uniform2.miz



    begin

    reserve X for set,

A for Subset of X,

R,S for Relation of X;

    theorem :: UNIFORM2:1

    

     Th2: ( [:(X \ A), X:] \/ [:X, A:]) c= [:X, X:]

    proof

       [:X, A:] c= [:X, X:] & [:(X \ A), X:] c= [:X, X:] by ZFMISC_1: 95;

      hence thesis by XBOOLE_1: 8;

    end;

    theorem :: UNIFORM2:2

    ( [:(X \ A), X:] \/ [:X, A:]) = ( [:A, A:] \/ [:(X \ A), X:])

    proof

      

       A1: ( [:(X \ A), X:] \/ [:X, A:]) c= ( [:A, A:] \/ [:(X \ A), X:])

      proof

        let x be object;

        assume

         A2: x in ( [:(X \ A), X:] \/ [:X, A:]);

        ( [:(X \ A), X:] \/ [:X, A:]) c= [:X, X:] by Th2;

        then

        consider a,b be object such that

         A3: a in X and

         A4: b in X and

         A5: x = [a, b] by A2, ZFMISC_1:def 2;

        per cases ;

          suppose

           A6: a in A;

          x in [:X, A:]

          proof

            assume not x in [:X, A:];

            then x in [:(X \ A), X:] by A2, XBOOLE_0:def 3;

            then a in (X \ A) & b in X by A5, ZFMISC_1: 87;

            hence contradiction by A6, XBOOLE_0:def 5;

          end;

          then b in A by A5, ZFMISC_1: 87;

          then

           A7: x in [:A, A:] by A6, A5, ZFMISC_1: 87;

           [:A, A:] c= ( [:A, A:] \/ [:(X \ A), X:]) by XBOOLE_1: 7;

          hence thesis by A7;

        end;

          suppose not a in A;

          then a in (X \ A) by A3, XBOOLE_0:def 5;

          then

           A8: x in [:(X \ A), X:] by A4, A5, ZFMISC_1: 87;

           [:(X \ A), X:] c= ( [:(X \ A), X:] \/ [:A, A:]) by XBOOLE_1: 7;

          hence thesis by A8;

        end;

      end;

       [:A, A:] c= [:X, A:] by ZFMISC_1: 95;

      hence thesis by A1, XBOOLE_1: 13;

    end;

    theorem :: UNIFORM2:3

    

     Th3: (R * S) = { [x, y] where x,y be Element of X : ex z be Element of X st [x, z] in R & [z, y] in S }

    proof

      reconsider RS = (R * S) as Relation of X;

      

       A1: (R * S) c= { [x, y] where x,y be Element of X : ex z be Element of X st [x, z] in R & [z, y] in S }

      proof

        let t be object;

        assume

         A1: t in (R * S);

        consider x1,x2 be object such that x1 in X and

         A2: x2 in X and

         A3: t = [x1, x2] by A1, ZFMISC_1:def 2;

        consider z be object such that

         A4: [x1, z] in R and

         A5: [z, x2] in S by A1, A3, RELAT_1:def 8;

        reconsider x1, x2, z1 = z as Element of X by A2, A4, ZFMISC_1: 87;

         [x1, z1] in R & [z1, x2] in S by A4, A5;

        hence thesis by A3;

      end;

      { [x, y] where x,y be Element of X : ex z be Element of X st [x, z] in R & [z, y] in S } c= (R * S)

      proof

        let t be object;

        assume t in { [x, y] where x,y be Element of X : ex z be Element of X st [x, z] in R & [z, y] in S };

        then ex x,y be Element of X st t = [x, y] & ex z be Element of X st [x, z] in R & [z, y] in S;

        hence thesis by RELAT_1:def 8;

      end;

      hence thesis by A1;

    end;

    registration

      let X be set, cB be Subset-Family of X;

      cluster <.cB.] -> non empty;

      coherence

      proof

        per cases ;

          suppose cB is empty;

          hence thesis by CARDFIL2: 15;

        end;

          suppose

           A1: cB is non empty;

          cB c= <.cB.] by CARDFIL2: 18;

          hence thesis by A1;

        end;

      end;

    end

    registration

      let X be set, cB be Subset-Family of [:X, X:];

      cluster -> Relation-like for Element of cB;

      coherence

      proof

        let e be Element of cB;

        per cases ;

          suppose cB is non empty;

          then e in cB;

          hence thesis;

        end;

          suppose cB is empty;

          hence thesis by SUBSET_1:def 1;

        end;

      end;

    end

    notation

      let X be set, cB be Subset-Family of [:X, X:], B be Element of cB;

      synonym B [~] for B ~ ;

    end

    definition

      let X be set, cB be Subset-Family of [:X, X:], B be Element of cB;

      :: original: [~]

      redefine

      func B [~] -> Subset of [:X, X:] ;

      coherence

      proof

        per cases ;

          suppose

           A3: cB is non empty;

          (B ~ ) c= [:X, X:]

          proof

            let x be object;

            assume

             A0: x in (B ~ );

            then

            consider a,b be object such that

             A1: x = [a, b] by RELAT_1:def 1;

            

             A2: [b, a] in B by A0, A1, RELAT_1:def 7;

            B in cB by A3;

            then b in X & a in X by A2, ZFMISC_1: 87;

            hence thesis by A1, ZFMISC_1: 87;

          end;

          hence thesis;

        end;

          suppose cB is empty;

          then B = {} by SUBSET_1:def 1;

          then (B ~ ) = {} ;

          hence thesis by XBOOLE_1: 2;

        end;

      end;

    end

    notation

      let X be set, cB be Subset-Family of [:X, X:];

      let B1,B2 be Element of cB;

      synonym B1 [*] B2 for B1 * B2;

    end

    definition

      let X be set, cB be Subset-Family of [:X, X:];

      let B1,B2 be Element of cB;

      :: original: [*]

      redefine

      func B1 [*] B2 -> Subset of [:X, X:] ;

      coherence

      proof

        per cases ;

          suppose

           A3: cB is non empty;

          (B1 * B2) c= [:X, X:]

          proof

            let x be object;

            assume

             A0: x in (B1 * B2);

            then

            consider a,b be object such that

             A1: x = [a, b] by RELAT_1:def 1;

            consider c be object such that

             A2: [a, c] in B1 & [c, b] in B2 by A0, A1, RELAT_1:def 8;

            B1 in cB & B2 in cB by A3;

            then b in X & a in X by A2, ZFMISC_1: 87;

            hence thesis by A1, ZFMISC_1: 87;

          end;

          hence thesis;

        end;

          suppose cB is empty;

          then B1 = {} & B2 = {} by SUBSET_1:def 1;

          then (B1 * B2) = {} ;

          hence thesis by XBOOLE_1: 2;

        end;

      end;

    end

    theorem :: UNIFORM2:4

    for X be set, G be Subset-Family of X st G is upper holds ( FinMeetCl G) is upper

    proof

      let X be set, G be Subset-Family of X;

      assume

       A1: G is upper;

      now

        let Y1,Y2 be Subset of X;

        assume that

         A2: Y1 in ( FinMeetCl G) and

         A3: Y1 c= Y2;

        consider Z be Subset-Family of X such that

         A4: Z c= G and

         A5: Z is finite and

         A6: Y1 = ( Intersect Z) by A2, CANTOR_1:def 3;

        per cases ;

          suppose

           A7: Z is empty;

          then Y2 = X by A6, A3, SETFAM_1:def 9;

          hence Y2 in ( FinMeetCl G) by A7, A6, SETFAM_1:def 9, A2;

        end;

          suppose

           A8: Z is non empty;

          set Z2 = the set of all (z \/ Y2) where z be Element of Z;

          set a = the Element of Z;

          

           A9: (a \/ Y2) in Z2;

          Z2 c= ( bool X)

          proof

            let t be object;

            assume t in Z2;

            then

            consider u be Element of Z such that

             A10: t = (u \/ Y2);

            

             A11: u in Z by A8;

            (u \/ Y2) c= X by XBOOLE_1: 8, A11;

            hence thesis by A10;

          end;

          then

          reconsider Z2 as Subset-Family of X;

          now

            now

              let x be object;

              assume

               A12: x in Z2;

              then

              reconsider y = x as Subset of X;

              consider u be Element of Z such that

               A13: y = (u \/ Y2) by A12;

              u in G by A8, A4;

              hence x in G by A13, XBOOLE_1: 7, A1;

            end;

            hence Z2 c= G;

            

             A14: Z is finite by A5;

            deffunc F( Element of Z) = ($1 \/ Y2);

            

             A15: { F(z) where z be Element of Z : z in Z } is finite from FRAENKEL:sch 21( A14);

            now

              thus { F(z) where z be Element of Z : z in Z } c= Z2

              proof

                let x be object;

                assume x in { F(z) where z be Element of Z : z in Z };

                then ex z be Element of Z st x = F(z) & z in Z;

                hence thesis;

              end;

              thus Z2 c= { F(z) where z be Element of Z : z in Z }

              proof

                let x be object;

                assume x in Z2;

                then ex z be Element of Z st x = (z \/ Y2);

                hence thesis by A8;

              end;

            end;

            hence Z2 is finite by A15;

            now

              thus Y2 c= ( meet Z2)

              proof

                let x be object;

                assume

                 A16: x in Y2;

                now

                  let YY be set;

                  assume

                   A17: YY in Z2;

                  then

                  reconsider ZZ = YY as Subset of X;

                  consider u be Element of Z such that

                   A18: ZZ = (u \/ Y2) by A17;

                  Y2 c= (u \/ Y2) by XBOOLE_1: 7;

                  hence x in YY by A16, A18;

                end;

                hence thesis by A9, SETFAM_1:def 1;

              end;

              thus ( meet Z2) c= Y2

              proof

                let x be object;

                assume

                 A19: x in ( meet Z2);

                

                 A20: for z be Element of Z holds x in (z \/ Y2)

                proof

                  let z be Element of Z;

                  (z \/ Y2) in Z2;

                  hence thesis by A19, SETFAM_1:def 1;

                end;

                for z be Element of Z holds (x in z or x in Y2)

                proof

                  let z be Element of Z;

                  x in (z \/ Y2) by A20;

                  hence thesis by XBOOLE_0:def 3;

                end;

                then (for z be set st z in Z holds x in z) or x in Y2;

                then (x in ( meet Z)) or x in Y2 by A8, SETFAM_1:def 1;

                then x in (( meet Z) \/ Y2) by XBOOLE_0:def 3;

                then

                 A21: x in (Y1 \/ Y2) by A8, A6, SETFAM_1:def 9;

                (Y1 \/ Y2) c= Y2 by A3, XBOOLE_1: 8;

                hence thesis by A21;

              end;

            end;

            hence Y2 = ( Intersect Z2) by A9, SETFAM_1:def 9;

          end;

          hence Y2 in ( FinMeetCl G) by CANTOR_1:def 3;

        end;

      end;

      hence thesis;

    end;

    theorem :: UNIFORM2:5

    

     Th4: R is_symmetric_in X implies (R ~ ) is_symmetric_in X

    proof

      assume

       A1: R is_symmetric_in X;

      now

        let x,y be object;

        assume that

         A2: x in X and

         A3: y in X and

         A4: [x, y] in (R ~ );

         [y, x] in R by A4, RELAT_1:def 7;

        then [x, y] in R by A2, A3, A1, RELAT_2:def 3;

        hence [y, x] in (R ~ ) by RELAT_1:def 7;

      end;

      hence thesis by RELAT_2:def 3;

    end;

    begin

    definition

      struct ( 1-sorted) UniformSpaceStr (# the carrier -> set,

the entourages -> Subset-Family of [: the carrier, the carrier:] #)

       attr strict strict;

    end

    definition

      let U be UniformSpaceStr;

      :: UNIFORM2:def1

      attr U is void means the entourages of U is empty;

    end

    definition

      let X be set;

      :: UNIFORM2:def2

      func Uniform_Space (X) -> strict UniformSpaceStr equals UniformSpaceStr (# X, ( {} ( bool [:X, X:])) #);

      coherence ;

    end

    definition

      :: UNIFORM2:def3

      func TrivialUniformSpace -> strict UniformSpaceStr equals UniformSpaceStr (# {} , ( cobool [: {} , {} :]) #);

      coherence ;

