finseq_9.miz



    begin

    registration

      cluster empty -> positive-yielding for Relation;

      coherence

      proof

        let R be Relation;

        assume R is empty;

        then for x be Real st x in ( rng R) holds x > 0 ;

        hence thesis by PARTFUN3:def 1;

      end;

      cluster empty -> negative-yielding for Relation;

      coherence

      proof

        let R be Relation;

        assume R is empty;

        then for x be Real st x in ( rng R) holds x < 0 ;

        hence thesis by PARTFUN3:def 2;

      end;

    end

    registration

      cluster natural-valued -> NAT -valued for Relation;

      coherence

      proof

        let R be Relation;

        assume R is natural-valued;

        then ( rng R) c= NAT by VALUED_0:def 6;

        hence thesis by RELAT_1:def 19;

      end;

    end

    registration

      let f be complex-valued Function, k be object;

      reduce (( 0 (#) f) . k) to 0 ;

      reducibility

      proof

        per cases ;

          suppose not k in ( dom ( 0 (#) f));

          hence thesis by FUNCT_1:def 2;

        end;

          suppose k in ( dom ( 0 (#) f));

          then (( 0 (#) f) . k) = ( 0 * (f . k)) by VALUED_1:def 5;

          hence thesis;

        end;

      end;

    end

    registration

      let f be complex-valued Function;

      reduce (1 (#) f) to f;

      reducibility by RFUNCT_1: 21;

      reduce (( - 1) (#) ( - f)) to f;

      reducibility

      proof

        (( - 1) (#) ( - f)) = (( - 1) (#) (( - 1) (#) f)) by VALUED_1:def 6

        .= ((( - 1) * ( - 1)) (#) f) by VALUED_2: 16;

        hence thesis;

      end;

      cluster ( 0 (#) f) -> empty-yielding;

      coherence

      proof

        for k be object st k in ( dom ( 0 (#) f)) holds (( 0 (#) f) . k) is empty by ORDINAL1:def 13;

        hence thesis by FUNCT_1:def 8;

      end;

      cluster (f - f) -> empty-yielding;

      coherence

      proof

        (f - f) = (f + ( - f)) by VALUED_1:def 9

        .= ((1 (#) f) + (( - 1) (#) f)) by VALUED_1:def 6

        .= ((1 + ( - 1)) (#) f) by TOPREALC: 2

        .= ( 0 (#) f);

        hence thesis;

      end;

    end

    registration

      let D be set;

      cluster empty-yielding for D -valued FinSequence;

      existence

      proof

        ( rng ( 0 |-> 0 )) c= D by XBOOLE_1: 2;

        then ( 0 |-> 0 ) is empty-yielding & ( 0 |-> 0 ) is D -valued by FINSEQ_1:def 4;

        hence thesis;

      end;

    end

    registration

      cluster empty-yielding -> NAT -valued for FinSequence;

      coherence

      proof

        let f be FinSequence;

        assume f is empty-yielding;

        then 0 in NAT & ( rng f) = { {} } or f = {} by PBOOLE: 2;

        then f is natural-valued or thesis by ZFMISC_1: 31, VALUED_0:def 6;

        hence thesis;

      end;

      cluster non empty for empty-yielding FinSequence;

      existence

      proof

        (1 |-> 0 ) is empty-yielding & (1 |-> 0 ) is non empty;

        hence thesis;

      end;

    end

    registration

      let n be Nat;

      cluster n -element for empty-yielding NAT -valued FinSequence;

      existence

      proof

        ( len (n |-> 0 )) = n;

        hence thesis;

      end;

      cluster ( min (n, 0 )) -> zero;

      coherence by XXREAL_0:def 9;

      reduce ( max (n, 0 )) to n;

      reducibility by XXREAL_0:def 10;

    end

    registration

      let a be non zero Nat;

      reduce ( min (a,1)) to 1;

      reducibility by NAT_1: 14, XXREAL_0:def 9;

      reduce ( max (a,1)) to a;

      reducibility by NAT_1: 14, XXREAL_0:def 10;

    end

    registration

      let a be non trivial Nat;

      reduce ( min (a,2)) to 2;

      reducibility

      proof

        a > 1 by NEWTON03:def 1;

        then a >= (1 + 1) by NAT_1: 13;

        hence thesis by XXREAL_0:def 9;

      end;

      reduce ( max (a,2)) to a;

      reducibility

      proof

        a > 1 by NEWTON03:def 1;

        then a >= (1 + 1) by INT_1: 7;

        hence thesis by XXREAL_0:def 10;

      end;

    end

    registration

      let a be positive Real;

      let b be positive Nat;

      cluster (b |-> a) -> positive;

      coherence ;

    end

    registration

      cluster empty-yielding -> Function-like for Relation;

      coherence

      proof

        let R be Relation;

        assume R is empty-yielding;

        then R is { {} } -valued;

        hence thesis;

      end;

      cluster empty-yielding -> natural-valued for Function;

      coherence

      proof

        let f be Function;

        assume f is empty-yielding;

        then 0 in NAT & (for x be object st x in ( rng f) holds x = 0 ) by RELAT_1: 149;

        then for x be object st x in ( rng f) holds x in NAT ;

        hence thesis by TARSKI:def 3, VALUED_0:def 6;

      end;

      cluster empty-yielding -> nonpositive-yielding for real-valued Function;

      coherence

      proof

        let f be real-valued Function;

        assume f is empty-yielding;

        then for r be Real st r in ( rng f) holds r <= 0 by RELAT_1: 149;

        hence thesis by PARTFUN3:def 3;

      end;

      cluster empty-yielding -> nonnegative-yielding for real-valued Function;

      coherence

      proof

        let f be real-valued Function;

        assume f is empty-yielding;

        then for r be Real st r in ( rng f) holds r >= 0 ;

        hence thesis by PARTFUN3:def 4;

      end;

      cluster empty-yielding -> non positive-yielding for non empty real-valued Function;

      coherence

      proof

        let f be non empty real-valued Function;

        assume

         A1: f is empty-yielding;

        take the Element of ( rng f);

        thus thesis by A1, RELAT_1: 149;

      end;

      cluster empty-yielding -> non negative-yielding for non empty real-valued Function;

      coherence

      proof

        let f be non empty real-valued Function;

        assume

         A1: f is empty-yielding;

        take the Element of ( rng f);

        thus thesis by A1;

      end;

      cluster positive-yielding -> non nonpositive-yielding for non empty real-valued Function;

      coherence

      proof

        let f be non empty real-valued Function;

        assume

         A1: f is positive-yielding;

        take the Element of ( rng f);

        thus thesis by A1, PARTFUN3:def 1;

      end;

      cluster negative-yielding -> non nonnegative-yielding for non empty real-valued Function;

      coherence

      proof

        let f be non empty real-valued Function;

        assume

         A1: f is negative-yielding;

        take the Element of ( rng f);

        thus thesis by A1, PARTFUN3:def 2;

      end;

    end

    registration

      let f be empty-yielding Function, c be Complex;

      cluster (c (#) f) -> empty-yielding;

      coherence

      proof

        let k be object;

        assume k in ( dom (c (#) f));

        then ((c (#) f) . k) = (c * (f . k)) by VALUED_1:def 5;

        hence thesis;

      end;

    end

    registration

      let f be empty-yielding Function, g be complex-valued Function;

      cluster (f (#) g) -> empty-yielding;

      coherence

      proof

        let k be object such that

         A1: k in ( dom (f (#) g));

        ((f (#) g) . k) = ((f . k) * (g . k)) by A1, VALUED_1:def 4;

        hence thesis;

      end;

    end

    registration

      let f be complex-valued FinSequence, x be Complex;

      cluster (f + x) -> ( len f) -element;

      coherence

      proof

        ( dom (f + x)) = ( dom f) by VALUED_1:def 2;

        then ( len (f + x)) = ( len f) by FINSEQ_3: 29;

        then ((f + x) null f) is ( len f) -element;

        hence thesis;

      end;

      cluster (f - x) -> ( len f) -element;

      coherence

      proof

        (f + ( - x)) is ( len f) -element;

        hence thesis by VALUED_1:def 3;

      end;

    end

    registration

      let f be complex-valued FinSequence;

      cluster ( abs f) -> ( len f) -element;

      coherence

      proof

        ( dom ( abs f)) = ( dom f) by VALUED_1:def 11;

        then ( len ( abs f)) = ( len f) by FINSEQ_3: 29;

        then (( abs f) null f) is ( len f) -element;

        hence thesis;

      end;

      cluster ( - f) -> ( len f) -element;

      coherence

      proof

        ( - f) = (( - 1) (#) f) by VALUED_1:def 6;

        hence thesis;

      end;

      cluster (f " ) -> ( len f) -element;

      coherence

      proof

        ( dom (f " )) = ( dom f) by VALUED_1:def 7;

        then ( len (f " )) = ( len f) by FINSEQ_3: 29;

        then ((f " ) null f) is ( len f) -element;

        hence thesis;

      end;

    end

    registration

      let n,m be Nat;

      let f be n -element complex-valued FinSequence, g be m -element complex-valued FinSequence;

      cluster (f + g) -> ( min (n,m)) -element;

      coherence

      proof

        

         A1: ( len f) = n & ( len g) = m by CARD_1:def 7;

        reconsider f as FinSequence of COMPLEX by NEWTON02: 103;

        reconsider g as FinSequence of COMPLEX by NEWTON02: 103;

        ( len (f + g)) = ( min (( len f),( len g))) by NEWTON04: 23;

        hence thesis by A1, CARD_1:def 7;

      end;

      cluster (f (#) g) -> ( min (n,m)) -element;

      coherence

      proof

        

         A1: ( len f) = n & ( len g) = m by CARD_1:def 7;

        reconsider f as FinSequence of COMPLEX by NEWTON02: 103;

        reconsider g as FinSequence of COMPLEX by NEWTON02: 103;

        ( len (f (#) g)) = ( min (( len f),( len g))) by NEWTON04: 24;

        hence thesis by A1, CARD_1:def 7;

      end;

      cluster (f - g) -> ( min (n,m)) -element;

      coherence

      proof

        

         A1: ( len f) = n & ( len g) = m by CARD_1:def 7;

        reconsider f as FinSequence of COMPLEX by NEWTON02: 103;

        reconsider g as FinSequence of COMPLEX by NEWTON02: 103;

