rmod_2.miz



    begin

    reserve x,y,y1,y2 for object;

    reserve R for Ring;

    reserve a for Scalar of R;

    reserve V,X,Y for RightMod of R;

    reserve u,u1,u2,v,v1,v2 for Vector of V;

    reserve V1,V2,V3 for Subset of V;

    definition

      let R, V, V1;

      :: RMOD_2:def1

      attr V1 is linearly-closed means (for v, u st v in V1 & u in V1 holds (v + u) in V1) & for a, v st v in V1 holds (v * a) in V1;

    end

    theorem :: RMOD_2:1

    

     Th1: V1 <> {} & V1 is linearly-closed implies ( 0. V) in V1

    proof

      assume that

       A1: V1 <> {} and

       A2: V1 is linearly-closed;

      set x = the Element of V1;

      reconsider x as Element of V by A1, TARSKI:def 3;

      (x * ( 0. R)) in V1 by A1, A2;

      hence thesis by VECTSP_2: 32;

    end;

    theorem :: RMOD_2:2

    

     Th2: V1 is linearly-closed implies for v st v in V1 holds ( - v) in V1

    proof

      assume

       A1: V1 is linearly-closed;

      let v;

      assume v in V1;

      then (v * ( - ( 1_ R))) in V1 by A1;

      hence thesis by VECTSP_2: 32;

    end;

    theorem :: RMOD_2:3

    V1 is linearly-closed implies for v, u st v in V1 & u in V1 holds (v - u) in V1

    proof

      assume

       A1: V1 is linearly-closed;

      let v, u;

      assume that

       A2: v in V1 and

       A3: u in V1;

      ( - u) in V1 by A1, A3, Th2;

      hence thesis by A1, A2;

    end;

    theorem :: RMOD_2:4

    

     Th4: {( 0. V)} is linearly-closed

    proof

      thus for v, u st v in {( 0. V)} & u in {( 0. V)} holds (v + u) in {( 0. V)}

      proof

        let v, u;

        assume v in {( 0. V)} & u in {( 0. V)};

        then v = ( 0. V) & u = ( 0. V) by TARSKI:def 1;

        then (v + u) = ( 0. V) by RLVECT_1:def 4;

        hence thesis by TARSKI:def 1;

      end;

      let a, v;

      assume

       A1: v in {( 0. V)};

      then v = ( 0. V) by TARSKI:def 1;

      hence thesis by A1, VECTSP_2: 32;

    end;

    theorem :: RMOD_2:5

    the carrier of V = V1 implies V1 is linearly-closed;

    theorem :: RMOD_2:6

    V1 is linearly-closed & V2 is linearly-closed & V3 = { (v + u) : v in V1 & u in V2 } implies V3 is linearly-closed

    proof

      assume that

       A1: V1 is linearly-closed & V2 is linearly-closed and

       A2: V3 = { (v + u) : v in V1 & u in V2 };

      thus for v, u st v in V3 & u in V3 holds (v + u) in V3

      proof

        let v, u;

        assume that

         A3: v in V3 and

         A4: u in V3;

        consider v2, v1 such that

         A5: v = (v1 + v2) and

         A6: v1 in V1 & v2 in V2 by A2, A3;

        consider u2, u1 such that

         A7: u = (u1 + u2) and

         A8: u1 in V1 & u2 in V2 by A2, A4;

        

         A9: (v + u) = (((v1 + v2) + u1) + u2) by A5, A7, RLVECT_1:def 3

        .= (((v1 + u1) + v2) + u2) by RLVECT_1:def 3

        .= ((v1 + u1) + (v2 + u2)) by RLVECT_1:def 3;

        (v1 + u1) in V1 & (v2 + u2) in V2 by A1, A6, A8;

        hence thesis by A2, A9;

      end;

      let a, v;

      assume v in V3;

      then

      consider v2, v1 such that

       A10: v = (v1 + v2) and

       A11: v1 in V1 & v2 in V2 by A2;

      

       A12: (v * a) = ((v1 * a) + (v2 * a)) by A10, VECTSP_2:def 9;

      (v1 * a) in V1 & (v2 * a) in V2 by A1, A11;

      hence thesis by A2, A12;

    end;

    theorem :: RMOD_2:7

    V1 is linearly-closed & V2 is linearly-closed implies (V1 /\ V2) is linearly-closed

    proof

      assume that

       A1: V1 is linearly-closed and

       A2: V2 is linearly-closed;

      thus for v, u st v in (V1 /\ V2) & u in (V1 /\ V2) holds (v + u) in (V1 /\ V2)

      proof

        let v, u;

        assume

         A3: v in (V1 /\ V2) & u in (V1 /\ V2);

        then v in V2 & u in V2 by XBOOLE_0:def 4;

        then

         A4: (v + u) in V2 by A2;

        v in V1 & u in V1 by A3, XBOOLE_0:def 4;

        then (v + u) in V1 by A1;

        hence thesis by A4, XBOOLE_0:def 4;

      end;

      let a, v;

      assume

       A5: v in (V1 /\ V2);

      then v in V2 by XBOOLE_0:def 4;

      then

       A6: (v * a) in V2 by A2;

      v in V1 by A5, XBOOLE_0:def 4;

      then (v * a) in V1 by A1;

      hence thesis by A6, XBOOLE_0:def 4;

    end;

    definition

      let R;

      let V;

      :: RMOD_2:def2

      mode Submodule of V -> RightMod of R means

      : Def2: the carrier of it c= the carrier of V & ( 0. it ) = ( 0. V) & the addF of it = (the addF of V | [:the carrier of it , the carrier of it :] qua set) & the rmult of it = (the rmult of V | [:the carrier of it , the carrier of R:] qua set);

      existence

      proof

        take V;

        thus the carrier of V c= the carrier of V & ( 0. V) = ( 0. V);

        thus thesis by RELSET_1: 19;

      end;

    end

    reserve W,W1,W2 for Submodule of V;

    reserve w,w1,w2 for Vector of W;

    theorem :: RMOD_2:8

    x in W1 & W1 is Submodule of W2 implies x in W2

    proof

      assume x in W1 & W1 is Submodule of W2;

      then x in the carrier of W1 & the carrier of W1 c= the carrier of W2 by Def2;

      hence thesis;

    end;

    theorem :: RMOD_2:9

    

     Th9: x in W implies x in V

    proof

      assume x in W;

      then

       A1: x in the carrier of W;

      the carrier of W c= the carrier of V by Def2;

      hence thesis by A1;

    end;

    theorem :: RMOD_2:10

    

     Th10: w is Vector of V

    proof

      w in V by Th9, RLVECT_1: 1;

      hence thesis;

    end;

    theorem :: RMOD_2:11

    ( 0. W) = ( 0. V) by Def2;

    theorem :: RMOD_2:12

    ( 0. W1) = ( 0. W2)

    proof

      

      thus ( 0. W1) = ( 0. V) by Def2

      .= ( 0. W2) by Def2;

    end;

    theorem :: RMOD_2:13

    