      :: UNIFORM2:def4

      func NonEmptyTrivialUniformSpace -> strict UniformSpaceStr means

      : D1: ex SF be Subset-Family of [: { {} }, { {} }:] st SF = { [: { {} }, { {} }:]} & it = UniformSpaceStr (# { {} }, SF #);

      existence

      proof

        set X = { {} };

        reconsider SF = { [:X, X:]} as Subset-Family of [:X, X:] by ZFMISC_1: 68;

        take UniformSpaceStr (# X, SF #);

        thus thesis;

      end;

      uniqueness ;

    end

    registration

      let X be empty set;

      cluster ( Uniform_Space X) -> empty;

      coherence ;

    end

    registration

      let X be non empty set;

      cluster ( Uniform_Space X) -> non empty;

      coherence ;

    end

    registration

      let X be set;

      cluster ( Uniform_Space X) -> void;

      coherence ;

    end

    registration

      cluster TrivialUniformSpace -> empty non void;

      coherence ;

      cluster NonEmptyTrivialUniformSpace -> non empty non void;

      coherence

      proof

        ex SF be Subset-Family of [: { {} }, { {} }:] st SF = { [: { {} }, { {} }:]} & NonEmptyTrivialUniformSpace = UniformSpaceStr (# { {} }, SF #) by D1;

        hence thesis;

      end;

    end

    registration

      cluster empty strict void for UniformSpaceStr;

      existence

      proof

        take ( Uniform_Space {} );

        thus thesis;

      end;

      cluster empty strict non void for UniformSpaceStr;

      existence

      proof

        take TrivialUniformSpace ;

        thus thesis;

      end;

      cluster non empty strict void for UniformSpaceStr;

      existence

      proof

        take ( Uniform_Space { {} });

        thus thesis;

      end;

      cluster non empty strict non void for UniformSpaceStr;

      existence

      proof

        take NonEmptyTrivialUniformSpace ;

        thus thesis;

      end;

    end

    definition

      let X be set, SF be Subset-Family of [:X, X:];

      :: UNIFORM2:def5

      func SF [~] -> Subset-Family of [:X, X:] equals the set of all (S [~] ) where S be Element of SF;

      coherence

      proof

         the set of all (S [~] ) where S be Element of SF c= ( bool [:X, X:])

        proof

          let x be object;

          assume x in the set of all (S [~] ) where S be Element of SF;

          then ex S be Element of SF st x = (S [~] );

          hence thesis;

        end;

        hence thesis;

      end;

    end

    definition

      let US be UniformSpaceStr;

      :: UNIFORM2:def6

      func US [~] -> UniformSpaceStr equals UniformSpaceStr (# the carrier of US, (the entourages of US [~] ) #);

      coherence ;

    end

    registration

      let USS be non empty UniformSpaceStr;

      cluster (USS [~] ) -> non empty;

      coherence ;

    end

    begin

    definition

      let US be UniformSpaceStr;

      :: UNIFORM2:def7

      attr US is upper means the entourages of US is upper;

      :: UNIFORM2:def8

      attr US is cap-closed means the entourages of US is cap-closed;

      :: UNIFORM2:def9

      attr US is axiom_U1 means for S be Element of the entourages of US holds ( id the carrier of US) c= S;

      :: UNIFORM2:def10

      attr US is axiom_U2 means for S be Element of the entourages of US holds (S [~] ) in the entourages of US;

      :: UNIFORM2:def11

      attr US is axiom_U3 means for S be Element of the entourages of US holds ex W be Element of the entourages of US st (W [*] W) c= S;

    end

    theorem :: UNIFORM2:6

    

     Th7: for US be non void UniformSpaceStr holds US is axiom_U1 iff for S be Element of the entourages of US holds ex R be Relation of the carrier of US st R = S & R is_reflexive_in the carrier of US

    proof

      let US be non void UniformSpaceStr;

      US is non void;

      then

      reconsider SFX = the entourages of US as non empty Subset-Family of [:the carrier of US, the carrier of US:];

      hereby

        assume

         A1: US is axiom_U1;

        now

          let S be Element of the entourages of US;

          S is Element of SFX;

          then

          consider R be Relation of the carrier of US such that

           A2: R = S;

          take R;

          thus R = S by A2;

          now

            let x be object;

            assume x in the carrier of US;

            then

             A3: [x, x] in ( id the carrier of US) by RELAT_1:def 10;

            ( id the carrier of US) c= S by A1;

            hence [x, x] in R by A3, A2;

          end;

          hence R is_reflexive_in the carrier of US by RELAT_2:def 1;

        end;

        hence for S be Element of the entourages of US holds ex R be Relation of the carrier of US st (R = S & R is_reflexive_in the carrier of US);

      end;

      assume

       A4: for S be Element of the entourages of US holds ex R be Relation of the carrier of US st (R = S & R is_reflexive_in the carrier of US);

      now

        let S be Element of the entourages of US;

        consider R be Relation of the carrier of US such that

         A5: R = S and

         A6: R is_reflexive_in the carrier of US by A4;

        for x be object st x in the carrier of US holds [x, x] in R by A6, RELAT_2:def 1;

        hence ( id the carrier of US) c= S by A5, RELAT_1: 47;

      end;

      hence US is axiom_U1;

    end;

    theorem :: UNIFORM2:7

    

     Th8: for US be non void UniformSpaceStr holds US is axiom_U1 iff for S be Element of the entourages of US holds ex R be total reflexive Relation of the carrier of US st R = S

    proof

      let US be non void UniformSpaceStr;

      US is non void;

      then

      reconsider SFX = the entourages of US as non empty Subset-Family of [:the carrier of US, the carrier of US:];

      hereby

        assume

         A2: US is axiom_U1;

        hereby

          let S be Element of the entourages of US;

          consider R be Relation of the carrier of US such that

           A3: R = S and

           A4: R is_reflexive_in the carrier of US by A2, Th7;

          

           A5: ( field R) = the carrier of US by A4, PARTIT_2: 9;

          reconsider R as total reflexive Relation of the carrier of US by A5, A4, TAXONOM1: 3, PARTFUN1:def 2, RELAT_2:def 9;

          take R;

          thus R = S by A3;

        end;

      end;

      assume

       A6: for S be Element of the entourages of US holds ex R be total reflexive Relation of the carrier of US st R = S;

      now

        let S be Element of the entourages of US;

        consider R be total reflexive Relation of the carrier of US such that

         A7: R = S by A6;

        reconsider R as Relation of the carrier of US;

        take R;

        thus R = S by A7;

        now

          let x be object;

          assume

           A8: x in the carrier of US;

          ( field R) = the carrier of US by ORDERS_1: 12;

          hence [x, x] in R by A8, RELAT_2:def 9, RELAT_2:def 1;

        end;

        hence R is_reflexive_in the carrier of US by RELAT_2:def 1;

      end;

      hence US is axiom_U1 by Th7;

    end;

    registration

      cluster void -> non axiom_U2 for UniformSpaceStr;

      coherence ;

    end

    theorem :: UNIFORM2:8

    for US be UniformSpaceStr st US is axiom_U2 holds for S be Element of the entourages of US holds (for x,y be Element of US st [x, y] in S holds [y, x] in ( union the entourages of US))

    proof

      let US be UniformSpaceStr;

      assume

       A1: US is axiom_U2;

      let S be Element of the entourages of US;

      let x,y be Element of US;

      assume

       A3: [x, y] in S;

      reconsider SFX = the entourages of US as non empty Subset-Family of [:the carrier of US, the carrier of US:] by A1;

      

       A6: [y, x] in (S ~ ) by A3, RELAT_1:def 7;

      (S ~ ) in the entourages of US by A1;

      hence thesis by A6, TARSKI:def 4;

    end;

    theorem :: UNIFORM2:9

    

     Th9: for US be non void UniformSpaceStr st for S be Element of the entourages of US holds ex R be Relation of the carrier of US st S = R & R is_symmetric_in the carrier of US holds US is axiom_U2

    proof

      let US be non void UniformSpaceStr;

      assume

       A2: for S be Element of the entourages of US holds ex R be Relation of the carrier of US st S = R & R is_symmetric_in the carrier of US;

      

       A1: US is non void;

      US is axiom_U2

      proof

        let S be Element of the entourages of US;

        consider R be Relation of the carrier of US such that

         A3: S = R and

         A4: R is_symmetric_in the carrier of US by A2;

        thus (S ~ ) in the entourages of US

        proof

          (R ~ ) = R

          proof

            thus (R ~ ) c= R

            proof

              let x be object;

              assume

               A7: x in (R ~ );

              then

              consider a,b be object such that

               A8: a in the carrier of US and

               A9: b in the carrier of US and

               A10: x = [a, b] by ZFMISC_1:def 2;

               [b, a] in R by A7, A10, RELAT_1:def 7;

              hence thesis by A10, A4, A8, A9, RELAT_2:def 3;

            end;

            let x be object;

            assume

             A11: x in R;

            then

            consider a,b be object such that

             A12: a in the carrier of US and

             A13: b in the carrier of US and

             A14: x = [a, b] by ZFMISC_1:def 2;

             [b, a] in (R ~ ) by A11, A14, RELAT_1:def 7;

            hence thesis by Th4, A4, A12, A13, A14, RELAT_2:def 3;

          end;

          hence thesis by A1, A3;

        end;

      end;

      hence thesis;

    end;

    theorem :: UNIFORM2:10

    

     Th10: for US be non void UniformSpaceStr st for S be Element of the entourages of US holds ex R be Relation of the carrier of US st S = R & R is symmetric holds US is axiom_U2

    proof

      let US be non void UniformSpaceStr;

      assume

       A2: for S be Element of the entourages of US holds ex R be Relation of the carrier of US st S = R & R is symmetric;

      now

        let S be Element of the entourages of US;

        consider R be Relation of the carrier of US such that

         B1: S = R and

         B2: R is symmetric by A2;

        take R;

        thus S = R by B1;

        for x,y be object st x in the carrier of US & y in the carrier of US & [x, y] in R holds [y, x] in R by B2, PREFER_1: 20;

        hence R is_symmetric_in the carrier of US by RELAT_2:def 3;

      end;

      hence thesis by Th9;

    end;

    theorem :: UNIFORM2:11

    for US be non void UniformSpaceStr st for S be Element of the entourages of US holds ex R be Tolerance of the carrier of US st S = R holds US is axiom_U1 & US is axiom_U2

    proof

      let US be non void UniformSpaceStr;

      assume

       A2: for S be Element of the entourages of US holds ex R be Tolerance of the carrier of US st S = R;

      for S be Element of the entourages of US holds ex R be total reflexive Relation of the carrier of US st R = S

      proof

        let S be Element of the entourages of US;

        ex R be Tolerance of the carrier of US st R = S by A2;

        hence thesis;

      end;

      hence US is axiom_U1 by Th8;

      for S be Element of the entourages of US holds ex R be Relation of the carrier of US st S = R & R is symmetric

      proof

        let S be Element of the entourages of US;

        ex R be Tolerance of the carrier of US st S = R by A2;

        hence thesis;

      end;

      hence US is axiom_U2 by Th10;

    end;

    registration

      let X be empty set;

      cluster ( Uniform_Space X) -> upper cap-closed axiom_U1 non axiom_U2 axiom_U3;

      coherence

      proof

        set US = ( Uniform_Space X);

        set E = the entourages of US;

        thus E is upper;

        thus E is cap-closed

        proof

          let Y1,Y2 be Subset of [:the carrier of US, the carrier of US:];

          thus thesis;

        end;

        thus for S be Element of E holds ( id the carrier of US) c= S;

        thus US is non axiom_U2;

        let S be Element of E;

        (S [*] S) c= S;

        hence thesis;

      end;

    end

    registration

      cluster ( Uniform_Space { {} }) -> upper cap-closed non axiom_U2;

      coherence

      proof

        set US = ( Uniform_Space { {} });

        set E = the entourages of US;

        thus E is upper;

        thus E is cap-closed

        proof

          let Y1,Y2 be Subset of [:the carrier of US, the carrier of US:];

          thus thesis;

        end;

        thus US is non axiom_U2;

      end;

      cluster TrivialUniformSpace -> upper cap-closed axiom_U1 axiom_U2 axiom_U3;

      coherence

      proof

        set US = TrivialUniformSpace ;

        set E = the entourages of US;

        

         A1: E = { {} } by ENUMSET1: 29;

        E is upper;

        hence US is upper;

        for X,Y be set st X in E & Y in E holds (X /\ Y) in E;

        hence US is cap-closed by FINSUB_1:def 2;

        for S be Element of E holds ( id the carrier of US) c= S;

        hence US is axiom_U1;

        now

          let S be Element of E;

          S in { {} } by A1;

          hence (S ~ ) in E by A1;

        end;

        hence US is axiom_U2;

        let S be Element of the entourages of US;

        (S [*] S) c= S;

        hence thesis;

      end;

      cluster NonEmptyTrivialUniformSpace -> upper cap-closed axiom_U1 axiom_U2 axiom_U3;

      coherence

      proof

        set X = { {} };

        set US = NonEmptyTrivialUniformSpace ;

        set E = the entourages of US;

        consider SF be Subset-Family of [:X, X:] such that

         B1: SF = { [:X, X:]} and

         B2: US = UniformSpaceStr (# X, SF #) by D1;

        for Y1,Y2 be Subset of [:the carrier of US, the carrier of US:] st Y1 in E & Y1 c= Y2 holds Y2 in E

        proof

          let Y1,Y2 be Subset of [:the carrier of US, the carrier of US:];

          assume that

           A2: Y1 in E and

           A3: Y1 c= Y2;

          

           A4: Y1 = [:X, X:] by B1, B2, A2, TARSKI:def 1;

