group_3.miz



    begin

    reserve x,y,y1,y2 for set;

    reserve G for Group;

    reserve a,b,c,d,g,h for Element of G;

    reserve A,B,C,D for Subset of G;

    reserve H,H1,H2,H3 for Subgroup of G;

    reserve n for Nat;

    reserve i for Integer;

    theorem :: GROUP_3:1

    

     Th1: ((a * b) * (b " )) = a & ((a * (b " )) * b) = a & (((b " ) * b) * a) = a & ((b * (b " )) * a) = a & (a * (b * (b " ))) = a & (a * ((b " ) * b)) = a & ((b " ) * (b * a)) = a & (b * ((b " ) * a)) = a

    proof

      

      thus

       A1: ((a * b) * (b " )) = (a * (b * (b " ))) by GROUP_1:def 3

      .= (a * ( 1_ G)) by GROUP_1:def 5

      .= a by GROUP_1:def 4;

      

      thus

       A2: ((a * (b " )) * b) = (a * ((b " ) * b)) by GROUP_1:def 3

      .= (a * ( 1_ G)) by GROUP_1:def 5

      .= a by GROUP_1:def 4;

      

      thus

       A3: (((b " ) * b) * a) = (( 1_ G) * a) by GROUP_1:def 5

      .= a by GROUP_1:def 4;

      

      thus ((b * (b " )) * a) = (( 1_ G) * a) by GROUP_1:def 5

      .= a by GROUP_1:def 4;

      hence thesis by A1, A2, A3, GROUP_1:def 3;

    end;

    

     Lm1: for A be commutative Group, a,b be Element of A holds (a * b) = (b * a);

    theorem :: GROUP_3:2

    G is commutative Group iff the multF of G is commutative

    proof

      thus G is commutative Group implies the multF of G is commutative

      proof

        assume

         A1: G is commutative Group;

        let a, b;

        

        thus (the multF of G . (a,b)) = (a * b)

        .= (b * a) by A1, Lm1

        .= (the multF of G . (b,a));

      end;

      assume

       A2: the multF of G is commutative;

      G is commutative by A2;

      hence thesis;

    end;

    theorem :: GROUP_3:3

    ( (1). G) is commutative

    proof

      let a,b be Element of ( (1). G);

      a in the carrier of ( (1). G);

      then a in {( 1_ G)} by GROUP_2:def 7;

      then

       A1: a = ( 1_ G) by TARSKI:def 1;

      b in the carrier of ( (1). G);

      then b in {( 1_ G)} by GROUP_2:def 7;

      hence thesis by A1, TARSKI:def 1;

    end;

    theorem :: GROUP_3:4

    

     Th4: A c= B & C c= D implies (A * C) c= (B * D)

    proof

      assume

       A1: A c= B & C c= D;

      let x be object;

      assume x in (A * C);

      then ex a, c st x = (a * c) & a in A & c in C;

      hence thesis by A1;

    end;

    theorem :: GROUP_3:5

    A c= B implies (a * A) c= (a * B) & (A * a) c= (B * a) by Th4;

    theorem :: GROUP_3:6

    

     Th6: H1 is Subgroup of H2 implies (a * H1) c= (a * H2) & (H1 * a) c= (H2 * a)

    proof

      assume H1 is Subgroup of H2;

      then the carrier of H1 c= the carrier of H2 by GROUP_2:def 5;

      hence thesis by Th4;

    end;

    theorem :: GROUP_3:7

    (a * H) = ( {a} * H);

    theorem :: GROUP_3:8

    (H * a) = (H * {a});

    theorem :: GROUP_3:9

    

     Th9: ((A * a) * H) = (A * (a * H))

    proof

      

      thus ((A * a) * H) = (A * ( {a} * H)) by GROUP_2: 96

      .= (A * (a * H));

    end;

    theorem :: GROUP_3:10

    ((a * H) * A) = (a * (H * A))

    proof

      

      thus ((a * H) * A) = (( {a} * H) * A)

      .= (a * (H * A)) by GROUP_2: 97;

    end;

    theorem :: GROUP_3:11

    ((A * H) * a) = (A * (H * a))

    proof

      

      thus ((A * H) * a) = (A * (H * {a})) by GROUP_2: 97

      .= (A * (H * a));

    end;

    theorem :: GROUP_3:12

    ((H * a) * A) = (H * (a * A))

    proof

      

      thus ((H * a) * A) = ((H * {a}) * A)

      .= (H * (a * A)) by GROUP_2: 98;

    end;

    theorem :: GROUP_3:13

    ((H1 * a) * H2) = (H1 * (a * H2)) by Th9;

    definition

      let G;

      :: GROUP_3:def1

      func Subgroups G -> set means

      : Def1: for x be object holds x in it iff x is strict Subgroup of G;

      existence

      proof

        defpred P[ object, object] means ex H be strict Subgroup of G st $2 = H & $1 = the carrier of H;

        defpred P[ set] means ex H be strict Subgroup of G st $1 = the carrier of H;

        consider B be set such that

         A1: for x holds x in B iff x in ( bool the carrier of G) & P[x] from XFAMILY:sch 1;

        

         A2: for x,y1,y2 be object st P[x, y1] & P[x, y2] holds y1 = y2 by GROUP_2: 59;

        consider f be Function such that

         A3: for x,y be object holds [x, y] in f iff x in B & P[x, y] from FUNCT_1:sch 1( A2);

        for x be object holds x in B iff ex y be object st [x, y] in f

        proof

          let x be object;

          thus x in B implies ex y be object st [x, y] in f

          proof

            assume

             A4: x in B;

            then

            consider H be strict Subgroup of G such that

             A5: x = the carrier of H by A1;

            take H;

            thus thesis by A3, A4, A5;

          end;

          thus thesis by A3;

        end;

        then

         A6: B = ( dom f) by XTUPLE_0:def 12;

        for y be object holds y in ( rng f) iff y is strict Subgroup of G

        proof

          let y be object;

          thus y in ( rng f) implies y is strict Subgroup of G

          proof

            assume y in ( rng f);

            then

            consider x be object such that

             A7: x in ( dom f) & y = (f . x) by FUNCT_1:def 3;

             [x, y] in f by A7, FUNCT_1:def 2;

            then ex H be strict Subgroup of G st y = H & x = the carrier of H by A3;

            hence thesis;

          end;

          assume y is strict Subgroup of G;

          then

          reconsider H = y as strict Subgroup of G;

          

           A8: y is set by TARSKI: 1;

          reconsider x = the carrier of H as set;

          the carrier of H c= the carrier of G by GROUP_2:def 5;

          then

           A9: x in ( dom f) by A1, A6;

          then [x, y] in f by A3, A6;

          then y = (f . x) by A9, FUNCT_1:def 2, A8;

          hence thesis by A9, FUNCT_1:def 3;

        end;

        hence thesis;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 is strict Subgroup of G;

        let A1,A2 be set;

        assume

         A10: for x be object holds x in A1 iff P[x];

        assume

         A11: for x be object holds x in A2 iff P[x];

        thus thesis from XBOOLE_0:sch 2( A10, A11);

      end;

    end

    registration

      let G;

      cluster ( Subgroups G) -> non empty;

      coherence

      proof

        set x = the strict Subgroup of G;

        x in ( Subgroups G) by Def1;

        hence thesis;

      end;

    end

    theorem :: GROUP_3:14

    for G be strict Group holds G in ( Subgroups G)

    proof

      let G be strict Group;

      G is Subgroup of G by GROUP_2: 54;

      hence thesis by Def1;

    end;

    theorem :: GROUP_3:15

    

     Th15: G is finite implies ( Subgroups G) is finite

    proof

      defpred P[ object, object] means ex H be strict Subgroup of G st $1 = H & $2 = the carrier of H;

      assume

       A1: G is finite;

      

       A2: for x be object st x in ( Subgroups G) holds ex y be object st P[x, y]

      proof

        let x be object;

        assume x in ( Subgroups G);

        then

        reconsider F = x as strict Subgroup of G by Def1;

        reconsider y = the carrier of F as set;

        take y;

        take F;

        thus thesis;

      end;

      consider f be Function such that

       A3: ( dom f) = ( Subgroups G) and

       A4: for x be object st x in ( Subgroups G) holds P[x, (f . x)] from CLASSES1:sch 1( A2);

      

       A5: ( rng f) c= ( bool the carrier of G)

      proof

        let x be object;

        assume x in ( rng f);

        then

        consider y be object such that

         A6: y in ( dom f) & (f . y) = x by FUNCT_1:def 3;

        consider H be strict Subgroup of G such that y = H and

         A7: x = the carrier of H by A3, A4, A6;

        the carrier of H c= the carrier of G by GROUP_2:def 5;

        hence thesis by A7;

      end;

      f is one-to-one

      proof

        let x,y be object;

        assume that

         A8: x in ( dom f) & y in ( dom f) and

         A9: (f . x) = (f . y);

        (ex H1 be strict Subgroup of G st x = H1 & (f . x) = the carrier of H1) & ex H2 be strict Subgroup of G st y = H2 & (f . y) = the carrier of H2 by A3, A4, A8;

        hence thesis by A9, GROUP_2: 59;

      end;

      then ( card ( Subgroups G)) c= ( card ( bool the carrier of G)) by A3, A5, CARD_1: 10;

      hence thesis by A1, CARD_2: 49;

    end;

    definition

      let G, a, b;

      :: GROUP_3:def2

      func a |^ b -> Element of G equals (((b " ) * a) * b);

      correctness ;

    end

    theorem :: GROUP_3:16

    

     Th16: (a |^ g) = (b |^ g) implies a = b

    proof

      assume (a |^ g) = (b |^ g);

      then ((g " ) * a) = ((g " ) * b) by GROUP_1: 6;

      hence thesis by GROUP_1: 6;

    end;

    theorem :: GROUP_3:17

    

     Th17: (( 1_ G) |^ a) = ( 1_ G)

    proof

      

      thus (( 1_ G) |^ a) = ((a " ) * a) by GROUP_1:def 4

      .= ( 1_ G) by GROUP_1:def 5;

    end;

    theorem :: GROUP_3:18

    

     Th18: (a |^ b) = ( 1_ G) implies a = ( 1_ G)

    proof

      assume (a |^ b) = ( 1_ G);

      then (b " ) = ((b " ) * a) by GROUP_1: 12;

      hence thesis by GROUP_1: 7;

    end;

    theorem :: GROUP_3:19

    

     Th19: (a |^ ( 1_ G)) = a

    proof

      

      thus (a |^ ( 1_ G)) = ((( 1_ G) " ) * a) by GROUP_1:def 4

      .= (( 1_ G) * a) by GROUP_1: 8

      .= a by GROUP_1:def 4;

    end;

    theorem :: GROUP_3:20

    

     Th20: (a |^ a) = a

    proof

      

      thus (a |^ a) = (( 1_ G) * a) by GROUP_1:def 5

      .= a by GROUP_1:def 4;

    end;

    theorem :: GROUP_3:21

    (a |^ (a " )) = a & ((a " ) |^ a) = (a " ) by Th1;

    theorem :: GROUP_3:22

    

     Th22: (a |^ b) = a iff (a * b) = (b * a)

    proof

      thus (a |^ b) = a implies (a * b) = (b * a)

      proof

        assume (a |^ b) = a;

        then a = ((b " ) * (a * b)) by GROUP_1:def 3;

        hence thesis by GROUP_1: 13;

      end;

      assume (a * b) = (b * a);

      then a = ((b " ) * (a * b)) by GROUP_1: 13;

      hence thesis by GROUP_1:def 3;

    end;

    theorem :: GROUP_3:23

    

     Th23: ((a * b) |^ g) = ((a |^ g) * (b |^ g))

    proof

      

      thus ((a * b) |^ g) = (((g " ) * ((a * ( 1_ G)) * b)) * g) by GROUP_1:def 4

      .= (((g " ) * ((a * (g * (g " ))) * b)) * g) by GROUP_1:def 5

      .= (((g " ) * (((a * g) * (g " )) * b)) * g) by GROUP_1:def 3

      .= (((g " ) * ((a * g) * ((g " ) * b))) * g) by GROUP_1:def 3

      .= ((((g " ) * (a * g)) * ((g " ) * b)) * g) by GROUP_1:def 3

      .= (((a |^ g) * ((g " ) * b)) * g) by GROUP_1:def 3

      .= ((a |^ g) * (b |^ g)) by GROUP_1:def 3;

    end;

    theorem :: GROUP_3:24

    

     Th24: ((a |^ g) |^ h) = (a |^ (g * h))

    proof

      

      thus ((a |^ g) |^ h) = ((((h " ) * ((g " ) * a)) * g) * h) by GROUP_1:def 3

      .= (((((h " ) * (g " )) * a) * g) * h) by GROUP_1:def 3

      .= (((((g * h) " ) * a) * g) * h) by GROUP_1: 17

      .= (a |^ (g * h)) by GROUP_1:def 3;

    end;

    theorem :: GROUP_3:25

    