     Th13: w1 = v & w2 = u implies (w1 + w2) = (v + u)

    proof

      assume

       A1: v = w1 & u = w2;

      set IW = [:the carrier of W, the carrier of W:];

      (w1 + w2) = ((the addF of V | IW qua set) . [w1, w2]) by Def2;

      hence thesis by A1, FUNCT_1: 49;

    end;

    theorem :: RMOD_2:14

    

     Th14: w = v implies (w * a) = (v * a)

    proof

      assume

       A1: w = v;

      (w * a) = ((the rmult of V | [:the carrier of W, the carrier of R:] qua set) . [w, a]) by Def2;

      hence thesis by A1, FUNCT_1: 49;

    end;

    theorem :: RMOD_2:15

    

     Th15: w = v implies ( - v) = ( - w)

    proof

      

       A1: ( - v) = (v * ( - ( 1_ R))) & ( - w) = (w * ( - ( 1_ R))) by VECTSP_2: 32;

      assume w = v;

      hence thesis by A1, Th14;

    end;

    theorem :: RMOD_2:16

    

     Th16: w1 = v & w2 = u implies (w1 - w2) = (v - u)

    proof

      assume that

       A1: w1 = v and

       A2: w2 = u;

      ( - w2) = ( - u) by A2, Th15;

      hence thesis by A1, Th13;

    end;

    

     Lm1: the carrier of W = V1 implies V1 is linearly-closed

    proof

      set VW = the carrier of W;

      reconsider WW = W as RightMod of R;

      assume

       A1: the carrier of W = V1;

      thus for v, u st v in V1 & u in V1 holds (v + u) in V1

      proof

        let v, u;

        assume v in V1 & u in V1;

        then

        reconsider vv = v, uu = u as Vector of WW by A1;

        reconsider vw = (vv + uu) as Element of VW;

        vw in V1 by A1;

        hence thesis by Th13;

      end;

      let a, v;

      assume v in V1;

      then

      reconsider vv = v as Vector of WW by A1;

      reconsider vw = (vv * a) as Element of VW;

      vw in V1 by A1;

      hence thesis by Th14;

    end;

    theorem :: RMOD_2:17

    

     Th17: ( 0. V) in W

    proof

      ( 0. W) in W;

      hence thesis by Def2;

    end;

    theorem :: RMOD_2:18

    ( 0. W1) in W2

    proof

      ( 0. W1) = ( 0. V) by Def2;

      hence thesis by Th17;

    end;

    theorem :: RMOD_2:19

    ( 0. W) in V by Th9, RLVECT_1: 1;

    theorem :: RMOD_2:20

    

     Th20: u in W & v in W implies (u + v) in W

    proof

      reconsider VW = the carrier of W as Subset of V by Def2;

      assume u in W & v in W;

      then

       A1: u in the carrier of W & v in the carrier of W;

      VW is linearly-closed by Lm1;

      then (u + v) in the carrier of W by A1;

      hence thesis;

    end;

    theorem :: RMOD_2:21

    

     Th21: v in W implies (v * a) in W

    proof

      reconsider VW = the carrier of W as Subset of V by Def2;

      assume v in W;

      then

       A1: v in the carrier of W;

      VW is linearly-closed by Lm1;

      then (v * a) in the carrier of W by A1;

      hence thesis;

    end;

    theorem :: RMOD_2:22

    

     Th22: v in W implies ( - v) in W

    proof

      assume v in W;

      then (v * ( - ( 1_ R))) in W by Th21;

      hence thesis by VECTSP_2: 32;

    end;

    theorem :: RMOD_2:23

    

     Th23: u in W & v in W implies (u - v) in W

    proof

      assume that

       A1: u in W and

       A2: v in W;

      ( - v) in W by A2, Th22;

      hence thesis by A1, Th20;

    end;

    theorem :: RMOD_2:24

    

     Th24: V is Submodule of V

    proof

      

       A1: the rmult of V = (the rmult of V | [:the carrier of V, the carrier of R:] qua set) by RELSET_1: 19;

      ( 0. V) = ( 0. V) & the addF of V = (the addF of V | [:the carrier of V, the carrier of V:] qua set) by RELSET_1: 19;

      hence thesis by A1, Def2;

    end;

    theorem :: RMOD_2:25

    

     Th25: for X,V be strict RightMod of R holds V is Submodule of X & X is Submodule of V implies V = X

    proof

      let X,V be strict RightMod of R;

      assume that

       A1: V is Submodule of X and

       A2: X is Submodule of V;

      set VX = the carrier of X;

      set VV = the carrier of V;

      VV c= VX & VX c= VV by A1, A2, Def2;

      then

       A3: VV = VX;

      set AX = the addF of X;

      set AV = the addF of V;

      AV = (AX || VV) & AX = (AV || VX) by A1, A2, Def2;

      then

       A4: AV = AX by A3;

      set MX = the rmult of X;

      set MV = the rmult of V;

      

       A5: MX = (MV | [:VX, the carrier of R:] qua set) by A2, Def2;

      ( 0. V) = ( 0. X) & MV = (MX | [:VV, the carrier of R:] qua set) by A1, Def2;

      hence thesis by A3, A4, A5;

    end;

    registration

      let R, V;

      cluster strict for Submodule of V;

      existence

      proof

        set M = the rmult of V;

        set W = RightModStr (# the carrier of V, the addF of V, ( 0. V), M #);

        

         A1: W is RightMod-like

        proof

          let a,b be Scalar of R;

          let v,w be Vector of W;

          reconsider x = v, y = w as Vector of V;

          

          thus ((v + w) * a) = ((x + y) * a)

          .= ((x * a) + (y * a)) by VECTSP_2:def 9

          .= ((v * a) + (w * a));

          

          thus (v * (a + b)) = (x * (a + b))

          .= ((x * a) + (x * b)) by VECTSP_2:def 9

          .= ((v * a) + (v * b));

          

          thus (v * (b * a)) = (x * (b * a))

          .= ((x * b) * a) by VECTSP_2:def 9

          .= ((v * b) * a);

          

          thus (v * ( 1_ R)) = (x * ( 1_ R))

          .= v by VECTSP_2:def 9;

        end;

        

         A2: for a,b be Element of W holds for x,y be Vector of V st x = a & b = y holds (a + b) = (x + y);

        W is Abelian add-associative right_zeroed right_complementable

        proof

          thus W is Abelian

          proof

            let a,b be Element of W;

            reconsider x = a, y = b as Vector of V;

            

            thus (a + b) = (y + x) by A2

            .= (b + a);

          end;

          hereby

            let a,b,c be Element of W;

            reconsider x = a, y = b, z = c as Vector of V;

            

            thus ((a + b) + c) = ((x + y) + z)

            .= (x + (y + z)) by RLVECT_1:def 3

            .= (a + (b + c));

          end;

          hereby

            let a be Element of W;

            reconsider x = a as Vector of V;

            

            thus (a + ( 0. W)) = (x + ( 0. V))

