projred1.miz



    begin

    reserve IPP for IncProjSp;

    reserve a,b,c,d,p,q,o,r,s,t,u,v,w,x,y for POINT of IPP;

    reserve A,B,C,D,L,P,Q,S for LINE of IPP;

    theorem :: PROJRED1:1

    

     Th1: ex a st not a on A

    proof

      consider p, L such that

       A1: not p on L by INCPROJ:def 6;

      now

        assume

         A2: A <> L;

        now

          consider q, r, s such that

           A3: q <> r and r <> s and s <> q and

           A4: q on L & r on L and s on L by INCPROJ:def 7;

           not q on A or not r on A by A2, A3, A4, INCPROJ:def 4;

          hence thesis;

        end;

        hence thesis;

      end;

      hence thesis by A1;

    end;

    theorem :: PROJRED1:2

    

     Th2: ex A st not a on A

    proof

      consider p, L such that

       A1: not p on L by INCPROJ:def 6;

      now

        now

          consider q, r, s such that q <> r and r <> s and

           A2: s <> q and

           A3: q on L and r on L and

           A4: s on L by INCPROJ:def 7;

          assume

           A5: a on L;

           A6:

          now

            consider S such that

             A7: s on S & p on S by INCPROJ:def 5;

            assume a <> s;

            then not a on S by A1, A5, A4, A7, INCPROJ:def 4;

            hence thesis;

          end;

          now

            consider S such that

             A8: q on S & p on S by INCPROJ:def 5;

            assume a <> q;

            then not a on S by A1, A5, A3, A8, INCPROJ:def 4;

            hence thesis;

          end;

          hence thesis by A2, A6;

        end;

        hence thesis;

      end;

      hence thesis;

    end;

    theorem :: PROJRED1:3

    

     Th3: A <> B implies ex a, b st a on A & not a on B & b on B & not b on A

    proof

      consider a, b, d such that

       A1: a <> b and b <> d and d <> a and

       A2: a on A & b on A and d on A by INCPROJ:def 7;

      consider r, s, t such that

       A3: r <> s and s <> t and t <> r and

       A4: r on B & s on B and t on B by INCPROJ:def 7;

      assume

       A5: A <> B;

      then

       A6: not r on A or not s on A by A3, A4, INCPROJ:def 4;

       not a on B or not b on B by A5, A1, A2, INCPROJ:def 4;

      hence thesis by A2, A4, A6;

    end;

    theorem :: PROJRED1:4

    a <> b implies ex A, B st a on A & not a on B & b on B & not b on A

    proof

      consider Q such that

       A1: a on Q & b on Q by INCPROJ:def 5;

      consider q such that

       A2: not q on Q by Th1;

      consider B such that

       A3: b on B and

       A4: q on B by INCPROJ:def 5;

      assume

       A5: a <> b;

      then

       A6: not a on B by A1, A2, A3, A4, INCPROJ:def 4;

      consider A such that

       A7: a on A and

       A8: q on A by INCPROJ:def 5;

       not b on A by A5, A1, A2, A7, A8, INCPROJ:def 4;

      hence thesis by A7, A3, A6;

    end;

    theorem :: PROJRED1:5

    ex A, B, C st a on A & a on B & a on C & A <> B & B <> C & C <> A

    proof

      consider Q such that

       A1: not a on Q by Th2;

      consider b1,b2,b3 be Element of the Points of IPP such that

       A2: b1 <> b2 and

       A3: b2 <> b3 and

       A4: b3 <> b1 and

       A5: b1 on Q and

       A6: b2 on Q and

       A7: b3 on Q by INCPROJ:def 7;

      consider B1 be LINE of IPP such that

       A8: a on B1 & b1 on B1 by INCPROJ:def 5;

      

       A9: not b3 on B1 by A1, A4, A5, A7, A8, INCPROJ:def 4;

      consider B2 be LINE of IPP such that

       A10: a on B2 & b2 on B2 by INCPROJ:def 5;

      consider B3 be Element of the Lines of IPP such that

       A11: a on B3 & b3 on B3 by INCPROJ:def 5;

      

       A12: not b2 on B3 by A1, A3, A6, A7, A11, INCPROJ:def 4;

       not b1 on B2 by A1, A2, A5, A6, A10, INCPROJ:def 4;

      hence thesis by A8, A10, A11, A12, A9;

    end;

    theorem :: PROJRED1:6

    ex a st not a on A & not a on B

    proof

      

       A1: A <> B implies ex a st not a on A & not a on B

      proof

        assume A <> B;

        then

        consider a, b such that a on A and

         A2: not a on B and b on B and

         A3: not b on A by Th3;

        consider C such that

         A4: a on C & b on C by INCPROJ:def 5;

        consider c,d,e be Element of the Points of IPP such that

         A5: c <> d & d <> e & e <> c & c on C & d on C & e on C by INCPROJ:def 7;

         not c on A & not c on B or not d on A & not d on B or not e on A & not e on B by A2, A3, A4, A5, INCPROJ:def 4;

        hence thesis;

      end;

      A = B implies ex a st not a on A & not a on B

      proof

        assume

         A6: A = B;

        ex a st not a on A by Th1;

        hence thesis by A6;

      end;

      hence thesis by A1;

    end;

    theorem :: PROJRED1:7

    

     Th7: ex a st a on A

    proof

      consider a, b, c such that a <> b and b <> c and c <> a and

       A1: a on A and b on A and c on A by INCPROJ:def 7;

      take a;

      thus thesis by A1;

    end;

    theorem :: PROJRED1:8

    

     Th8: ex c st c on A & c <> a & c <> b

    proof

      consider p, q, r such that

       A1: p <> q & q <> r & r <> p and

       A2: p on A & q on A & r on A by INCPROJ:def 7;

      p <> a & p <> b or q <> a & q <> b or r <> a & r <> b by A1;

      hence thesis by A2;

    end;

    theorem :: PROJRED1:9

    ex A st not a on A & not b on A

    proof

      now

        consider A such that

         A1: a on A & b on A by INCPROJ:def 5;

        consider c such that

         A2: c on A & c <> a & c <> b by Th8;

        consider d such that

         A3: not d on A by Th1;

        consider B such that

         A4: d on B & c on B by INCPROJ:def 5;

        ( not a on B) & not b on B by A1, A2, A3, A4, INCPROJ:def 4;

        hence thesis;

      end;

      hence thesis;

    end;

    theorem :: PROJRED1:10

    

     Th10: o on A & o on B & A <> B & a on A & o <> a & b on B & c on B & b <> c & a on P & b on P & c on Q implies P <> Q

    proof

      assume that

       A1: o on A & o on B & A <> B & a on A & o <> a and

       A2: b on B & c on B & b <> c and

       A3: a on P and

       A4: b on P & c on Q;

      assume not thesis;

      then P = B by A2, A4, INCPROJ:def 4;

      hence contradiction by A1, A3, INCPROJ:def 4;

    end;

    theorem :: PROJRED1:11

    

     Th11: {a, b, c} on A implies {a, c, b} on A & {b, a, c} on A & {b, c, a} on A & {c, a, b} on A & {c, b, a} on A

    proof

      assume

       A1: {a, b, c} on A;

      then

       A2: c on A by INCSP_1: 2;

      a on A & b on A by A1, INCSP_1: 2;

      hence thesis by A2, INCSP_1: 2;

    end;

    theorem :: PROJRED1:12

    

     Th12: for IPP be Desarguesian IncProjSp holds for o,b1,a1,b2,a2,b3,a3,r,s,t be POINT of IPP, C1,C2,C3,A1,A2,A3,B1,B2,B3 be LINE of IPP st {o, b1, a1} on C1 & {o, a2, b2} on C2 & {o, a3, b3} on C3 & {a3, a2, t} on A1 & {a3, r, a1} on A2 & {a2, s, a1} on A3 & {t, b2, b3} on B1 & {b1, r, b3} on B2 & {b1, s, b2} on B3 & (C1,C2,C3) are_mutually_distinct & o <> a3 & o <> b1 & o <> b2 & a2 <> b2 holds ex O be LINE of IPP st {r, s, t} on O

    proof

      let IPP be Desarguesian IncProjSp;

      let o,b1,a1,b2,a2,b3,a3,r,s,t be POINT of IPP, C1,C2,C3,A1,A2,A3,B1,B2,B3 be LINE of IPP;

      assume that

       A1: {o, b1, a1} on C1 and

       A2: {o, a2, b2} on C2 and

       A3: {o, a3, b3} on C3 and

       A4: {a3, a2, t} on A1 and

       A5: {a3, r, a1} on A2 and

       A6: {a2, s, a1} on A3 and

       A7: {t, b2, b3} on B1 and

       A8: {b1, r, b3} on B2 and

       A9: {b1, s, b2} on B3 and

       A10: (C1,C2,C3) are_mutually_distinct and

       A11: o <> a3 and

       A12: o <> b1 and

       A13: o <> b2 and

       A14: a2 <> b2;

      

