;

    end;

    theorem :: FINANCE3:16

    for A1 be SetSequence of {1, 2, 3, 4}, MyOmega be set st MyOmega = { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} & ( Intersection A1) = {1, 2, 3, 4} holds ( Intersection A1) in MyOmega by ENUMSET1:def 2;

    theorem :: FINANCE3:17

    for A1 be SetSequence of {1, 2, 3, 4}, MyOmega be set st MyOmega = { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} & ( Intersection A1) = {3, 4} holds ( Intersection A1) in MyOmega by ENUMSET1:def 2;

    theorem :: FINANCE3:18

    for A1 be SetSequence of {1, 2, 3, 4}, MyOmega be set st MyOmega = { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} & ( Intersection A1) = {1, 2} holds ( Intersection A1) in MyOmega by ENUMSET1:def 2;

    theorem :: FINANCE3:19

    for A1 be SetSequence of {1, 2, 3, 4}, MyOmega be set st MyOmega = { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} & ( Intersection A1) = {} holds ( Intersection A1) in MyOmega by ENUMSET1:def 2;

    theorem :: FINANCE3:20

    

     Lm8: for MyOmega be set, A1 be SetSequence of {1, 2, 3, 4} st ( rng A1) c= MyOmega & MyOmega = { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} holds ( Intersection A1) in MyOmega

    proof

      let MyOmega be set;

      let A1 be SetSequence of {1, 2, 3, 4};

      assume

       A0: ( rng A1) c= MyOmega & MyOmega = { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}};

      ( Intersection A1) in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}}

      proof

        per cases ;

          suppose

           CASE000: ex n be Nat, k be Nat st ((A1 . n) /\ (A1 . k)) = {} ;

          

           CASE0: ex n be Nat, k be Nat st (A1 . n) misses (A1 . k)

          proof

            consider n be Nat, k be Nat such that

             BCASE0: ((A1 . n) /\ (A1 . k)) = {} by CASE000;

            (A1 . n) misses (A1 . k) by BCASE0;

            hence thesis;

          end;

          

           CASE1: for y be object holds (for n be Nat, k be Nat holds y in (A1 . k) & y in (A1 . n)) iff y in {}

          proof

            let y be object;

            (for n be Nat, k be Nat holds y in (A1 . k) & y in (A1 . n)) implies y in {}

            proof

              assume

               G1: for n be Nat, k be Nat holds y in (A1 . k) & y in (A1 . n);

              ex n be Nat, k be Nat st y in (A1 . k) & y in (A1 . n) & y in {}

              proof

                consider n be Nat, k be Nat such that

                 H1: (A1 . n) misses (A1 . k) by CASE0;

                (y in (A1 . k) & y in (A1 . n)) iff y in {} by H1, XBOOLE_0: 3;

                hence thesis by G1;

              end;

              hence thesis;

            end;

            hence thesis;

          end;

          ( Intersection A1) c= {}

          proof

            let y be object;

            y in ( Intersection A1) iff (for n be Nat, k be Nat holds y in (A1 . k) & y in (A1 . n)) by PROB_1: 13;

            hence thesis by CASE1;

          end;

          then ( Intersection A1) = {} ;

          hence thesis by ENUMSET1:def 2;

        end;

          suppose

           CASE0: not ex n be Nat, k be Nat st ((A1 . n) /\ (A1 . k)) = {} ;

          ( Intersection A1) in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}}

          proof

            ( Intersection A1) = {} or ( Intersection A1) = {1, 2} or ( Intersection A1) = {3, 4} or ( Intersection A1) = {1, 2, 3, 4} by CASE0, A0, Lm700000;

            hence thesis by ENUMSET1:def 2;

          end;

          hence thesis;

        end;

      end;

      hence thesis by A0;

    end;

    theorem :: FINANCE3:21

    

     Lm9: for MySigmaField,MySet be set, A1 be SetSequence of MySet st MySet = {1, 2, 3, 4} & ( rng A1) c= MySigmaField & MySigmaField = { {} , {1, 2, 3, 4}} holds ( Intersection A1) <> {} implies ( Intersection A1) in MySigmaField

    proof

      let MySigmaField,MySet be set;

      let A1 be SetSequence of MySet;

      assume

       A0: MySet = {1, 2, 3, 4} & ( rng A1) c= MySigmaField & MySigmaField = { {} , {1, 2, 3, 4}};

      assume

       A5: ( Intersection A1) <> {} ;

      

       D1: ( dom A1) = NAT by FUNCT_2:def 1;

      

       A4: for n be Nat holds (A1 . n) = {} or (A1 . n) = {1, 2, 3, 4}

      proof

        let n be Nat;

        (A1 . n) in MySigmaField

        proof

          n in ( dom A1) by D1, ORDINAL1:def 12;

          hence thesis by FUNCT_1: 3, A0;

        end;

        hence thesis by A0, TARSKI:def 2;

      end;

      

       H1: (ex n be Nat st (A1 . n) = {} ) implies ( Intersection A1) = {}

      proof

        assume ex n be Nat st (A1 . n) = {} ;

        then for x be object holds x in ( Intersection A1) iff x in {} by PROB_1: 13;

        hence thesis by TARSKI:def 3;

      end;

      ( Intersection A1) = {1, 2, 3, 4}

      proof

        for x be object holds x in ( Intersection A1) iff x in {1, 2, 3, 4}

        proof

          let x be object;

          x in ( Intersection A1) iff for n be Nat holds x in {1, 2, 3, 4}

          proof

            thus x in ( Intersection A1) implies for n be Nat holds x in {1, 2, 3, 4}

            proof

              assume

               G1: x in ( Intersection A1);

              for n be Nat holds x in {1, 2, 3, 4}

              proof

                let n be Nat;

                for x be object holds x in (A1 . n) iff x in {1, 2, 3, 4} by H1, A4, A5;

                hence thesis by PROB_1: 13, G1;

              end;

              hence thesis;

            end;

            assume

             G1: for n be Nat holds x in {1, 2, 3, 4};

            for n be Nat holds x in (A1 . n)

            proof

              let n be Nat;

              x in {1, 2, 3, 4} by G1;

              hence thesis by H1, A4, A5;

            end;

            hence thesis by PROB_1: 13;

          end;

          hence thesis;

        end;

        hence thesis by TARSKI:def 3;

      end;

      hence thesis by A0, TARSKI:def 2;

    end;

    theorem :: FINANCE3:22

    for MySigmaField,MySet be set, A1 be SetSequence of MySet st MySet = {1, 2, 3, 4} & ( rng A1) c= MySigmaField & MySigmaField = { {} , {1, 2, 3, 4}} holds for k1 be Nat, k2 be Nat holds ((A1 . k1) /\ (A1 . k2)) in MySigmaField

    proof

      let MySigmaField,MySet be set;

      let A1 be SetSequence of MySet;

      assume

       A0: MySet = {1, 2, 3, 4} & ( rng A1) c= MySigmaField & MySigmaField = { {} , {1, 2, 3, 4}};

      let k1,k2 be Nat;

      

       D1: ( dom A1) = NAT by FUNCT_2:def 1;

      then k1 in ( dom A1) by ORDINAL1:def 12;

      then

       B1: (A1 . k1) in MySigmaField by FUNCT_1: 3, A0;

      k2 in ( dom A1) by D1, ORDINAL1:def 12;

      then

       B2: (A1 . k2) in MySigmaField by FUNCT_1: 3, A0;

      ((A1 . k1) /\ (A1 . k2)) in MySigmaField

      proof

        ((A1 . k1) = {} or (A1 . k1) = {1, 2, 3, 4}) & ((A1 . k2) = {} or (A1 . k2) = {1, 2, 3, 4}) by B2, B1, A0, TARSKI:def 2;

        hence thesis by A0, TARSKI:def 2;

      end;

      hence thesis;

    end;

    definition

      :: FINANCE3:def6

      func Special_SigmaField1 -> SigmaField of {1, 2, 3, 4} equals { {} , {1, 2, 3, 4}};

      correctness

      proof

        set MySigmaField = { {} , {1, 2, 3, 4}};

        set ThisSigma = ( bool {1, 2, 3, 4});

        MySigmaField c= ( bool {1, 2, 3, 4})

        proof

          let x be object;

          assume

           a1: x in MySigmaField;

          x = {} or x = {1, 2, 3, 4} by a1, TARSKI:def 2;

          hence thesis by PROB_1: 4, PROB_1: 5;

        end;

        then

        reconsider MySigmaField as Subset-Family of {1, 2, 3, 4};

        

         A1: MySigmaField is compl-closed

        proof

          for A be Subset of {1, 2, 3, 4} st A in MySigmaField holds (A ` ) in MySigmaField

          proof

            let A be Subset of {1, 2, 3, 4};

            assume A in MySigmaField;

            per cases by TARSKI:def 2;

              suppose A = {} ;

              hence thesis by TARSKI:def 2;

            end;

              suppose

               B1: A = {1, 2, 3, 4};

              (A ` ) = {} by B1, XBOOLE_1: 37;

              hence thesis by TARSKI:def 2;

            end;

          end;

          hence thesis;

        end;

        MySigmaField is sigma-multiplicative

        proof

          for A1 be SetSequence of {1, 2, 3, 4} st ( rng A1) c= MySigmaField holds ( Intersection A1) in MySigmaField

          proof

            let A1 be SetSequence of {1, 2, 3, 4};

            assume

             B1: ( rng A1) c= MySigmaField;

            per cases ;

              suppose ( Intersection A1) = {} ;

              hence thesis by TARSKI:def 2;

            end;

              suppose ( Intersection A1) <> {} ;

              hence thesis by B1, Lm9;

            end;

          end;

          hence thesis;

        end;

        hence thesis by A1;

      end;

    end

    definition

      :: FINANCE3:def7

      func Special_SigmaField2 -> SigmaField of {1, 2, 3, 4} equals { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}};

      correctness

      proof

        set MyOmega = { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}};

        MyOmega is Subset-Family of {1, 2, 3, 4}

        proof

          for x be object st x in MyOmega holds x in ( bool {1, 2, 3, 4})

          proof

            let x be object;

            assume x in MyOmega;

            per cases by ENUMSET1:def 2;

              suppose x = {} ;

              hence thesis by PROB_1: 4;

            end;

              suppose x = {1, 2};

              hence thesis by Lm2;

            end;

              suppose x = {3, 4};

              hence thesis by Lm1;

            end;

              suppose x = {1, 2, 3, 4};

              hence thesis by ZFMISC_1:def 1;

            end;

          end;

          hence thesis by TARSKI:def 3;

        end;

        then

        reconsider MyOmega as Subset-Family of {1, 2, 3, 4};

        