     Th25: ((a |^ b) |^ (b " )) = a & ((a |^ (b " )) |^ b) = a

    proof

      

      thus ((a |^ b) |^ (b " )) = (a |^ (b * (b " ))) by Th24

      .= (a |^ ( 1_ G)) by GROUP_1:def 5

      .= a by Th19;

      

      thus ((a |^ (b " )) |^ b) = (a |^ ((b " ) * b)) by Th24

      .= (a |^ ( 1_ G)) by GROUP_1:def 5

      .= a by Th19;

    end;

    theorem :: GROUP_3:26

    

     Th26: ((a " ) |^ b) = ((a |^ b) " )

    proof

      

      thus ((a " ) |^ b) = (((a * b) " ) * b) by GROUP_1: 17

      .= (((a * b) " ) * ((b " ) " ))

      .= (((b " ) * (a * b)) " ) by GROUP_1: 17

      .= ((a |^ b) " ) by GROUP_1:def 3;

    end;

     Lm2:

    now

      let G, a, b;

      

      thus ((a |^ 0 ) |^ b) = (( 1_ G) |^ b) by GROUP_1: 25

      .= ( 1_ G) by Th17

      .= ((a |^ b) |^ 0 ) by GROUP_1: 25;

    end;

     Lm3:

    now

      let n;

      assume

       A1: for G, a, b holds ((a |^ n) |^ b) = ((a |^ b) |^ n);

      let G, a, b;

      

      thus ((a |^ (n + 1)) |^ b) = (((a |^ n) * a) |^ b) by GROUP_1: 34

      .= (((a |^ n) |^ b) * (a |^ b)) by Th23

      .= (((a |^ b) |^ n) * (a |^ b)) by A1

      .= ((a |^ b) |^ (n + 1)) by GROUP_1: 34;

    end;

    

     Lm4: for n, G, a, b holds ((a |^ n) |^ b) = ((a |^ b) |^ n)

    proof

      defpred P[ Nat] means ((a |^ $1) |^ b) = ((a |^ b) |^ $1);

      

       A1: for k be Nat st P[k] holds P[(k + 1)] by Lm3;

      

       A2: P[ 0 ] by Lm2;

      for k be Nat holds P[k] from NAT_1:sch 2( A2, A1);

      hence thesis;

    end;

    theorem :: GROUP_3:27

    ((a |^ n) |^ b) = ((a |^ b) |^ n) by Lm4;

    theorem :: GROUP_3:28

    ((a |^ i) |^ b) = ((a |^ b) |^ i)

    proof

      per cases ;

        suppose i >= 0 ;

        then i = |.i.| by ABSVALUE:def 1;

        hence thesis by Lm4;

      end;

        suppose

         A1: i < 0 ;

        

        hence ((a |^ i) |^ b) = (((a |^ |.i.|) " ) |^ b) by GROUP_1: 30

        .= (((a |^ |.i.|) |^ b) " ) by Th26

        .= (((a |^ b) |^ |.i.|) " ) by Lm4

        .= ((a |^ b) |^ i) by A1, GROUP_1: 30;

      end;

    end;

    theorem :: GROUP_3:29

    

     Th29: G is commutative Group implies (a |^ b) = a

    proof

      assume G is commutative Group;

      

      hence (a |^ b) = ((a * (b " )) * b) by Lm1

      .= a by Th1;

    end;

    theorem :: GROUP_3:30

    

     Th30: (for a, b holds (a |^ b) = a) implies G is commutative

    proof

      assume

       A1: for a, b holds (a |^ b) = a;

      let a, b;

      (a |^ b) = a by A1;

      hence thesis by Th22;

    end;

    definition

      let G, A, B;

      :: GROUP_3:def3

      func A |^ B -> Subset of G equals { (g |^ h) : g in A & h in B };

      coherence

      proof

        set X = { (g |^ h) : g in A & h in B };

        X c= the carrier of G

        proof

          let x be object;

          assume x in X;

          then ex g, h st x = (g |^ h) & g in A & h in B;

          hence thesis;

        end;

        hence thesis;

      end;

    end

    theorem :: GROUP_3:31

    

     Th31: x in (A |^ B) iff ex g, h st x = (g |^ h) & g in A & h in B;

    theorem :: GROUP_3:32

    

     Th32: (A |^ B) <> {} iff A <> {} & B <> {}

    proof

      set x = the Element of A;

      set y = the Element of B;

      thus (A |^ B) <> {} implies A <> {} & B <> {}

      proof

        set x = the Element of (A |^ B);

        assume (A |^ B) <> {} ;

        then ex a, b st x = (a |^ b) & a in A & b in B by Th31;

        hence thesis;

      end;

      assume

       A1: A <> {} ;

      assume

       A2: B <> {} ;

      then

      reconsider x, y as Element of G by A1, TARSKI:def 3;

      (x |^ y) in (A |^ B) by A1, A2;

      hence thesis;

    end;

    theorem :: GROUP_3:33

    

     Th33: (A |^ B) c= (((B " ) * A) * B)

    proof

      let x be object;

      assume x in (A |^ B);

      then

      consider a, b such that

       A1: x = (a |^ b) and

       A2: a in A and

       A3: b in B;

      (b " ) in (B " ) by A3;

      then ((b " ) * a) in ((B " ) * A) by A2;

      hence thesis by A1, A3;

    end;

    theorem :: GROUP_3:34

    

     Th34: ((A * B) |^ C) c= ((A |^ C) * (B |^ C))

    proof

      let x be object;

      assume x in ((A * B) |^ C);

      then

      consider a, b such that

       A1: x = (a |^ b) and

       A2: a in (A * B) and

       A3: b in C;

      consider g, h such that

       A4: a = (g * h) & g in A and

       A5: h in B by A2;

      

       A6: (h |^ b) in (B |^ C) by A3, A5;

      x = ((g |^ b) * (h |^ b)) & (g |^ b) in (A |^ C) by A1, A3, A4, Th23;

      hence thesis by A6;

    end;

    theorem :: GROUP_3:35

    

     Th35: ((A |^ B) |^ C) = (A |^ (B * C))

    proof

      thus ((A |^ B) |^ C) c= (A |^ (B * C))

      proof

        let x be object;

        assume x in ((A |^ B) |^ C);

        then

        consider a, c such that

         A1: x = (a |^ c) and

         A2: a in (A |^ B) and

         A3: c in C;

        consider g, h such that

         A4: a = (g |^ h) and

         A5: g in A and

         A6: h in B by A2;

        x = (g |^ (h * c)) & (h * c) in (B * C) by A1, A3, A4, A6, Th24;

        hence thesis by A5;

      end;

      let x be object;

      assume x in (A |^ (B * C));

      then

      consider a, b such that

       A7: x = (a |^ b) & a in A and

       A8: b in (B * C);

      consider g, h such that

       A9: b = (g * h) & g in B and

       A10: h in C by A8;

      (a |^ g) in (A |^ B) & x = ((a |^ g) |^ h) by A7, A9, Th24;

      hence thesis by A10;

    end;

    theorem :: GROUP_3:36

    ((A " ) |^ B) = ((A |^ B) " )

    proof

      thus ((A " ) |^ B) c= ((A |^ B) " )

      proof

        let x be object;

        assume x in ((A " ) |^ B);

        then

        consider a, b such that

         A1: x = (a |^ b) and

         A2: a in (A " ) and

         A3: b in B;

        consider c such that

         A4: a = (c " ) & c in A by A2;

        x = ((c |^ b) " ) & (c |^ b) in (A |^ B) by A1, A3, A4, Th26;

        hence thesis;

      end;

      let x be object;

      assume x in ((A |^ B) " );

      then

      consider a such that

       A5: x = (a " ) and

       A6: a in (A |^ B);

      consider b, c such that

       A7: a = (b |^ c) and

       A8: b in A and

       A9: c in B by A6;

      

       A10: (b " ) in (A " ) by A8;

      x = ((b " ) |^ c) by A5, A7, Th26;

      hence thesis by A9, A10;

    end;

    theorem :: GROUP_3:37

    

     Th37: ( {a} |^ {b}) = {(a |^ b)}

    proof

      

       A1: ((( {b} " ) * {a}) * {b}) = (( {(b " )} * {a}) * {b}) by GROUP_2: 3

      .= ( {((b " ) * a)} * {b}) by GROUP_2: 18

      .= {(a |^ b)} by GROUP_2: 18;

      ( {a} |^ {b}) c= ((( {b} " ) * {a}) * {b}) & ( {a} |^ {b}) <> {} by Th32, Th33;

      hence thesis by A1, ZFMISC_1: 33;

    end;

    theorem :: GROUP_3:38

    ( {a} |^ {b, c}) = {(a |^ b), (a |^ c)}

    proof

      thus ( {a} |^ {b, c}) c= {(a |^ b), (a |^ c)}

      proof

        let x be object;

        assume x in ( {a} |^ {b, c});

        then

        consider g, h such that

         A1: x = (g |^ h) and

         A2: g in {a} and

         A3: h in {b, c};

        

         A4: h = b or h = c by A3, TARSKI:def 2;

        g = a by A2, TARSKI:def 1;

        hence thesis by A1, A4, TARSKI:def 2;

      end;

      let x be object;

      

       A5: c in {b, c} by TARSKI:def 2;

      assume x in {(a |^ b), (a |^ c)};

      then

       A6: x = (a |^ b) or x = (a |^ c) by TARSKI:def 2;

      a in {a} & b in {b, c} by TARSKI:def 1, TARSKI:def 2;

      hence thesis by A6, A5;

    end;

    theorem :: GROUP_3:39

    ( {a, b} |^ {c}) = {(a |^ c), (b |^ c)}

    proof

      thus ( {a, b} |^ {c}) c= {(a |^ c), (b |^ c)}

      proof

        let x be object;

        assume x in ( {a, b} |^ {c});

        then

        consider g, h such that

         A1: x = (g |^ h) and

         A2: g in {a, b} and

         A3: h in {c};

        

         A4: g = b or g = a by A2, TARSKI:def 2;

        h = c by A3, TARSKI:def 1;

        hence thesis by A1, A4, TARSKI:def 2;

      end;

      let x be object;

      

       A5: c in {c} by TARSKI:def 1;

      assume x in {(a |^ c), (b |^ c)};

      then

       A6: x = (a |^ c) or x = (b |^ c) by TARSKI:def 2;

      a in {a, b} & b in {a, b} by TARSKI:def 2;

      hence thesis by A6, A5;

    end;

    theorem :: GROUP_3:40

    ( {a, b} |^ {c, d}) = {(a |^ c), (a |^ d), (b |^ c), (b |^ d)}

    proof

      thus ( {a, b} |^ {c, d}) c= {(a |^ c), (a |^ d), (b |^ c), (b |^ d)}

      proof

        let x be object;

        assume x in ( {a, b} |^ {c, d});

        then

        consider g, h such that

         A1: x = (g |^ h) and

         A2: g in {a, b} and

         A3: h in {c, d};

        

         A4: h = c or h = d by A3, TARSKI:def 2;

        g = a or g = b by A2, TARSKI:def 2;

        hence thesis by A1, A4, ENUMSET1:def 2;

      end;

      let x be object;

      

       A5: c in {c, d} & d in {c, d} by TARSKI:def 2;

      assume x in {(a |^ c), (a |^ d), (b |^ c), (b |^ d)};

      then

       A6: x = (a |^ c) or x = (a |^ d) or x = (b |^ c) or x = (b |^ d) by ENUMSET1:def 2;

      a in {a, b} & b in {a, b} by TARSKI:def 2;

      hence thesis by A6, A5;

    end;

    definition

      let G, A, g;

      :: GROUP_3:def4

      func A |^ g -> Subset of G equals (A |^ {g});

      correctness ;

      :: GROUP_3:def5

      func g |^ A -> Subset of G equals ( {g} |^ A);

      correctness ;

    end

    theorem :: GROUP_3:41

    

     Th41: x in (A |^ g) iff ex h st x = (h |^ g) & h in A

    proof

      thus x in (A |^ g) implies ex h st x = (h |^ g) & h in A

      proof

        assume x in (A |^ g);

        then

        consider a, b such that

         A1: x = (a |^ b) & a in A and

         A2: b in {g};

        b = g by A2, TARSKI:def 1;

        hence thesis by A1;

      end;

      given h such that

       A3: x = (h |^ g) & h in A;

      g in {g} by TARSKI:def 1;

      hence thesis by A3;

    end;

    theorem :: GROUP_3:42

    

     Th42: x in (g |^ A) iff ex h st x = (g |^ h) & h in A

    proof

      thus x in (g |^ A) implies ex h st x = (g |^ h) & h in A

      proof

        assume x in (g |^ A);

        then

        consider a, b such that

         A1: x = (a |^ b) and

         A2: a in {g} and

         A3: b in A;

        a = g by A2, TARSKI:def 1;

        hence thesis by A1, A3;

      end;

      given h such that

       A4: x = (g |^ h) & h in A;

      g in {g} by TARSKI:def 1;

      hence thesis by A4;

    end;

    theorem :: GROUP_3:43

    (g |^ A) c= (((A " ) * g) * A)

    proof

      let x be object;

      assume x in (g |^ A);

      then

      consider a such that

       A1: x = (g |^ a) and

       A2: a in A by Th42;