          Y1 = Y2 by B2, A3, A4;

          hence thesis by A2;

        end;

        hence E is upper;

        for a,b be Subset of [:the carrier of US, the carrier of US:] st a in E & b in E holds (a /\ b) in E

        proof

          let a,b be Subset of [:the carrier of US, the carrier of US:];

          assume that

           A5: a in E and

           A6: b in E;

          a = [:X, X:] & b = [:X, X:] by B1, B2, A5, A6, TARSKI:def 1;

          hence (a /\ b) in E by B1, B2, TARSKI:def 1;

        end;

        hence US is cap-closed by ROUGHS_4:def 2;

        for S be Element of E holds ( id X) c= S

        proof

          let S be Element of E;

          S = [:X, X:] by B1, B2, TARSKI:def 1;

          hence thesis;

        end;

        hence US is axiom_U1 by B2;

        thus for S be Element of E holds (S ~ ) in E

        proof

          let S be Element of E;

          S = [:X, X:] by B1, B2, TARSKI:def 1;

          then (S ~ ) = [:X, X:] by SYSREL: 5;

          hence thesis by B1, B2, TARSKI:def 1;

        end;

        let S be Element of E;

        take S;

        S = [:X, X:] by B1, B2, TARSKI:def 1;

        hence thesis by B2;

      end;

    end

    registration

      cluster strict empty non void upper cap-closed axiom_U1 axiom_U2 axiom_U3 for UniformSpaceStr;

      existence

      proof

        take TrivialUniformSpace ;

        thus thesis;

      end;

    end

    registration

      cluster empty -> axiom_U1 for strict UniformSpaceStr;

      coherence

      proof

        let US be strict UniformSpaceStr;

        assume US is empty;

        hence for S be Element of the entourages of US holds ( id the carrier of US) c= S;

      end;

    end

    registration

      cluster strict non empty non void upper cap-closed axiom_U1 axiom_U2 axiom_U3 for UniformSpaceStr;

      existence

      proof

        take NonEmptyTrivialUniformSpace ;

        thus thesis;

      end;

    end

    definition

      let SUS be non empty axiom_U1 UniformSpaceStr, x be Element of SUS, V be Element of the entourages of SUS;

      :: UNIFORM2:def12

      func Neighborhood (V,x) -> non empty Subset of SUS equals { y where y be Element of SUS : [x, y] in V };

      coherence

      proof

        

         A1: { y where y be Element of SUS : [x, y] in V } c= the carrier of SUS

        proof

          let z be object;

          assume z in { y where y be Element of SUS : [x, y] in V };

          then ex y be Element of SUS st z = y & [x, y] in V;

          hence thesis;

        end;

        SUS is axiom_U1;

        then

         A2: ( id the carrier of SUS) c= V;

         [x, x] in ( id the carrier of SUS) by RELAT_1:def 10;

        then x in { y where y be Element of SUS : [x, y] in V } by A2;

        hence thesis by A1;

      end;

    end

    theorem :: UNIFORM2:12

    for USS be non empty axiom_U1 UniformSpaceStr, x be Element of the carrier of USS, V be Element of the entourages of USS holds x in ( Neighborhood (V,x))

    proof

      let USS be non empty axiom_U1 UniformSpaceStr, x be Element of USS, V be Element of the entourages of USS;

      USS is axiom_U1;

      then

       A1: ( id the carrier of USS) c= V;

       [x, x] in ( id the carrier of USS) by RELAT_1:def 10;

      hence thesis by A1;

    end;

    definition

      let USS be cap-closed UniformSpaceStr, V1,V2 be Element of the entourages of USS;

      :: original: /\

      redefine

      func V1 /\ V2 -> Element of the entourages of USS ;

      coherence

      proof

        per cases ;

          suppose the entourages of USS is empty;

          then V1 = {} & V2 = {} by SUBSET_1:def 1;

          hence thesis;

        end;

          suppose

           A1: the entourages of USS is non empty;

          USS is cap-closed;

          hence thesis by A1, FINSUB_1:def 2;

        end;

      end;

    end

    theorem :: UNIFORM2:13

    

     Th11: for USS be non empty cap-closed axiom_U1 UniformSpaceStr, x be Element of USS, V,W be Element of the entourages of USS holds (( Neighborhood (V,x)) /\ ( Neighborhood (W,x))) = ( Neighborhood ((V /\ W),x))

    proof

      let USS be non empty cap-closed axiom_U1 UniformSpaceStr, x be Element of USS, V,W be Element of the entourages of USS;

      set NV = ( Neighborhood (V,x)), NW = ( Neighborhood (W,x)), NVW = ( Neighborhood ((V /\ W),x));

      

       A1: (NV /\ NW) c= NVW

      proof

        let t be object;

        assume

         A2: t in (NV /\ NW);

        then t in { y where y be Element of USS : [x, y] in V } by XBOOLE_0:def 4;

        then

        consider y1 be Element of USS such that

         A3: t = y1 and

         A4: [x, y1] in V;

        t in { y where y be Element of USS : [x, y] in W } by A2, XBOOLE_0:def 4;

        then

        consider y2 be Element of USS such that

         A5: t = y2 and

         A6: [x, y2] in W;

         [x, y1] in (V /\ W) & [x, y2] in (V /\ W) by A3, A4, A5, A6, XBOOLE_0:def 4;

        hence thesis by A3;

      end;

      NVW c= (NV /\ NW)

      proof

        let t be object;

        assume t in NVW;

        then

        consider y be Element of USS such that

         A7: t = y and

         A8: [x, y] in (V /\ W);

        

         A9: [x, y] in V & [x, y] in W by A8, XBOOLE_0:def 4;

        then

         A10: t in NV by A7;

        t in { y where y be Element of USS : [x, y] in W } by A7, A9;

        hence t in (NV /\ NW) by A10, XBOOLE_0:def 4;

      end;

      hence thesis by A1;

    end;

    registration

      let USS be non empty axiom_U1 UniformSpaceStr;

      cluster the entourages of USS -> with_non-empty_elements;

      coherence

      proof

        assume not the entourages of USS is with_non-empty_elements;

        then

         A1: {} in the entourages of USS by SETFAM_1:def 8;

        USS is axiom_U1;

        then ( id the carrier of USS) c= {} by A1;

        hence thesis;

      end;

    end

    registration

      let USS be non empty axiom_U1 UniformSpaceStr;

      cluster the entourages of USS -> non empty;

      coherence

      proof

        assume the entourages of USS is empty;

        then

        reconsider S = {} as Element of the entourages of USS by SUBSET_1:def 1;

        USS is axiom_U1;

        then ( id the carrier of USS) c= S;

        hence thesis;

      end;

    end

    definition

      let USS be non empty axiom_U1 UniformSpaceStr, x be Point of USS;

      :: UNIFORM2:def13

      func Neighborhood (x) -> Subset-Family of USS equals the set of all ( Neighborhood (V,x)) where V be Element of the entourages of USS;

      coherence

      proof

        set SN = the set of all ( Neighborhood (V,x)) where V be Element of the entourages of USS;

        SN c= ( bool the carrier of USS)

        proof

          let t be object;

          assume t in SN;

          then ex V be Element of the entourages of USS st t = ( Neighborhood (V,x));

          hence thesis;

        end;

        hence thesis;

      end;

    end

    registration

      let USS be non empty axiom_U1 UniformSpaceStr, x be Point of USS;

      cluster ( Neighborhood x) -> non empty;

      coherence

      proof

        set SN = ( Neighborhood x);

        the entourages of USS is non empty;

        then

        consider V0 be object such that

         A2: V0 in the entourages of USS;

        reconsider V1 = V0 as Element of the entourages of USS by A2;

        ( Neighborhood (V1,x)) in SN;

        hence thesis;

      end;

    end

    theorem :: UNIFORM2:14

    for SUS be non empty axiom_U1 UniformSpaceStr, x be Element of the carrier of SUS, V be Element of the entourages of SUS holds ( Neighborhood (V,x)) = (V .: {x}) & ( Neighborhood (V,x)) = ( rng (V | {x})) & ( Neighborhood (V,x)) = ( Im (V,x)) & ( Neighborhood (V,x)) = ( Class (V,x)) & ( Neighborhood (V,x)) = ( neighbourhood (x,V))

    proof

      let SUS be non empty axiom_U1 UniformSpaceStr, x be Element of the carrier of SUS, V be Element of the entourages of SUS;

      thus ( Neighborhood (V,x)) = (V .: {x})

      proof

        thus ( Neighborhood (V,x)) c= (V .: {x})

        proof

          let t be object;

          assume t in ( Neighborhood (V,x));

          then

          consider y be Element of SUS such that

           A3: t = y and

           A4: [x, y] in V;

          x in {x} by TARSKI:def 1;

          hence thesis by A3, A4, RELAT_1:def 13;

        end;

        let t be object;

        assume t in (V .: {x});

        then

        consider v be object such that

         A5: [v, t] in V and

         A6: v in {x} by RELAT_1:def 13;

        

         A7: t in the carrier of SUS by A5, ZFMISC_1: 87;

         [x, t] in V by A5, A6, TARSKI:def 1;

        hence thesis by A7;

      end;

      hence thesis by RELAT_1: 115;

    end;

    definition

      let USS be non empty axiom_U1 UniformSpaceStr;

      :: UNIFORM2:def14

      func Neighborhood (USS) -> Function of the carrier of USS, ( bool ( bool the carrier of USS)) means

      : Def5: for x be Element of USS holds (it . x) = ( Neighborhood x);

      existence

      proof

        defpred P[ object, object] means ex x be Element of USS st x = $1 & $2 = ( Neighborhood x);

        

         A1: for x be object st x in the carrier of USS holds ex y be object st y in ( bool ( bool the carrier of USS)) & P[x, y]

        proof

          let x be object;

          assume x in the carrier of USS;

          then

          reconsider y = x as Element of USS;

          take z = ( Neighborhood y);

          thus z in ( bool ( bool the carrier of USS));

          thus P[x, z];

        end;

        consider f be Function of the carrier of USS, ( bool ( bool the carrier of USS)) such that

         A2: for x be object st x in the carrier of USS holds P[x, (f . x)] from FUNCT_2:sch 1( A1);

        take f;

        hereby

          let x be Element of USS;

           P[x, (f . x)] by A2;

          hence (f . x) = ( Neighborhood x);

        end;

      end;

      uniqueness

      proof

        let F1,F2 be Function of the carrier of USS, ( bool ( bool the carrier of USS)) such that

         A3: for x be Element of USS holds (F1 . x) = ( Neighborhood x) and

         A4: for x be Element of USS holds (F2 . x) = ( Neighborhood x);

        now

          

          thus ( dom F1) = the carrier of USS by FUNCT_2:def 1

          .= ( dom F2) by FUNCT_2:def 1;

          hereby

            let x be object;

            assume x in ( dom F1);

            then

            reconsider y = x as Element of USS;

            (F1 . y) = ( Neighborhood y) by A3;

            hence (F1 . x) = (F2 . x) by A4;

          end;

        end;

        hence thesis by FUNCT_1:def 11;

      end;

    end

    definition

      let USS be non empty axiom_U1 UniformSpaceStr;

      :: UNIFORM2:def15

      attr USS is topological means FMT_Space_Str (# the carrier of USS, ( Neighborhood USS) #) is FMT_TopSpace;

    end

    begin

    definition

      mode Quasi-UniformSpace is upper cap-closed axiom_U1 axiom_U3 UniformSpaceStr;

    end

    reserve QUS for Quasi-UniformSpace;

    theorem :: UNIFORM2:15

    the entourages of QUS is empty implies the entourages of (QUS [~] ) = { {} }

    proof

      assume

       A1: the entourages of QUS is empty;

      reconsider EQUS = the entourages of QUS as Subset-Family of [:the carrier of QUS, the carrier of QUS:];

      set X = the set of all (U ~ ) where U be Element of the entourages of QUS;

      X = { {} }

      proof

        thus X c= { {} }

        proof

          let x be object;

          assume x in X;

          then

          consider U be Element of the entourages of QUS such that

           A11: x = (U ~ );

          U = {} by A1, SUBSET_1:def 1;

          then x = {} by A11;

          hence thesis by TARSKI:def 1;

        end;

        let x be object;

        assume x in { {} };

        then

         A14: x = {} by TARSKI:def 1;

        then

        reconsider y = x as Element of the entourages of QUS by A1, SUBSET_1:def 1;

        (y ~ ) = {} by A14;

        hence thesis by A14;

      end;

      hence thesis;

    end;

    theorem :: UNIFORM2:16

    the entourages of (QUS [~] ) = { {} } & the entourages of (QUS [~] ) is upper implies the carrier of QUS is empty

    proof

      assume that

       A1: the entourages of (QUS [~] ) = { {} } and

       A2: the entourages of (QUS [~] ) is upper;

      reconsider X = the carrier of QUS as set;

       [:X, X:] c= [:the carrier of (QUS [~] ), the carrier of (QUS [~] ):];

      then

      reconsider XX = [:X, X:] as Subset of [:the carrier of (QUS [~] ), the carrier of (QUS [~] ):];

       {} c= [:the carrier of (QUS [~] ), the carrier of (QUS [~] ):];

      then

      reconsider Y = {} as Subset of [:the carrier of (QUS [~] ), the carrier of (QUS [~] ):];

