srings_2.miz



    begin

    reserve X for set;

    reserve S for Subset-Family of X;

    theorem :: SRINGS_2:1

    for X1,X2 be set, S1 be Subset-Family of X1, S2 be Subset-Family of X2 holds { [:a, b:] where a be Element of S1, b be Element of S2 : a in S1 & b in S2 } = { s where s be Subset of [:X1, X2:] : ex a,b be set st a in S1 & b in S2 & s = [:a, b:] }

    proof

      let X1,X2 be set;

      let S1 be Subset-Family of X1;

      let S2 be Subset-Family of X2;

      thus { [:a, b:] where a be Element of S1, b be Element of S2 : a in S1 & b in S2 } c= { s where s be Subset of [:X1, X2:] : ex a,b be set st a in S1 & b in S2 & s = [:a, b:] }

      proof

        let x be object;

        assume x in { [:a, b:] where a be Element of S1, b be Element of S2 : a in S1 & b in S2 };

        then

        consider a be Element of S1, b be Element of S2 such that

         A1: x = [:a, b:] & a in S1 & b in S2;

         [:a, b:] c= [:X1, X2:] by A1, ZFMISC_1: 96;

        hence thesis by A1;

      end;

      let x be object;

      assume x in { s where s be Subset of [:X1, X2:] : ex a,b be set st a in S1 & b in S2 & s = [:a, b:] };

      then ex s0 be Subset of [:X1, X2:] st x = s0 & ex a0,b0 be set st a0 in S1 & b0 in S2 & s0 = [:a0, b0:];

      hence thesis;

    end;

    theorem :: SRINGS_2:2

    for X1,X2 be set, S1 be non empty Subset-Family of X1, S2 be non empty Subset-Family of X2 holds { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] } = the set of all [:x1, x2:] where x1 be Element of S1, x2 be Element of S2

    proof

      let X1,X2 be set;

      let S1 be non empty Subset-Family of X1;

      let S2 be non empty Subset-Family of X2;

      

       A1: for x be object st x in { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] } holds x in the set of all [:x1, x2:] where x1 be Element of S1, x2 be Element of S2

      proof

        let x be object;

        assume x in { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] };

        then ex s be Subset of [:X1, X2:] st x = s & ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:];

        hence thesis;

      end;

      for x be object st x in the set of all [:x1, x2:] where x1 be Element of S1, x2 be Element of S2 holds x in { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] }

      proof

        let x be object;

        assume x in the set of all [:x1, x2:] where x1 be Element of S1, x2 be Element of S2;

        then ex x1 be Element of S1, x2 be Element of S2 st x = [:x1, x2:];

        hence thesis;

      end;

      hence thesis by A1, TARSKI: 2;

    end;

    theorem :: SRINGS_2:3

    for X1,X2 be set, S1 be Subset-Family of X1, S2 be Subset-Family of X2 st S1 is cap-closed & S2 is cap-closed holds { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] } is cap-closed

    proof

      let X1,X2 be set, S1 be Subset-Family of X1, S2 be Subset-Family of X2;

      assume

       A1: S1 is cap-closed;

      assume

       A2: S2 is cap-closed;

      set Y = { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] };

      Y is cap-closed

      proof

        let W1,W2 be set;

        assume

         A3: W1 in Y;

        assume

         A4: W2 in Y;

        consider s1 be Subset of [:X1, X2:] such that

         A5: W1 = s1 & ex xs1,xs2 be set st xs1 in S1 & xs2 in S2 & s1 = [:xs1, xs2:] by A3;

        consider xs1,xs2 be set such that

         A6: xs1 in S1 & xs2 in S2 & s1 = [:xs1, xs2:] by A5;

        consider s2 be Subset of [:X1, X2:] such that

         A7: W2 = s2 & ex ys1,ys2 be set st ys1 in S1 & ys2 in S2 & s2 = [:ys1, ys2:] by A4;

        consider ys1,ys2 be set such that

         A8: ys1 in S1 & ys2 in S2 & s2 = [:ys1, ys2:] by A7;

        

         A9: ( [:xs1, xs2:] /\ [:ys1, ys2:]) = [:(xs1 /\ ys1), (xs2 /\ ys2):] by ZFMISC_1: 100;

        

         A10: (xs1 /\ ys1) in S1 & (xs2 /\ ys2) in S2 by A6, A8, A1, A2, FINSUB_1:def 2;

        (s1 /\ s2) in Y by A6, A8, A9, A10;

        hence thesis by A5, A7;

      end;

      hence thesis;

    end;

    

     Lem3: for X1,X2 be set, S1 be Subset-Family of X1, S2 be Subset-Family of X2 holds { s where s be Subset of [:X1, X2:] : ex s1,s2 be set st s1 in S1 & s2 in S2 & s = [:s1, s2:] } is Subset-Family of [:X1, X2:]

    proof

      let X1,X2 be set;

      let S1 be Subset-Family of X1;

      let S2 be Subset-Family of X2;

      set S = { s where s be Subset of [:X1, X2:] : ex s1,s2 be set st s1 in S1 & s2 in S2 & s = [:s1, s2:] };

      S c= ( bool [:X1, X2:])

      proof

        let x be object;

        assume x in S;

        then

        consider s0 be Subset of [:X1, X2:] such that

         A1: x = s0 & ex s1,s2 be set st s1 in S1 & s2 in S2 & s0 = [:s1, s2:];

        thus thesis by A1;

      end;

      hence thesis;

    end;

    

     Lem4: for X1,X2,Y1,Y2 be set holds ( [:X1, X2:] \ [:Y1, Y2:]) = ( [:(X1 \ Y1), X2:] \/ [:(X1 /\ Y1), (X2 \ Y2):]) & [:(X1 \ Y1), X2:] misses [:(X1 /\ Y1), (X2 \ Y2):]

    proof

      let X1,X2,Y1,Y2 be set;

      

       A2: ( [:(X1 \ Y1), X2:] \/ [:X1, (X2 \ Y2):]) c= ( [:(X1 \ Y1), X2:] \/ [:(X1 /\ Y1), (X2 \ Y2):])

      proof

        let x be object;

        assume

         A3: x in ( [:(X1 \ Y1), X2:] \/ [:X1, (X2 \ Y2):]);

        now

          per cases by A3, XBOOLE_0:def 3;

            suppose x in [:(X1 \ Y1), X2:];

            hence thesis by XBOOLE_0:def 3;

          end;

            suppose x in [:X1, (X2 \ Y2):];

            then

            consider x1,x2 be object such that

             A4: x1 in X1 and

             A5: x2 in (X2 \ Y2) and

             A6: x = [x1, x2] by ZFMISC_1:def 2;

            (x1 in X1 & not x1 in Y1) or (x1 in X1 & x1 in Y1) by A4;

            then (x1 in (X1 \ Y1) & x2 in X2) or (x1 in (X1 /\ Y1) & x2 in (X2 \ Y2)) by A5, XBOOLE_0:def 4, XBOOLE_0:def 5;

            then x in [:(X1 \ Y1), X2:] or x in [:(X1 /\ Y1), (X2 \ Y2):] by A6, ZFMISC_1:def 2;

            hence thesis by XBOOLE_0:def 3;

          end;

        end;

        hence thesis;

      end;

      

       A7: ( [:(X1 \ Y1), X2:] \/ [:(X1 /\ Y1), (X2 \ Y2):]) c= ( [:(X1 \ Y1), X2:] \/ [:X1, (X2 \ Y2):])

      proof

        let x be object;

        assume

         A8: x in ( [:(X1 \ Y1), X2:] \/ [:(X1 /\ Y1), (X2 \ Y2):]);

        now

          per cases by A8, XBOOLE_0:def 3;

            suppose x in [:(X1 \ Y1), X2:];

            hence thesis by XBOOLE_0:def 3;

          end;

            suppose x in [:(X1 /\ Y1), (X2 \ Y2):];

            then

            consider x1,x2 be object such that

             A9: x1 in (X1 /\ Y1) and

             A10: x2 in (X2 \ Y2) and

             A11: x = [x1, x2] by ZFMISC_1:def 2;

            x1 in X1 & x2 in (X2 \ Y2) & x = [x1, x2] by A9, A10, A11, XBOOLE_0:def 4;

            then x in [:X1, (X2 \ Y2):] by ZFMISC_1:def 2;

            hence thesis by XBOOLE_0:def 3;

          end;

        end;

        hence thesis;

      end;

       [:(X1 \ Y1), X2:] misses [:(X1 /\ Y1), (X2 \ Y2):]

      proof

        now

          let x be object;

          assume x in ( [:(X1 \ Y1), X2:] /\ [:(X1 /\ Y1), (X2 \ Y2):]);

          then

           A12: x in [:(X1 \ Y1), X2:] & x in [:(X1 /\ Y1), (X2 \ Y2):] by XBOOLE_0:def 4;

          then

          consider a1,a2 be object such that

           A13: a1 in (X1 \ Y1) & a2 in X2 & x = [a1, a2] by ZFMISC_1:def 2;

          consider a3,a4 be object such that

           A14: a3 in (X1 /\ Y1) & a4 in (X2 \ Y2) & x = [a3, a4] by ZFMISC_1:def 2, A12;

          a1 = a3 & a2 = a4 by XTUPLE_0: 1, A13, A14;

          then a1 in X1 & not a1 in Y1 & a1 in Y1 by A13, A14, XBOOLE_0:def 4, XBOOLE_0:def 5;

          hence contradiction;

        end;

        then ( [:(X1 \ Y1), X2:] /\ [:(X1 /\ Y1), (X2 \ Y2):]) is empty;

        hence thesis;

      end;

      hence thesis by A2, A7, ZFMISC_1: 103;

    end;

    

     Lem6a: for X be set, S be Subset-Family of X, XX be Subset of S holds ( union XX) = X iff XX is Cover of X

    proof

      let X be set, S be Subset-Family of X, XX be Subset of S;

      XX is Subset-Family of X by XBOOLE_1: 1;

      hence thesis by SETFAM_1: 45;

    end;

    registration

      let X be set;

      cluster -> cap-finite-partition-closed diff-c=-finite-partition-closed with_countable_Cover with_empty_element for SigmaField of X;

      coherence

      proof

        let SF be SigmaField of X;

        set U = {X};

        

         A1: U is Subset-Family of X by ZFMISC_1: 68;

        

         A2: ( union U) = X;

        X is Element of SF by PROB_1: 5;

        then U is Subset of SF by SUBSET_1: 33;

        hence thesis by A1, SETFAM_1: 45, SETFAM_1:def 8, A2, SRINGS_1:def 4, PROB_1: 4;

      end;

    end

    begin

    theorem :: SRINGS_2:4

    for F be SigmaField of X holds F is semiring_of_sets of X;

    registration

      let X be set;

      cluster ( bool X) -> cap-finite-partition-closed diff-c=-finite-partition-closed with_countable_Cover with_empty_element;

      coherence ;

    end

    theorem :: SRINGS_2:5

    ( bool X) is semiring_of_sets of X;

    

     Lemme4: for X be set, a,b,c be object st [a, b] in [:X, ( bool X):] & c in X & [a, b] = [c, {c}] holds a = c & b = {c}

    proof

      let X be set, a,b,c be object;

      assume [a, b] in [:X, ( bool X):];

      assume c in X;

      assume

       A1: [a, b] = [c, {c}];

      ( [a, b] `1 ) = a & ( [a, b] `2 ) = b & ( [c, {c}] `1 ) = c & ( [c, {c}] `2 ) = {c};

      hence thesis by A1;

    end;

    

     FinConv: for D be set, SD be Subset-Family of D holds SD = { y where y be Subset of D : y is finite } iff SD = ( Fin D)

    proof

      let D be set, SD be Subset-Family of D;

      thus SD = { y where y be Subset of D : y is finite } implies SD = ( Fin D)

      proof

        assume

         A1: SD = { y where y be Subset of D : y is finite };

        thus SD c= ( Fin D)

        proof

          let x be object;

          assume x in SD;

          then ex y be Subset of D st x = y & y is finite by A1;

          hence thesis by FINSUB_1:def 5;

        end;

        let x be object;

        assume

         B1: x in ( Fin D);

        reconsider x as set by TARSKI: 1;

        x c= D & x is finite by B1, FINSUB_1:def 5;

        hence thesis by A1;

      end;

      for D be set, SD be Subset-Family of D st SD = ( Fin D) holds SD = { y where y be Subset of D : y is finite }

      proof

        let D be set;

        let SD be Subset-Family of D;

        assume

         A4: SD = ( Fin D);

        then

         A5: SD c= { y where y be Subset of D : y is finite };

        { y where y be Subset of D : y is finite } c= SD

        proof

          let x be object;

          assume x in { y where y be Subset of D : y is finite };

          then

          consider y be Subset of D such that

           A6: x = y & y is finite;

          thus thesis by A4, A6, FINSUB_1:def 5;

        end;

        hence thesis by A5;

      end;

      hence thesis;

    end;

    registration

      let X;

      cluster ( Fin X) -> cap-finite-partition-closed diff-c=-finite-partition-closed with_empty_element;

      coherence

      proof

        ( Fin X) is cap-closed

        proof

          let x,y be set;

          assume x in ( Fin X) & y in ( Fin X);

          then

           A2: x is finite & y is finite & x c= X & y c= X by FINSUB_1:def 5;

          (x /\ y) c= x by XBOOLE_1: 17;

          then (x /\ y) is finite & (x /\ y) c= X by A2;

          hence thesis by FINSUB_1:def 5;

        end;

        hence thesis by FINSUB_1: 7, SETFAM_1:def 8;

      end;

    end

    registration

      let D be denumerable set;

      cluster ( Fin D) -> with_countable_Cover;

      coherence

      proof

        let SD be Subset-Family of D;

        assume SD = ( Fin D);

        then

         A1: SD = { y where y be Subset of D : y is finite } by FinConv;

        defpred P[ object] means $1 in SD & ex x be set st x in D & $1 = {x};

        consider XX be set such that

         A2: for y be object holds y in XX iff y in ( bool D) & P[y] from XBOOLE_0:sch 1;

        for x be object holds x in XX implies x in SD by A2;

        then

         A3: XX is Subset of SD by TARSKI:def 3;

        

         A4: for x be object holds x in ( union XX) iff x in D

        proof

          let x be object;

          thus x in ( union XX) implies x in D

          proof

            assume

             A5: x in ( union XX);

            consider U be set such that

             A6: x in U & U in XX by A5, TARSKI:def 4;

            consider y0 be set such that

             A7: y0 in D & U = {y0} by A2, A6;

            thus x in D by A6, A7, TARSKI:def 1;

          end;

          thus thesis

          proof

            assume

             A8: x in D;

            then

             A9: {x} is Subset of D by SUBSET_1: 41;

            

             A10: {x} in SD by A1, A9;

            set y = {x};

            x in y & y in XX by A2, A8, A10, TARSKI:def 1;

            hence x in ( union XX) by TARSKI:def 4;

          end;

        end;

        

         A11: ( union XX) = D by A4, TARSKI: 2;

        XX is countable

        proof

          (D,XX) are_equipotent

          proof

            defpred P[ object] means ex x be set st x in D & $1 = [x, {x}];

            consider Z be set such that

             A12: for z be object holds z in Z iff z in [:D, ( bool D):] & P[z] from XBOOLE_0:sch 1;

            (for c be object st c in D holds ex xx be object st xx in XX & [c, xx] in Z) & (for xx be object st xx in XX holds ex c be object st c in D & [c, xx] in Z) & (for w1,w2,w3,w4 be object st [w1, w2] in Z & [w3, w4] in Z holds w1 = w3 iff w2 = w4)

            proof

              

               A13: for c be object st c in D holds ex xx be object st xx in XX & [c, xx] in Z

              proof

                let c be object;

                assume

                 A14: c in D;

                set xx0 = {c};

                take xx0;

                 [c, xx0] in [:D, ( bool D):] & xx0 in XX & [c, xx0] in Z

                proof

                  

                   A15: {c} is Subset of D by A14, SUBSET_1: 33;

                  

                   A16: xx0 in SD by A1, A15;

                  

                   A17: {c} c= D by A14, ZFMISC_1: 31;

                   [c, {c}] in [:D, ( bool D):] by A14, A17, ZFMISC_1:def 2;

                  hence thesis by A2, A12, A14, A16;

                end;

                hence thesis;

              end;

              

               A19: for xx be object st xx in XX holds ex c be object st c in D & [c, xx] in Z

              proof

                let xx be object;

                assume

                 A20: xx in XX;

                consider c0 be set such that

                 A21: c0 in D & xx = {c0} by A2, A20;

                take c0;

                 [c0, xx] in [:D, ( bool D):] & [c0, xx] in Z

                proof

                   [c0, {c0}] in [:D, ( bool D):]

                  proof

                     {c0} is Subset of D by A21, SUBSET_1: 41;

                    hence thesis by A21, ZFMISC_1:def 2;

                  end;

                  hence thesis by A12, A21;

                end;

                hence thesis by A21;

              end;

              (for w1,w2,w3,w4 be object st [w1, w2] in Z & [w3, w4] in Z holds w1 = w3 iff w2 = w4)

              proof

                let w1,w2,w3,w4 be object;

                assume

                 A23: [w1, w2] in Z;

                assume

                 A24: [w3, w4] in Z;

                thus w1 = w3 implies w2 = w4

                proof

                  assume

                   A25: w1 = w3;

                  

                   A26: [w1, w2] in [:D, ( bool D):] & ex x0 be set st x0 in D & [w1, w2] = [x0, {x0}] by A12, A23;

                  consider x0 be set such that

                   A27: x0 in D & [w1, w2] = [x0, {x0}] by A12, A23;

                  

                   A28: w1 = x0 & w2 = {x0} by A26, A27, Lemme4;

                  

                   A29: [w1, w4] in [:D, ( bool D):] & ex y0 be set st y0 in D & [w1, w4] = [y0, {y0}] by A12, A24, A25;

                  consider y0 be set such that

                   A30: y0 in D & [w1, w4] = [y0, {y0}] by A12, A24, A25;

                  

                   A31: w1 = y0 & w4 = {y0} by A29, A30, Lemme4;

                  thus thesis by A28, A31;

                end;

                thus w2 = w4 implies w1 = w3

                proof

                  assume

                   A32: w2 = w4;

                  

                   A33: [w1, w2] in [:D, ( bool D):] & ex x0 be set st x0 in D & [w1, w2] = [x0, {x0}] by A12, A23;

                  consider x0 be set such that

                   A34: x0 in D & [w1, w2] = [x0, {x0}] by A12, A23;

                  

                   A35: w1 = x0 & w2 = {x0} by A33, A34, Lemme4;

                  

                   A36: [w3, w2] in [:D, ( bool D):] & ex y0 be set st y0 in D & [w3, w2] = [y0, {y0}] by A12, A24, A32;

                  consider y0 be set such that

                   A37: y0 in D & [w3, w2] = [y0, {y0}] by A12, A24, A32;

                  w3 = y0 & w2 = {y0} by A36, A37, Lemme4;

                  hence thesis by A35, ZFMISC_1: 3;

                end;

              end;

              hence thesis by A13, A19;

            end;

            hence thesis;

          end;

          hence thesis by YELLOW_8: 4;

        end;

        hence thesis by A3, A11, Lem6a, SRINGS_1:def 4;

      end;

    end

    theorem :: SRINGS_2:6

    ( Fin X) is semiring_of_sets of X by FINSUB_1: 13;