            .= a by RLVECT_1:def 4;

          end;

          let a be Element of W;

          reconsider x = a as Vector of V;

          reconsider b = (( comp V) . x) as Element of W;

          take b;

          

          thus (a + b) = (x + ( - x)) by VECTSP_1:def 13

          .= ( 0. W) by RLVECT_1: 5;

        end;

        then

        reconsider W as RightMod of R by A1;

        

         A3: ( 0. W) = ( 0. V) & the addF of W = (the addF of V || the carrier of W) by RELSET_1: 19;

        the rmult of W = (the rmult of V | [:the carrier of W, the carrier of R:] qua set) by RELSET_1: 19;

        then

        reconsider W as Submodule of V by A3, Def2;

        take W;

        thus thesis;

      end;

    end

    theorem :: RMOD_2:26

    

     Th26: V is Submodule of X & X is Submodule of Y implies V is Submodule of Y

    proof

      assume that

       A1: V is Submodule of X and

       A2: X is Submodule of Y;

      the carrier of V c= the carrier of X & the carrier of X c= the carrier of Y by A1, A2, Def2;

      then

       A3: the carrier of V c= the carrier of Y;

      

       A4: the addF of V = (the addF of Y | [:the carrier of V, the carrier of V:] qua set)

      proof

        set AY = the addF of Y;

        set VX = the carrier of X;

        set AX = the addF of X;

        set VV = the carrier of V;

        set AV = the addF of V;

        VV c= VX by A1, Def2;

        then

         A5: [:VV, VV:] c= [:VX, VX:] by ZFMISC_1: 96;

        AV = (AX || VV) by A1, Def2;

        then AV = ((AY || VX) || VV) by A2, Def2;

        hence thesis by A5, FUNCT_1: 51;

      end;

      set MY = the rmult of Y;

      set MX = the rmult of X;

      set MV = the rmult of V;

      set VX = the carrier of X;

      set VV = the carrier of V;

      VV c= VX by A1, Def2;

      then

       A6: [:VV, the carrier of R:] c= [:the carrier of X, the carrier of R:] by ZFMISC_1: 95;

      MV = (MX | [:VV, the carrier of R:] qua set) by A1, Def2;

      then MV = ((MY | [:VX, the carrier of R:] qua set) | [:VV, the carrier of R:] qua set) by A2, Def2;

      then

       A7: MV = (MY | [:VV, the carrier of R:] qua set) by A6, FUNCT_1: 51;

      ( 0. V) = ( 0. X) by A1, Def2;

      then ( 0. V) = ( 0. Y) by A2, Def2;

      hence thesis by A3, A4, A7, Def2;

    end;

    theorem :: RMOD_2:27

    

     Th27: the carrier of W1 c= the carrier of W2 implies W1 is Submodule of W2

    proof

      set VW1 = the carrier of W1;

      set VW2 = the carrier of W2;

      set MW1 = the rmult of W1;

      set MW2 = the rmult of W2;

      set AV = the addF of V;

      set MV = the rmult of V;

      

       A1: the addF of W1 = (AV || VW1) & the addF of W2 = (AV || VW2) by Def2;

      assume

       A2: the carrier of W1 c= the carrier of W2;

      then [:VW1, VW1:] c= [:VW2, VW2:] by ZFMISC_1: 96;

      then

       A3: the addF of W1 = (the addF of W2 | [:the carrier of W1, the carrier of W1:] qua set) by A1, FUNCT_1: 51;

      

       A4: MW1 = (MV | [:VW1, the carrier of R:] qua set) & MW2 = (MV | [:VW2, the carrier of R:] qua set) by Def2;

       [:VW1, the carrier of R:] c= [:VW2, the carrier of R:] by A2, ZFMISC_1: 95;

      then

       A5: MW1 = (MW2 | [:VW1, the carrier of R:] qua set) by A4, FUNCT_1: 51;

      ( 0. W1) = ( 0. V) & ( 0. W2) = ( 0. V) by Def2;

      hence thesis by A2, A3, A5, Def2;

    end;

    theorem :: RMOD_2:28

    (for v st v in W1 holds v in W2) implies W1 is Submodule of W2

    proof

      assume

       A1: for v st v in W1 holds v in W2;

      the carrier of W1 c= the carrier of W2

      proof

        let x be object;

        assume

         A2: x in the carrier of W1;

        the carrier of W1 c= the carrier of V by Def2;

        then

        reconsider v = x as Vector of V by A2;

        v in W1 by A2;

        then v in W2 by A1;

        hence thesis;

      end;

      hence thesis by Th27;

    end;

    theorem :: RMOD_2:29

    

     Th29: for W1,W2 be strict Submodule of V holds the carrier of W1 = the carrier of W2 implies W1 = W2

    proof

      let W1,W2 be strict Submodule of V;

      assume the carrier of W1 = the carrier of W2;

      then W1 is Submodule of W2 & W2 is Submodule of W1 by Th27;

      hence thesis by Th25;

    end;

    theorem :: RMOD_2:30

    

     Th30: for W1,W2 be strict Submodule of V holds (for v be Vector of V holds v in W1 iff v in W2) implies W1 = W2

    proof

      let W1,W2 be strict Submodule of V;

      assume

       A1: for v be Vector of V holds v in W1 iff v in W2;

      for x be object holds x in the carrier of W1 iff x in the carrier of W2

      proof

        let x be object;

        thus x in the carrier of W1 implies x in the carrier of W2

        proof

          assume

           A2: x in the carrier of W1;

          the carrier of W1 c= the carrier of V by Def2;

          then

          reconsider v = x as Vector of V by A2;

          v in W1 by A2;

          then v in W2 by A1;

          hence thesis;

        end;

        assume

         A3: x in the carrier of W2;

        the carrier of W2 c= the carrier of V by Def2;

        then

        reconsider v = x as Vector of V by A3;

        v in W2 by A3;

        then v in W1 by A1;

        hence thesis;

      end;

      then the carrier of W1 = the carrier of W2 by TARSKI: 2;

      hence thesis by Th29;

    end;

    theorem :: RMOD_2:31

    for V be strict RightMod of R, W be strict Submodule of V holds the carrier of W = the carrier of V implies W = V

    proof

      let V be strict RightMod of R, W be strict Submodule of V;

      assume

       A1: the carrier of W = the carrier of V;

      V is Submodule of V by Th24;

      hence thesis by A1, Th29;

    end;

    theorem :: RMOD_2:32

    for V be strict RightMod of R, W be strict Submodule of V holds (for v be Vector of V holds v in W) implies W = V

    proof

      let V be strict RightMod of R, W be strict Submodule of V;

      assume for v be Vector of V holds v in W;

      then

       A1: for v be Vector of V holds (v in W iff v in V);

      V is Submodule of V by Th24;

      hence thesis by A1, Th30;

    end;

    theorem :: RMOD_2:33

    the carrier of W = V1 implies V1 is linearly-closed by Lm1;

    theorem :: RMOD_2:34

    