         A1: MyOmega is compl-closed

        proof

          for A be Subset of {1, 2, 3, 4} st A in MyOmega holds (A ` ) in MyOmega

          proof

            let A be Subset of {1, 2, 3, 4};

            assume A in MyOmega;

            per cases by ENUMSET1:def 2;

              suppose A = {} ;

              hence thesis by ENUMSET1:def 2;

            end;

              suppose A = {1, 2};

              hence thesis by Lem1, ENUMSET1:def 2;

            end;

              suppose A = {3, 4};

              hence thesis by Lem2, ENUMSET1:def 2;

            end;

              suppose

               B300: A = {1, 2, 3, 4};

              (A ` ) = {}

              proof

                reconsider B = {} as Subset of {1, 2, 3, 4} by SUBSET_1: 1;

                A = (B ` ) by B300;

                hence thesis;

              end;

              hence thesis by ENUMSET1:def 2;

            end;

          end;

          hence thesis;

        end;

        MyOmega is sigma-multiplicative by Lm8;

        hence thesis by A1;

      end;

    end

    definition

      ::$Canceled

    end

    theorem :: FINANCE3:23

    for Omega be set st Omega = {1, 2, 3, 4} holds {1} c= Omega & {2} c= Omega & {3} c= Omega & {4} c= Omega & {1, 2} c= Omega & {3, 4} c= Omega & {} c= Omega & Omega c= Omega

    proof

      let Omega be set;

      assume

       A0: Omega = {1, 2, 3, 4};

      then 1 in Omega & 2 in Omega & 3 in Omega & 4 in Omega by ENUMSET1:def 2;

      hence thesis by A0, Lemacik2, ZFMISC_1: 31;

    end;

    theorem :: FINANCE3:24

    for Omega be set st Omega = {1, 2, 3, 4} holds Omega in Special_SigmaField1 & {} in Special_SigmaField1 & {1, 2} in Special_SigmaField2 & {3, 4} in Special_SigmaField2 & Omega in Special_SigmaField2 & {} in Special_SigmaField2 & Omega in ( Trivial-SigmaField {1, 2, 3, 4}) & {} in ( Trivial-SigmaField {1, 2, 3, 4}) & {1} in ( Trivial-SigmaField {1, 2, 3, 4}) & {2} in ( Trivial-SigmaField {1, 2, 3, 4}) & {3} in ( Trivial-SigmaField {1, 2, 3, 4}) & {4} in ( Trivial-SigmaField {1, 2, 3, 4}) by EnLm1, EnLm2, EnLm3, PROB_1: 5, EnLm4, PROB_1: 4, ENUMSET1:def 2;

    

     XX1: { {} , {1, 2, 3, 4}} c< { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}}

    proof

       { {} , {1, 2, 3, 4}} c= ( { {} , {1, 2, 3, 4}} \/ { {1, 2}}) by XBOOLE_0:def 3;

      then { {} , {1, 2, 3, 4}} c= { {} , {1, 2, 3, 4}, {1, 2}} by ENUMSET1: 3;

      then { {} , {1, 2, 3, 4}} c= ( { {} , {1, 2, 3, 4}, {1, 2}} \/ { {3, 4}}) by XBOOLE_0:def 3;

      then

       Zw1: { {} , {1, 2, 3, 4}} c= { {} , {1, 2, 3, 4}, {1, 2}, {3, 4}} by ENUMSET1: 6;

      

       T1: { {} , {1, 2, 3, 4}} c= { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}}

      proof

        for x be object st x in { {} , {1, 2, 3, 4}} holds x in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}}

        proof

          let x be object;

          assume

           ASS1: x in { {} , {1, 2, 3, 4}};

          x = {} or x = {1, 2, 3, 4} or x = {1, 2} or x = {3, 4} by ASS1, Zw1, ENUMSET1:def 2;

          hence thesis by ENUMSET1:def 2;

        end;

        hence thesis;

      end;

      set y = {1, 2};

      

       C1: y in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} by ENUMSET1:def 2;

       {1, 2} <> {1, 2, 3, 4}

      proof

        3 in {1, 2, 3, 4} & not 3 in {1, 2} by ENUMSET1:def 2, TARSKI:def 2;

        hence thesis;

      end;

      hence thesis by T1, C1, TARSKI:def 2;

    end;

    

     XX2: { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} c< ( bool {1, 2, 3, 4})

    proof

      

       A2: { {1, 2, 3, 4}} c= ( bool {1, 2, 3, 4}) by ZFMISC_1: 68;

       { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} c= ( bool {1, 2, 3, 4})

      proof

        set MyBool = ( bool {1, 2, 3, 4});

        reconsider MyBool as SigmaField of {1, 2, 3, 4};

        for x be object st x in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}} holds x in ( bool {1, 2, 3, 4})

        proof

          let x be object;

          assume x in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}};

          per cases by ENUMSET1:def 2;

            suppose x = {} ;

            hence thesis by PROB_1: 4;

          end;

            suppose x = {1, 2};

            hence thesis by B25;

          end;

            suppose x = {3, 4};

            hence thesis by B26;

          end;

            suppose x = {1, 2, 3, 4};

            then x in { {1, 2, 3, 4}} by TARSKI:def 1;

            hence thesis by A2;

          end;

        end;

        hence thesis;

      end;

      hence thesis by The0;

    end;

    theorem :: FINANCE3:25

     Special_SigmaField1 c< Special_SigmaField2 & Special_SigmaField2 c< ( Trivial-SigmaField {1, 2, 3, 4}) by XX1, XX2;

    theorem :: FINANCE3:26

    ex Omega be non empty set st ex F1,F2,F3 be SigmaField of Omega st F1 c< F2 & F2 c< F3

    proof

       Special_SigmaField1 c< Special_SigmaField2 by XX1;

      hence thesis by XX2;

    end;

    theorem :: FINANCE3:27

    ex Omega1,Omega2,Omega3,Omega4 be non empty set st Omega1 c< Omega2 & Omega2 c< Omega3 & Omega3 c< Omega4 & (ex F1 be SigmaField of Omega1, F2 be SigmaField of Omega2, F3 be SigmaField of Omega3, F4 be SigmaField of Omega4 st F1 c= F2 & F2 c= F3 & F3 c= F4)

    proof

      set Omega1 = {1};

      set Omega2 = {1, 2};

      set Omega3 = {1, 2, 3};

      set Omega4 = {1, 2, 3, 4};

      reconsider F1 = ( bool Omega1) as SigmaField of Omega1;

      reconsider F2 = ( bool Omega2) as SigmaField of Omega2;

      reconsider F3 = ( bool Omega3) as SigmaField of Omega3;

      reconsider F4 = ( bool Omega4) as SigmaField of Omega4;

      

       ATh100: Omega1 c< Omega2 by ZFMISC_1: 7, ZFMISC_1: 20;

      

       E10: F1 c= F2 by ZFMISC_1: 7, ZFMISC_1: 67;

      

       E11: F2 c= F3 by ATh101, ZFMISC_1: 67;

      F3 c= F4 by ATh102, ZFMISC_1: 67;

      hence thesis by ATh100, ATh101, ATh102, E10, E11;

    end;

    definition

      let Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let I be non empty real-membered set;

      :: FINANCE3:def9

      mode Filtration of I,Sigma -> ManySortedSigmaField of I, Sigma means

      : Def2000: for s,t be Element of I st s <= t holds (it . s) is Subset of (it . t);

      existence

      proof

        set C = Sigma;

        

         A1: {Sigma} c= ( bool Sigma) by ZFMISC_1: 68;

        C is Element of ( bool Sigma)

        proof

          Sigma in {Sigma} by TARSKI:def 1;

          hence thesis by A1;

        end;

        then

        reconsider C as Element of ( bool Sigma);

        set const = (I --> C);

        reconsider const as Function of I, ( bool Sigma);

        

         Z1: for i be set st i in I holds (const . i) is SigmaField of Omega by FUNCOP_1: 7;

        

         T1: const is ManySortedSigmaField of I, Sigma by Z1, KOLMOG01:def 2;

        for x,y be Element of I st x <= y holds (const . x) is Subset of (const . y)

        proof

          let x,y be Element of I;

          assume x <= y;

          (const . x) = C & (const . y) = C by FUNCOP_1: 7;

          hence thesis;

        end;

        hence thesis by T1;

      end;

    end

    definition

      let I,Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let Filt be ManySortedSigmaField of I, Sigma;

      let i be Element of I;

      :: FINANCE3:def10

      func El_Filtration (i,Filt) -> SigmaField of Omega equals (Filt . i);

      correctness by KOLMOG01:def 2;

    end

    definition

      let k be Element of {1, 2, 3};

      :: FINANCE3:def11

      func Set1_of_SigmaField3 (k) -> Subset of ( bool {1, 2, 3, 4}) equals

      : Def8: Special_SigmaField1 if k = 1

      otherwise Special_SigmaField2 ;

      correctness ;

    end

    definition

      let k be Element of {1, 2, 3};

      :: FINANCE3:def12

      func Set2_of_SigmaField3 (k) -> Subset of ( bool {1, 2, 3, 4}) equals

      : Def9: ( Set1_of_SigmaField3 k) if k <= 2

      otherwise ( Trivial-SigmaField {1, 2, 3, 4});

      correctness ;

    end

    

     Th3: for Sigma be SigmaField of {1, 2, 3, 4}, I be set st I = {1, 2, 3} & Sigma = ( bool {1, 2, 3, 4}) holds ex MyFunc be ManySortedSigmaField of I, Sigma st (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4})

    proof

      let Sigma be SigmaField of {1, 2, 3, 4};

      let I be set;

      assume

       ASS2: I = {1, 2, 3} & Sigma = ( bool {1, 2, 3, 4});

      deffunc U( Element of {1, 2, 3}) = ( Set2_of_SigmaField3 $1);

      consider fI1 be Function of {1, 2, 3}, ( bool ( bool {1, 2, 3, 4})) such that

       A1: for d be Element of {1, 2, 3} holds (fI1 . d) = U(d) from FUNCT_2:sch 4;

      reconsider fI1 as Function of I, ( bool Sigma) by ASS2;

      reconsider El1 = 1 as Element of {1, 2, 3} by ENUMSET1:def 1;

      

       A20: (fI1 . 1) = ( Set2_of_SigmaField3 El1) by A1;

      

       F1: ( Set2_of_SigmaField3 El1) = ( Set1_of_SigmaField3 El1) by Def9;

      reconsider El1 = 2 as Element of {1, 2, 3} by ENUMSET1:def 1;

      

       A200: (fI1 . 2) = ( Set2_of_SigmaField3 El1) by A1;

      

       F2: ( Set2_of_SigmaField3 El1) = ( Set1_of_SigmaField3 El1) by Def9;

      reconsider El1 = 3 as Element of {1, 2, 3} by ENUMSET1:def 1;

      