        ( len (f - g)) = ( min (( len f),( len g))) by NEWTON04: 25;

        hence thesis by A1, CARD_1:def 7;

      end;

      cluster (f /" g) -> ( min (n,m)) -element;

      coherence

      proof

        reconsider h = (g " ) as m -element complex-valued FinSequence;

        (f (#) h) is ( min (n,m)) -element;

        hence thesis by VALUED_1:def 10;

      end;

    end

    registration

      let n,m be Nat, f be n -element complex-valued FinSequence, g be (n + m) -element empty-yielding complex-valued FinSequence;

      reduce (f + g) to f;

      reducibility

      proof

        ( min ((n + 0 ),(n + m))) = n by XREAL_1: 6, XXREAL_0:def 9;

        then

        reconsider h = (f + g) as n -element complex-valued FinSequence;

        ( len f) = n & ( len h) = n by FINSEQ_3: 153;

        then

         A1: ( dom f) = ( dom h) by FINSEQ_3: 29;

        for c be Nat st c in ( dom (f + g)) holds ((f + g) . c) = (f . c)

        proof

          let c be Nat such that

           B1: c in ( dom (f + g));

          reconsider f as complex-valued Function;

          reconsider g as complex-valued Function;

          reconsider c as object;

          ((f + g) . c) = ((f . c) + (g . c)) by VALUED_1:def 1, B1

          .= ((f . c) + 0 );

          hence thesis;

        end;

        hence thesis by A1, FINSEQ_1: 13;

      end;

    end

    registration

      let n be Nat, f be n -element complex-valued FinSequence, g be n -element empty-yielding complex-valued FinSequence;

      reduce (f + g) to f;

      reducibility

      proof

        reconsider g as (n + 0 ) -element empty-yielding complex-valued FinSequence;

        (f + g) = f;

        hence thesis;

      end;

    end

    registration

      let X be non empty set;

      cluster total for X -defined empty-yielding Function;

      existence

      proof

        consider f be Function such that

         A1: ( dom f) = X & ( rng f) = { 0 } by FUNCT_1: 5;

        reconsider f as totalX -defined Function by A1, PARTFUN1:def 2, RELAT_1:def 18;

        f is empty-yielding by A1, RELAT_1:def 15;

        hence thesis;

      end;

    end

    registration

      let X be non empty set;

      let f be totalX -defined complex-valued Function;

      let g be totalX -defined empty-yielding Function;

      reduce (f + g) to f;

      reducibility

      proof

        reconsider g as complex-valued Function;

        ( dom f) = X & ( dom g) = X by PARTFUN1:def 2;

        then

         A0: ( dom (f + g)) = (( dom f) /\ ( dom f)) by VALUED_1:def 1;

        for k be object st k in ( dom f) holds (f . k) = ((f + g) . k)

        proof

          let k be object such that

           A1: k in ( dom f);

          reconsider c = (f . k) as Complex;

          (g . k) = 0 ;

          

          then c = ((f . k) + (g . k))

          .= ((f + g) . k) by A0, A1, VALUED_1:def 1;

          hence thesis;

        end;

        hence thesis by A0, FUNCT_1:def 11;

      end;

    end

    registration

      let f be Relation;

      cluster ( dom f) -defined for Relation;

      existence by RELAT_1:def 18;

      cluster (f null f) -> ( dom f) -defined;

      coherence by RELAT_1:def 18;

      cluster total for ( dom f) -defined Relation;

      existence

      proof

        ( dom (f null f)) = ( dom f);

        hence thesis by PARTFUN1:def 2;

      end;

    end

    registration

      let f be complex-valued Function;

      cluster total for ( dom f) -defined empty-yielding Function;

      existence

      proof

        reconsider X = ( dom f) as set;

        ( dom ( 0 (#) f)) = ( dom f) by VALUED_1:def 5;

        then

        reconsider h = ( 0 (#) f) as X -defined empty-yielding Function by RELAT_1:def 18;

        ( dom h) = X by VALUED_1:def 5;

        then h is total by PARTFUN1:def 2;

        hence thesis;

      end;

      cluster ( - f) -> ( dom f) -defined;

      coherence

      proof

        ( dom ( - f)) = ( dom f) by VALUED_1: 8;

        hence thesis by RELAT_1:def 18;

      end;

      cluster ( - f) -> total;

      coherence

      proof

        ( dom ( - f)) = ( dom f) by VALUED_1: 8;

        hence thesis by PARTFUN1:def 2;

      end;

      cluster (f " ) -> ( dom f) -defined;

      coherence

      proof

        ( dom (f " )) = ( dom f) by VALUED_1:def 7;

        hence thesis by RELAT_1:def 18;

      end;

      cluster (f " ) -> total;

      coherence

      proof

        ( dom (f " )) = ( dom f) by VALUED_1:def 7;

        hence thesis by PARTFUN1:def 2;

      end;

      cluster ( abs f) -> ( dom f) -defined;

      coherence

      proof

        ( dom ( abs f)) = ( dom f) by VALUED_1:def 11;

        hence thesis by RELAT_1:def 18;

      end;

      cluster ( abs f) -> total;

      coherence

      proof

        ( dom ( abs f)) = ( dom f) by VALUED_1:def 11;

        hence thesis by PARTFUN1:def 2;

      end;

    end

    registration

      let f be complex-valued Function, c be Complex;

      cluster (c + f) -> ( dom f) -defined;

      coherence

      proof

        ( dom (c + f)) = ( dom f) by VALUED_1:def 2;

        hence thesis by RELAT_1:def 18;

      end;

      cluster (c + f) -> total;

      coherence

      proof

        ( dom (c + f)) = ( dom f) by VALUED_1:def 2;

        hence thesis by PARTFUN1:def 2;

      end;

      cluster (f - c) -> ( dom f) -defined;

      coherence

      proof

        ( dom (f - c)) = ( dom (( - c) + f)) by VALUED_1:def 3

        .= ( dom f) by VALUED_1:def 2;

        hence thesis by RELAT_1:def 18;

      end;

      cluster (f - c) -> total;

      coherence

      proof

        ( dom (f - c)) = ( dom (( - c) + f)) by VALUED_1:def 3

        .= ( dom f) by VALUED_1:def 2;

        hence thesis by PARTFUN1:def 2;

      end;

      cluster (c (#) f) -> ( dom f) -defined;

      coherence

      proof

        ( dom (c (#) f)) = ( dom f) by VALUED_1:def 5;

        hence thesis by RELAT_1:def 18;

      end;

      cluster (c (#) f) -> total;

      coherence

      proof

        ( dom (c (#) f)) = ( dom f) by VALUED_1:def 5;

        hence thesis by PARTFUN1:def 2;

      end;

    end

    registration

      let f be FinSequence;

      cluster ( len f) -element -> ( dom f) -defined for FinSequence;

      coherence

      proof

        let g be FinSequence;

        assume g is ( len f) -element;

        then ( len f) = ( len g) by CARD_1:def 7;

        then ( dom f) = ( dom g) by FINSEQ_3: 29;

        hence thesis by RELAT_1:def 18;

      end;

    end

    registration

      let n be Nat;

      cluster n -element -> ( Seg n) -defined for FinSequence;

      coherence

      proof

        reconsider f = ( idseq n) as n -element FinSequence;

        let g be FinSequence;

        assume g is n -element;

        then ( len g) = ( len f) by FINSEQ_3: 153;

        then ( dom g) = ( dom ( id ( Seg n))) by FINSEQ_3: 29;

        hence thesis by RELAT_1:def 18;

      end;

      cluster total( Seg n) -defined -> n -element for FinSequence;

      coherence

      proof

        let f be FinSequence;

        assume f is total( Seg n) -defined;

        then ( Seg n) = ( dom f) by PARTFUN1:def 2;

        then ( Seg ( len f)) = ( Seg n) by FINSEQ_1:def 3;

        hence thesis by CARD_1:def 7, FINSEQ_1: 6;

      end;

    end

    theorem :: FINSEQ_9:1

    

     EMP: for f be complex-valued FinSequence holds ( 0 (#) f) = (( len f) |-> 0 )

    proof

      let f be complex-valued FinSequence;

      

       A1: ( dom ( 0 (#) f)) = ( dom f) by VALUED_1:def 5

      .= ( Seg ( len (( len f) |-> 0 ))) by FINSEQ_1:def 3

      .= ( dom (( len f) |-> 0 ));

      for c be Nat st c in ( dom ( 0 (#) f)) holds (( 0 (#) f) . c) = ((( len f) |-> 0 ) . c);

      hence thesis by A1, FINSEQ_1: 13;

    end;

    registration

      let f be complex-valued FinSequence;

      reduce (f + (( len f) |-> 0 )) to f;

      reducibility

      proof

        (( len f) |-> 0 ) = ( 0 (#) f) by EMP;

        then

        reconsider g = (( len f) |-> 0 ) as total( dom f) -defined empty-yielding complex-valued Function;

        reconsider h = (1 (#) f) as total( dom f) -defined complex-valued Function;

        (h + g) = h;

        hence thesis;

      end;

    end

    registration

      let n be Nat;

      let D be non empty set;

      let X be non empty Subset of D;

      cluster n -element for X -valued FinSequence;

      existence

      proof

        consider k be Element of D such that

         A1: k in X by SUBSET_1: 4;

        reconsider f = (n |-> k) as X -valued FinSequence by A1;

        f is n -element;

        hence thesis;

      end;

      cluster n -element for FinSequence of X;

      existence

      proof

        consider k be Element of D such that

         A1: k in X by SUBSET_1: 4;

        reconsider f = (n |-> k) as FinSequence of X by A1, FINSEQ_2: 63;

        f is n -element;

        hence thesis;

      end;

    end

    registration

      let f be real-valued Function;

      cluster (f + ( abs f)) -> nonnegative-yielding;

      coherence

      proof

        let r be Real such that

         A1: r in ( rng (f + ( abs f)));

        consider i be object such that

         A2: i in ( dom (f + ( abs f))) & ((f + ( abs f)) . i) = r by A1, FUNCT_1:def 3;

        

         A3: ( dom (f + ( abs f))) = (( dom f) /\ ( dom ( abs f))) by VALUED_1:def 1;

        

         A4: |.(f . i).| = (f . i) or |.(f . i).| = ( - (f . i)) by ABSVALUE: 1;