    

     Lemme9: for X1,X2 be non empty set, S1 be non empty Subset-Family of X1, S2 be non empty Subset-Family of X2 holds { [:a, b:] where a be Element of S1, b be Element of S2 : a in (S1 \ { {} }) & b in (S2 \ { {} }) } = { s where s be Subset of [:X1, X2:] : ex a,b be set st a in (S1 \ { {} }) & b in (S2 \ { {} }) & s = [:a, b:] }

    proof

      let X1,X2 be non empty set;

      let S1 be non empty Subset-Family of X1;

      let S2 be non empty Subset-Family of X2;

      thus { [:a, b:] where a be Element of S1, b be Element of S2 : a in (S1 \ { {} }) & b in (S2 \ { {} }) } c= { s where s be Subset of [:X1, X2:] : ex a,b be set st a in (S1 \ { {} }) & b in (S2 \ { {} }) & s = [:a, b:] }

      proof

        let x be object;

        assume x in { [:a, b:] where a be Element of S1, b be Element of S2 : a in (S1 \ { {} }) & b in (S2 \ { {} }) };

        then

        consider a be Element of S1, b be Element of S2 such that

         A1: x = [:a, b:] & a in (S1 \ { {} }) & b in (S2 \ { {} });

        thus thesis by A1;

      end;

      let x be object;

      assume x in { s where s be Subset of [:X1, X2:] : ex a,b be set st a in (S1 \ { {} }) & b in (S2 \ { {} }) & s = [:a, b:] };

      then

      consider s0 be Subset of [:X1, X2:] such that

       A2: x = s0 & ex a0,b0 be set st a0 in (S1 \ { {} }) & b0 in (S2 \ { {} }) & s0 = [:a0, b0:];

      consider a0,b0 be set such that

       A3: a0 in (S1 \ { {} }) & b0 in (S2 \ { {} }) & s0 = [:a0, b0:] by A2;

      a0 in S1 & b0 in S2 & s0 = [:a0, b0:] by TARSKI:def 3, A3, XBOOLE_1: 36;

      hence thesis by A2, A3;

    end;

    

     Lem7: for x,S1,S2 be set holds x in { [:a, b:] where a be Element of (S1 \ { {} }), b be Element of (S2 \ { {} }) : a in (S1 \ { {} }) & b in (S2 \ { {} }) } iff x in { [:a, b:] where a be Element of S1, b be Element of S2 : a in (S1 \ { {} }) & b in (S2 \ { {} }) }

    proof

      let x,S1,S2 be set;

      x in { [:a, b:] where a be Element of (S1 \ { {} }), b be Element of (S2 \ { {} }) : a in (S1 \ { {} }) & b in (S2 \ { {} }) } iff ex a0 be Element of (S1 \ { {} }), b0 be Element of (S2 \ { {} }) st x = [:a0, b0:] & a0 in (S1 \ { {} }) & b0 in (S2 \ { {} });

      then x in { [:a, b:] where a be Element of (S1 \ { {} }), b be Element of (S2 \ { {} }) : a in (S1 \ { {} }) & b in (S2 \ { {} }) } iff ex a0 be Element of S1, b0 be Element of S2 st x = [:a0, b0:] & a0 in (S1 \ { {} }) & b0 in (S2 \ { {} });

      hence thesis;

    end;

    

     Lem8: for X1,X2 be non empty set, S1 be non empty Subset-Family of X1, S2 be non empty Subset-Family of X2 holds { [:a, b:] where a be Element of (S1 \ { {} }), b be Element of (S2 \ { {} }) : a in (S1 \ { {} }) & b in (S2 \ { {} }) } = { [:a, b:] where a be Element of S1, b be Element of S2 : a in (S1 \ { {} }) & b in (S2 \ { {} }) }

    proof

      let X1,X2 be non empty set;

      let S1 be non empty Subset-Family of X1;

      let S2 be non empty Subset-Family of X2;

      for x0 be object holds x0 in { [:a, b:] where a be Element of (S1 \ { {} }), b be Element of (S2 \ { {} }) : a in (S1 \ { {} }) & b in (S2 \ { {} }) } iff x0 in { [:a, b:] where a be Element of S1, b be Element of S2 : a in (S1 \ { {} }) & b in (S2 \ { {} }) } by Lem7;

      hence thesis by TARSKI: 2;

    end;

    

     Lem9: for X be set, S be Subset-Family of X, A be Subset of S holds A is Subset-Family of X

    proof

      let X be set;

      let S be Subset-Family of X;

      let A be Subset of S;

      S c= ( bool X);

      then A c= ( bool X);

      hence thesis;

    end;

    theorem :: SRINGS_2:7

    for X1,X2 be set, S1 be semiring_of_sets of X1, S2 be semiring_of_sets of X2 holds { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] } is semiring_of_sets of [:X1, X2:]

    proof

      let X1,X2 be set;

      let S1 be semiring_of_sets of X1;

      let S2 be semiring_of_sets of X2;

      defpred Q[ object, object] means ex A,B be set st A = ($2 `1 ) & B = ($2 `2 ) & $1 = [:A, B:];

      set Y = { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] };

      

       A1: Y is with_empty_element

      proof

        

         A2: {} in S1 & {} in S2 by SETFAM_1:def 8;

         [: {} , {} :] c= [:X1, X2:];

        then {} in Y by A2;

        hence thesis;

      end;

      then

       A3: Y is non empty;

      reconsider Y as Subset-Family of [:X1, X2:] by Lem3;

      

       A4: Y is cap-finite-partition-closed

      proof

        let D1,D2 be Element of Y;

        D1 in Y by A3;

        then

        consider s1 be Subset of [:X1, X2:] such that

         A5: D1 = s1 & ex x11,x12 be set st x11 in S1 & x12 in S2 & s1 = [:x11, x12:];

        consider x11,x12 be set such that

         A6: x11 in S1 & x12 in S2 & D1 = [:x11, x12:] by A5;

        D2 in Y by A3;

        then

        consider s2 be Subset of [:X1, X2:] such that

         A9: D2 = s2 & ex x21,x22 be set st x21 in S1 & x22 in S2 & s2 = [:x21, x22:];

        consider x21,x22 be set such that

         A10: x21 in S1 & x22 in S2 & D2 = [:x21, x22:] by A9;

        assume (D1 /\ D2) is non empty;

        then [:(x11 /\ x21), (x12 /\ x22):] <> {} by ZFMISC_1: 100, A6, A10;

        then

         A13: (x11 /\ x21) is non empty & (x12 /\ x22) is non empty;

        then

        consider y1 be finite Subset of S1 such that

         A14: y1 is a_partition of (x11 /\ x21) by A6, A10, SRINGS_1:def 1;

        consider y2 be finite Subset of S2 such that

         A15: y2 is a_partition of (x12 /\ x22) by A6, A10, A13, SRINGS_1:def 1;

        set YY = the set of all [:a, b:] where a be Element of y1, b be Element of y2;

        

         A16: y1 is non empty by A13, A14;

        

         A17: y2 is non empty by A13, A15;

        

         A18: YY c= Y

        proof

          let x be object;

          assume x in YY;

          then

          consider a0 be Element of y1, b0 be Element of y2 such that

           A19: x = [:a0, b0:];

          reconsider x as set by TARSKI: 1;

          

           A20: a0 in S1

          proof

            a0 in y1 by A16;

            hence thesis;

          end;

          

           A21: b0 in S2

          proof

            b0 in y2 by A17;

            hence thesis;

          end;

          x is Subset of [:X1, X2:]

          proof

            x c= [:X1, X2:]

            proof

              let y be object;

              assume y in x;

              then

              consider ya0,yb0 be object such that

               A22: ya0 in a0 & yb0 in b0 & y = [ya0, yb0] by A19, ZFMISC_1:def 2;

              thus thesis by A20, A21, A22, ZFMISC_1:def 2;

            end;

            hence thesis;

          end;

          hence thesis by A19, A20, A21;

        end;

        set YY = the set of all [:a, b:] where a be Element of y1, b be Element of y2;

        YY is a_partition of [:(x11 /\ x21), (x12 /\ x22):] by A13, A14, A15, PUA2MSS1: 8;

        then

         A24: YY is a_partition of (D1 /\ D2) by A6, A10, ZFMISC_1: 100;

        YY is finite

        proof

          

           A25: for x be object st x in YY holds ex y be object st y in [:y1, y2:] & Q[x, y]

          proof

            let x be object;

            assume x in YY;

            then

            consider x1 be Element of y1, x2 be Element of y2 such that

             A26: x = [:x1, x2:];

            set y = [x1, x2];

            reconsider Y1 = (y `1 ), Y2 = (y `2 ) as set;

            

             A27: x = [:Y1, Y2:] by A26;

            y in [:y1, y2:] by ZFMISC_1:def 2, A13, A14, A15;

            hence thesis by A27;

          end;

          consider f be Function such that

           A28: ( dom f) = YY & ( rng f) c= [:y1, y2:] and

           A29: for x be object st x in YY holds Q[x, (f . x)] from FUNCT_1:sch 6( A25);

          f is one-to-one

          proof

            let a,b be object;

            assume that

             A30: a in ( dom f) and

             A31: b in ( dom f) and

             A32: (f . a) = (f . b);

             Q[a, (f . a)] & Q[b, (f . a)] by A29, A32, A28, A30, A31;

            hence thesis;

          end;

          then ( card YY) c= ( card [:y1, y2:]) by A28, CARD_1: 10;

          hence thesis;

        end;

        hence thesis by A18, A24;

      end;

      Y is diff-finite-partition-closed

      proof

        let D3,D4 be Element of Y;

        D3 in Y by A3;

        then

        consider s1 be Subset of [:X1, X2:] such that

         A34: D3 = s1 & ex x11,x12 be set st x11 in S1 & x12 in S2 & s1 = [:x11, x12:];

        consider x11,x12 be set such that

         A35: x11 in S1 and

         A36: x12 in S2 and

         A37: D3 = [:x11, x12:] by A34;

        D4 in Y by A3;

        then

        consider s2 be Subset of [:X1, X2:] such that

         A40: D4 = s2 & ex x21,x22 be set st x21 in S1 & x22 in S2 & s2 = [:x21, x22:];

        consider x21,x22 be set such that

         A41: x21 in S1 and

         A42: x22 in S2 and

         A43: D4 = [:x21, x22:] by A40;

        assume (D3 \ D4) is non empty;

        

         A46: ((x11 \ x21) is non empty & x12 <> {} ) implies ex Z1 be finite Subset of Y st Z1 is a_partition of [:(x11 \ x21), x12:]

        proof

          assume

           A47: (x11 \ x21) is non empty & x12 <> {} ;

          then

          consider z1 be finite Subset of S1 such that

           A48: z1 is a_partition of (x11 \ x21) by A35, A41, SRINGS_1:def 2;

          

           A49: z1 is non empty by A48, A47;

          set Z1 = the set of all [:u1, x12:] where u1 be Element of z1;

          

           A50: Z1 is Subset of Y

          proof

            for x be object st x in Z1 holds x in Y

            proof

              let x be object;

              assume x in Z1;

              then

              consider a0 be Element of z1 such that

               A51: x = [:a0, x12:];

              

               A52: a0 in S1

              proof

                a0 in z1 by SUBSET_1:def 1, A47, A48;

                hence thesis;

              end;

              reconsider x as set by TARSKI: 1;

              x is Subset of [:X1, X2:]

              proof

                for y be object st y in x holds y in [:X1, X2:]

                proof

                  let y be object;

                  assume y in x;

                  then

                  consider ya0,yx12 be object such that

                   A53: ya0 in a0 & yx12 in x12 & y = [ya0, yx12] by A51, ZFMISC_1:def 2;

                  thus thesis by A36, A52, A53, ZFMISC_1:def 2;

                end;

                hence thesis by TARSKI:def 3;

              end;

              hence thesis by A51, A52, A36;

            end;

            hence thesis by TARSKI:def 3;

          end;

          

           A56: Z1 is finite

          proof

            defpred P[ object, object] means ex A be set st A = $2 & $1 = [:A, x12:];

            

             A57: for x be object st x in Z1 holds ex y be object st y in z1 & P[x, y]

            proof

              let x be object;

              assume x in Z1;

              then

              consider x1 be Element of z1 such that

               A58: x = [:x1, x12:];

              take x1;

              thus thesis by A49, A58;

            end;

            consider f be Function such that

             A59: ( dom f) = Z1 & ( rng f) c= z1 and

             A60: for x be object st x in Z1 holds P[x, (f . x)] from FUNCT_1:sch 6( A57);

            f is one-to-one

            proof

              let a,b be object;

              assume that

               A61: a in ( dom f) and

               A62: b in ( dom f) and

               A63: (f . a) = (f . b);

               P[a, (f . a)] & P[b, (f . b)] by A59, A60, A61, A62;

              hence thesis by A63;

            end;

            then ( card Z1) c= ( card z1) by A59, CARD_1: 10;

            hence thesis;

          end;

          Z1 is a_partition of [:(x11 \ x21), x12:]

          proof

            set Z2 = the set of all [:p, q:] where p be Element of z1, q be Element of {x12};

            

             A65: Z1 = Z2

            proof

              

               A66: Z1 c= Z2

              proof

                let x be object;

                assume x in Z1;

                then

                consider x00 be Element of z1 such that

                 A67: x = [:x00, x12:];

                x12 is Element of {x12} by TARSKI:def 1;

                hence thesis by A67;

              end;

              Z2 c= Z1

              proof

                let x be object;

                assume x in Z2;

                then

                consider x01 be Element of z1, x02 be Element of {x12} such that

                 A68: x = [:x01, x02:];

                x = [:x01, x12:] by A68, TARSKI:def 1;

                hence thesis;

              end;

              hence thesis by A66;

            end;

             {x12} is a_partition of x12 by A47, EQREL_1: 39;

            hence thesis by A65, PUA2MSS1: 8, A47, A48;

          end;

          hence thesis by A50, A56;

        end;

        

         A71: ((x11 /\ x21) <> {} & (x12 \ x22) <> {} ) implies ex Z2 be finite Subset of Y st Z2 is a_partition of [:(x11 /\ x21), (x12 \ x22):]

        proof

          assume

           A72: (x11 /\ x21) <> {} & (x12 \ x22) <> {} ;

          then

          consider z1 be finite Subset of S1 such that

           A73: z1 is a_partition of (x11 /\ x21) by A35, A41, SRINGS_1:def 1;

          consider z2 be finite Subset of S2 such that

           A74: z2 is a_partition of (x12 \ x22) by A72, A36, A42, SRINGS_1:def 2;

          

           A75: z2 is non empty by A72, A74;

          set Z2 = the set of all [:u1, u2:] where u1 be Element of z1, u2 be Element of z2;

          

           A76: Z2 is Subset of Y

          proof

            for x be object st x in Z2 holds x in Y

            proof

              let x be object;

              assume x in Z2;

              then

              consider a0 be Element of z1, b0 be Element of z2 such that

               A77: x = [:a0, b0:];

              reconsider x as set by TARSKI: 1;

              

               A78: a0 in S1

              proof

                a0 in z1 by SUBSET_1:def 1, A72, A73;

                hence thesis;

              end;

              

               A79: b0 in S2

              proof

                b0 in z2 by A75;

                hence thesis;

              end;

              x is Subset of [:X1, X2:]

              proof

                for y be object st y in x holds y in [:X1, X2:]

                proof

                  let y be object;

                  assume y in x;

                  then

                  consider ya0,yb0 be object such that

                   A80: ya0 in a0 & yb0 in b0 & y = [ya0, yb0] by A77, ZFMISC_1:def 2;

                  thus thesis by A78, A79, A80, ZFMISC_1:def 2;

                end;

                hence thesis by TARSKI:def 3;

              end;

              hence thesis by A77, A78, A79;

            end;

            hence thesis by TARSKI:def 3;

          end;

          

           A83: Z2 is finite

          proof

            

             A84: for x be object st x in Z2 holds ex y be object st y in [:z1, z2:] & Q[x, y]

            proof

              let x be object;

              assume x in Z2;

              then

              consider x1 be Element of z1, x2 be Element of z2 such that

               A85: x = [:x1, x2:];

              set y = [x1, x2];

              reconsider Y1 = (y `1 ), Y2 = (y `2 ) as set;

              

               A86: x = [:Y1, Y2:] by A85;

              y in [:z1, z2:] by A74, A73, A72, ZFMISC_1:def 2;

              hence thesis by A86;

            end;

            consider f be Function such that

             A87: ( dom f) = Z2 & ( rng f) c= [:z1, z2:] and

             A88: for x be object st x in Z2 holds Q[x, (f . x)] from FUNCT_1:sch 6( A84);

            f is one-to-one

            proof

              let a,b be object;

              assume that

               A89: a in ( dom f) and

               A90: b in ( dom f) and

               A91: (f . a) = (f . b);

              reconsider Y1 = ((f . a) `1 ), Y2 = ((f . a) `2 ) as set by TARSKI: 1;

               Q[a, (f . a)] & Q[b, (f . b)] by A87, A88, A89, A90;

              hence thesis by A91;

            end;

            then ( card Z2) c= ( card [:z1, z2:]) by A87, CARD_1: 10;

            hence thesis;

          end;

          Z2 is a_partition of [:(x11 /\ x21), (x12 \ x22):] by PUA2MSS1: 8, A73, A74, A72;

          hence thesis by A76, A83;

        end;

        

         A94: ( [:(x11 \ x21), x12:] <> {} & [:(x11 /\ x21), (x12 \ x22):] = {} ) implies ex ZZ be set st ZZ is a_partition of ( [:x11, x12:] \ [:x21, x22:]) & ZZ is finite Subset of Y

        proof

          assume

           A95: ( [:(x11 \ x21), x12:] <> {} & [:(x11 /\ x21), (x12 \ x22):] = {} );

          then

          consider ZZ be finite Subset of Y such that

           A96: ZZ is a_partition of [:(x11 \ x21), x12:] by A46;

          ( [:x11, x12:] \ [:x21, x22:]) = ( [:(x11 \ x21), x12:] \/ [:(x11 /\ x21), (x12 \ x22):]) by Lem4;

          hence thesis by A95, A96;

        end;

        

         A97: ( [:(x11 \ x21), x12:] = {} ) & ( [:(x11 /\ x21), (x12 \ x22):] <> {} ) implies ex ZZ be set st ZZ is a_partition of ( [:x11, x12:] \ [:x21, x22:]) & ZZ is finite Subset of Y

        proof

          assume

           A98: ( [:(x11 \ x21), x12:] = {} ) & ( [:(x11 /\ x21), (x12 \ x22):] <> {} );

          then

          consider ZZ be finite Subset of Y such that

           A99: ZZ is a_partition of [:(x11 /\ x21), (x12 \ x22):] by A71;

