gate_2.miz
begin
reserve a,b,c,d for
set;
theorem ::
GATE_2:1
for s0,s1,s2,s3,s4,s5,s6,s7,ns0,ns1,ns2,ns3,ns4,ns5,ns6,ns7,q1,q2,q3,nq1,nq2,nq3 be
set holds (s0 is non
empty iff not (
AND3 ((
NOT1 q3),(
NOT1 q2),(
NOT1 q1))) is
empty) & (s1 is non
empty iff not (
AND3 ((
NOT1 q3),(
NOT1 q2),q1)) is
empty) & (s2 is non
empty iff not (
AND3 ((
NOT1 q3),q2,(
NOT1 q1))) is
empty) & (s3 is non
empty iff not (
AND3 ((
NOT1 q3),q2,q1)) is
empty) & (s4 is non
empty iff not (
AND3 (q3,(
NOT1 q2),(
NOT1 q1))) is
empty) & (s5 is non
empty iff not (
AND3 (q3,(
NOT1 q2),q1)) is
empty) & (s6 is non
empty iff not (
AND3 (q3,q2,(
NOT1 q1))) is
empty) & (s7 is non
empty iff not (
AND3 (q3,q2,q1)) is
empty) & (ns0 is non
empty iff not (
AND3 ((
NOT1 nq3),(
NOT1 nq2),(
NOT1 nq1))) is
empty) & (ns1 is non
empty iff not (
AND3 ((
NOT1 nq3),(
NOT1 nq2),nq1)) is
empty) & (ns2 is non
empty iff not (
AND3 ((
NOT1 nq3),nq2,(
NOT1 nq1))) is
empty) & (ns3 is non
empty iff not (
AND3 ((
NOT1 nq3),nq2,nq1)) is
empty) & (ns4 is non
empty iff not (
AND3 (nq3,(
NOT1 nq2),(
NOT1 nq1))) is
empty) & (ns5 is non
empty iff not (
AND3 (nq3,(
NOT1 nq2),nq1)) is
empty) & (ns6 is non
empty iff not (
AND3 (nq3,nq2,(
NOT1 nq1))) is
empty) & (ns7 is non
empty iff not (
AND3 (nq3,nq2,nq1)) is
empty) & (nq1 is non
empty iff not (
NOT1 q1) is
empty) & (nq2 is non
empty iff not (
XOR2 (q1,q2)) is
empty) & (nq3 is non
empty iff not (
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))) is
empty) implies (ns1 is non
empty iff s0 is non
empty) & (ns2 is non
empty iff s1 is non
empty) & (ns3 is non
empty iff s2 is non
empty) & (ns4 is non
empty iff s3 is non
empty) & (ns5 is non
empty iff s4 is non
empty) & (ns6 is non
empty iff s5 is non
empty) & (ns7 is non
empty iff s6 is non
empty) & (ns0 is non
empty iff s7 is non
empty)
proof
let s0,s1,s2,s3,s4,s5,s6,s7,ns0,ns1,ns2,ns3,ns4,ns5,ns6,ns7,q1,q2,q3,nq1,nq2,nq3 be
set;
thus (s0 is non
empty iff not (
AND3 ((
NOT1 q3),(
NOT1 q2),(
NOT1 q1))) is
empty) & (s1 is non
empty iff not (
AND3 ((
NOT1 q3),(
NOT1 q2),q1)) is
empty) & (s2 is non
empty iff not (
AND3 ((
NOT1 q3),q2,(
NOT1 q1))) is
empty) & (s3 is non
empty iff not (
AND3 ((
NOT1 q3),q2,q1)) is
empty) & (s4 is non
empty iff not (
AND3 (q3,(
NOT1 q2),(
NOT1 q1))) is
empty) & (s5 is non
empty iff not (
AND3 (q3,(
NOT1 q2),q1)) is
empty) & (s6 is non
empty iff not (
AND3 (q3,q2,(
NOT1 q1))) is
empty) & (s7 is non
empty iff not (
AND3 (q3,q2,q1)) is
empty) & (ns0 is non
empty iff not (
AND3 ((
NOT1 nq3),(
NOT1 nq2),(
NOT1 nq1))) is
empty) & (ns1 is non
empty iff not (
AND3 ((
NOT1 nq3),(
NOT1 nq2),nq1)) is
empty) & (ns2 is non
empty iff not (
AND3 ((
NOT1 nq3),nq2,(
NOT1 nq1))) is
empty) & (ns3 is non
empty iff not (
AND3 ((
NOT1 nq3),nq2,nq1)) is
empty) & (ns4 is non
empty iff not (
AND3 (nq3,(
NOT1 nq2),(
NOT1 nq1))) is
empty) & (ns5 is non
empty iff not (
AND3 (nq3,(
NOT1 nq2),nq1)) is
empty) & (ns6 is non