        ((f + ( abs f)) . i) = ((f . i) + (( abs f) . i)) by A2, VALUED_1:def 1

        .= ((f . i) + |.(f . i).|) by A2, A3, VALUED_1:def 11;

        hence thesis by A2, A4;

      end;

      cluster (( abs f) - f) -> nonnegative-yielding;

      coherence

      proof

        reconsider g = ( - f) as real-valued Function;

        (( abs g) + g) is nonnegative-yielding;

        then (( abs g) - f) is nonnegative-yielding by VALUED_1:def 9;

        hence thesis by EUCLID: 5;

      end;

    end

    registration

      let f be nonnegative-yielding real-valued Function, x be object;

      cluster (f . x) -> non negative;

      coherence

      proof

        per cases ;

          suppose x in ( dom f);

          then (f . x) in ( rng f) by FUNCT_1: 3;

          hence thesis by PARTFUN3:def 4;

        end;

          suppose not x in ( dom f);

          hence thesis by FUNCT_1:def 2;

        end;

      end;

    end

    registration

      let f be nonpositive-yielding real-valued Function, x be object;

      cluster (f . x) -> non positive;

      coherence

      proof

        per cases ;

          suppose x in ( dom f);

          then (f . x) in ( rng f) by FUNCT_1: 3;

          hence thesis by PARTFUN3:def 3;

        end;

          suppose not x in ( dom f);

          hence thesis by FUNCT_1:def 2;

        end;

      end;

    end

    registration

      let f be nonnegative-yielding real-valued Function, r be non negative Real;

      cluster (r (#) f) -> nonnegative-yielding;

      coherence

      proof

        let y be Real such that

         B1: y in ( rng (r (#) f));

        consider x be object such that

         B2: x in ( dom (r (#) f)) & y = ((r (#) f) . x) by B1, FUNCT_1:def 3;

        ((r (#) f) . x) = (r * (f . x)) by B2, VALUED_1:def 5;

        hence thesis by B2;

      end;

      cluster (( - r) (#) f) -> nonpositive-yielding;

      coherence

      proof

        let y be Real such that

         B1: y in ( rng (( - r) (#) f));

        consider x be object such that

         B2: x in ( dom (( - r) (#) f)) & y = ((( - r) (#) f) . x) by B1, FUNCT_1:def 3;

        ((( - r) (#) f) . x) = (( - r) * (f . x)) by B2, VALUED_1:def 5;

        hence thesis by B2;

      end;

    end

    registration

      let f be nonnegative-yielding real-valued Function;

      cluster ( - f) -> nonpositive-yielding;

      coherence

      proof

        ( - f) = (( - 1) (#) f) by VALUED_1:def 6;

        hence thesis;

      end;

    end

    registration

      let f be nonpositive-yielding real-valued Function, r be non negative Real;

      cluster (r (#) f) -> nonpositive-yielding;

      coherence

      proof

        let y be Real such that

         B1: y in ( rng (r (#) f));

        consider x be object such that

         B2: x in ( dom (r (#) f)) & y = ((r (#) f) . x) by B1, FUNCT_1:def 3;

        ((r (#) f) . x) = (r * (f . x)) by B2, VALUED_1:def 5;

        hence thesis by B2;

      end;

      cluster (( - r) (#) f) -> nonnegative-yielding;

      coherence

      proof

        let y be Real such that

         B1: y in ( rng (( - r) (#) f));

        consider x be object such that

         B2: x in ( dom (( - r) (#) f)) & y = ((( - r) (#) f) . x) by B1, FUNCT_1:def 3;

        ((( - r) (#) f) . x) = (( - r) * (f . x)) by B2, VALUED_1:def 5;

        hence thesis by B2;

      end;

    end

    registration

      let f be nonpositive-yielding real-valued Function;

      cluster ( - f) -> nonnegative-yielding;

      coherence

      proof

        ( - f) = (( - 1) (#) f) by VALUED_1:def 6;

        hence thesis;

      end;

    end

    registration

      cluster nonnegative-yielding -> natural-valued for INT -valued Function;

      coherence

      proof

        let f be INT -valued Function;

        assume f is nonnegative-yielding;

        then for i be object holds (f . i) is natural;

        hence thesis by VALUED_0: 12;

      end;

    end

    registration

      let f be INT -valued Function;

      cluster ((1 / 2) (#) (f + ( abs f))) -> natural-valued;

      coherence

      proof

        reconsider F = ((1 / 2) (#) (f + ( abs f))) as real-valued Function;

        for i be object holds (F . i) is natural

        proof

          let i be object;

          per cases ;

            suppose

             B0: i in ( dom F);

            then

             B1: i in ( dom (f + ( abs f))) by VALUED_1:def 5;

            then

             B2: i in (( dom f) /\ ( dom ( abs f))) by VALUED_1:def 1;

            reconsider a = (f . i) as Integer;

            reconsider b = (( abs f) . i) as Nat;

            b = |.a.| by VALUED_1:def 11, B2;

            then b = a or b = ( - a) by ABSVALUE: 1;

            then (a + b) = (b + b) or (a + b) = (( - b) + b);

            then ((f + ( abs f)) . i) = (2 * b) or ((f + ( abs f)) . i) = 0 by B1, VALUED_1:def 1;

            then (F . i) = ((1 / 2) * (2 * b)) or (F . i) = ((1 / 2) * 0 ) by B0, VALUED_1:def 5;

            hence thesis;

          end;

            suppose not i in ( dom F);

            hence thesis by FUNCT_1:def 2;

          end;

        end;

        hence thesis by VALUED_0: 12;

      end;

      cluster ((1 / 2) (#) (( abs f) - f)) -> natural-valued;

      coherence

      proof

        reconsider g = ( - f) as INT -valued Function;

        ((1 / 2) (#) (( abs g) + g)) is natural-valued;

        then ((1 / 2) (#) (( abs g) - f)) is natural-valued by VALUED_1:def 9;

        hence thesis by EUCLID: 5;

      end;

    end

    theorem :: FINSEQ_9:2

    

     NV: for f be Relation holds ( rng f) is natural-membered iff f is natural-valued

    proof

      let f be Relation;

      thus ( rng f) is natural-membered implies f is natural-valued

      proof

        set E = (( rng f) \/ NAT );

        reconsider X = ( rng f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = NAT as Subset of E by XBOOLE_1: 7;

        assume ( rng f) is natural-membered;

        then for x be Element of E st x in ( rng f) holds x in NAT by ORDINAL1:def 12;

        then X c= Y by SUBSET_1: 2;

        hence thesis by VALUED_0:def 6;

      end;

      thus thesis;

    end;

    theorem :: FINSEQ_9:3

    for f be Relation holds f is NAT -valued iff ( rng f) is natural-membered

    proof

      let f be Relation;

      f is NAT -valued iff f is natural-valued;

      hence thesis by NV;

    end;

    theorem :: FINSEQ_9:4

    for f be Relation holds ( rng f) is integer-membered iff f is INT -valued

    proof

      let f be Relation;

      thus ( rng f) is integer-membered implies f is INT -valued

      proof

        set E = (( rng f) \/ INT );

        reconsider X = ( rng f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = INT as Subset of E by XBOOLE_1: 7;

        assume ( rng f) is integer-membered;

        then for x be Element of E st x in ( rng f) holds x in INT by INT_1:def 2;

        then X c= Y by SUBSET_1: 2;

        hence thesis by RELAT_1:def 19;

      end;

      thus thesis;

    end;

    theorem :: FINSEQ_9:5

    for f be Relation holds ( rng f) is rational-membered iff f is RAT -valued

    proof

      let f be Relation;

      thus ( rng f) is rational-membered implies f is RAT -valued

      proof

        set E = (( rng f) \/ RAT );

        reconsider X = ( rng f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = RAT as Subset of E by XBOOLE_1: 7;

        assume ( rng f) is rational-membered;

        then for x be Element of E st x in ( rng f) holds x in RAT by RAT_1:def 2;

        then X c= Y by SUBSET_1: 2;

        hence thesis by RELAT_1:def 19;

      end;

      thus thesis;

    end;

    theorem :: FINSEQ_9:6

    

     RV: for f be Relation holds ( rng f) is real-membered iff f is real-valued

    proof

      let f be Relation;

      thus ( rng f) is real-membered implies f is real-valued

      proof

        set E = (( rng f) \/ REAL );

        reconsider X = ( rng f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = REAL as Subset of E by XBOOLE_1: 7;

        assume ( rng f) is real-membered;

        then for x be Element of E st x in ( rng f) holds x in REAL by XREAL_0:def 1;

        then X c= Y by SUBSET_1: 2;

        hence thesis by VALUED_0:def 3;

      end;

      thus thesis;

    end;

    theorem :: FINSEQ_9:7

    for f be Relation holds f is REAL -valued iff ( rng f) is real-membered

    proof

      let f be Relation;

      f is REAL -valued iff f is real-valued;

      hence thesis by RV;

    end;

    theorem :: FINSEQ_9:8

    