      (a " ) in (A " ) by A2;

      then ((a " ) * g) in ((A " ) * g) by GROUP_2: 28;

      hence thesis by A1, A2;

    end;

    theorem :: GROUP_3:44

    ((A |^ B) |^ g) = (A |^ (B * g)) by Th35;

    theorem :: GROUP_3:45

    ((A |^ g) |^ B) = (A |^ (g * B)) by Th35;

    theorem :: GROUP_3:46

    ((g |^ A) |^ B) = (g |^ (A * B)) by Th35;

    theorem :: GROUP_3:47

    

     Th47: ((A |^ a) |^ b) = (A |^ (a * b))

    proof

      

      thus ((A |^ a) |^ b) = (A |^ (a * {b})) by Th35

      .= (A |^ (a * b)) by GROUP_2: 18;

    end;

    theorem :: GROUP_3:48

    ((a |^ A) |^ b) = (a |^ (A * b)) by Th35;

    theorem :: GROUP_3:49

    ((a |^ b) |^ A) = (a |^ (b * A))

    proof

      

      thus ((a |^ b) |^ A) = (( {a} |^ {b}) |^ A) by Th37

      .= (a |^ (b * A)) by Th35;

    end;

    theorem :: GROUP_3:50

    

     Th50: (A |^ g) = (((g " ) * A) * g)

    proof

      (A |^ g) c= ((( {g} " ) * A) * {g}) by Th33;

      hence (A |^ g) c= (((g " ) * A) * g) by GROUP_2: 3;

      let x be object;

      assume x in (((g " ) * A) * g);

      then

      consider a such that

       A1: x = (a * g) and

       A2: a in ((g " ) * A) by GROUP_2: 28;

      consider b such that

       A3: a = ((g " ) * b) and

       A4: b in A by A2, GROUP_2: 27;

      x = (b |^ g) by A1, A3;

      hence thesis by A4, Th41;

    end;

    theorem :: GROUP_3:51

    ((A * B) |^ a) c= ((A |^ a) * (B |^ a)) by Th34;

    theorem :: GROUP_3:52

    

     Th52: (A |^ ( 1_ G)) = A

    proof

      

      thus (A |^ ( 1_ G)) = (((( 1_ G) " ) * A) * ( 1_ G)) by Th50

      .= ((( 1_ G) " ) * A) by GROUP_2: 37

      .= (( 1_ G) * A) by GROUP_1: 8

      .= A by GROUP_2: 37;

    end;

    theorem :: GROUP_3:53

    A <> {} implies (( 1_ G) |^ A) = {( 1_ G)}

    proof

      set y = the Element of A;

      assume

       A1: A <> {} ;

      then

      reconsider y as Element of G by TARSKI:def 3;

      thus (( 1_ G) |^ A) c= {( 1_ G)}

      proof

        let x be object;

        assume x in (( 1_ G) |^ A);

        then ex a st x = (( 1_ G) |^ a) & a in A by Th42;

        then x = ( 1_ G) by Th17;

        hence thesis by TARSKI:def 1;

      end;

      let x be object;

      assume x in {( 1_ G)};

      then x = ( 1_ G) by TARSKI:def 1;

      then (( 1_ G) |^ y) = x by Th17;

      hence thesis by A1, Th42;

    end;

    theorem :: GROUP_3:54

    

     Th54: ((A |^ a) |^ (a " )) = A & ((A |^ (a " )) |^ a) = A

    proof

      

      thus ((A |^ a) |^ (a " )) = (A |^ (a * (a " ))) by Th47

      .= (A |^ ( 1_ G)) by GROUP_1:def 5

      .= A by Th52;

      

      thus ((A |^ (a " )) |^ a) = (A |^ ((a " ) * a)) by Th47

      .= (A |^ ( 1_ G)) by GROUP_1:def 5

      .= A by Th52;

    end;

    theorem :: GROUP_3:55

    

     Th55: G is commutative Group iff for A, B st B <> {} holds (A |^ B) = A

    proof

      thus G is commutative Group implies for A, B st B <> {} holds (A |^ B) = A

      proof

        assume

         A1: G is commutative Group;

        let A, B;

        set y = the Element of B;

        assume

         A2: B <> {} ;

        then

        reconsider y as Element of G by TARSKI:def 3;

        thus (A |^ B) c= A

        proof

          let x be object;

          assume x in (A |^ B);

          then ex a, b st x = (a |^ b) & a in A & b in B;

          hence thesis by A1, Th29;

        end;

        let x be object;

        assume

         A3: x in A;

        then

        reconsider a = x as Element of G;

        (a |^ y) = x by A1, Th29;

        hence thesis by A2, A3;

      end;

      assume

       A4: for A, B st B <> {} holds (A |^ B) = A;

      now

        let a, b;

         {a} = ( {a} |^ {b}) by A4

        .= {(a |^ b)} by Th37;

        hence a = (a |^ b) by ZFMISC_1: 3;

      end;

      hence thesis by Th30;

    end;

    theorem :: GROUP_3:56

    G is commutative Group iff for A, g holds (A |^ g) = A

    proof

      thus G is commutative Group implies for A, g holds (A |^ g) = A by Th55;

      assume

       A1: for A, g holds (A |^ g) = A;

      now

        let a, b;

         {a} = ( {a} |^ b) by A1

        .= {(a |^ b)} by Th37;

        hence a = (a |^ b) by ZFMISC_1: 3;

      end;

      hence thesis by Th30;

    end;

    theorem :: GROUP_3:57

    G is commutative Group iff for A, g st A <> {} holds (g |^ A) = {g}

    proof

      thus G is commutative Group implies for A, g st A <> {} holds (g |^ A) = {g} by Th55;

      assume

       A1: for A, g st A <> {} holds (g |^ A) = {g};

      now

        let a, b;

         {a} = (a |^ {b}) by A1

        .= {(a |^ b)} by Th37;

        hence a = (a |^ b) by ZFMISC_1: 3;

      end;

      hence thesis by Th30;

    end;

    definition

      let G, H, a;

      :: GROUP_3:def6

      func H |^ a -> strict Subgroup of G means

      : Def6: the carrier of it = (( carr H) |^ a);

      existence

      proof

        consider H1 be strict Subgroup of G such that

         A1: the carrier of H1 = (((a " ) * H) * ((a " ) " )) by GROUP_2: 127;

        the carrier of H1 = (((a " ) * ( carr H)) * a) by A1

        .= (( carr H) |^ a) by Th50;

        hence thesis;

      end;

      correctness by GROUP_2: 59;

    end

    theorem :: GROUP_3:58

    

     Th58: x in (H |^ a) iff ex g st x = (g |^ a) & g in H

    proof

      thus x in (H |^ a) implies ex g st x = (g |^ a) & g in H

      proof

        assume x in (H |^ a);

        then x in the carrier of (H |^ a);

        then x in (( carr H) |^ a) by Def6;

        then

        consider b such that

         A1: x = (b |^ a) & b in ( carr H) by Th41;

        take b;

        thus thesis by A1;

      end;

      given g such that

       A2: x = (g |^ a) and

       A3: g in H;

      g in ( carr H) by A3;

      then x in (( carr H) |^ a) by A2, Th41;

      then x in the carrier of (H |^ a) by Def6;

      hence thesis;

    end;

    theorem :: GROUP_3:59

    

     Th59: the carrier of (H |^ a) = (((a " ) * H) * a)

    proof

      

      thus the carrier of (H |^ a) = (( carr H) |^ a) by Def6

      .= (((a " ) * H) * a) by Th50;

    end;

    theorem :: GROUP_3:60

    

     Th60: ((H |^ a) |^ b) = (H |^ (a * b))

    proof

      the carrier of ((H |^ a) |^ b) = (( carr (H |^ a)) |^ b) by Def6

      .= ((( carr H) |^ a) |^ b) by Def6

      .= (( carr H) |^ (a * b)) by Th47

      .= the carrier of (H |^ (a * b)) by Def6;

      hence thesis by GROUP_2: 59;

    end;

    theorem :: GROUP_3:61

    

     Th61: for H be strict Subgroup of G holds (H |^ ( 1_ G)) = H

    proof

      let H be strict Subgroup of G;

      the carrier of (H |^ ( 1_ G)) = (( carr H) |^ ( 1_ G)) by Def6

      .= the carrier of H by Th52;

      hence thesis by GROUP_2: 59;

    end;

    theorem :: GROUP_3:62

    

     Th62: for H be strict Subgroup of G holds ((H |^ a) |^ (a " )) = H & ((H |^ (a " )) |^ a) = H

    proof

      let H be strict Subgroup of G;

      

      thus ((H |^ a) |^ (a " )) = (H |^ (a * (a " ))) by Th60

      .= (H |^ ( 1_ G)) by GROUP_1:def 5

      .= H by Th61;

      

      thus ((H |^ (a " )) |^ a) = (H |^ ((a " ) * a)) by Th60

      .= (H |^ ( 1_ G)) by GROUP_1:def 5

      .= H by Th61;

    end;

    theorem :: GROUP_3:63

    

     Th63: ((H1 /\ H2) |^ a) = ((H1 |^ a) /\ (H2 |^ a))

    proof

      let g;

      thus g in ((H1 /\ H2) |^ a) implies g in ((H1 |^ a) /\ (H2 |^ a))

      proof

        assume g in ((H1 /\ H2) |^ a);

        then

        consider h such that

         A1: g = (h |^ a) and

         A2: h in (H1 /\ H2) by Th58;

        h in H2 by A2, GROUP_2: 82;

        then

         A3: g in (H2 |^ a) by A1, Th58;

        h in H1 by A2, GROUP_2: 82;

        then g in (H1 |^ a) by A1, Th58;

        hence thesis by A3, GROUP_2: 82;

      end;

      assume

       A4: g in ((H1 |^ a) /\ (H2 |^ a));

      then g in (H1 |^ a) by GROUP_2: 82;

      then

      consider b such that

       A5: g = (b |^ a) and

       A6: b in H1 by Th58;

      g in (H2 |^ a) by A4, GROUP_2: 82;

      then

      consider c such that

       A7: g = (c |^ a) and

       A8: c in H2 by Th58;

      b = c by A5, A7, Th16;

      then b in (H1 /\ H2) by A6, A8, GROUP_2: 82;

      hence thesis by A5, Th58;

    end;

    theorem :: GROUP_3:64

    

     Th64: ( card H) = ( card (H |^ a))

    proof

      deffunc F( Element of G) = ($1 |^ a);

      consider f be Function of the carrier of G, the carrier of G such that

       A1: for g holds (f . g) = F(g) from FUNCT_2:sch 4;

      set g = (f | the carrier of H);

      

       A2: ( dom f) = the carrier of G & the carrier of H c= the carrier of G by FUNCT_2:def 1, GROUP_2:def 5;

      then

       A3: ( dom g) = the carrier of H by RELAT_1: 62;

      

       A4: ( rng g) = the carrier of (H |^ a)

      proof

        thus ( rng g) c= the carrier of (H |^ a)

        proof

          let x be object;

          assume x in ( rng g);

          then

          consider y be object such that

           A5: y in ( dom g) and

           A6: (g . y) = x by FUNCT_1:def 3;

          reconsider y as Element of H by A2, A5, RELAT_1: 62;

          reconsider y as Element of G by GROUP_2: 42;

          

           A7: (f . y) = (g . y) by A5, FUNCT_1: 47;

          (f . y) = (y |^ a) by A1;

          then x in (( carr H) |^ a) by A6, A7, Th41;

          hence thesis by Def6;

        end;

        let x be object;

        assume x in the carrier of (H |^ a);

        then x in (( carr H) |^ a) by Def6;

        then

        consider b such that

         A8: x = (b |^ a) and

         A9: b in ( carr H) by Th41;

        

         A10: (f . b) = (b |^ a) by A1;

        (g . b) = (f . b) by A3, A9, FUNCT_1: 47;

        hence thesis by A3, A8, A9, A10, FUNCT_1:def 3;

      end;

      g is one-to-one

      proof

        let x,y be object;

        assume that

         A11: x in ( dom g) and

         A12: y in ( dom g) and

         A13: (g . x) = (g . y);

        reconsider b = x, c = y as Element of H by A2, A11, A12, RELAT_1: 62;

        reconsider b, c as Element of G by GROUP_2: 42;

        

         A14: (f . x) = (b |^ a) & (f . y) = (c |^ a) by A1;

        (f . x) = (g . x) by A11, FUNCT_1: 47;

        hence thesis by A12, A13, A14, Th16, FUNCT_1: 47;

      end;

      then (the carrier of H,the carrier of (H |^ a)) are_equipotent by A3, A4, WELLORD2:def 4;

      hence thesis by CARD_1: 5;

    end;

    theorem :: GROUP_3:65

    