      Y in the entourages of (QUS [~] ) & Y c= XX by A1, TARSKI:def 1;

      then XX in the entourages of (QUS [~] ) by A2;

      hence thesis by A1, TARSKI:def 1;

    end;

    registration

      let QUS be non void Quasi-UniformSpace;

      cluster (QUS [~] ) -> upper cap-closed axiom_U1 axiom_U3;

      coherence

      proof

        

         A1: QUS is non void;

        reconsider EQUS = the entourages of QUS as Subset-Family of [:the carrier of QUS, the carrier of QUS:];

        

         A10: the entourages of (QUS [~] ) is non empty

        proof

          assume

           A11: the entourages of (QUS [~] ) is empty;

          set S = the Element of the entourages of QUS;

          reconsider S as Element of the entourages of QUS;

          (S ~ ) in (the entourages of QUS [~] );

          hence contradiction by A11;

        end;

        for Y1,Y2 be Subset of [:the carrier of (QUS [~] ), the carrier of (QUS [~] ):] st Y1 in the entourages of (QUS [~] ) & Y1 c= Y2 holds Y2 in the entourages of (QUS [~] )

        proof

          let Y1,Y2 be Subset of [:the carrier of (QUS [~] ), the carrier of (QUS [~] ):];

          assume that

           A12: Y1 in the entourages of (QUS [~] ) and

           A13: Y1 c= Y2;

          consider U1 be Element of the entourages of QUS such that

           A14: Y1 = (U1 ~ ) by A12;

          

           A15: (Y1 ~ ) = U1 by A14;

          QUS is upper;

          then

          reconsider U2 = (Y2 ~ ) as Element of the entourages of QUS by A13, SYSREL: 11, A15, CARDFIL2:def 1, A1;

          consider R2 be Relation of the carrier of QUS such that

           A16: Y2 = R2 and (Y2 ~ ) = (R2 ~ );

          (U2 ~ ) = ((R2 ~ ) ~ ) by A16;

          hence thesis;

        end;

        then the entourages of (QUS [~] ) is upper;

        hence (QUS [~] ) is upper;

        for Y1,Y2 be set st Y1 in the entourages of (QUS [~] ) & Y2 in the entourages of (QUS [~] ) holds (Y1 /\ Y2) in the entourages of (QUS [~] )

        proof

          let Y1,Y2 be set;

          assume that

           A17: Y1 in the entourages of (QUS [~] ) and

           A18: Y2 in the entourages of (QUS [~] );

          consider U1 be Element of the entourages of QUS such that

           A19: Y1 = (U1 ~ ) by A17;

          consider U2 be Element of the entourages of QUS such that

           A20: Y2 = (U2 ~ ) by A18;

          reconsider U12 = (U1 /\ U2) as Element of the entourages of QUS;

          (Y1 /\ Y2) = (U12 ~ ) by A19, A20, RELAT_1: 22;

          hence thesis;

        end;

        hence (QUS [~] ) is cap-closed by FINSUB_1:def 2;

        thus for S be Element of the entourages of (QUS [~] ) holds ( id the carrier of (QUS [~] )) c= S

        proof

          let S be Element of the entourages of (QUS [~] );

          S in the set of all (U ~ ) where U be Element of the entourages of QUS by A10;

          then

          consider U be Element of the entourages of QUS such that

           A21: S = (U ~ );

          QUS is axiom_U1;

          then (( id the carrier of QUS) ~ ) c= (U ~ ) by SYSREL: 11;

          hence thesis by A21;

        end;

        thus for S be Element of the entourages of (QUS [~] ) holds ex W be Element of the entourages of (QUS [~] ) st (W * W) c= S

        proof

          let S be Element of the entourages of (QUS [~] );

          S in the entourages of (QUS [~] ) by A10;

          then

          consider U be Element of the entourages of QUS such that

           A24: S = (U ~ );

          QUS is axiom_U3;

          then

          consider W be Element of the entourages of QUS such that

           A27: (W * W) c= U;

          (W ~ ) in (the entourages of QUS [~] );

          then

          reconsider W2 = (W [~] ) as Element of the entourages of (QUS [~] );

          take W2;

          let t be object;

          assume

           A30: t in (W2 * W2);

          t in { [x, y] where x,y be Element of QUS : ex z be Element of QUS st [x, z] in W2 & [z, y] in W2 } by A30, Th3;

          then

          consider x,y be Element of QUS such that

           A34: t = [x, y] and

           A35: ex z be Element of QUS st [x, z] in W2 & [z, y] in W2;

          consider z be Element of QUS such that

           A36: [x, z] in W2 and

           A37: [z, y] in W2 by A35;

          

           A38: [z, x] in ((W ~ ) ~ ) by A36, RELAT_1:def 7;

           [y, z] in ((W ~ ) ~ ) by A37, RELAT_1:def 7;

          then [y, x] in (W * W) by A38, RELAT_1:def 8;

          hence thesis by A24, A34, A27, RELAT_1:def 7;

        end;

      end;

    end

    definition

      let X be set, cB be Subset-Family of [:X, X:];

      :: UNIFORM2:def16

      attr cB is axiom_UP1 means for B be Element of cB holds ( id X) c= B;

      :: UNIFORM2:def17

      attr cB is axiom_UP3 means for B1 be Element of cB holds ex B2 be Element of cB st (B2 [*] B2) c= B1;

    end

    theorem :: UNIFORM2:17

    for X be non empty set, cB be empty Subset-Family of [:X, X:] holds not cB is axiom_UP1

    proof

      let X be non empty set, cB be empty Subset-Family of [:X, X:];

      assume

       A1: cB is axiom_UP1;

       {} is Element of cB by SUBSET_1:def 1;

      then ( id X) c= {} by A1;

      hence thesis;

    end;

    theorem :: UNIFORM2:18

    

     Th11bis: for X be set, cB be Subset-Family of [:X, X:] st cB is quasi_basis & cB is axiom_UP1 & cB is axiom_UP3 holds UniformSpaceStr (# X, <.cB.] #) is Quasi-UniformSpace

    proof

      let X be set, cB be Subset-Family of [:X, X:];

      assume that

       A1: cB is quasi_basis and

       A2: cB is axiom_UP1 and

       A4: cB is axiom_UP3;

      set US = UniformSpaceStr (# X, <.cB.] #);

      

       A5: <.cB.] = { x where x be Subset of [:X, X:] : ex b be Element of cB st b c= x } by CARDFIL2: 14;

      now

        for Y1,Y2 be Subset of [:X, X:] st Y1 in <.cB.] & Y1 c= Y2 holds Y2 in <.cB.]

        proof

          let Y1,Y2 be Subset of [:X, X:];

          assume that

           A6: Y1 in <.cB.] and

           A7: Y1 c= Y2;

          consider x be Subset of [:X, X:] such that

           A8: Y1 = x and

           A9: ex b be Element of cB st b c= x by A5, A6;

          consider B be Element of cB such that

           A10: B c= x by A9;

          B c= Y2 by A10, A8, A7;

          hence thesis by A5;

        end;

        then <.cB.] is upper;

        hence US is upper;

        for Y1,Y2 be set st Y1 in <.cB.] & Y2 in <.cB.] holds (Y1 /\ Y2) in <.cB.]

        proof

          let Y1,Y2 be set;

          assume that

           A11: Y1 in <.cB.] and

           A12: Y2 in <.cB.];

          consider x be Subset of [:X, X:] such that

           A13: Y1 = x and

           A14: ex b be Element of cB st b c= x by A5, A11;

          consider B1 be Element of cB such that

           A15: B1 c= x by A14;

          Y2 in { x where x be Subset of [:X, X:] : ex b be Element of cB st b c= x } by CARDFIL2: 14, A12;

          then

          consider y be Subset of [:X, X:] such that

           A16: Y2 = y and

           A17: ex b be Element of cB st b c= y;

          consider B2 be Element of cB such that

           A18: B2 c= y by A17;

          

           A19: (B1 /\ B2) c= (Y1 /\ Y2) by A13, A15, A18, A16, XBOOLE_1: 27;

          consider B3 be Element of cB such that

           A20: B3 c= (B1 /\ B2) by A1;

          

           A21: (Y1 /\ Y2) c= ( [:X, X:] /\ [:X, X:]) by A11, A12, XBOOLE_1: 27;

          B3 c= (Y1 /\ Y2) by A20, A19;

          hence thesis by A5, A21;

        end;

        hence US is cap-closed by FINSUB_1:def 2;

        for S be Element of <.cB.] holds ( id X) c= S

        proof

          let S be Element of <.cB.];

          S in { x where x be Subset of [:X, X:] : ex b be Element of cB st b c= x } by A5;

          then

          consider x be Subset of [:X, X:] such that

           A22: S = x and

           A23: ex b be Element of cB st b c= x;

          consider B be Element of cB such that

           A24: B c= x by A23;

          ( id X) c= B by A2;

          hence thesis by A24, A22;

        end;

        hence US is axiom_U1;

        for S be Element of the entourages of US holds ex W be Element of the entourages of US st (W * W) c= S

        proof

          let S be Element of the entourages of US;

          S in <.cB.];

          then

          consider B1 be Element of cB such that

           A31: B1 c= S by CARDFIL2:def 8;

          consider B2 be Element of cB such that

           A32: (B2 * B2) c= B1 by A4;

          per cases ;

            suppose

             A34: cB is empty;

            then

             A35: B2 = {} by SUBSET_1:def 1;

             {} c= [:X, X:];

            then

            reconsider B2 as Element of the entourages of US by A35, A34, CARDFIL2: 15;

            (B2 * B2) c= S by A35;

            hence thesis;

          end;

            suppose

             A36: cB is non empty;

            cB c= <.cB.] by CARDFIL2: 18;

            then

            reconsider W = B2 as Element of the entourages of US by A36;

            (W * W) c= S by A31, A32;

            hence thesis;

          end;

        end;

        hence US is axiom_U3;

      end;

      hence thesis;

    end;

    begin

    definition

      mode Semi-UniformSpace is upper cap-closed axiom_U1 axiom_U2 UniformSpaceStr;

    end

    reserve SUS for Semi-UniformSpace;

    registration

      cluster -> non void for Semi-UniformSpace;

      coherence ;

    end

    theorem :: UNIFORM2:19

    

     Th12: SUS is empty implies {} in the entourages of SUS

    proof

      assume

       A1: SUS is empty;

      assume

       A2: not {} in the entourages of SUS;

      SUS is non void;

      then the entourages of SUS is non empty;

      hence thesis by A1, A2;

    end;

    registration

      let SUS be empty Semi-UniformSpace;

      cluster the entourages of SUS -> with_empty_element;

      coherence by Th12, SETFAM_1:def 8;

    end

    begin

    definition

      let SUS be non empty Semi-UniformSpace;

      :: UNIFORM2:def18

      attr SUS is axiom_UL means for S be Element of the entourages of SUS, x be Element of SUS holds ex W be Element of the entourages of SUS st { y where y be Element of SUS : [x, y] in (W [*] W) } c= ( Neighborhood (S,x));

    end

    registration

      cluster axiom_U3 -> axiom_UL for non empty Semi-UniformSpace;

      coherence

      proof

        let US be non empty Semi-UniformSpace;

        assume

         A1: US is axiom_U3;

        let S be Element of the entourages of US, x be Element of US;

        consider W be Element of the entourages of US such that

         A2: (W * W) c= S by A1;

        { y where y be Element of US : [x, y] in (W * W) } c= ( Neighborhood (S,x))

        proof

          let t be object;

          assume t in { y where y be Element of US : [x, y] in (W * W) };

          then ex y0 be Element of US st t = y0 & [x, y0] in (W * W);

          hence thesis by A2;

        end;

        hence thesis;

      end;

    end

    registration

      cluster axiom_UL for non empty Semi-UniformSpace;

      existence

      proof

        take the axiom_U3 non empty Semi-UniformSpace;

        thus thesis;

      end;

    end

    definition

      mode Locally-UniformSpace is axiom_UL non empty Semi-UniformSpace;

    end

    theorem :: UNIFORM2:20

    

     Th15: for USS be non empty upper axiom_U1 UniformSpaceStr, x be Element of the carrier of USS holds ( Neighborhood x) is upper

    proof

      let US be non empty upper axiom_U1 UniformSpaceStr, x be Element of US;

      set N = ( Neighborhood x);

      now

        let S1,S2 be Subset of US;

        assume that

         A1: S1 in N and

         A2: S1 c= S2;

        consider V1 be Element of the entourages of US such that

         A3: S1 = ( Neighborhood (V1,x)) by A1;

        

         A4: V1 c= ( [: {x}, S1:] \/ ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:]))

        proof

          let t be object;

          assume

           A5: t in V1;

          consider a,b be object such that a in the carrier of US and

           A7: b in the carrier of US and

           A8: t = [a, b] by A5, ZFMISC_1:def 2;

          reconsider b as Element of US by A7;

          per cases ;

            suppose

             A9: x = a;

            then x in {x} & b in S1 by A3, A5, A8, TARSKI:def 1;

            then

             A10: t in [: {x}, S1:] by A9, A8, ZFMISC_1:def 2;

             [: {x}, S1:] c= ( [: {x}, S1:] \/ ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:])) by XBOOLE_1: 7;

            hence thesis by A10;

          end;

            suppose

             A11: not x = a;