     CV: for f be Relation holds ( rng f) is complex-membered iff f is complex-valued

    proof

      let f be Relation;

      thus ( rng f) is complex-membered implies f is complex-valued

      proof

        set E = (( rng f) \/ COMPLEX );

        reconsider X = ( rng f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = COMPLEX as Subset of E by XBOOLE_1: 7;

        assume ( rng f) is complex-membered;

        then for x be Element of E st x in ( rng f) holds x in COMPLEX by XCMPLX_0:def 2;

        then X c= Y by SUBSET_1: 2;

        hence thesis by VALUED_0:def 1;

      end;

      thus thesis;

    end;

    theorem :: FINSEQ_9:9

    for f be Relation holds f is COMPLEX -valued iff ( rng f) is complex-membered

    proof

      let f be Relation;

      f is COMPLEX -valued iff f is complex-valued;

      hence thesis by CV;

    end;

    theorem :: FINSEQ_9:10

    for f be Relation holds ( dom f) is natural-membered iff f is NAT -defined

    proof

      let f be Relation;

      thus ( dom f) is natural-membered implies f is NAT -defined

      proof

        set E = (( dom f) \/ NAT );

        reconsider X = ( dom f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = NAT as Subset of E by XBOOLE_1: 7;

        assume ( dom f) is natural-membered;

        then for x be Element of E st x in ( dom f) holds x in NAT by ORDINAL1:def 12;

        then X c= Y by SUBSET_1: 2;

        hence thesis by RELAT_1:def 18;

      end;

      thus thesis;

    end;

    registration

      let f be INT -defined Relation;

      cluster ( dom f) -> integer-membered;

      coherence ;

    end

    theorem :: FINSEQ_9:11

    for f be Relation holds ( dom f) is integer-membered iff f is INT -defined

    proof

      let f be Relation;

      thus ( dom f) is integer-membered implies f is INT -defined

      proof

        set E = (( dom f) \/ INT );

        reconsider X = ( dom f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = INT as Subset of E by XBOOLE_1: 7;

        assume ( dom f) is integer-membered;

        then for x be Element of E st x in ( dom f) holds x in INT by INT_1:def 2;

        then X c= Y by SUBSET_1: 2;

        hence thesis by RELAT_1:def 18;

      end;

      thus thesis;

    end;

    registration

      let f be RAT -defined Relation;

      cluster ( dom f) -> rational-membered;

      coherence ;

    end

    theorem :: FINSEQ_9:12

    for f be Relation holds ( dom f) is rational-membered iff f is RAT -defined

    proof

      let f be Relation;

      thus ( dom f) is rational-membered implies f is RAT -defined

      proof

        set E = (( dom f) \/ RAT );

        reconsider X = ( dom f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = RAT as Subset of E by XBOOLE_1: 7;

        assume ( dom f) is rational-membered;

        then for x be Element of E st x in ( dom f) holds x in RAT by RAT_1:def 2;

        then X c= Y by SUBSET_1: 2;

        hence thesis by RELAT_1:def 18;

      end;

      thus thesis;

    end;

    registration

      let f be REAL -defined Relation;

      cluster ( dom f) -> real-membered;

      coherence ;

    end

    theorem :: FINSEQ_9:13

    for f be Relation holds ( dom f) is real-membered iff f is REAL -defined

    proof

      let f be Relation;

      thus ( dom f) is real-membered implies f is REAL -defined

      proof

        set E = (( dom f) \/ REAL );

        reconsider X = ( dom f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = REAL as Subset of E by XBOOLE_1: 7;

        assume ( dom f) is real-membered;

        then for x be Element of E st x in ( dom f) holds x in REAL by XREAL_0:def 1;

        then X c= Y by SUBSET_1: 2;

        hence thesis by RELAT_1:def 18;

      end;

      thus thesis;

    end;

    registration

      let f be COMPLEX -defined Relation;

      cluster ( dom f) -> complex-membered;

      coherence ;

    end

    theorem :: FINSEQ_9:14

    for f be Relation holds ( dom f) is complex-membered iff f is COMPLEX -defined

    proof

      let f be Relation;

      thus ( dom f) is complex-membered implies f is COMPLEX -defined

      proof

        set E = (( dom f) \/ COMPLEX );

        reconsider X = ( dom f) as Subset of E by XBOOLE_1: 7;

        reconsider Y = COMPLEX as Subset of E by XBOOLE_1: 7;

        assume ( dom f) is complex-membered;

        then for x be Element of E st x in ( dom f) holds x in COMPLEX by XCMPLX_0:def 2;

        then X c= Y by SUBSET_1: 2;

        hence thesis by RELAT_1:def 18;

      end;

      thus thesis;

    end;

    theorem :: FINSEQ_9:15

    

     N2103: for D be set, f be Function holds f is D -valued iff f is Function of ( dom f), D

    proof

      let D be set, f be Function;

      thus f is D -valued implies f is Function of ( dom f), D

      proof

        assume f is D -valued;

        then ( rng f) c= D by RELAT_1:def 19;

        hence thesis by FUNCT_2: 2;

      end;

      thus thesis;

    end;

    theorem :: FINSEQ_9:16

    

     T2103: for C be set, f be totalC -defined Function holds f is Function of C, ( rng f)

    proof

      let C be set, f be totalC -defined Function;

      ( dom f) = C by PARTFUN1:def 2;

      hence thesis by FUNCT_2: 1;

    end;

    theorem :: FINSEQ_9:17

    for C,D be set, f be totalC -defined Function holds f is Function of C, D iff f is D -valued

    proof

      let C,D be set, f be totalC -defined Function;

      reconsider f1 = f as Function of C, ( rng f) by T2103;

      f1 is D -valued implies f is Function of ( dom f), D by N2103;

      hence thesis by PARTFUN1:def 2;

    end;

    theorem :: FINSEQ_9:18

    for f be real-valued Function holds f is Function of ( dom f), REAL

    proof

      let f be real-valued Function;

      ( rng f) c= REAL ;

      hence thesis by FUNCT_2: 2;

    end;

    theorem :: FINSEQ_9:19

    for f be complex-valued FinSequence holds (f - f) = ( 0 (#) f) & (f - f) = (( len f) |-> 0 )

    proof

      let f be complex-valued FinSequence;

      (f - f) = (f + ( - f)) by VALUED_1:def 9

      .= ((1 (#) f) + (( - 1) (#) f)) by VALUED_1:def 6

      .= ((1 + ( - 1)) (#) f) by TOPREALC: 2

      .= ( 0 (#) f);

      hence thesis by EMP;

    end;

    theorem :: FINSEQ_9:20

    

     Lmkdf: for a be Complex, f be FinSequence, k be Nat st k in ( dom f) holds ((( len f) |-> a) . k) = a

    proof

      let a be Complex;

      let f be FinSequence;

      let k be Nat;

      assume k in ( dom f);

      then ( len f) >= k >= 1 by FINSEQ_3: 25;

      then k in ( Seg ( len f));

      hence thesis by FINSEQ_2: 57;

    end;

    registration

      let a be Real, k be non zero Nat, l be Nat, f be (k + l) -element FinSequence;

      reduce ((( len f) |-> a) . k) to a;

      reducibility

      proof

        1 <= k & (k + 0 ) <= (k + l) by NAT_1: 14, XREAL_1: 6;

        then 1 <= k <= ( len f) by CARD_1:def 7;

        then k in ( dom f) by FINSEQ_3: 25;

        hence thesis by Lmkdf;

      end;

    end

    definition

      let f be complex-valued Function;

      :: FINSEQ_9:def1

      func delneg f -> complex-valued Function equals ((1 / 2) (#) (f + ( abs f)));

      correctness ;

      :: FINSEQ_9:def2

      func delpos f -> complex-valued Function equals ((1 / 2) (#) (( abs f) - f));

      correctness ;

      :: FINSEQ_9:def3

      func delall f -> complex-valued Function equals ( 0 (#) f);

      correctness ;

    end

    theorem :: FINSEQ_9:21

    

     DMN: for f be complex-valued Function holds ( dom f) = ( dom ( delpos f)) & ( dom f) = ( dom ( delneg f)) & ( dom f) = ( dom ( delall f))

    proof

      let f be complex-valued Function;

      

       A1: ( dom ((1 / 2) (#) (f + ( abs f)))) = ( dom (f + ( abs f))) by VALUED_1:def 5

      .= (( dom f) /\ ( dom ( abs f))) by VALUED_1:def 1

      .= ( dom f) by VALUED_1:def 11;

      ( dom ((1 / 2) (#) (( abs f) - f))) = ( dom (( abs f) - f)) by VALUED_1:def 5

      .= ( dom (( abs f) + ( - f))) by VALUED_1:def 9

      .= (( dom ( - f)) /\ ( dom ( abs f))) by VALUED_1:def 1

      .= (( dom (( - 1) (#) f)) /\ ( dom ( abs f))) by VALUED_1:def 6

      .= (( dom f) /\ ( dom ( abs f))) by VALUED_1:def 5

      .= ( dom f) by VALUED_1:def 11;

      hence thesis by A1, VALUED_1:def 5;

    end;

    theorem :: FINSEQ_9:22

    

     VAL: for f be complex-valued Function, x be object holds (f . x) = ((( delneg f) . x) - (( delpos f) . x))

    proof

      let f be complex-valued Function, x be object;

      

       K1: ( dom ( delneg f)) = ( dom f) & ( dom ( delpos f)) = ( dom f) by DMN;

      per cases ;

        suppose not x in ( dom f);

        then (f . x) = {} & (( delneg f) . x) = {} & (( delpos f) . x) = {} by K1, FUNCT_1:def 2;

        hence thesis;

      end;

        suppose

         A1: x in ( dom f);

        per cases ;

          suppose

           B1: f is empty;

          then ((1 / 2) (#) (f + ( abs f))) is empty & ((1 / 2) (#) (( abs f) - f)) is empty;

          hence thesis by B1;

        end;

          suppose not f is empty;

          then

          reconsider X = ( dom f) as non empty set;

          reconsider f as totalX -defined complex-valued Function by RELAT_1:def 18, PARTFUN1:def 2;

          

           A2: ( dom (( delneg f) - ( delpos f))) = (( dom ( delneg f)) /\ ( dom ( delpos f))) by VALUED_1: 12

          .= (( dom f) /\ ( dom ( delpos f))) by DMN

          .= (( dom f) /\ ( dom f)) by DMN

          .= ( dom f);

          (f . x) = ((((1 / 2) + (1 / 2)) (#) f) . x)

          .= (((((1 / 2) (#) f) + (((1 / 2) (#) ( abs f)) - ((1 / 2) (#) ( abs f)))) + ((1 / 2) (#) f)) . x) by TOPREALC: 2

          .= ((((((1 / 2) (#) f) + ((1 / 2) (#) ( abs f))) - ((1 / 2) (#) ( abs f))) + ((1 / 2) (#) f)) . x) by RFUNCT_1: 23

          .= (((((1 / 2) (#) f) + ((1 / 2) (#) ( abs f))) - (((1 / 2) (#) ( abs f)) - ((1 / 2) (#) f))) . x) by RFUNCT_1: 22

          .= ((( delneg f) - (((1 / 2) (#) ( abs f)) - ((1 / 2) (#) f))) . x) by RFUNCT_1: 16

          .= ((( delneg f) - ( delpos f)) . x) by RFUNCT_1: 18

          .= ((( delneg f) . x) - (( delpos f) . x)) by A1, A2, VALUED_1: 13;

          hence thesis;

        end;

      end;

    end;

    theorem :: FINSEQ_9:23

    