     Th34: V1 <> {} & V1 is linearly-closed implies ex W be strict Submodule of V st V1 = the carrier of W

    proof

      assume that

       A1: V1 <> {} and

       A2: V1 is linearly-closed;

      reconsider D = V1 as non empty set by A1;

      reconsider d = ( 0. V) as Element of D by A2, Th1;

      set VV = the carrier of V;

      set C = (( comp V) | D);

      ( dom ( comp V)) = VV by FUNCT_2:def 1;

      then

       A3: ( dom C) = D by RELAT_1: 62;

      

       A4: ( rng C) c= D

      proof

        let x be object;

        assume x in ( rng C);

        then

        consider y be object such that

         A5: y in ( dom C) and

         A6: (C . y) = x by FUNCT_1:def 3;

        reconsider y as Vector of V by A3, A5;

        x = (( comp V) . y) by A5, A6, FUNCT_1: 47

        .= ( - y) by VECTSP_1:def 13;

        hence thesis by A2, A3, A5, Th2;

      end;

      set M = (the rmult of V | [:D, the carrier of R:] qua set);

      ( dom the rmult of V) = [:VV, the carrier of R:] by FUNCT_2:def 1;

      then

       A7: ( dom M) = [:D, the carrier of R:] by RELAT_1: 62, ZFMISC_1: 96;

      

       A8: ( rng M) c= D

      proof

        let x be object;

        assume x in ( rng M);

        then

        consider y be object such that

         A9: y in ( dom M) and

         A10: (M . y) = x by FUNCT_1:def 3;

        consider y2,y1 be object such that

         A11: [y2, y1] = y by A7, A9, RELAT_1:def 1;

        reconsider y1 as Scalar of R by A7, A9, A11, ZFMISC_1: 87;

        

         A12: y2 in V1 by A7, A9, A11, ZFMISC_1: 87;

        then

        reconsider y2 as Vector of V;

        x = (y2 * y1) by A9, A10, A11, FUNCT_1: 47;

        hence thesis by A2, A12;

      end;

      reconsider C as UnOp of D by A3, A4, FUNCT_2:def 1, RELSET_1: 4;

      set A = (the addF of V || D);

      ( dom the addF of V) = [:VV, VV:] by FUNCT_2:def 1;

      then

       A13: ( dom A) = [:D, D:] by RELAT_1: 62, ZFMISC_1: 96;

      

       A14: ( rng A) c= D

      proof

        let x be object;

        assume x in ( rng A);

        then

        consider y be object such that

         A15: y in ( dom A) and

         A16: (A . y) = x by FUNCT_1:def 3;

        consider y1,y2 be object such that

         A17: [y1, y2] = y by A13, A15, RELAT_1:def 1;

        

         A18: y1 in D & y2 in D by A13, A15, A17, ZFMISC_1: 87;

        then

        reconsider y1, y2 as Vector of V;

        x = (y1 + y2) by A15, A16, A17, FUNCT_1: 47;

        hence thesis by A2, A18;

      end;

      reconsider M as Function of [:D, the carrier of R:], D by A7, A8, FUNCT_2:def 1, RELSET_1: 4;

      reconsider A as BinOp of D by A13, A14, FUNCT_2:def 1, RELSET_1: 4;

      set W = RightModStr (# D, A, d, M #);

      

       A19: for a,b be Element of W holds for x,y be Vector of V st x = a & b = y holds (a + b) = (x + y)

      proof

        let a,b be Element of W;

        let x,y be Vector of V such that

         A20: x = a & b = y;

        

        thus (a + b) = (A . [a, b])

        .= (x + y) by A13, A20, FUNCT_1: 47;

      end;

      

       A21: W is Abelian add-associative right_zeroed right_complementable

      proof

        thus W is Abelian

        proof

          let a,b be Element of W;

          reconsider x = a, y = b as Vector of V by TARSKI:def 3;

          

          thus (a + b) = (y + x) by A19

          .= (b + a) by A19;

        end;

        hereby

          let a,b,c be Element of W;

          reconsider x = a, y = b, z = c as Vector of V by TARSKI:def 3;

          

           A22: (b + c) = (y + z) by A19;

          (a + b) = (x + y) by A19;

          

          hence ((a + b) + c) = ((x + y) + z) by A19

          .= (x + (y + z)) by RLVECT_1:def 3

          .= (a + (b + c)) by A19, A22;

        end;

        hereby

          let a be Element of W;

          reconsider x = a as Vector of V by TARSKI:def 3;

          

          thus (a + ( 0. W)) = (x + ( 0. V)) by A19

          .= a by RLVECT_1:def 4;

        end;

        let a be Element of W;

        reconsider x = a as Vector of V by TARSKI:def 3;

        reconsider b9 = (( comp V) . x) as Vector of V;

        (C . x) in D by FUNCT_2: 5;

        then

        reconsider b = ((( comp V) | D) . x) as Element of W;

        take b;

        

        thus (a + b) = (x + b9) by A19, FUNCT_1: 49

        .= (x + ( - x)) by VECTSP_1:def 13

        .= ( 0. W) by RLVECT_1: 5;

      end;

      W is RightMod-like

      proof

        let a,b be Scalar of R;

        let v,w be Vector of W;

        reconsider x = v, y = w as Vector of V by TARSKI:def 3;

         A23:

        now

          let a be Scalar of R;

          let x be Element of W;

          let y be Vector of V;

          assume

           A24: y = x;

           [x, a] in ( dom M) by A7;

          hence (x * a) = (y * a) by A24, FUNCT_1: 47;

        end;

        then

         A25: (v * a) = (x * a);

        

         A26: (w * a) = (y * a) by A23;

        (v + w) = (x + y) by A19;

        

        hence ((v + w) * a) = ((x + y) * a) by A23

        .= ((x * a) + (y * a)) by VECTSP_2:def 9

        .= ((v * a) + (w * a)) by A19, A25, A26;

        

         A27: (v * b) = (x * b) by A23;

        

        thus (v * (a + b)) = (x * (a + b)) by A23

        .= ((x * a) + (x * b)) by VECTSP_2:def 9

        .= ((v * a) + (v * b)) by A19, A27, A25;

        

        thus (v * (b * a)) = (x * (b * a)) by A23

        .= ((x * b) * a) by VECTSP_2:def 9

        .= ((v * b) * a) by A23, A27;

        

        thus (v * ( 1_ R)) = (x * ( 1_ R)) by A23

        .= v by VECTSP_2:def 9;

      end;

      then

      reconsider W as RightMod of R by A21;

      ( 0. W) = ( 0. V);

      then

      reconsider W as strict Submodule of V by Def2;

      take W;

      thus thesis;

    end;

    definition

      let R;

      let V;

      :: RMOD_2:def3

      func (0). V -> strict Submodule of V means

      : Def3: the carrier of it = {( 0. V)};

      correctness by Th4, Th29, Th34;

    end

    definition

      let R;

      let V;