     Th65: H is finite iff (H |^ a) is finite

    proof

      ( card H) = ( card (H |^ a)) by Th64;

      then (the carrier of H,the carrier of (H |^ a)) are_equipotent by CARD_1: 5;

      hence thesis by CARD_1: 38;

    end;

    registration

      let G, a;

      let H be finite Subgroup of G;

      cluster (H |^ a) -> finite;

      coherence by Th65;

    end

    theorem :: GROUP_3:66

    for H be finite Subgroup of G holds ( card H) = ( card (H |^ a)) by Th64;

    theorem :: GROUP_3:67

    

     Th67: (( (1). G) |^ a) = ( (1). G)

    proof

      

       A1: the carrier of ( (1). G) = {( 1_ G)} by GROUP_2:def 7;

      the carrier of (( (1). G) |^ a) = (( carr ( (1). G)) |^ a) by Def6

      .= {(( 1_ G) |^ a)} by A1, Th37

      .= {( 1_ G)} by Th17;

      hence thesis by GROUP_2:def 7;

    end;

    theorem :: GROUP_3:68

    for H be strict Subgroup of G holds (H |^ a) = ( (1). G) implies H = ( (1). G)

    proof

      let H be strict Subgroup of G;

      assume

       A1: (H |^ a) = ( (1). G);

      then

      reconsider H as finite Subgroup of G by Th65;

      ( card ( (1). G)) = 1 by GROUP_2: 69;

      then ( card H) = 1 by A1, Th64;

      hence thesis by GROUP_2: 70;

    end;

    theorem :: GROUP_3:69

    

     Th69: for G be Group, a be Element of G holds (( (Omega). G) |^ a) = ( (Omega). G)

    proof

      let G be Group, a be Element of G;

      let h be Element of G;

      ((h |^ (a " )) |^ a) = (h |^ ((a " ) * a)) by Th24

      .= (h |^ ( 1_ G)) by GROUP_1:def 5

      .= h by Th19;

      hence thesis by Th58, STRUCT_0:def 5;

    end;

    theorem :: GROUP_3:70

    for H be strict Subgroup of G holds (H |^ a) = G implies H = G

    proof

      let H be strict Subgroup of G;

      assume

       A1: (H |^ a) = G;

      now

        let g;

        assume

         A2: not g in H;

        now

          assume (g |^ a) in (H |^ a);

          then ex h st (g |^ a) = (h |^ a) & h in H by Th58;

          hence contradiction by A2, Th16;

        end;

        hence contradiction by A1;

      end;

      hence thesis by A1, GROUP_2: 62;

    end;

    theorem :: GROUP_3:71

    

     Th71: ( Index H) = ( Index (H |^ a))

    proof

      defpred P[ object, object] means ex b st $1 = (b * H) & $2 = ((b |^ a) * (H |^ a));

      

       A1: for x be object st x in ( Left_Cosets H) holds ex y be object st P[x, y]

      proof

        let x be object;

        assume x in ( Left_Cosets H);

        then

        consider b such that

         A2: x = (b * H) by GROUP_2:def 15;

        reconsider y = ((b |^ a) * (H |^ a)) as set;

        take y;

        take b;

        thus thesis by A2;

      end;

      consider f be Function such that

       A3: ( dom f) = ( Left_Cosets H) and

       A4: for x be object st x in ( Left_Cosets H) holds P[x, (f . x)] from CLASSES1:sch 1( A1);

      

       A5: for x, y1, y2 st x in ( Left_Cosets H) & P[x, y1] & P[x, y2] holds y1 = y2

      proof

        set A = ( carr H);

        let x, y1, y2;

        assume x in ( Left_Cosets H);

        given b such that

         A6: x = (b * H) and

         A7: y1 = ((b |^ a) * (H |^ a));

        given c such that

         A8: x = (c * H) and

         A9: y2 = ((c |^ a) * (H |^ a));

        

        thus y1 = ((((a " ) * b) * a) * (((a " ) * H) * a)) by A7, Th59

        .= (((((a " ) * b) * a) * ((a " ) * A)) * a) by GROUP_2: 33

        .= ((((a " ) * b) * (a * ((a " ) * A))) * a) by GROUP_2: 32

        .= ((((a " ) * b) * ((a * (a " )) * A)) * a) by GROUP_2: 32

        .= ((((a " ) * b) * (( 1_ G) * A)) * a) by GROUP_1:def 5

        .= ((((a " ) * b) * A) * a) by GROUP_2: 37

        .= (((a " ) * (c * H)) * a) by A6, A8, GROUP_2: 32

        .= ((((a " ) * c) * A) * a) by GROUP_2: 32

        .= ((((a " ) * c) * (( 1_ G) * A)) * a) by GROUP_2: 37

        .= ((((a " ) * c) * ((a * (a " )) * A)) * a) by GROUP_1:def 5

        .= ((((a " ) * c) * (a * ((a " ) * A))) * a) by GROUP_2: 32

        .= (((((a " ) * c) * a) * ((a " ) * A)) * a) by GROUP_2: 32

        .= ((((a " ) * c) * a) * (((a " ) * H) * a)) by GROUP_2: 33

        .= y2 by A9, Th59;

      end;

      

       A10: ( rng f) = ( Left_Cosets (H |^ a))

      proof

        thus ( rng f) c= ( Left_Cosets (H |^ a))

        proof

          let x be object;

          assume x in ( rng f);

          then

          consider y be object such that

           A11: y in ( dom f) & (f . y) = x by FUNCT_1:def 3;

          ex b st y = (b * H) & x = ((b |^ a) * (H |^ a)) by A3, A4, A11;

          hence thesis by GROUP_2:def 15;

        end;

        let x be object;

        assume x in ( Left_Cosets (H |^ a));

        then

        consider b such that

         A12: x = (b * (H |^ a)) by GROUP_2:def 15;

        set c = (b |^ (a " ));

        

         A13: x = ((c |^ a) * (H |^ a)) by A12, Th25;

        

         A14: (c * H) in ( Left_Cosets H) by GROUP_2:def 15;

        then

        consider d such that

         A15: (c * H) = (d * H) and

         A16: (f . (c * H)) = ((d |^ a) * (H |^ a)) by A4;

        ((c |^ a) * (H |^ a)) = ((d |^ a) * (H |^ a)) by A5, A14, A15;

        hence thesis by A3, A13, A14, A16, FUNCT_1:def 3;

      end;

      f is one-to-one

      proof

        let x,y be object;

        assume that

         A17: x in ( dom f) and

         A18: y in ( dom f) and

         A19: (f . x) = (f . y);

        consider c such that

         A20: y = (c * H) and

         A21: (f . y) = ((c |^ a) * (H |^ a)) by A3, A4, A18;

        consider b such that

         A22: x = (b * H) and

         A23: (f . x) = ((b |^ a) * (H |^ a)) by A3, A4, A17;

        

         A24: (((c |^ a) " ) * (b |^ a)) = (((c " ) |^ a) * (b |^ a)) by Th26

        .= (((c " ) * b) |^ a) by Th23;

        (((c |^ a) " ) * (b |^ a)) in (H |^ a) by A19, A23, A21, GROUP_2: 114;

        then

        consider d such that

         A25: (((c " ) * b) |^ a) = (d |^ a) and

         A26: d in H by A24, Th58;

        ((c " ) * b) = d by A25, Th16;

        hence thesis by A22, A20, A26, GROUP_2: 114;

      end;

      then (( Left_Cosets H),( Left_Cosets (H |^ a))) are_equipotent by A3, A10, WELLORD2:def 4;

      hence thesis by CARD_1: 5;

    end;

    theorem :: GROUP_3:72

    ( Left_Cosets H) is finite implies ( index H) = ( index (H |^ a))

    proof

      assume

       A1: ( Left_Cosets H) is finite;

      then

       A2: ex B be finite set st B = ( Left_Cosets H) & ( index H) = ( card B) by GROUP_2:def 18;

      

       A3: ( Index H) = ( Index (H |^ a)) by Th71;

      then (( Left_Cosets H),( Left_Cosets (H |^ a))) are_equipotent by CARD_1: 5;

      then ( Left_Cosets (H |^ a)) is finite by A1, CARD_1: 38;

      hence thesis by A2, A3, GROUP_2:def 18;

    end;

    theorem :: GROUP_3:73

    

     Th73: G is commutative Group implies for H be strict Subgroup of G holds for a holds (H |^ a) = H

    proof

      assume

       A1: G is commutative Group;

      let H be strict Subgroup of G;

      let a;

      the carrier of (H |^ a) = (((a " ) * H) * a) by Th59

      .= ((H * (a " )) * a) by A1, GROUP_2: 112

      .= (H * ((a " ) * a)) by GROUP_2: 107

      .= (H * ( 1_ G)) by GROUP_1:def 5

      .= the carrier of H by GROUP_2: 109;

      hence thesis by GROUP_2: 59;

    end;

    definition

      let G, a, b;

      :: GROUP_3:def7

      pred a,b are_conjugated means

      : Def7: ex g st a = (b |^ g);

    end

    notation

      let G, a, b;

      antonym a,b are_not_conjugated for a,b are_conjugated ;

    end

    theorem :: GROUP_3:74

    

     Th74: (a,b) are_conjugated iff ex g st b = (a |^ g)

    proof

      thus (a,b) are_conjugated implies ex g st b = (a |^ g)

      proof

        given g such that

         A1: a = (b |^ g);

        (a |^ (g " )) = b by A1, Th25;

        hence thesis;

      end;

      given g such that

       A2: b = (a |^ g);

      a = (b |^ (g " )) by A2, Th25;

      hence thesis;

    end;

    theorem :: GROUP_3:75

    

     Th75: (a,a) are_conjugated

    proof

      take ( 1_ G);

      thus thesis by Th19;

    end;

    theorem :: GROUP_3:76

    

     Th76: (a,b) are_conjugated implies (b,a) are_conjugated

    proof

      given g such that

       A1: a = (b |^ g);

      b = (a |^ (g " )) by A1, Th25;

      hence thesis;

    end;

    definition

      let G, a, b;

      :: original: are_conjugated

      redefine

      pred a,b are_conjugated ;

      reflexivity by Th75;

      symmetry by Th76;

    end

    theorem :: GROUP_3:77

    

     Th77: (a,b) are_conjugated & (b,c) are_conjugated implies (a,c) are_conjugated

    proof

      given g such that

       A1: a = (b |^ g);

      given h such that

       A2: b = (c |^ h);

      a = (c |^ (h * g)) by A1, A2, Th24;

      hence thesis;

    end;

    theorem :: GROUP_3:78

    

     Th78: (a,( 1_ G)) are_conjugated or (( 1_ G),a) are_conjugated implies a = ( 1_ G)

    proof

      assume

       A1: (a,( 1_ G)) are_conjugated or (( 1_ G),a) are_conjugated ;

      now

        per cases by A1;

          suppose (a,( 1_ G)) are_conjugated ;

          then ex g st ( 1_ G) = (a |^ g) by Th74;

          hence thesis by Th18;

        end;

          suppose (( 1_ G),a) are_conjugated ;

          then ex g st ( 1_ G) = (a |^ g);

          hence thesis by Th18;

        end;

      end;

      hence thesis;

    end;

    theorem :: GROUP_3:79

    

     Th79: (a |^ ( carr ( (Omega). G))) = { b : (a,b) are_conjugated }

    proof

      set A = (a |^ ( carr ( (Omega). G)));

      set B = { b : (a,b) are_conjugated };

      thus A c= B

      proof

        let x be object;

        assume

         A1: x in A;

        then

        reconsider b = x as Element of G;

        ex g st x = (a |^ g) & g in ( carr ( (Omega). G)) by A1, Th42;

        then (b,a) are_conjugated ;

        hence thesis;

      end;

      let x be object;

      assume x in B;

      then

      consider b such that

       A2: x = b and

       A3: (a,b) are_conjugated ;

      ex g st b = (a |^ g) by A3, Def7;

      hence thesis by A2, Th42;

    end;

    definition

      let G, a;

      :: GROUP_3:def8

      func con_class a -> Subset of G equals (a |^ ( carr ( (Omega). G)));

      correctness ;

    end

    theorem :: GROUP_3:80

    

     Th80: x in ( con_class a) iff ex b st b = x & (a,b) are_conjugated

    proof

      thus x in ( con_class a) implies ex b st b = x & (a,b) are_conjugated

      proof

        assume x in ( con_class a);

        then x in { b : (a,b) are_conjugated } by Th79;

        hence thesis;

      end;

      given b such that

       A1: b = x & (a,b) are_conjugated ;

      x in { c : (a,c) are_conjugated } by A1;

      hence thesis by Th79;

    end;

    theorem :: GROUP_3:81

    

     Th81: a in ( con_class b) iff (a,b) are_conjugated

    proof

      thus a in ( con_class b) implies (a,b) are_conjugated

      proof

        assume a in ( con_class b);

        then ex c st a = c & (b,c) are_conjugated by Th80;

        hence thesis;

      end;

      assume (a,b) are_conjugated ;

      hence thesis by Th80;

    end;

    theorem :: GROUP_3:82

    