empty iff not (
AND3 (nq3,nq2,(
NOT1 nq1))) is
empty) & (ns7 is non
empty iff not (
AND3 (nq3,nq2,nq1)) is
empty) & (nq1 is non
empty iff not (
NOT1 q1) is
empty) & (nq2 is non
empty iff not (
XOR2 (q1,q2)) is
empty) & (nq3 is non
empty iff not (
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))) is
empty) implies (ns1 is non
empty iff s0 is non
empty) & (ns2 is non
empty iff s1 is non
empty) & (ns3 is non
empty iff s2 is non
empty) & (ns4 is non
empty iff s3 is non
empty) & (ns5 is non
empty iff s4 is non
empty) & (ns6 is non
empty iff s5 is non
empty) & (ns7 is non
empty iff s6 is non
empty) & (ns0 is non
empty iff s7 is non
empty)
proof
assume that
A1: s0 is non
empty iff not (
AND3 ((
NOT1 q3),(
NOT1 q2),(
NOT1 q1))) is
empty and
A2: s1 is non
empty iff not (
AND3 ((
NOT1 q3),(
NOT1 q2),q1)) is
empty and
A3: s2 is non
empty iff not (
AND3 ((
NOT1 q3),q2,(
NOT1 q1))) is
empty and
A4: s3 is non
empty iff not (
AND3 ((
NOT1 q3),q2,q1)) is
empty and
A5: s4 is non
empty iff not (
AND3 (q3,(
NOT1 q2),(
NOT1 q1))) is
empty and
A6: s5 is non
empty iff not (
AND3 (q3,(
NOT1 q2),q1)) is
empty and
A7: s6 is non
empty iff not (
AND3 (q3,q2,(
NOT1 q1))) is
empty and
A8: s7 is non
empty iff not (
AND3 (q3,q2,q1)) is
empty and
A9: ns0 is non
empty iff not (
AND3 ((
NOT1 nq3),(
NOT1 nq2),(
NOT1 nq1))) is
empty and
A10: ns1 is non
empty iff not (
AND3 ((
NOT1 nq3),(
NOT1 nq2),nq1)) is
empty and
A11: ns2 is non
empty iff not (
AND3 ((
NOT1 nq3),nq2,(
NOT1 nq1))) is
empty and
A12: ns3 is non
empty iff not (
AND3 ((
NOT1 nq3),nq2,nq1)) is
empty and
A13: ns4 is non
empty iff not (
AND3 (nq3,(
NOT1 nq2),(
NOT1 nq1))) is
empty and
A14: ns5 is non
empty iff not (
AND3 (nq3,(
NOT1 nq2),nq1)) is
empty and
A15: ns6 is non
empty iff not (
AND3 (nq3,nq2,(
NOT1 nq1))) is
empty and
A16: ns7 is non
empty iff not (
AND3 (nq3,nq2,nq1)) is
empty and
A17: (nq1 is non
empty iff not (
NOT1 q1) is
empty) & (nq2 is non
empty iff not (
XOR2 (q1,q2)) is
empty) and
A18: nq3 is non
empty iff not (
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))) is
empty;
ns1 is non
empty iff (
NOT1 nq3) is non
empty & not not (
XOR2 (q1,q2)) is
empty & not q1 is non
empty by
A10,
A17;
then ns1 is non
empty iff ( not not q3 is
empty or not not (
NOT1 q1) is
empty) & ( not not q1 is
empty or not not (
XOR2 (q2,q3)) is
empty) & not q2 is non
empty & not q1 is non
empty by
A18;
hence ns1 is non
empty iff s0 is non
empty by
A1;
ns2 is non
empty iff not (
AND2 (q3,(
NOT1 q1))) is non
empty & not (
AND2 (q1,(
XOR2 (q2,q3)))) is non
empty & not q2 is non
empty & q1 is non
empty by
A11,
A17,
A18,
GATE_1: 6;
then ns2 is non
empty iff ( not q3 is non
empty or q1 is non
empty) & not q3 is non
empty & not q2 is non
empty & q1 is non
empty;
hence ns2 is non
empty iff s1 is non
empty by
A2;
ns3 is non
empty iff (
NOT1 nq3) is non
empty & (
XOR2 (q1,q2)) is non
empty & not q1 is non
empty by
A12,
A17;
then ns3 is non