       A2: (fI1 . 3) = ( Set2_of_SigmaField3 El1) by A1;

      reconsider fI1 as Function of I, ( bool Sigma);

      for i be set st i in I holds (fI1 . i) is SigmaField of {1, 2, 3, 4}

      proof

        let i be set;

        assume

         B1: i in I;

        (fI1 . i) is SigmaField of {1, 2, 3, 4}

        proof

          per cases by B1, ASS2, ENUMSET1:def 1;

            suppose i = 1;

            hence thesis by F1, Def8, A20;

          end;

            suppose i = 2;

            hence thesis by F2, Def8, A200;

          end;

            suppose i = 3;

            hence thesis by Def9, A2;

          end;

        end;

        hence thesis;

      end;

      then

      reconsider fI1 as ManySortedSigmaField of I, Sigma by KOLMOG01:def 2;

      take fI1;

      thus thesis by F1, Def8, A20, F2, A200, Def9, A2;

    end;

    theorem :: FINANCE3:28

    

     MyNeed: for Omega be non empty set, Sigma be SigmaField of Omega, I be non empty real-membered set st I = {1, 2, 3} & Sigma = ( bool {1, 2, 3, 4}) & Omega = {1, 2, 3, 4} holds ex MyFunc be Filtration of I, Sigma st (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4})

    proof

      let Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let I be non empty real-membered set;

      assume

       A0: I = {1, 2, 3} & Sigma = ( bool {1, 2, 3, 4}) & Omega = {1, 2, 3, 4};

      consider MyFunc be ManySortedSigmaField of I, Sigma such that

       A1: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) by A0, Th3;

      

       A3: for s,t be Element of I st s <= t holds (MyFunc . s) is Subset of (MyFunc . t)

      proof

        let s,t be Element of I;

        assume

         B1: s <= t;

        per cases by A0, ENUMSET1:def 1;

          suppose

           SUPP1: s = 1;

          per cases by A0, ENUMSET1:def 1;

            suppose t = 1;

            then (MyFunc . t) = (MyFunc . 1) & (MyFunc . s) = (MyFunc . 1) by SUPP1;

            hence thesis;

          end;

            suppose t = 2 or t = 3;

            hence thesis by SUPP1, A1, XX1;

          end;

        end;

          suppose

           SUPP1: s = 2;

          per cases by A0, ENUMSET1:def 1;

            suppose t = 1;

            hence thesis by SUPP1, B1;

          end;

            suppose t = 2;

            then (MyFunc . t) = (MyFunc . 2) & (MyFunc . s) = (MyFunc . 2) by SUPP1;

            hence thesis;

          end;

            suppose t = 3;

            hence thesis by SUPP1, A1;

          end;

        end;

          suppose

           SUPP1: s = 3;

          per cases by A0, ENUMSET1:def 1;

            suppose t = 1 or t = 2;

            hence thesis by SUPP1, B1;

          end;

            suppose t = 3;

            then (MyFunc . t) = (MyFunc . 3) & (MyFunc . s) = (MyFunc . 3) by SUPP1;

            hence thesis;

          end;

        end;

      end;

      MyFunc is Filtration of I, Sigma by A3, Def2000;

      hence thesis by A1;

    end;

    

     Lm1A: for Omega,Omega2 be non empty set, F be Function of Omega, Omega2, y be non empty set holds { z where z be Element of Omega : (F . z) is Element of y } = (F " y)

    proof

      let Omega,Omega2 be non empty set, F be Function of Omega, Omega2, y be non empty set;

      set D = { z where z be Element of Omega : (F . z) is Element of y };

      for x be object holds x in D iff x in (F " y)

      proof

        let x be object;

        hereby

          assume x in D;

          then

          consider z be Element of Omega such that

           A1: x = z & (F . z) is Element of y;

          z in Omega;

          then z in ( dom F) by FUNCT_2:def 1;

          hence x in (F " y) by A1, FUNCT_1:def 7;

        end;

        assume x in (F " y);

        then x in ( dom F) & (F . x) in y by FUNCT_1:def 7;

        hence x in D;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     Lm2A: for Omega be non empty set, Sigma4 be SigmaField of Omega, Sigma5 be SigmaField of {1} holds (Omega --> 1) is random_variable of Sigma4, Sigma5

    proof

      let Omega be non empty set;

      let Sigma4 be SigmaField of Omega;

      let Sigma5 be SigmaField of {1};

      set 1REAL = 1;

      reconsider 1REAL as Real;

      reconsider X = (Omega --> 1REAL) as Function of Omega, {1};

      X is Sigma4, Sigma5 -random_variable-like

      proof

        let x be set;

        per cases ;

          suppose

           A1: 1 in x;

          for q be object holds q in { w where w be Element of Omega : (X . w) is Element of x } iff q in Omega

          proof

            let q be object;

            hereby

              assume q in { w where w be Element of Omega : (X . w) is Element of x };

              then ex w be Element of Omega st w = q & (X . w) is Element of x;

              hence q in Omega;

            end;

            assume q in Omega;

            then

            reconsider w = q as Element of Omega;

            (X . w) is Element of x by A1, FUNCOP_1: 7;

            hence thesis;

          end;

          then

           A2: { w where w be Element of Omega : (X . w) is Element of x } = Omega by TARSKI: 2;

          { w where w be Element of Omega : (X . w) is Element of x } = (X " x) by A1, Lm1A;

          then (X " x) is Element of Sigma4 by A2, PROB_1: 23;

          hence thesis;

        end;

          suppose

           A3: not 1 in x;

          (X " x) c= {}

          proof

            let q be object;

            assume q in (X " x);

            then q in ( dom X) & (X . q) in x by FUNCT_1:def 7;

            hence q in {} by A3, FUNCOP_1: 7;

          end;

          then (X " x) = {} ;

          then (X " x) is Element of Sigma4 by PROB_1: 22;

          hence thesis;

        end;

      end;

      hence thesis;

    end;

    theorem :: FINANCE3:29

    

     THJ1: for Omega be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of {1} st Omega = {1, 2, 3, 4} holds ex X1 be Function of Omega, {1} st X1 is random_variable of Special_SigmaField1 , Sigma2 & X1 is random_variable of Special_SigmaField2 , Sigma2 & X1 is random_variable of ( Trivial-SigmaField {1, 2, 3, 4}), Sigma2

    proof

      let Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let Sigma2 be SigmaField of {1};

      assume

       A1: Omega = {1, 2, 3, 4};

      reconsider 1REAL = 1 as Real;

      consider X1 be Function of Omega, {1REAL} such that

       F4: X1 = (Omega --> 1REAL);

      reconsider X1 as Function of Omega, {1};

      take X1;

      thus thesis by A1, Lm2A, F4;

    end;

    theorem :: FINANCE3:30

    ex Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set, Q be Filtration of I, Sigma st ex rv be Function of Omega, Omega2 st for i be Element of I holds rv is random_variable of ( El_Filtration (i,Q)), Sigma2

    proof

      set Omega = {1, 2, 3, 4};

      set Omega2 = {1};

      consider Sigma be SigmaField of Omega such that

       A3: Sigma = ( bool Omega);

      reconsider Sigma2 = ( bool Omega2) as non empty set;

      reconsider Sigma2 as SigmaField of Omega2;

      consider I be non empty real-membered set such that

       A5: I = {1, 2, 3};

      consider MyFunc be Filtration of I, Sigma such that

       A6: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) by A3, A5, MyNeed;

      consider X1 be Function of Omega, {1} such that

       A7: X1 is random_variable of Special_SigmaField1 , Sigma2 & X1 is random_variable of Special_SigmaField2 , Sigma2 & X1 is random_variable of ( Trivial-SigmaField {1, 2, 3, 4}), Sigma2 by THJ1;

      

       F2: for i be Element of I holds X1 is random_variable of ( El_Filtration (i,MyFunc)), Sigma2

      proof

        let i be Element of I;

        i = 1 or i = 2 or i = 3 by A5, ENUMSET1:def 1;

        hence thesis by A6, A7;

      end;

      take Omega, Omega2, Sigma, Sigma2;

      thus thesis by F2;

    end;

    theorem :: FINANCE3:31

    for Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set, Q be ManySortedSigmaField of I, Sigma holds ex rv be Function of Omega, Omega2 st for i be Element of I holds rv is random_variable of ( El_Filtration (i,Q)), Sigma2

    proof

      let Omega,Omega2 be non empty set;

      let Sigma be SigmaField of Omega;

      let Sigma2 be SigmaField of Omega2;

      let I be non empty real-membered set;

      let Q be ManySortedSigmaField of I, Sigma;

      consider w be object such that

       A00: w in Omega2 by XBOOLE_0:def 1;

      reconsider w as Element of Omega2 by A00;

      set myset = w;

      deffunc U( Element of Omega) = myset;

      consider myfunc be Function of Omega, Omega2 such that

       B3: myfunc = (Omega --> myset);

      take myfunc;

      let i be Element of I;

      myfunc is ( El_Filtration (i,Q)), Sigma2 -random_variable-like

      proof

        for x be set st x in Sigma2 holds (myfunc " x) in ( El_Filtration (i,Q))

        proof

          let x be set;

          assume x in Sigma2;

          per cases ;

            suppose

             CAS0: myset in x;

            

             H1: (myfunc " x) = Omega

            proof

              for y be object holds y in (myfunc " x) iff y in Omega

              proof

                let y be object;

                y in Omega implies y in (myfunc " x)

                proof

                  assume

                   I0: y in Omega;

                  then

                   I1: y in ( dom myfunc) by FUNCT_2:def 1;

                  (myfunc . y) in x by I0, B3, FUNCOP_1: 7, CAS0;

                  hence thesis by I1, FUNCT_1:def 7;

                end;

                hence thesis;

              end;

              hence thesis by TARSKI:def 3;

            end;

            (myfunc " x) in (Q . i)

            proof

              (Q . i) is SigmaField of Omega by KOLMOG01:def 2;

              hence thesis by H1, PROB_1: 5;

            end;

            hence thesis;

          end;

            suppose

             CAS1: not myset in x;

            (myfunc " x) c= {}

            proof

              let z be object;

              assume z in (myfunc " x);

              then z in ( dom myfunc) & (myfunc . z) in x & (myfunc . z) = myset by FUNCT_1:def 7, B3, FUNCOP_1: 7;

              hence thesis by CAS1;

            end;

            then (myfunc " x) = {} ;

            hence thesis by PROB_1: 4;

          end;

        end;

        hence thesis;

      end;

      hence thesis;

    end;

    theorem :: FINANCE3:32

    for Omega be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega st Sigma2 c= Sigma holds for E2 be Event of Sigma2 holds E2 is Event of Sigma;

    definition

      let Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set;

      :: FINANCE3:def13

      mode Stochastic_Process of I,Sigma,Sigma2 -> Function of I, ( set_of_random_variables_on (Sigma,Sigma2)) means