     Th82: (a |^ g) in ( con_class a) by Th80, Th74;

    theorem :: GROUP_3:83

    a in ( con_class a) by Th81;

    theorem :: GROUP_3:84

    a in ( con_class b) implies b in ( con_class a)

    proof

      assume a in ( con_class b);

      then (a,b) are_conjugated by Th81;

      hence thesis by Th81;

    end;

    theorem :: GROUP_3:85

    ( con_class a) = ( con_class b) iff ( con_class a) meets ( con_class b)

    proof

      thus ( con_class a) = ( con_class b) implies ( con_class a) meets ( con_class b) by Th81;

      assume ( con_class a) meets ( con_class b);

      then

      consider x be object such that

       A1: x in ( con_class a) and

       A2: x in ( con_class b) by XBOOLE_0: 3;

      reconsider x as Element of G by A1;

      

       A3: (a,x) are_conjugated by A1, Th81;

      thus ( con_class a) c= ( con_class b)

      proof

        let y be object;

        assume y in ( con_class a);

        then

        consider g such that

         A4: g = y and

         A5: (a,g) are_conjugated by Th80;

        

         A6: (b,x) are_conjugated by A2, Th81;

        (x,a) are_conjugated by A1, Th81;

        then (x,g) are_conjugated by A5, Th77;

        then (b,g) are_conjugated by A6, Th77;

        hence thesis by A4, Th80;

      end;

      let y be object;

      assume y in ( con_class b);

      then

      consider g such that

       A7: g = y and

       A8: (b,g) are_conjugated by Th80;

      (x,b) are_conjugated by A2, Th81;

      then (x,g) are_conjugated by A8, Th77;

      then (a,g) are_conjugated by A3, Th77;

      hence thesis by A7, Th80;

    end;

    theorem :: GROUP_3:86

    ( con_class a) = {( 1_ G)} iff a = ( 1_ G)

    proof

      thus ( con_class a) = {( 1_ G)} implies a = ( 1_ G)

      proof

        assume

         A1: ( con_class a) = {( 1_ G)};

        a in ( con_class a) by Th81;

        hence thesis by A1, TARSKI:def 1;

      end;

      assume

       A2: a = ( 1_ G);

      thus ( con_class a) c= {( 1_ G)}

      proof

        let x be object;

        assume x in ( con_class a);

        then

        consider b such that

         A3: b = x and

         A4: (a,b) are_conjugated by Th80;

        b = ( 1_ G) by A2, A4, Th78;

        hence thesis by A3, TARSKI:def 1;

      end;

      ( 1_ G) in ( con_class a) by A2, Th81;

      hence thesis by ZFMISC_1: 31;

    end;

    theorem :: GROUP_3:87

    (( con_class a) * A) = (A * ( con_class a))

    proof

      thus (( con_class a) * A) c= (A * ( con_class a))

      proof

        let x be object;

        assume x in (( con_class a) * A);

        then

        consider b, c such that

         A1: x = (b * c) and

         A2: b in ( con_class a) and

         A3: c in A;

        reconsider h = x as Element of G by A1;

        (b,a) are_conjugated by A2, Th81;

        then

        consider g such that

         A4: b = (a |^ g);

        (h |^ (c " )) = ((c * ((a |^ g) * c)) * (c " )) by A1, A4

        .= (c * (((a |^ g) * c) * (c " ))) by GROUP_1:def 3

        .= (c * (a |^ g)) by Th1;

        

        then

         A5: x = ((c * (a |^ g)) |^ c) by Th25

        .= ((c |^ c) * ((a |^ g) |^ c)) by Th23

        .= (c * ((a |^ g) |^ c)) by Th20

        .= (c * (a |^ (g * c))) by Th24;

        (a |^ (g * c)) in ( con_class a) by Th82;

        hence thesis by A3, A5;

      end;

      let x be object;

      assume x in (A * ( con_class a));

      then

      consider b, c such that

       A6: x = (b * c) and

       A7: b in A and

       A8: c in ( con_class a);

      reconsider h = x as Element of G by A6;

      (c,a) are_conjugated by A8, Th81;

      then

      consider g such that

       A9: c = (a |^ g);

      (h |^ b) = ((a |^ g) * b) by A6, A9, Th1;

      

      then

       A10: x = (((a |^ g) * b) |^ (b " )) by Th25

      .= (((a |^ g) |^ (b " )) * (b |^ (b " ))) by Th23

      .= ((a |^ (g * (b " ))) * (b |^ (b " ))) by Th24

      .= ((a |^ (g * (b " ))) * b) by Th1;

      (a |^ (g * (b " ))) in ( con_class a) by Th82;

      hence thesis by A7, A10;

    end;

    definition

      let G, A, B;

      :: GROUP_3:def9

      pred A,B are_conjugated means ex g st A = (B |^ g);

    end

    notation

      let G, A, B;

      antonym A,B are_not_conjugated for A,B are_conjugated ;

    end

    theorem :: GROUP_3:88

    

     Th88: (A,B) are_conjugated iff ex g st B = (A |^ g)

    proof

      thus (A,B) are_conjugated implies ex g st B = (A |^ g)

      proof

        given g such that

         A1: A = (B |^ g);

        (A |^ (g " )) = B by A1, Th54;

        hence thesis;

      end;

      given g such that

       A2: B = (A |^ g);

      A = (B |^ (g " )) by A2, Th54;

      hence thesis;

    end;

    theorem :: GROUP_3:89

    

     Th89: (A,A) are_conjugated

    proof

      take ( 1_ G);

      thus thesis by Th52;

    end;

    theorem :: GROUP_3:90

    

     Th90: (A,B) are_conjugated implies (B,A) are_conjugated

    proof

      given g such that

       A1: A = (B |^ g);

      B = (A |^ (g " )) by A1, Th54;

      hence thesis;

    end;

    definition

      let G, A, B;

      :: original: are_conjugated

      redefine

      pred A,B are_conjugated ;

      reflexivity by Th89;

      symmetry by Th90;

    end

    theorem :: GROUP_3:91

    

     Th91: (A,B) are_conjugated & (B,C) are_conjugated implies (A,C) are_conjugated

    proof

      given g such that

       A1: A = (B |^ g);

      given h such that

       A2: B = (C |^ h);

      A = (C |^ (h * g)) by A1, A2, Th47;

      hence thesis;

    end;

    theorem :: GROUP_3:92

    

     Th92: ( {a}, {b}) are_conjugated iff (a,b) are_conjugated

    proof

      thus ( {a}, {b}) are_conjugated implies (a,b) are_conjugated

      proof

        assume ( {a}, {b}) are_conjugated ;

        then

        consider g such that

         A1: ( {a} |^ g) = {b} by Th88;

         {b} = {(a |^ g)} by A1, Th37;

        then b = (a |^ g) by ZFMISC_1: 3;

        hence thesis by Th74;

      end;

      assume (a,b) are_conjugated ;

      then

      consider g such that

       A2: (a |^ g) = b by Th74;

       {b} = ( {a} |^ g) by A2, Th37;

      hence thesis by Th88;

    end;

    theorem :: GROUP_3:93

    

     Th93: (A,( carr H1)) are_conjugated implies ex H2 be strict Subgroup of G st the carrier of H2 = A

    proof

      assume (A,( carr H1)) are_conjugated ;

      then

      consider g such that

       A1: A = (( carr H1) |^ g);

      A = the carrier of (H1 |^ g) by A1, Def6;

      hence thesis;

    end;

    definition

      let G, A;

      :: GROUP_3:def10

      func con_class A -> Subset-Family of G equals { B : (A,B) are_conjugated };

      coherence

      proof

        set X = { B : (A,B) are_conjugated };

        X c= ( bool the carrier of G)

        proof

          let x be object;

          assume x in X;

          then ex B st x = B & (A,B) are_conjugated ;

          hence thesis;

        end;

        hence thesis;

      end;

    end

    theorem :: GROUP_3:94

    x in ( con_class A) iff ex B st x = B & (A,B) are_conjugated ;

    theorem :: GROUP_3:95

    

     Th95: A in ( con_class B) iff (A,B) are_conjugated

    proof

      thus A in ( con_class B) implies (A,B) are_conjugated

      proof

        assume A in ( con_class B);

        then ex C st A = C & (B,C) are_conjugated ;

        hence thesis;

      end;

      assume (A,B) are_conjugated ;

      hence thesis;

    end;

    theorem :: GROUP_3:96

    (A |^ g) in ( con_class A)

    proof

      (A,(A |^ g)) are_conjugated by Th88;

      hence thesis;

    end;

    theorem :: GROUP_3:97

    A in ( con_class A);

    theorem :: GROUP_3:98

    A in ( con_class B) implies B in ( con_class A)

    proof

      assume A in ( con_class B);

      then (A,B) are_conjugated by Th95;

      hence thesis;

    end;

    theorem :: GROUP_3:99

    ( con_class A) = ( con_class B) iff ( con_class A) meets ( con_class B)

    proof

      thus ( con_class A) = ( con_class B) implies ( con_class A) meets ( con_class B)

      proof

        

         A1: A in ( con_class A);

        assume ( con_class A) = ( con_class B);

        hence thesis by A1;

      end;

      assume ( con_class A) meets ( con_class B);

      then

      consider x be object such that

       A2: x in ( con_class A) and

       A3: x in ( con_class B) by XBOOLE_0: 3;

      reconsider x as Subset of G by A2;

      

       A4: (A,x) are_conjugated by A2, Th95;

      thus ( con_class A) c= ( con_class B)

      proof

        let y be object;

        assume y in ( con_class A);

        then

        consider C such that

         A5: C = y and

         A6: (A,C) are_conjugated ;

        

         A7: (B,x) are_conjugated by A3, Th95;

        (x,A) are_conjugated by A2, Th95;

        then (x,C) are_conjugated by A6, Th91;

        then (B,C) are_conjugated by A7, Th91;

        hence thesis by A5;

      end;

      let y be object;

      assume y in ( con_class B);

      then

      consider C such that

       A8: C = y and

       A9: (B,C) are_conjugated ;

      (x,B) are_conjugated by A3, Th95;

      then (x,C) are_conjugated by A9, Th91;

      then (A,C) are_conjugated by A4, Th91;

      hence thesis by A8;

    end;

    theorem :: GROUP_3:100

    

     Th100: ( con_class {a}) = { {b} : b in ( con_class a) }

    proof

      set A = { {b} : b in ( con_class a) };

      thus ( con_class {a}) c= A

      proof

        let x be object;

        assume x in ( con_class {a});

        then

        consider B such that

         A1: x = B and

         A2: ( {a},B) are_conjugated ;

        consider b such that

         A3: ( {a} |^ b) = B by A2, Th88;

        (a,(a |^ b)) are_conjugated by Th74;

        then

         A4: (a |^ b) in ( con_class a) by Th81;

        B = {(a |^ b)} by A3, Th37;

        hence thesis by A1, A4;

      end;

      let x be object;

      assume x in A;

      then

      consider b such that

       A5: x = {b} and

       A6: b in ( con_class a);

      (b,a) are_conjugated by A6, Th81;

      then ( {b}, {a}) are_conjugated by Th92;

      hence thesis by A5;

    end;

    theorem :: GROUP_3:101

    G is finite implies ( con_class A) is finite;

    definition

      let G, H1, H2;

      :: GROUP_3:def11

      pred H1,H2 are_conjugated means ex g st the multMagma of H1 = (H2 |^ g);

    end

    notation

      let G, H1, H2;

      antonym H1,H2 are_not_conjugated for H1,H2 are_conjugated ;

    end

    theorem :: GROUP_3:102

    

     Th102: for H1,H2 be strict Subgroup of G holds (H1,H2) are_conjugated iff ex g st H2 = (H1 |^ g)

    proof

      let H1,H2 be strict Subgroup of G;

      thus (H1,H2) are_conjugated implies ex g st H2 = (H1 |^ g)

      proof

        given g such that

         A1: the multMagma of H1 = (H2 |^ g);

        (H1 |^ (g " )) = H2 by A1, Th62;

        hence thesis;

      end;

      given g such that

       A2: H2 = (H1 |^ g);

      H1 = (H2 |^ (g " )) by A2, Th62;

      hence thesis;

    end;

    theorem :: GROUP_3:103

    

     Th103: for H1 be strict Subgroup of G holds (H1,H1) are_conjugated

    proof

      let H1 be strict Subgroup of G;

      take ( 1_ G);

      thus thesis by Th61;

    end;

    theorem :: GROUP_3:104

    

     Th104: for H1,H2 be strict Subgroup of G holds (H1,H2) are_conjugated implies (H2,H1) are_conjugated

    proof

      let H1,H2 be strict Subgroup of G;

      given g such that

       A1: the multMagma of H1 = (H2 |^ g);

      H2 = (H1 |^ (g " )) by A1, Th62;

      hence thesis;

    end;

    definition

      let G;

      let H1,H2 be strict Subgroup of G;

      :: original: are_conjugated

      redefine

      pred H1,H2 are_conjugated ;

      reflexivity by Th103;

      symmetry by Th104;

    end

    theorem :: GROUP_3:105

    