     DNP: for f be complex-valued Function holds f = (( delneg f) - ( delpos f))

    proof

      let f be complex-valued Function;

      ( dom ( delneg f)) = ( dom f) & ( dom ( delpos f)) = ( dom f) by DMN;

      

      then

       A1: ( dom f) = (( dom ( delneg f)) /\ ( dom ( delpos f)))

      .= ( dom (( delneg f) - ( delpos f))) by VALUED_1: 12;

      for x be object st x in ( dom f) holds ((( delneg f) . x) - (( delpos f) . x)) = (f . x) by VAL;

      hence thesis by A1, VALUED_1: 14;

    end;

    theorem :: FINSEQ_9:24

    

     VOR: for f be real-valued Function, x be object holds (f . x) = (( delneg f) . x) or (f . x) = ( - (( delpos f) . x))

    proof

      let f be real-valued Function, x be object;

      

       A2: ( dom ( delneg f)) = ( dom f) & ( dom ( delpos f)) = ( dom f) by DMN;

      per cases ;

        suppose not x in ( dom f);

        then (f . x) = {} & (( delneg f) . x) = {} & (( delpos f) . x) = {} by A2, FUNCT_1:def 2;

        hence thesis;

      end;

        suppose

         A0: x in ( dom f);

        

         A3: ( dom ( abs f)) = ( dom f) by VALUED_1:def 11;

        then (( dom f) /\ ( dom ( abs f))) = ( dom f) & (( dom ( abs f)) /\ ( dom f)) = ( dom f);

        then

         A4: ( dom (f + ( abs f))) = ( dom f) & ( dom (( abs f) - f)) = ( dom f) by VALUED_1:def 1, VALUED_1: 12;

        per cases ;

          suppose

           B1: (f . x) >= 0 ;

          (( abs f) . x) = |.(f . x).| by A0, A3, VALUED_1:def 11

          .= (f . x) by B1, ABSVALUE:def 1;

          

          then (f . x) = ((1 / 2) * ((f . x) + (( abs f) . x)))

          .= ((1 / 2) * ((f + ( abs f)) . x)) by A0, A4, VALUED_1:def 1

          .= (((1 / 2) (#) (f + ( abs f))) . x) by VALUED_1:def 5, A0, A2;

          hence thesis;

        end;

          suppose

           B1: (f . x) < 0 ;

          (( abs f) . x) = |.(f . x).| by A0, A3, VALUED_1:def 11

          .= ( - (f . x)) by B1, ABSVALUE:def 1;

          

          then (f . x) = ( - ((1 / 2) * ((( abs f) . x) - (f . x))))

          .= ( - ((1 / 2) * ((( abs f) - f) . x))) by A0, A4, VALUED_1: 13

          .= (( - 1) * ((1 / 2) * ((( abs f) - f) . x)))

          .= (( - 1) * (((1 / 2) (#) (( abs f) - f)) . x)) by A0, VALUED_1:def 5, A2;

          hence thesis;

        end;

      end;

    end;

    theorem :: FINSEQ_9:25

    

     ZOR: for f be real-valued Function, x be object holds (( delneg f) . x) = 0 or (( delpos f) . x) = 0

    proof

      let f be real-valued Function, x be object;

      

       B2: (f . x) = ((( delneg f) . x) - (( delpos f) . x)) by VAL;

      (f . x) = (( delneg f) . x) or (f . x) = ( - (( delpos f) . x)) by VOR;

      hence thesis by B2;

    end;

    registration

      let f be real-valued Function;

      cluster (( delneg f) (#) ( delpos f)) -> empty-yielding;

      coherence

      proof

        for x be object st x in ( dom (( delneg f) (#) ( delpos f))) holds ((( delneg f) (#) ( delpos f)) . x) is empty

        proof

          let x be object such that

           A1: x in ( dom (( delneg f) (#) ( delpos f)));

          

           A2: (( delneg f) . x) = 0 or (( delpos f) . x) = 0 by ZOR;

          ((( delneg f) (#) ( delpos f)) . x) = ((( delneg f) . x) * (( delpos f) . x)) by A1, VALUED_1:def 4

          .= 0 by A2;

          hence thesis by ORDINAL1:def 13;

        end;

        hence thesis by FUNCT_1:def 8;

      end;

    end

    theorem :: FINSEQ_9:26

    for f be real-valued Function holds ( delall f) = (( delneg f) (#) ( delpos f))

    proof

      let f be real-valued Function;

      ( dom ( delneg f)) = ( dom f) & ( dom ( delpos f)) = ( dom f) by DMN;

      

      then

       A1: ( dom (( delneg f) (#) ( delpos f))) = (( dom f) /\ ( dom f)) by VALUED_1:def 4

      .= ( dom ( delall f)) by DMN;

      for k be object st k in ( dom ( delall f)) holds ((( delneg f) (#) ( delpos f)) . k) = (( delall f) . k);

      hence thesis by A1, FUNCT_1: 2;

    end;

    registration

      let f be complex-valued Function;

      let f1 be total( dom f) -defined empty-yielding Function;

      reduce (f + f1) to f;

      reducibility

      proof

        

         A1: ( dom (f + f1)) = (( dom f) /\ ( dom f1)) by VALUED_1:def 1

        .= ( dom f) by PARTFUN1:def 2;

        reconsider f1 as complex-valued Function;

        for k be object st k in ( dom f) holds ((f + f1) . k) = (f . k)

        proof

          let k be object such that

           B1: k in ( dom f);

          ((f + f1) . k) = ((f . k) + (f1 . k)) by A1, B1, VALUED_1:def 1

          .= ((f . k) + 0 );

          hence thesis;

        end;

        hence thesis by A1, FUNCT_1: 2;

      end;

      reduce (f - f1) to f;

      reducibility

      proof

        (( - 1) (#) f1) is total( dom f) -defined empty-yielding Function;

        then

        reconsider f2 = ( - f1) as total( dom f) -defined empty-yielding Function by VALUED_1:def 6;

        (f + f2) = f;

        hence thesis by VALUED_1:def 9;

      end;

    end

    registration

      let f be complex-valued Function;

      let f1 be total( dom f) -defined complex-valued Function;

      let f2 be total( dom f) -defined empty-yielding Function;

      reduce (f1 + f2) to f1;

      reducibility

      proof

        ( dom f1) = ( dom f) & ( dom f2) = ( dom f) by PARTFUN1:def 2;

        hence thesis;

      end;

      reduce (f1 - f2) to f1;

      reducibility

      proof

        ( dom f1) = ( dom f) & ( dom f2) = ( dom f) by PARTFUN1:def 2;

        hence thesis;

      end;

    end

    registration

      let f be complex-valued Function;

      cluster (f - f) -> ( dom f) -defined;

      coherence

      proof

        ( dom (f - f)) = (( dom f) /\ ( dom f)) by VALUED_1: 12;

        hence thesis by RELAT_1:def 18;

      end;

      cluster (f - f) -> total;

      coherence

      proof

        ( dom (f - f)) = (( dom f) /\ ( dom f)) by VALUED_1: 12;

        hence thesis by PARTFUN1:def 2;

      end;

    end

    theorem :: FINSEQ_9:27

    for f be complex-valued Function holds ( abs f) = (( delneg f) + ( delpos f))

    proof

      let f be complex-valued Function;

      reconsider fabs = ( abs f) as ( dom f) -defined complex-valued Function;

      reconsider g = ((1 / 2) (#) f) as ( dom f) -defined complex-valued Function;

      reconsider h = (g - g) as total( dom f) -defined empty-yielding Function;

      (( delneg f) + ( delpos f)) = ((((1 / 2) (#) fabs) + ((1 / 2) (#) f)) + ((1 / 2) (#) (fabs - f))) by RFUNCT_1: 16

      .= ((((1 / 2) (#) fabs) + ((1 / 2) (#) f)) + (((1 / 2) (#) fabs) - ((1 / 2) (#) f))) by RFUNCT_1: 18

      .= (((((1 / 2) (#) fabs) + ((1 / 2) (#) f)) + ((1 / 2) (#) fabs)) - ((1 / 2) (#) f)) by RFUNCT_1: 23

      .= ((((1 / 2) (#) f) + (((1 / 2) (#) fabs) + ((1 / 2) (#) fabs))) - ((1 / 2) (#) f)) by RFUNCT_1: 8

      .= ((((1 / 2) (#) f) - ((1 / 2) (#) f)) + (((1 / 2) (#) fabs) + ((1 / 2) (#) fabs))) by RFUNCT_1: 23

      .= ((((1 / 2) (#) f) - ((1 / 2) (#) f)) + (((1 / 2) + (1 / 2)) (#) fabs)) by TOPREALC: 2

      .= fabs;

      hence thesis;

    end;

    registration

      let f be empty FinSequence;

      cluster ( Product f) -> natural;

      coherence by RVSUM_1: 94;

      cluster ( Product f) -> non zero;

      coherence by RVSUM_1: 94;

    end

    registration

      let f be positive-yielding real-valued FinSequence;

      cluster ( Product f) -> positive;

      coherence

      proof

        f is empty or f is non empty;

        hence thesis;

      end;

    end

    registration

      let f be complex-valued FinSequence;

      cluster ( delneg f) -> ( len f) -element;

      coherence

      proof

        reconsider af = ( abs f) as ( len f) -element real-valued FinSequence;

        (f null f) is ( len f) -element FinSequence;

        then

        reconsider g = (f + ( abs f)) as ( len f) -element complex-valued FinSequence;

        reconsider h = ((1 / 2) (#) g) as ( len f) -element FinSequence;

        (h null f) is ( len f) -element;

        hence thesis;

      end;

      cluster ( delpos f) -> ( len f) -element;

      coherence

      proof

        reconsider af = ( abs f) as ( len f) -element real-valued FinSequence;

        (f null f) is ( len f) -element FinSequence;

        then

        reconsider g = (( abs f) - f) as ( len f) -element complex-valued FinSequence;

        reconsider h = ((1 / 2) (#) g) as ( len f) -element FinSequence;

        (h null f) is ( len f) -element;

        hence thesis;

      end;

    end

    theorem :: FINSEQ_9:28

    

     DNF: for f be complex-valued Function holds ( delneg f) = ( delpos ( - f))

    proof

      let f be complex-valued Function;

      reconsider g = ( - f) as complex-valued Function;