       A15: r on A2 & r on B2 by A5, A8, INCSP_1: 2;

      

       A16: s on B3 by A9, INCSP_1: 2;

      

       A17: a3 on A1 by A4, INCSP_1: 2;

      

       A18: b3 on B1 by A7, INCSP_1: 2;

      

       A19: b2 on B1 by A7, INCSP_1: 2;

      

       A20: b3 on C3 by A3, INCSP_1: 2;

      

       A21: a1 on C1 by A1, INCSP_1: 2;

      

       A22: o on C2 by A2, INCSP_1: 2;

      

       A23: s on A3 by A6, INCSP_1: 2;

      

       A24: a1 on A3 by A6, INCSP_1: 2;

      

       A25: a1 on A2 by A5, INCSP_1: 2;

      

       A26: t on A1 by A4, INCSP_1: 2;

      

       A27: b1 on B2 by A8, INCSP_1: 2;

      

       A28: t on B1 by A7, INCSP_1: 2;

      

       A29: b1 on B3 by A9, INCSP_1: 2;

       A30:

      now

        assume that o <> b3 and o <> a1 and o <> a2 and

         A31: a1 = b1;

         A32:

        now

          

           A33: b3 on B2 by A8, INCSP_1: 2;

          consider O be LINE of IPP such that

           A34: t on O & s on O by INCPROJ:def 5;

          assume

           A35: a3 <> b3;

          take O;

          

           A36: b2 on C2 & o on C2 by A2, INCSP_1: 2;

          

           A37: o on C1 & a2 on C2 by A1, A2, INCSP_1: 2;

          

           A38: b1 on B3 & b2 on B3 by A9, INCSP_1: 2;

          

           A39: b1 on A2 & a3 on A2 by A5, A31, INCSP_1: 2;

          

           A40: a3 on C3 & b3 on C3 by A3, INCSP_1: 2;

          

           A41: o on C1 & o on C3 by A1, A3, INCSP_1: 2;

          

           A42: a2 on A3 by A6, INCSP_1: 2;

          C1 <> C2 & b1 on C1 by A1, A10, INCSP_1: 2, ZFMISC_1:def 5;

          then A3 <> B3 by A12, A14, A37, A36, A38, A42, Th10;

          then

           A43: b1 = s by A23, A24, A29, A16, A31, INCPROJ:def 4;

          C1 <> C3 & b1 on C1 by A1, A10, INCSP_1: 2, ZFMISC_1:def 5;

          then A2 <> B2 by A12, A35, A41, A40, A39, A33, Th10;

          then s = r by A25, A27, A15, A31, A43, INCPROJ:def 4;

          hence {r, s, t} on O by A34, INCSP_1: 2;

        end;

        now

          

           A44: a2 on A3 & b1 on A3 by A6, A31, INCSP_1: 2;

          

           A45: C2 <> C3 & o on C2 by A2, A10, INCSP_1: 2, ZFMISC_1:def 5;

          

           A46: a2 on C2 & b2 on C2 by A2, INCSP_1: 2;

          

           A47: o on C1 & a2 on C2 by A1, A2, INCSP_1: 2;

          

           A48: b2 on B3 by A9, INCSP_1: 2;

          

           A49: a2 on A1 & b2 on B1 by A4, A7, INCSP_1: 2;

          

           A50: o on C3 & b3 on C3 by A3, INCSP_1: 2;

          assume

           A51: a3 = b3;

          then b3 on A1 by A4, INCSP_1: 2;

          then A1 <> B1 by A11, A14, A51, A45, A46, A50, A49, Th10;

          then

           A52: t = b3 by A17, A26, A28, A18, A51, INCPROJ:def 4;

          take B2;

          

           A53: b2 on C2 & o on C2 by A2, INCSP_1: 2;

          C1 <> C2 & b1 on C1 by A1, A10, INCSP_1: 2, ZFMISC_1:def 5;

          then A3 <> B3 by A12, A14, A47, A53, A44, A48, Th10;

          then {s, r, t} on B2 by A8, A23, A24, A29, A16, A31, A52, INCPROJ:def 4;

          hence {r, s, t} on B2 by Th11;

        end;

        hence thesis by A32;

      end;

      

       A54: o on C1 by A1, INCSP_1: 2;

      

       A55: C1 <> C2 by A10, ZFMISC_1:def 5;

      

       A56: b1 on C1 by A1, INCSP_1: 2;

      

       A57: a2 on A3 by A6, INCSP_1: 2;

      

       A58: b2 on C2 by A2, INCSP_1: 2;

      

       A59: C2 <> C3 by A10, ZFMISC_1:def 5;

      

       A60: a3 on C3 by A3, INCSP_1: 2;

      

       A61: b3 on B2 by A8, INCSP_1: 2;

      

       A62: a3 on A2 by A5, INCSP_1: 2;

      

       A63: a2 on A1 by A4, INCSP_1: 2;

      

       A64: o on C3 by A3, INCSP_1: 2;

      

       A65: b2 on B3 by A9, INCSP_1: 2;

       A66:

      now

        assume that

         A67: o <> b3 and

         A68: o <> a1 and

         A69: o = a2;

         A70:

        now

          assume

           A71: a1 = b1;

           A72:

          now

            

             A73: a2 on A1 & b2 on B1 by A4, A7, INCSP_1: 2;

            

             A74: b2 on C2 & b3 on C3 by A2, A3, INCSP_1: 2;

            

             A75: b2 on C2 & a2 on A3 by A2, A6, INCSP_1: 2;

            

             A76: o on C2 & b1 on C1 by A1, A2, INCSP_1: 2;

            

             A77: C1 <> C2 & o on C1 by A1, A10, INCSP_1: 2, ZFMISC_1:def 5;

            assume

             A78: a3 = b3;

            take B2;

            

             A79: b2 on B3 by A9, INCSP_1: 2;

            b1 on A3 & a2 on C2 by A2, A6, A71, INCSP_1: 2;

            then A3 <> B3 by A12, A14, A77, A76, A75, A79, Th10;

            then

             A80: s = b1 by A23, A24, A29, A16, A71, INCPROJ:def 4;

            

             A81: o on C3 & a2 on C2 by A2, A3, INCSP_1: 2;

            

             A82: C2 <> C3 & o on C2 by A2, A10, INCSP_1: 2, ZFMISC_1:def 5;

            b3 on A1 by A4, A78, INCSP_1: 2;

            then A1 <> B1 by A11, A14, A78, A82, A81, A74, A73, Th10;

            then {s, r, t} on B2 by A8, A17, A26, A28, A18, A78, A80, INCPROJ:def 4;

            hence {r, s, t} on B2 by Th11;

          end;

          now

            

             A83: o on C3 & a1 on C1 by A1, A3, INCSP_1: 2;

            

             A84: a1 on A2 & a3 on A2 by A5, INCSP_1: 2;

            

             A85: b3 on B2 by A8, INCSP_1: 2;

            consider O be LINE of IPP such that

             A86: t on O & s on O by INCPROJ:def 5;

            assume

             A87: a3 <> b3;

            take O;

            

             A88: a3 on C3 & b3 on C3 by A3, INCSP_1: 2;

            C1 <> C3 & o on C1 by A1, A10, INCSP_1: 2, ZFMISC_1:def 5;

            then A2 <> B2 by A12, A71, A87, A83, A88, A84, A85, Th10;

            then

             A89: r = b1 by A25, A27, A15, A71, INCPROJ:def 4;

            A3 = C1 & B3 <> C1 by A13, A54, A21, A22, A58, A57, A24, A65, A55, A68, A69, INCPROJ:def 4;

            then r = s by A23, A24, A29, A16, A71, A89, INCPROJ:def 4;

            hence {r, s, t} on O by A86, INCSP_1: 2;

          end;

          hence thesis by A72;

        end;

        now

          assume

           A90: a1 <> b1;

           A91:

          now

            

             A92: B1 <> C3 by A13, A22, A58, A64, A19, A59, INCPROJ:def 4;

            

             A93: o on C3 & a1 on C1 by A1, A3, INCSP_1: 2;

            consider O be Element of the Lines of IPP such that

             A94: t on O & s on O by INCPROJ:def 5;

            

             A95: C1 <> C3 & o on C1 by A1, A10, INCSP_1: 2, ZFMISC_1:def 5;

            

             A96: a1 on A2 & b1 on B2 by A5, A8, INCSP_1: 2;

            

             A97: b1 on C1 & b3 on C3 by A1, A3, INCSP_1: 2;

            assume

             A98: a3 = b3;

            then b3 on A2 by A5, INCSP_1: 2;

            then A2 <> B2 by A11, A90, A98, A95, A93, A97, A96, Th10;

            then

             A99: r = b3 by A62, A15, A61, A98, INCPROJ:def 4;

            take O;

            A1 = C3 by A64, A60, A17, A63, A67, A69, A98, INCPROJ:def 4;

            then r = t by A20, A26, A28, A18, A92, A99, INCPROJ:def 4;

            hence {r, s, t} on O by A94, INCSP_1: 2;

          end;

          now

            assume a3 <> b3;

            take B2;