     Th105: for H1,H2 be strict Subgroup of G holds (H1,H2) are_conjugated & (H2,H3) are_conjugated implies (H1,H3) are_conjugated

    proof

      let H1,H2 be strict Subgroup of G;

      given g such that

       A1: the multMagma of H1 = (H2 |^ g);

      given h such that

       A2: the multMagma of H2 = (H3 |^ h);

      H1 = (H3 |^ (h * g)) by A1, A2, Th60;

      hence thesis;

    end;

    reserve L for Subset of ( Subgroups G);

    definition

      let G, H;

      :: GROUP_3:def12

      func con_class H -> Subset of ( Subgroups G) means

      : Def12: for x be object holds x in it iff ex H1 be strict Subgroup of G st x = H1 & (H,H1) are_conjugated ;

      existence

      proof

        defpred P[ set] means ex H1 be strict Subgroup of G st $1 = H1 & (H,H1) are_conjugated ;

        consider L such that

         A1: x in L iff x in ( Subgroups G) & P[x] from SUBSET_1:sch 1;

        take L;

        let x be object;

        thus x in L implies ex H1 be strict Subgroup of G st x = H1 & (H,H1) are_conjugated by A1;

        given H1 be strict Subgroup of G such that

         A2: x = H1 and

         A3: (H,H1) are_conjugated ;

        x in ( Subgroups G) by A2, Def1;

        hence thesis by A1, A2, A3;

      end;

      uniqueness

      proof

        defpred P[ object] means ex H3 be strict Subgroup of G st $1 = H3 & (H,H3) are_conjugated ;

        let A1,A2 be Subset of ( Subgroups G);

        assume

         A4: for x be object holds x in A1 iff P[x];

        assume

         A5: for x be object holds x in A2 iff P[x];

        thus thesis from XBOOLE_0:sch 2( A4, A5);

      end;

    end

    theorem :: GROUP_3:106

    

     Th106: x in ( con_class H) implies x is strict Subgroup of G

    proof

      assume x in ( con_class H);

      then ex H1 be strict Subgroup of G st x = H1 & (H,H1) are_conjugated by Def12;

      hence thesis;

    end;

    theorem :: GROUP_3:107

    

     Th107: for H1,H2 be strict Subgroup of G holds H1 in ( con_class H2) iff (H1,H2) are_conjugated

    proof

      let H1,H2 be strict Subgroup of G;

      thus H1 in ( con_class H2) implies (H1,H2) are_conjugated

      proof

        assume H1 in ( con_class H2);

        then ex H3 be strict Subgroup of G st H1 = H3 & (H2,H3) are_conjugated by Def12;

        hence thesis;

      end;

      assume (H1,H2) are_conjugated ;

      hence thesis by Def12;

    end;

    theorem :: GROUP_3:108

    

     Th108: for H be strict Subgroup of G holds (H |^ g) in ( con_class H)

    proof

      let H be strict Subgroup of G;

      (H,(H |^ g)) are_conjugated by Th102;

      hence thesis by Def12;

    end;

    theorem :: GROUP_3:109

    

     Th109: for H be strict Subgroup of G holds H in ( con_class H)

    proof

      let H be strict Subgroup of G;

      (H,H) are_conjugated ;

      hence thesis by Def12;

    end;

    theorem :: GROUP_3:110

    for H1,H2 be strict Subgroup of G holds H1 in ( con_class H2) implies H2 in ( con_class H1)

    proof

      let H1,H2 be strict Subgroup of G;

      assume H1 in ( con_class H2);

      then (H1,H2) are_conjugated by Th107;

      hence thesis by Th107;

    end;

    theorem :: GROUP_3:111

    for H1,H2 be strict Subgroup of G holds ( con_class H1) = ( con_class H2) iff ( con_class H1) meets ( con_class H2)

    proof

      let H1,H2 be strict Subgroup of G;

      thus ( con_class H1) = ( con_class H2) implies ( con_class H1) meets ( con_class H2) by Th109;

      assume ( con_class H1) meets ( con_class H2);

      then

      consider x be object such that

       A1: x in ( con_class H1) and

       A2: x in ( con_class H2) by XBOOLE_0: 3;

      reconsider x as strict Subgroup of G by A1, Th106;

      

       A3: (H1,x) are_conjugated by A1, Th107;

      thus ( con_class H1) c= ( con_class H2)

      proof

        let y be object;

        assume y in ( con_class H1);

        then

        consider H3 be strict Subgroup of G such that

         A4: H3 = y and

         A5: (H1,H3) are_conjugated by Def12;

        

         A6: (H2,x) are_conjugated by A2, Th107;

        (x,H1) are_conjugated by A1, Th107;

        then (x,H3) are_conjugated by A5, Th105;

        then (H2,H3) are_conjugated by A6, Th105;

        hence thesis by A4, Def12;

      end;

      let y be object;

      assume y in ( con_class H2);

      then

      consider H3 be strict Subgroup of G such that

       A7: H3 = y and

       A8: (H2,H3) are_conjugated by Def12;

      (x,H2) are_conjugated by A2, Th107;

      then (x,H3) are_conjugated by A8, Th105;

      then (H1,H3) are_conjugated by A3, Th105;

      hence thesis by A7, Def12;

    end;

    theorem :: GROUP_3:112

    G is finite implies ( con_class H) is finite by Th15, FINSET_1: 1;

    theorem :: GROUP_3:113

    

     Th113: for H1 be strict Subgroup of G holds (H1,H2) are_conjugated iff (( carr H1),( carr H2)) are_conjugated

    proof

      let H1 be strict Subgroup of G;

      thus (H1,H2) are_conjugated implies (( carr H1),( carr H2)) are_conjugated

      proof

        given a such that

         A1: the multMagma of H1 = (H2 |^ a);

        ( carr H1) = (( carr H2) |^ a) by A1, Def6;

        hence thesis;

      end;

      given a such that

       A2: ( carr H1) = (( carr H2) |^ a);

      H1 = (H2 |^ a) by A2, Def6;

      hence thesis;

    end;

    definition

      let G;

      let IT be Subgroup of G;

      :: GROUP_3:def13

      attr IT is normal means

      : Def13: for a holds (IT |^ a) = the multMagma of IT;

    end

    registration

      let G;

      cluster strict normal for Subgroup of G;

      existence

      proof

        for a holds (( (1). G) |^ a) = ( (1). G) by Th67;

        then ( (1). G) is normal;

        hence thesis;

      end;

    end

    reserve N2 for normal Subgroup of G;

    theorem :: GROUP_3:114

    

     Th114: ( (1). G) is normal & ( (Omega). G) is normal by Th67, Th69;

    theorem :: GROUP_3:115

    for N1,N2 be strict normal Subgroup of G holds (N1 /\ N2) is normal

    proof

      let N1,N2 be strict normal Subgroup of G;

      let a;

      

      thus ((N1 /\ N2) |^ a) = ((N1 |^ a) /\ (N2 |^ a)) by Th63

      .= (N1 /\ (N2 |^ a)) by Def13

      .= the multMagma of (N1 /\ N2) by Def13;

    end;

    theorem :: GROUP_3:116

    for H be strict Subgroup of G holds G is commutative Group implies H is normal by Th73;

    theorem :: GROUP_3:117

    

     Th117: H is normal Subgroup of G iff for a holds (a * H) = (H * a)

    proof

      thus H is normal Subgroup of G implies for a holds (a * H) = (H * a)

      proof

        assume

         A1: H is normal Subgroup of G;

        let a;

        

         A2: ( carr (H |^ a)) = (((a " ) * H) * a) by Th59;

        ( carr (H |^ a)) = the carrier of the multMagma of H by A1, Def13

        .= ( carr H);

        

        hence (a * H) = ((a * ((a " ) * H)) * a) by A2, GROUP_2: 33

        .= (((a * (a " )) * H) * a) by GROUP_2: 105

        .= ((( 1_ G) * H) * a) by GROUP_1:def 5

        .= (H * a) by GROUP_2: 37;

      end;

      assume

       A3: for a holds (a * H) = (H * a);

      H is normal

      proof

        let a;

        the carrier of (H |^ a) = (((a " ) * H) * a) by Th59

        .= ((H * (a " )) * a) by A3

        .= (H * ((a " ) * a)) by GROUP_2: 107

        .= (H * ( 1_ G)) by GROUP_1:def 5

        .= the carrier of H by GROUP_2: 109;

        hence thesis by GROUP_2: 59;

      end;

      hence thesis;

    end;

    theorem :: GROUP_3:118

    

     Th118: for H be Subgroup of G holds H is normal Subgroup of G iff for a holds (a * H) c= (H * a)

    proof

      let H be Subgroup of G;

      thus H is normal Subgroup of G implies for a holds (a * H) c= (H * a) by Th117;

      assume

       A1: for a holds (a * H) c= (H * a);

      now

        let a;

        ((a " ) * H) c= (H * (a " )) by A1;

        then (a * ((a " ) * H)) c= (a * (H * (a " ))) by Th4;

        then ((a * (a " )) * H) c= (a * (H * (a " ))) by GROUP_2: 105;

        then (( 1_ G) * H) c= (a * (H * (a " ))) by GROUP_1:def 5;

        then ( carr H) c= (a * (H * (a " ))) by GROUP_2: 109;

        then ( carr H) c= ((a * H) * (a " )) by GROUP_2: 106;

        then (( carr H) * a) c= (((a * H) * (a " )) * a) by Th4;

        then (H * a) c= ((a * H) * ((a " ) * a)) by GROUP_2: 34;

        then (H * a) c= ((a * H) * ( 1_ G)) by GROUP_1:def 5;

        hence (H * a) c= (a * H) by GROUP_2: 37;

      end;

      then for a holds (a * H) = (H * a) by A1;

      hence thesis by Th117;

    end;

    theorem :: GROUP_3:119

    

     Th119: for H be Subgroup of G holds H is normal Subgroup of G iff for a holds (H * a) c= (a * H)

    proof

      let H be Subgroup of G;

      thus H is normal Subgroup of G implies for a holds (H * a) c= (a * H) by Th117;

      assume

       A1: for a holds (H * a) c= (a * H);

      now

        let a;

        (H * (a " )) c= ((a " ) * H) by A1;

        then (a * (H * (a " ))) c= (a * ((a " ) * H)) by Th4;

        then (a * (H * (a " ))) c= ((a * (a " )) * H) by GROUP_2: 105;

        then (a * (H * (a " ))) c= (( 1_ G) * H) by GROUP_1:def 5;

        then (a * (H * (a " ))) c= ( carr H) by GROUP_2: 109;

        then ((a * H) * (a " )) c= ( carr H) by GROUP_2: 106;

        then (((a * H) * (a " )) * a) c= (( carr H) * a) by Th4;

        then ((a * H) * ((a " ) * a)) c= (H * a) by GROUP_2: 34;

        then ((a * H) * ( 1_ G)) c= (H * a) by GROUP_1:def 5;

        hence (a * H) c= (H * a) by GROUP_2: 37;

      end;

      then for a holds (a * H) = (H * a) by A1;

      hence thesis by Th117;

    end;

    theorem :: GROUP_3:120

    for H be Subgroup of G holds H is normal Subgroup of G iff for A holds (A * H) = (H * A)

    proof

      let H be Subgroup of G;

      thus H is normal Subgroup of G implies for A holds (A * H) = (H * A)

      proof

        assume

         A1: H is normal Subgroup of G;

        let A;

        thus (A * H) c= (H * A)

        proof

          let x be object;

          assume x in (A * H);

          then

          consider a, h such that

           A2: x = (a * h) and

           A3: a in A and

           A4: h in H by GROUP_2: 94;

          x in (a * H) by A2, A4, GROUP_2: 103;

          then x in (H * a) by A1, Th117;

          then ex g st x = (g * a) & g in H by GROUP_2: 104;

          hence thesis by A3;

        end;

        let x be object;

        assume x in (H * A);

        then

        consider h, a such that

         A5: x = (h * a) & h in H and

         A6: a in A by GROUP_2: 95;

        x in (H * a) by A5, GROUP_2: 104;

        then x in (a * H) by A1, Th117;

        then ex g st x = (a * g) & g in H by GROUP_2: 103;

        hence thesis by A6;

      end;

      assume

       A7: for A holds (A * H) = (H * A);

      now

        let a;

        

        thus (a * H) = ( {a} * H)

        .= (H * {a}) by A7

        .= (H * a);

      end;

      hence thesis by Th117;

    end;

    theorem :: GROUP_3:121

    for H be strict Subgroup of G holds H is normal Subgroup of G iff for a holds H is Subgroup of (H |^ a)

    proof

      let H be strict Subgroup of G;

      thus H is normal Subgroup of G implies for a holds H is Subgroup of (H |^ a)

      proof

        assume

         A1: H is normal Subgroup of G;

        let a;

        (H |^ a) = the multMagma of H by A1, Def13;

        hence thesis by GROUP_2: 54;

      end;

      assume

       A2: for a holds H is Subgroup of (H |^ a);

      now

        let a;