      : Def30000: for k be Element of I holds ex RV be Function of Omega, Omega2 st (it . k) = RV & RV is Sigma, Sigma2 -random_variable-like;

      existence

      proof

        set q = the Element of Omega2;

        set F = (Omega --> q);

        

         A1: F is Sigma, Sigma2 -random_variable-like by 1A5;

        F in ( set_of_random_variables_on (Sigma,Sigma2)) by A1;

        then

        reconsider F as Element of ( set_of_random_variables_on (Sigma,Sigma2));

        deffunc U( Element of I) = F;

        consider fI1 be Function of I, ( set_of_random_variables_on (Sigma,Sigma2)) such that

         B1: for d be Element of I holds (fI1 . d) = U(d) from FUNCT_2:sch 4;

        for k be Element of I holds ex RV be Function of Omega, Omega2 st (fI1 . k) = RV & RV is Sigma, Sigma2 -random_variable-like by A1, B1;

        hence thesis;

      end;

    end

    definition

      let Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set, Stoch be Stochastic_Process of I, Sigma, Sigma2, k be Element of I;

      :: FINANCE3:def14

      func RVProcess (Stoch,k) -> random_variable of Sigma, Sigma2 equals (Stoch . k);

      coherence

      proof

        consider RV be Function of Omega, Omega2 such that

         A0: (Stoch . k) = RV & RV is Sigma, Sigma2 -random_variable-like by Def30000;

        thus thesis by A0;

      end;

    end

    definition

      let Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set, Stoch be Stochastic_Process of I, Sigma, Sigma2;

      :: FINANCE3:def15

      mode Adapted_Stochastic_Process of Stoch -> Function of I, ( set_of_random_variables_on (Sigma,Sigma2)) means

      : Def30002: ex k be Filtration of I, Sigma st for i be Element of I holds ( RVProcess (Stoch,i)) is ( El_Filtration (i,k)), Sigma2 -random_variable-like;

      existence

      proof

        set MyBool = ( bool Sigma);

        

         D0: {Sigma} c= ( bool Sigma) by ZFMISC_1: 68;

        Sigma in {Sigma} by TARSKI:def 1;

        then

        reconsider Sigma as Element of MyBool by D0;

        set F = (I --> Sigma);

        reconsider Sigma as SigmaField of Omega;

        

         W2: for i be Element of I holds (F . i) = Sigma by FUNCOP_1: 7;

        for i be set st i in I holds (F . i) is SigmaField of Omega by FUNCOP_1: 7;

        then

        reconsider F as ManySortedSigmaField of I, Sigma by KOLMOG01:def 2;

        

         WW1: for s,t be Element of I st s <= t holds (F . s) is Subset of (F . t)

        proof

          let s,t be Element of I;

          assume s <= t;

          (F . s) = Sigma by FUNCOP_1: 7;

          hence thesis by FUNCOP_1: 7;

        end;

        F is Filtration of I, Sigma by WW1, Def2000;

        then

        consider F be Filtration of I, Sigma such that

         C0: for i be Element of I holds (F . i) = Sigma by W2;

        for i be Element of I holds ( RVProcess (Stoch,i)) is ( El_Filtration (i,F)), Sigma2 -random_variable-like

        proof

          let i be Element of I;

          ( El_Filtration (i,F)) = Sigma by C0;

          hence thesis;

        end;

        hence thesis;

      end;

    end

    definition

      let Omega,Omega2 be non empty set;

      let Sigma be SigmaField of Omega;

      let Sigma2 be SigmaField of Omega2;

      let I,J be non empty Subset of NAT ;

      let Stoch be Stochastic_Process of ( In (J,( bool REAL ))), Sigma, Sigma2;

      :: FINANCE3:def16

      mode Predictable_Stochastic_Process of I,J,Sigma,Sigma2,Stoch -> Function of J, ( set_of_random_variables_on (Sigma,Sigma2)) means ex k be Filtration of ( In (I,( bool REAL ))), Sigma st for j be Element of ( In (J,( bool REAL ))), i be Element of ( In (I,( bool REAL ))) st (j - 1) = i holds ( RVProcess (Stoch,j)) is ( El_Filtration (i,k)), Sigma2 -random_variable-like;

      existence

      proof

        set MyBool = ( bool Sigma);

        

         D0: {Sigma} c= ( bool Sigma) by ZFMISC_1: 68;

        Sigma in {Sigma} by TARSKI:def 1;

        then

        reconsider Sigma as Element of MyBool by D0;

        set F = (( In (I,( bool REAL ))) --> Sigma);

        reconsider Sigma as SigmaField of Omega;

        

         W2: for i be Element of ( In (I,( bool REAL ))) holds (F . i) = Sigma by FUNCOP_1: 7;

        for i be set st i in ( In (I,( bool REAL ))) holds (F . i) is SigmaField of Omega by FUNCOP_1: 7;

        then

        reconsider F as ManySortedSigmaField of ( In (I,( bool REAL ))), Sigma by KOLMOG01:def 2;

        for s,t be Element of ( In (I,( bool REAL ))) st s <= t holds (F . s) is Subset of (F . t)

        proof

          let s,t be Element of ( In (I,( bool REAL )));

          assume s <= t;

          (F . s) = Sigma by FUNCOP_1: 7;

          hence thesis by FUNCOP_1: 7;

        end;

        then F is Filtration of ( In (I,( bool REAL ))), Sigma by Def2000;

        then

        consider F be Filtration of ( In (I,( bool REAL ))), Sigma such that

         C0: for i be Element of ( In (I,( bool REAL ))) holds (F . i) = Sigma by W2;

        for j be Element of ( In (J,( bool REAL ))), i be Element of ( In (I,( bool REAL ))) st (j - 1) = i holds ( RVProcess (Stoch,j)) is ( El_Filtration (i,F)), Sigma2 -random_variable-like

        proof

          let j be Element of ( In (J,( bool REAL )));

          let i be Element of ( In (I,( bool REAL )));

          assume (j - 1) = i;

          Sigma = ( El_Filtration (i,F)) by C0;

          hence thesis;

        end;

        hence thesis;

      end;

    end

    definition

      let Omega,Omega2 be non empty set;

      let Sigma be SigmaField of Omega;

      let Sigma2 be SigmaField of Omega2;

      let I be non empty real-membered set;

      let MyFunc be ManySortedSigmaField of I, Sigma;

      let Stoch be Stochastic_Process of I, Sigma, Sigma2;

      :: FINANCE3:def17

      attr Stoch is MyFunc -stoch_proc_wrt_to_Filtration means for i be Element of I holds ( RVProcess (Stoch,i)) is ( El_Filtration (i,MyFunc)), Sigma2 -random_variable-like;

    end

    theorem :: FINANCE3:33

    for Omega,Omega2 be non empty set, Sigma be SigmaField of Omega, Sigma2 be SigmaField of Omega2, I be non empty real-membered set, MyFunc be Filtration of I, Sigma, Stoch be Stochastic_Process of I, Sigma, Sigma2 st Stoch is MyFunc -stoch_proc_wrt_to_Filtration holds Stoch is Adapted_Stochastic_Process of Stoch by Def30002;

    definition

      let k1,k2 be Element of REAL ;

      let Omega be non empty set;

      let k be Element of Omega;

      :: FINANCE3:def18

      func Set1_for_RandomVariable (k1,k2,k) -> Element of REAL equals k1 if (k = 1 or k = 2)

      otherwise k2;

      correctness ;

      :: FINANCE3:def19

      func Set4_for_RandomVariable (k1,k2,k) -> Element of REAL equals

      : Def79: k1 if k = 3

      otherwise k2;

      correctness ;

    end

    definition

      let k2,k3,k4 be Element of REAL ;

      let Omega be non empty set;

      let k be Element of Omega;

      :: FINANCE3:def20

      func Set3_for_RandomVariable (k2,k3,k4,k) -> Element of REAL equals

      : Def78: k2 if k = 2

      otherwise ( Set4_for_RandomVariable (k3,k4,k));

      correctness ;

    end

    definition

      let k1,k2,k3,k4 be Element of REAL ;

      let Omega be non empty set;

      let k be Element of Omega;

      :: FINANCE3:def21

      func Set2_for_RandomVariable (k1,k2,k3,k4,k) -> Element of REAL equals

      : Def77: k1 if k = 1

      otherwise ( Set3_for_RandomVariable (k2,k3,k4,k));

      correctness ;

    end

    theorem :: FINANCE3:34

    

     MYF30: for k1,k2,k3,k4 be Element of REAL holds for Omega be set st Omega = {1, 2, 3, 4} holds ex f be Function of Omega, REAL st (f . 1) = k1 & (f . 2) = k2 & (f . 3) = k3 & (f . 4) = k4

    proof

      let k1,k2,k3,k4 be Element of REAL ;

      let Omega be set;

      assume

       ASS: Omega = {1, 2, 3, 4};

      

       A1: 1 in Omega by ENUMSET1:def 2, ASS;

      

       A2: 2 in Omega by ENUMSET1:def 2, ASS;

      

       A3: 3 in Omega by ENUMSET1:def 2, ASS;

      

       A4: 4 in Omega by ENUMSET1:def 2, ASS;

      reconsider Omega as non empty set by ASS;

      deffunc U( Element of Omega) = ( Set2_for_RandomVariable (k1,k2,k3,k4,$1));

      consider f be Function of Omega, REAL such that

       B1: for d be Element of Omega holds (f . d) = U(d) from FUNCT_2:sch 4;

      

       B2: (f . 1) = k1

      proof

        consider k be Element of Omega such that

         C1: k = 1 by A1;

        (f . k) = ( Set2_for_RandomVariable (k1,k2,k3,k4,k)) by B1;

        hence thesis by C1, Def77;

      end;

      

       B3: (f . 2) = k2

      proof

        consider k be Element of Omega such that

         C1: k = 2 by A2;

        (f . 2) = ( Set2_for_RandomVariable (k1,k2,k3,k4,k)) & k = 2 by B1, C1;

        then (f . 2) = ( Set3_for_RandomVariable (k2,k3,k4,k)) & k = 2 by Def77;

        hence thesis by Def78;

      end;

      

       B4: (f . 3) = k3

      proof

        consider k be Element of Omega such that

         C1: k = 3 by A3;

        (f . k) = ( Set2_for_RandomVariable (k1,k2,k3,k4,k)) by B1;

        then (f . 3) = ( Set3_for_RandomVariable (k2,k3,k4,k)) & k = 3 by C1, Def77;

        then (f . 3) = ( Set4_for_RandomVariable (k3,k4,k)) & k = 3 by Def78;

        hence thesis by Def79;

      end;

      (f . 4) = k4

      proof

        consider k be Element of Omega such that

         C1: k = 4 by A4;