          ( [:x11, x12:] \ [:x21, x22:]) = ( [:(x11 \ x21), x12:] \/ [:(x11 /\ x21), (x12 \ x22):]) by Lem4;

          hence thesis by A98, A99;

        end;

        

         A100: ( [:(x11 \ x21), x12:] = {} ) & ( [:(x11 /\ x21), (x12 \ x22):] = {} ) implies ex ZZ be set st ZZ is a_partition of ( [:x11, x12:] \ [:x21, x22:]) & ZZ is finite Subset of Y

        proof

          assume

           A101: ( [:(x11 \ x21), x12:] = {} ) & ( [:(x11 /\ x21), (x12 \ x22):] = {} );

          take {} ;

          ( [:x11, x12:] \ [:x21, x22:]) = ( [:(x11 \ x21), x12:] \/ [:(x11 /\ x21), (x12 \ x22):]) by Lem4;

          hence thesis by A101, EQREL_1: 45, SUBSET_1: 1;

        end;

         [:(x11 \ x21), x12:] <> {} & [:(x11 /\ x21), (x12 \ x22):] <> {} implies ex ZZ be set st ZZ is a_partition of ( [:x11, x12:] \ [:x21, x22:]) & ZZ is finite Subset of Y

        proof

          assume

           A104: ( [:(x11 \ x21), x12:] <> {} ) & ( [:(x11 /\ x21), (x12 \ x22):] <> {} );

          then

          consider p1 be finite Subset of Y such that

           A105: p1 is a_partition of [:(x11 \ x21), x12:] by A46;

          consider p2 be finite Subset of Y such that

           A106: p2 is a_partition of [:(x11 /\ x21), (x12 \ x22):] by A71, A104;

          ( [:x11, x12:] \ [:x21, x22:]) = ( [:(x11 \ x21), x12:] \/ [:(x11 /\ x21), (x12 \ x22):]) & [:(x11 \ x21), x12:] misses [:(x11 /\ x21), (x12 \ x22):] by Lem4;

          then

           A107: (p1 \/ p2) is a_partition of ( [:x11, x12:] \ [:x21, x22:]) by A105, A106, DILWORTH: 3;

          thus thesis by A107;

        end;

        hence thesis by A37, A43, A94, A97, A100;

      end;

      hence thesis by A1, A4;

    end;

    theorem :: SRINGS_2:8

    for X1,X2 be non empty set, S1 be with_countable_Cover Subset-Family of X1, S2 be with_countable_Cover Subset-Family of X2, S be Subset-Family of [:X1, X2:] st S = { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] } holds S is with_countable_Cover

    proof

      let X1,X2 be non empty set;

      let S1 be with_countable_Cover Subset-Family of X1;

      let S2 be with_countable_Cover Subset-Family of X2;

      let S be Subset-Family of [:X1, X2:];

      assume

       A1: S = { s where s be Subset of [:X1, X2:] : ex x1,x2 be set st x1 in S1 & x2 in S2 & s = [:x1, x2:] };

      ex U be countable Subset of S st ( union U) = [:X1, X2:] & U is Subset of S

      proof

        consider U1 be countable Subset of S1 such that

         A2: U1 is Cover of X1 by SRINGS_1:def 4;

        

         A3: ( union U1) = X1 by A2, Lem6a;

        consider U2 be countable Subset of S2 such that

         A4: U2 is Cover of X2 by SRINGS_1:def 4;

        

         A5: ( union U2) = X2 by A4, Lem6a;

        set U = { u where u be Subset of [:X1, X2:] : ex u1,u2 be set st u1 in (U1 \ { {} }) & u2 in (U2 \ { {} }) & u = [:u1, u2:] };

        

         A6: U1 is non empty by A2, ZFMISC_1: 2, Lem6a;

        

         A7: (U1 \ { {} }) is non empty

        proof

          assume (U1 \ { {} }) is empty;

          then ( union U1) c= ( union { {} }) by ZFMISC_1: 77, XBOOLE_1: 37;

          hence thesis by A2, Lem6a;

        end;

        

         A8: U2 is non empty by A4, Lem6a, ZFMISC_1: 2;

        

         A9: (U2 \ { {} }) is non empty

        proof

          assume (U2 \ { {} }) is empty;

          then ( union U2) c= ( union { {} }) by ZFMISC_1: 77, XBOOLE_1: 37;

          hence contradiction by A4, Lem6a;

        end;

        set V = { [:a, b:] where a be Element of U1, b be Element of U2 : a in (U1 \ { {} }) & b in (U2 \ { {} }) };

        

         A10: U = V

        proof

          U1 is Subset-Family of X1 & U2 is Subset-Family of X2 by Lem9;

          hence thesis by A6, A8, Lemme9;

        end;

        U is Subset of S

        proof

          for x be object st x in U holds x in S

          proof

            let x be object;

            assume x in U;

            then

            consider u0 be Subset of [:X1, X2:] such that

             A11: x = u0 & ex u1,u2 be set st u1 in (U1 \ { {} }) & u2 in (U2 \ { {} }) & u0 = [:u1, u2:];

            reconsider x as Subset of [:X1, X2:] by A11;

            thus thesis by A1, A11;

          end;

          hence thesis by TARSKI:def 3;

        end;

        then

        reconsider U as Subset of S;

        

         A12: U is countable

        proof

          (U1 \ { {} }) is countable & (U2 \ { {} }) is countable by CARD_3: 95;

          then

           A13: [:(U1 \ { {} }), (U2 \ { {} }):] is countable by CARD_4: 7;

          set W = [:(U1 \ { {} }), (U2 \ { {} }):];

          (V,W) are_equipotent

          proof

            set Z = { [ [:u1, u2:], [u1, u2]] where u1 be Element of U1, u2 be Element of U2 : u1 in (U1 \ { {} }) & u2 in (U2 \ { {} }) };

            

             A14: (for v be object st v in V holds ex w be object st w in W & [v, w] in Z) & (for w be object st w in W holds ex v be object st v in V & [v, w] in Z) & for v1,v2,w1,w2 be object st [v1, w1] in Z & [v2, w2] in Z holds v1 = v2 iff w1 = w2

            proof

              

               A15: for v be object st v in V holds ex w be object st w in W & [v, w] in Z

              proof

                let v be object;

                assume v in V;

                then

                consider u1 be Element of U1 such that

                 A16: ex u2 be Element of U2 st v = [:u1, u2:] & u1 in (U1 \ { {} }) & u2 in (U2 \ { {} });

                consider u2 be Element of U2 such that

                 A17: v = [:u1, u2:] & u1 in (U1 \ { {} }) & u2 in (U2 \ { {} }) by A16;

                set w = [u1, u2];

                take w;

                thus thesis by A17, ZFMISC_1:def 2;

              end;

              

               A18: for w be object st w in W holds ex v be object st v in V & [v, w] in Z

              proof

                let w be object;

                assume w in W;

                then ex u1,u2 be object st u1 in (U1 \ { {} }) & u2 in (U2 \ { {} }) & w = [u1, u2] by ZFMISC_1:def 2;

                then

                consider u1,u2 be set such that

                 A19: w = [u1, u2] & u1 in (U1 \ { {} }) & u2 in (U2 \ { {} });

                set v = [:u1, u2:];

                take v;

                u1 is Element of U1 & u2 is Element of U2 by A19, XBOOLE_1: 36, TARSKI:def 3;

                hence thesis by A19;

              end;

              for v1,v2,w1,w2 be object st [v1, w1] in Z & [v2, w2] in Z holds v1 = v2 iff w1 = w2

              proof

                let v1,v2,w1,w2 be object;

                assume [v1, w1] in Z;

                then

                consider a1 be Element of U1, a2 be Element of U2 such that

                 A21: [v1, w1] = [ [:a1, a2:], [a1, a2]] & a1 in (U1 \ { {} }) & a2 in (U2 \ { {} });

                

                 A22: v1 = [:a1, a2:] & w1 = [a1, a2] by A21, XTUPLE_0: 1;

                assume [v2, w2] in Z;

                then

                consider b1 be Element of U1, b2 be Element of U2 such that

                 A23: [v2, w2] = [ [:b1, b2:], [b1, b2]] & b1 in (U1 \ { {} }) & b2 in (U2 \ { {} });

                

                 A24: v2 = [:b1, b2:] & w2 = [b1, b2] by A23, XTUPLE_0: 1;

                thus v1 = v2 implies w1 = w2

                proof

                  assume

                   A25: v1 = v2;

                   not a1 in { {} } & not a2 in { {} } by A21, XBOOLE_0:def 5;

                  then a1 <> {} & a2 <> {} by TARSKI:def 1;

                  then a1 = b1 & a2 = b2 by A22, A24, A25, ZFMISC_1: 110;

                  hence thesis by A21, A23, XTUPLE_0: 1;

                end;

                assume

                 A26: w1 = w2;

                w1 = [a1, a2] & w2 = [b1, b2] by A21, A23, XTUPLE_0: 1;

                then a1 = b1 & a2 = b2 by A26, XTUPLE_0: 1;

                hence thesis by A21, A23, XTUPLE_0: 1;

              end;

              hence thesis by A15, A18;

            end;

            ex Z be set st (for v be object st v in V holds ex w be object st w in W & [v, w] in Z) & (for w be object st w in W holds ex v be object st v in V & [v, w] in Z) & (for x,y,z,u be object st [x, y] in Z & [z, u] in Z holds x = z iff y = u)

            proof

              take Z;

              thus thesis by A14;

            end;

            hence thesis;

          end;

          hence thesis by A10, A13, YELLOW_8: 4;

        end;

        ( union U) = [:X1, X2:]

        proof

          set V2 = { [:a, b:] where a be Element of (U1 \ { {} }), b be Element of (U2 \ { {} }) : a in (U1 \ { {} }) & b in (U2 \ { {} }) };

          

           A26: U = V2

          proof

            U1 is Subset-Family of X1 & U2 is Subset-Family of X2 by Lem9;

            hence thesis by A6, A8, A10, Lem8;

          end;

          ( union (U1 \ { {} })) = ( union U1) & ( union (U2 \ { {} })) = ( union U2) by PARTIT1: 2;

          hence thesis by A3, A5, A7, A9, A26, LATTICE5: 2;

        end;

        hence thesis by A12;

      end;

      hence thesis by Lem6a, SRINGS_1:def 4;

    end;

    

     THS0: ( { {} } \/ { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }) = { s where s be Subset of REAL : ex a,b be Real st a <= b & for x be real number holds x in s iff (a < x & x <= b) }

    proof

      set S1 = ( { {} } \/ { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) });

      set S2 = { s where s be Subset of REAL : ex a,b be Real st a <= b & for x be real number holds x in s iff (a < x & x <= b) };

      

       A1: S1 c= S2

      proof

        let x be object;

        assume x in S1;

        then

         A2: x in { {} } or x in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } by XBOOLE_0:def 3;

        

         A3: x = {} implies x in S2

        proof

          set a = 0 ;

          set b = 0 ;

          set s0 = ].a, b.];

          for x be real number holds x in s0 iff (a < x & x <= b);

          hence thesis;

        end;

        x in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } implies x in S2

        proof

          assume x in { s where s be Subset of REAL : ex a,b be Real st a < b & for t be real number holds t in s iff (a < t & t <= b) };

          then

          consider s0 be Subset of REAL such that

           A4: s0 = x & ex a,b be Real st a < b & for t be real number holds t in s0 iff (a < t & t <= b);

          thus thesis by A4;

        end;

        hence thesis by A2, A3, TARSKI:def 1;

      end;

      S2 c= S1

      proof

        let x be object;

        assume x in S2;

        then

        consider s0 be Subset of REAL such that

         A5: x = s0 and

         A6: ex a,b be Real st a <= b & for t be real number holds t in s0 iff (a < t & t <= b);

        consider a,b be Real such that

         A7: a <= b and

         A8: for t be real number holds t in s0 iff (a < t & t <= b) by A6;

        

         A9: a = b implies x in { {} }

        proof

          assume a = b;

          then s0 c= {} by A8;

          then x = {} by A5;

          hence thesis by TARSKI:def 1;

        end;

        a < b implies x in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } by A5, A8;

        hence thesis by XBOOLE_0:def 3, XXREAL_0: 1, A7, A9;

      end;

      hence thesis by A1;

    end;

    set II = { ].a, b.] where a,b be Real : a <= b };

    II c= ( bool REAL )

    proof

      let x be object;

      assume x in II;

      then ex a0,b0 be Real st x = ].a0, b0.] & a0 <= b0;

      hence thesis;

    end;

    then

    reconsider II as Subset-Family of REAL ;

    

     THS2: { s where s be Subset of REAL : ex a,b be Real st a <= b & for x be real number holds x in s iff (a < x & x <= b) } = II

    proof

      set S1 = { s where s be Subset of REAL : ex a,b be Real st a <= b & for x be real number holds x in s iff (a < x & x <= b) };

      

       A1: S1 c= II

      proof

        let y be object;

        assume y in S1;

        then

        consider s0 be Subset of REAL such that

         A2: y = s0 & ex a,b be Real st a <= b & for x be real number holds x in s0 iff (a < x & x <= b);

        consider a0,b0 be Real such that

         A3: a0 <= b0 & for x be real number holds x in s0 iff (a0 < x & x <= b0) by A2;

        

         A4: s0 c= ].a0, b0.]

        proof

          let x be object;

          assume

           A5: x in s0;

          then

          reconsider x as real number;

          a0 < x & x <= b0 by A3, A5;

          hence thesis;

        end;

         ].a0, b0.] c= s0

        proof

          let x be object;

          assume

           A6: x in ].a0, b0.];

          then

          reconsider x as real number;

          a0 < x & x <= b0 by A6, XXREAL_1: 2;

          hence thesis by A3;

        end;

        then s0 = ].a0, b0.] by A4;

        hence thesis by A2, A3;

      end;

      II c= S1

      proof

        let y be object;

        assume y in II;

        then

        consider a0,b0 be Real such that

         A7: y = ].a0, b0.] & a0 <= b0;

        reconsider y as set by TARSKI: 1;

        for x be real number holds x in y iff (a0 < x & x <= b0) by A7, XXREAL_1: 2;

        hence thesis by A7;

      end;

      hence thesis by A1;

    end;

    

     THS1: for S be Subset-Family of REAL st S = ( { {} } \/ { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }) holds S is cap-closed & S is diff-finite-partition-closed with_empty_element Subset-Family of REAL

    proof

      let S be Subset-Family of REAL such that

       A1: S = ( { {} } \/ { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) });

      

       A2: S is with_empty_element

      proof

         {} in { {} } by TARSKI:def 1;

        then {} in S by A1, XBOOLE_0:def 3;

        hence thesis;

      end;

      

       A3: S is cap-closed

      proof

        let e1,e2 be set;

        assume

         A4: e1 in S;

        assume

         A5: e2 in S;

        

         A6: e1 in { {} } or e1 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } by A1, A4, XBOOLE_0:def 3;

        

         A7: e2 in { {} } or e2 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } by A1, A5, XBOOLE_0:def 3;

        

         A8: e1 = {} implies (e1 /\ e2) in S

        proof

          assume e1 = {} ;

          then (e1 /\ e2) in { {} } by TARSKI:def 1;

          hence thesis by A1, XBOOLE_0:def 3;

        end;

        

         A9: e2 = {} implies (e1 /\ e2) in S

        proof

          assume e2 = {} ;

          then (e1 /\ e2) in { {} } by TARSKI:def 1;

          hence thesis by A1, XBOOLE_0:def 3;

        end;

        (e1 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }) & (e2 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }) implies (e1 /\ e2) in S

        proof

          assume

           A10: e1 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) };

          assume

           A11: e2 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) };

          consider E1 be Subset of REAL such that

           A12: e1 = E1 & ex a1,b1 be Real st a1 < b1 & for x be real number holds x in E1 iff (a1 < x & x <= b1) by A10;

          consider E2 be Subset of REAL such that

           A13: e2 = E2 & ex a2,b2 be Real st a2 < b2 & for x be real number holds x in E2 iff (a2 < x & x <= b2) by A11;

          consider a1,b1 be Real such that

           A14: a1 < b1 & for x be real number holds x in E1 iff (a1 < x & x <= b1) by A12;

          consider a2,b2 be Real such that

           A15: a2 < b2 & for x be real number holds x in E2 iff (a2 < x & x <= b2) by A13;

          (e1 /\ e2) in ( { {} } \/ { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) })

          proof

            

             A16: b1 <= a2 implies (e1 /\ e2) in { {} }

            proof

              assume

               A17: b1 <= a2;

              (e1 /\ e2) c= {}

              proof

                let x be object;

                assume

                 A18: x in (e1 /\ e2);

                then

                 A19: x in e1 & x in e2 by XBOOLE_0:def 4;

                reconsider x as real number by A13, A18;

                a1 < x & x <= b1 & a2 < x & x <= b2 by A12, A13, A14, A15, A19;

                hence thesis by A17, XXREAL_0: 2;

              end;

              then (e1 /\ e2) = {} ;

              hence thesis by TARSKI:def 1;

            end;

            

             A20: a2 < b1 & a1 < b2 implies (e1 /\ e2) in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } or (e1 /\ e2) in { {} }

            proof

              set P = { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) };

              assume a2 < b1 & a1 < b2;

              

               A21: a2 < a1 & b2 < b1 & a1 < b2 implies (e1 /\ e2) in P

              proof

                assume

                 A22: a2 < a1 & b2 < b1;

                assume

                 A23: a1 < b2;

                

                 A24: for x be real number holds x in (e1 /\ e2) iff (a1 < x & x <= b2)

                proof

                  

                   A25: for x be real number st x in (e1 /\ e2) holds (a1 < x & x <= b2)

                  proof

                    let x be real number;

                    assume x in (e1 /\ e2);

                    then x in e1 & x in e2 by XBOOLE_0:def 4;

                    hence thesis by A12, A13, A14, A15;

                  end;

                  for x be real number st (a1 < x & x <= b2) holds x in (e1 /\ e2)

                  proof

                    let x be real number;

                    assume

                     A26: a1 < x & x <= b2;

                    then

                     A27: x <= b1 by A22, XXREAL_0: 2;

                    a1 < x & a2 < a1 implies a2 < x by XXREAL_0: 2;

                    then x in e1 & x in e2 by A12, A13, A14, A15, A22, A26, A27;

                    hence thesis by XBOOLE_0:def 4;

                  end;

                  hence thesis by A25;

                end;

                (e1 /\ e2) = (E1 /\ E2) by A12, A13;

                hence thesis by A23, A24;

              end;

              

               A28: a2 < a1 & b2 < b1 & not a1 < b2 implies (e1 /\ e2) in { {} }

              proof

                assume

                 A29: a2 < a1 & b2 < b1 & not a1 < b2;

                (e1 /\ e2) c= {}

                proof

                  let x be object;

                  assume

                   A30: x in (e1 /\ e2);

                  then

                   A31: x in e1 & x in e2 by XBOOLE_0:def 4;

                  reconsider x as real number by A12, A30;

                  a1 < x & x <= b1 & a2 < x & x <= b2 by A12, A13, A14, A15, A31;

                  hence thesis by A29, XXREAL_0: 2;

                end;

                then (e1 /\ e2) = {} ;

                hence thesis by TARSKI:def 1;

              end;

