real_1.miz
    
    begin
    
    registration
    
      cluster -> 
    real for 
    Element of 
    REAL ; 
    
      coherence ;
    
    end
    
    registration
    
      cluster 
    positive for 
    Real;
    
      existence
    
      proof
    
        take (1
    / 1); 
    
        thus thesis;
    
      end;
    
    end
    
    registration
    
      cluster 
    positive for 
    Element of 
    REAL ; 
    
      existence
    
      proof
    
        reconsider j = 1 as
    Element of 
    REAL by 
    NUMBERS: 19;
    
        take j;
    
        thus thesis;
    
      end;
    
    end
    
    definition
    
      let x be
    Element of 
    REAL ; 
    
      :: original:
    -
    
      redefine
    
      func
    
    - x -> 
    Element of 
    REAL ; 
    
      coherence by
    XREAL_0:def 1;
    
      :: original:
    "
    
      redefine
    
      func x
    
    " -> 
    Element of 
    REAL ; 
    
      coherence by
    XREAL_0:def 1;
    
    end
    
    definition
    
      let x,y be
    Element of 
    REAL ; 
    
      :: original:
    +
    
      redefine
    
      func x
    
    + y -> 
    Element of 
    REAL ; 
    
      coherence by
    XREAL_0:def 1;
    
      :: original:
    *
    
      redefine
    
      func x
    
    * y -> 
    Element of 
    REAL ; 
    
      coherence by
    XREAL_0:def 1;
    
      :: original:
    -
    
      redefine
    
      func x
    
    - y -> 
    Element of 
    REAL ; 
    
      coherence by
    XREAL_0:def 1;
    
      :: original:
    /
    
      redefine
    
      func x
    
    / y -> 
    Element of 
    REAL ; 
    
      coherence by
    XREAL_0:def 1;
    
    end
    
    reserve s,t for
    Element of 
    RAT+ ; 
    
    theorem :: 
    
    REAL_1:1
    
    
    REAL+  
    = { r where r be 
    Real : 
    0  
    <= r } 
    
    proof
    
      set RP = { r where r be
    Real : 
    0  
    <= r }; 
    
      thus
    REAL+  
    c= RP 
    
      proof
    
        let e be
    object;
    
        assume
    
        
    
    A1: e 
    in  
    REAL+ ; 
    
        then
    
        reconsider r = e as
    Real by 
    ARYTM_0: 1;
    
        reconsider o =
    0 , s = r as 
    Element of 
    REAL+ by 
    A1,
    ARYTM_2: 20;
    
        o
    <=' s by 
    ARYTM_1: 6;
    
        then
    0  
    <= r by 
    ARYTM_2: 20,
    XXREAL_0:def 5;
    
        hence e
    in RP; 
    
      end;
    
      let e be
    object;
    
      assume e
    in RP; 
    
      then
    
      
    
    A2: ex r be 
    Real st e 
    = r & 
    0  
    <= r; 
    
       not
    0  
    in  
    [:
    {
    0 }, 
    REAL+ :] by 
    ARYTM_0: 5,
    ARYTM_2: 20,
    XBOOLE_0: 3;
    
      hence e
    in  
    REAL+ by 
    A2,
    XXREAL_0:def 5;
    
    end;