            A3 = C1 & B3 <> C1 by A13, A54, A21, A22, A58, A57, A24, A65, A55, A68, A69, INCPROJ:def 4;

            then

             A100: b1 = s by A56, A23, A29, A16, INCPROJ:def 4;

            A1 = C3 & B1 <> C3 by A11, A13, A22, A58, A64, A60, A17, A63, A19, A59, A69, INCPROJ:def 4;

            then {s, r, t} on B2 by A8, A20, A26, A28, A18, A100, INCPROJ:def 4;

            hence {r, s, t} on B2 by Th11;

          end;

          hence thesis by A91;

        end;

        hence thesis by A70;

      end;

      

       A101: C3 <> C1 by A10, ZFMISC_1:def 5;

      

       A102: a2 on C2 by A2, INCSP_1: 2;

       A103:

      now

        assume that

         A104: o <> b3 and

         A105: o = a1;

         A106:

        now

           A107:

          now

            

             A108: B2 <> C3 by A12, A54, A56, A64, A27, A101, INCPROJ:def 4;

            assume

             A109: a3 = b3;

            then A2 = C3 by A64, A60, A62, A25, A104, A105, INCPROJ:def 4;

            then

             A110: r = b3 by A20, A15, A61, A108, INCPROJ:def 4;

            

             A111: b2 on C2 & b3 on C3 by A2, A3, INCSP_1: 2;

            

             A112: o on C3 & a2 on C2 by A2, A3, INCSP_1: 2;

            

             A113: a2 on A1 & b2 on B1 by A4, A7, INCSP_1: 2;

            consider O be LINE of IPP such that

             A114: t on O & s on O by INCPROJ:def 5;

            

             A115: C2 <> C3 & o on C2 by A2, A10, INCSP_1: 2, ZFMISC_1:def 5;

            take O;

            b3 on A1 by A4, A109, INCSP_1: 2;

            then A1 <> B1 by A11, A14, A109, A115, A112, A111, A113, Th10;

            then r = t by A17, A26, A28, A18, A109, A110, INCPROJ:def 4;

            hence {r, s, t} on O by A114, INCSP_1: 2;

          end;

          assume

           A116: o <> a2;

          now

            assume a3 <> b3;

            take B1;

            A3 = C2 & B3 <> C2 by A12, A54, A56, A22, A102, A57, A24, A29, A55, A105, A116, INCPROJ:def 4;

            then

             A117: s = b2 by A58, A23, A16, A65, INCPROJ:def 4;

            A2 = C3 & B2 <> C3 by A11, A12, A54, A56, A64, A60, A62, A25, A27, A101, A105, INCPROJ:def 4;

            then {t, s, r} on B1 by A7, A20, A15, A61, A117, INCPROJ:def 4;

            hence {r, s, t} on B1 by Th11;

          end;

          hence thesis by A107;

        end;

        now

          assume o = a2;

          then

           A118: A1 = C3 by A11, A64, A60, A17, A63, INCPROJ:def 4;

          A2 = C3 & B2 <> C3 by A11, A12, A54, A56, A64, A60, A62, A25, A27, A101, A105, INCPROJ:def 4;

          then

           A119: r = b3 by A20, A15, A61, INCPROJ:def 4;

          consider O be LINE of IPP such that

           A120: t on O & s on O by INCPROJ:def 5;

          take O;

          B1 <> C3 by A13, A22, A58, A64, A19, A59, INCPROJ:def 4;

          then r = t by A20, A26, A28, A18, A118, A119, INCPROJ:def 4;

          hence {r, s, t} on O by A120, INCSP_1: 2;

        end;

        hence thesis by A106;

      end;

      

       A121: C1 <> B3 by A13, A54, A22, A58, A65, A55, INCPROJ:def 4;

       A122:

      now

        assume

         A123: o = b3;

         A124:

        now

          assume

           A125: a1 = o;

           A126:

          now

            assume o = a2;

            then

             A127: A1 = C3 by A11, A64, A60, A17, A63, INCPROJ:def 4;

            A2 = C3 & B2 = C1 by A11, A12, A54, A56, A64, A60, A62, A25, A27, A61, A123, A125, INCPROJ:def 4;

            then

             A128: o = r by A54, A64, A15, A101, INCPROJ:def 4;

            consider O be LINE of IPP such that

             A129: t on O & s on O by INCPROJ:def 5;

            take O;

            B1 = C2 by A13, A22, A58, A19, A18, A123, INCPROJ:def 4;

            then r = t by A22, A64, A26, A28, A59, A128, A127, INCPROJ:def 4;

            hence {r, s, t} on O by A129, INCSP_1: 2;

          end;

          now

            B2 = C1 & A2 = C3 by A11, A12, A54, A56, A64, A60, A62, A25, A27, A61, A123, A125, INCPROJ:def 4;

            then

             A130: r = o by A54, A64, A15, A101, INCPROJ:def 4;

            assume o <> a2;

            then

             A131: C2 = A3 by A22, A102, A57, A24, A125, INCPROJ:def 4;

            take C2;

            C2 = B1 by A13, A22, A58, A19, A18, A123, INCPROJ:def 4;

            hence {r, s, t} on C2 by A22, A23, A28, A131, A130, INCSP_1: 2;

          end;

          hence thesis by A126;

        end;

        now

          assume

           A132: a1 <> o;

           A133:

          now

            assume

             A134: o = a2;

            then

             A135: A1 = C3 by A11, A64, A60, A17, A63, INCPROJ:def 4;

            take B2;

            C1 = A3 by A54, A21, A57, A24, A132, A134, INCPROJ:def 4;

            then

             A136: b1 = s by A56, A23, A29, A16, A121, INCPROJ:def 4;

            B1 = C2 by A13, A22, A58, A19, A18, A123, INCPROJ:def 4;

            then {s, r, t} on B2 by A8, A20, A26, A28, A18, A59, A136, A135, INCPROJ:def 4;

            hence {r, s, t} on B2 by Th11;

          end;

          now

            assume o <> a2;

            take A3;

            B2 = C1 & A2 <> C1 by A11, A12, A54, A56, A64, A60, A62, A27, A61, A101, A123, INCPROJ:def 4;

            then

             A137: r = a1 by A21, A25, A15, INCPROJ:def 4;

            B1 = C2 & A1 <> C2 by A11, A13, A22, A58, A64, A60, A17, A19, A18, A59, A123, INCPROJ:def 4;

            then {t, s, r} on A3 by A6, A102, A63, A26, A28, A137, INCPROJ:def 4;

            hence {r, s, t} on A3 by Th11;

          end;

          hence thesis by A133;

        end;

        hence thesis by A124;

      end;

      now

        

         A138: b2 on B1 & a2 on C2 by A2, A7, INCSP_1: 2;

        

         A139: o on C3 & b3 on C3 by A3, INCSP_1: 2;

        

         A140: a1 on A2 & b1 on B2 by A5, A8, INCSP_1: 2;

        

         A141: b2 on C2 & o on C2 by A2, INCSP_1: 2;

        

         A142: b3 on B1 & t on A1 by A4, A7, INCSP_1: 2;

        

         A143: t on B1 by A7, INCSP_1: 2;

        consider O be Element of the Lines of IPP such that

         A144: t on O & s on O by INCPROJ:def 5;

        assume that

         A145: o <> b3 and o <> a1 and o <> a2 and

         A146: a1 <> b1 and

         A147: a3 = b3;

        take O;

        

         A148: C1 <> C3 by A10, ZFMISC_1:def 5;

        b3 on A2 by A5, A147, INCSP_1: 2;

        then A2 <> B2 by A54, A56, A21, A64, A20, A145, A146, A140, A148, Th10;

        then

         A149: b3 = r by A62, A15, A61, A147, INCPROJ:def 4;

        

         A150: b3 on A1 by A4, A147, INCSP_1: 2;

        C2 <> C3 & a2 on A1 by A4, A10, INCSP_1: 2, ZFMISC_1:def 5;

        then A1 <> B1 by A14, A145, A150, A138, A141, A139, Th10;

        then r = t by A150, A142, A143, A149, INCPROJ:def 4;

        hence {r, s, t} on O by A144, INCSP_1: 2;

      end;

      hence thesis by A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A122, A103, A66, A30, INCPROJ:def 13;

    end;

    

     Lm1: (ex o st o on A & o on B) & a on A & b on A & c on A & d on A & (a,b,c,d) are_mutually_distinct implies ex p, q, r, s st p on B & q on B & r on B & s on B & (p,q,r,s) are_mutually_distinct

    proof

      assume that

       A1: ex o st o on A & o on B and

       A2: a on A and

       A3: b on A and

       A4: c on A and

       A5: d on A and

       A6: (a,b,c,d) are_mutually_distinct ;

      consider o such that

       A7: o on A and

       A8: o on B by A1;

      now

        assume A <> B;

        then

        consider x, y such that

         A9: x on A and

         A10: not x on B and

         A11: y on B and

         A12: not y on A by Th3;

        consider C such that

         A13: x on C and

         A14: y on C by INCPROJ:def 5;

        consider w such that

         A15: w on C and

         A16: w <> x and

         A17: w <> y by Th8;