              

               A32: a2 < a1 & b1 <= b2 implies (e1 /\ e2) in P

              proof

                assume

                 A33: a2 < a1 & b1 <= b2;

                

                 A34: for x be real number holds x in (e1 /\ e2) iff (a1 < x & x <= b1)

                proof

                  

                   A35: for x be real number st x in (e1 /\ e2) holds (a1 < x & x <= b1)

                  proof

                    let x be real number;

                    assume x in (e1 /\ e2);

                    then x in e1 & x in e2 by XBOOLE_0:def 4;

                    hence thesis by A12, A14;

                  end;

                  for x be real number st (a1 < x & x <= b1) holds x in (e1 /\ e2)

                  proof

                    let x be real number;

                    assume a1 < x & x <= b1;

                    then a1 < x & x <= b1 & a2 < x & x <= b2 by A33, XXREAL_0: 2;

                    then x in e1 & x in e2 by A12, A13, A14, A15;

                    hence thesis by XBOOLE_0:def 4;

                  end;

                  hence thesis by A35;

                end;

                (e1 /\ e2) = (E1 /\ E2) by A12, A13;

                hence thesis by A14, A34;

              end;

              

               A37: a1 <= a2 & b2 < b1 implies (e1 /\ e2) in P

              proof

                assume

                 A38: a1 <= a2 & b2 < b1;

                

                 A39: for x be real number holds x in (e1 /\ e2) iff (a2 < x & x <= b2)

                proof

                  

                   A40: for x be real number st x in (e1 /\ e2) holds (a2 < x & x <= b2)

                  proof

                    let x be real number;

                    assume x in (e1 /\ e2);

                    then x in e1 & x in e2 by XBOOLE_0:def 4;

                    hence thesis by A13, A15;

                  end;

                  for x be real number st (a2 < x & x <= b2) holds x in (e1 /\ e2)

                  proof

                    let x be real number;

                    assume

                     A41: a2 < x & x <= b2;

                    

                     A42: a2 < x & a1 <= a2 implies a1 < x by XXREAL_0: 2;

                    x <= b2 & b2 < b1 implies x <= b1 by XXREAL_0: 2;

                    then x in e1 & x in e2 by A12, A13, A14, A15, A38, A41, A42;

                    hence thesis by XBOOLE_0:def 4;

                  end;

                  hence thesis by A40;

                end;

                (e1 /\ e2) = (E1 /\ E2) by A12, A13;

                hence thesis by A15, A39;

              end;

              

               A43: a1 <= a2 & b1 <= b2 & not a2 < b1 implies (e1 /\ e2) in { {} }

              proof

                assume

                 A44: a1 <= a2 & b1 <= b2 & not a2 < b1;

                (e1 /\ e2) c= {}

                proof

                  let x be object;

                  assume

                   A45: x in (e1 /\ e2);

                  then

                   A46: x in e1 & x in e2 by XBOOLE_0:def 4;

                  reconsider x as real number by A12, A45;

                  a2 < x & x <= b1 by A12, A13, A14, A15, A46;

                  hence thesis by A44, XXREAL_0: 2;

                end;

                then (e1 /\ e2) = {} ;

                hence thesis by TARSKI:def 1;

              end;

              a1 <= a2 & b1 <= b2 & a2 < b1 implies (e1 /\ e2) in P

              proof

                assume

                 A47: a1 <= a2 & b1 <= b2 & a2 < b1;

                

                 A48: for x be real number holds x in (e1 /\ e2) iff (a2 < x & x <= b1)

                proof

                  

                   A49: for x be real number st x in (e1 /\ e2) holds (a2 < x & x <= b1)

                  proof

                    let x be real number;

                    assume x in (e1 /\ e2);

                    then x in e1 & x in e2 by XBOOLE_0:def 4;

                    hence thesis by A12, A13, A14, A15;

                  end;

                  for x be real number st (a2 < x & x <= b1) holds x in (e1 /\ e2)

                  proof

                    let x be real number;

                    assume

                     A50: a2 < x & x <= b1;

                    then

                     A51: x <= b2 by A47, XXREAL_0: 2;

                    a2 < x & a1 <= a2 implies a1 < x by XXREAL_0: 2;

                    then x in e1 & x in e2 by A12, A13, A14, A15, A47, A50, A51;

                    hence thesis by XBOOLE_0:def 4;

                  end;

                  hence thesis by A49;

                end;

                (e1 /\ e2) = (E1 /\ E2) by A12, A13;

                hence thesis by A47, A48;

              end;

              hence thesis by A21, A28, A32, A37, A43;

            end;

            a2 < b1 & b2 <= a1 implies (e1 /\ e2) in { {} }

            proof

              assume

               A52: a2 < b1 & b2 <= a1;

              (e1 /\ e2) c= {}

              proof

                let x be object;

                assume

                 A53: x in (e1 /\ e2);

                then

                 A54: x in e1 & x in e2 by XBOOLE_0:def 4;

                reconsider x as real number by A12, A53;

                a1 < x & x <= b1 & a2 < x & x <= b2 by A12, A13, A14, A15, A54;

                hence thesis by A52, XXREAL_0: 2;

              end;

              then (e1 /\ e2) = {} ;

              hence thesis by TARSKI:def 1;

            end;

            hence thesis by A16, A20, XBOOLE_0:def 3;

          end;

          hence thesis by A1;

        end;

        hence thesis by A6, A7, A8, A9, TARSKI:def 1;

      end;

      S is diff-finite-partition-closed

      proof

        (for S3,S4 be Element of S st (S3 \ S4) is non empty holds ex z be finite Subset of S st z is a_partition of (S3 \ S4))

        proof

          let S3,S4 be Element of S;

          assume

           A55: (S3 \ S4) is non empty;

          

           A57: not S3 in { {} } by A55, TARSKI:def 1;

          

           A58: S4 in { {} } or S4 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } by A1, XBOOLE_0:def 3;

          

           A59: S4 = {} implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

          proof

            assume

             A60: S4 = {} ;

            

             A61: {S3} c= S

            proof

              let x be object;

              assume x in {S3};

              then x is Element of S by TARSKI:def 1;

              hence thesis by A2, SUBSET_1:def 1;

            end;

             {S3} is a_partition of S3 by A55, EQREL_1: 39;

            hence thesis by A60, A61;

          end;

          S4 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

          proof

            assume

             A62: S4 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) };

            S3 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) } by A1, A57, XBOOLE_0:def 3;

            then

            consider E1 be Subset of REAL such that

             A63: S3 = E1 & ex a1,b1 be Real st a1 < b1 & for x be real number holds x in E1 iff (a1 < x & x <= b1);

            consider E2 be Subset of REAL such that

             A64: S4 = E2 & ex a2,b2 be Real st a2 < b2 & for x be real number holds x in E2 iff (a2 < x & x <= b2) by A62;

            consider a1,b1 be Real such that

             A65: a1 < b1 & for x be real number holds x in E1 iff (a1 < x & x <= b1) by A63;

            consider a2,b2 be Real such that

             A66: a2 < b2 & for x be real number holds x in E2 iff (a2 < x & x <= b2) by A64;

            

             A67: for x be real number holds x in (S3 \ S4) iff ((a1 < x & x <= b1) & not (a2 < x & x <= b2))

            proof

              

               A68: for x be real number st x in (S3 \ S4) holds ((a1 < x & x <= b1) & not (a2 < x & x <= b2))

              proof

                let x be real number;

                assume x in (S3 \ S4);

                then x in S3 & not x in S4 by XBOOLE_0:def 5;

                hence thesis by A63, A64, A65, A66;

              end;

              for x be real number st ((a1 < x & x <= b1) & not (a2 < x & x <= b2)) holds x in (S3 \ S4)

              proof

                let x be real number;

                assume (a1 < x & x <= b1) & not (a2 < x & x <= b2);

                then x in S3 & not x in S4 by A63, A64, A65, A66;

                hence thesis by XBOOLE_0:def 5;

              end;

              hence thesis by A68;

            end;

            

             A69: a1 < b1 & a2 < b2 & b1 <= a2 & b1 <= b2 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A70: a1 < b1 & a2 < b2 & b1 <= a2 & b1 <= b2;

              

               A71: (S3 \ S4) = S3

              proof

                S3 c= (S3 \ S4)

                proof

                  let x be object;

                  assume

                   A72: x in S3;

                  then

                  reconsider x as real number by A63;

                  a1 < x & x <= b1 by A63, A65, A72;

                  then ((a1 < x & x <= b1) & not (a2 < x & x <= b2)) by A70, XXREAL_0: 2;

                  hence thesis by A67;

                end;

                hence thesis;

              end;

              

               A72a: {S3} c= S

              proof

                let x be object;

                assume x in {S3};

                then x is Element of S by TARSKI:def 1;

                hence thesis by A2, SUBSET_1:def 1;

              end;

               {S3} is a_partition of S3 by A55, EQREL_1: 39;

              hence thesis by A71, A72a;

            end;

            

             A74: a1 < b1 & a2 < b2 & a2 < b1 & a1 <= a2 & b1 <= b2 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A75: a1 < b1 & a2 < b2 & a2 < b1 & a1 <= a2 & b1 <= b2;

              

               A76: a1 < b1 & a2 < b2 & a2 < b1 & a1 = a2 & b1 <= b2 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

              proof

                assume

                 A77: a1 < b1 & a2 < b2 & a2 < b1 & a1 = a2 & b1 <= b2;

                (S3 \ S4) c= {}

                proof

                  let y be object;

                  assume

                   A78: y in (S3 \ S4);

                  then

                  reconsider y as real number by A63;

                  (a1 < y & y <= b1) & (y <= a2 or b2 < y) by A67, A78;

                  hence thesis by A77, XXREAL_0: 2;

                end;

                hence thesis by A55;

              end;

              a1 < b1 & a2 < b2 & a2 < b1 & a1 < a2 & b1 <= b2 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

              proof

                assume

                 A79: a1 < b1 & a2 < b2 & a2 < b1 & a1 < a2 & b1 <= b2;

                set P = { x where x be real number : a1 < x & x <= a2 };

                

                 A80: (S3 \ S4) = P

                proof

                  

                   A81: (S3 \ S4) c= { x where x be real number : a1 < x & x <= a2 }

                  proof

                    let y be object;

                    assume

                     A82: y in (S3 \ S4);

                    then

                    reconsider y as real number by A63;

                    (a1 < y & y <= b1) & (y <= a2 or b2 < y) by A67, A82;

                    hence thesis by A79, XXREAL_0: 2;

                  end;

                  { x where x be real number : a1 < x & x <= a2 } c= (S3 \ S4)

                  proof

                    let y be object;

                    assume y in { x where x be real number : a1 < x & x <= a2 };

                    then

                    consider y0 be real number such that

                     A83: y = y0 & a1 < y0 & y0 <= a2;

                    (a1 < y0 & y0 <= b1) & (y0 <= a2 or b2 < y0) by A79, A83, XXREAL_0: 2;

                    hence thesis by A67, A83;

                  end;

                  hence thesis by A81;

                end;

                

                 A83a: {P} c= S

                proof

                  let x be object;

                  assume x in {P};

                  then

                   A84: x = P by TARSKI:def 1;

                  P in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }

                  proof

                    

                     A86: P c= REAL

                    proof

                      let x be object;

                      assume x in P;

                      then

                      consider x0 be real number such that

                       A87: x = x0 & a1 < x0 & x0 <= a2;

                      thus thesis by A87, XREAL_0:def 1;

                    end;

                    for x be real number holds x in P iff (a1 < x & x <= a2)

                    proof

                      for x be real number st x in P holds (a1 < x & x <= a2)

                      proof

                        let x be real number;

                        assume x in P;

                        then

                        consider x0 be real number such that

                         A89: x = x0 & a1 < x0 & x0 <= a2;

                        thus thesis by A89;

                      end;

                      hence thesis;

                    end;

                    hence thesis by A79, A86;

                  end;

                  hence thesis by A1, A84, XBOOLE_0:def 3;

                end;

                 {P} is a_partition of P by A80, A55, EQREL_1: 39;

                hence thesis by A80, A83a;

              end;

              hence thesis by A75, A76, XXREAL_0: 1;

            end;

            

             A90: a1 < b1 & a2 < b2 & a2 < b1 & a1 <= a2 & b2 < b1 & a1 < b2 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A91: a1 < b1 & a2 < b2 & a2 < b1 & a1 <= a2 & b2 < b1 & a1 < b2;

              

               A92: a1 < b1 & a2 < b2 & a2 < b1 & a1 < a2 & b2 < b1 & a1 < b2 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

              proof

                assume

                 A93: a1 < b1 & a2 < b2 & a2 < b1 & a1 < a2 & b2 < b1 & a1 < b2;

                set P1 = { x where x be Real : a1 < x & x <= a2 };

                

                 A94: P1 in S

                proof

                  P1 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }

                  proof

                    P1 c= REAL

                    proof

                      let x be object;

                      assume x in P1;

                      then

                      consider x0 be Real such that

                       A96: x = x0 & a1 < x0 & x0 <= a2;

                      thus thesis by A96, XREAL_0:def 1;

                    end;

                    then

                     A95: P1 is Subset of REAL ;

                    for x be real number holds x in P1 iff (a1 < x & x <= a2)

                    proof

                      for x be real number st x in P1 holds (a1 < x & x <= a2)

                      proof

                        let x be real number;

                        assume x in P1;

                        then

                        consider x0 be Real such that

                         A97: x = x0 & (a1 < x0 & x0 <= a2);

                        thus thesis by A97;

                      end;

                      hence thesis;

                    end;

                    hence thesis by A93, A95;

                  end;

                  hence thesis by A1, XBOOLE_0:def 3;

                end;

                set P2 = { x where x be Real : b2 < x & x <= b1 };

                

                 A98: P2 in S

                proof

                  P2 in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }

                  proof

                    

                     A99: P2 is Subset of REAL

                    proof

                      P2 c= REAL

                      proof

                        let x be object;

                        assume x in P2;

                        then

                        consider x0 be Real such that

                         A100: x = x0 & b2 < x0 & x0 <= b1;

                        thus thesis by A100, XREAL_0:def 1;

                      end;

                      hence thesis;

                    end;

                    for x be real number holds x in P2 iff (b2 < x & x <= b1)

                    proof

                      for x be real number st x in P2 holds (b2 < x & x <= b1)

                      proof

                        let x be real number;

                        assume x in P2;

                        then

                        consider x0 be Real such that

                         A101: x = x0 & (b2 < x0 & x0 <= b1);

                        thus thesis by A101;

                      end;

                      hence thesis;

                    end;

                    hence thesis by A93, A99;

                  end;

                  hence thesis by A1, XBOOLE_0:def 3;

                end;

                

                 A101a: {P1, P2} c= S by A94, A98, TARSKI:def 2;

                

                 A102: {P1, P2} is Subset-Family of (S3 \ S4)

                proof

                   {P1, P2} c= ( bool (S3 \ S4))

                  proof

                    let x be object;

                    assume

                     A103: x in {P1, P2};

                    

                     A104: P1 in ( bool (S3 \ S4))

                    proof

                      P1 c= (S3 \ S4)

                      proof

                        let x be object;

                        assume x in P1;

                        then

                        consider x0 be Real such that

                         A105: x = x0 & a1 < x0 & x0 <= a2;

                        reconsider x as real number by A105, TARSKI: 1;

                        a1 < x & x <= a2 & x <= b1 by A93, A105, XXREAL_0: 2;

                        hence thesis by A67;

                      end;

                      hence thesis;

                    end;

                    P2 in ( bool (S3 \ S4))

                    proof

                      P2 c= (S3 \ S4)

                      proof

                        let x be object;

                        assume x in P2;

                        then

                        consider x0 be Real such that

                         A106: x = x0 & b2 < x0 & x0 <= b1;

                        reconsider x as real number by A106, TARSKI: 1;

                        a1 < x & b2 < x & x <= b1 by A93, A106, XXREAL_0: 2;

                        hence thesis by A67;

                      end;

                      hence thesis;

                    end;

                    hence thesis by A103, A104, TARSKI:def 2;

                  end;

                  hence thesis;

                end;

                

                 A107: ( union {P1, P2}) = (S3 \ S4)

                proof

                  

                   A108: ( union {P1, P2}) = (P1 \/ P2) by ZFMISC_1: 75;

                  

                   A109: (P1 \/ P2) c= (S3 \ S4)

                  proof

                    ( union {P1, P2}) c= ( union ( bool (S3 \ S4))) by A102, ZFMISC_1: 77;

                    hence thesis by A108, ZFMISC_1: 81;

                  end;

                  (S3 \ S4) c= (P1 \/ P2)

                  proof

                    let y be object;

                    assume

                     A110: y in (S3 \ S4);

                    then

                    reconsider y as real number by A63;

                    (a1 < y & y <= a2) or (b2 < y & y <= b1) by A67, A110;

                    then y in P1 or y in P2;

                    hence thesis by XBOOLE_0:def 3;

                  end;

                  hence thesis by ZFMISC_1: 75, A109;

                end;

                for A be Subset of (S3 \ S4) st A in {P1, P2} holds A <> {} & for B be Subset of (S3 \ S4) st B in {P1, P2} holds A = B or A misses B

                proof

                  let A be Subset of (S3 \ S4);

                  assume

                   A111: A in {P1, P2};

                  

                   A112: P1 <> {}

                  proof

                    a2 in P1 by A93;

                    hence thesis;

                  end;

                  

                   A113: P2 <> {}

                  proof

                    b1 in P2 by A93;

                    hence thesis;

                  end;

                  for B be Subset of (S3 \ S4) st B in {P1, P2} holds A = B or A misses B

                  proof

                    let B be Subset of (S3 \ S4);

                    assume B in {P1, P2};

                    then

                     A114: (A = P1 & B = P1) or (A = P1 & B = P2) or (A = P2 & B = P1) or (A = P2 & B = P2) by A111, TARSKI:def 2;

                    P1 misses P2

                    proof

                      (P1 /\ P2) c= {}

                      proof

                        let x be object;

                        assume x in (P1 /\ P2);

                        then

                         A115: x in P1 & x in P2 by XBOOLE_0:def 4;

                        then

                        consider x0 be Real such that

                         A116: x = x0 & a1 < x0 & x0 <= a2;

                        consider y0 be Real such that

                         A117: x = y0 & b2 < y0 & y0 <= b1 by A115;

                        thus thesis by A93, A116, A117, XXREAL_0: 2;

                      end;

                      hence thesis;

                    end;

                    hence thesis by A114;

                  end;

                  hence thesis by A111, A112, A113;

                end;

                then {P1, P2} is a_partition of (S3 \ S4) by A102, A107, EQREL_1:def 4;

                hence thesis by A101a;

              end;

              a1 < b1 & a2 < b2 & a2 < b1 & a1 = a2 & b2 < b1 & a1 < b2 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

              proof

                assume

                 A118: a1 < b1 & a2 < b2 & a2 < b1 & a1 = a2 & b2 < b1 & a1 < b2;

                set P = { x where x be real number : b2 < x & x <= b1 };

                

                 A119: (S3 \ S4) = P

                proof

                  