            

             A12: not [a, b] in [: {x}, the carrier of US:]

            proof

              assume [a, b] in [: {x}, the carrier of US:];

              then ex c,d be object st c in {x} & d in the carrier of US & [a, b] = [c, d] by ZFMISC_1:def 2;

              then a in {x} & b in the carrier of US by XTUPLE_0: 1;

              hence thesis by A11, TARSKI:def 1;

            end;

            

             A13: t in ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:]) by A5, A12, A8, XBOOLE_0:def 5;

            ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:]) c= ( [: {x}, S1:] \/ ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:])) by XBOOLE_1: 7;

            hence thesis by A13;

          end;

        end;

        reconsider V2 = ( [: {x}, S2:] \/ ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:])) as Subset of [:the carrier of US, the carrier of US:];

        

         A15: V1 c= V2

        proof

           [: {x}, S1:] c= [: {x}, S2:] by A2, ZFMISC_1: 95;

          then ( [: {x}, S1:] \/ ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:])) c= ( [: {x}, S2:] \/ ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:])) by XBOOLE_1: 9;

          hence thesis by A4;

        end;

        US is upper;

        then the entourages of US is upper;

        then

        reconsider V2 as Element of the entourages of US by A15;

        S2 = ( Neighborhood (V2,x))

        proof

          

           A16: S2 c= ( Neighborhood (V2,x))

          proof

            let t be object;

            assume

             A17: t in S2;

            then

            reconsider t1 = t as Element of US;

            

             A18: x in {x} by TARSKI:def 1;

             [x, t1] in [: {x}, S2:] by A17, A18, ZFMISC_1:def 2;

            then [x, t1] in V2 by XBOOLE_0:def 3;

            hence thesis;

          end;

          ( Neighborhood (V2,x)) c= S2

          proof

            let t be object;

            assume t in ( Neighborhood (V2,x));

            then ex y0 be Element of US st t = y0 & [x, y0] in V2;

            per cases by XBOOLE_0:def 3;

              suppose [x, t] in [: {x}, S2:];

              then ex a,b be object st a in {x} & b in S2 & [x, t] = [a, b] by ZFMISC_1:def 2;

              hence thesis by XTUPLE_0: 1;

            end;

              suppose

               A19: [x, t] in ( [:the carrier of US, the carrier of US:] \ [: {x}, the carrier of US:]);

              then ex a,b be object st a in the carrier of US & b in the carrier of US & [x, t] = [a, b] by ZFMISC_1:def 2;

              then

               A20: t in the carrier of US by XTUPLE_0: 1;

              x in {x} by TARSKI:def 1;

              then [x, t] in [: {x}, the carrier of US:] by A20, ZFMISC_1:def 2;

              hence thesis by A19, XBOOLE_0:def 5;

            end;

          end;

          hence thesis by A16;

        end;

        hence S2 in N;

      end;

      hence thesis;

    end;

    theorem :: UNIFORM2:21

    

     Th16: for US be non empty axiom_U1 UniformSpaceStr, x be Element of US, V be Element of the entourages of US holds x in ( Neighborhood (V,x))

    proof

      let US be non empty axiom_U1 UniformSpaceStr, x be Element of US, V be Element of the entourages of US;

      US is axiom_U1;

      then

       A1: ( id the carrier of US) c= V;

       [x, x] in ( id the carrier of US) by RELAT_1:def 10;

      hence thesis by A1;

    end;

    theorem :: UNIFORM2:22

    

     Th17: for US be non empty cap-closed axiom_U1 UniformSpaceStr, x be Element of US holds ( Neighborhood x) is cap-closed

    proof

      let US be non empty cap-closed axiom_U1 UniformSpaceStr, x be Element of US;

      set N = ( Neighborhood x);

      now

        let Y1,Y2 be set;

        assume that

         A1: Y1 in N and

         A2: Y2 in N;

        consider V1 be Element of the entourages of US such that

         A3: Y1 = ( Neighborhood (V1,x)) by A1;

        consider V2 be Element of the entourages of US such that

         A4: Y2 = ( Neighborhood (V2,x)) by A2;

        (Y1 /\ Y2) = ( Neighborhood ((V1 /\ V2),x)) by A3, A4, Th11;

        hence (Y1 /\ Y2) in N;

      end;

      hence thesis by FINSUB_1:def 2;

    end;

    theorem :: UNIFORM2:23

    

     Th18: for US be non empty upper cap-closed axiom_U1 UniformSpaceStr, x be Element of US holds ( Neighborhood x) is Filter of the carrier of US

    proof

      let US be non empty upper cap-closed axiom_U1 UniformSpaceStr, x be Element of US;

      set N = ( Neighborhood x);

      now

        thus not {} in N

        proof

          assume {} in N;

          then ex V be Element of the entourages of US st {} = ( Neighborhood (V,x));

          hence thesis;

        end;

        hereby

          let Y1,Y2 be Subset of US;

          hereby

            assume that

             A1: Y1 in N and

             A2: Y2 in N;

            N is cap-closed by Th17;

            hence (Y1 /\ Y2) in N by A1, A2, FINSUB_1:def 2;

          end;

          hereby

            assume that

             A3: Y1 in N and

             A4: Y1 c= Y2;

            N is upper by Th15;

            hence Y2 in N by A3, A4;

          end;

        end;

      end;

      hence thesis by CARD_FIL:def 1;

    end;

    registration

      cluster -> topological for Locally-UniformSpace;

      coherence

      proof

        let LUS be Locally-UniformSpace;

        set UT = FMT_Space_Str (# the carrier of LUS, ( Neighborhood LUS) #);

        reconsider UT as non empty strict FMT_Space_Str;

        

         A1: for x be Element of UT holds ex y be Element of LUS st x = y & ( U_FMT x) = ( Neighborhood y)

        proof

          let x be Element of UT;

          ( U_FMT x) = (the BNbd of UT . x) by FINTOPO2:def 6;

          then

          consider y be Element of LUS such that

           A2: x = y and

           A3: ( U_FMT x) = (( Neighborhood LUS) . y);

          (( Neighborhood LUS) . y) = ( Neighborhood y) by Def5;

          hence thesis by A2, A3;

        end;

        now

          for x be Element of UT, V be Element of ( U_FMT x) holds ex W be Element of ( U_FMT x) st for y be Element of UT st y is Element of W holds V is Element of ( U_FMT y)

          proof

            let x be Element of UT, V be Element of ( U_FMT x);

            consider y be Element of LUS such that x = y and

             A4: ( U_FMT x) = ( Neighborhood y) by A1;

            

             A5: V in ( Neighborhood y) by A4;

            then

            consider V0 be Element of the entourages of LUS such that

             A6: V = ( Neighborhood (V0,y));

            LUS is axiom_UL;

            then

            consider W be Element of the entourages of LUS such that

             A7: { z where z be Element of LUS : [y, z] in (W * W) } c= ( Neighborhood (V0,y));

            ( Neighborhood (W,y)) in the set of all ( Neighborhood (V,y)) where V be Element of the entourages of LUS;

            then

            reconsider WN = ( Neighborhood (W,y)) as Element of ( Neighborhood y);

            

             A8: for t,z be object st [y, t] in W & [t, z] in W holds [y, z] in V0

            proof

              let t,z be object;

              assume that

               A9: [y, t] in W and

               A10: [t, z] in W;

              consider R1,R2 be Relation of the carrier of LUS such that

               A11: W = R1 and

               A12: W = R2 and (W * W) = (R1 * R2);

              

               AAA: [y, z] in (R1 * R2) by A9, A10, A11, A12, RELAT_1:def 8;

              consider a,b be object such that a in the carrier of LUS and

               A12B: b in the carrier of LUS and

               A12C: [t, z] = [a, b] by A10, ZFMISC_1:def 2;

              reconsider z as Element of LUS by A12C, A12B, XTUPLE_0: 1;

              z in { z where z be Element of LUS : [y, z] in (W * W) } by AAA, A11, A12;

              then z in ( Neighborhood (V0,y)) by A7;

              then ex z0 be Element of LUS st z = z0 & [y, z0] in V0;

              hence thesis;

            end;

            reconsider WN as Element of ( U_FMT x) by A4;

            take WN;

            hereby

              let z be Element of UT;

              assume z is Element of WN;

              then z in { z where z be Element of LUS : [y, z] in W };

              then

              consider z0 be Element of LUS such that

               A13: z = z0 and

               A14: [y, z0] in W;

              consider z1 be Element of LUS such that

               A15: z = z1 and

               A16: ( U_FMT z) = ( Neighborhood z1) by A1;

              

               A17: ( Neighborhood (W,z1)) c= ( Neighborhood (V0,y))

              proof

                let t be object;

                assume t in ( Neighborhood (W,z1));

                then

                consider y0 be Element of LUS such that

                 A18: t = y0 and

                 A19: [z1, y0] in W;

                 [y, t] in V0 by A18, A19, A15, A13, A14, A8;

                hence thesis by A18;

              end;

              ( Neighborhood (W,z1)) in ( Neighborhood z1);

              then

              reconsider WW = ( Neighborhood (W,z1)) as Element of ( Neighborhood z1);

              reconsider WW2 = WW, V2 = V as Subset of LUS by A5;

              

               A20: WW2 c= V2 by A6, A17;

              ( Neighborhood z1) is upper by Th15;

              hence V is Element of ( U_FMT z) by A16, A20;

            end;

          end;

          hence UT is U_FMT_local;

          for x be Element of UT, V be Element of ( U_FMT x) holds x in V

          proof

            let x be Element of UT, V be Element of ( U_FMT x);

            consider y be Element of LUS such that

             A21: x = y and

             A22: ( U_FMT x) = ( Neighborhood y) by A1;

            V in the set of all ( Neighborhood (V,y)) where V be Element of the entourages of LUS by A22;

            then ex W be Element of the entourages of LUS st V = ( Neighborhood (W,y));

            hence thesis by A21, Th16;

          end;

          hence UT is U_FMT_with_point;

          for x be Element of UT holds ( U_FMT x) is Filter of the carrier of UT

          proof

            let x be Element of UT;

            ex y be Element of LUS st x = y & ( U_FMT x) = ( Neighborhood y) by A1;

            hence thesis by Th18;

          end;

          hence UT is U_FMT_filter;

        end;

        hence thesis;

      end;

    end

    begin

    definition

      let USS be topological non empty axiom_U1 UniformSpaceStr;

      :: UNIFORM2:def19

      func FMT_induced_by (USS) -> non empty strict FMT_TopSpace equals FMT_Space_Str (# the carrier of USS, ( Neighborhood USS) #);

      coherence

      proof

        USS is topological;

        hence thesis;

      end;

    end

    definition

      let USS be topological non empty axiom_U1 UniformSpaceStr;

      :: UNIFORM2:def20

      func TopSpace_induced_by (USS) -> TopSpace equals ( FMT2TopSpace ( FMT_induced_by USS));

      coherence ;

    end

    begin

    definition

      let X be set, A be Subset of X;

      :: UNIFORM2:def21

      func block_Pervin_quasi_uniformity (A) -> Subset of [:X, X:] equals ( [:(X \ A), X:] \/ [:X, A:]);

      coherence

      proof

        

         A1: [:(X \ A), X:] c= [:X, X:] by ZFMISC_1: 95;

         [:X, A:] c= [:X, X:] by ZFMISC_1: 95;

        hence thesis by A1, XBOOLE_1: 8;

      end;

    end

    theorem :: UNIFORM2:24

    

     Th20: ( id X) c= ( block_Pervin_quasi_uniformity A) & (( block_Pervin_quasi_uniformity A) * ( block_Pervin_quasi_uniformity A)) c= ( block_Pervin_quasi_uniformity A)

    proof

      thus ( id X) c= ( block_Pervin_quasi_uniformity A)

      proof

        let t be object;

        assume

         A1: t in ( id X);

        then

        consider a,b be object such that

         A2: t = [a, b] by RELAT_1:def 1;

        

         A3: a in X & a = b by A1, A2, RELAT_1:def 10;

        per cases ;

          suppose a in A;

          then a in A & b in A by A1, A2, RELAT_1:def 10;

          then

           A4: [a, b] in [:A, A:] by ZFMISC_1:def 2;

          

           A5: [:A, A:] c= [:X, A:] by ZFMISC_1: 96;

           [:X, A:] c= ( block_Pervin_quasi_uniformity A) by XBOOLE_1: 7;

          hence thesis by A4, A2, A5;

        end;

          suppose not a in A;

          then a in (X \ A) by A3, XBOOLE_0:def 5;

          then

           A6: t in [:(X \ A), X:] by A2, A3, ZFMISC_1:def 2;

           [:(X \ A), X:] c= ( block_Pervin_quasi_uniformity A) by XBOOLE_1: 7;

          hence thesis by A6;

        end;

      end;

      now

        let t be object;

        assume

         A7: t in (( block_Pervin_quasi_uniformity A) * ( block_Pervin_quasi_uniformity A));

        then

        consider a,b be object such that

         A8: t = [a, b] by RELAT_1:def 1;