        

         A3: ((H |^ (a " )) * a) = (((((a " ) " ) * H) * (a " )) * a) by Th59

        .= ((((a " ) " ) * H) * ((a " ) * a)) by GROUP_2: 34

        .= ((((a " ) " ) * H) * ( 1_ G)) by GROUP_1:def 5

        .= (((a " ) " ) * H) by GROUP_2: 37

        .= (a * H);

        H is Subgroup of (H |^ (a " )) by A2;

        hence (H * a) c= (a * H) by A3, Th6;

      end;

      hence thesis by Th119;

    end;

    theorem :: GROUP_3:122

    for H be strict Subgroup of G holds H is normal Subgroup of G iff for a holds (H |^ a) is Subgroup of H

    proof

      let H be strict Subgroup of G;

      thus H is normal Subgroup of G implies for a holds (H |^ a) is Subgroup of H

      proof

        assume

         A1: H is normal Subgroup of G;

        let a;

        (H |^ a) = the multMagma of H by A1, Def13;

        hence thesis by GROUP_2: 54;

      end;

      assume

       A2: for a holds (H |^ a) is Subgroup of H;

      now

        let a;

        

         A3: ((H |^ (a " )) * a) = (((((a " ) " ) * H) * (a " )) * a) by Th59

        .= ((((a " ) " ) * H) * ((a " ) * a)) by GROUP_2: 34

        .= ((((a " ) " ) * H) * ( 1_ G)) by GROUP_1:def 5

        .= (((a " ) " ) * H) by GROUP_2: 37

        .= (a * H);

        (H |^ (a " )) is Subgroup of H by A2;

        hence (a * H) c= (H * a) by A3, Th6;

      end;

      hence thesis by Th118;

    end;

    theorem :: GROUP_3:123

    for H be strict Subgroup of G holds H is normal Subgroup of G iff ( con_class H) = {H}

    proof

      let H be strict Subgroup of G;

      thus H is normal Subgroup of G implies ( con_class H) = {H}

      proof

        assume

         A1: H is normal Subgroup of G;

        thus ( con_class H) c= {H}

        proof

          let x be object;

          assume x in ( con_class H);

          then

          consider H1 be strict Subgroup of G such that

           A2: x = H1 and

           A3: (H,H1) are_conjugated by Def12;

          ex g st H1 = (H |^ g) by A3, Th102;

          then x = H by A1, A2, Def13;

          hence thesis by TARSKI:def 1;

        end;

        H in ( con_class H) by Th109;

        hence thesis by ZFMISC_1: 31;

      end;

      assume

       A4: ( con_class H) = {H};

      H is normal

      proof

        let a;

        (H |^ a) in ( con_class H) by Th108;

        hence thesis by A4, TARSKI:def 1;

      end;

      hence thesis;

    end;

    theorem :: GROUP_3:124

    for H be strict Subgroup of G holds H is normal Subgroup of G iff for a st a in H holds ( con_class a) c= ( carr H)

    proof

      let H be strict Subgroup of G;

      thus H is normal Subgroup of G implies for a st a in H holds ( con_class a) c= ( carr H)

      proof

        assume

         A1: H is normal Subgroup of G;

        let a;

        assume

         A2: a in H;

        let x be object;

        assume x in ( con_class a);

        then

        consider b such that

         A3: x = b and

         A4: (a,b) are_conjugated by Th80;

        consider c such that

         A5: b = (a |^ c) by A4, Th74;

        x in (H |^ c) by A2, A3, A5, Th58;

        then x in H by A1, Def13;

        hence thesis;

      end;

      assume

       A6: for a st a in H holds ( con_class a) c= ( carr H);

      H is normal

      proof

        let a;

        (H |^ a) = H

        proof

          let b;

          thus b in (H |^ a) implies b in H

          proof

            assume b in (H |^ a);

            then

            consider c such that

             A7: b = (c |^ a) & c in H by Th58;

            b in ( con_class c) & ( con_class c) c= ( carr H) by A6, A7, Th82;

            hence thesis;

          end;

          assume b in H;

          then

           A8: ( con_class b) c= ( carr H) by A6;

          (b |^ (a " )) in ( con_class b) by Th82;

          then (b |^ (a " )) in H by A8;

          then ((b |^ (a " )) |^ a) in (H |^ a) by Th58;

          hence thesis by Th25;

        end;

        hence thesis;

      end;

      hence thesis;

    end;

    

     Lm5: for N1 be strict normal Subgroup of G holds (( carr N1) * ( carr N2)) c= (( carr N2) * ( carr N1))

    proof

      let N1 be strict normal Subgroup of G;

      let x be object;

      assume x in (( carr N1) * ( carr N2));

      then

      consider a, b such that

       A1: x = (a * b) and

       A2: a in ( carr N1) and

       A3: b in ( carr N2);

      a in N1 by A2;

      then (a |^ b) in (N1 |^ b) by Th58;

      then (a |^ b) in the multMagma of N1 by Def13;

      then

       A4: (a |^ b) in ( carr N1);

      (b * (a |^ b)) = (b * ((b " ) * (a * b))) by GROUP_1:def 3

      .= (a * b) by Th1;

      hence thesis by A1, A3, A4;

    end;

    theorem :: GROUP_3:125

    

     Th125: for N1,N2 be strict normal Subgroup of G holds (( carr N1) * ( carr N2)) = (( carr N2) * ( carr N1)) by Lm5;

    theorem :: GROUP_3:126

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (( carr N1) * ( carr N2))

    proof

      let N1,N2 be strict normal Subgroup of G;

      set A = (( carr N1) * ( carr N2));

      set B = ( carr N1);

      set C = ( carr N2);

      (( carr N1) * ( carr N2)) = (( carr N2) * ( carr N1)) by Th125;

      then

      consider H be strict Subgroup of G such that

       A1: the carrier of H = A by GROUP_2: 78;

      now

        let a;

        

        thus (a * H) = ((a * N1) * C) by A1, GROUP_2: 29

        .= ((N1 * a) * C) by Th117

        .= (B * (a * N2)) by GROUP_2: 30

        .= (B * (N2 * a)) by Th117

        .= (H * a) by A1, GROUP_2: 31;

      end;

      then H is normal Subgroup of G by Th117;

      hence thesis by A1;

    end;

    theorem :: GROUP_3:127

    for N be normal Subgroup of G holds ( Left_Cosets N) = ( Right_Cosets N)

    proof

      let N be normal Subgroup of G;

      thus ( Left_Cosets N) c= ( Right_Cosets N)

      proof

        let x be object;

        assume x in ( Left_Cosets N);

        then

        consider a such that

         A1: x = (a * N) by GROUP_2:def 15;

        x = (N * a) by A1, Th117;

        hence thesis by GROUP_2:def 16;

      end;

      let x be object;

      assume x in ( Right_Cosets N);

      then

      consider a such that

       A2: x = (N * a) by GROUP_2:def 16;

      x = (a * N) by A2, Th117;

      hence thesis by GROUP_2:def 15;

    end;

    theorem :: GROUP_3:128

    for H be Subgroup of G holds ( Left_Cosets H) is finite & ( index H) = 2 implies H is normal Subgroup of G

    proof

      let H be Subgroup of G;

      assume that

       A1: ( Left_Cosets H) is finite and

       A2: ( index H) = 2;

      ex B be finite set st B = ( Left_Cosets H) & ( index H) = ( card B) by A1, GROUP_2: 146;

      then

      consider x,y be object such that

       A3: x <> y and

       A4: ( Left_Cosets H) = {x, y} by A2, CARD_2: 60;

      ( carr H) in ( Left_Cosets H) by GROUP_2: 135;

      then {x, y} = {x, ( carr H)} or {x, y} = {( carr H), y} by A4, TARSKI:def 2;

      then

      consider z3 be object such that

       A5: {x, y} = {( carr H), z3};

      reconsider z3 as set by TARSKI: 1;

      

       A6: ( carr H) misses z3

      proof

        z3 in ( Left_Cosets H) by A4, A5, TARSKI:def 2;

        then

         A7: ex a st z3 = (a * H) by GROUP_2:def 15;

        

         A8: ( carr H) = (( 1_ G) * H) by GROUP_2: 109;

        assume not thesis;

        then ( carr H) = z3 by A7, A8, GROUP_2: 115;

        then

         A9: {x, y} = {( carr H)} by A5, ENUMSET1: 29;

        then x = ( carr H) by ZFMISC_1: 4;

        hence thesis by A3, A9, ZFMISC_1: 4;

      end;

      ( union ( Left_Cosets H)) = the carrier of G & ( union ( Left_Cosets H)) = (( carr H) \/ z3) by A4, A5, GROUP_2: 137, ZFMISC_1: 75;

      then

       A10: ( union ( Right_Cosets H)) = the carrier of G & z3 = (the carrier of G \ ( carr H)) by A6, GROUP_2: 137, XBOOLE_1: 88;

      ex C be finite set st C = ( Right_Cosets H) & ( index H) = ( card C) by A1, GROUP_2: 146;

      then

      consider z1,z2 be object such that

       A11: z1 <> z2 and

       A12: ( Right_Cosets H) = {z1, z2} by A2, CARD_2: 60;

      ( carr H) in ( Right_Cosets H) by GROUP_2: 135;

      then {z1, z2} = {z1, ( carr H)} or {z1, z2} = {( carr H), z2} by A12, TARSKI:def 2;

      then

      consider z4 be object such that

       A13: {z1, z2} = {( carr H), z4};

      reconsider z4 as set by TARSKI: 1;

      

       A14: ( carr H) misses z4

      proof

        z4 in ( Right_Cosets H) by A12, A13, TARSKI:def 2;

        then

         A15: ex a st z4 = (H * a) by GROUP_2:def 16;

        

         A16: ( carr H) = (H * ( 1_ G)) by GROUP_2: 109;

        assume not thesis;

        then ( carr H) = z4 by A15, A16, GROUP_2: 121;

        then

         A17: {z1, z2} = {( carr H)} by A13, ENUMSET1: 29;

        then z1 = ( carr H) by ZFMISC_1: 4;

        hence thesis by A11, A17, ZFMISC_1: 4;

      end;

      

       A18: ( union ( Right_Cosets H)) = (( carr H) \/ z4) by A12, A13, ZFMISC_1: 75;

      now

        let c;

        now

          per cases ;

            suppose

             A19: (c * H) = ( carr H);

            then c in H by GROUP_2: 113;

            hence (c * H) = (H * c) by A19, GROUP_2: 119;

          end;

            suppose

             A20: (c * H) <> ( carr H);

            then not c in H by GROUP_2: 113;

            then

             A21: (H * c) <> ( carr H) by GROUP_2: 119;

            (c * H) in ( Left_Cosets H) by GROUP_2:def 15;

            then

             A22: (c * H) = z3 by A4, A5, A20, TARSKI:def 2;

            (H * c) in ( Right_Cosets H) by GROUP_2:def 16;

            then (H * c) = z4 by A12, A13, A21, TARSKI:def 2;

            hence (c * H) = (H * c) by A10, A18, A14, A22, XBOOLE_1: 88;

          end;

        end;

        hence (c * H) = (H * c);

      end;

      hence thesis by Th117;

    end;

    definition

      let G;

      let A;

      :: GROUP_3:def14

      func Normalizer A -> strict Subgroup of G means

      : Def14: the carrier of it = { h : (A |^ h) = A };

      existence

      proof

        set X = { h : (A |^ h) = A };

        X c= the carrier of G

        proof

          let x be object;

          assume x in X;

          then ex h st x = h & (A |^ h) = A;

          hence thesis;

        end;

        then

        reconsider X as Subset of G;

         A1:

        now

          let a, b;

          assume a in X & b in X;

          then (ex g st a = g & (A |^ g) = A) & ex h st b = h & (A |^ h) = A;

          then (A |^ (a * b)) = A by Th47;

          hence (a * b) in X;

        end;

         A2:

        now

          let a;

          assume a in X;

          then ex b st a = b & (A |^ b) = A;

          then A = (A |^ (a " )) by Th54;

          hence (a " ) in X;

        end;

        (A |^ ( 1_ G)) = A by Th52;

        then ( 1_ G) in X;

        hence thesis by A1, A2, GROUP_2: 52;

      end;

      uniqueness by GROUP_2: 59;

    end

    theorem :: GROUP_3:129

    

     Th129: x in ( Normalizer A) iff ex h st x = h & (A |^ h) = A

    proof

      thus x in ( Normalizer A) implies ex h st x = h & (A |^ h) = A

      proof

        assume x in ( Normalizer A);

        then x in the carrier of ( Normalizer A);

        then x in { h : (A |^ h) = A } by Def14;

        hence thesis;

      end;

      given h such that

       A1: x = h & (A |^ h) = A;

      x in { b : (A |^ b) = A } by A1;

      then x in the carrier of ( Normalizer A) by Def14;

      hence thesis;

    end;

    theorem :: GROUP_3:130

    