                   A120: (S3 \ S4) c= { x where x be real number : b2 < x & x <= b1 }

                  proof

                    let y be object;

                    assume

                     A121: y in (S3 \ S4);

                    then

                    reconsider y as real number by A63;

                    (a1 < y & y <= b1) & not (a2 < y & y <= b2) by A67, A121;

                    hence thesis by A118;

                  end;

                  { x where x be real number : b2 < x & x <= b1 } c= (S3 \ S4)

                  proof

                    let y be object;

                    assume y in { x where x be real number : b2 < x & x <= b1 };

                    then

                    consider y0 be real number such that

                     A122: y = y0 & b2 < y0 & y0 <= b1;

                    (a1 < y0 & y0 <= b1) & (y0 <= a2 or b2 < y0) by A118, A122, XXREAL_0: 2;

                    hence thesis by A67, A122;

                  end;

                  hence thesis by A120;

                end;

                

                 A123: {P} c= S

                proof

                  let x be object;

                  assume x in {P};

                  then

                   A124: x = P by TARSKI:def 1;

                  P in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }

                  proof

                    

                     A125: P c= REAL

                    proof

                      let x be object;

                      assume x in P;

                      then

                      consider x0 be real number such that

                       A126: x = x0 & b2 < x0 & x0 <= b1;

                      thus thesis by A126, XREAL_0:def 1;

                    end;

                    for x be real number holds x in P iff (b2 < x & x <= b1)

                    proof

                      for x be real number st x in P holds (b2 < x & x <= b1)

                      proof

                        let x be real number;

                        assume x in P;

                        then

                        consider x0 be real number such that

                         A126a: x = x0 & b2 < x0 & x0 <= b1;

                        thus thesis by A126a;

                      end;

                      hence thesis;

                    end;

                    hence thesis by A118, A125;

                  end;

                  hence thesis by A1, A124, XBOOLE_0:def 3;

                end;

                 {P} is a_partition of P by A55, A119, EQREL_1: 39;

                hence thesis by A123, A119;

              end;

              hence thesis by A91, A92, XXREAL_0: 1;

            end;

            

             A127: a1 < b1 & a2 < b2 & b1 <= b2 & a2 < b1 & a2 < a1 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A128: a1 < b1 & a2 < b2 & b1 <= b2 & a2 < b1 & a2 < a1;

              (S3 \ S4) c= {}

              proof

                let y be object;

                assume

                 A129: y in (S3 \ S4);

                then

                reconsider y as real number by A63;

                

                 A130: (a1 < y & y <= b1) & (y <= a2 or b2 < y) by A67, A129;

                thus thesis by A128, A130, XXREAL_0: 2;

              end;

              hence thesis by A55;

            end;

            

             A131: a1 < b1 & a2 < b2 & b2 < b1 & b2 <= a1 & a2 < b1 & a2 < a1 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A132: a1 < b1 & a2 < b2 & b2 < b1 & b2 <= a1 & a2 < b1 & a2 < a1;

              S3 c= (S3 \ S4)

              proof

                let x be object;

                assume

                 A133: x in S3;

                then

                reconsider x as real number by A63;

                

                 A134: a1 < x & x <= b1 by A63, A65, A133;

                b2 < x by A132, A134, XXREAL_0: 2;

                hence thesis by A67, A134;

              end;

              then

               A135: S3 = (S3 \ S4);

              

               A135a: {S3} c= S

              proof

                let x be object;

                assume x in {S3};

                then x is Element of S by TARSKI:def 1;

                hence thesis by A2, SUBSET_1:def 1;

              end;

               {S3} is a_partition of S3 by A55, EQREL_1: 39;

              hence thesis by A135a, A135;

            end;

            a1 < b1 & a2 < b2 & (b2 < b1 & a1 < b2) & a2 < b1 & a2 < a1 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A137: a1 < b1 & a2 < b2 & (b2 < b1 & a1 < b2) & a2 < b1 & a2 < a1;

              set P = { x where x be real number : b2 < x & x <= b1 };

              

               A138: (S3 \ S4) = P

              proof

                

                 A139: (S3 \ S4) c= { x where x be real number : b2 < x & x <= b1 }

                proof

                  let y be object;

                  assume

                   A140: y in (S3 \ S4);

                  then

                  reconsider y as real number by A63;

                  (a1 < y & y <= b1 & y <= a2) or (a1 < y & y <= b1 & b2 < y) by A67, A140;

                  hence thesis by A137, XXREAL_0: 2;

                end;

                { x where x be real number : b2 < x & x <= b1 } c= (S3 \ S4)

                proof

                  let y be object;

                  assume y in { x where x be real number : b2 < x & x <= b1 };

                  then

                  consider y0 be real number such that

                   A141: y = y0 & b2 < y0 & y0 <= b1;

                  (a1 < y0 & y0 <= b1) & (y0 <= a2 or b2 < y0) by A137, A141, XXREAL_0: 2;

                  hence thesis by A67, A141;

                end;

                hence thesis by A139;

              end;

              

               A142: {P} c= S

              proof

                let x be object;

                assume x in {P};

                then

                 A143: x = P by TARSKI:def 1;

                P in { s where s be Subset of REAL : ex a,b be Real st a < b & for x be real number holds x in s iff (a < x & x <= b) }

                proof

                  

                   A144: P is Subset of REAL

                  proof

                    P c= REAL

                    proof

                      let x be object;

                      assume x in P;

                      then

                      consider x0 be real number such that

                       A145: x = x0 & b2 < x0 & x0 <= b1;

                      thus thesis by A145, XREAL_0:def 1;

                    end;

                    hence thesis;

                  end;

                  for x be real number holds x in P iff (b2 < x & x <= b1)

                  proof

                    for x be real number st x in P holds (b2 < x & x <= b1)

                    proof

                      let x be real number;

                      assume x in P;

                      then

                      consider x0 be real number such that

                       A146: x = x0 & b2 < x0 & x0 <= b1;

                      thus thesis by A146;

                    end;

                    hence thesis;

                  end;

                  hence thesis by A137, A144;

                end;

                hence thesis by A1, A143, XBOOLE_0:def 3;

              end;

               {P} is a_partition of P by A55, A138, EQREL_1: 39;

              hence thesis by A142, A138;

            end;

            hence thesis by A65, A66, A69, A74, A90, A127, A131, XXREAL_0: 2;

          end;

          hence thesis by A58, A59, TARSKI:def 1;

        end;

        hence thesis by SRINGS_1:def 2;

      end;

      hence thesis by A2, A3;

    end;

    

     LemmA1: II is with_countable_Cover

    proof

      defpred F[ object, object] means $1 is Element of NAT & $2 in II & ex x be real number st x = $1 & $2 = ].( - x), x.];

      

       A2: for x be object st x in NAT holds ex y be object st y in II & F[x, y]

      proof

        let x be object;

        assume

         A3: x in NAT ;

        then

        reconsider x as real number;

        set y = ].( - x), x.];

        y in II & F[x, y] by A3;

        hence thesis;

      end;

      consider f be Function such that

       A4: ( dom f) = NAT & ( rng f) c= II and

       A5: for x be object st x in NAT holds F[x, (f . x)] from FUNCT_1:sch 6( A2);

      

       A6: ( rng f) is Subset-Family of REAL by A4, XBOOLE_1: 1;

      

       A7: ( rng f) is countable

      proof

        reconsider f as SetSequence of REAL by A4, A6, RELSET_1: 4, FUNCT_2:def 1;

        ( rng f) is countable by TOPGEN_4: 58;

        hence thesis;

      end;

      ( rng f) is Cover of REAL

      proof

        ( Union f) = REAL

        proof

          thus ( Union f) c= REAL

          proof

            let x be object;

            assume x in ( Union f);

            then

            consider t be object such that

             A9: t in ( dom f) & x in (f . t) by CARD_5: 2;

            consider x0 be real number such that

             A10: x0 = t & (f . t) = ].( - x0), x0.] by A4, A5, A9;

            thus thesis by A9, A10;

          end;

          let x be object;

          assume x in REAL ;

          then

          reconsider x as Real;

          consider n be Element of NAT such that

           A11: |.x.| <= n by MESFUNC1: 8;

          

           A12: (n + 1) is Element of NAT by ORDINAL1:def 12;

          x in (f . (n + 1))

          proof

            consider z be real number such that

             A13: z = (n + 1) & (f . (n + 1)) = ].( - z), z.] by A5, A12;

            

             A14: ( - |.x.|) <= x & x <= |.x.| & |.x.| <= n by A11, ABSVALUE: 4;

            

             A15: x <= n implies (x + 0 ) <= (n + 1) by XREAL_1: 7;

            ( - (n + 1)) < x

            proof

              per cases ;

                suppose 0 <= x;

                hence thesis;

              end;

                suppose x < 0 ;

                then ( - x) <= n by A11, ABSVALUE:def 1;

                then

                 A16: ( - n) <= ( - ( - x)) by XREAL_1: 24;

                then

                 A17: (( - n) - 1) <= (x - 1) by XREAL_1: 13;

                (x - 1) <= (x - 0 ) by XREAL_1: 13;

                then

                 A18: ( - (n + 1)) <= x by A17, XXREAL_0: 2;

                ( - (n + 1)) < x

                proof

                   not ( - (n + 1)) = x

                  proof

                    assume x = ( - (n + 1));

                    then (( - n) + n) <= (( - (n + 1)) + n) by A16, XREAL_1: 7;

                    hence thesis;

                  end;

                  hence thesis by A18, XXREAL_0: 1;

                end;

                hence thesis;

              end;

            end;

            hence thesis by A13, A14, A15, XXREAL_0: 2;

          end;

          then x in (f . (n + 1)) & (f . (n + 1)) in ( rng f) by A4, A12, FUNCT_1:def 3;

          hence thesis by TARSKI:def 4;

        end;

        hence thesis by A6, SETFAM_1: 45;

      end;

      hence thesis by A4, A7, SRINGS_1:def 4;

    end;

    theorem :: SRINGS_2:9

    for S be Subset-Family of REAL st S = { ].a, b.] where a,b be Real : a <= b } holds S is cap-closed & S is diff-finite-partition-closed with_empty_element & S is with_countable_Cover by THS0, THS1, THS2, LemmA1;

    

     LemmB: for S be Subset-Family of REAL st S = { s where s be Subset of REAL : s is left_open_interval } holds S is with_countable_Cover

    proof

      let S be Subset-Family of REAL ;

      assume

       A1: S = { s where s be Subset of REAL : s is left_open_interval };

      defpred F[ object, object] means $1 is Element of NAT & $2 in S & ex x be real number st x = $1 & $2 = ]. -infty , x.];

      

       A2: for x be object st x in NAT holds ex y be object st y in S & F[x, y]

      proof

        let x be object;

        assume

         A3: x in NAT ;

        then

        reconsider x as real number;

        set y = ]. -infty , x.];

        

         A4: y is Subset of REAL & y is left_open_interval by MEASURE5:def 5;

         F[x, y] by A1, A3, A4;

        hence thesis;

      end;

      consider f be Function such that

       A5: ( dom f) = NAT & ( rng f) c= S and

       A6: for x be object st x in NAT holds F[x, (f . x)] from FUNCT_1:sch 6( A2);

      

       A7: ( rng f) is Subset-Family of REAL by A5, XBOOLE_1: 1;

      

       A8: ( rng f) is countable

      proof

        reconsider f as SetSequence of REAL by A5, A7, RELSET_1: 4, FUNCT_2:def 1;

        ( rng f) is countable by TOPGEN_4: 58;

        hence thesis;

      end;

      ( rng f) is Cover of REAL

      proof

        ( union ( rng f)) = REAL

        proof

          

           A9: ( union ( rng f)) c= REAL

          proof

            let x be object;

            assume x in ( union ( rng f));

            then x in ( Union f);

            then

            consider t be object such that

             A10: t in ( dom f) & x in (f . t) by CARD_5: 2;

            consider x0 be real number such that

             A11: x0 = t & (f . t) = ]. -infty , x0.] by A5, A6, A10;

            thus thesis by A10, A11;

          end;

           REAL c= ( union ( rng f))

          proof

            let x be object;

            assume x in REAL ;

            then

            reconsider x as Real;

            consider n be Element of NAT such that

             A12: x <= n by MESFUNC1: 8;

            x in (f . n)

            proof

              ex z be real number st z = n & (f . n) = ]. -infty , z.] by A6;

              hence thesis by A12, XXREAL_1: 234;

            end;

            then x in (f . n) & (f . n) in ( rng f) by A5, FUNCT_1:def 3;

            hence thesis by TARSKI:def 4;

          end;

          hence thesis by A9;

        end;

        hence thesis by A7, SETFAM_1: 45;

      end;

      hence thesis by A5, A8, SRINGS_1:def 4;

    end;

    theorem :: SRINGS_2:10

    for S be Subset-Family of REAL st S = { s where s be Subset of REAL : s is left_open_interval } holds S is cap-closed & S is diff-finite-partition-closed with_empty_element & S is with_countable_Cover

    proof

      let S be Subset-Family of REAL ;

      assume

       A1: S = { s where s be Subset of REAL : s is left_open_interval };

      

       A2: S is cap-closed

      proof

        for S1,S2 be set st S1 in S & S2 in S holds (S1 /\ S2) in S

        proof

          let S1,S2 be set;

          assume

           A3: S1 in S;

          assume

           A4: S2 in S;

          consider s1 be Subset of REAL such that

           A5: S1 = s1 & s1 is left_open_interval by A1, A3;

          consider s2 be Subset of REAL such that

           A6: S2 = s2 & s2 is left_open_interval by A1, A4;

          set S3 = (s1 /\ s2);

          reconsider S3 as Subset of REAL ;

          consider a1 be R_eal, b1 be Real such that

           A7: s1 = ].a1, b1.] by MEASURE5:def 5, A5;

          consider a2 be R_eal, b2 be Real such that

           A8: s2 = ].a2, b2.] by MEASURE5:def 5, A6;

          

           A9: S3 = ].( max (a1,a2)), ( min (b1,b2)).] by A7, A8, XXREAL_1: 141;

          set m1 = ( max (a1,a2));

          m1 in ExtREAL by XXREAL_0:def 1;

          then S3 is left_open_interval by A9, MEASURE5:def 5;

          hence thesis by A1, A5, A6;

        end;

        hence thesis by FINSUB_1:def 2;

      end;

      

       A10: S is with_empty_element

      proof

         ]. 0 , 0 .] is left_open_interval

        proof

           0 in REAL by NUMBERS: 19;

          hence thesis by NUMBERS: 31, MEASURE5:def 5;

        end;

        then {} in S by A1;

        hence thesis;

      end;

      then

       A12: S is non empty;

      S is diff-finite-partition-closed

      proof

        for S3,S4 be Element of S st (S3 \ S4) is non empty holds ex z be finite Subset of S st z is a_partition of (S3 \ S4)

        proof

          let S3,S4 be Element of S;

          assume

           A13: (S3 \ S4) is non empty;

          

           A14: S3 in S & S4 in S by A12;

          consider s3 be Subset of REAL such that

           A15: S3 = s3 & s3 is left_open_interval by A1, A14;

          consider s4 be Subset of REAL such that

           A16: S4 = s4 & s4 is left_open_interval by A1, A14;

          consider a1 be R_eal, b1 be Real such that

           A17: s3 = ].a1, b1.] by A15, MEASURE5:def 5;

          consider a2 be R_eal, b2 be Real such that

           A18: s4 = ].a2, b2.] by A16, MEASURE5:def 5;

          

           A20: s4 is empty implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

          proof

            assume

             A21: s4 is empty;

            set z = {S3};

            

             A22: z c= S by A14, TARSKI:def 1;

             {S3} is a_partition of S3 by A13, EQREL_1: 39;

            hence thesis by A22, A16, A21;

          end;

          

           A23: (s4 is non empty & s3 misses s4) implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

          proof

            assume

             A24: s4 is non empty & s3 misses s4;

            

             A25: (S3 \ S4) = S3

            proof

              S3 c= (S3 \ S4)

              proof

                let x be object;

                assume

                 A27: x in S3;

                 not x in S4 by A27, A15, A16, A24, XBOOLE_0:def 4;

                hence thesis by A27, XBOOLE_0:def 5;

              end;

              hence thesis;

            end;

            set z = {S3};

            

             A28: z c= S by A14, TARSKI:def 1;

            z is a_partition of S3 by A13, EQREL_1: 39;

            hence thesis by A28, A25;

          end;

          s4 is non empty & s3 meets s4 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

          proof

            assume

             A29: s4 is non empty & s3 meets s4;

            then

             A30: ( ].a1, b1.] \ ].a2, b2.]) = ( ].a1, a2.] \/ ].b2, b1.]) by A17, A18, XXREAL_1: 199;

            

             A31: b1 <= b2 implies ( ].a1, a2.] /\ ].b2, b1.]) c= {}

            proof

              assume

               A32: b1 <= b2;

               ].b2, b1.] = {}

              proof

                assume ].b2, b1.] <> {} ;

                then

                consider x be object such that

                 A33: x in ].b2, b1.] by XBOOLE_0:def 1;

                reconsider x as real number by A33;

                b2 < x & x <= b1 by A33, XXREAL_1: 2;

                hence thesis by A32, XXREAL_0: 2;

              end;

              hence thesis;

            end;

            

             A33a: b2 < b1 implies ( ].a1, a2.] /\ ].b2, b1.]) c= {}

            proof

              assume b2 < b1;

              ( ].a1, a2.] /\ ].b2, b1.]) c= {}

              proof

                let x be object;

                assume

                 A34: x in ( ].a1, a2.] /\ ].b2, b1.]);

                then

                 A35: x in ].a1, a2.] & x in ].b2, b1.] by XBOOLE_0:def 4;

                reconsider x as real number by A34;

                per cases ;

                  suppose

                   A36: a2 <= b2;

                  b2 < x & x <= a2 by A35, XXREAL_1: 2;

                  hence thesis by A36, XXREAL_0: 2;

                end;

                  suppose

                   A37: b2 < a2;

                  s4 c= {}

                  proof

                    let x be object;

                    assume

                     A38: x in s4;

                    then

                    reconsider x as real number;

                    a2 < x & x <= b2 by A18, A38, XXREAL_1: 2;

                    hence thesis by A37, XXREAL_0: 2;

                  end;

                  hence thesis by A29;

                end;

              end;

              hence thesis;

            end;

            

             A40: a2 in REAL or a2 in { -infty , +infty } by XBOOLE_0:def 3;

            

             A41: a2 = +infty implies ex z be finite Subset of S st z is a_partition of (S3 \ S4) by A18, A29, XXREAL_1: 216;

            

             A42: a2 = -infty implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A43: a2 = -infty ;

              

               A44: (S3 \ S4) = ( {} \/ ].b2, b1.]) by A15, A16, A17, A18, A30, A43, XXREAL_1: 212;

              set z = { ].b2, b1.]};

              

               A45: z c= S

              proof

                let x be object;

                assume

                 A47: x in z;

                then

                 A48: x = ].b2, b1.] by TARSKI:def 1;

                reconsider x as Subset of REAL by A47, TARSKI:def 1;

                b2 in REAL by XREAL_0:def 1;

                then x is left_open_interval by A48, NUMBERS: 31, MEASURE5:def 5;

                hence thesis by A1;

              end;

              z is a_partition of (S3 \ S4) by A44, A13, EQREL_1: 39;

              hence thesis by A45;

            end;