empty iff ( not q3 is non
empty or not (
NOT1 q1) is non
empty) & ( not q1 is non
empty or not (
XOR2 (q2,q3)) is non
empty) & q2 is non
empty & not q1 is non
empty by
A18;
hence ns3 is non
empty iff s2 is non
empty by
A3;
ns4 is non
empty iff ((
AND2 (q3,(
NOT1 q1))) is non
empty or (
AND2 (q1,(
XOR2 (q2,q3)))) is non
empty) & q2 is non
empty & q1 is non
empty by
A13,
A17,
A18,
GATE_1: 6;
then ns4 is non
empty iff not q3 is non
empty & q2 is non
empty & q1 is non
empty;
hence ns4 is non
empty iff s3 is non
empty by
A4;
ns5 is non
empty iff nq3 is non
empty & not (
XOR2 (q1,q2)) is non
empty & not q1 is non
empty by
A14,
A17;
then ns5 is non
empty iff ((
AND2 (q3,(
NOT1 q1))) is non
empty or (
AND2 (q1,(
XOR2 (q2,q3)))) is non
empty) & not q2 is non
empty & not q1 is non
empty by
A18;
then ns5 is non
empty iff q3 is non
empty & (
NOT1 q2) is non
empty & (
NOT1 q1) is non
empty;
hence ns5 is non
empty iff s4 is non
empty by
A5;
ns6 is non
empty iff ((
AND2 (q3,(
NOT1 q1))) is non
empty or (
AND2 (q1,(
XOR2 (q2,q3)))) is non
empty) & not q2 is non
empty & q1 is non
empty by
A15,
A17,
A18,
GATE_1: 6;
then ns6 is non
empty iff q3 is non
empty & not q2 is non
empty & q1 is non
empty;
hence ns6 is non
empty iff s5 is non
empty by
A6;
ns7 is non
empty iff nq3 is non
empty & (
XOR2 (q1,q2)) is non
empty & not q1 is non
empty by
A16,
A17;
then ns7 is non
empty iff ((
AND2 (q3,(
NOT1 q1))) is non
empty or (
AND2 (q1,(
XOR2 (q2,q3)))) is non
empty) & q2 is non
empty & not q1 is non
empty by
A18;
then ns7 is non
empty iff q3 is non
empty & q2 is non
empty & (
NOT1 q1) is non
empty;
hence ns7 is non
empty iff s6 is non
empty by
A7;
ns0 is non
empty iff not (
AND2 (q3,(
NOT1 q1))) is non
empty & not (
AND2 (q1,(
XOR2 (q2,q3)))) is non
empty & q2 is non
empty & q1 is non
empty by
A9,
A17,
A18,
GATE_1: 6;
then ns0 is non
empty iff ( not q3 is non
empty or q1 is non
empty) & q3 is non
empty & q2 is non
empty & q1 is non
empty;
hence thesis by
A8;
end;
end;
theorem ::
GATE_2:2
(
AND3 ((
AND2 (a,d)),(
AND2 (b,d)),(
AND2 (c,d)))) is non
empty iff (
AND2 ((
AND3 (a,b,c)),d)) is non
empty
proof
a is non
empty & b is non
empty & c is non
empty & d is non
empty iff (
AND3 (a,b,c)) is non
empty & d is non
empty;
hence thesis;
end;
theorem ::
GATE_2:3
( not (
AND2 (a,b)) is non
empty iff (
OR2 ((
NOT1 a),(
NOT1 b))) is non
empty) & ((
OR2 (a,b)) is non
empty & (
OR2 (c,b)) is non
empty iff (
OR2 ((
AND2 (a,c)),b)) is non
empty) & ((
OR2 (a,b)) is non
empty & (
OR2 (c,b)) is non
empty & (
OR2 (d,b)) is non
empty iff (
OR2 ((
AND3 (a,c,d)),b)) is non
empty) & ((
OR2 (a,b)) is non
empty & (a is non
empty iff c is non
empty) implies (
OR2 (c,b)) is non
empty)
proof
A1: (
OR2 (a,b)) is non
empty & (
OR2 (c,b)) is non
empty iff (a is non
empty or b is non
empty) & (c is non
empty or b is non
empty);
A2: (
OR2 (a,b)) is non
empty & (
OR2 (c,b)) is non
empty & (
OR2 (d,b)) is non
empty iff (a is non