        (f . k) = ( Set2_for_RandomVariable (k1,k2,k3,k4,k)) by B1;

        then (f . 4) = ( Set3_for_RandomVariable (k2,k3,k4,k)) & k = 4 by C1, Def77;

        then (f . 4) = ( Set4_for_RandomVariable (k3,k4,k)) & k = 4 by Def78;

        hence thesis by Def79;

      end;

      hence thesis by B2, B3, B4;

    end;

    theorem :: FINANCE3:35

    

     MyFunc5: for k1,k2,k3,k4 be Element of REAL holds for Omega be non empty set st Omega = {1, 2, 3, 4} holds for Sigma be SigmaField of Omega, I be non empty real-membered set, MyFunc be ManySortedSigmaField of I, Sigma st (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) holds for eli be Element of I st eli = 3 holds ex f be Function of Omega, REAL st (f . 1) = k1 & (f . 2) = k2 & (f . 3) = k3 & (f . 4) = k4 & f is ( El_Filtration (eli,MyFunc)), Borel_Sets -random_variable-like

    proof

      let k1,k2,k3,k4 be Element of REAL ;

      let Omega be non empty set;

      assume

       A0: Omega = {1, 2, 3, 4};

      let Sigma be SigmaField of Omega;

      let I be non empty real-membered set;

      let MyFunc be ManySortedSigmaField of I, Sigma;

      assume

       A2: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4});

      let eli be Element of I;

      assume

       A4: eli = 3;

      consider f be Function of Omega, REAL such that

       A3: (f . 1) = k1 & (f . 2) = k2 & (f . 3) = k3 & (f . 4) = k4 by A0, MYF30;

      

       II0: for x be object holds x in ( dom f) implies (x = 1 or x = 2 or x = 3 or x = 4) by A0, ENUMSET1:def 2;

      

       II: 1 in ( dom f) & 2 in ( dom f) & 3 in ( dom f) & 4 in ( dom f)

      proof

        ( dom f) = {1, 2, 3, 4} by FUNCT_2:def 1, A0;

        hence thesis by ENUMSET1:def 2;

      end;

      f is ( El_Filtration (eli,MyFunc)), Borel_Sets -random_variable-like

      proof

        set i = eli;

        for x be set holds (f " x) in ( El_Filtration (i,MyFunc))

        proof

          let x be set;

          (f " x) in (MyFunc . i)

          proof

            (f " x) in ( bool {1, 2, 3, 4})

            proof

              per cases ;

                suppose

                 ASUPP1: k1 in x;

                per cases ;

                  suppose

                   BSUPP1: k2 in x;

                  per cases ;

                    suppose

                     CSUPP1: k3 in x;

                    per cases ;

                      suppose

                       DSUPP1: k4 in x;

                      for z be object holds z in {1, 2, 3, 4} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {1, 2, 3, 4} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {1, 2, 3, 4};

                          then z in ( dom f) by FUNCT_2:def 1, A0;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f);

                          

                           Fin1: [z, y] in f by K01, FUNCT_1: 1;

                          y in x by K01, A0, ENUMSET1:def 2, A3, ASUPP1, BSUPP1, CSUPP1, DSUPP1;

                          hence thesis by Fin1;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z = 1 or z = 2 or z = 3 or z = 4 by U000, FUNCT_1: 1, II0;

                        hence thesis by ENUMSET1:def 2;

                      end;

                      then (f " x) = {1, 2, 3, 4} by RELAT_1:def 14;

                      hence thesis;

                    end;

                      suppose

                       DSUPP2: not k4 in x;

                      for z be object holds z in {1, 2, 3} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {1, 2, 3} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {1, 2, 3};

                          then

                           SS: z = 1 or z = 2 or z = 3 by ENUMSET1:def 1;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, ASUPP1, K01, BSUPP1, CSUPP1, SS;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 4 by A3, U000, FUNCT_1: 1, DSUPP2;

                        then z = 1 or z = 2 or z = 3 by U000, FUNCT_1: 1, II0;

                        hence thesis by ENUMSET1:def 1;

                      end;

                      hence thesis by B123, RELAT_1:def 14;

                    end;

                  end;

                    suppose

                     CSUPP2: not k3 in x;

                    per cases ;

                      suppose

                       DSUPP1: k4 in x;

                      for z be object holds z in {1, 2, 4} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {1, 2, 4} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {1, 2, 4};

                          then

                           SS: z = 1 or z = 2 or z = 4 by ENUMSET1:def 1;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by SS, A3, ASUPP1, K01, BSUPP1, DSUPP1;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 3 by A3, U000, FUNCT_1: 1, CSUPP2;

                        then z = 1 or z = 2 or z = 4 by II0, U000, FUNCT_1: 1;

                        hence thesis by ENUMSET1:def 1;

                      end;

                      hence thesis by B124, RELAT_1:def 14;

                    end;

                      suppose

                       DSUPP2: not k4 in x;

                      

                       Fin1: for z be object holds z in {1, 2} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {1, 2} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {1, 2};

                          then

                           SS: z = 1 or z = 2 by TARSKI:def 2;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, ASUPP1, K01, BSUPP1, SS;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 3 & z <> 4 by A3, U000, FUNCT_1: 1, CSUPP2, DSUPP2;

                        then z = 1 or z = 2 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 2;

                      end;

                       {1, 2} in ( bool {1, 2, 3, 4}) by Lm2;

                      hence thesis by Fin1, RELAT_1:def 14;

                    end;

                  end;

                end;

                  suppose

                   BSUPP1: not k2 in x;

                  per cases ;

                    suppose

                     CSUPP1: k3 in x;

                    per cases ;

                      suppose

                       DSUPP1: k4 in x;

                      for z be object holds z in {1, 3, 4} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {1, 3, 4} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {1, 3, 4};

                          then

                           SS: z = 1 or z = 3 or z = 4 by ENUMSET1:def 1;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, ASUPP1, K01, SS, CSUPP1, DSUPP1;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 2 by A3, U000, FUNCT_1: 1, BSUPP1;

                        then z = 1 or z = 3 or z = 4 by U000, FUNCT_1: 1, II0;

                        hence thesis by ENUMSET1:def 1;

                      end;

                      hence thesis by B134, RELAT_1:def 14;

                    end;

                      suppose

                       DSUPP2: not k4 in x;

                      for z be object holds z in {1, 3} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {1, 3} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {1, 3};

                          then

                           SS: z = 1 or z = 3 by TARSKI:def 2;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, ASUPP1, K01, CSUPP1, SS;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 2 & z <> 4 by A3, U000, FUNCT_1: 1, BSUPP1, DSUPP2;

                        then z = 1 or z = 3 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 2;

                      end;

                      hence thesis by B13, RELAT_1:def 14;

                    end;

                  end;

                    suppose

                     CSUPP2: not k3 in x;

                    per cases ;

                      suppose

                       DSUPP1: k4 in x;

                      for z be object holds z in {1, 4} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {1, 4} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {1, 4};

                          then

                           SS: z = 1 or z = 4 by TARSKI:def 2;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, ASUPP1, K01, SS, DSUPP1;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 2 & z <> 3 by A3, U000, FUNCT_1: 1, BSUPP1, CSUPP2;

                        then z = 1 or z = 4 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 2;

                      end;

                      hence thesis by B14, RELAT_1:def 14;

                    end;

                      suppose

                       DSUPP2: not k4 in x;

                      

                       Fin1: for z be object holds z in {1} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {1} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume

                           K000: z in {1};

                          then z in ( dom f) by TARSKI:def 1, II;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f);

                          

                           Fin1: [z, y] in f by K01, FUNCT_1: 1;

                          z = 1 by K000, TARSKI:def 1;

                          hence thesis by A3, ASUPP1, Fin1, K01;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 2 & z <> 3 & z <> 4 by A3, FUNCT_1: 1, U000, DSUPP2, BSUPP1, CSUPP2;

                        then z = 1 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 1;

                      end;

                       {1} in ( bool {1, 2, 3, 4}) by EnLm1;

                      hence thesis by Fin1, RELAT_1:def 14;

                    end;

                  end;

                end;

              end;

                suppose

                 ASUPP2: not k1 in x;

                per cases ;

                  suppose

                   BSUPP1: k2 in x;

                  per cases ;

                    suppose

                     CSUPP1: k3 in x;

                    per cases ;

                      suppose

                       DSUPP1: k4 in x;

                      for z be object holds z in {2, 3, 4} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {2, 3, 4} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {2, 3, 4};

                          then

                           SS: z = 2 or z = 3 or z = 4 by ENUMSET1:def 1;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, BSUPP1, K01, SS, CSUPP1, DSUPP1;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 1 by A3, FUNCT_1: 1, U000, ASUPP2;

                        then z = 2 or z = 3 or z = 4 by U000, FUNCT_1: 1, II0;

                        hence thesis by ENUMSET1:def 1;

                      end;

                      hence thesis by B234, RELAT_1:def 14;

                    end;

                      suppose

                       DSUPP2: not k4 in x;

                      for z be object holds z in {2, 3} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {2, 3} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {2, 3};

                          then

                           SS: z = 2 or z = 3 by TARSKI:def 2;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, BSUPP1, K01, CSUPP1, SS;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 1 & z <> 4 by A3, U000, FUNCT_1: 1, ASUPP2, DSUPP2;

                        then z = 2 or z = 3 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 2;

                      end;

                      hence thesis by B23, RELAT_1:def 14;

                    end;

                  end;

                    suppose

                     CSUPP1: not k3 in x;

                    per cases ;

                      suppose

                       DSUPP1: k4 in x;

                      for z be object holds z in {2, 4} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {2, 4} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {2, 4};

                          then

                           SS: z = 2 or z = 4 by TARSKI:def 2;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, BSUPP1, K01, DSUPP1, SS;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 3 & z <> 1 by A3, U000, FUNCT_1: 1, ASUPP2, CSUPP1;

                        then z = 2 or z = 4 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 2;

                      end;

                      hence thesis by B24, RELAT_1:def 14;

                    end;

                      suppose

                       DSUPP2: not k4 in x;

                      

                       Fin1: for z be object holds z in {2} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {2} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume

                           K000: z in {2};

                          then z in ( dom f) by TARSKI:def 1, II;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f);

                          

                           Fin1: [z, y] in f by K01, FUNCT_1: 1;

                          z = 2 by K000, TARSKI:def 1;

                          hence thesis by A3, BSUPP1, Fin1, K01;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 1 & z <> 3 & z <> 4 by A3, U000, FUNCT_1: 1, ASUPP2, DSUPP2, CSUPP1;

                        then z = 2 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 1;

                      end;

                       {2} in ( bool {1, 2, 3, 4}) by EnLm2;

                      hence thesis by Fin1, RELAT_1:def 14;

                    end;

                  end;

                end;

                  suppose

                   BSUPP2: not k2 in x;

                  per cases ;

                    suppose

                     CSUPP1: k3 in x;

                    per cases ;

                      suppose

                       DSUPP1: k4 in x;