         A18:

        now

          

           A19: not w on B by A10, A11, A13, A14, A15, A17, INCPROJ:def 4;

          let u1,u2,v1,v2 be POINT of IPP, D1,D2 be LINE of IPP such that

           A20: u1 on A & u2 on A and

           A21: v1 on B and

           A22: w on D1 and

           A23: u1 on D1 and

           A24: v1 on D1 and v2 on B and

           A25: w on D2 and

           A26: u2 on D2 and

           A27: v2 on D2;

          

           A28: D1 <> A by A9, A12, A13, A14, A15, A16, A22, INCPROJ:def 4;

          assume

           A29: u1 <> u2;

          assume v1 = v2;

          then D1 = D2 by A21, A22, A24, A25, A27, A19, INCPROJ:def 4;

          hence contradiction by A20, A23, A26, A29, A28, INCPROJ:def 4;

        end;

         A30:

        now

          let u;

          assume

           A31: u on A;

           A32:

          now

            assume that u <> o and

             A33: x <> u;

            consider D such that

             A34: w on D & u on D by INCPROJ:def 5;

             not x on D

            proof

              assume not thesis;

              then u on C by A13, A15, A16, A34, INCPROJ:def 4;

              hence contradiction by A9, A12, A13, A14, A31, A33, INCPROJ:def 4;

            end;

            then

            consider v such that

             A35: v on B & v on D by A7, A8, A9, A10, A11, A12, A13, A14, A15, A31, A34, INCPROJ:def 8;

            take v, D;

            thus v on B & w on D & u on D & v on D by A34, A35;

          end;

          now

            consider D such that

             A36: w on D & u on D by INCPROJ:def 5;

            assume

             A37: u = o;

            take v = o, D;

            thus v on B & w on D & u on D & v on D by A8, A37, A36;

          end;

          hence ex v, D st v on B & w on D & u on D & v on D by A11, A13, A14, A15, A32;

        end;

        then

        consider p be POINT of IPP, D1 be Element of the Lines of IPP such that

         A38: p on B and

         A39: w on D1 & a on D1 & p on D1 by A2;

        consider r be POINT of IPP, D3 be Element of the Lines of IPP such that

         A40: r on B and

         A41: w on D3 & c on D3 & r on D3 by A4, A30;

        consider q be POINT of IPP, D2 be Element of the Lines of IPP such that

         A42: q on B and

         A43: w on D2 & b on D2 & q on D2 by A3, A30;

        consider s be POINT of IPP, D4 be Element of the Lines of IPP such that

         A44: s on B and

         A45: w on D4 & d on D4 & s on D4 by A5, A30;

        d <> a by A6, ZFMISC_1:def 6;

        then

         A46: s <> p by A2, A5, A18, A38, A39, A45;

        a <> c by A6, ZFMISC_1:def 6;

        then

         A47: p <> r by A2, A4, A18, A38, A39, A41;

        d <> b by A6, ZFMISC_1:def 6;

        then

         A48: s <> q by A3, A5, A18, A42, A43, A45;

        c <> d by A6, ZFMISC_1:def 6;

        then

         A49: r <> s by A4, A5, A18, A40, A41, A45;

        b <> c by A6, ZFMISC_1:def 6;

        then

         A50: q <> r by A3, A4, A18, A42, A43, A41;

        a <> b by A6, ZFMISC_1:def 6;

        then p <> q by A2, A3, A18, A38, A39, A43;

        then (p,q,r,s) are_mutually_distinct by A50, A49, A46, A48, A47, ZFMISC_1:def 6;

        hence thesis by A38, A42, A40, A44;

      end;

      hence thesis by A2, A3, A4, A5, A6;

    end;

    theorem :: PROJRED1:13

    

     Th13: (ex A, a, b, c, d st a on A & b on A & c on A & d on A & (a,b,c,d) are_mutually_distinct ) implies for B holds ex p, q, r, s st p on B & q on B & r on B & s on B & (p,q,r,s) are_mutually_distinct

    proof

      given A, a, b, c, d such that

       A1: a on A & b on A & c on A & d on A & (a,b,c,d) are_mutually_distinct ;

      let B;

      consider x such that

       A2: x on A by Th7;

      consider y such that

       A3: y on B by Th7;

      consider C such that

       A4: x on C and

       A5: y on C by INCPROJ:def 5;

      ex p1,q1,r1,s1 be POINT of IPP st p1 on C & q1 on C & r1 on C & s1 on C & (p1,q1,r1,s1) are_mutually_distinct by A1, A2, A4, Lm1;

      hence thesis by A3, A5, Lm1;

    end;

    reserve IPP for Fanoian IncProjSp;

    reserve a,b,c,d,p,q,r,s for POINT of IPP;

    reserve A,B,C,D,L,Q,R,S for LINE of IPP;

    

     Lm2: ex p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D, d st not q on L & not r on L & not p on Q & not s on Q & not p on R & not r on R & not q on S & not s on S & {a, p, s} on L & {a, q, r} on Q & {b, q, s} on R & {b, p, r} on S & {c, p, q} on A & {c, r, s} on B & {a, b} on C & not c on C & b on D & c on D & (C,D,R,S) are_mutually_distinct & d on A & (c,d,p,q) are_mutually_distinct

    proof

      consider r, A such that

       A1: not r on A by INCPROJ:def 6;

      consider p, q, c such that

       A2: p <> q and

       A3: q <> c and

       A4: c <> p and

       A5: p on A and

       A6: q on A and

       A7: c on A by INCPROJ:def 7;

      consider B such that

       A8: r on B and

       A9: c on B by INCPROJ:def 5;

      consider s such that

       A10: s on B and

       A11: s <> r and

       A12: s <> c by Th8;

      consider L such that

       A13: p on L and

       A14: s on L by INCPROJ:def 5;

      consider Q such that

       A15: r on Q and

       A16: q on Q by INCPROJ:def 5;

      

       A17: not p on Q by A1, A2, A5, A6, A15, A16, INCPROJ:def 4;

      

       A18: not c on Q by A1, A3, A6, A7, A15, A16, INCPROJ:def 4;

      then

       A19: not s on Q by A8, A9, A10, A11, A15, INCPROJ:def 4;

       not c on L

      proof

        assume not thesis;

        then p on B by A9, A10, A12, A13, A14, INCPROJ:def 4;

        hence contradiction by A1, A4, A5, A7, A8, A9, INCPROJ:def 4;

      end;

      then

      consider a such that

       A20: a on Q and

       A21: a on L by A1, A5, A6, A7, A8, A9, A10, A15, A16, A13, A14, A18, INCPROJ:def 8;

      

       A22: {a, p, s} on L by A13, A14, A21, INCSP_1: 2;

      consider R such that

       A23: q on R and

       A24: s on R by INCPROJ:def 5;

      consider S such that

       A25: p on S and

       A26: r on S by INCPROJ:def 5;

      

       A27: not c on S by A1, A4, A5, A7, A25, A26, INCPROJ:def 4;

      then

       A28: not s on S by A8, A9, A10, A11, A26, INCPROJ:def 4;

      

       A29: S <> L by A8, A9, A10, A11, A14, A26, A27, INCPROJ:def 4;

      then

       A30: not r on L by A1, A5, A13, A25, A26, INCPROJ:def 4;

      

       A31: S <> Q by A1, A2, A5, A6, A15, A16, A25, INCPROJ:def 4;

      

       A32: not q on S by A1, A2, A5, A6, A25, A26, INCPROJ:def 4;

      

       A33: not q on L

      proof

        assume not thesis;

        then s on A by A2, A5, A6, A13, A14, INCPROJ:def 4;

        hence contradiction by A1, A7, A8, A9, A10, A12, INCPROJ:def 4;

      end;

      

       A34: not p on R

      proof

        assume not thesis;

        then s on A by A2, A5, A6, A23, A24, INCPROJ:def 4;

        hence contradiction by A1, A7, A8, A9, A10, A12, INCPROJ:def 4;

      end;

      then not c on R by A3, A5, A6, A7, A23, INCPROJ:def 4;

      then

      consider b such that

       A35: b on R and

       A36: b on S by A1, A5, A6, A7, A8, A9, A10, A25, A26, A23, A24, A27, INCPROJ:def 8;

      

       A37: {b, q, s} on R by A23, A24, A35, INCSP_1: 2;

      

       A38: R <> Q

      proof

        assume not thesis;

        then B = Q by A8, A10, A11, A15, A24, INCPROJ:def 4;

        hence contradiction by A1, A3, A6, A7, A8, A9, A16, INCPROJ:def 4;

      end;

      then

       A39: not r on R by A1, A6, A15, A16, A23, INCPROJ:def 4;

      