      ((1 / 2) (#) (f + ( abs f))) = (((1 / 2) (#) f) + ((1 / 2) (#) ( abs f))) by RFUNCT_1: 16

      .= (((1 / 2) (#) ( abs g)) + ((1 / 2) (#) ( - g))) by EUCLID: 5

      .= (((1 / 2) (#) ( abs g)) + ( - ((1 / 2) (#) g))) by VALUED_2: 23

      .= (((1 / 2) (#) ( abs g)) - ((1 / 2) (#) g)) by VALUED_1:def 9;

      hence thesis by RFUNCT_1: 18;

    end;

    registration

      let f be nonnegative-yielding real-valued Function;

      reduce ( abs f) to f;

      reducibility

      proof

        

         A1: ( dom ( abs f)) = ( dom f) by VALUED_1:def 11;

        for x be object st x in ( dom ( abs f)) holds (( abs f) . x) = (f . x)

        proof

          let x be object such that

           A1: x in ( dom ( abs f));

          (( abs f) . x) = |.(f . x).| by A1, VALUED_1:def 11

          .= (f . x);

          hence thesis;

        end;

        hence thesis by A1, FUNCT_1: 2;

      end;

      reduce ( delneg f) to f;

      reducibility

      proof

        ((1 / 2) (#) (f + ( abs f))) = (((1 / 2) (#) f) + ((1 / 2) (#) f)) by RFUNCT_1: 16

        .= (((1 / 2) + (1 / 2)) (#) f) by TOPREALC: 2;

        hence thesis;

      end;

      identify delall f with delpos f;

      correctness

      proof

        

         A1: ( dom ( delpos f)) = ( dom f) by DMN

        .= ( dom ( delall f)) by DMN;

        for k be object st k in ( dom ( delall f)) holds (( delpos f) . k) = (( delall f) . k);

        hence thesis by A1, FUNCT_1: 2;

      end;

      identify delpos f with delall f;

      correctness ;

    end

    registration

      let f be nonpositive-yielding real-valued Function;

      reduce ( - ( delpos f)) to f;

      reducibility

      proof

        reconsider g = ( - f) as nonnegative-yielding real-valued Function;

        ( - ( delneg g)) = ( - ( - f));

        hence thesis by DNF;

      end;

      cluster ( delneg f) -> empty-yielding;

      coherence

      proof

        reconsider g = ( - f) as nonnegative-yielding real-valued Function;

        ( delneg f) = ( delpos g) by DNF;

        hence thesis;

      end;

      identify delall f with delneg f;

      correctness

      proof

        

         A1: ( dom ( delneg f)) = ( dom f) by DMN

        .= ( dom ( delall f)) by DMN;

        for k be object st k in ( dom ( delall f)) holds (( delneg f) . k) = (( delall f) . k);

        hence thesis by A1, FUNCT_1: 2;

      end;

      identify delneg f with delall f;

      correctness ;

    end

    theorem :: FINSEQ_9:29

    for f be FinSequence of INT holds ex f1,f2 be FinSequence of NAT st f = (f1 - f2)

    proof

      let f be FinSequence of INT ;

      reconsider f1 = ( delneg f) as FinSequence of NAT by NEWTON02: 103;

      reconsider f2 = ( delpos f) as FinSequence of NAT by NEWTON02: 103;

      f = (f1 - f2) by DNP;

      hence thesis;

    end;

    registration

      let a be Integer, n be Nat;

      cluster (n |-> a) -> INT -valued;

      coherence ;

    end

    registration

      let f be non empty empty-yielding FinSequence;

      cluster ( Product f) -> zero;

      coherence

      proof

        1 in ( dom f) & (f . 1) = 0 by FINSEQ_5: 6;

        hence thesis by RVSUM_1: 103;

      end;

    end

    theorem :: FINSEQ_9:30

    for f1,f2 be FinSequence of REAL st ( len f1) = ( len f2) & (for k be Element of NAT st k in ( dom f1) holds (f1 . k) >= (f2 . k) & (f2 . k) > 0 ) holds ( Product f1) >= ( Product f2)

    proof

      let f1,f2 be FinSequence of REAL such that

       A1: ( len f1) = ( len f2) & (for k be Element of NAT st k in ( dom f1) holds (f1 . k) >= (f2 . k) & (f2 . k) > 0 );

      for k be Element of NAT st k in ( dom f2) holds (f1 . k) >= (f2 . k) & (f2 . k) > 0

      proof

        let k be Element of NAT such that

         B1: k in ( dom f2);

        k in ( dom f1) by A1, B1, FINSEQ_3: 29;

        hence thesis by A1;

      end;

      hence thesis by A1, NAT_4: 54;

    end;

    theorem :: FINSEQ_9:31

    for a be Real holds for f be FinSequence of REAL st (for k be Element of NAT st k in ( dom f) holds 0 < (f . k) <= a) holds ( Product f) <= ( Product (( len f) |-> a))

    proof

      let a be Real;

      let f be FinSequence of REAL such that

       A0: for k be Element of NAT st k in ( dom f) holds 0 < (f . k) <= a;

      a in REAL by XREAL_0:def 1;

      then

      reconsider g = (( len f) |-> a) as FinSequence of REAL by FINSEQ_2: 63;

      

       A1: ( len f) = ( len g);

      for k be Element of NAT st k in ( dom f) holds (f . k) <= (g . k) & (f . k) > 0

      proof

        let k be Element of NAT such that

         B1: k in ( dom f);

        (g . k) = a by B1, Lmkdf;

        hence thesis by A0, B1;

      end;

      hence thesis by A1, NAT_4: 54;

    end;

    theorem :: FINSEQ_9:32

    for a be non negative Real, f be FinSequence of REAL st (for k be Nat st k in ( dom f) holds (f . k) >= a) holds ( Product f) >= (a |^ ( len f))

    proof

      let a be non negative Real, f be FinSequence of REAL such that

       A1: for k be Nat st k in ( dom f) holds (f . k) >= a;

      a in REAL by XREAL_0:def 1;

      then

      reconsider g = (( len f) |-> a) as FinSequence of REAL by FINSEQ_2: 63;

      for r be Real st r in ( rng f) holds r >= 0

      proof

        let r be Real such that

         B1: r in ( rng f);

        consider k be object such that

         B2: k in ( dom f) & (f . k) = r by B1, FUNCT_1:def 3;

        reconsider k as Element of NAT by B2;

        thus thesis by A1, B2;

      end;

      then

      reconsider f as nonnegative-yielding FinSequence of REAL by PARTFUN3:def 4;

      per cases ;

        suppose

         B1: a = 0 ;

        per cases ;

          suppose f is empty;

          then ( Product f) = ( Product g);

          hence thesis by NEWTON:def 1;

        end;

          suppose not f is empty;

          then

          reconsider k = ( len (( len f) |-> a)) as non zero Nat;

          ( Product f) >= 0 & ( Product (k |-> a)) = 0 by B1;

          hence thesis by B1;

        end;

      end;

        suppose a > 0 ;

        then

        reconsider a as positive Real;

        

         A2: for k be Element of NAT st k in ( dom f) holds (f . k) >= ((( len f) |-> a) . k) > 0

        proof

          let k be Element of NAT such that

           B1: k in ( dom f);

          reconsider k as non zero Nat by B1, FINSEQ_3: 25;

          ((( len f) |-> a) . k) = a by B1, Lmkdf;

          hence thesis by A1, B1;

        end;

        ( len f) = ( len g);

        then ( dom f) = ( dom g) by FINSEQ_3: 29;

        then ( len f) = ( len g) & (for k be Element of NAT st k in ( dom g) holds (f . k) >= (g . k) & (g . k) > 0 ) by A2;

        then ( Product f) >= ( Product g) by NAT_4: 54;

        hence thesis by NEWTON:def 1;

      end;

    end;

    theorem :: FINSEQ_9:33

    

     N454: for f1,f2 be nonnegative-yielding FinSequence of REAL st ( len f1) = ( len f2) & (for k be Element of NAT st k in ( dom f2) holds (f1 . k) >= (f2 . k)) holds ( Product f1) >= ( Product f2)

    proof

      let f1,f2 be nonnegative-yielding FinSequence of REAL such that

       A1: ( len f1) = ( len f2) & (for k be Element of NAT st k in ( dom f2) holds (f1 . k) >= (f2 . k));

      per cases ;

        suppose ex l be Element of NAT st l in ( dom f2) & (f2 . l) = 0 ;

        hence thesis by RVSUM_1: 103;

      end;

        suppose for l be Element of NAT st l in ( dom f2) holds (f2 . l) <> 0 ;

        then for k be Element of NAT st k in ( dom f2) holds (f1 . k) >= (f2 . k) & (f2 . k) > 0 by A1, XXREAL_0: 1;

        hence thesis by A1, NAT_4: 54;

      end;

    end;

    theorem :: FINSEQ_9:34

    for f1,f2 be FinSequence of REAL st ( len f1) = ( len f2) & (for k be Element of NAT st k in ( dom f2) holds (f1 . k) >= (f2 . k) & (f2 . k) >= 0 ) holds ( Product f1) >= ( Product f2)

    proof

      let f1,f2 be FinSequence of REAL such that

       A1: ( len f1) = ( len f2) & (for k be Element of NAT st k in ( dom f2) holds (f1 . k) >= (f2 . k) & (f2 . k) >= 0 );

      for r be Real st r in ( rng f2) holds r >= 0

      proof

        let r be Real such that

         B1: r in ( rng f2);

        consider k be object such that

         B2: k in ( dom f2) & (f2 . k) = r by B1, FUNCT_1:def 3;

        reconsider k as Element of NAT by B2;

        thus thesis by A1, B2;

      end;

      then

      reconsider f2 as nonnegative-yielding FinSequence of REAL by PARTFUN3:def 4;

      for r be Real st r in ( rng f1) holds r >= 0

      proof

        let r be Real such that

         B1: r in ( rng f1);

        consider k be object such that

         B2: k in ( dom f1) & (f1 . k) = r by B1, FUNCT_1:def 3;

        reconsider k as Element of NAT by B2;

        ( dom f1) = ( dom f2) by A1, FINSEQ_3: 29;

        then (f1 . k) >= (f2 . k) & (f2 . k) >= 0 by A1, B2;

        hence thesis by B2;

      end;

      then

      reconsider f1 as nonnegative-yielding FinSequence of REAL by PARTFUN3:def 4;