                      

                       Fin1: for z be object holds z in {3, 4} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {3, 4} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume z in {3, 4};

                          then

                           SS: z = 3 or z = 4 by TARSKI:def 2;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f) by II;

                           [z, y] in f by K01, FUNCT_1: 1;

                          hence thesis by A3, CSUPP1, K01, DSUPP1, SS;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 1 & z <> 2 by A3, U000, FUNCT_1: 1, BSUPP2, ASUPP2;

                        then z = 3 or z = 4 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 2;

                      end;

                       {3, 4} in ( bool {1, 2, 3, 4}) by Lm1;

                      hence thesis by Fin1, RELAT_1:def 14;

                    end;

                      suppose

                       DSUPP2: not k4 in x;

                      

                       Fin1: for z be object holds z in {3} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {3} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume

                           K000: z in {3};

                          then z in ( dom f) by TARSKI:def 1, II;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f);

                          

                           Fin1: [z, y] in f by K01, FUNCT_1: 1;

                          z = 3 by K000, TARSKI:def 1;

                          hence thesis by A3, CSUPP1, Fin1, K01;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 1 & z <> 2 & z <> 4 by A3, U000, FUNCT_1: 1, BSUPP2, DSUPP2, ASUPP2;

                        then z = 3 by U000, FUNCT_1: 1, II0;

                        hence thesis by TARSKI:def 1;

                      end;

                       {3} in ( bool {1, 2, 3, 4}) by EnLm3;

                      hence thesis by Fin1, RELAT_1:def 14;

                    end;

                  end;

                    suppose

                     CSUPP2: not k3 in x;

                    per cases ;

                      suppose

                       DSUPP1: k4 in x;

                      

                       Fin1: for z be object holds z in {4} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        thus z in {4} implies ex y be object st [z, y] in f & y in x

                        proof

                          assume

                           K000: z in {4};

                          then z in ( dom f) by TARSKI:def 1, II;

                          then

                          consider y be object such that

                           K01: y = (f . z) & z in ( dom f);

                          

                           Fin1: [z, y] in f by K01, FUNCT_1: 1;

                          z = 4 by K000, TARSKI:def 1;

                          hence thesis by A3, DSUPP1, Fin1, K01;

                        end;

                        given y be object such that

                         U000: [z, y] in f & y in x;

                        z <> 1 & z <> 2 & z <> 3 by A3, U000, FUNCT_1: 1, CSUPP2, ASUPP2, BSUPP2;

                        then z = 4 by II0, U000, FUNCT_1: 1;

                        hence thesis by TARSKI:def 1;

                      end;

                       {4} in ( bool {1, 2, 3, 4}) by EnLm4;

                      hence thesis by Fin1, RELAT_1:def 14;

                    end;

                      suppose

                       DSUPP2: not k4 in x;

                      for z be object holds z in {} iff ex y be object st [z, y] in f & y in x

                      proof

                        let z be object;

                        (ex y be object st [z, y] in f & y in x) implies z in {}

                        proof

                          given y be object such that

                           W1: [z, y] in f & y in x;

                          z in ( dom f) & y = (f . z) by W1, FUNCT_1: 1;

                          hence thesis by A3, W1, ASUPP2, BSUPP2, CSUPP2, DSUPP2, A0, ENUMSET1:def 2;

                        end;

                        hence thesis;

                      end;

                      then (f " x) = {} by RELAT_1:def 14;

                      hence thesis by PROB_1: 4;

                    end;

                  end;

                end;

              end;

            end;

            hence thesis by A4, A2;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      hence thesis by A3;

    end;

    theorem :: FINANCE3:36

    

     MyFunc6: for k1,k2 be Element of REAL , Omega be non empty set st Omega = {1, 2, 3, 4} holds for Sigma be SigmaField of Omega, I be non empty real-membered set, MyFunc be ManySortedSigmaField of I, Sigma st (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) holds for eli be Element of I st eli = 2 holds ex f be Function of Omega, REAL st (f . 1) = k1 & (f . 2) = k1 & (f . 3) = k2 & (f . 4) = k2 & f is ( El_Filtration (eli,MyFunc)), Borel_Sets -random_variable-like

    proof

      let k1,k2 be Element of REAL ;

      let Omega be non empty set;

      assume

       A0: Omega = {1, 2, 3, 4};

      let Sigma be SigmaField of Omega;

      let I be non empty real-membered set;

      let MyFunc be ManySortedSigmaField of I, Sigma;

      assume

       A2: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4});

      let eli be Element of I;

      assume

       A4: eli = 2;

      consider f be Function of Omega, REAL such that

       A3: (f . 1) = k1 & (f . 2) = k1 & (f . 3) = k2 & (f . 4) = k2 by A0, MYF30;

      take f;

      set i = eli;

      for x be set holds (f " x) in ( El_Filtration (i,MyFunc))

      proof

        let x be set;

        (f " x) in (MyFunc . i)

        proof

          (f " x) in { {} , {1, 2}, {3, 4}, {1, 2, 3, 4}}

          proof

            (f " x) = {} or (f " x) = {1, 2} or (f " x) = {3, 4} or (f " x) = {1, 2, 3, 4}

            proof

              per cases ;

                suppose

                 INITSUPP: k1 in x;

                per cases ;

                  suppose

                   JSUPP1: k2 in x;

                  for z be object holds z in {1, 2, 3, 4} iff ex y be object st [z, y] in f & y in x

                  proof

                    let z be object;

                    

                     I1: z in {1, 2, 3, 4} implies ex y be object st [z, y] in f & y in x

                    proof

                      assume

                       ASSJ0: z in {1, 2, 3, 4};

                      then

                       L1: z in ( dom f) by FUNCT_2:def 1, A0;

                      per cases by ASSJ0, ENUMSET1:def 2;

                        suppose z = 1 or z = 2;

                        then [z, k1] in f & k1 in x by A3, INITSUPP, L1, FUNCT_1: 1;

                        hence thesis;

                      end;

                        suppose z = 3 or z = 4;

                        then (f . z) = k2 & k2 in x & z in ( dom f) by A3, JSUPP1, ASSJ0, FUNCT_2:def 1, A0;

                        then [z, k2] in f & k2 in x by FUNCT_1: 1;

                        hence thesis;

                      end;

                    end;

                    (ex y be object st [z, y] in f & y in x) implies z in {1, 2, 3, 4}

                    proof

                      given y be object such that

                       ASSJ0: [z, y] in f & y in x;

                      z in ( dom f) & y = (f . z) by ASSJ0, FUNCT_1: 1;

                      hence thesis by A0;

                    end;

                    hence thesis by I1;

                  end;

                  hence thesis by RELAT_1:def 14;

                end;

                  suppose

                   JSUPP2: not k2 in x;

                  for z be object holds z in {1, 2} iff ex y be object st [z, y] in f & y in x

                  proof

                    let z be object;

                    

                     I1: z in {1, 2} implies ex y be object st [z, y] in f & y in x

                    proof

                      assume z in {1, 2};

                      then

                       S2: z = 1 or z = 2 by TARSKI:def 2;

                      then z in Omega by ENUMSET1:def 2, A0;

                      then

                       S1: z in ( dom f) by FUNCT_2:def 1;

                       [z, k1] in f by S1, S2, A3, FUNCT_1: 1;

                      hence thesis by INITSUPP;

                    end;

                    (ex y be object st [z, y] in f & y in x) implies z in {1, 2}

                    proof

                      given y be object such that

                       M1: [z, y] in f & y in x;

                      z in ( dom f) by M1, FUNCT_1: 1;

                      then z = 1 or z = 2 or z = 3 or z = 4 by A0, ENUMSET1:def 2;

                      hence thesis by JSUPP2, M1, FUNCT_1: 1, A3, TARSKI:def 2;

                    end;

                    hence thesis by I1;

                  end;

                  hence thesis by RELAT_1:def 14;

                end;

              end;

                suppose

                 INITSUPP: not k1 in x;

                per cases ;

                  suppose

                   JSUPP1: k2 in x;

                  for z be object holds z in {3, 4} iff ex y be object st [z, y] in f & y in x

                  proof

                    let z be object;

                    

                     I1: z in {3, 4} implies ex y be object st [z, y] in f & y in x

                    proof

                      assume z in {3, 4};

                      then

                       J1: z = 3 or z = 4 by TARSKI:def 2;

                      then z in {1, 2, 3, 4} by ENUMSET1:def 2;

                      then z in ( dom f) by FUNCT_2:def 1, A0;

                      then [z, k2] in f by J1, A3, FUNCT_1: 1;

                      hence thesis by JSUPP1;

                    end;

                    (ex y be object st [z, y] in f & y in x) implies z in {3, 4}

                    proof

                      given y be object such that

                       ASSJ0: [z, y] in f & y in x;

                      

                       OO0: y = k1 or y = k2

                      proof

                        z in ( dom f) by ASSJ0, FUNCT_1: 1;

                        then z = 1 or z = 2 or z = 3 or z = 4 by ENUMSET1:def 2, A0;

                        hence thesis by A3, ASSJ0, FUNCT_1: 1;

                      end;

                      

                       Z10: k2 = (f . z)

                      proof

                        per cases by OO0;

                          suppose y = k1;

                          hence thesis by INITSUPP, ASSJ0;

                        end;

                          suppose y = k2;

                          hence thesis by ASSJ0, FUNCT_1: 1;

                        end;

                      end;

                      z = 3 or z = 4

                      proof

                        assume

                         ZZ1: z <> 3 & z <> 4;

                        z in ( dom f) by ASSJ0, FUNCT_1: 1;

                        hence thesis by Z10, ZZ1, A3, INITSUPP, JSUPP1, ENUMSET1:def 2, A0;

                      end;

                      hence thesis by TARSKI:def 2;

                    end;

                    hence thesis by I1;

                  end;

                  hence thesis by RELAT_1:def 14;

                end;

                  suppose

                   JSUPP2: not k2 in x;

                  for z be object holds z in {} iff ex y be object st [z, y] in f & y in x

                  proof

                    let z be object;

                    (ex y be object st [z, y] in f & y in x) implies z in {}

                    proof

                      given y be object such that

                       M1: [z, y] in f & y in x;

                      z in ( dom f) & y = (f . z) & y <> k2 by M1, FUNCT_1: 1, JSUPP2;

                      hence thesis by INITSUPP, M1, A3, A0, ENUMSET1:def 2;

                    end;

                    hence thesis;

                  end;

                  hence thesis by RELAT_1:def 14;

                end;

              end;

            end;

            hence thesis by ENUMSET1:def 2;

          end;

          hence thesis by A4, A2;

        end;

        hence thesis;

      end;

      hence thesis by A3;

    end;

    theorem :: FINANCE3:37

    