     Th130: ( card ( con_class A)) = ( Index ( Normalizer A))

    proof

      defpred P[ object, object] means ex a st $1 = (A |^ a) & $2 = (( Normalizer A) * a);

      

       A1: for x be object st x in ( con_class A) holds ex y be object st P[x, y]

      proof

        let x be object;

        assume x in ( con_class A);

        then

        consider B such that

         A2: x = B and

         A3: (A,B) are_conjugated ;

        consider g such that

         A4: B = (A |^ g) by A3, Th88;

        reconsider y = (( Normalizer A) * g) as set;

        take y;

        take g;

        thus thesis by A2, A4;

      end;

      consider f be Function such that

       A5: ( dom f) = ( con_class A) and

       A6: for x be object st x in ( con_class A) holds P[x, (f . x)] from CLASSES1:sch 1( A1);

      

       A7: for x, y1, y2 st x in ( con_class A) & P[x, y1] & P[x, y2] holds y1 = y2

      proof

        let x, y1, y2;

        assume x in ( con_class A);

        given a such that

         A8: x = (A |^ a) and

         A9: y1 = (( Normalizer A) * a);

        given b such that

         A10: x = (A |^ b) and

         A11: y2 = (( Normalizer A) * b);

        A = ((A |^ b) |^ (a " )) by A8, A10, Th54

        .= (A |^ (b * (a " ))) by Th47;

        then (b * (a " )) in ( Normalizer A) by Th129;

        hence thesis by A9, A11, GROUP_2: 120;

      end;

      

       A12: ( rng f) = ( Right_Cosets ( Normalizer A))

      proof

        thus ( rng f) c= ( Right_Cosets ( Normalizer A))

        proof

          let x be object;

          assume x in ( rng f);

          then

          consider y be object such that

           A13: y in ( dom f) & (f . y) = x by FUNCT_1:def 3;

          ex a st y = (A |^ a) & x = (( Normalizer A) * a) by A5, A6, A13;

          hence thesis by GROUP_2:def 16;

        end;

        let x be object;

        assume x in ( Right_Cosets ( Normalizer A));

        then

        consider a such that

         A14: x = (( Normalizer A) * a) by GROUP_2:def 16;

        set y = (A |^ a);

        (A,(A |^ a)) are_conjugated by Th88;

        then

         A15: y in ( con_class A);

        then ex b st y = (A |^ b) & (f . y) = (( Normalizer A) * b) by A6;

        then x = (f . y) by A7, A14, A15;

        hence thesis by A5, A15, FUNCT_1:def 3;

      end;

      f is one-to-one

      proof

        let x,y be object;

        assume that

         A16: x in ( dom f) and

         A17: y in ( dom f) and

         A18: (f . x) = (f . y);

        consider b such that

         A19: y = (A |^ b) and

         A20: (f . y) = (( Normalizer A) * b) by A5, A6, A17;

        consider a such that

         A21: x = (A |^ a) and

         A22: (f . x) = (( Normalizer A) * a) by A5, A6, A16;

        (b * (a " )) in ( Normalizer A) by A18, A22, A20, GROUP_2: 120;

        then ex h st (b * (a " )) = h & (A |^ h) = A by Th129;

        then A = ((A |^ b) |^ (a " )) by Th47;

        hence thesis by A21, A19, Th54;

      end;

      then (( con_class A),( Right_Cosets ( Normalizer A))) are_equipotent by A5, A12, WELLORD2:def 4;

      

      hence ( card ( con_class A)) = ( card ( Right_Cosets ( Normalizer A))) by CARD_1: 5

      .= ( Index ( Normalizer A)) by GROUP_2: 145;

    end;

    theorem :: GROUP_3:131

    ( con_class A) is finite or ( Left_Cosets ( Normalizer A)) is finite implies ex C be finite set st C = ( con_class A) & ( card C) = ( index ( Normalizer A))

    proof

      

       A1: ( card ( con_class A)) = ( Index ( Normalizer A)) by Th130

      .= ( card ( Left_Cosets ( Normalizer A)));

      then

       A2: (( con_class A),( Left_Cosets ( Normalizer A))) are_equipotent by CARD_1: 5;

      assume

       A3: ( con_class A) is finite or ( Left_Cosets ( Normalizer A)) is finite;

      then

      reconsider C = ( con_class A) as finite set by A2, CARD_1: 38;

      take C;

      thus C = ( con_class A);

      ( Left_Cosets ( Normalizer A)) is finite by A3, A2, CARD_1: 38;

      hence thesis by A1, GROUP_2:def 18;

    end;

    theorem :: GROUP_3:132

    

     Th132: ( card ( con_class a)) = ( Index ( Normalizer {a}))

    proof

      deffunc F( object) = {$1};

      consider f be Function such that

       A1: ( dom f) = ( con_class a) and

       A2: for x be object st x in ( con_class a) holds (f . x) = F(x) from FUNCT_1:sch 3;

      

       A3: ( rng f) = ( con_class {a})

      proof

        thus ( rng f) c= ( con_class {a})

        proof

          let x be object;

          assume x in ( rng f);

          then

          consider y be object such that

           A4: y in ( dom f) and

           A5: (f . y) = x by FUNCT_1:def 3;

          reconsider y as Element of G by A1, A4;

          (f . y) = {y} by A1, A2, A4;

          then x in { {d} : d in ( con_class a) } by A1, A4, A5;

          hence thesis by Th100;

        end;

        let x be object;

        assume x in ( con_class {a});

        then x in { {b} : b in ( con_class a) } by Th100;

        then

        consider b such that

         A6: x = {b} and

         A7: b in ( con_class a);

        (f . b) = {b} by A2, A7;

        hence thesis by A1, A6, A7, FUNCT_1:def 3;

      end;

      f is one-to-one

      proof

        let x,y be object;

        assume that

         A8: x in ( dom f) & y in ( dom f) and

         A9: (f . x) = (f . y);

        (f . x) = {x} & (f . y) = {y} by A1, A2, A8;

        hence thesis by A9, ZFMISC_1: 3;

      end;

      then (( con_class a),( con_class {a})) are_equipotent by A1, A3, WELLORD2:def 4;

      

      hence ( card ( con_class a)) = ( card ( con_class {a})) by CARD_1: 5

      .= ( Index ( Normalizer {a})) by Th130;

    end;

    theorem :: GROUP_3:133

    ( con_class a) is finite or ( Left_Cosets ( Normalizer {a})) is finite implies ex C be finite set st C = ( con_class a) & ( card C) = ( index ( Normalizer {a}))

    proof

      

       A1: ( card ( con_class a)) = ( Index ( Normalizer {a})) by Th132

      .= ( card ( Left_Cosets ( Normalizer {a})));

      then

       A2: (( con_class a),( Left_Cosets ( Normalizer {a}))) are_equipotent by CARD_1: 5;

      assume

       A3: ( con_class a) is finite or ( Left_Cosets ( Normalizer {a})) is finite;

      then

      reconsider C = ( con_class a) as finite set by A2, CARD_1: 38;

      take C;

      thus C = ( con_class a);

      ( Left_Cosets ( Normalizer {a})) is finite by A3, A2, CARD_1: 38;

      hence thesis by A1, GROUP_2:def 18;

    end;

    definition

      let G;

      let H;

      :: GROUP_3:def15

      func Normalizer H -> strict Subgroup of G equals ( Normalizer ( carr H));

      correctness ;

    end

    theorem :: GROUP_3:134

    

     Th134: for H be strict Subgroup of G holds x in ( Normalizer H) iff ex h st x = h & (H |^ h) = H

    proof

      let H be strict Subgroup of G;

      thus x in ( Normalizer H) implies ex h st x = h & (H |^ h) = H

      proof

        assume x in ( Normalizer H);

        then

        consider a such that

         A1: x = a and

         A2: (( carr H) |^ a) = ( carr H) by Th129;

        (H |^ a) = H by A2, Def6;

        hence thesis by A1;

      end;

      given h such that

       A3: x = h and

       A4: (H |^ h) = H;

      (( carr H) |^ h) = ( carr H) by A4, Def6;

      hence thesis by A3, Th129;

    end;

    theorem :: GROUP_3:135

    

     Th135: for H be strict Subgroup of G holds ( card ( con_class H)) = ( Index ( Normalizer H))

    proof

      let H be strict Subgroup of G;

      defpred P[ object, object] means ex H1 be strict Subgroup of G st $1 = H1 & $2 = ( carr H1);

      

       A1: for x be object st x in ( con_class H) holds ex y be object st P[x, y]

      proof

        let x be object;

        assume x in ( con_class H);

        then

        reconsider H = x as strict Subgroup of G by Def1;

        reconsider y = ( carr H) as set;

        take y;

        take H;

        thus thesis;

      end;

      consider f be Function such that

       A2: ( dom f) = ( con_class H) and

       A3: for x be object st x in ( con_class H) holds P[x, (f . x)] from CLASSES1:sch 1( A1);

      

       A4: ( rng f) = ( con_class ( carr H))

      proof

        thus ( rng f) c= ( con_class ( carr H))

        proof

          let x be object;

          assume x in ( rng f);

          then

          consider y be object such that

           A5: y in ( dom f) and

           A6: (f . y) = x by FUNCT_1:def 3;

          consider H1 be strict Subgroup of G such that

           A7: y = H1 and

           A8: x = ( carr H1) by A2, A3, A5, A6;

          (H1,H) are_conjugated by A2, A5, A7, Th107;

          then (( carr H1),( carr H)) are_conjugated by Th113;

          hence thesis by A8;

        end;

        let x be object;

        assume x in ( con_class ( carr H));

        then

        consider B such that

         A9: B = x and

         A10: (( carr H),B) are_conjugated ;

        consider H1 be strict Subgroup of G such that

         A11: the carrier of H1 = B by A10, Th93;

        B = ( carr H1) by A11;

        then (H1,H) are_conjugated by A10, Th113;

        then

         A12: H1 in ( con_class H) by Th107;

        then ex H2 be strict Subgroup of G st H1 = H2 & (f . H1) = ( carr H2) by A3;

        hence thesis by A2, A9, A11, A12, FUNCT_1:def 3;

      end;

      f is one-to-one

      proof

        let x,y be object;

        assume that

         A13: x in ( dom f) & y in ( dom f) and

         A14: (f . x) = (f . y);

        (ex H1 be strict Subgroup of G st x = H1 & (f . x) = ( carr H1)) & ex H2 be strict Subgroup of G st y = H2 & (f . y) = ( carr H2) by A2, A3, A13;

        hence thesis by A14, GROUP_2: 59;

      end;

      then (( con_class H),( con_class ( carr H))) are_equipotent by A2, A4, WELLORD2:def 4;

      

      hence ( card ( con_class H)) = ( card ( con_class ( carr H))) by CARD_1: 5

      .= ( Index ( Normalizer H)) by Th130;

    end;

    theorem :: GROUP_3:136

    for H be strict Subgroup of G holds ( con_class H) is finite or ( Left_Cosets ( Normalizer H)) is finite implies ex C be finite set st C = ( con_class H) & ( card C) = ( index ( Normalizer H))

    proof

      let H be strict Subgroup of G;

      

       A1: ( card ( con_class H)) = ( Index ( Normalizer H)) by Th135

      .= ( card ( Left_Cosets ( Normalizer H)));

      then

       A2: (( con_class H),( Left_Cosets ( Normalizer H))) are_equipotent by CARD_1: 5;

      assume

       A3: ( con_class H) is finite or ( Left_Cosets ( Normalizer H)) is finite;

      then

      reconsider C = ( con_class H) as finite set by A2, CARD_1: 38;

      take C;

      thus C = ( con_class H);

      ( Left_Cosets ( Normalizer H)) is finite by A3, A2, CARD_1: 38;

      hence thesis by A1, GROUP_2:def 18;

    end;

    theorem :: GROUP_3:137

    

     Th137: for G be strict Group, H be strict Subgroup of G holds H is normal Subgroup of G iff ( Normalizer H) = G

    proof

      let G be strict Group, H be strict Subgroup of G;

      thus H is normal Subgroup of G implies ( Normalizer H) = G

      proof

        assume

         A1: H is normal Subgroup of G;

        now

          let a be Element of G;

          (H |^ a) = H by A1, Def13;

          hence a in ( Normalizer H) by Th134;

        end;

        hence thesis by GROUP_2: 62;

      end;

      assume

       A2: ( Normalizer H) = G;

      H is normal

      proof

        let a be Element of G;

        a in ( Normalizer H) by A2;

        then ex b be Element of G st b = a & (H |^ b) = H by Th134;

        hence thesis;

      end;

      hence thesis;

    end;

    theorem :: GROUP_3:138

    for G be strict Group holds ( Normalizer ( (1). G)) = G

    proof

      let G be strict Group;

      ( (1). G) is normal Subgroup of G by Th114;

      hence thesis by Th137;

    end;

    theorem :: GROUP_3:139

    for G be strict Group holds ( Normalizer ( (Omega). G)) = G

    proof

      let G be strict Group;

      ( (Omega). G) is normal Subgroup of G by Th114;

      hence thesis by Th137;

    end;