      :: RMOD_2:def4

      func (Omega). V -> strict Submodule of V equals the RightModStr of V;

      coherence

      proof

        set W = the RightModStr of V;

        

         A1: W is RightMod-like

        proof

          let x,y be Element of R, v,w be Element of W;

          reconsider v9 = v, w9 = w as Vector of V;

          

          thus ((v + w) * x) = ((v9 + w9) * x)

          .= ((v9 * x) + (w9 * x)) by VECTSP_2:def 9

          .= ((v * x) + (w * x));

          

          thus (v * (x + y)) = (v9 * (x + y))

          .= ((v9 * x) + (v9 * y)) by VECTSP_2:def 9

          .= ((v * x) + (v * y));

          

          thus (v * (y * x)) = (v9 * (y * x))

          .= ((v9 * y) * x) by VECTSP_2:def 9

          .= ((v * y) * x);

          

          thus (v * ( 1_ R)) = (v9 * ( 1_ R))

          .= v by VECTSP_2:def 9;

        end;

        

         A2: for a holds for v,w be Vector of W, v9,w9 be Vector of V st v = v9 & w = w9 holds (v + w) = (v9 + w9) & (v * a) = (v9 * a);

        W is Abelian add-associative right_zeroed right_complementable

        proof

          thus W is Abelian

          proof

            let x,y be Element of W;

            reconsider x9 = x, y9 = y as Vector of V;

            

            thus (x + y) = (y9 + x9) by A2

            .= (y + x);

          end;

          hereby

            let x,y,z be Element of W;

            reconsider x9 = x, y9 = y, z9 = z as Vector of V;

            

            thus ((x + y) + z) = ((x9 + y9) + z9)

            .= (x9 + (y9 + z9)) by RLVECT_1:def 3

            .= (x + (y + z));

          end;

          hereby

            let x be Element of W;

            reconsider x9 = x as Vector of V;

            

            thus (x + ( 0. W)) = (x9 + ( 0. V))

            .= x by RLVECT_1: 4;

          end;

          let x be Element of W;

          reconsider x9 = x as Vector of V;

          consider b be Vector of V such that

           A3: (x9 + b) = ( 0. V) by ALGSTR_0:def 11;

          reconsider b9 = b as Element of W;

          take b9;

          thus thesis by A3;

        end;

        then

        reconsider W as RightMod of R by A1;

        

         A4: the rmult of W = (the rmult of V | [:the carrier of W, the carrier of R:] qua set) by RELSET_1: 19;

        ( 0. W) = ( 0. V) & the addF of W = (the addF of V | [:the carrier of W, the carrier of W:] qua set) by RELSET_1: 19;

        hence thesis by A4, Def2;

      end;

    end

    theorem :: RMOD_2:35

    x in ( (0). V) iff x = ( 0. V)

    proof

      thus x in ( (0). V) implies x = ( 0. V)

      proof

        assume x in ( (0). V);

        then x in the carrier of ( (0). V);

        then x in {( 0. V)} by Def3;

        hence thesis by TARSKI:def 1;

      end;

      thus thesis by Th17;

    end;

    theorem :: RMOD_2:36

    

     Th36: ( (0). W) = ( (0). V)

    proof

      the carrier of ( (0). W) = {( 0. W)} & the carrier of ( (0). V) = {( 0. V)} by Def3;

      then

       A1: the carrier of ( (0). W) = the carrier of ( (0). V) by Def2;

      ( (0). W) is Submodule of V by Th26;

      hence thesis by A1, Th29;

    end;

    theorem :: RMOD_2:37

    

     Th37: ( (0). W1) = ( (0). W2)

    proof

      ( (0). W1) = ( (0). V) by Th36;

      hence thesis by Th36;

    end;

    theorem :: RMOD_2:38

    ( (0). W) is Submodule of V by Th26;

    theorem :: RMOD_2:39

    ( (0). V) is Submodule of W

    proof

      ( (0). W) = ( (0). V) by Th36;

      hence thesis;

    end;

    theorem :: RMOD_2:40

    ( (0). W1) is Submodule of W2

    proof

      ( (0). W1) = ( (0). W2) by Th37;

      hence thesis;

    end;

    theorem :: RMOD_2:41

    for V be strict RightMod of R holds V is Submodule of ( (Omega). V);

    definition

      let R;

      let V;

      let v, W;

      :: RMOD_2:def5

      func v + W -> Subset of V equals { (v + u) : u in W };

      coherence

      proof

        set Y = { (v + u) : u in W };

        defpred P[ object] means ex u st $1 = (v + u) & u in W;

        consider X be set such that

         A1: for x be object holds x in X iff x in the carrier of V & P[x] from XBOOLE_0:sch 1;

        X c= the carrier of V by A1;

        then

        reconsider X as Subset of V;

        

         A2: Y c= X

        proof

          let x be object;

          assume x in Y;

          then ex u st x = (v + u) & u in W;

          hence thesis by A1;

        end;

        X c= Y

        proof

          let x be object;

          assume x in X;

          then ex u st x = (v + u) & u in W by A1;

          hence thesis;

        end;

        hence thesis by A2, XBOOLE_0:def 10;

      end;

    end

    

     Lm2: (( 0. V) + W) = the carrier of W

    proof

      set A = { (( 0. V) + u) : u in W };

      

       A1: the carrier of W c= A

      proof

        let x be object;

        assume x in the carrier of W;

        then

         A2: x in W;

        then x in V by Th9;

        then

        reconsider y = x as Element of V;

        (( 0. V) + y) = x by RLVECT_1:def 4;

        hence thesis by A2;

      end;

      A c= the carrier of W

      proof

        let x be object;

        assume x in A;

        then

        consider u such that

         A3: x = (( 0. V) + u) and

         A4: u in W;

        x = u by A3, RLVECT_1:def 4;

        hence thesis by A4;

      end;

      hence thesis by A1;

    end;

    definition

      let R;

      let V;

      let W;

      :: RMOD_2:def6

      mode Coset of W -> Subset of V means

      : Def6: ex v st it = (v + W);

      existence

      proof

        reconsider VW = the carrier of W as Subset of V by Def2;

        take VW;

        take ( 0. V);

        thus thesis by Lm2;

      end;

    end

    reserve B,C for Coset of W;

    theorem :: RMOD_2:42

    

     Th42: x in (v + W) iff ex u st u in W & x = (v + u)

    proof

      thus x in (v + W) implies ex u st u in W & x = (v + u)

      proof

        assume x in (v + W);

        then

        consider u such that

         A1: x = (v + u) & u in W;

        take u;

        thus thesis by A1;

      end;

      given u such that

       A2: u in W & x = (v + u);

      thus thesis by A2;

    end;

    theorem :: RMOD_2:43

    

     Th43: ( 0. V) in (v + W) iff v in W

    proof

      thus ( 0. V) in (v + W) implies v in W

      proof

        assume ( 0. V) in (v + W);

        then

        consider u such that

         A1: ( 0. V) = (v + u) and

         A2: u in W;

        v = ( - u) by A1, VECTSP_1: 16;

        hence thesis by A2, Th22;

      end;

      assume v in W;

      then

       A3: ( - v) in W by Th22;