         [a, b] in { [x, y] where x,y be Element of X : ex z be Element of X st [x, z] in ( block_Pervin_quasi_uniformity A) & [z, y] in ( block_Pervin_quasi_uniformity A) } by A8, A7, Th3;

        then

        consider x,y be Element of X such that

         A9: [a, b] = [x, y] and

         A10: ex z be Element of X st [x, z] in ( block_Pervin_quasi_uniformity A) & [z, y] in ( block_Pervin_quasi_uniformity A);

        consider z be Element of X such that

         A11: [x, z] in ( block_Pervin_quasi_uniformity A) and

         A12: [z, y] in ( block_Pervin_quasi_uniformity A) by A10;

        per cases ;

          suppose

           A13: x in A;

           [x, z] in [:A, A:]

          proof

            per cases by A11, XBOOLE_0:def 3;

              suppose [x, z] in [:(X \ A), X:];

              then x in (X \ A) by ZFMISC_1: 87;

              hence thesis by A13, XBOOLE_0:def 5;

            end;

              suppose [x, z] in [:X, A:];

              then x in X & z in A by ZFMISC_1: 87;

              hence thesis by A13, ZFMISC_1: 87;

            end;

          end;

          then

           A14: z in A by ZFMISC_1: 87;

           [z, y] in [:A, A:]

          proof

            per cases by A12, XBOOLE_0:def 3;

              suppose [z, y] in [:(X \ A), X:];

              then z in (X \ A) & y in X by ZFMISC_1: 87;

              hence thesis by A14, XBOOLE_0:def 5;

            end;

              suppose [z, y] in [:X, A:];

              then y in A by ZFMISC_1: 87;

              hence thesis by A14, ZFMISC_1: 87;

            end;

          end;

          then y in A by ZFMISC_1: 87;

          then

           A15: [x, y] in [:X, A:] by ZFMISC_1:def 2;

           [:X, A:] c= ( block_Pervin_quasi_uniformity A) by XBOOLE_1: 7;

          hence t in ( block_Pervin_quasi_uniformity A) by A8, A9, A15;

        end;

          suppose

           A16: not x in A;

          per cases ;

            suppose X is empty;

            hence t in ( block_Pervin_quasi_uniformity A) by A12;

          end;

            suppose X is non empty;

            then x in (X \ A) by A16, XBOOLE_0:def 5;

            then

             A17: t in [:(X \ A), X:] by A8, A9, ZFMISC_1: 87;

             [:(X \ A), X:] c= ( block_Pervin_quasi_uniformity A) by XBOOLE_1: 7;

            hence t in ( block_Pervin_quasi_uniformity A) by A17;

          end;

        end;

      end;

      hence thesis;

    end;

    definition

      let T be TopSpace;

      :: UNIFORM2:def22

      func subbasis_Pervin_quasi_uniformity (T) -> Subset-Family of [:the carrier of T, the carrier of T:] equals the set of all ( block_Pervin_quasi_uniformity O) where O be Element of the topology of T;

      coherence

      proof

         the set of all ( block_Pervin_quasi_uniformity O) where O be Element of the topology of T c= ( bool [:the carrier of T, the carrier of T:])

        proof

          let x be object;

          assume x in the set of all ( block_Pervin_quasi_uniformity O) where O be Element of the topology of T;

          then ex O be Element of the topology of T st x = ( block_Pervin_quasi_uniformity O);

          hence thesis;

        end;

        hence thesis;

      end;

    end

    registration

      let T be non empty TopSpace;

      cluster ( subbasis_Pervin_quasi_uniformity T) -> non empty;

      coherence

      proof

        ( block_Pervin_quasi_uniformity the Element of the topology of T) in ( subbasis_Pervin_quasi_uniformity T);

        hence thesis;

      end;

    end

    definition

      let T be TopSpace;

      :: UNIFORM2:def23

      func basis_Pervin_quasi_uniformity (T) -> Subset-Family of [:the carrier of T, the carrier of T:] equals ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T));

      coherence ;

    end

    registration

      let X be set;

      cluster cap-closed -> quasi_basis for non empty Subset-Family of [:X, X:];

      coherence

      proof

        let SF be non empty Subset-Family of [:X, X:];

        assume

         A1: SF is cap-closed;

        now

          let b1,b2 be Element of SF;

          (b1 /\ b2) in SF by A1, FINSUB_1:def 2;

          hence ex b be Element of SF st b c= (b1 /\ b2);

        end;

        hence thesis;

      end;

    end

    reserve T for TopSpace;

    registration

      let T;

      cluster ( basis_Pervin_quasi_uniformity T) -> cap-closed;

      coherence

      proof

        now

          let x,y be set;

          assume that

           A1: x in ( basis_Pervin_quasi_uniformity T) and

           A2: y in ( basis_Pervin_quasi_uniformity T);

          consider Y be Subset-Family of [:the carrier of T, the carrier of T:] such that

           A3: Y c= ( subbasis_Pervin_quasi_uniformity T) and

           A4: Y is finite and

           A5: x = ( Intersect Y) by A1, CANTOR_1:def 3;

          consider Z be Subset-Family of [:the carrier of T, the carrier of T:] such that

           A6: Z c= ( subbasis_Pervin_quasi_uniformity T) and

           A7: Z is finite and

           A8: y = ( Intersect Z) by A2, CANTOR_1:def 3;

          

           A9: (x /\ y) = ( Intersect (Y \/ Z)) by A5, A8, MSSUBFAM: 8;

          (Y \/ Z) c= ( subbasis_Pervin_quasi_uniformity T) by A3, A6, XBOOLE_1: 8;

          hence (x /\ y) in ( basis_Pervin_quasi_uniformity T) by A9, A4, A7, CANTOR_1:def 3;

        end;

        hence thesis by FINSUB_1:def 2;

      end;

    end

    registration

      let T;

      cluster ( basis_Pervin_quasi_uniformity T) -> quasi_basis;

      coherence ;

    end

    registration

      let T;

      cluster ( basis_Pervin_quasi_uniformity T) -> axiom_UP1;

      coherence

      proof

        let B be Element of ( basis_Pervin_quasi_uniformity T);

        B in ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T));

        then

        consider Y be Subset-Family of [:the carrier of T, the carrier of T:] such that

         A1: Y c= ( subbasis_Pervin_quasi_uniformity T) and Y is finite and

         A2: B = ( Intersect Y) by CANTOR_1:def 3;

        let t be object;

        assume

         A3: t in ( id the carrier of T);

        then

        consider a,b be object such that

         A4: t = [a, b] by RELAT_1:def 1;

        

         A5: a in the carrier of T & a = b by A3, A4, RELAT_1:def 10;

        per cases ;

          suppose Y is empty;

          then B = [:the carrier of T, the carrier of T:] by A2, SETFAM_1:def 9;

          hence thesis by A3;

        end;

          suppose

           A7: Y is non empty;

          then

           A8: ( Intersect Y) = ( meet Y) by SETFAM_1:def 9;

          now

            let y be set;

            assume y in Y;

            then y in the set of all ( block_Pervin_quasi_uniformity O) where O be Element of the topology of T by A1;

            then

            consider O be Element of the topology of T such that

             A9: y = ( block_Pervin_quasi_uniformity O);

            

             A10: [:(the carrier of T \ O), the carrier of T:] c= y & [:the carrier of T, O:] c= y by A9, XBOOLE_1: 10;

            per cases by A5, XBOOLE_0:def 5;

              suppose a in (the carrier of T \ O);

              then [a, b] in [:(the carrier of T \ O), the carrier of T:] by A5, ZFMISC_1:def 2;

              hence t in y by A4, A10;

            end;

              suppose a in O;

              then [a, b] in [:the carrier of T, O:] by A5, ZFMISC_1:def 2;

              hence t in y by A4, A10;

            end;

          end;

          hence thesis by A2, A8, A7, SETFAM_1:def 1;

        end;

      end;

    end

    registration

      let T;

      cluster ( basis_Pervin_quasi_uniformity T) -> axiom_UP3;

      coherence

      proof

        let B1 be Element of ( basis_Pervin_quasi_uniformity T);

        B1 in ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T));

        then

        consider Y be Subset-Family of [:the carrier of T, the carrier of T:] such that

         A1: Y c= ( subbasis_Pervin_quasi_uniformity T) and Y is finite and

         A2: B1 = ( Intersect Y) by CANTOR_1:def 3;

        per cases ;

          suppose Y is empty;

          then

           A3: B1 = [:the carrier of T, the carrier of T:] by A2, SETFAM_1:def 9;

          take B1;

          thus thesis by A3;

        end;

          suppose

           A4: Y is non empty;

          then

           A5: B1 = ( meet Y) by A2, SETFAM_1:def 9;

          reconsider B2 = B1 as Element of ( basis_Pervin_quasi_uniformity T);

          take B2;

          let t be object;

          assume

           A6: t in (B2 * B2);

          consider a,b be object such that

           A10: t = [a, b] by A6, RELAT_1:def 1;

          consider c be object such that

           A11: [a, c] in B2 and

           A12: [c, b] in B2 by A6, A10, RELAT_1:def 8;

          thus t in B1

          proof

            for Z be set st Z in Y holds t in Z

            proof

              let Z be set;

              assume

               A13: Z in Y;

              then Z in the set of all ( block_Pervin_quasi_uniformity O) where O be Element of the topology of T by A1;

              then

              consider O be Element of the topology of T such that

               A14: Z = ( block_Pervin_quasi_uniformity O);

               [a, c] in ( meet Y) by A4, A2, SETFAM_1:def 9, A11;

              then

               A15: [a, c] in ( block_Pervin_quasi_uniformity O) by A14, A13, SETFAM_1:def 1;

               [c, b] in ( block_Pervin_quasi_uniformity O) by A12, A5, A14, A13, SETFAM_1:def 1;

              then

               A16: [a, b] in (( block_Pervin_quasi_uniformity O) * ( block_Pervin_quasi_uniformity O)) by A15, RELAT_1:def 8;

              (( block_Pervin_quasi_uniformity O) * ( block_Pervin_quasi_uniformity O)) c= ( block_Pervin_quasi_uniformity O) by Th20;

              hence thesis by A14, A10, A16;

            end;

            hence thesis by A5, A4, SETFAM_1:def 1;

          end;

        end;

      end;

    end

    definition

      let T be TopSpace;

      :: UNIFORM2:def24

      func Pervin_quasi_uniformity T -> strict Quasi-UniformSpace equals UniformSpaceStr (# the carrier of T, <.( basis_Pervin_quasi_uniformity T).] #);

      coherence by Th11bis;

    end

    theorem :: UNIFORM2:25

    for T be non empty TopSpace, V be Element of the entourages of ( Pervin_quasi_uniformity T) holds ex b be Element of ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)) st b c= V

    proof

      let T be non empty TopSpace, V be Element of the entourages of ( Pervin_quasi_uniformity T);

      

       A1: <.( basis_Pervin_quasi_uniformity T).] = { x where x be Subset of [:the carrier of T, the carrier of T:] : ex b be Element of ( basis_Pervin_quasi_uniformity T) st b c= x } by CARDFIL2: 14;

      V in <.( basis_Pervin_quasi_uniformity T).];

      then ex S be Subset of [:the carrier of T, the carrier of T:] st V = S & ex b be Element of ( basis_Pervin_quasi_uniformity T) st b c= S by A1;

      hence thesis;

    end;

    theorem :: UNIFORM2:26

    for T be non empty TopSpace, V be Subset of [:the carrier of T, the carrier of T:] st ex b be Element of ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)) st b c= V holds V is Element of the entourages of ( Pervin_quasi_uniformity T)

    proof

      let T be non empty TopSpace, V be Subset of [:the carrier of T, the carrier of T:];

      given b be Element of ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)) such that

       A1: b c= V;

      

       A2: <.( basis_Pervin_quasi_uniformity T).] = { x where x be Subset of [:the carrier of T, the carrier of T:] : ex b be Element of ( basis_Pervin_quasi_uniformity T) st b c= x } by CARDFIL2: 14;

      V in <.( basis_Pervin_quasi_uniformity T).] by A1, A2;

      hence thesis;

    end;

    theorem :: UNIFORM2:27

    ( subbasis_Pervin_quasi_uniformity T) c= the entourages of ( Pervin_quasi_uniformity T)

    proof

      now

        let x be object;

        assume

         A1: x in ( subbasis_Pervin_quasi_uniformity T);

        

         A2: ( subbasis_Pervin_quasi_uniformity T) c= ( basis_Pervin_quasi_uniformity T) by CANTOR_1: 4;

        ( basis_Pervin_quasi_uniformity T) c= <.( basis_Pervin_quasi_uniformity T).] by CARDFIL2: 18;

        hence x in the entourages of ( Pervin_quasi_uniformity T) by A1, A2;

      end;

      hence thesis;

    end;

    theorem :: UNIFORM2:28

    

     Th27: for QU be non void Quasi-UniformSpace holds [:the carrier of QU, the carrier of QU:] in the entourages of QU

    proof

      let QU be non void Quasi-UniformSpace;

      

       A1: QU is non void;

      set U = the Element of the entourages of QU;