      ( len f1) = ( len f2) & (for k be Element of NAT st k in ( dom f2) holds (f1 . k) >= (f2 . k)) by A1;

      hence thesis by N454;

    end;

    theorem :: FINSEQ_9:35

    for a be positive Real, f be nonnegative-yielding FinSequence of REAL st (for k be Element of NAT st k in ( dom f) holds (f . k) <= a) holds ( Product f) <= (a |^ ( len f))

    proof

      let a be positive Real, f be nonnegative-yielding FinSequence of REAL such that

       A1: for k be Element of NAT st k in ( dom f) holds (f . k) <= a;

      a in REAL by XREAL_0:def 1;

      then

      reconsider g = (( len f) |-> a) as FinSequence of REAL by FINSEQ_2: 63;

      reconsider g as positive-yielding FinSequence of REAL ;

      

       A2: (( len f) = ( len g));

      for k be Element of NAT st k in ( dom f) holds (g . k) >= (f . k)

      proof

        let k be Element of NAT such that

         B1: k in ( dom f);

        (g . k) = a by B1, Lmkdf;

        hence thesis by A1, B1;

      end;

      then ( Product f) <= ( Product g) by A2, N454;

      hence thesis by NEWTON:def 1;

    end;

    registration

      let a be Complex;

      reduce (( - <*( - a)*>) . 1) to a;

      reducibility

      proof

        (( - <*( - a)*>) . 1) = ( - ( <*( - a)*> . 1)) by VALUED_1: 8;

        hence thesis;

      end;

      reduce (( <*(a " )*> " ) . 1) to a;

      reducibility

      proof

        (( <*(a " )*> . 1) " ) = (( <*(a " )*> " ) . 1) by VALUED_1: 10;

        hence thesis;

      end;

    end

    theorem :: FINSEQ_9:36

    

     APB: for a,b be Complex holds ( <*a*> + <*b*>) = <*(a + b)*>

    proof

      let a,b be Complex;

      ( dom <*a*>) = ( Seg 1) & ( dom <*b*>) = ( Seg 1) & ( dom <*(a + b)*>) = ( Seg 1) by FINSEQ_1:def 8;

      

      then

       A2: ( dom ( <*a*> + <*b*>)) = (( Seg 1) /\ ( Seg 1)) by VALUED_1:def 1

      .= ( Seg 1);

      then 1 in ( dom ( <*a*> + <*b*>));

      then (( <*a*> + <*b*>) . 1) = (( <*a*> . 1) + ( <*b*> . 1)) by VALUED_1:def 1;

      hence thesis by A2, FINSEQ_1:def 8;

    end;

    theorem :: FINSEQ_9:37

    for a,b be Complex holds ( <*a*> - <*b*>) = <*(a - b)*>

    proof

      let a,b be Complex;

      reconsider p = <*( - b)*> as 1 -element FinSequence;

      reconsider q = ( - <*b*>) as 1 -element FinSequence;

      

       A1: ( len p) = 1 & ( len q) = 1 by CARD_1:def 7;

      (( - <*b*>) . 1) = ( - ( <*b*> . 1)) by VALUED_1: 8

      .= ( <*( - b)*> . 1);

      then

       A2: q = p by A1, FINSEQ_1: 40;

      ( <*a*> + <*( - b)*>) = <*(a + ( - b))*> by APB;

      hence thesis by A2, VALUED_1:def 9;

    end;

    theorem :: FINSEQ_9:38

    

     AMB: for a,b be Complex holds ( <*a*> (#) <*b*>) = <*(a * b)*>

    proof

      let a,b be Complex;

      ( dom <*a*>) = ( Seg 1) & ( dom <*b*>) = ( Seg 1) & ( dom <*(a * b)*>) = ( Seg 1) by FINSEQ_1:def 8;

      

      then

       A2: ( dom ( <*a*> (#) <*b*>)) = (( Seg 1) /\ ( Seg 1)) by VALUED_1:def 4

      .= ( Seg 1);

      then 1 in ( dom ( <*a*> (#) <*b*>));

      then (( <*a*> (#) <*b*>) . 1) = (( <*a*> . 1) * ( <*b*> . 1)) by VALUED_1:def 4;

      hence thesis by A2, FINSEQ_1:def 8;

    end;

    theorem :: FINSEQ_9:39

    for a,b be Complex holds ( <*a*> /" <*b*>) = <*(a * (b " ))*>

    proof

      let a,b be Complex;

      reconsider p = <*(b " )*> as 1 -element FinSequence;

      reconsider q = ( <*b*> " ) as 1 -element FinSequence;

      

       A1: ( len p) = 1 & ( len q) = 1 by CARD_1:def 7;

      (( <*b*> " ) . 1) = (( <*b*> . 1) " ) by VALUED_1: 10

      .= ( <*(b " )*> . 1);

      then

       A2: q = p by A1, FINSEQ_1: 40;

      ( <*a*> (#) <*(b " )*>) = <*(a * (b " ))*> by AMB;

      hence thesis by A2, VALUED_1:def 10;

    end;

    registration

      let n be Nat, f be n -element FinSequence, a be Complex;

      reduce ((f ^ <*a*>) . (n + 1)) to a;

      reducibility

      proof

        ( len f) = n by FINSEQ_3: 153;

        hence thesis;

      end;

      reduce ((f ^ <*a*>) | n) to f;

      reducibility

      proof

        ( len f) = n by FINSEQ_3: 153;

        hence thesis;

      end;

    end

    registration

      let a,b,c,d be Complex;

      cluster <*a, b, c, d*> -> complex-valued;

      coherence

      proof

        reconsider f = <*a, b, c*> as complex-valued FinSequence;

        (f ^ <*d*>) is complex-valued;

        hence thesis by FINSEQ_4:def 7;

      end;

    end

    registration

      let a,b be Complex;

      reduce (( - <*( - a), b*>) . 1) to a;

      reducibility

      proof

        (( - <*( - a), b*>) . 1) = ( - ( <*( - a), b*> . 1)) by VALUED_1: 8;

        hence thesis;

      end;

      reduce (( - <*a, ( - b)*>) . 2) to b;

      reducibility

      proof

        (( - <*a, ( - b)*>) . 2) = ( - ( <*a, ( - b)*> . 2)) by VALUED_1: 8;

        hence thesis;

      end;

      reduce (( <*(a " ), b*> " ) . 1) to a;

      reducibility

      proof

        (( <*(a " ), b*> " ) . 1) = (( <*(a " ), b*> . 1) " ) by VALUED_1: 10;

        hence thesis;

      end;

      reduce (( <*a, (b " )*> " ) . 2) to b;

      reducibility

      proof

        (( <*a, (b " )*> " ) . 2) = (( <*a, (b " )*> . 2) " ) by VALUED_1: 10;

        hence thesis;

      end;

    end

    registration

      let a,b,c be Complex;

      reduce ( <*a, b, c*> . 1) to a;

      reducibility by FINSEQ_1: 45;

      reduce ( <*a, b, c*> . 2) to b;

      reducibility by FINSEQ_1: 45;

      reduce (( - <*( - a), b, c*>) . 1) to a;

      reducibility

      proof

        (( - <*( - a), b, c*>) . 1) = ( - ( <*( - a), b, c*> . 1)) by VALUED_1: 8

        .= ( - ( - a));

        hence thesis;

      end;

      reduce (( - <*a, ( - b), c*>) . 2) to b;

      reducibility

      proof

        (( - <*a, ( - b), c*>) . 2) = ( - ( <*a, ( - b), c*> . 2)) by VALUED_1: 8

        .= ( - ( - b));

        hence thesis;

      end;

      reduce (( - <*a, b, ( - c)*>) . 3) to c;

      reducibility

      proof

        (( - <*a, b, ( - c)*>) . 3) = ( - ( <*a, b, ( - c)*> . 3)) by VALUED_1: 8

        .= ( - ( - c));

        hence thesis;

      end;

      reduce (( <*(a " ), b, c*> " ) . 1) to a;

      reducibility

      proof

        (( <*(a " ), b, c*> " ) . 1) = (( <*(a " ), b, c*> . 1) " ) by VALUED_1: 10

        .= ((a " ) " );

        hence thesis;

      end;

      reduce (( <*a, (b " ), c*> " ) . 2) to b;

      reducibility

      proof

        (( <*a, (b " ), c*> " ) . 2) = (( <*a, (b " ), c*> . 2) " ) by VALUED_1: 10

        .= ((b " ) " );

        hence thesis;

      end;

      reduce (( <*a, b, (c " )*> " ) . 3) to c;

      reducibility

      proof

        (( <*a, b, (c " )*> " ) . 3) = (( <*a, b, (c " )*> . 3) " ) by VALUED_1: 10

        .= ((c " ) " );

        hence thesis;

      end;

    end

    theorem :: FINSEQ_9:40

    

     FPA: for a,b be Complex, n be Nat, f,g be n -element complex-valued FinSequence holds ((f ^ <*a*>) + (g ^ <*b*>)) = ((f + g) ^ <*(a + b)*>)

    proof

      let a,b be Complex, n be Nat, f,g be n -element complex-valued FinSequence;

      reconsider fa = (f ^ <*a*>) as (n + 1) -element FinSequence of COMPLEX by NEWTON02: 103;

      reconsider gb = (g ^ <*b*>) as (n + 1) -element FinSequence of COMPLEX by NEWTON02: 103;

      reconsider fg = (f + g) as n -element complex-valued FinSequence;

      

       A0: ( len f) = n & ( len g) = n & ( len fg) = n by FINSEQ_3: 153;

      

       A1: ( len fa) = (n + 1) & ( len gb) = (n + 1) & ( len (fg ^ <*(a + b)*>)) = (n + 1) by FINSEQ_3: 153;

      

       A2: (n + 1) = ( len (fa + gb)) by FINSEQ_3: 153;

      then

       A3: ( dom (fa + gb)) = ( Seg (n + 1)) & ( dom ((f + g) ^ <*(a + b)*>)) = ( Seg (n + 1)) by A1, FINSEQ_1:def 3;

      for k be object st k in ( dom (fa + gb)) holds ((fa + gb) . k) = (((f + g) ^ <*(a + b)*>) . k)

      proof

        let k be object such that

         B1: k in ( dom (fa + gb));