       A40: {c, r, s} on B by A8, A9, A10, INCSP_1: 2;

      

       A41: {b, p, r} on S by A25, A26, A36, INCSP_1: 2;

      

       A42: a <> r by A1, A5, A13, A25, A26, A21, A29, INCPROJ:def 4;

      then

       A43: not a on S by A15, A16, A26, A32, A20, INCPROJ:def 4;

      

       A44: {a, q, r} on Q by A15, A16, A20, INCSP_1: 2;

      consider C such that

       A45: a on C and

       A46: b on C by INCPROJ:def 5;

      a <> s by A8, A9, A10, A11, A15, A18, A20, INCPROJ:def 4;

      then

       A47: R <> C by A13, A14, A24, A34, A21, A45, INCPROJ:def 4;

      

       A48: not b on Q by A16, A23, A38, A32, A35, A36, INCPROJ:def 4;

      then not r on C by A15, A20, A45, A46, A42, INCPROJ:def 4;

      then

      consider d such that

       A49: d on A and

       A50: d on C by A1, A5, A6, A15, A16, A25, A26, A20, A36, A45, A46, A31, INCPROJ:def 8;

      S <> C by A15, A16, A26, A32, A20, A45, A42, INCPROJ:def 4;

      then

       A51: d <> p by A25, A34, A35, A36, A46, A50, INCPROJ:def 4;

      

       A52: {c, p, q} on A by A5, A6, A7, INCSP_1: 2;

      

       A53: {a, b} on C by A45, A46, INCSP_1: 1;

      then

       A54: not c on C by A39, A17, A32, A33, A34, A19, A30, A28, A22, A44, A37, A41, A52, A40, INCPROJ:def 12;

      consider D such that

       A55: b on D and

       A56: c on D by INCPROJ:def 5;

      

       A57: R <> D by A3, A5, A6, A7, A23, A34, A56, INCPROJ:def 4;

      d <> q by A16, A33, A20, A21, A45, A46, A48, A50, INCPROJ:def 4;

      then

       A58: (c,d,p,q) are_mutually_distinct by A2, A3, A4, A54, A50, A51, ZFMISC_1:def 6;

      S <> D by A1, A4, A5, A7, A25, A26, A56, INCPROJ:def 4;

      then (C,D,R,S) are_mutually_distinct by A25, A34, A45, A54, A56, A43, A57, A47, ZFMISC_1:def 6;

      hence thesis by A39, A17, A32, A33, A34, A19, A30, A28, A22, A44, A37, A41, A52, A40, A53, A54, A55, A56, A49, A58;

    end;

    theorem :: PROJRED1:14

    ex p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D st not q on L & not r on L & not p on Q & not s on Q & not p on R & not r on R & not q on S & not s on S & {a, p, s} on L & {a, q, r} on Q & {b, q, s} on R & {b, p, r} on S & {c, p, q} on A & {c, r, s} on B & {a, b} on C & not c on C

    proof

      ex p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D, d st not q on L & not r on L & not p on Q & not s on Q & not p on R & not r on R & not q on S & not s on S & {a, p, s} on L & {a, q, r} on Q & {b, q, s} on R & {b, p, r} on S & {c, p, q} on A & {c, r, s} on B & {a, b} on C & not c on C & b on D & c on D & (C,D,R,S) are_mutually_distinct & d on A & (c,d,p,q) are_mutually_distinct by Lm2;

      hence thesis;

    end;

    theorem :: PROJRED1:15

    ex a, A, B, C, D st a on A & a on B & a on C & a on D & (A,B,C,D) are_mutually_distinct

    proof

      consider p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D, d such that not q on L and not r on L and not p on Q and not s on Q and not p on R and not r on R and not q on S and not s on S and {a, p, s} on L and {a, q, r} on Q and

       A1: {b, q, s} on R & {b, p, r} on S and {c, p, q} on A and {c, r, s} on B and

       A2: {a, b} on C and not c on C and

       A3: b on D and c on D and

       A4: (C,D,R,S) are_mutually_distinct and d on A and (c,d,p,q) are_mutually_distinct by Lm2;

      

       A5: b on C by A2, INCSP_1: 1;

      b on S & b on R by A1, INCSP_1: 2;

      hence thesis by A3, A4, A5;

    end;

    theorem :: PROJRED1:16

    

     Th16: ex a, b, c, d, A st a on A & b on A & c on A & d on A & (a,b,c,d) are_mutually_distinct

    proof

      consider p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D, d such that not q on L and not r on L and not p on Q and not s on Q and not p on R and not r on R and not q on S and not s on S and {a, p, s} on L and {a, q, r} on Q and {b, q, s} on R and {b, p, r} on S and

       A1: {c, p, q} on A and {c, r, s} on B and {a, b} on C and not c on C and b on D and c on D and (C,D,R,S) are_mutually_distinct and

       A2: d on A & (c,d,p,q) are_mutually_distinct by Lm2;

      

       A3: q on A by A1, INCSP_1: 2;

      c on A & p on A by A1, INCSP_1: 2;

      hence thesis by A2, A3;

    end;

    theorem :: PROJRED1:17

    ex p, q, r, s st p on B & q on B & r on B & s on B & (p,q,r,s) are_mutually_distinct

    proof

      ex a, b, c, d, A st a on A & b on A & c on A & d on A & (a,b,c,d) are_mutually_distinct by Th16;

      hence thesis by Th13;

    end;

    reserve IPP for Desarguesian 2-dimensional IncProjSp;

    reserve c,p,q,x,y for POINT of IPP;

    reserve A,B,C,D,K,L,R,X for LINE of IPP;

    reserve f for PartFunc of the Points of IPP, the Points of IPP;

    definition

      let IPP, K, L, p;

      assume that

       A1: not p on K and

       A2: not p on L;

      :: PROJRED1:def1

      func IncProj (K,p,L) -> PartFunc of the Points of IPP, the Points of IPP means

      : Def1: ( dom it ) c= the Points of IPP & (for x holds x in ( dom it ) iff x on K) & for x, y st x on K & y on L holds (it . x) = y iff ex X st p on X & x on X & y on X;

      existence

      proof

        defpred P[ object, object] means ex x, y st x = $1 & y = $2 & x on K & y on L & ex X st p on X & x on X & y on X;

        set XX = the Points of IPP;

        

         A3: for x,y1,y2 be object st x in XX & P[x, y1] & P[x, y2] holds y1 = y2

        proof

          let x,y1,y2 be object such that

           A4: x in XX and

           A5: P[x, y1] and

           A6: P[x, y2];

          reconsider x as POINT of IPP by A4;

          reconsider y1, y2 as POINT of IPP by A5, A6;

          consider A1 be Element of the Lines of IPP such that

           A7: p on A1 and

           A8: x on A1 and

           A9: y1 on A1 by A5;

          y2 on A1 by A1, A6, A7, A8, INCPROJ:def 4;

          hence thesis by A2, A5, A6, A7, A9, INCPROJ:def 4;

        end;

        

         A10: for x,y be object st x in XX & P[x, y] holds y in XX;

        consider f such that

         A11: for x be object holds x in ( dom f) iff x in XX & ex y be object st P[x, y] and

         A12: for x be object st x in ( dom f) holds P[x, (f . x)] from PARTFUN1:sch 2( A10, A3);

        take f;

        thus ( dom f) c= the Points of IPP;

        thus

         A13: x in ( dom f) iff x on K

        proof

          

           A14: x on K implies x in ( dom f)

          proof

            consider X be LINE of IPP such that

             A15: p on X & x on X by INCPROJ:def 5;

            assume

             A16: x on K;

            ex y st y on L & y on X by INCPROJ:def 9;

            hence thesis by A11, A16, A15;

          end;

          x in ( dom f) implies x on K

          proof

            assume x in ( dom f);

            then P[x, (f . x)] by A12;

            hence thesis;

          end;

          hence thesis by A14;

        end;

        let x, y;

        assume that

         A17: x on K and

         A18: y on L;

        

         A19: (f . x) = y implies ex X st p on X & x on X & y on X

        proof

          x in ( dom f) by A13, A17;

          then

           A20: P[x, (f . x)] by A12;

          assume (f . x) = y;

          hence thesis by A20;

        end;

        (ex X st p on X & x on X & y on X) implies (f . x) = y

        proof

          x in ( dom f) by A13, A17;

          then

           A21: P[x, (f . x)] by A12;

          assume ex X st p on X & x on X & y on X;

          hence thesis by A3, A18, A21;

        end;

        hence (f . x) = y iff ex X st p on X & x on X & y on X by A19;

      end;

      uniqueness

      proof

        let f1,f2 be PartFunc of the Points of IPP, the Points of IPP such that ( dom f1) c= the Points of IPP and

         A22: for x holds x in ( dom f1) iff x on K and

         A23: for x, y st x on K & y on L holds (f1 . x) = y iff ex X st p on X & x on X & y on X and ( dom f2) c= the Points of IPP and