            

             A49: a2 in REAL & not ( not (a1 < a2) & not (b2 < b1)) & not (a1 < a2 & b2 < b1) implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A50: a2 in REAL ;

              assume

               A51: not ( not (a1 < a2) & not (b2 < b1)) & not (a1 < a2 & b2 < b1);

              

               A52: a1 < a2 & b1 <= b2 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

              proof

                assume

                 A53: a1 < a2 & b1 <= b2;

                 ].b2, b1.] c= {}

                proof

                  let x be object;

                  assume

                   A54: x in ].b2, b1.];

                  then

                  reconsider x as real number;

                  b2 < x & x <= b1 by A54, XXREAL_1: 2;

                  hence thesis by A53, XXREAL_0: 2;

                end;

                then

                 A55: ].b2, b1.] = {} ;

                set z = { ].a1, a2.]};

                

                 A56: { ].a1, a2.]} c= S

                proof

                  let x be object;

                  assume

                   A57: x in { ].a1, a2.]};

                   ].a1, a2.] in S

                  proof

                    set AA = ].a1, a2.];

                    reconsider AA as Subset of REAL by A50, XXREAL_1: 227;

                    AA is left_open_interval by A50, MEASURE5:def 5;

                    hence thesis by A1;

                  end;

                  hence thesis by A57, TARSKI:def 1;

                end;

                 ].a1, a2.] <> {}

                proof

                  a2 in ].a1, a2.] by A53;

                  hence thesis;

                end;

                then z is a_partition of ].a1, a2.] by EQREL_1: 39;

                hence thesis by A15, A16, A17, A18, A30, A55, A56;

              end;

              b2 < b1 & a2 <= a1 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

              proof

                assume

                 A58: b2 < b1 & a2 <= a1;

                 ].a1, a2.] c= {}

                proof

                  let x be object;

                  assume

                   A59: x in ].a1, a2.];

                  then

                  reconsider x as real number by A50;

                  a1 < x & x <= a2 by A59, XXREAL_1: 2;

                  hence thesis by A58, XXREAL_0: 2;

                end;

                then

                 A60: ].a1, a2.] = {} ;

                set z = { ].b2, b1.]};

                

                 A61: { ].b2, b1.]} c= S

                proof

                  let x be object;

                  assume

                   A62: x in { ].b2, b1.]};

                   ].b2, b1.] in S

                  proof

                    set AA = ].b2, b1.];

                    reconsider AA as Subset of REAL ;

                    b2 in REAL by XREAL_0:def 1;

                    then AA is left_open_interval by NUMBERS: 31, MEASURE5:def 5;

                    hence thesis by A1;

                  end;

                  hence thesis by A62, TARSKI:def 1;

                end;

                 ].b2, b1.] <> {} by A58, XXREAL_1: 2;

                then z is a_partition of ].b2, b1.] by EQREL_1: 39;

                hence thesis by A15, A16, A17, A18, A30, A60, A61;

              end;

              hence thesis by A51, A52;

            end;

            

             A63: a2 in REAL & not (a1 < a2) & not (b2 < b1) implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume a2 in REAL ;

              assume

               A64: not (a1 < a2) & not (b2 < b1);

              (S3 \ S4) c= {}

              proof

                let x be object;

                assume

                 A65: x in (S3 \ S4);

                then

                 A66: x in ].a1, b1.] & not x in ].a2, b2.] by A15, A16, A17, A18, XBOOLE_0:def 5;

                reconsider x as real number by A15, A65;

                a1 < x & x <= b1 & (x <= a2 or b2 < x) by A66, XXREAL_1: 2;

                hence thesis by A64, XXREAL_0: 2;

              end;

              hence thesis by A13;

            end;

            a2 in REAL & a1 < a2 & b2 < b1 implies ex z be finite Subset of S st z is a_partition of (S3 \ S4)

            proof

              assume

               A67: a2 in REAL ;

              assume a1 < a2 & b2 < b1;

              then

               A69: ].a1, a2.] <> {} & ].b2, b1.] <> {} by XXREAL_1: 2;

              set z = { ].a1, a2.], ].b2, b1.]};

              

               A70: { ].a1, a2.], ].b2, b1.]} c= S

              proof

                let x be object;

                assume

                 A71: x in { ].a1, a2.], ].b2, b1.]};

                

                 A72: ].a1, a2.] in S

                proof

                  set AA = ].a1, a2.];

                  reconsider AA as Subset of REAL by A67, XXREAL_1: 227;

                  AA is left_open_interval by A67, MEASURE5:def 5;

                  hence thesis by A1;

                end;

                 ].b2, b1.] in S

                proof

                  set BB = ].b2, b1.];

                  reconsider BB as Subset of REAL ;

                  b2 in REAL by XREAL_0:def 1;

                  then BB is left_open_interval by NUMBERS: 31, MEASURE5:def 5;

                  hence thesis by A1;

                end;

                hence thesis by A71, A72, TARSKI:def 2;

              end;

              z is a_partition of ( ].a1, b1.] \ ].a2, b2.])

              proof

                

                 A73: z is Subset-Family of ( ].a1, b1.] \ ].a2, b2.])

                proof

                  z c= ( bool ( ].a1, b1.] \ ].a2, b2.]))

                  proof

                    let x be object;

                    assume x in z;

                    then

                     A74: x = ].a1, a2.] or x = ].b2, b1.] by TARSKI:def 2;

                    reconsider x as set by TARSKI: 1;

                    x c= ( ].a1, b1.] \ ].a2, b2.])

                    proof

                      let y be object;

                      assume y in x;

                      then y in ( ].a1, a2.] \/ ].b2, b1.]) by A74, XBOOLE_0:def 3;

                      hence thesis by A17, A18, A29, XXREAL_1: 199;

                    end;

                    hence thesis;

                  end;

                  hence thesis;

                end;

                

                 A75: ( union z) = ( ].a1, b1.] \ ].a2, b2.]) by A30, ZFMISC_1: 75;

                for A be Subset of ( ].a1, b1.] \ ].a2, b2.]) st A in z holds A <> {} & for B be Subset of ( ].a1, b1.] \ ].a2, b2.]) st B in z holds A = B or A misses B

                proof

                  let A be Subset of ( ].a1, b1.] \ ].a2, b2.]);

                  assume

                   A76: A in z;

                  for B be Subset of ( ].a1, b1.] \ ].a2, b2.]) st B in z holds A = B or A misses B

                  proof

                    let B be Subset of ( ].a1, b1.] \ ].a2, b2.]);

                    assume B in z;

                    then (A = ].a1, a2.] & B = ].a1, a2.]) or (A = ].a1, a2.] & B = ].b2, b1.]) or (A = ].b2, b1.] & B = ].a1, a2.]) or (A = ].b2, b1.] & B = ].b2, b1.]) by A76, TARSKI:def 2;

                    hence thesis by A31, A33a;

                  end;

                  hence thesis by A69, A76;

                end;

                hence thesis by A73, A75, EQREL_1:def 4;

              end;

              hence thesis by A15, A16, A17, A18, A70;

            end;

            hence thesis by A40, A41, A42, A49, A63, TARSKI:def 2;

          end;

          hence thesis by A20, A23;

        end;

        hence thesis by SRINGS_1:def 2;

      end;

      hence thesis by A1, A2, A10, LemmB;

    end;

    begin

    definition

      :: SRINGS_2:def1

      func sring4_8 -> Subset-Family of {1, 2, 3, 4} equals { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} };

      coherence

      proof

        set SF = { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} };

        SF c= ( bool {1, 2, 3, 4})

        proof

          let x be object;

          assume x in SF;

          then

           S1: x = {1, 2, 3, 4} or x = {1, 2, 3} or x = {2, 3, 4} or x = {1} or x = {2} or x = {3} or x = {4} or x = {} by ENUMSET1:def 6;

          reconsider x as set by TARSKI: 1;

          

           S3: {1, 2, 3} c= {1, 2, 3, 4}

          proof

            let x be object;

            assume x in {1, 2, 3};

            then x = 1 or x = 2 or x = 3 by ENUMSET1:def 1;

            hence thesis by ENUMSET1:def 2;

          end;

          

           S4: {2, 3, 4} c= {1, 2, 3, 4}

          proof

            let x be object;

            assume x in {2, 3, 4};

            then x = 2 or x = 3 or x = 4 by ENUMSET1:def 1;

            hence thesis by ENUMSET1:def 2;

          end;

          

           S5: {1} c= {1, 2, 3, 4}

          proof

            let x be object;

            assume x in {1};

            then x = 1 by TARSKI:def 1;

            hence thesis by ENUMSET1:def 2;

          end;

          

           S6: {2} c= {1, 2, 3, 4}

          proof

            let x be object;

            assume x in {2};

            then x = 2 by TARSKI:def 1;

            hence thesis by ENUMSET1:def 2;

          end;

          

           S7: {3} c= {1, 2, 3, 4}

          proof

            let x be object;

            assume x in {3};

            then x = 3 by TARSKI:def 1;

            hence thesis by ENUMSET1:def 2;

          end;

          

           S8: {4} c= {1, 2, 3, 4}

          proof

            let x be object;

            assume x in {4};

            then x = 4 by TARSKI:def 1;

            hence thesis by ENUMSET1:def 2;

          end;

          x c= {1, 2, 3, 4} by S1, S3, S4, S5, S6, S7, S8;

          hence thesis;

        end;

        hence thesis;

      end;

    end

    set S = sring4_8 ;

    registration

      cluster sring4_8 -> with_empty_element;

      coherence

      proof

         {} in S by ENUMSET1:def 6;

        hence thesis;

      end;

    end

    

     LL2: ( {1, 2, 3, 4} /\ {1, 2, 3}) = {1, 2, 3}

    proof

      now

        let x be object;

        x in ( {1, 2, 3, 4} /\ {1, 2, 3}) iff x in {1, 2, 3, 4} & x in {1, 2, 3} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3, 4} /\ {1, 2, 3}) iff x = 1 or x = 2 or x = 3 by ENUMSET1:def 1, ENUMSET1:def 2;

        hence x in ( {1, 2, 3, 4} /\ {1, 2, 3}) iff x in {1, 2, 3} by ENUMSET1:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL3: ( {1, 2, 3, 4} /\ {2, 3, 4}) = {2, 3, 4}

    proof

      now

        let x be object;

        x in ( {1, 2, 3, 4} /\ {2, 3, 4}) iff x in {1, 2, 3, 4} & x in {2, 3, 4} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3, 4} /\ {2, 3, 4}) iff x = 4 or x = 2 or x = 3 by ENUMSET1:def 1, ENUMSET1:def 2;

        hence x in ( {1, 2, 3, 4} /\ {2, 3, 4}) iff x in {2, 3, 4} by ENUMSET1:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL4: ( {1, 2, 3, 4} /\ {1}) = {1}

    proof

      now

        let x be object;

        x in ( {1, 2, 3, 4} /\ {1}) iff x in {1, 2, 3, 4} & x in {1} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3, 4} /\ {1}) iff x = 1 by TARSKI:def 1, ENUMSET1:def 2;

        hence x in ( {1, 2, 3, 4} /\ {1}) iff x in {1} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL5: ( {1, 2, 3, 4} /\ {2}) = {2}

    proof

      now

        let x be object;

        x in ( {1, 2, 3, 4} /\ {2}) iff x in {1, 2, 3, 4} & x in {2} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3, 4} /\ {2}) iff x = 2 by TARSKI:def 1, ENUMSET1:def 2;

        hence x in ( {1, 2, 3, 4} /\ {2}) iff x in {2} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL6: ( {1, 2, 3, 4} /\ {3}) = {3}

    proof

      now

        let x be object;

        x in ( {1, 2, 3, 4} /\ {3}) iff x in {1, 2, 3, 4} & x in {3} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3, 4} /\ {3}) iff x = 3 by TARSKI:def 1, ENUMSET1:def 2;

        hence x in ( {1, 2, 3, 4} /\ {3}) iff x in {3} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL7: ( {1, 2, 3, 4} /\ {4}) = {4}

    proof

      now

        let x be object;

        x in ( {1, 2, 3, 4} /\ {4}) iff x in {1, 2, 3, 4} & x in {4} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3, 4} /\ {4}) iff x = 4 by TARSKI:def 1, ENUMSET1:def 2;

        hence x in ( {1, 2, 3, 4} /\ {4}) iff x in {4} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL10: ( {1, 2, 3} /\ {2, 3, 4}) = {2, 3}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} /\ {2, 3, 4}) iff x in {1, 2, 3} & x in {2, 3, 4} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3} /\ {2, 3, 4}) iff (x = 1 or x = 2 or x = 3) & (x = 2 or x = 3 or x = 4) by ENUMSET1:def 1;

        hence x in ( {1, 2, 3} /\ {2, 3, 4}) iff x in {2, 3} by TARSKI:def 2;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL11: ( {1, 2, 3} /\ {1}) = {1}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} /\ {1}) iff x in {1, 2, 3} & x in {1} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3} /\ {1}) iff x = 1 by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {1, 2, 3} /\ {1}) iff x in {1} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL12: ( {1, 2, 3} /\ {2}) = {2}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} /\ {2}) iff x in {1, 2, 3} & x in {2} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3} /\ {2}) iff x = 2 by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {1, 2, 3} /\ {2}) iff x in {2} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL13: ( {1, 2, 3} /\ {3}) = {3}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} /\ {3}) iff x in {1, 2, 3} & x in {3} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3} /\ {3}) iff x = 3 by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {1, 2, 3} /\ {3}) iff x in {3} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL14: ( {1, 2, 3} /\ {4}) = {}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} /\ {4}) iff x in {1, 2, 3} & x in {4} by XBOOLE_0:def 4;

        then x in ( {1, 2, 3} /\ {4}) iff (x = 1 or x = 2 or x = 3) & x = 4 by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {1, 2, 3} /\ {4}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     LL11a: ( {2, 3, 4} /\ {1}) = {}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} /\ {1}) iff x in {2, 3, 4} & x in {1} by XBOOLE_0:def 4;

        then x in ( {2, 3, 4} /\ {1}) iff (x = 2 or x = 3 or x = 4) & x = 1 by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {2, 3, 4} /\ {1}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     LL12a: ( {2, 3, 4} /\ {2}) = {2}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} /\ {2}) iff x in {2, 3, 4} & x in {2} by XBOOLE_0:def 4;

        then x in ( {2, 3, 4} /\ {2}) iff x = 2 by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {2, 3, 4} /\ {2}) iff x in {2} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL13a: ( {2, 3, 4} /\ {3}) = {3}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} /\ {3}) iff x in {2, 3, 4} & x in {3} by XBOOLE_0:def 4;

        then x in ( {2, 3, 4} /\ {3}) iff x = 3 by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {2, 3, 4} /\ {3}) iff x in {3} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL14a: ( {2, 3, 4} /\ {4}) = {4}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} /\ {4}) iff x in {2, 3, 4} & x in {4} by XBOOLE_0:def 4;

        then x in ( {2, 3, 4} /\ {4}) iff x = 4 by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {2, 3, 4} /\ {4}) iff x in {4} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     LL17: ( {1} /\ {2}) = {}

    proof

      now

        let x be object;

        x in ( {1} /\ {2}) iff x in {1} & x in {2} by XBOOLE_0:def 4;

        then x in ( {1} /\ {2}) iff x = 1 & x = 2 by TARSKI:def 1;

        hence x in ( {1} /\ {2}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     LL18: ( {1} /\ {3}) = {}

    proof

      now

        let x be object;

        x in ( {1} /\ {3}) iff x in {1} & x in {3} by XBOOLE_0:def 4;

        then x in ( {1} /\ {3}) iff x = 1 & x = 3 by TARSKI:def 1;

        hence x in ( {1} /\ {3}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     LL19: ( {1} /\ {4}) = {}

    proof

      now

        let x be object;

        x in ( {1} /\ {4}) iff x in {1} & x in {4} by XBOOLE_0:def 4;

        then x in ( {1} /\ {4}) iff x = 1 & x = 4 by TARSKI:def 1;

        hence x in ( {1} /\ {4}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     LL21: ( {2} /\ {3}) = {}

    proof

      now

        let x be object;

        x in ( {2} /\ {3}) iff x in {2} & x in {3} by XBOOLE_0:def 4;

        then x in ( {2} /\ {3}) iff x = 2 & x = 3 by TARSKI:def 1;

        hence x in ( {2} /\ {3}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     LL22: ( {2} /\ {4}) = {}

    proof

      now

        let x be object;

        x in ( {2} /\ {4}) iff x in {2} & x in {4} by XBOOLE_0:def 4;

        then x in ( {2} /\ {4}) iff x = 2 & x = 4 by TARSKI:def 1;

        hence x in ( {2} /\ {4}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     LL24: ( {3} /\ {4}) = {}

    proof

      now

        let x be object;

        x in ( {3} /\ {4}) iff x in {3} & x in {4} by XBOOLE_0:def 4;

        then x in ( {3} /\ {4}) iff x = 3 & x = 4 by TARSKI:def 1;

        hence x in ( {3} /\ {4}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     Thm1: ( INTERSECTION (S,S)) = { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} , {2, 3}}

    proof

      

       T1: ( INTERSECTION (S,S)) c= { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} , {2, 3}}

      proof

        let s be object;

        assume s in ( INTERSECTION (S,S));

        then

        consider x,y be set such that

         H2: x in S and

         H3: y in S and

         H4: s = (x /\ y) by SETFAM_1:def 5;

        (x = {1, 2, 3, 4} or x = {1, 2, 3} or x = {2, 3, 4} or x = {1} or x = {2} or x = {3} or x = {4} or x = {} ) & (y = {1, 2, 3, 4} or y = {1, 2, 3} or y = {2, 3, 4} or y = {1} or y = {2} or y = {3} or y = {4} or y = {} ) by H2, H3, ENUMSET1:def 6;

        hence thesis by LL2, LL3, LL4, LL5, LL6, LL7, LL10, LL11, LL12, LL13, LL14, LL17, LL18, LL19, LL21, LL22, LL24, LL11a, LL12a, LL13a, LL14a, H4, ENUMSET1:def 7;

      end;

       { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} , {2, 3}} c= ( INTERSECTION (S,S))

      proof

        let x be object;

        assume

         B0: x in { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} , {2, 3}};

         {1, 2, 3, 4} in S & {1, 2, 3} in S & {2, 3, 4} in S & {1} in S & {2} in S & {3} in S & {4} in S & {} in S by ENUMSET1:def 6;

        then ( {1, 2, 3, 4} /\ {1, 2, 3, 4}) in ( INTERSECTION (S,S)) & ( {1, 2, 3} /\ {1, 2, 3}) in ( INTERSECTION (S,S)) & ( {2, 3, 4} /\ {2, 3, 4}) in ( INTERSECTION (S,S)) & ( {1} /\ {1}) in ( INTERSECTION (S,S)) & ( {2} /\ {2}) in ( INTERSECTION (S,S)) & ( {3} /\ {3}) in ( INTERSECTION (S,S)) & ( {4} /\ {4}) in ( INTERSECTION (S,S)) & ( {} /\ {} ) in ( INTERSECTION (S,S)) & ( {1, 2, 3} /\ {2, 3, 4}) in ( INTERSECTION (S,S)) by SETFAM_1:def 5;

        hence thesis by LL10, B0, ENUMSET1:def 7;

      end;

      hence thesis by T1;

    end;