     MyFunc7: for k1 be Element of REAL , Omega be non empty set st Omega = {1, 2, 3, 4} holds for Sigma be SigmaField of Omega, I be non empty real-membered set, MyFunc be ManySortedSigmaField of I, Sigma st (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) holds for eli be Element of I st eli = 1 holds ex f be Function of Omega, REAL st (f . 1) = k1 & (f . 2) = k1 & (f . 3) = k1 & (f . 4) = k1 & f is ( El_Filtration (eli,MyFunc)), Borel_Sets -random_variable-like

    proof

      let k1 be Element of REAL ;

      let Omega be non empty set;

      assume

       A0: Omega = {1, 2, 3, 4};

      let Sigma be SigmaField of Omega;

      let I be non empty real-membered set;

      let MyFunc be ManySortedSigmaField of I, Sigma;

      assume

       A2: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4});

      let eli be Element of I;

      assume

       A4: eli = 1;

      consider f be Function of Omega, REAL such that

       A3: (f . 1) = k1 & (f . 2) = k1 & (f . 3) = k1 & (f . 4) = k1 by A0, MYF30;

      take f;

      set i = eli;

      for x be set holds (f " x) in ( El_Filtration (i,MyFunc))

      proof

        let x be set;

        (f " x) in (MyFunc . i)

        proof

          (f " x) in { {} , {1, 2, 3, 4}}

          proof

            (f " x) = {} or (f " x) = {1, 2, 3, 4}

            proof

              per cases ;

                suppose

                 JSUPP1: k1 in x;

                for z be object holds z in {1, 2, 3, 4} iff ex y be object st [z, y] in f & y in x

                proof

                  let z be object;

                  

                   I1: z in {1, 2, 3, 4} implies ex y be object st [z, y] in f & y in x

                  proof

                    assume

                     ASSJ0: z in {1, 2, 3, 4};

                     [z, k1] in f

                    proof

                      z in ( dom f) & k1 = (f . z) by ENUMSET1:def 2, A3, ASSJ0, FUNCT_2:def 1, A0;

                      hence thesis by FUNCT_1: 1;

                    end;

                    hence thesis by JSUPP1;

                  end;

                  (ex y be object st [z, y] in f & y in x) implies z in {1, 2, 3, 4}

                  proof

                    given y be object such that

                     ASSJ0: [z, y] in f & y in x;

                    z in ( dom f) & y = (f . z) by ASSJ0, FUNCT_1: 1;

                    hence thesis by A0;

                  end;

                  hence thesis by I1;

                end;

                hence thesis by RELAT_1:def 14;

              end;

                suppose

                 JSUPP2: not k1 in x;

                for z be object holds z in {} iff ex y be object st [z, y] in f & y in x

                proof

                  let z be object;

                  (ex y be object st [z, y] in f & y in x) implies z in {}

                  proof

                    given y be object such that

                     M1: [z, y] in f & y in x;

                    z in ( dom f) & y = (f . z) & not y = k1 by M1, FUNCT_1: 1, JSUPP2;

                    hence thesis by A3, A0, ENUMSET1:def 2;

                  end;

                  hence thesis;

                end;

                hence thesis by RELAT_1:def 14;

              end;

            end;

            hence thesis by TARSKI:def 2;

          end;

          hence thesis by A4, A2;

        end;

        hence thesis;

      end;

      hence thesis by A3;

    end;

    theorem :: FINANCE3:38

    for Omega be non empty set st Omega = {1, 2, 3, 4} holds for Sigma be SigmaField of Omega, I be non empty real-membered set st I = {1, 2, 3} & Sigma = ( bool {1, 2, 3, 4}) holds for MyFunc be ManySortedSigmaField of I, Sigma st (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) holds for Prob be Function of Sigma, REAL holds for i be Element of I holds ex RV be Function of Omega, REAL st RV is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like

    proof

      let Omega be non empty set;

      assume

       A0: Omega = {1, 2, 3, 4};

      let Sigma be SigmaField of Omega;

      let I be non empty real-membered set;

      assume

       A1: I = {1, 2, 3} & Sigma = ( bool {1, 2, 3, 4});

      let MyFunc be ManySortedSigmaField of I, Sigma;

      assume

       A2: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4});

      let Prob be Function of Sigma, REAL ;

      let i be Element of I;

      per cases by A1, ENUMSET1:def 1;

        suppose

         a1: i = 1;

        100 in REAL by NUMBERS: 19;

        then ex f be Function of Omega, REAL st (f . 1) = 100 & (f . 2) = 100 & (f . 3) = 100 & (f . 4) = 100 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by A0, A2, MyFunc7, a1;

        hence thesis;

      end;

        suppose

         a1: i = 2;

        80 in REAL & 120 in REAL by NUMBERS: 19;

        then ex f be Function of Omega, REAL st (f . 1) = 80 & (f . 2) = 80 & (f . 3) = 120 & (f . 4) = 120 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by A0, A2, MyFunc6, a1;

        hence thesis;

      end;

        suppose

         a1: i = 3;

        60 in REAL & 80 in REAL & 100 in REAL & 120 in REAL by NUMBERS: 19;

        then ex f be Function of Omega, REAL st (f . 1) = 60 & (f . 2) = 80 & (f . 3) = 100 & (f . 4) = 120 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by A0, A2, MyFunc5, a1;

        hence thesis;

      end;

    end;

    definition

      let I be non empty real-membered set;

      let i be Element of I;

      let Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let f1 be Function of Omega, REAL ;

      let f2 be Function of Omega, REAL ;

      let f3 be Function of Omega, REAL ;

      :: FINANCE3:def22

      func FunctionRV1 (i,Sigma,f1,f2,f3) -> Element of ( set_of_random_variables_on (Sigma, Borel_Sets )) equals

      : Def1211: f2 if i = 2

      otherwise f1;

      correctness

      proof

        consider MyFunc be Filtration of I, Sigma such that

         B1: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) by A0000, A00, A000, MyNeed;

        per cases ;

          suppose

           SUPP: i = 2;

          80 in REAL & 120 in REAL by NUMBERS: 19;

          then

          consider f be Function of Omega, REAL such that

           B4: (f . 1) = 80 & (f . 2) = 80 & (f . 3) = 120 & (f . 4) = 120 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by A000, B1, MyFunc6, SUPP;

          f is Sigma, Borel_Sets -random_variable-like by A00;

          then

           ZW1: f in ( set_of_random_variables_on (Sigma, Borel_Sets ));

          ( dom f) = Omega by FUNCT_2:def 1;

          then

           KK: ( dom f) = ( dom f2) by FUNCT_2:def 1;

          for x be object st x in ( dom f) holds (f . x) = (f2 . x)

          proof

            let x be object;

            assume x in ( dom f);

            then

            reconsider x as Element of Omega;

            x = 1 or x = 2 or x = 3 or x = 4 by A000, ENUMSET1:def 2;

            hence thesis by B4, A1;

          end;

          hence thesis by ZW1, SUPP, FUNCT_1: 2, KK;

        end;

          suppose

           F1: i <> 2;

          60 in REAL & 80 in REAL & 100 in REAL & 120 in REAL by NUMBERS: 19;

          then

          consider f be Function of Omega, REAL such that

           B4: (f . 1) = 60 & (f . 2) = 80 & (f . 3) = 100 & (f . 4) = 120 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by A000, B1, MyFunc5, MyI, F1;

          f is Sigma, Borel_Sets -random_variable-like by A00;

          then

           ZW1: f in ( set_of_random_variables_on (Sigma, Borel_Sets ));

          ( dom f) = Omega by FUNCT_2:def 1;

          then

           KK: ( dom f) = ( dom f1) by FUNCT_2:def 1;

          for x be object st x in ( dom f) holds (f . x) = (f1 . x)

          proof

            let x be object;

            assume x in ( dom f);

            then

            reconsider x as Element of Omega;

            x = 1 or x = 2 or x = 3 or x = 4 by A000, ENUMSET1:def 2;

            hence thesis by B4, A0;

          end;

          hence thesis by ZW1, F1, KK, FUNCT_1: 2;

        end;

      end;

    end

    definition

      let I be non empty real-membered set;

      let i be Element of I;

      let Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let f1,f2 be Function of Omega, REAL ;

      let f3 be Function of Omega, REAL ;

      :: FINANCE3:def23

      func FunctionRV2 (i,Sigma,f1,f2,f3) -> Element of ( set_of_random_variables_on (Sigma, Borel_Sets )) equals

      : Def1212: ( FunctionRV1 (i,Sigma,f1,f2,f3)) if (i = 2 or i = 3)

      otherwise f3;

      correctness

      proof

        per cases ;

          suppose

           F1: not (i = 2 or i = 3);

          consider MyFunc be Filtration of I, Sigma such that

           B1: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) by A0000, A00, A000, MyNeed;

          

           B3: i = 1 by F1, A0000, ENUMSET1:def 1;

          100 in REAL by NUMBERS: 19;

          then

          consider f be Function of Omega, REAL such that

           B4: (f . 1) = 100 & (f . 2) = 100 & (f . 3) = 100 & (f . 4) = 100 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by A000, B1, B3, MyFunc7;

          f is Sigma, Borel_Sets -random_variable-like by A00;

          then

           ZW1: f in ( set_of_random_variables_on (Sigma, Borel_Sets ));

          ( dom f) = Omega by FUNCT_2:def 1;

          then

           KK: ( dom f) = ( dom f3) by FUNCT_2:def 1;

          for x be object st x in ( dom f) holds (f . x) = (f3 . x)

          proof

            let x be object;

            assume x in ( dom f);

            then

            reconsider x as Element of Omega;

            x = 1 or x = 2 or x = 3 or x = 4 by A000, ENUMSET1:def 2;

            hence thesis by B4, A2;

          end;

          hence thesis by KK, ZW1, FUNCT_1: 2;

        end;

          suppose i = 2 or i = 3;

          hence thesis;

        end;

      end;

    end

    theorem :: FINANCE3:39

    for Omega,Omega2 be non empty set st Omega = {1, 2, 3, 4} holds for Sigma be SigmaField of Omega, I be non empty real-membered set st I = {1, 2, 3} & Sigma = ( bool {1, 2, 3, 4}) holds for MyFunc be Filtration of I, Sigma st (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4}) holds ex Stoch be Stochastic_Process of I, Sigma, Borel_Sets st (for k be Element of I holds (ex RV be Function of Omega, REAL st ((Stoch . k) = RV & RV is Sigma, Borel_Sets -random_variable-like) & RV is ( El_Filtration (k,MyFunc)), Borel_Sets -random_variable-like) & (ex f be Function of Omega, REAL st k = 1 implies (f . 1) = 100 & (f . 2) = 100 & (f . 3) = 100 & (f . 4) = 100 & (Stoch . k) = f) & (ex f be Function of Omega, REAL st k = 2 implies (f . 1) = 80 & (f . 2) = 80 & (f . 3) = 120 & (f . 4) = 120 & (Stoch . k) = f) & (ex f be Function of Omega, REAL st k = 3 implies (f . 1) = 60 & (f . 2) = 80 & (f . 3) = 100 & (f . 4) = 120 & (Stoch . k) = f) & Stoch is MyFunc -stoch_proc_wrt_to_Filtration) & Stoch is Adapted_Stochastic_Process of Stoch

    proof

      let Omega,Omega2 be non empty set;

      assume

       A00: Omega = {1, 2, 3, 4};

      let Sigma be SigmaField of Omega;

      let I be non empty real-membered set;

      assume that

       A0: I = {1, 2, 3} and

       a0: Sigma = ( bool {1, 2, 3, 4});

      let MyFunc be Filtration of I, Sigma;

      assume

       A1: (MyFunc . 1) = Special_SigmaField1 & (MyFunc . 2) = Special_SigmaField2 & (MyFunc . 3) = ( Trivial-SigmaField {1, 2, 3, 4});