        

         B2: ((fa + gb) . k) = ((fa . k) + (gb . k)) by B1, VALUED_1:def 1;

        reconsider k as Nat by B1;

        

         B3: 1 <= k <= (n + 1) by A2, B1, FINSEQ_3: 25;

        per cases by B3, XXREAL_0: 1;

          suppose k < (n + 1);

          then k <= n by INT_1: 7;

          then

           C1: k in ( dom f) & k in ( dom g) & k in ( dom (f + g)) by A0, B3, FINSEQ_3: 25;

          then (f . k) = (fa . k) & (g . k) = (gb . k) & (((f + g) ^ <*(a + b)*>) . k) = ((f + g) . k) by FINSEQ_1:def 7;

          hence thesis by B2, C1, VALUED_1:def 1;

        end;

          suppose k = (n + 1);

          hence thesis by B2;

        end;

      end;

      hence thesis by FUNCT_1: 2, A3;

    end;

    theorem :: FINSEQ_9:41

    

     AP2: for a,b,x,y be Complex holds ( <*a, b*> + <*x, y*>) = <*(a + x), (b + y)*>

    proof

      let a,b,x,y be Complex;

      ( <*a, b*> + <*x, y*>) = (( <*a*> + <*x*>) ^ <*(b + y)*>) by FPA;

      hence thesis by APB;

    end;

    theorem :: FINSEQ_9:42

    

     AP3: for a,b,c,x,y,z be Complex holds ( <*a, b, c*> + <*x, y, z*>) = <*(a + x), (b + y), (c + z)*>

    proof

      let a,b,c,x,y,z be Complex;

      ( <*a, b, c*> + <*x, y, z*>) = (( <*a, b*> + <*x, y*>) ^ <*(c + z)*>) by FPA

      .= ( <*(a + x), (b + y)*> ^ <*(c + z)*>) by AP2;

      hence thesis;

    end;

    theorem :: FINSEQ_9:43

    for a,b,c,d,x,y,z,v be Complex holds ( <*a, b, c, d*> + <*x, y, z, v*>) = <*(a + x), (b + y), (c + z), (d + v)*>

    proof

      let a,b,c,d,x,y,z,v be Complex;

      reconsider f = <*a, b, c*> as 3 -element complex-valued FinSequence;

      reconsider g = <*x, y, z*> as 3 -element complex-valued FinSequence;

       <*a, b, c, d*> = (f ^ <*d*>) & <*x, y, z, v*> = (g ^ <*v*>) by FINSEQ_4:def 7;

      

      then ( <*a, b, c, d*> + <*x, y, z, v*>) = ((f + g) ^ <*(d + v)*>) by FPA

      .= ( <*(a + x), (b + y), (c + z)*> ^ <*(d + v)*>) by AP3;

      hence thesis by FINSEQ_4:def 7;

    end;

    theorem :: FINSEQ_9:44

    

     FMA: for a,b be Complex, n be Nat, f,g be n -element complex-valued FinSequence holds ((f ^ <*a*>) (#) (g ^ <*b*>)) = ((f (#) g) ^ <*(a * b)*>)

    proof

      let a,b be Complex, n be Nat, f,g be n -element complex-valued FinSequence;

      reconsider fa = (f ^ <*a*>) as (n + 1) -element FinSequence of COMPLEX by NEWTON02: 103;

      reconsider gb = (g ^ <*b*>) as (n + 1) -element FinSequence of COMPLEX by NEWTON02: 103;

      reconsider fg = (f (#) g) as n -element complex-valued FinSequence;

      

       A0: ( len f) = n & ( len g) = n & ( len fg) = n by FINSEQ_3: 153;

      

       A1: ( len fa) = (n + 1) & ( len gb) = (n + 1) & ( len (fg ^ <*(a * b)*>)) = (n + 1) by FINSEQ_3: 153;

      

       A2: (n + 1) = ( len (fa (#) gb)) by FINSEQ_3: 153;

      then

       A3: ( dom (fa (#) gb)) = ( Seg (n + 1)) & ( dom ((f (#) g) ^ <*(a * b)*>)) = ( Seg (n + 1)) by A1, FINSEQ_1:def 3;

      for k be object st k in ( dom (fa (#) gb)) holds ((fa (#) gb) . k) = (((f (#) g) ^ <*(a * b)*>) . k)

      proof

        let k be object such that

         B1: k in ( dom (fa (#) gb));

        

         B2: ((fa (#) gb) . k) = ((fa . k) * (gb . k)) by B1, VALUED_1:def 4;

        reconsider k as Nat by B1;

        

         B3: 1 <= k <= (n + 1) by A2, B1, FINSEQ_3: 25;

        per cases by B3, XXREAL_0: 1;

          suppose k < (n + 1);

          then k <= n by INT_1: 7;

          then

           C1: k in ( dom f) & k in ( dom g) & k in ( dom (f (#) g)) by A0, B3, FINSEQ_3: 25;

          then (f . k) = (fa . k) & (g . k) = (gb . k) & (((f (#) g) ^ <*(a * b)*>) . k) = ((f (#) g) . k) by FINSEQ_1:def 7;

          hence thesis by B2, C1, VALUED_1:def 4;

        end;

          suppose k = (n + 1);

          hence thesis by B2;

        end;

      end;

      hence thesis by FUNCT_1: 2, A3;

    end;

    theorem :: FINSEQ_9:45

    

     AM2: for a,b,x,y be Complex holds ( <*a, b*> (#) <*x, y*>) = <*(a * x), (b * y)*>

    proof

      let a,b,x,y be Complex;

      ( <*a, b*> (#) <*x, y*>) = (( <*a*> (#) <*x*>) ^ <*(b * y)*>) by FMA;

      hence thesis by AMB;

    end;

    theorem :: FINSEQ_9:46

    

     AM3: for a,b,c,x,y,z be Complex holds ( <*a, b, c*> (#) <*x, y, z*>) = <*(a * x), (b * y), (c * z)*>

    proof

      let a,b,c,x,y,z be Complex;

      ( <*a, b, c*> (#) <*x, y, z*>) = (( <*a, b*> (#) <*x, y*>) ^ <*(c * z)*>) by FMA

      .= ( <*(a * x), (b * y)*> ^ <*(c * z)*>) by AM2;

      hence thesis;

    end;

    theorem :: FINSEQ_9:47

    for a,b,c,d,x,y,z,v be Complex holds ( <*a, b, c, d*> (#) <*x, y, z, v*>) = <*(a * x), (b * y), (c * z), (d * v)*>

    proof

      let a,b,c,d,x,y,z,v be Complex;

      reconsider f = <*a, b, c*> as 3 -element complex-valued FinSequence;

      reconsider g = <*x, y, z*> as 3 -element complex-valued FinSequence;

       <*a, b, c, d*> = (f ^ <*d*>) & <*x, y, z, v*> = (g ^ <*v*>) by FINSEQ_4:def 7;

      

      then ( <*a, b, c, d*> (#) <*x, y, z, v*>) = ((f (#) g) ^ <*(d * v)*>) by FMA

      .= ( <*(a * x), (b * y), (c * z)*> ^ <*(d * v)*>) by AM3;

      hence thesis by FINSEQ_4:def 7;

    end;

    theorem :: FINSEQ_9:48

    for a be Complex, n be non zero Nat, f be n -element complex-valued FinSequence holds ( <*a*> + f) = <*(a + (f . 1))*>

    proof

      let a be Complex, n be non zero Nat, f be n -element complex-valued FinSequence;

      reconsider g = <*a*> as 1 -element complex-valued FinSequence;

      

       A2: ( len (g + f)) = 1 by CARD_1:def 7;

      then 1 in ( dom (g + f)) by FINSEQ_3: 25;

      then (( <*a*> + f) . 1) = (( <*a*> . 1) + (f . 1)) by VALUED_1:def 1;

      hence thesis by A2, FINSEQ_1: 40;

    end;

    theorem :: FINSEQ_9:49

    for a,b be Complex, n be non trivial Nat, f be n -element complex-valued FinSequence holds ( <*a, b*> + f) = <*(a + (f . 1)), (b + (f . 2))*>

    proof

      let a,b be Complex, n be non trivial Nat, f be n -element complex-valued FinSequence;

      reconsider g = <*a, b*> as 2 -element complex-valued FinSequence;

      

       A1: ( len (g + f)) = 2 by CARD_1:def 7;

      then 1 in ( dom (g + f)) & 2 in ( dom (g + f)) by FINSEQ_3: 25;

      then ((g + f) . 1) = ((g . 1) + (f . 1)) & ((g + f) . 2) = ((g . 2) + (f . 2)) by VALUED_1:def 1;

      hence thesis by A1, FINSEQ_1: 44;

    end;

    theorem :: FINSEQ_9:50

    for a be Complex, n be non zero Nat, f be n -element complex-valued FinSequence holds ( <*a*> (#) f) = <*(a * (f . 1))*>

    proof

      let a be Complex, n be non zero Nat, f be n -element complex-valued FinSequence;

      reconsider g = <*a*> as 1 -element complex-valued FinSequence;

      

       A2: ( len (g (#) f)) = 1 by CARD_1:def 7;

      then 1 in ( dom (g (#) f)) by FINSEQ_3: 25;

      then (( <*a*> (#) f) . 1) = (( <*a*> . 1) * (f . 1)) by VALUED_1:def 4;

      hence thesis by A2, FINSEQ_1: 40;

    end;

    theorem :: FINSEQ_9:51

    for a,b be Complex, n be non trivial Nat, f be n -element complex-valued FinSequence holds ( <*a, b*> (#) f) = <*(a * (f . 1)), (b * (f . 2))*>

    proof

      let a,b be Complex, n be non trivial Nat, f be n -element complex-valued FinSequence;

      reconsider g = <*a, b*> as 2 -element complex-valued FinSequence;

      

       A1: ( len (g (#) f)) = 2 by CARD_1:def 7;

      then 1 in ( dom (g (#) f)) & 2 in ( dom (g (#) f)) by FINSEQ_3: 25;

      then ((g (#) f) . 1) = ((g . 1) * (f . 1)) & ((g (#) f) . 2) = ((g . 2) * (f . 2)) by VALUED_1:def 4;

      hence thesis by A1, FINSEQ_1: 44;

    end;