         A24: for x holds x in ( dom f2) iff x on K and

         A25: for x, y st x on K & y on L holds (f2 . x) = y iff ex X st p on X & x on X & y on X;

        for x be object holds x in ( dom f1) iff x in ( dom f2) by A24, A22;

        then

         A26: ( dom f1) = ( dom f2) by TARSKI: 2;

        for x be POINT of IPP st x in ( dom f1) holds (f1 . x) = (f2 . x)

        proof

          let x be POINT of IPP;

          consider A2 be LINE of IPP such that

           A27: p on A2 & x on A2 by INCPROJ:def 5;

          consider y2 be POINT of IPP such that

           A28: y2 on A2 & y2 on L by INCPROJ:def 9;

          assume x in ( dom f1);

          then

           A29: x on K by A22;

          then (f2 . x) = y2 by A25, A27, A28;

          hence thesis by A23, A29, A27, A28;

        end;

        hence thesis by A26, PARTFUN1: 5;

      end;

    end

    theorem :: PROJRED1:18

    

     Th18: not p on K implies for x st x on K holds (( IncProj (K,p,K)) . x) = x

    proof

      assume

       A1: not p on K;

      let x;

      

       A2: ex X st p on X & x on X by INCPROJ:def 5;

      assume x on K;

      hence thesis by A1, A2, Def1;

    end;

    theorem :: PROJRED1:19

    

     Th19: not p on K & not p on L & x on K implies (( IncProj (K,p,L)) . x) is POINT of IPP

    proof

      assume ( not p on K) & not p on L & x on K;

      then x in ( dom ( IncProj (K,p,L))) by Def1;

      hence thesis by PARTFUN1: 4;

    end;

    theorem :: PROJRED1:20

    

     Th20: not p on K & not p on L & x on K & y = (( IncProj (K,p,L)) . x) implies y on L

    proof

      assume

       A1: ( not p on K) & not p on L & x on K & y = (( IncProj (K,p,L)) . x);

      consider X such that

       A2: p on X & x on X by INCPROJ:def 5;

      ex z be POINT of IPP st z on L & z on X by INCPROJ:def 9;

      hence thesis by A1, A2, Def1;

    end;

    theorem :: PROJRED1:21

     not p on K & not p on L & y in ( rng ( IncProj (K,p,L))) implies y on L

    proof

      assume that

       A1: ( not p on K) & not p on L and

       A2: y in ( rng ( IncProj (K,p,L)));

      consider x be POINT of IPP such that

       A3: x in ( dom ( IncProj (K,p,L))) and

       A4: y = (( IncProj (K,p,L)) . x) by A2, PARTFUN1: 3;

      x on K by A1, A3, Def1;

      hence thesis by A1, A4, Th20;

    end;

    theorem :: PROJRED1:22

    

     Th22: not p on K & not p on L & not q on L & not q on R implies ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( dom ( IncProj (K,p,L))) & ( rng (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( rng ( IncProj (L,q,R)))

    proof

      assume that

       A1: ( not p on K) & not p on L and

       A2: ( not q on L) & not q on R;

      for x be object holds x in ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) iff x in ( dom ( IncProj (K,p,L)))

      proof

        let x be object;

        x in ( dom ( IncProj (K,p,L))) implies x in ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))))

        proof

          assume

           A3: x in ( dom ( IncProj (K,p,L)));

          then

          reconsider x9 = x as POINT of IPP;

          consider A such that

           A4: x9 on A & p on A by INCPROJ:def 5;

          consider y such that

           A5: y on A and

           A6: y on L by INCPROJ:def 9;

          

           A7: y in ( dom ( IncProj (L,q,R))) by A2, A6, Def1;

          x9 on K by A1, A3, Def1;

          then (( IncProj (K,p,L)) . x) = y by A1, A4, A5, A6, Def1;

          hence thesis by A3, A7, FUNCT_1: 11;

        end;

        hence thesis by FUNCT_1: 11;

      end;

      hence ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( dom ( IncProj (K,p,L))) by TARSKI: 2;

      for x be object st x in ( dom ( IncProj (L,q,R))) holds x in ( rng ( IncProj (K,p,L)))

      proof

        let x be object;

        assume

         A8: x in ( dom ( IncProj (L,q,R)));

        thus x in ( rng ( IncProj (K,p,L)))

        proof

          reconsider x9 = x as POINT of IPP by A8;

          

           A9: x9 on L by A2, A8, Def1;

          ex y st y in ( dom ( IncProj (K,p,L))) & x9 = (( IncProj (K,p,L)) . y)

          proof

            consider A such that

             A10: x9 on A & p on A by INCPROJ:def 5;

            consider y be POINT of IPP such that

             A11: y on A and

             A12: y on K by INCPROJ:def 9;

            take y;

            thus y in ( dom ( IncProj (K,p,L))) by A1, A12, Def1;

            thus thesis by A1, A9, A10, A11, A12, Def1;

          end;

          hence thesis by FUNCT_1:def 3;

        end;

      end;

      then ( dom ( IncProj (L,q,R))) c= ( rng ( IncProj (K,p,L)));

      hence ( rng (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( rng ( IncProj (L,q,R))) by RELAT_1: 28;

    end;

    theorem :: PROJRED1:23

    

     Th23: for a1,b1,a2,b2 be POINT of IPP holds not p on K & not p on L & a1 on K & b1 on K & (( IncProj (K,p,L)) . a1) = a2 & (( IncProj (K,p,L)) . b1) = b2 & a2 = b2 implies a1 = b1

    proof

      let a1,b1,a2,b2 be POINT of IPP;

      assume that

       A1: not p on K and

       A2: not p on L and

       A3: a1 on K and

       A4: b1 on K and

       A5: (( IncProj (K,p,L)) . a1) = a2 and

       A6: (( IncProj (K,p,L)) . b1) = b2 and

       A7: a2 = b2;

      reconsider a2 = (( IncProj (K,p,L)) . a1) as POINT of IPP by A5;

      

       A8: a2 on L by A1, A2, A3, Th20;

      then

      consider A such that

       A9: p on A and

       A10: a1 on A and

       A11: a2 on A by A1, A2, A3, Def1;

      reconsider b2 = (( IncProj (K,p,L)) . b1) as Element of the Points of IPP by A6;

      b2 on L by A1, A2, A4, Th20;

      then

      consider B such that

       A12: p on B and

       A13: b1 on B and

       A14: b2 on B by A1, A2, A4, Def1;

      A = B by A2, A5, A6, A7, A8, A9, A11, A12, A14, INCPROJ:def 4;

      hence thesis by A1, A3, A4, A9, A10, A13, INCPROJ:def 4;

    end;

    theorem :: PROJRED1:24

    

     Th24: not p on K & not p on L & x on K & x on L implies (( IncProj (K,p,L)) . x) = x

    proof

      

       A1: ex A st p on A & x on A by INCPROJ:def 5;

      assume ( not p on K) & not p on L & x on K & x on L;

      hence thesis by A1, Def1;

    end;

    reserve X for set;

    theorem :: PROJRED1:25

     not p on K & not p on L & not q on L & not q on R & c on K & c on L & c on R & K <> R implies ex o be POINT of IPP st not o on K & not o on R & (( IncProj (L,q,R)) * ( IncProj (K,p,L))) = ( IncProj (K,o,R))

    proof

      assume that

       A1: not p on K and

       A2: not p on L and

       A3: not q on L and

       A4: not q on R and

       A5: c on K and

       A6: c on L and

       A7: c on R and

       A8: K <> R;

      defpred P[ object] means ex k be POINT of IPP st $1 = k & k on K;

      consider X such that

       A9: for x be object holds x in X iff x in the Points of IPP qua set & P[x] from XBOOLE_0:sch 1;

      

       A10: ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) c= the Points of IPP & ( rng (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) c= the Points of IPP

      proof

        set f = (( IncProj (L,q,R)) * ( IncProj (K,p,L)));

        ( dom f) = ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

        hence ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) c= the Points of IPP;

        ( rng f) = ( rng ( IncProj (L,q,R))) by A1, A2, A3, A4, Th22;

        hence thesis by RELAT_1:def 19;

      end;

       A11:

      now

         A12:

        now

          

           A13: X c= ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))))

          proof

            let e be object;

            assume

             A14: e in X;

            then

            reconsider e as Element of the Points of IPP by A9;

            

             A15: ex e9 be POINT of IPP st e = e9 & e9 on K by A9, A14;

            ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

            hence thesis by A1, A2, A15, Def1;

          end;

          assume

           A16: L = R;

          

           A17: X c= ( dom ( IncProj (K,p,R)))

          proof

            let e be object;

            assume

             A18: e in X;

            then

            reconsider e as POINT of IPP by A9;

            ex e9 be POINT of IPP st e = e9 & e9 on K by A9, A18;

            hence thesis by A1, A2, A16, Def1;

          end;

          