      U in the entourages of QU by A1;

      then

      reconsider U as Subset of [:the carrier of QU, the carrier of QU:];

      QU is upper;

      then

       A2: the entourages of QU is upper;

       [:the carrier of QU, the carrier of QU:] c= [:the carrier of QU, the carrier of QU:];

      then

      reconsider Y = [:the carrier of QU, the carrier of QU:] as Subset of [:the carrier of QU, the carrier of QU:];

      the entourages of QU is non empty by A1;

      then Y in the entourages of QU by A2;

      hence thesis;

    end;

    theorem :: UNIFORM2:29

    for QU be non void Quasi-UniformSpace st the carrier of T = the carrier of QU & ( subbasis_Pervin_quasi_uniformity T) c= the entourages of QU holds the entourages of ( Pervin_quasi_uniformity T) c= the entourages of QU

    proof

      let QU be non void Quasi-UniformSpace;

      assume that

       A2: the carrier of T = the carrier of QU and

       A3: ( subbasis_Pervin_quasi_uniformity T) c= the entourages of QU;

      the entourages of ( Pervin_quasi_uniformity T) c= the entourages of QU

      proof

        let x be object;

        assume

         A4: x in the entourages of ( Pervin_quasi_uniformity T);

        then

        reconsider y = x as Subset of [:the carrier of T, the carrier of T:];

        consider b be Element of ( basis_Pervin_quasi_uniformity T) such that

         A5: b c= y by A4, CARDFIL2:def 8;

        b in ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T));

        then

        consider Y be Subset-Family of [:the carrier of T, the carrier of T:] such that

         A6: Y c= ( subbasis_Pervin_quasi_uniformity T) and

         A7: Y is finite and

         A8: b = ( Intersect Y) by CANTOR_1:def 3;

        reconsider Z = Y as finite Subset-Family of [:the carrier of QU, the carrier of QU:] by A2, A7;

        reconsider B = the entourages of QU as set;

         A9:

        now

          thus B is Subset-Family of [:the carrier of QU, the carrier of QU:];

          QU is cap-closed;

          hence B is cap-closed;

          thus [:the carrier of QU, the carrier of QU:] in B by Th27;

          thus Z c= B by A3, A6;

        end;

        QU is upper;

        then

         A10: the entourages of QU is upper;

        b is Subset of [:the carrier of QU, the carrier of QU:] & y is Subset of [:the carrier of QU, the carrier of QU:] & b c= y & b in the entourages of QU by A5, A9, A2, A8, ARMSTRNG: 1;

        hence thesis by A10;

      end;

      hence thesis;

    end;

    registration

      let T be non empty TopSpace;

      cluster ( Pervin_quasi_uniformity T) -> non empty;

      coherence ;

    end

    registration

      let T be non empty TopSpace;

      cluster ( Pervin_quasi_uniformity T) -> topological;

      coherence

      proof

        set US = ( Pervin_quasi_uniformity T), FMT = FMT_Space_Str (# the carrier of ( Pervin_quasi_uniformity T), ( Neighborhood ( Pervin_quasi_uniformity T)) #);

        reconsider UT = FMT as non empty strict FMT_Space_Str;

        

         A1: for x be Element of UT holds ex y be Element of US st x = y & ( U_FMT x) = ( Neighborhood y)

        proof

          let x be Element of UT;

          ( U_FMT x) = (the BNbd of UT . x) by FINTOPO2:def 6;

          then

          consider y be Element of US such that

           A2: x = y and

           A3: ( U_FMT x) = (( Neighborhood US) . y);

          (( Neighborhood US) . y) = ( Neighborhood y) by Def5;

          hence thesis by A2, A3;

        end;

        now

          for x be Element of UT, V be Element of ( U_FMT x) holds ex W be Element of ( U_FMT x) st for y be Element of UT st y is Element of W holds V is Element of ( U_FMT y)

          proof

            let x be Element of UT, V be Element of ( U_FMT x);

            consider y be Element of US such that x = y and

             A4: ( U_FMT x) = ( Neighborhood y) by A1;

            

             A5: V in ( Neighborhood y) by A4;

            then

            consider V0 be Element of the entourages of US such that

             A6: V = ( Neighborhood (V0,y));

            US is axiom_U3;

            then

            consider W be Element of the entourages of US such that

             A7: (W * W) c= V0;

            ( Neighborhood (W,y)) in the set of all ( Neighborhood (V,y)) where V be Element of the entourages of US;

            then

            reconsider WN = ( Neighborhood (W,y)) as Element of ( Neighborhood y);

            

             A8: for x,y,z be object st [x, y] in W & [y, z] in W holds [x, z] in V0

            proof

              let x,y,z be object;

              assume that

               A9: [x, y] in W and

               A10: [y, z] in W;

               [x, z] in (W * W) by A9, A10, RELAT_1:def 8;

              hence thesis by A7;

            end;

            reconsider WN as Element of ( U_FMT x) by A4;

            take WN;

            hereby

              let z be Element of UT;

              assume z is Element of WN;

              then z in { z where z be Element of US : [y, z] in W };

              then

              consider z0 be Element of US such that

               A13: z = z0 and

               A14: [y, z0] in W;

              consider z1 be Element of US such that

               A15: z = z1 and

               A16: ( U_FMT z) = ( Neighborhood z1) by A1;

              

               A17: ( Neighborhood (W,z1)) c= ( Neighborhood (V0,y))

              proof

                let t be object;

                assume t in ( Neighborhood (W,z1));

                then

                consider y0 be Element of US such that

                 A18: t = y0 and

                 A19: [z1, y0] in W;

                 [y, t] in V0 by A18, A19, A15, A13, A14, A8;

                hence thesis by A18;

              end;

              ( Neighborhood (W,z1)) in ( Neighborhood z1);

              then

              reconsider WW = ( Neighborhood (W,z1)) as Element of ( Neighborhood z1);

              reconsider WW2 = WW, V2 = V as Subset of US by A5;

              

               A20: WW2 c= V2 by A6, A17;

              ( Neighborhood z1) is upper by Th15;

              hence V is Element of ( U_FMT z) by A16, A20;

            end;

          end;

          hence UT is U_FMT_local;

          for x be Element of UT, V be Element of ( U_FMT x) holds x in V

          proof

            let x be Element of UT, V be Element of ( U_FMT x);

            consider y be Element of US such that

             A21: x = y and

             A22: ( U_FMT x) = ( Neighborhood y) by A1;

            V in the set of all ( Neighborhood (V,y)) where V be Element of the entourages of US by A22;

            then ex W be Element of the entourages of US st V = ( Neighborhood (W,y));

            hence thesis by A21, Th16;

          end;

          hence UT is U_FMT_with_point;

          for x be Element of UT holds ( U_FMT x) is Filter of the carrier of UT

          proof

            let x be Element of UT;

            ex y be Element of US st x = y & ( U_FMT x) = ( Neighborhood y) by A1;

            hence thesis by Th18;

          end;

          hence UT is U_FMT_filter;

        end;

        hence thesis;

      end;

    end

    theorem :: UNIFORM2:30

    

     Th29: for T be non empty TopSpace, x be Element of ( subbasis_Pervin_quasi_uniformity T), y be Element of ( Pervin_quasi_uniformity T) holds { z where z be Element of ( Pervin_quasi_uniformity T) : [y, z] in x } in the topology of T

    proof

      let T be non empty TopSpace, x be Element of ( subbasis_Pervin_quasi_uniformity T), y be Element of ( Pervin_quasi_uniformity T);

      x in ( subbasis_Pervin_quasi_uniformity T);

      then

      consider O be Element of the topology of T such that

       A1: x = ( block_Pervin_quasi_uniformity O);

      set M = { z where z be Element of ( Pervin_quasi_uniformity T) : [y, z] in x };

      per cases ;

        suppose

         A2: y in O;

        M = O

        proof

          thus M c= O

          proof

            let a be object;

            assume a in M;

            then

            consider b be Element of ( Pervin_quasi_uniformity T) such that

             A4: b = a and

             A5: [y, b] in x;

             [y, b] in [:(the carrier of T \ O), the carrier of T:] or [y, b] in [:the carrier of T, O:] by A1, A5, XBOOLE_0:def 3;

            then (y in (the carrier of T \ O) & b in the carrier of T) or (y in the carrier of T & b in O) by ZFMISC_1: 87;

            hence thesis by A4, A2, XBOOLE_0:def 5;

          end;

          let a be object;

          assume

           A6: a in O;

          then

          reconsider b = a as Element of ( Pervin_quasi_uniformity T);

           [y, b] in [:the carrier of T, O:] by A6, ZFMISC_1: 87;

          then [y, b] in ( [:(the carrier of T \ O), the carrier of T:] \/ [:the carrier of T, O:]) by XBOOLE_0:def 3;

          hence thesis by A1;

        end;

        hence thesis;

      end;

        suppose

         A7: not y in O;

        M = the carrier of ( Pervin_quasi_uniformity T)

        proof

          thus M c= the carrier of ( Pervin_quasi_uniformity T)

          proof

            let a be object;

            assume a in M;

            then ex b be Element of ( Pervin_quasi_uniformity T) st a = b & [y, b] in x;

            hence thesis;

          end;

          let a be object;

          assume a in the carrier of ( Pervin_quasi_uniformity T);

          then

          reconsider b = a as Element of the carrier of ( Pervin_quasi_uniformity T);

          y in (the carrier of T \ O) & b in the carrier of T by A7, XBOOLE_0:def 5;

          then

           A10: [y, b] in [:(the carrier of T \ O), the carrier of T:] by ZFMISC_1: 87;

           [:(the carrier of T \ O), the carrier of T:] c= ( [:(the carrier of T \ O), the carrier of T:] \/ [:the carrier of T, O:]) by XBOOLE_1: 7;

          hence thesis by A1, A10;

        end;

        hence thesis by PRE_TOPC:def 1;

      end;

    end;

    theorem :: UNIFORM2:31

    

     Th30: for T be non empty TopSpace, x be Element of the carrier of ( Pervin_quasi_uniformity T), b be Element of ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)) holds { y where y be Element of T : [x, y] in b } in the topology of T

    proof

      let T be non empty TopSpace, x be Element of the carrier of ( Pervin_quasi_uniformity T), b be Element of ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T));

      consider Y be Subset-Family of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):] such that

       A1: Y c= ( subbasis_Pervin_quasi_uniformity T) and

       A2: Y is finite and

       A3: b = ( Intersect Y) by CANTOR_1:def 3;

      per cases ;

        suppose Y is empty;

        then

         A4: b = [:the carrier of T, the carrier of T:] by A3, SETFAM_1:def 9;

        { y where y be Element of T : [x, y] in b } = the carrier of T

        proof

          thus { y where y be Element of T : [x, y] in b } c= the carrier of T

          proof

            let a be object;

            assume a in { y where y be Element of T : [x, y] in b };

            then ex y be Element of T st a = y & [x, y] in b;

            hence thesis;

          end;

          let a be object;

          assume a in the carrier of T;

          then

          reconsider y = a as Element of T;

           [x, y] in [:the carrier of T, the carrier of T:];

          hence thesis by A4;

        end;

        hence thesis by PRE_TOPC:def 1;

      end;

        suppose

         A7: Y is non empty;

        then

         A8: b = ( meet Y) by A3, SETFAM_1:def 9;

        for Y be non empty Subset-Family of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):] st Y c= ( subbasis_Pervin_quasi_uniformity T) & Y is finite holds { y where y be Element of T : [x, y] in ( meet Y) } in the topology of T

        proof

          let Y be non empty Subset-Family of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):];

          assume that

           A9: Y c= ( subbasis_Pervin_quasi_uniformity T) and

           A10: Y is finite;

          defpred P[ Nat] means for Z be non empty Subset-Family of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):] st Z c= ( subbasis_Pervin_quasi_uniformity T) & ( card Z) = $1 holds { y where y be Element of T : [x, y] in ( meet Z) } in the topology of T;

          for Z be non empty Subset-Family of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):] st Z c= ( subbasis_Pervin_quasi_uniformity T) & ( card Z) = 1 holds { y where y be Element of T : [x, y] in ( meet Z) } in the topology of T

          proof

            let Z be non empty Subset-Family of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):];

            assume that

             A11: Z c= ( subbasis_Pervin_quasi_uniformity T) and

             A12: ( card Z) = 1;

            consider t be object such that

             A13: Z = {t} by A12, CARD_2: 42;

            reconsider y = t as set by TARSKI: 1;

            

             A14: ( meet Z) = y by A13, SETFAM_1: 10;

            t in ( subbasis_Pervin_quasi_uniformity T) by A11, A13, ZFMISC_1: 31;

            then

            consider O be Element of the topology of T such that

             A15: t = ( block_Pervin_quasi_uniformity O);

            per cases ;

              suppose

               A16: x in O;

              { y where y be Element of T : [x, y] in ( meet Z) } in the topology of T

              proof

                

                 A17: { z where z be Element of T : [x, z] in ( block_Pervin_quasi_uniformity O) } = O

                proof

                  