      ( 0. V) = (v + ( - v)) by VECTSP_1: 19;

      hence thesis by A3;

    end;

    theorem :: RMOD_2:44

    

     Th44: v in (v + W)

    proof

      (v + ( 0. V)) = v & ( 0. V) in W by Th17, RLVECT_1:def 4;

      hence thesis;

    end;

    theorem :: RMOD_2:45

    (( 0. V) + W) = the carrier of W by Lm2;

    theorem :: RMOD_2:46

    

     Th46: (v + ( (0). V)) = {v}

    proof

      thus (v + ( (0). V)) c= {v}

      proof

        let x be object;

        assume x in (v + ( (0). V));

        then

        consider u such that

         A1: x = (v + u) and

         A2: u in ( (0). V);

        

         A3: the carrier of ( (0). V) = {( 0. V)} by Def3;

        u in the carrier of ( (0). V) by A2;

        then u = ( 0. V) by A3, TARSKI:def 1;

        then x = v by A1, RLVECT_1:def 4;

        hence thesis by TARSKI:def 1;

      end;

      let x be object;

      assume x in {v};

      then

       A4: x = v by TARSKI:def 1;

      ( 0. V) in ( (0). V) & v = (v + ( 0. V)) by Th17, RLVECT_1:def 4;

      hence thesis by A4;

    end;

    

     Lm3: v in W iff (v + W) = the carrier of W

    proof

      ( 0. V) in W & (v + ( 0. V)) = v by Th17, RLVECT_1:def 4;

      then

       A1: v in { (v + u) : u in W };

      thus v in W implies (v + W) = the carrier of W

      proof

        assume

         A2: v in W;

        thus (v + W) c= the carrier of W

        proof

          let x be object;

          assume x in (v + W);

          then

          consider u such that

           A3: x = (v + u) and

           A4: u in W;

          (v + u) in W by A2, A4, Th20;

          hence thesis by A3;

        end;

        let x be object;

        assume x in the carrier of W;

        then

        reconsider y = x, z = v as Element of W by A2;

        reconsider y1 = y, z1 = z as Vector of V by Th10;

        

         A5: (z + (y - z)) = (y + (z + ( - z))) by RLVECT_1:def 3

        .= (y + ( 0. W)) by VECTSP_1: 19

        .= x by RLVECT_1:def 4;

        (y - z) in W;

        then

         A6: (y1 - z1) in W by Th16;

        (y - z) = (y1 - z1) by Th16;

        then (z1 + (y1 - z1)) = x by A5, Th13;

        hence thesis by A6;

      end;

      assume

       A7: (v + W) = the carrier of W;

      assume not v in W;

      hence thesis by A7, A1;

    end;

    theorem :: RMOD_2:47

    

     Th47: (v + ( (Omega). V)) = the carrier of V by RLVECT_1: 1, Lm3;

    theorem :: RMOD_2:48

    

     Th48: ( 0. V) in (v + W) iff (v + W) = the carrier of W by Th43, Lm3;

    theorem :: RMOD_2:49

    v in W iff (v + W) = the carrier of W by Lm3;

    theorem :: RMOD_2:50

    v in W implies ((v * a) + W) = the carrier of W by Th21, Lm3;

    theorem :: RMOD_2:51

    

     Th51: u in W iff (v + W) = ((v + u) + W)

    proof

      thus u in W implies (v + W) = ((v + u) + W)

      proof

        assume

         A1: u in W;

        thus (v + W) c= ((v + u) + W)

        proof

          let x be object;

          assume x in (v + W);

          then

          consider v1 such that

           A2: x = (v + v1) and

           A3: v1 in W;

          

           A4: ((v + u) + (v1 - u)) = (v + (u + (v1 - u))) by RLVECT_1:def 3

          .= (v + ((v1 + u) - u)) by RLVECT_1:def 3

          .= (v + (v1 + (u - u))) by RLVECT_1:def 3

          .= (v + (v1 + ( 0. V))) by VECTSP_1: 19

          .= x by A2, RLVECT_1:def 4;

          (v1 - u) in W by A1, A3, Th23;

          hence thesis by A4;

        end;

        let x be object;

        assume x in ((v + u) + W);

        then

        consider v2 such that

         A5: x = ((v + u) + v2) and

         A6: v2 in W;

        

         A7: x = (v + (u + v2)) by A5, RLVECT_1:def 3;

        (u + v2) in W by A1, A6, Th20;

        hence thesis by A7;

      end;

      assume

       A8: (v + W) = ((v + u) + W);

      ( 0. V) in W & (v + ( 0. V)) = v by Th17, RLVECT_1:def 4;

      then v in ((v + u) + W) by A8;

      then

      consider u1 such that

       A9: v = ((v + u) + u1) and

       A10: u1 in W;

      v = (v + (u + u1)) by A9, RLVECT_1:def 3;

      then (u + u1) = ( 0. V) by RLVECT_1: 9;

      then u = ( - u1) by VECTSP_1: 16;

      hence thesis by A10, Th22;

    end;

    theorem :: RMOD_2:52

    u in W iff (v + W) = ((v - u) + W)

    proof

      

       A1: ( - u) in W implies u in W

      proof

        assume ( - u) in W;

        then ( - ( - u)) in W by Th22;

        hence thesis by RLVECT_1: 17;

      end;

      ( - u) in W iff (v + W) = ((v + ( - u)) + W) by Th51;

      hence thesis by A1, Th22;

    end;

    theorem :: RMOD_2:53

    

     Th53: v in (u + W) iff (u + W) = (v + W)

    proof

      thus v in (u + W) implies (u + W) = (v + W)

      proof

        assume v in (u + W);

        then

        consider z be Vector of V such that

         A1: v = (u + z) and

         A2: z in W;

        thus (u + W) c= (v + W)

        proof

          let x be object;

          assume x in (u + W);

          then

          consider v1 such that

           A3: x = (u + v1) and

           A4: v1 in W;

          (v - z) = (u + (z - z)) by A1, RLVECT_1:def 3

          .= (u + ( 0. V)) by VECTSP_1: 19

          .= u by RLVECT_1:def 4;

          

          then

           A5: x = (v + (v1 + ( - z))) by A3, RLVECT_1:def 3

          .= (v + (v1 - z));

          (v1 - z) in W by A2, A4, Th23;

          hence thesis by A5;

        end;

        let x be object;

        assume x in (v + W);

        then

        consider v2 such that

         A6: x = (v + v2) & v2 in W;

        (z + v2) in W & x = (u + (z + v2)) by A1, A2, A6, Th20, RLVECT_1:def 3;

        hence thesis;

      end;

      thus thesis by Th44;

    end;

    theorem :: RMOD_2:54

    