           A19: for x be POINT of IPP st x in X holds ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . x) = (( IncProj (K,p,R)) . x)

          proof

            let x be Element of the Points of IPP;

            assume

             A20: x in X;

            then

             A21: ((( IncProj (R,q,R)) * ( IncProj (K,p,R))) . x) = (( IncProj (R,q,R)) . (( IncProj (K,p,R)) . x)) by A16, A13, FUNCT_1: 12;

            

             A22: x on K by A1, A2, A16, A17, A20, Def1;

            then

            reconsider y = (( IncProj (K,p,R)) . x) as POINT of IPP by A1, A2, A16, Th19;

            y on R by A1, A2, A16, A22, Th20;

            hence thesis by A3, A16, A21, Th18;

          end;

          ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) c= X

          proof

            let e be object;

            assume e in ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))));

            then

             A23: e in ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

            then

            reconsider e as POINT of IPP;

            e on K by A1, A2, A23, Def1;

            hence thesis by A9;

          end;

          then

           A24: X = ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) by A13, XBOOLE_0:def 10;

          

           A25: (( IncProj (L,q,R)) * ( IncProj (K,p,L))) is PartFunc of the Points of IPP, the Points of IPP by A10, RELSET_1: 4;

          take p;

          ( dom ( IncProj (K,p,R))) c= X

          proof

            let e be object;

            assume

             A26: e in ( dom ( IncProj (K,p,R)));

            then

            reconsider e as POINT of IPP;

            e on K by A1, A2, A16, A26, Def1;

            hence thesis by A9;

          end;

          then X = ( dom ( IncProj (K,p,R))) by A17, XBOOLE_0:def 10;

          hence thesis by A1, A2, A16, A24, A19, A25, PARTFUN1: 5;

        end;

        consider A such that

         A27: p on A and

         A28: q on A by INCPROJ:def 5;

        consider c1 be POINT of IPP such that

         A29: c1 on K and

         A30: c1 on A by INCPROJ:def 9;

        reconsider c2 = (( IncProj (K,p,L)) . c1) as Element of the Points of IPP by A1, A2, A29, Th19;

        

         A31: c2 on L by A1, A2, A29, Th20;

        then

        reconsider c3 = (( IncProj (L,q,R)) . c2) as POINT of IPP by A3, A4, Th19;

        

         A32: c3 on R by A3, A4, A31, Th20;

        consider a1 be POINT of IPP such that

         A33: a1 on K and

         A34: c1 <> a1 and

         A35: c <> a1 by Th8;

        reconsider a2 = (( IncProj (K,p,L)) . a1) as POINT of IPP by A1, A2, A33, Th19;

        

         A36: a2 on L by A1, A2, A33, Th20;

        then

        reconsider a3 = (( IncProj (L,q,R)) . a2) as POINT of IPP by A3, A4, Th19;

        

         A37: a3 on R by A3, A4, A36, Th20;

        

         A38: not a3 on K

        proof

          assume a3 on K;

          then

           A39: c = a3 by A5, A7, A8, A37, INCPROJ:def 4;

          ex C st q on C & c on C by INCPROJ:def 5;

          then (( IncProj (L,q,R)) . c) = a3 by A3, A4, A6, A7, A39, Def1;

          then

           A40: c = a2 by A3, A4, A6, A36, Th23;

          ex D st p on D & c on D by INCPROJ:def 5;

          then (( IncProj (K,p,L)) . c) = a2 by A1, A2, A5, A6, A40, Def1;

          hence contradiction by A1, A2, A5, A33, A35, Th23;

        end;

        consider B such that

         A41: a1 on B & a3 on B by INCPROJ:def 5;

        consider o be POINT of IPP such that

         A42: o on A and

         A43: o on B by INCPROJ:def 9;

        

         A44: not a1 on R by A5, A7, A8, A33, A35, INCPROJ:def 4;

        

         A45: not o on K & not o on R

        proof

           A46:

          now

            assume

             A47: o on R;

            then

             A48: o = a3 by A37, A41, A43, A44, INCPROJ:def 4;

            consider A2 be LINE of IPP such that

             A49: q on A2 and

             A50: c2 on A2 and

             A51: c3 on A2 by A3, A4, A31, A32, Def1;

            ex A1 be LINE of IPP st p on A1 & c1 on A1 & c2 on A1 by A1, A2, A29, A31, Def1;

            then c2 on A by A1, A27, A29, A30, INCPROJ:def 4;

            then A = A2 by A3, A28, A31, A49, A50, INCPROJ:def 4;

            then o = c3 by A4, A42, A32, A47, A49, A51, INCPROJ:def 4;

            then c2 = a2 by A3, A4, A36, A31, A48, Th23;

            hence contradiction by A1, A2, A29, A33, A34, Th23;

          end;

           A52:

          now

            assume

             A53: o on K;

            then o = c1 by A1, A27, A29, A30, A42, INCPROJ:def 4;

            hence contradiction by A33, A34, A41, A43, A38, A53, INCPROJ:def 4;

          end;

          assume not thesis;

          hence thesis by A52, A46;

        end;

        assume

         A54: p <> q;

         A55:

        now

          assume that

           A56: L <> R and K <> L;

          

           A57: X c= ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))))

          proof

            let e be object;

            assume

             A58: e in X;

            then

            reconsider e as POINT of IPP by A9;

            

             A59: ex e9 be POINT of IPP st e = e9 & e9 on K by A9, A58;

            ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

            hence thesis by A1, A2, A59, Def1;

          end;

          

           A60: for x be POINT of IPP st x in X holds ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . x) = (( IncProj (K,o,R)) . x)

          proof

            let x be Element of the Points of IPP;

            assume

             A61: x in X;

             A62:

            now

              assume

               A63: x = c;

              then ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . c) = (( IncProj (L,q,R)) . (( IncProj (K,p,L)) . c)) by A57, A61, FUNCT_1: 12;

              then ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . c) = (( IncProj (L,q,R)) . c) by A1, A2, A5, A6, Th24;

              then ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . c) = c by A3, A4, A6, A7, Th24;

              hence thesis by A5, A7, A45, A63, Th24;

            end;

             A64:

            now

              assume that x <> c1 and

               A65: x <> c and x <> a1;

              ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . x) = (( IncProj (K,o,R)) . x)

              proof

                

                 A66: a2 <> a3

                proof

                  assume a2 = a3;

                  then

                   A67: (( IncProj (K,p,L)) . a1) = c by A6, A7, A36, A37, A56, INCPROJ:def 4;

                  (( IncProj (K,p,L)) . c) = c by A1, A2, A5, A6, Th24;

                  hence contradiction by A1, A2, A5, A33, A35, A67, Th23;

                end;

                

                 A68: ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . x) = (( IncProj (L,q,R)) . (( IncProj (K,p,L)) . x)) by A57, A61, FUNCT_1: 12;

                

                 A69: a2 <> c

                proof

                  assume

                   A70: a2 = c;

                  (( IncProj (K,p,L)) . c) = c by A1, A2, A5, A6, Th24;

                  hence contradiction by A1, A2, A5, A33, A35, A70, Th23;

                end;

                

                 A71: a3 on R by A3, A4, A36, Th20;

                

                 A72: ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

                then

                 A73: x on K by A1, A2, A57, A61, Def1;

                then

                reconsider y = (( IncProj (K,p,L)) . x) as POINT of IPP by A1, A2, Th19;

                

                 A74: y on L by A1, A2, A73, Th20;

                then

                reconsider z = (( IncProj (L,q,R)) . y) as POINT of IPP by A3, A4, Th19;

                consider B3 be LINE of IPP such that

                 A75: p on B3 & x on B3 & y on B3 by A1, A2, A73, A74, Def1;

                x on K by A1, A2, A57, A61, A72, Def1;

                then

                 A76: c <> y by A1, A5, A65, A75, INCPROJ:def 4;

                consider A1 be LINE of IPP such that

                 A77: q on A1 and

                 A78: a2 on A1 & a3 on A1 by A3, A4, A36, A37, Def1;

                

                 A79: {a2, a3, q} on A1 by A77, A78, INCSP_1: 2;

                

                 A80: z on R by A3, A4, A74, Th20;

                then

                consider B1 be LINE of IPP such that

                 A81: q on B1 & y on B1 & z on B1 by A3, A4, A74, Def1;

                x on K by A1, A2, A57, A61, A72, Def1;

                then

                 A82: {x, c, a1} on K by A5, A33, INCSP_1: 2;

                consider A3 be Element of the Lines of IPP such that

                 A83: p on A3 and

                 A84: a1 on A3 and

                 A85: a2 on A3 by A1, A2, A33, A36, Def1;

                

                 A86: {a2, p, a1} on A3 by A83, A84, A85, INCSP_1: 2;

                A1 <> A3

                proof

                  assume A1 = A3;

                  then A = A3 by A54, A27, A28, A77, A83, INCPROJ:def 4;

                  hence contradiction by A1, A29, A30, A33, A34, A83, A84, INCPROJ:def 4;

                end;

                then

                 A87: (A1,L,A3) are_mutually_distinct by A2, A3, A77, A83, ZFMISC_1:def 5;