    

     LemAA: { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} , {2, 3}} = ( { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} } \/ { {2, 3}})

    proof

      thus { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} , {2, 3}} c= ( { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} } \/ { {2, 3}})

      proof

        let x be object;

        assume x in { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} , {2, 3}};

        then x = {1, 2, 3, 4} or x = {1, 2, 3} or x = {2, 3, 4} or x = {1} or x = {2} or x = {3} or x = {4} or x = {} or x = {2, 3} by ENUMSET1:def 7;

        then x in { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} } or x in { {2, 3}} by ENUMSET1:def 6, TARSKI:def 1;

        hence thesis by XBOOLE_0:def 3;

      end;

      let x be object;

      assume x in ( { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} } \/ { {2, 3}});

      then x in { {1, 2, 3, 4}, {1, 2, 3}, {2, 3, 4}, {1}, {2}, {3}, {4}, {} } or x in { {2, 3}} by XBOOLE_0:def 3;

      then x = {1, 2, 3, 4} or x = {1, 2, 3} or x = {2, 3, 4} or x = {1} or x = {2} or x = {3} or x = {4} or x = {} or x = {2, 3} by ENUMSET1:def 6, TARSKI:def 1;

      hence thesis by ENUMSET1:def 7;

    end;

    

     LemmeA: for x be non empty set st x in sring4_8 holds {x} is Subset of sring4_8 & {x} is a_partition of x

    proof

      let x be non empty set;

      assume x in S;

      then {x} c= S by TARSKI:def 1;

      hence thesis by EQREL_1: 39;

    end;

    

     Thm98: for x be set st x in sring4_8 holds ex P be finite Subset of sring4_8 st P is a_partition of x

    proof

      let x be set;

      assume

       A0: x in S;

      per cases ;

        suppose

         C0: x is empty;

         {} is Subset of S & {} is a_partition of {} by SUBSET_1: 1, EQREL_1: 45;

        hence thesis by C0;

      end;

        suppose x is non empty;

        then {x} is Subset of S & {x} is a_partition of x by A0, LemmeA;

        hence thesis;

      end;

    end;

    

     Thm99: { {2}, {3}} is Subset of sring4_8 & { {2}, {3}} is a_partition of {2, 3}

    proof

      

       H1a: { {2}, {3}} c= S

      proof

        let x be object;

        assume x in { {2}, {3}};

        then x = {2} or x = {3} by TARSKI:def 2;

        hence thesis by ENUMSET1:def 6;

      end;

      

       H2: { {2}, {3}} is Subset-Family of {2, 3}

      proof

         { {2}, {3}} c= ( bool {2, 3})

        proof

          let x be object;

          assume x in { {2}, {3}};

          then

           AAA: x = {2} or x = {3} by TARSKI:def 2;

           {2} c= {2, 3} & {3} c= {2, 3} by ZFMISC_1: 7;

          hence thesis by AAA;

        end;

        hence thesis;

      end;

      

       H3: ( union { {2}, {3}}) = {2, 3} by ZFMISC_1: 26;

      for x be Subset of {2, 3} st x in { {2}, {3}} holds x <> {} & for y be Subset of {2, 3} st y in { {2}, {3}} holds x = y or x misses y

      proof

        let x be Subset of {2, 3};

        assume

         AA0: x in { {2}, {3}};

        hence x <> {} ;

        for y be Subset of {2, 3} st y in { {2}, {3}} holds x = y or x misses y

        proof

          let y be Subset of {2, 3};

          assume y in { {2}, {3}};

          then (y = {2} or y = {3}) & (x = {2} or x = {3}) by AA0, TARSKI:def 2;

          hence thesis by LL21;

        end;

        hence thesis;

      end;

      hence thesis by H1a, H2, H3, EQREL_1:def 4;

    end;

    

     LemC: for x be set st x in ( INTERSECTION (S,S)) holds ex P be finite Subset of S st P is a_partition of x

    proof

      let x be set;

      assume x in ( INTERSECTION (S,S));

      then

       H2: x in S or x in { {2, 3}} by LemAA, Thm1, XBOOLE_0:def 3;

      x = {2, 3} implies ex P be finite Subset of S st P is a_partition of x by Thm99;

      hence thesis by H2, TARSKI:def 1, Thm98;

    end;

    

     LemA: not ( {1, 2, 3} /\ {2, 3, 4}) in S

    proof

      

       A1: {2, 3} <> {1, 2, 3, 4}

      proof

        assume {2, 3} = {1, 2, 3, 4};

        then 1 in {2, 3} by ENUMSET1:def 2;

        hence thesis by TARSKI:def 2;

      end;

      

       A2: {2, 3} <> {1, 2, 3}

      proof

        assume {2, 3} = {1, 2, 3};

        then 1 in {2, 3} by ENUMSET1:def 1;

        hence thesis by TARSKI:def 2;

      end;

      

       A3: {2, 3} <> {2, 3, 4}

      proof

        assume {2, 3} = {2, 3, 4};

        then 4 in {2, 3} by ENUMSET1:def 1;

        hence thesis by TARSKI:def 2;

      end;

      

       A4: {2, 3} <> {1} by ZFMISC_1: 5;

      

       A5: {2, 3} <> {2} by ZFMISC_1: 5;

      

       A6: {2, 3} <> {3} by ZFMISC_1: 5;

       {2, 3} <> {4} by ZFMISC_1: 5;

      hence thesis by LL10, A1, A2, A3, A4, A5, A6, ENUMSET1:def 6;

    end;

    registration

      cluster sring4_8 -> cap-finite-partition-closed non cap-closed;

      coherence

      proof

         sring4_8 is cap-finite-partition-closed

        proof

          let S1,S2 be Element of sring4_8 ;

          assume (S1 /\ S2) is non empty;

          (S1 /\ S2) in ( INTERSECTION ( sring4_8 , sring4_8 )) by SETFAM_1:def 5;

          then

          consider P be finite Subset of sring4_8 such that

           A5: P is a_partition of (S1 /\ S2) by LemC;

          take P;

          thus thesis by A5;

        end;

        hence sring4_8 is cap-finite-partition-closed;

        assume

         H2: S is cap-closed;

         {1, 2, 3} in S & {2, 3, 4} in S by ENUMSET1:def 6;

        hence thesis by LemA, H2, FINSUB_1:def 2;

      end;

    end

    

     GG2: ( {1, 2, 3, 4} \ {1, 2, 3}) = {4}

    proof

      thus ( {1, 2, 3, 4} \ {1, 2, 3}) c= {4}

      proof

        let x be object;

        assume x in ( {1, 2, 3, 4} \ {1, 2, 3});

        then x in {1, 2, 3, 4} & not x in {1, 2, 3} by XBOOLE_0:def 5;

        then (x = 1 or x = 2 or x = 3 or x = 4) & not (x = 1 or x = 2 or x = 3) by ENUMSET1:def 1, ENUMSET1:def 2;

        hence thesis by TARSKI:def 1;

      end;

      let x be object;

      assume x in {4};

      then x = 4 by TARSKI:def 1;

      then x in {1, 2, 3, 4} & not x in {1, 2, 3} by ENUMSET1:def 1, ENUMSET1:def 2;

      hence thesis by XBOOLE_0:def 5;

    end;

    

     GG3: ( {1, 2, 3, 4} \ {2, 3, 4}) = {1}

    proof

      thus ( {1, 2, 3, 4} \ {2, 3, 4}) c= {1}

      proof

        let x be object;

        assume x in ( {1, 2, 3, 4} \ {2, 3, 4});

        then x in {1, 2, 3, 4} & not x in {2, 3, 4} by XBOOLE_0:def 5;

        then (x = 1 or x = 2 or x = 3 or x = 4) & not (x = 2 or x = 3 or x = 4) by ENUMSET1:def 1, ENUMSET1:def 2;

        hence thesis by TARSKI:def 1;

      end;

      let x be object;

      assume x in {1};

      then x = 1 by TARSKI:def 1;

      then x in {1, 2, 3, 4} & not x in {2, 3, 4} by ENUMSET1:def 1, ENUMSET1:def 2;

      hence thesis by XBOOLE_0:def 5;

    end;

    

     GG4: ( {1, 2, 3, 4} \ {1}) = {2, 3, 4}

    proof

      thus ( {1, 2, 3, 4} \ {1}) c= {2, 3, 4}

      proof

        let x be object;

        assume x in ( {1, 2, 3, 4} \ {1});

        then x in {1, 2, 3, 4} & not x in {1} by XBOOLE_0:def 5;

        then (x = 1 or x = 2 or x = 3 or x = 4) & not (x = 1) by ENUMSET1:def 2, TARSKI:def 1;

        hence thesis by ENUMSET1:def 1;

      end;

      let x be object;

      assume x in {2, 3, 4};

      then x = 2 or x = 3 or x = 4 by ENUMSET1:def 1;

      then x in {1, 2, 3, 4} & not x in {1} by TARSKI:def 1, ENUMSET1:def 2;

      hence thesis by XBOOLE_0:def 5;

    end;

    

     GG5: ( {1, 2, 3, 4} \ {2}) = {1, 3, 4}

    proof

      thus ( {1, 2, 3, 4} \ {2}) c= {1, 3, 4}

      proof

        let x be object;

        assume x in ( {1, 2, 3, 4} \ {2});

        then x in {1, 2, 3, 4} & not x in {2} by XBOOLE_0:def 5;

        then (x = 1 or x = 2 or x = 3 or x = 4) & not (x = 2) by ENUMSET1:def 2, TARSKI:def 1;

        hence thesis by ENUMSET1:def 1;

      end;

      let x be object;

      assume x in {1, 3, 4};

      then x = 1 or x = 3 or x = 4 by ENUMSET1:def 1;

      then x in {1, 2, 3, 4} & not x in {2} by TARSKI:def 1, ENUMSET1:def 2;

      hence thesis by XBOOLE_0:def 5;

    end;

    

     GG6: ( {1, 2, 3, 4} \ {3}) = {1, 2, 4}

    proof

      thus ( {1, 2, 3, 4} \ {3}) c= {1, 2, 4}

      proof

        let x be object;

        assume x in ( {1, 2, 3, 4} \ {3});

        then x in {1, 2, 3, 4} & not x in {3} by XBOOLE_0:def 5;

        then (x = 1 or x = 2 or x = 3 or x = 4) & not x = 3 by ENUMSET1:def 2, TARSKI:def 1;

        hence thesis by ENUMSET1:def 1;

      end;

      let x be object;

      assume x in {1, 2, 4};

      then x = 1 or x = 2 or x = 4 by ENUMSET1:def 1;

      then x in {1, 2, 3, 4} & not x in {3} by TARSKI:def 1, ENUMSET1:def 2;

      hence thesis by XBOOLE_0:def 5;

    end;

    

     GG7: ( {1, 2, 3, 4} \ {4}) = {1, 2, 3}

    proof

      thus ( {1, 2, 3, 4} \ {4}) c= {1, 2, 3}

      proof

        let x be object;

        assume x in ( {1, 2, 3, 4} \ {4});

        then x in {1, 2, 3, 4} & not x in {4} by XBOOLE_0:def 5;

        then (x = 1 or x = 2 or x = 3 or x = 4) & not x = 4 by ENUMSET1:def 2, TARSKI:def 1;

        hence thesis by ENUMSET1:def 1;

      end;

      let x be object;

      assume x in {1, 2, 3};

      then x = 1 or x = 2 or x = 3 by ENUMSET1:def 1;

      then x in {1, 2, 3, 4} & not x in {4} by TARSKI:def 1, ENUMSET1:def 2;

      hence thesis by XBOOLE_0:def 5;

    end;

    

     GG11: ( {1, 2, 3} \ {2, 3, 4}) = {1}

    proof

      thus ( {1, 2, 3} \ {2, 3, 4}) c= {1}

      proof

        let x be object;

        assume x in ( {1, 2, 3} \ {2, 3, 4});

        then x in {1, 2, 3} & not x in {2, 3, 4} by XBOOLE_0:def 5;

        then (x = 1 or x = 2 or x = 3) & not (x = 2 or x = 3 or x = 4) by ENUMSET1:def 1;

        hence thesis by TARSKI:def 1;

      end;

      let x be object;

      assume x in {1};

      then x = 1 by TARSKI:def 1;

      then x in {1, 2, 3} & not x in {2, 3, 4} by ENUMSET1:def 1;

      hence thesis by XBOOLE_0:def 5;

    end;

    

     GG12: ( {1, 2, 3} \ {1}) = {2, 3}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} \ {1}) iff x in {1, 2, 3} & not x in {1} by XBOOLE_0:def 5;

        then x in ( {1, 2, 3} \ {1}) iff (x = 1 or x = 2 or x = 3) & not x = 1 by ENUMSET1:def 1, TARSKI:def 1;

        hence x in ( {1, 2, 3} \ {1}) iff x in {2, 3} by TARSKI:def 2;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG13: ( {1, 2, 3} \ {2}) = {1, 3}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} \ {2}) iff x in {1, 2, 3} & not x in {2} by XBOOLE_0:def 5;

        then x in ( {1, 2, 3} \ {2}) iff (x = 1 or x = 2 or x = 3) & not x = 2 by ENUMSET1:def 1, TARSKI:def 1;

        hence x in ( {1, 2, 3} \ {2}) iff x in {1, 3} by TARSKI:def 2;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG14: ( {1, 2, 3} \ {3}) = {1, 2}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} \ {3}) iff x in {1, 2, 3} & not x in {3} by XBOOLE_0:def 5;

        then x in ( {1, 2, 3} \ {3}) iff (x = 1 or x = 2 or x = 3) & not x = 3 by ENUMSET1:def 1, TARSKI:def 1;

        hence x in ( {1, 2, 3} \ {3}) iff x in {1, 2} by TARSKI:def 2;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG15: ( {1, 2, 3} \ {4}) = {1, 2, 3}

    proof

      now

        let x be object;

        x in ( {1, 2, 3} \ {4}) iff x in {1, 2, 3} & not x in {4} by XBOOLE_0:def 5;

        then x in ( {1, 2, 3} \ {4}) iff (x = 1 or x = 2 or x = 3) & not x = 4 by ENUMSET1:def 1, TARSKI:def 1;

        hence x in ( {1, 2, 3} \ {4}) iff x in {1, 2, 3} by ENUMSET1:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG18: ( {2, 3, 4} \ {1, 2, 3}) = {4}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} \ {1, 2, 3}) iff x in {2, 3, 4} & not x in {1, 2, 3} by XBOOLE_0:def 5;

        then x in ( {2, 3, 4} \ {1, 2, 3}) iff (x = 2 or x = 3 or x = 4) & not (x = 1 or x = 2 or x = 3) by ENUMSET1:def 1;

        hence x in ( {2, 3, 4} \ {1, 2, 3}) iff x in {4} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG20: ( {2, 3, 4} \ {1}) = {2, 3, 4}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} \ {1}) iff x in {2, 3, 4} & not x in {1} by XBOOLE_0:def 5;

        then x in ( {2, 3, 4} \ {1}) iff (x = 2 or x = 3 or x = 4) & not x = 1 by ENUMSET1:def 1, TARSKI:def 1;

        hence x in ( {2, 3, 4} \ {1}) iff x in {2, 3, 4} by ENUMSET1:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG21: ( {2, 3, 4} \ {2}) = {3, 4}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} \ {2}) iff x in {2, 3, 4} & not x in {2} by XBOOLE_0:def 5;

        then x in ( {2, 3, 4} \ {2}) iff (x = 2 or x = 3 or x = 4) & not x = 2 by ENUMSET1:def 1, TARSKI:def 1;

        hence x in ( {2, 3, 4} \ {2}) iff x in {3, 4} by TARSKI:def 2;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG22: ( {2, 3, 4} \ {3}) = {2, 4}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} \ {3}) iff x in {2, 3, 4} & not x in {3} by XBOOLE_0:def 5;

        then x in ( {2, 3, 4} \ {3}) iff (x = 2 or x = 3 or x = 4) & not x = 3 by ENUMSET1:def 1, TARSKI:def 1;

        hence x in ( {2, 3, 4} \ {3}) iff x in {2, 4} by TARSKI:def 2;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG23: ( {2, 3, 4} \ {4}) = {2, 3}

    proof

      now

        let x be object;

        x in ( {2, 3, 4} \ {4}) iff x in {2, 3, 4} & not x in {4} by XBOOLE_0:def 5;

        then x in ( {2, 3, 4} \ {4}) iff (x = 2 or x = 3 or x = 4) & not x = 4 by ENUMSET1:def 1, TARSKI:def 1;

        hence x in ( {2, 3, 4} \ {4}) iff x in {2, 3} by TARSKI:def 2;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG27: ( {1} \ {2, 3, 4}) = {1}

    proof

      now

        let x be object;

        x in ( {1} \ {2, 3, 4}) iff x in {1} & not x in {2, 3, 4} by XBOOLE_0:def 5;

        then x in ( {1} \ {2, 3, 4}) iff x = 1 & not (x = 2 or x = 3 or x = 4) by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {1} \ {2, 3, 4}) iff x in {1} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     GG33: ( {2} \ {1, 2, 3, 4}) = {}

    proof

      now

        let x be object;

        x in ( {2} \ {1, 2, 3, 4}) iff x in {2} & not x in {1, 2, 3, 4} by XBOOLE_0:def 5;

        then x in ( {2} \ {1, 2, 3, 4}) iff x = 2 & not (x = 1 or x = 2 or x = 3 or x = 4) by TARSKI:def 1, ENUMSET1:def 2;

        hence x in ( {2} \ {1, 2, 3, 4}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     GG34: ( {2} \ {1, 2, 3}) = {}

    proof

      now

        let x be object;

        x in ( {2} \ {1, 2, 3}) iff x in {2} & not x in {1, 2, 3} by XBOOLE_0:def 5;

        then x in ( {2} \ {1, 2, 3}) iff x = 2 & not (x = 1 or x = 2 or x = 3) by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {2} \ {1, 2, 3}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     GG35: ( {2} \ {2, 3, 4}) = {}

    proof

      now

        let x be object;

        x in ( {2} \ {2, 3, 4}) iff x in {2} & not x in {2, 3, 4} by XBOOLE_0:def 5;

        then x in ( {2} \ {2, 3, 4}) iff x = 2 & not (x = 2 or x = 3 or x = 4) by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {2} \ {2, 3, 4}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     GG41: ( {3} \ {1, 2, 3, 4}) = {}

    proof

      now

        let x be object;

        x in ( {3} \ {1, 2, 3, 4}) iff x in {3} & not x in {1, 2, 3, 4} by XBOOLE_0:def 5;

        then x in ( {3} \ {1, 2, 3, 4}) iff x = 3 & not (x = 1 or x = 2 or x = 3 or x = 4) by TARSKI:def 1, ENUMSET1:def 2;

        hence x in ( {3} \ {1, 2, 3, 4}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     GG42: ( {3} \ {1, 2, 3}) = {}

    proof

      now

        let x be object;

        x in ( {3} \ {1, 2, 3}) iff x in {3} & not x in {1, 2, 3} by XBOOLE_0:def 5;

        then x in ( {3} \ {1, 2, 3}) iff x = 3 & not (x = 1 or x = 2 or x = 3) by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {3} \ {1, 2, 3}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     GG43: ( {3} \ {2, 3, 4}) = {}

    proof

      now

        let x be object;

        x in ( {3} \ {2, 3, 4}) iff x in {3} & not x in {2, 3, 4} by XBOOLE_0:def 5;

        then x in ( {3} \ {2, 3, 4}) iff x = 3 & not (x = 2 or x = 3 or x = 4) by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {3} \ {2, 3, 4}) iff contradiction;

      end;

      hence thesis by XBOOLE_0:def 1;

    end;