     Th54: u in (v1 + W) & u in (v2 + W) implies (v1 + W) = (v2 + W)

    proof

      assume that

       A1: u in (v1 + W) and

       A2: u in (v2 + W);

      

      thus (v1 + W) = (u + W) by A1, Th53

      .= (v2 + W) by A2, Th53;

    end;

    theorem :: RMOD_2:55

    

     Th55: v in W implies (v * a) in (v + W)

    proof

      assume v in W;

      then (v + W) = the carrier of W & (v * a) in W by Lm3, Th21;

      hence thesis;

    end;

    theorem :: RMOD_2:56

    v in W implies ( - v) in (v + W)

    proof

      assume v in W;

      then (v * ( - ( 1_ R))) in (v + W) by Th55;

      hence thesis by VECTSP_2: 32;

    end;

    theorem :: RMOD_2:57

    

     Th57: (u + v) in (v + W) iff u in W

    proof

      thus (u + v) in (v + W) implies u in W

      proof

        assume (u + v) in (v + W);

        then ex v1 st (u + v) = (v + v1) & v1 in W;

        hence thesis by RLVECT_1: 8;

      end;

      assume u in W;

      hence thesis;

    end;

    theorem :: RMOD_2:58

    (v - u) in (v + W) iff u in W

    proof

      

       A1: (v - u) = (( - u) + v);

      

       A2: ( - u) in W implies ( - ( - u)) in W by Th22;

      u in W implies ( - u) in W by Th22;

      hence thesis by A1, A2, Th57, RLVECT_1: 17;

    end;

    theorem :: RMOD_2:59

    u in (v + W) iff ex v1 st v1 in W & u = (v - v1)

    proof

      thus u in (v + W) implies ex v1 st v1 in W & u = (v - v1)

      proof

        assume u in (v + W);

        then

        consider v1 such that

         A1: u = (v + v1) and

         A2: v1 in W;

        take x = ( - v1);

        thus x in W by A2, Th22;

        thus thesis by A1, RLVECT_1: 17;

      end;

      given v1 such that

       A3: v1 in W and

       A4: u = (v - v1);

      ( - v1) in W by A3, Th22;

      hence thesis by A4;

    end;

    theorem :: RMOD_2:60

    

     Th60: (ex v st v1 in (v + W) & v2 in (v + W)) iff (v1 - v2) in W

    proof

      thus (ex v st v1 in (v + W) & v2 in (v + W)) implies (v1 - v2) in W

      proof

        given v such that

         A1: v1 in (v + W) and

         A2: v2 in (v + W);

        consider u2 such that

         A3: u2 in W and

         A4: v2 = (v + u2) by A2, Th42;

        consider u1 such that

         A5: u1 in W and

         A6: v1 = (v + u1) by A1, Th42;

        (v1 - v2) = ((u1 + v) + (( - v) - u2)) by A6, A4, VECTSP_1: 17

        .= (((u1 + v) + ( - v)) - u2) by RLVECT_1:def 3

        .= ((u1 + (v + ( - v))) - u2) by RLVECT_1:def 3

        .= ((u1 + ( 0. V)) - u2) by RLVECT_1: 5

        .= (u1 - u2) by RLVECT_1:def 4;

        hence thesis by A5, A3, Th23;

      end;

      assume (v1 - v2) in W;

      then

       A7: ( - (v1 - v2)) in W by Th22;

      take v1;

      thus v1 in (v1 + W) by Th44;

      (v1 + ( - (v1 - v2))) = (v1 + (( - v1) + v2)) by VECTSP_1: 17

      .= ((v1 + ( - v1)) + v2) by RLVECT_1:def 3

      .= (( 0. V) + v2) by RLVECT_1: 5

      .= v2 by RLVECT_1:def 4;

      hence thesis by A7;

    end;

    theorem :: RMOD_2:61

    

     Th61: (v + W) = (u + W) implies ex v1 st v1 in W & (v + v1) = u

    proof

      assume (v + W) = (u + W);

      then v in (u + W) by Th44;

      then

      consider u1 such that

       A1: v = (u + u1) and

       A2: u1 in W;

      take v1 = (u - v);

      ( 0. V) = ((u + u1) - v) by A1, VECTSP_1: 19

      .= (u1 + (u - v)) by RLVECT_1:def 3;

      then v1 = ( - u1) by VECTSP_1: 16;

      hence v1 in W by A2, Th22;

      

      thus (v + v1) = ((u + v) - v) by RLVECT_1:def 3

      .= (u + (v - v)) by RLVECT_1:def 3

      .= (u + ( 0. V)) by VECTSP_1: 19

      .= u by RLVECT_1:def 4;

    end;

    theorem :: RMOD_2:62

    

     Th62: (v + W) = (u + W) implies ex v1 st v1 in W & (v - v1) = u

    proof

      assume (v + W) = (u + W);

      then u in (v + W) by Th44;

      then

      consider u1 such that

       A1: u = (v + u1) and

       A2: u1 in W;

      take v1 = (v - u);

      ( 0. V) = ((v + u1) - u) by A1, VECTSP_1: 19

      .= (u1 + (v - u)) by RLVECT_1:def 3;

      then v1 = ( - u1) by VECTSP_1: 16;

      hence v1 in W by A2, Th22;

      

      thus (v - v1) = ((v - v) + u) by RLVECT_1: 29

      .= (( 0. V) + u) by VECTSP_1: 19

      .= u by RLVECT_1:def 4;

    end;

    theorem :: RMOD_2:63

    

     Th63: for W1,W2 be strict Submodule of V holds (v + W1) = (v + W2) iff W1 = W2

    proof

      let W1,W2 be strict Submodule of V;

      thus (v + W1) = (v + W2) implies W1 = W2

      proof

        assume

         A1: (v + W1) = (v + W2);

        the carrier of W1 = the carrier of W2

        proof

          

           A2: the carrier of W1 c= the carrier of V by Def2;

          thus the carrier of W1 c= the carrier of W2

          proof

            let x be object;

            assume

             A3: x in the carrier of W1;

            then

            reconsider y = x as Element of V by A2;

            set z = (v + y);

            x in W1 by A3;

            then z in (v + W2) by A1;

            then

            consider u such that

             A4: z = (v + u) and

             A5: u in W2;

            y = u by A4, RLVECT_1: 8;

            hence thesis by A5;

          end;

          let x be object;

          assume

           A6: x in the carrier of W2;

          the carrier of W2 c= the carrier of V by Def2;

          then

          reconsider y = x as Element of V by A6;

          set z = (v + y);

          x in W2 by A6;

          then z in (v + W1) by A1;

          then

          consider u such that

           A7: z = (v + u) and

           A8: u in W1;

          y = u by A7, RLVECT_1: 8;

          hence thesis by A8;

        end;

        hence thesis by Th29;

      end;

      thus thesis;

    end;

    theorem :: RMOD_2:64

    

     Th64: for W1,W2 be strict Submodule of V holds (v + W1) = (u + W2) implies W1 = W2

    proof

      let W1,W2 be strict Submodule of V;

      assume

       A1: (v + W1) = (u + W2);

      set V2 = the carrier of W2;

      set V1 = the carrier of W1;

      assume

       A2: W1 <> W2;