                

                 A88: {a2, y, c} on L by A6, A36, A74, INCSP_1: 2;

                

                 A89: {p, y, x} on B3 by A75, INCSP_1: 2;

                z on R by A3, A4, A74, Th20;

                then

                 A90: {a3, z, c} on R by A7, A71, INCSP_1: 2;

                

                 A91: {p, o, q} on A & {a3, o, a1} on B by A27, A28, A41, A42, A43, INCSP_1: 2;

                

                 A92: a2 <> p by A1, A2, A33, Th20;

                 {y, z, q} on B1 by A81, INCSP_1: 2;

                then

                consider O be LINE of IPP such that

                 A93: {o, z, x} on O by A69, A66, A76, A88, A79, A86, A89, A91, A82, A90, A87, A92, Th12;

                

                 A94: o on O by A93, INCSP_1: 2;

                x on O & z on O by A93, INCSP_1: 2;

                hence thesis by A45, A73, A80, A94, A68, Def1;

              end;

              hence thesis;

            end;

             A95:

            now

              assume

               A96: x = c1;

              ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . x) = (( IncProj (K,o,R)) . x)

              proof

                

                 A97: ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . c1) = c3 by A57, A61, A96, FUNCT_1: 12;

                consider A2 be LINE of IPP such that

                 A98: q on A2 & c2 on A2 and

                 A99: c3 on A2 by A3, A4, A31, A32, Def1;

                ex A1 be Element of the Lines of IPP st p on A1 & c1 on A1 & c2 on A1 by A1, A2, A29, A31, Def1;

                then c2 on A by A1, A27, A29, A30, INCPROJ:def 4;

                then A = A2 by A3, A28, A31, A98, INCPROJ:def 4;

                hence thesis by A29, A30, A42, A32, A45, A96, A97, A99, Def1;

              end;

              hence thesis;

            end;

            now

              assume

               A100: x = a1;

              then ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . a1) = a3 by A57, A61, FUNCT_1: 12;

              hence thesis by A33, A37, A41, A43, A45, A100, Def1;

            end;

            hence thesis by A62, A95, A64;

          end;

          

           A101: ( dom ( IncProj (K,o,R))) c= X

          proof

            let e be object;

            assume

             A102: e in ( dom ( IncProj (K,o,R)));

            then

            reconsider e as POINT of IPP;

            e on K by A45, A102, Def1;

            hence thesis by A9;

          end;

          X c= ( dom ( IncProj (K,o,R)))

          proof

            let e be object;

            assume

             A103: e in X;

            then

            reconsider e as POINT of IPP by A9;

            ex e9 be POINT of IPP st e = e9 & e9 on K by A9, A103;

            hence thesis by A45, Def1;

          end;

          then

           A104: X = ( dom ( IncProj (K,o,R))) by A101, XBOOLE_0:def 10;

          

           A105: (( IncProj (L,q,R)) * ( IncProj (K,p,L))) is PartFunc of the Points of IPP, the Points of IPP by A10, RELSET_1: 4;

          ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) c= X

          proof

            let e be object;

            assume e in ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))));

            then

             A106: e in ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

            then

            reconsider e as POINT of IPP;

            e on K by A1, A2, A106, Def1;

            hence thesis by A9;

          end;

          then X = ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) by A57, XBOOLE_0:def 10;

          hence thesis by A45, A60, A104, A105, PARTFUN1: 5;

        end;

        now

          

           A107: X c= ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))))

          proof

            let e be object;

            assume

             A108: e in X;

            then

            reconsider e as Element of the Points of IPP by A9;

            

             A109: ex e9 be POINT of IPP st e = e9 & e9 on K by A9, A108;

            ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

            hence thesis by A1, A2, A109, Def1;

          end;

          ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) c= X

          proof

            let e be object;

            assume e in ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))));

            then

             A110: e in ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

            then

            reconsider e as POINT of IPP;

            e on K by A1, A2, A110, Def1;

            hence thesis by A9;

          end;

          then

           A111: X = ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) by A107, XBOOLE_0:def 10;

          

           A112: (( IncProj (L,q,R)) * ( IncProj (K,p,L))) is PartFunc of the Points of IPP, the Points of IPP by A10, RELSET_1: 4;

          assume

           A113: K = L;

          

           A114: X c= ( dom ( IncProj (K,q,R)))

          proof

            let e be object;

            assume

             A115: e in X;

            then

            reconsider e as POINT of IPP by A9;

            ex e9 be POINT of IPP st e = e9 & e9 on K by A9, A115;

            hence thesis by A3, A4, A113, Def1;

          end;

          

           A116: for x be POINT of IPP st x in X holds ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . x) = (( IncProj (K,q,R)) . x)

          proof

            let x be Element of the Points of IPP;

            assume x in X;

            then x on K & ((( IncProj (K,q,R)) * ( IncProj (K,p,K))) . x) = (( IncProj (K,q,R)) . (( IncProj (K,p,K)) . x)) by A3, A4, A113, A107, A114, Def1, FUNCT_1: 12;

            hence thesis by A1, A113, Th18;

          end;

          take q;

          ( dom ( IncProj (K,q,R))) c= X

          proof

            let e be object;

            assume

             A117: e in ( dom ( IncProj (K,q,R)));

            then

            reconsider e as POINT of IPP;

            e on K by A3, A4, A113, A117, Def1;

            hence thesis by A9;

          end;

          then X = ( dom ( IncProj (K,q,R))) by A114, XBOOLE_0:def 10;

          hence thesis by A3, A4, A113, A111, A116, A112, PARTFUN1: 5;

        end;

        hence thesis by A12, A55;

      end;

      now

        

         A118: X c= ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))))

        proof

          let e be object;

          assume

           A119: e in X;

          then

          reconsider e as POINT of IPP by A9;

          

           A120: ex e9 be Element of the Points of IPP st e = e9 & e9 on K by A9, A119;

          ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) = ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

          hence thesis by A1, A2, A120, Def1;

        end;

        assume

         A121: p = q;

        

         A122: X c= ( dom ( IncProj (K,p,R)))

        proof

          let e be object;

          assume

           A123: e in X;

          then

          reconsider e as POINT of IPP by A9;

          ex e9 be POINT of IPP st e = e9 & e9 on K by A9, A123;

          hence thesis by A1, A4, A121, Def1;

        end;

        

         A124: for x be POINT of IPP st x in X holds ((( IncProj (L,q,R)) * ( IncProj (K,p,L))) . x) = (( IncProj (K,p,R)) . x)

        proof

          let x be POINT of IPP;

          assume

           A125: x in X;

          then

           A126: ((( IncProj (L,p,R)) * ( IncProj (K,p,L))) . x) = (( IncProj (L,p,R)) . (( IncProj (K,p,L)) . x)) by A121, A118, FUNCT_1: 12;

          

           A127: x on K by A1, A4, A121, A122, A125, Def1;

          then

          reconsider y = (( IncProj (K,p,L)) . x) as POINT of IPP by A1, A2, Th19;

          

           A128: y on L by A1, A2, A127, Th20;

          then

          reconsider z = (( IncProj (L,p,R)) . y) as POINT of IPP by A2, A4, A121, Th19;

          consider A such that

           A129: p on A & y on A by INCPROJ:def 5;

          

           A130: z on R by A2, A4, A121, A128, Th20;

          then

          consider C such that

           A131: p on C & y on C and

           A132: z on C by A2, A4, A121, A128, Def1;

          

           A133: A = C by A2, A128, A129, A131, INCPROJ:def 4;

          consider B such that

           A134: p on B and

           A135: x on B and

           A136: y on B by A1, A2, A127, A128, Def1;

          A = B by A2, A128, A129, A134, A136, INCPROJ:def 4;

          hence thesis by A1, A4, A121, A127, A126, A134, A135, A130, A132, A133, Def1;

        end;

        ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) c= X

        proof

          let e be object;

          assume e in ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L))));

          then

           A137: e in ( dom ( IncProj (K,p,L))) by A1, A2, A3, A4, Th22;

          then

          reconsider e as POINT of IPP;

          e on K by A1, A2, A137, Def1;

          hence thesis by A9;

        end;

        then

         A138: X = ( dom (( IncProj (L,q,R)) * ( IncProj (K,p,L)))) by A118, XBOOLE_0:def 10;

        

         A139: (( IncProj (L,q,R)) * ( IncProj (K,p,L))) is PartFunc of the Points of IPP, the Points of IPP by A10, RELSET_1: 4;

        ( dom ( IncProj (K,p,R))) c= X

        proof

          let e be object;

          assume

           A140: e in ( dom ( IncProj (K,p,R)));

          then

          reconsider e as POINT of IPP;

          e on K by A1, A4, A121, A140, Def1;

          hence thesis by A9;

        end;

        then X = ( dom ( IncProj (K,p,R))) by A122, XBOOLE_0:def 10;

        hence thesis by A1, A4, A121, A138, A124, A139, PARTFUN1: 5;

      end;

      hence thesis by A11;

    end;