    

     GG50: ( {4} \ {1, 2, 3}) = {4}

    proof

      now

        let x be object;

        x in ( {4} \ {1, 2, 3}) iff x in {4} & not x in {1, 2, 3} by XBOOLE_0:def 5;

        then x in ( {4} \ {1, 2, 3}) iff x = 4 & not (x = 1 or x = 2 or x = 3) by TARSKI:def 1, ENUMSET1:def 1;

        hence x in ( {4} \ {1, 2, 3}) iff x in {4} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     Thm50: ( DIFFERENCE ( sring4_8 , sring4_8 )) = ( sring4_8 \/ { {1, 3, 4}, {1, 2, 4}, {2, 3}, {1, 3}, {1, 2}, {3, 4}, {2, 4}})

    proof

      thus ( DIFFERENCE (S,S)) c= (S \/ { {1, 3, 4}, {1, 2, 4}, {2, 3}, {1, 3}, {1, 2}, {3, 4}, {2, 4}})

      proof

        let s be object;

        assume s in ( DIFFERENCE (S,S));

        then

        consider x,y be set such that

         A1: x in S & y in S and

         A2: s = (x \ y) by SETFAM_1:def 6;

        (x = {1, 2, 3, 4} or x = {1, 2, 3} or x = {2, 3, 4} or x = {1} or x = {2} or x = {3} or x = {4} or x = {} ) & (y = {1, 2, 3, 4} or y = {1, 2, 3} or y = {2, 3, 4} or y = {1} or y = {2} or y = {3} or y = {4} or y = {} ) by A1, ENUMSET1:def 6;

        then s = {1, 2, 3, 4} or s = {1, 2, 3} or s = {2, 3, 4} or s = {1} or s = {2} or s = {3} or s = {4} or s = {} or s = {1, 3, 4} or s = {1, 2, 4} or s = {2, 3} or s = {1, 3} or s = {1, 2} or s = {3, 4} or s = {2, 4} or s = {2, 3} or s = {} by GG2, GG3, GG4, GG5, GG6, GG7, XBOOLE_1: 37, GG11, GG12, GG13, GG14, GG15, GG18, GG20, GG21, GG22, GG23, GG27, ZFMISC_1: 14, GG33, GG34, GG35, GG41, GG42, GG43, GG50, A2;

        then s in S or s in { {1, 3, 4}, {1, 2, 4}, {2, 3}, {1, 3}, {1, 2}, {3, 4}, {2, 4}} by ENUMSET1:def 6, ENUMSET1:def 5;

        hence thesis by XBOOLE_0:def 3;

      end;

      let s be object;

      assume s in (S \/ { {1, 3, 4}, {1, 2, 4}, {2, 3}, {1, 3}, {1, 2}, {3, 4}, {2, 4}});

      then s in S or s in { {1, 3, 4}, {1, 2, 4}, {2, 3}, {1, 3}, {1, 2}, {3, 4}, {2, 4}} by XBOOLE_0:def 3;

      then

       VU: s = ( {1, 2, 3, 4} \ {} ) or s = ( {1, 2, 3} \ {} ) or s = ( {2, 3, 4} \ {} ) or s = ( {1} \ {} ) or s = ( {2} \ {} ) or s = ( {3} \ {} ) or s = ( {4} \ {} ) or s = ( {} \ {} ) or s = ( {1} \ {1}) or s = ( {1, 2, 3, 4} \ {2}) or s = ( {1, 2, 3, 4} \ {3}) or s = ( {1, 2, 3} \ {1}) or s = ( {1, 2, 3} \ {2}) or s = ( {1, 2, 3} \ {3}) or s = ( {2, 3, 4} \ {2}) or s = ( {1, 2, 3} \ {2, 3, 4}) or s = ( {2, 3, 4} \ {3}) or s = ( {1, 2, 3} \ {1}) by GG5, GG6, GG12, GG13, GG14, GG21, GG22, ENUMSET1:def 6, ENUMSET1:def 5;

       {1, 2, 3, 4} in S & {1, 2, 3} in S & {2, 3, 4} in S & {1} in S & {2} in S & {3} in S & {4} in S & {} in S by ENUMSET1:def 6;

      hence thesis by VU, SETFAM_1:def 6;

    end;

    

     ThmV1: { {1}, {3}} is Subset of sring4_8 & { {1}, {3}} is a_partition of {1, 3}

    proof

      

       H1a: { {1}, {3}} c= S

      proof

        let x be object;

        assume x in { {1}, {3}};

        then x = {1} or x = {3} by TARSKI:def 2;

        hence thesis by ENUMSET1:def 6;

      end;

      

       H2: { {1}, {3}} is Subset-Family of {1, 3}

      proof

         { {1}, {3}} c= ( bool {1, 3})

        proof

          let x be object;

          assume x in { {1}, {3}};

          then

           AAA: x = {1} or x = {3} by TARSKI:def 2;

           {1} c= {1, 3} & {3} c= {1, 3} by ZFMISC_1: 7;

          hence thesis by AAA;

        end;

        hence thesis;

      end;

      

       H3: ( union { {1}, {3}}) = {1, 3} by ZFMISC_1: 26;

      for x be Subset of {1, 3} st x in { {1}, {3}} holds x <> {} & for y be Subset of {1, 3} st y in { {1}, {3}} holds x = y or x misses y

      proof

        let x be Subset of {1, 3};

        assume

         AA0: x in { {1}, {3}};

        hence x <> {} ;

        for y be Subset of {1, 3} st y in { {1}, {3}} holds x = y or x misses y

        proof

          let y be Subset of {1, 3};

          assume y in { {1}, {3}};

          then (y = {1} or y = {3}) & (x = {1} or x = {3}) by AA0, TARSKI:def 2;

          hence thesis by LL18;

        end;

        hence thesis;

      end;

      hence thesis by H1a, H2, H3, EQREL_1:def 4;

    end;

    

     ThmV2: { {1}, {2}} is Subset of sring4_8 & { {1}, {2}} is a_partition of {1, 2}

    proof

      

       H1a: { {1}, {2}} c= S

      proof

        let x be object;

        assume x in { {1}, {2}};

        then x = {1} or x = {2} by TARSKI:def 2;

        hence thesis by ENUMSET1:def 6;

      end;

      

       H2: { {1}, {2}} is Subset-Family of {1, 2}

      proof

         { {1}, {2}} c= ( bool {1, 2})

        proof

          let x be object;

          assume x in { {1}, {2}};

          then

           AAA: x = {1} or x = {2} by TARSKI:def 2;

           {1} c= {1, 2} & {2} c= {1, 2} by ZFMISC_1: 7;

          hence thesis by AAA;

        end;

        hence thesis;

      end;

      

       H3: ( union { {1}, {2}}) = {1, 2} by ZFMISC_1: 26;

      for x be Subset of {1, 2} st x in { {1}, {2}} holds x <> {} & for y be Subset of {1, 2} st y in { {1}, {2}} holds x = y or x misses y

      proof

        let x be Subset of {1, 2};

        assume

         AA0: x in { {1}, {2}};

        hence x <> {} ;

        for y be Subset of {1, 2} st y in { {1}, {2}} holds x = y or x misses y

        proof

          let y be Subset of {1, 2};

          assume y in { {1}, {2}};

          then (y = {1} or y = {2}) & (x = {1} or x = {2}) by AA0, TARSKI:def 2;

          hence thesis by LL17;

        end;

        hence thesis;

      end;

      hence thesis by H1a, H2, H3, EQREL_1:def 4;

    end;

    

     ThmV3: { {2}, {4}} is Subset of sring4_8 & { {2}, {4}} is a_partition of {2, 4}

    proof

      

       H1a: { {2}, {4}} c= S

      proof

        let x be object;

        assume x in { {2}, {4}};

        then x = {2} or x = {4} by TARSKI:def 2;

        hence thesis by ENUMSET1:def 6;

      end;

      

       H2: { {2}, {4}} is Subset-Family of {2, 4}

      proof

         { {2}, {4}} c= ( bool {2, 4})

        proof

          let x be object;

          assume x in { {2}, {4}};

          then

           AAA: x = {2} or x = {4} by TARSKI:def 2;

           {2} c= {2, 4} & {4} c= {2, 4} by ZFMISC_1: 7;

          hence thesis by AAA;

        end;

        hence thesis;

      end;

      

       H3: ( union { {2}, {4}}) = {2, 4} by ZFMISC_1: 26;

      for x be Subset of {2, 4} st x in { {2}, {4}} holds x <> {} & for y be Subset of {2, 4} st y in { {2}, {4}} holds x = y or x misses y

      proof

        let x be Subset of {2, 4};

        assume

         AA0: x in { {2}, {4}};

        hence x <> {} ;

        for y be Subset of {2, 4} st y in { {2}, {4}} holds x = y or x misses y

        proof

          let y be Subset of {2, 4};

          assume y in { {2}, {4}};

          then (y = {2} or y = {4}) & (x = {2} or x = {4}) by AA0, TARSKI:def 2;

          hence thesis by LL22;

        end;

        hence thesis;

      end;

      hence thesis by H1a, H2, H3, EQREL_1:def 4;

    end;

    

     ThmV4: { {3}, {4}} is Subset of sring4_8 & { {3}, {4}} is a_partition of {3, 4}

    proof

      

       H1a: { {3}, {4}} c= S

      proof

        let x be object;

        assume x in { {3}, {4}};

        then x = {3} or x = {4} by TARSKI:def 2;

        hence thesis by ENUMSET1:def 6;

      end;

      

       H2: { {3}, {4}} is Subset-Family of {3, 4}

      proof

         { {3}, {4}} c= ( bool {3, 4})

        proof

          let x be object;

          assume x in { {3}, {4}};

          then

           AAA: x = {3} or x = {4} by TARSKI:def 2;

           {3} c= {3, 4} & {4} c= {3, 4} by ZFMISC_1: 7;

          hence thesis by AAA;

        end;

        hence thesis;

      end;

      

       H3: ( union { {3}, {4}}) = {3, 4} by ZFMISC_1: 26;

      for x be Subset of {3, 4} st x in { {3}, {4}} holds x <> {} & for y be Subset of {3, 4} st y in { {3}, {4}} holds x = y or x misses y

      proof

        let x be Subset of {3, 4};

        assume

         AA0: x in { {3}, {4}};

        hence x <> {} ;

        for y be Subset of {3, 4} st y in { {3}, {4}} holds x = y or x misses y

        proof

          let y be Subset of {3, 4};

          assume y in { {3}, {4}};

          then (y = {3} or y = {4}) & (x = {3} or x = {4}) by AA0, TARSKI:def 2;

          hence thesis by LL24;

        end;

        hence thesis;

      end;

      hence thesis by H1a, H2, H3, EQREL_1:def 4;

    end;

    

     ThmV5: { {1}, {3}, {4}} is Subset of sring4_8 & { {1}, {3}, {4}} is a_partition of {1, 3, 4}

    proof

      

       H1a: { {1}, {3}, {4}} c= S

      proof

        let x be object;

        assume x in { {1}, {3}, {4}};

        then x = {1} or x = {3} or x = {4} by ENUMSET1:def 1;

        hence thesis by ENUMSET1:def 6;

      end;

      

       H2: { {1}, {3}, {4}} is Subset-Family of {1, 3, 4}

      proof

         { {1}, {3}, {4}} c= ( bool {1, 3, 4})

        proof

          let x be object;

          assume x in { {1}, {3}, {4}};

          then

           AAA: x = {1} or x = {3} or x = {4} by ENUMSET1:def 1;

           {1} c= {1, 3, 4} & {3} c= {1, 3, 4} & {4} c= {1, 3, 4}

          proof

            thus {1} c= {1, 3, 4}

            proof

              let x be object;

              assume x in {1};

              then x = 1 by TARSKI:def 1;

              hence thesis by ENUMSET1:def 1;

            end;

            thus {3} c= {1, 3, 4}

            proof

              let x be object;

              assume x in {3};

              then x = 3 by TARSKI:def 1;

              hence thesis by ENUMSET1:def 1;

            end;

            let x be object;

            assume x in {4};

            then x = 4 by TARSKI:def 1;

            hence thesis by ENUMSET1:def 1;

          end;

          hence thesis by AAA;

        end;

        hence thesis;

      end;

      

       H3: ( union { {1}, {3}, {4}}) = {1, 3, 4}

      proof

        

         T1: ( union { {1}}) = {1} & ( union { {3}, {4}}) = {3, 4} by ZFMISC_1: 26;

        

         T1A: ( union { {1}, {3}, {4}}) = ( union ( { {1}} \/ { {3}, {4}})) by ENUMSET1: 2;

        ( {1} \/ {3, 4}) = {1, 3, 4} by ENUMSET1: 2;

        hence thesis by T1, T1A, ZFMISC_1: 78;

      end;

      for x be Subset of {1, 3, 4} st x in { {1}, {3}, {4}} holds x <> {} & for y be Subset of {1, 3, 4} st y in { {1}, {3}, {4}} holds x = y or x misses y

      proof

        let x be Subset of {1, 3, 4};

        assume

         AA0: x in { {1}, {3}, {4}};

        hence x <> {} ;

        for y be Subset of {1, 3, 4} st y in { {1}, {3}, {4}} holds x = y or x misses y

        proof

          let y be Subset of {1, 3, 4};

          assume y in { {1}, {3}, {4}};

          then (y = {1} or y = {3} or y = {4}) & (x = {1} or x = {3} or x = {4}) by AA0, ENUMSET1:def 1;

          hence thesis by LL18, LL19, LL24;

        end;

        hence thesis;

      end;

      hence thesis by H1a, H2, H3, EQREL_1:def 4;

    end;

    

     ThmV6: { {1}, {2}, {4}} is Subset of sring4_8 & { {1}, {2}, {4}} is a_partition of {1, 2, 4}

    proof

      

       H1a: { {1}, {2}, {4}} c= S

      proof

        let x be object;

        assume x in { {1}, {2}, {4}};

        then x = {1} or x = {2} or x = {4} by ENUMSET1:def 1;

        hence thesis by ENUMSET1:def 6;

      end;

      

       H2: { {1}, {2}, {4}} is Subset-Family of {1, 2, 4}

      proof

         { {1}, {2}, {4}} c= ( bool {1, 2, 4})

        proof

          let x be object;

          assume x in { {1}, {2}, {4}};

          then

           AAA: x = {1} or x = {2} or x = {4} by ENUMSET1:def 1;

           {1} c= {1, 2, 4} & {2} c= {1, 2, 4} & {4} c= {1, 2, 4}

          proof

            thus {1} c= {1, 2, 4}

            proof

              let x be object;

              assume x in {1};

              then x = 1 by TARSKI:def 1;

              hence thesis by ENUMSET1:def 1;

            end;

            thus {2} c= {1, 2, 4}

            proof

              let x be object;

              assume x in {2};

              then x = 2 by TARSKI:def 1;

              hence thesis by ENUMSET1:def 1;

            end;

            let x be object;

            assume x in {4};

            then x = 4 by TARSKI:def 1;

            hence thesis by ENUMSET1:def 1;

          end;

          hence thesis by AAA;

        end;

        hence thesis;

      end;

      

       H3: ( union { {1}, {2}, {4}}) = {1, 2, 4}

      proof

        

         T1: ( union { {1}}) = {1} & ( union { {2}, {4}}) = {2, 4} by ZFMISC_1: 26;

        

         T1A: { {1}, {2}, {4}} = ( { {1}} \/ { {2}, {4}}) by ENUMSET1: 2;

        ( {1} \/ {2, 4}) = {1, 2, 4} by ENUMSET1: 2;

        hence thesis by T1, T1A, ZFMISC_1: 78;

      end;

      for x be Subset of {1, 2, 4} st x in { {1}, {2}, {4}} holds x <> {} & for y be Subset of {1, 2, 4} st y in { {1}, {2}, {4}} holds x = y or x misses y

      proof

        let x be Subset of {1, 2, 4};

        assume

         AA0: x in { {1}, {2}, {4}};

        hence x <> {} ;

        for y be Subset of {1, 2, 4} st y in { {1}, {2}, {4}} holds x = y or x misses y

        proof

          let y be Subset of {1, 2, 4};

          assume y in { {1}, {2}, {4}};

          then (y = {1} or y = {2} or y = {4}) & (x = {1} or x = {2} or x = {4}) by AA0, ENUMSET1:def 1;

          hence thesis by LL17, LL19, LL22;

        end;

        hence thesis;

      end;

      hence thesis by H1a, H2, H3, EQREL_1:def 4;

    end;

    

     LemD: for x be set st x in ( DIFFERENCE (S,S)) holds ex P be finite Subset of S st P is a_partition of x

    proof

      let x be set;

      assume x in ( DIFFERENCE (S,S));

      then x in S or x in { {1, 3, 4}, {1, 2, 4}, {2, 3}, {1, 3}, {1, 2}, {3, 4}, {2, 4}} by Thm50, XBOOLE_0:def 3;

      per cases by ENUMSET1:def 5;

        suppose x in S;

        hence thesis by Thm98;

      end;

        suppose x = {2, 3};

        hence thesis by Thm99;

      end;

        suppose x = {1, 3};

        hence thesis by ThmV1;

      end;

        suppose x = {1, 2};

        hence thesis by ThmV2;

      end;

        suppose x = {3, 4};

        hence thesis by ThmV4;

      end;

        suppose x = {2, 4};

        hence thesis by ThmV3;

      end;

        suppose x = {1, 3, 4};

        hence thesis by ThmV5;

      end;

        suppose x = {1, 2, 4};

        hence thesis by ThmV6;

      end;

    end;

    registration

      cluster sring4_8 -> diff-finite-partition-closed;

      coherence

      proof

        for y,z be Element of sring4_8 st (y \ z) is non empty holds ex P be finite Subset of sring4_8 st P is a_partition of (y \ z)

        proof

          let y,z be Element of sring4_8 ;

          assume (y \ z) is non empty;

          (y \ z) in ( DIFFERENCE ( sring4_8 , sring4_8 )) by SETFAM_1:def 6;

          hence thesis by LemD;

        end;

        hence thesis by SRINGS_1:def 2;

      end;

    end