       A3:

      now

        set x = the Element of (V1 \ V2);

        assume (V1 \ V2) <> {} ;

        then x in V1 by XBOOLE_0:def 5;

        then

         A4: x in W1;

        then x in V by Th9;

        then

        reconsider x as Element of V;

        set z = (v + x);

        z in (u + W2) by A1, A4;

        then

        consider u1 such that

         A5: z = (u + u1) and

         A6: u1 in W2;

        x = (( 0. V) + x) by RLVECT_1:def 4

        .= ((v + ( - v)) + x) by VECTSP_1: 19

        .= (( - v) + (u + u1)) by A5, RLVECT_1:def 3;

        then

         A7: ((v + (( - v) + (u + u1))) + W1) = (v + W1) by A4, Th51;

        (v + (( - v) + (u + u1))) = ((v + ( - v)) + (u + u1)) by RLVECT_1:def 3

        .= (( 0. V) + (u + u1)) by VECTSP_1: 19

        .= (u + u1) by RLVECT_1:def 4;

        then ((u + u1) + W2) = ((u + u1) + W1) by A1, A6, A7, Th51;

        hence thesis by A2, Th63;

      end;

       A8:

      now

        set x = the Element of (V2 \ V1);

        assume (V2 \ V1) <> {} ;

        then x in V2 by XBOOLE_0:def 5;

        then

         A9: x in W2;

        then x in V by Th9;

        then

        reconsider x as Element of V;

        set z = (u + x);

        z in (v + W1) by A1, A9;

        then

        consider u1 such that

         A10: z = (v + u1) and

         A11: u1 in W1;

        x = (( 0. V) + x) by RLVECT_1:def 4

        .= ((u + ( - u)) + x) by VECTSP_1: 19

        .= (( - u) + (v + u1)) by A10, RLVECT_1:def 3;

        then

         A12: ((u + (( - u) + (v + u1))) + W2) = (u + W2) by A9, Th51;

        (u + (( - u) + (v + u1))) = ((u + ( - u)) + (v + u1)) by RLVECT_1:def 3

        .= (( 0. V) + (v + u1)) by VECTSP_1: 19

        .= (v + u1) by RLVECT_1:def 4;

        then ((v + u1) + W1) = ((v + u1) + W2) by A1, A11, A12, Th51;

        hence thesis by A2, Th63;

      end;

      V1 <> V2 by A2, Th29;

      then not V1 c= V2 or not V2 c= V1;

      hence thesis by A3, A8, XBOOLE_1: 37;

    end;

    theorem :: RMOD_2:65

    ex C st v in C

    proof

      reconsider C = (v + W) as Coset of W by Def6;

      take C;

      thus thesis by Th44;

    end;

    theorem :: RMOD_2:66

    C is linearly-closed iff C = the carrier of W

    proof

      thus C is linearly-closed implies C = the carrier of W

      proof

        assume

         A1: C is linearly-closed;

        consider v such that

         A2: C = (v + W) by Def6;

        C <> {} by A2, Th44;

        then ( 0. V) in (v + W) by A1, A2, Th1;

        hence thesis by A2, Th48;

      end;

      thus thesis by Lm1;

    end;

    theorem :: RMOD_2:67

    for W1,W2 be strict Submodule of V holds for C1 be Coset of W1, C2 be Coset of W2 holds C1 = C2 implies W1 = W2

    proof

      let W1,W2 be strict Submodule of V;

      let C1 be Coset of W1, C2 be Coset of W2;

      (ex v1 be Vector of V st C1 = (v1 + W1)) & ex v2 be Vector of V st C2 = (v2 + W2) by Def6;

      hence thesis by Th64;

    end;

    theorem :: RMOD_2:68

     {v} is Coset of ( (0). V)

    proof

      (v + ( (0). V)) = {v} by Th46;

      hence thesis by Def6;

    end;

    theorem :: RMOD_2:69

    V1 is Coset of ( (0). V) implies ex v st V1 = {v}

    proof

      assume V1 is Coset of ( (0). V);

      then

      consider v such that

       A1: V1 = (v + ( (0). V)) by Def6;

      take v;

      thus thesis by A1, Th46;

    end;

    theorem :: RMOD_2:70

    the carrier of W is Coset of W

    proof

      the carrier of W = (( 0. V) + W) by Lm2;

      hence thesis by Def6;

    end;

    theorem :: RMOD_2:71

    the carrier of V is Coset of ( (Omega). V)

    proof

      set v = the Vector of V;

      the carrier of V c= the carrier of V;

      then

      reconsider A = the carrier of V as Subset of V;

      A = (v + ( (Omega). V)) by Th47;

      hence thesis by Def6;

    end;

    theorem :: RMOD_2:72

    V1 is Coset of ( (Omega). V) implies V1 = the carrier of V

    proof

      assume V1 is Coset of ( (Omega). V);

      then ex v st V1 = (v + ( (Omega). V)) by Def6;

      hence thesis by Th47;

    end;

    theorem :: RMOD_2:73

    ( 0. V) in C iff C = the carrier of W

    proof

      ex v st C = (v + W) by Def6;

      hence thesis by Th48;

    end;

    theorem :: RMOD_2:74

    

     Th74: u in C iff C = (u + W)

    proof

      thus u in C implies C = (u + W)

      proof

        assume

         A1: u in C;

        ex v st C = (v + W) by Def6;

        hence thesis by A1, Th53;

      end;

      thus thesis by Th44;

    end;

    theorem :: RMOD_2:75

    u in C & v in C implies ex v1 st v1 in W & (u + v1) = v

    proof

      assume u in C & v in C;

      then C = (u + W) & C = (v + W) by Th74;

      hence thesis by Th61;

    end;

    theorem :: RMOD_2:76

    u in C & v in C implies ex v1 st v1 in W & (u - v1) = v

    proof

      assume u in C & v in C;

      then C = (u + W) & C = (v + W) by Th74;

      hence thesis by Th62;

    end;

    theorem :: RMOD_2:77

    (ex C st v1 in C & v2 in C) iff (v1 - v2) in W

    proof

      thus (ex C st v1 in C & v2 in C) implies (v1 - v2) in W

      proof

        given C such that

         A1: v1 in C & v2 in C;

        ex v st C = (v + W) by Def6;

        hence thesis by A1, Th60;

      end;

      assume (v1 - v2) in W;

      then

      consider v such that

       A2: v1 in (v + W) & v2 in (v + W) by Th60;

      reconsider C = (v + W) as Coset of W by Def6;

      take C;

      thus thesis by A2;

    end;

    theorem :: RMOD_2:78

    u in B & u in C implies B = C

    proof

      assume

       A1: u in B & u in C;

      (ex v1 st B = (v1 + W)) & ex v2 st C = (v2 + W) by Def6;

      hence thesis by A1, Th54;

    end;