                   A18: { z where z be Element of T : [x, z] in ( block_Pervin_quasi_uniformity O) } c= O

                  proof

                    let a be object;

                    assume a in { z where z be Element of T : [x, z] in ( block_Pervin_quasi_uniformity O) };

                    then ex z be Element of T st a = z & [x, z] in ( block_Pervin_quasi_uniformity O);

                    then [x, a] in [:(the carrier of T \ O), the carrier of T:] or [x, a] in [:the carrier of T, O:] by XBOOLE_0:def 3;

                    then (x in (the carrier of T \ O) & a in the carrier of T) or (x in the carrier of T & a in O) by ZFMISC_1: 87;

                    hence thesis by A16, XBOOLE_0:def 5;

                  end;

                  O c= { z where z be Element of T : [x, z] in ( block_Pervin_quasi_uniformity O) }

                  proof

                    let a be object;

                    assume

                     A19: a in O;

                    then

                    reconsider b = a as Element of T;

                     [x, a] in [:the carrier of T, O:] by A19, ZFMISC_1: 87;

                    then [x, b] in ( block_Pervin_quasi_uniformity O) by XBOOLE_0:def 3;

                    hence thesis;

                  end;

                  hence thesis by A18;

                end;

                thus thesis by A15, A14, A17;

              end;

              hence thesis;

            end;

              suppose

               A20: not x in O;

              { z where z be Element of T : [x, z] in ( block_Pervin_quasi_uniformity O) } = the carrier of T

              proof

                thus { z where z be Element of T : [x, z] in ( block_Pervin_quasi_uniformity O) } c= the carrier of T

                proof

                  let a be object;

                  assume a in { z where z be Element of T : [x, z] in ( block_Pervin_quasi_uniformity O) };

                  then ex z be Element of T st a = z & [x, z] in ( block_Pervin_quasi_uniformity O);

                  hence thesis;

                end;

                let a be object;

                assume a in the carrier of T;

                then

                reconsider b = a as Element of T;

                x in (the carrier of T \ O) by A20, XBOOLE_0:def 5;

                then [x, b] in [:(the carrier of T \ O), the carrier of T:] or [x, b] in [:the carrier of T, O:] by ZFMISC_1: 87;

                then [x, b] in ( block_Pervin_quasi_uniformity O) by XBOOLE_0:def 3;

                hence thesis;

              end;

              hence thesis by A15, A14, PRE_TOPC:def 1;

            end;

          end;

          then

           A22: P[1];

          

           A23: for k be non zero Nat st P[k] holds P[(k + 1)]

          proof

            let k be non zero Nat;

            assume

             A24: P[k];

            now

              let Z be non empty Subset-Family of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):];

              assume that

               A25: Z c= ( subbasis_Pervin_quasi_uniformity T) and

               A26: ( card Z) = (k + 1);

              set z = the Element of Z;

              

               A27: ( card (Z \ {z})) = k by A26, STIRL2_1: 55;

              then

               A28: (Z \ {z}) is non empty;

              (Z \ {z}) c= Z by XBOOLE_1: 36;

              then

               A29: (Z \ {z}) c= ( subbasis_Pervin_quasi_uniformity T) by A25;

              (Z \ {z}) is non empty Subset-Family of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):] by A27;

              then

               A30: { y where y be Element of T : [x, y] in ( meet (Z \ {z})) } in the topology of T by A24, A27, A29;

              

               A31: ({ y where y be Element of T : [x, y] in ( meet (Z \ {z})) } /\ { y where y be Element of T : [x, y] in z }) = { y where y be Element of T : [x, y] in ( meet Z) }

              proof

                set M1 = { y where y be Element of T : [x, y] in ( meet (Z \ {z})) }, M2 = { y where y be Element of T : [x, y] in z }, M3 = { y where y be Element of T : [x, y] in ( meet Z) };

                

                 A32: (M1 /\ M2) c= M3

                proof

                  let a be object;

                  assume a in (M1 /\ M2);

                  then

                   A33: a in M1 & a in M2 by XBOOLE_0:def 4;

                  then

                  consider b be Element of T such that

                   A34: a = b and

                   A35: [x, b] in ( meet (Z \ {z}));

                  consider c be Element of T such that

                   A36: a = c and

                   A37: [x, c] in z by A33;

                  now

                    let Y be set;

                    assume Y in Z;

                    per cases ;

                      suppose Y in Z & not Y in {z};

                      then Y in (Z \ {z}) by XBOOLE_0:def 5;

                      hence [x, b] in Y by A35, SETFAM_1:def 1;

                    end;

                      suppose Y in {z};

                      hence [x, b] in Y by A34, A36, A37, TARSKI:def 1;

                    end;

                  end;

                  then [x, b] in ( meet Z) by SETFAM_1:def 1;

                  hence thesis by A34;

                end;

                M3 c= (M1 /\ M2)

                proof

                  let a be object;

                  assume a in M3;

                  then

                  consider b be Element of T such that

                   A38: a = b and

                   A39: [x, b] in ( meet Z);

                  now

                    let Y be set;

                    assume

                     A40: Y in (Z \ {z});

                    (Z \ {z}) c= Z by XBOOLE_1: 36;

                    hence [x, b] in Y by A40, A39, SETFAM_1:def 1;

                  end;

                  then [x, b] in ( meet (Z \ {z})) by A28, SETFAM_1:def 1;

                  then

                   A41: b in M1;

                   [x, b] in z by A39, SETFAM_1:def 1;

                  then a in M2 by A38;

                  hence thesis by A41, A38, XBOOLE_0:def 4;

                end;

                hence thesis by A32;

              end;

              z in ( subbasis_Pervin_quasi_uniformity T) by A25;

              then { y where y be Element of T : [x, y] in z } in the topology of T by Th29;

              hence { y where y be Element of T : [x, y] in ( meet Z) } in the topology of T by A31, A30, PRE_TOPC:def 1;

            end;

            hence thesis;

          end;

          

           A42: for k be non zero Nat holds P[k] from NAT_1:sch 10( A22, A23);

          ex n be Nat st ( card Y) = n by A10;

          hence thesis by A9, A42;

        end;

        hence thesis by A8, A1, A2, A7;

      end;

    end;

    theorem :: UNIFORM2:32

    

     Th31: for UT be non empty strict Quasi-UniformSpace, FMT be non empty strict FMT_Space_Str, x be Element of FMT st FMT = FMT_Space_Str (# the carrier of UT, ( Neighborhood UT) #) holds ex y be Element of UT st x = y & ( U_FMT x) = ( Neighborhood y)

    proof

      let UT be non empty strict Quasi-UniformSpace, FMT be non empty strict FMT_Space_Str, x be Element of FMT;

      assume

       A1: FMT = FMT_Space_Str (# the carrier of UT, ( Neighborhood UT) #);

      ( U_FMT x) = (the BNbd of FMT . x) by FINTOPO2:def 6;

      then

      consider y be Element of UT such that

       A2: x = y and

       A3: ( U_FMT x) = (( Neighborhood UT) . y) by A1;

      (( Neighborhood UT) . y) = ( Neighborhood y) by Def5;

      hence thesis by A2, A3;

    end;

    theorem :: UNIFORM2:33

    

     Th32: for T be non empty TopSpace holds ( Family_open_set ( FMT_induced_by ( Pervin_quasi_uniformity T))) = the topology of T

    proof

      let T be non empty TopSpace;

      

       A1: ( Family_open_set ( FMT_induced_by ( Pervin_quasi_uniformity T))) c= the topology of T

      proof

        let x be object;

        assume x in ( Family_open_set ( FMT_induced_by ( Pervin_quasi_uniformity T)));

        then

        consider O be open Subset of ( FMT_induced_by ( Pervin_quasi_uniformity T)) such that

         A2: x = O;

        reconsider O1 = O as Subset of T;

        for x be set holds x in O1 iff ex B be Subset of T st B is open & B c= O1 & x in B

        proof

          let x be set;

          hereby

            assume

             A3: x in O1;

            then

            reconsider t = x as Element of ( FMT_induced_by ( Pervin_quasi_uniformity T));

            consider y be Element of the carrier of ( Pervin_quasi_uniformity T) such that

             A4: t = y and

             A5: ( U_FMT t) = ( Neighborhood y) by Th31;

            O in ( Neighborhood y) by A5, FINTOPO7:def 1, A3;

            then

            consider V be Element of the entourages of ( Pervin_quasi_uniformity T) such that

             A6: O = ( Neighborhood (V,y));

            consider b be Element of ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)) such that

             A7: b c= V by CARDFIL2:def 8;

            ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)) c= <.( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)).] by CARDFIL2: 18;

            then

             A16: b in the entourages of ( Pervin_quasi_uniformity T);

            

             A17: [y, y] in ( id the carrier of ( Pervin_quasi_uniformity T)) by RELAT_1:def 10;

            ( Pervin_quasi_uniformity T) is axiom_U1;

            then

             A18: ( id the carrier of ( Pervin_quasi_uniformity T)) c= b by A16;

            reconsider B = { z where z be Element of the carrier of ( Pervin_quasi_uniformity T) : [y, z] in b } as set;

            B c= the carrier of ( Pervin_quasi_uniformity T)

            proof

              let t be object;

              assume t in B;

              then ex z be Element of T st t = z & [y, z] in b;

              hence thesis;

            end;

            then

            reconsider B as Subset of T;

            now

              take B;

              thus B is open by Th30, PRE_TOPC:def 2;

              B c= O

              proof

                let t be object;

                assume t in B;

                then ex z be Element of T st t = z & [y, z] in b;

                hence thesis by A7, A6;

              end;

              hence B c= O1;

              thus x in B by A4, A18, A17;

            end;

            hence ex B be Subset of T st B is open & B c= O1 & x in B;

          end;

          assume ex B be Subset of T st B is open & B c= O1 & x in B;

          hence x in O1;

        end;

        hence thesis by A2, PRE_TOPC:def 2, TOPS_1: 25;

      end;

      the topology of T c= ( Family_open_set ( FMT_induced_by ( Pervin_quasi_uniformity T)))

      proof

        let x be object;

        assume

         A20: x in the topology of T;

        then

        reconsider y = x as Subset of T;

        reconsider z = y as Subset of ( Pervin_quasi_uniformity T);

        for u be Element of ( FMT_induced_by ( Pervin_quasi_uniformity T)) st u in z holds z in ( U_FMT u)

        proof

          let u be Element of ( FMT_induced_by ( Pervin_quasi_uniformity T));

          assume

           A21: u in z;

          consider w be Element of the carrier of ( Pervin_quasi_uniformity T) such that

           A22: u = w and

           A23: ( U_FMT u) = ( Neighborhood w) by Th31;

          reconsider W = ( block_Pervin_quasi_uniformity y) as Subset of [:the carrier of ( Pervin_quasi_uniformity T), the carrier of ( Pervin_quasi_uniformity T):];

          

           A24: W in ( subbasis_Pervin_quasi_uniformity T) by A20;

          

           A25: ( subbasis_Pervin_quasi_uniformity T) c= ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)) by CANTOR_1: 4;

          ( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)) c= <.( FinMeetCl ( subbasis_Pervin_quasi_uniformity T)).] by CARDFIL2: 18;

          then

          reconsider W as Element of the entourages of ( Pervin_quasi_uniformity T) by A25, A24;

          { ww where ww be Element of T : [w, ww] in ( block_Pervin_quasi_uniformity y) } = y

          proof

            thus { ww where ww be Element of T : [w, ww] in ( block_Pervin_quasi_uniformity y) } c= y

            proof

              let a be object;

              assume a in { ww where ww be Element of T : [w, ww] in ( block_Pervin_quasi_uniformity y) };

              then

              consider ww be Element of T such that

               A27: a = ww and

               A28: [w, ww] in ( [:(the carrier of T \ y), the carrier of T:] \/ [:the carrier of T, y:]);

               [w, ww] in [:(the carrier of T \ y), the carrier of T:] or [w, ww] in [:the carrier of T, y:] by A28, XBOOLE_0:def 3;

              then (w in (the carrier of T \ y) & ww in the carrier of T) or (w in the carrier of T & ww in y) by ZFMISC_1: 87;

              hence thesis by A27, A21, A22, XBOOLE_0:def 5;

            end;

            let a be object;

            assume

             A29: a in y;

            then

            reconsider b = a as Element of T;

             [w, b] in [:the carrier of T, y:] by A29, ZFMISC_1: 87;

            then [w, b] in ( block_Pervin_quasi_uniformity y) by XBOOLE_0:def 3;

            hence thesis;

          end;

          then z = ( Neighborhood (W,w));

          hence thesis by A23;

        end;

        then z is open Subset of ( FMT_induced_by ( Pervin_quasi_uniformity T)) by FINTOPO7:def 1;

        hence thesis;

      end;

      hence thesis by A1;

    end;

    theorem :: UNIFORM2:34

    for T be non empty strict TopSpace holds ( TopSpace_induced_by ( Pervin_quasi_uniformity T)) = T

    proof

      let T be non empty strict TopSpace;

      the topology of ( TopSpace_induced_by ( Pervin_quasi_uniformity T)) = ( Family_open_set ( FMT_induced_by ( Pervin_quasi_uniformity T))) by FINTOPO7:def 16;

      hence thesis by FINTOPO7:def 16, Th32;

    end;