      

       a1: 100 in REAL by NUMBERS: 19;

      then

      consider f3 be Function of Omega, REAL such that

       F1: (f3 . 1) = 100 & (f3 . 2) = 100 & (f3 . 3) = 100 & (f3 . 4) = 100 by A00, MYF30;

      

       a2: 80 in REAL & 120 in REAL by NUMBERS: 19;

      then

      consider f2 be Function of Omega, REAL such that

       F2: (f2 . 1) = 80 & (f2 . 2) = 80 & (f2 . 3) = 120 & (f2 . 4) = 120 by A00, MYF30;

      60 in REAL by NUMBERS: 19;

      then

      consider f1 be Function of Omega, REAL such that

       F3: (f1 . 1) = 60 & (f1 . 2) = 80 & (f1 . 3) = 100 & (f1 . 4) = 120 by A00, MYF30, a1, a2;

      deffunc U( Element of I) = ( FunctionRV2 ($1,Sigma,f1,f2,f3));

      consider fI1 be Function of I, ( set_of_random_variables_on (Sigma, Borel_Sets )) such that

       B1: for d be Element of I holds (fI1 . d) = U(d) from FUNCT_2:sch 4;

      

       Fin1: for k be Element of I holds ex RV be Function of Omega, REAL st ((fI1 . k) = RV & RV is Sigma, Borel_Sets -random_variable-like)

      proof

        let k be Element of I;

        (fI1 . k) in ( set_of_random_variables_on (Sigma, Borel_Sets ));

        hence thesis;

      end;

      then

      reconsider fI1 as Stochastic_Process of I, Sigma, Borel_Sets by Def30000;

      take fI1;

      for k be Element of I holds (ex RV be Function of Omega, REAL st ((fI1 . k) = RV & RV is Sigma, Borel_Sets -random_variable-like) & RV is ( El_Filtration (k,MyFunc)), Borel_Sets -random_variable-like) & (ex f be Function of Omega, REAL st k = 1 implies (f . 1) = 100 & (f . 2) = 100 & (f . 3) = 100 & (f . 4) = 100 & (fI1 . k) = f) & (ex f be Function of Omega, REAL st k = 2 implies (f . 1) = 80 & (f . 2) = 80 & (f . 3) = 120 & (f . 4) = 120 & (fI1 . k) = f) & (ex f be Function of Omega, REAL st k = 3 implies (f . 1) = 60 & (f . 2) = 80 & (f . 3) = 100 & (f . 4) = 120 & (fI1 . k) = f) & fI1 is MyFunc -stoch_proc_wrt_to_Filtration & fI1 is Adapted_Stochastic_Process of fI1

      proof

        let k be Element of I;

        

         Fin3: fI1 is MyFunc -stoch_proc_wrt_to_Filtration

        proof

          for i be Element of I holds ( RVProcess (fI1,i)) is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like

          proof

            let i be Element of I;

            per cases by A0, ENUMSET1:def 1;

              suppose

               SUPP: i = 1;

              then

               X1: ( FunctionRV2 (i,Sigma,f1,f2,f3)) = f3 by a0, A0, A00, F1, Def1212;

              100 in REAL by NUMBERS: 19;

              then

              consider f be Function of Omega, REAL such that

               Q1: (f . 1) = 100 & (f . 2) = 100 & (f . 3) = 100 & (f . 4) = 100 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by SUPP, A00, A1, MyFunc7;

              

               E1: ( dom f) = Omega by FUNCT_2:def 1;

              for x be object st x in ( dom f) holds (f . x) = (f3 . x)

              proof

                let x be object;

                assume x in ( dom f);

                then

                reconsider x as Element of Omega;

                x = 1 or x = 2 or x = 3 or x = 4 by A00, ENUMSET1:def 2;

                hence thesis by Q1, F1;

              end;

              then f3 = f by E1;

              hence thesis by X1, B1, Q1;

            end;

              suppose

               SUPP2: i = 2;

              then ( FunctionRV2 (i,Sigma,f1,f2,f3)) = ( FunctionRV1 (i,Sigma,f1,f2,f3)) by A0, a0, A00, F1, Def1212;

              then

               X1: ( FunctionRV2 (i,Sigma,f1,f2,f3)) = f2 by a0, A0, A00, F2, F3, SUPP2, Def1211;

              80 in REAL & 120 in REAL by NUMBERS: 19;

              then

              consider f be Function of Omega, REAL such that

               Q1: (f . 1) = 80 & (f . 2) = 80 & (f . 3) = 120 & (f . 4) = 120 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by SUPP2, A00, A1, MyFunc6;

              

               E1: ( dom f) = Omega by FUNCT_2:def 1;

              for x be object st x in ( dom f) holds (f . x) = (f2 . x)

              proof

                let x be object;

                assume x in ( dom f);

                then

                reconsider x as Element of Omega;

                x = 1 or x = 2 or x = 3 or x = 4 by A00, ENUMSET1:def 2;

                hence thesis by Q1, F2;

              end;

              then f2 = f by E1;

              hence thesis by X1, B1, Q1;

            end;

              suppose

               SUPP1: i = 3;

              then ( FunctionRV2 (i,Sigma,f1,f2,f3)) = ( FunctionRV1 (i,Sigma,f1,f2,f3)) by A0, A00, a0, F1, Def1212;

              then

               x1: ( FunctionRV2 (i,Sigma,f1,f2,f3)) = f1 by a0, A0, A00, F2, F3, SUPP1, Def1211;

              60 in REAL & 80 in REAL & 100 in REAL & 120 in REAL by NUMBERS: 19;

              then

              consider f be Function of Omega, REAL such that

               Q1: (f . 1) = 60 & (f . 2) = 80 & (f . 3) = 100 & (f . 4) = 120 & f is ( El_Filtration (i,MyFunc)), Borel_Sets -random_variable-like by SUPP1, A00, A1, MyFunc5;

              

               E1: ( dom f) = Omega by FUNCT_2:def 1;

              for x be object st x in ( dom f) holds (f . x) = (f1 . x)

              proof

                let x be object;

                assume x in ( dom f);

                then

                reconsider x as Element of Omega;

                x = 1 or x = 2 or x = 3 or x = 4 by A00, ENUMSET1:def 2;

                hence thesis by Q1, F3;

              end;

              then f1 = f by E1;

              hence thesis by x1, B1, Q1;

            end;

          end;

          hence thesis;

        end;

        for k be Element of I holds (ex RV be Function of Omega, REAL st ((fI1 . k) = RV & RV is Sigma, Borel_Sets -random_variable-like & RV is ( El_Filtration (k,MyFunc)), Borel_Sets -random_variable-like)) & (ex f be Function of Omega, REAL st k = 1 implies (f . 1) = 100 & (f . 2) = 100 & (f . 3) = 100 & (f . 4) = 100 & (fI1 . k) = f) & (ex f be Function of Omega, REAL st k = 2 implies (f . 1) = 80 & (f . 2) = 80 & (f . 3) = 120 & (f . 4) = 120 & (fI1 . k) = f) & (ex f be Function of Omega, REAL st k = 3 implies (f . 1) = 60 & (f . 2) = 80 & (f . 3) = 100 & (f . 4) = 120 & (fI1 . k) = f)

        proof

          let k be Element of I;

          consider RV be Function of Omega, REAL such that

           O1: (fI1 . k) = RV & RV is Sigma, Borel_Sets -random_variable-like by Fin1;

          

           o1: RV is ( El_Filtration (k,MyFunc)), Borel_Sets -random_variable-like

          proof

            (fI1 . k) = ( RVProcess (fI1,k)) & ( RVProcess (fI1,k)) is ( El_Filtration (k,MyFunc)), Borel_Sets -random_variable-like by Fin3;

            hence thesis by O1;

          end;

          

           GFin2: ex f be Function of Omega, REAL st k = 1 implies (fI1 . k) = f & (f . 1) = 100 & (f . 2) = 100 & (f . 3) = 100 & (f . 4) = 100 & (fI1 . k) = f

          proof

            k = 1 implies (fI1 . k) = f3

            proof

              assume

               K1: k = 1;

              (fI1 . k) = ( FunctionRV2 (k,Sigma,f1,f2,f3)) by B1;

              hence thesis by a0, A0, A00, F1, K1, Def1212;

            end;

            hence thesis by F1;

          end;

          

           GFin3: ex f be Function of Omega, REAL st k = 2 implies (fI1 . k) = f & (f . 1) = 80 & (f . 2) = 80 & (f . 3) = 120 & (f . 4) = 120 & (fI1 . k) = f

          proof

            k = 2 implies (fI1 . k) = f2

            proof

              assume

               K1: k = 2;

              (fI1 . k) = ( FunctionRV2 (k,Sigma,f1,f2,f3)) by B1;

              then (fI1 . k) = ( FunctionRV1 (k,Sigma,f1,f2,f3)) by a0, A0, A00, F1, K1, Def1212;

              hence thesis by a0, A0, A00, F2, F3, K1, Def1211;

            end;

            hence thesis by F2;

          end;

          ex f be Function of Omega, REAL st k = 3 implies (fI1 . k) = f & (f . 1) = 60 & (f . 2) = 80 & (f . 3) = 100 & (f . 4) = 120 & (fI1 . k) = f

          proof

            k = 3 implies (fI1 . k) = f1

            proof

              assume

               K1: k = 3;

              (fI1 . k) = ( FunctionRV2 (k,Sigma,f1,f2,f3)) by B1;

              then (fI1 . k) = ( FunctionRV1 (k,Sigma,f1,f2,f3)) by a0, A0, A00, F1, K1, Def1212;

              hence thesis by a0, A0, A00, F2, F3, K1, Def1211;

            end;

            hence thesis by F3;

          end;

          hence thesis by o1, O1, GFin2, GFin3;

        end;

        hence thesis by Fin3, Def30002;

      end;

      hence thesis;

    end;