empty or b is non
empty) & (c is non
empty or b is non
empty) & (d is non
empty or b is non
empty);
not (
AND2 (a,b)) is non
empty iff not (a is non
empty & b is non
empty);
hence thesis by
A1,
A2;
end;
theorem ::
GATE_2:4
for s0,s1,s2,s3,s4,s5,s6,s7,ns0,ns1,ns2,ns3,ns4,ns5,ns6,ns7,q1,q2,q3,nq1,nq2,nq3,R be
set holds (s0 is non
empty iff (
AND3 ((
NOT1 q3),(
NOT1 q2),(
NOT1 q1))) is non
empty) & (s1 is non
empty iff (
AND3 ((
NOT1 q3),(
NOT1 q2),q1)) is non
empty) & (s2 is non
empty iff (
AND3 ((
NOT1 q3),q2,(
NOT1 q1))) is non
empty) & (s3 is non
empty iff (
AND3 ((
NOT1 q3),q2,q1)) is non
empty) & (s4 is non
empty iff (
AND3 (q3,(
NOT1 q2),(
NOT1 q1))) is non
empty) & (s5 is non
empty iff (
AND3 (q3,(
NOT1 q2),q1)) is non
empty) & (s6 is non
empty iff (
AND3 (q3,q2,(
NOT1 q1))) is non
empty) & (s7 is non
empty iff (
AND3 (q3,q2,q1)) is non
empty) & (ns0 is non
empty iff (
AND3 ((
NOT1 nq3),(
NOT1 nq2),(
NOT1 nq1))) is non
empty) & (ns1 is non
empty iff (
AND3 ((
NOT1 nq3),(
NOT1 nq2),nq1)) is non
empty) & (ns2 is non
empty iff (
AND3 ((
NOT1 nq3),nq2,(
NOT1 nq1))) is non
empty) & (ns3 is non
empty iff (
AND3 ((
NOT1 nq3),nq2,nq1)) is non
empty) & (ns4 is non
empty iff (
AND3 (nq3,(
NOT1 nq2),(
NOT1 nq1))) is non
empty) & (ns5 is non
empty iff (
AND3 (nq3,(
NOT1 nq2),nq1)) is non
empty) & (ns6 is non
empty iff (
AND3 (nq3,nq2,(
NOT1 nq1))) is non
empty) & (ns7 is non
empty iff (
AND3 (nq3,nq2,nq1)) is non
empty) & (nq1 is non
empty iff (
AND2 ((
NOT1 q1),R)) is non
empty) & (nq2 is non
empty iff (
AND2 ((
XOR2 (q1,q2)),R)) is non
empty) & (nq3 is non
empty iff (
AND2 ((
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))),R)) is non
empty) implies (ns1 is non
empty iff (
AND2 (s0,R)) is non
empty) & (ns2 is non
empty iff (
AND2 (s1,R)) is non
empty) & (ns3 is non
empty iff (
AND2 (s2,R)) is non
empty) & (ns4 is non
empty iff (
AND2 (s3,R)) is non
empty) & (ns5 is non
empty iff (
AND2 (s4,R)) is non
empty) & (ns6 is non
empty iff (
AND2 (s5,R)) is non
empty) & (ns7 is non
empty iff (
AND2 (s6,R)) is non
empty) & (ns0 is non
empty iff (
OR2 (s7,(
NOT1 R))) is non
empty)
proof
let s0,s1,s2,s3,s4,s5,s6,s7,ns0,ns1,ns2,ns3,ns4,ns5,ns6,ns7,q1,q2,q3,nq1,nq2,nq3,R be
set;
thus (s0 is non
empty iff (
AND3 ((
NOT1 q3),(
NOT1 q2),(
NOT1 q1))) is non
empty) & (s1 is non
empty iff (
AND3 ((
NOT1 q3),(
NOT1 q2),q1)) is non
empty) & (s2 is non
empty iff (
AND3 ((
NOT1 q3),q2,(
NOT1 q1))) is non
empty) & (s3 is non
empty iff (
AND3 ((
NOT1 q3),q2,q1)) is non
empty) & (s4 is non
empty iff (
AND3 (q3,(
NOT1 q2),(
NOT1 q1))) is non
empty) & (s5 is non
empty iff (
AND3 (q3,(
NOT1 q2),q1)) is non
empty) & (s6 is non
empty iff (
AND3 (q3,q2,(
NOT1 q1))) is non
empty) & (s7 is non
empty iff (
AND3 (q3,q2,q1)) is non
empty) & (ns0 is non
empty iff (
AND3 ((
NOT1 nq3),(
NOT1 nq2),(
NOT1 nq1))) is non
empty) & (ns1 is non
empty iff (
AND3 ((
NOT1 nq3),(
NOT1 nq2),nq1)) is non
empty) & (ns2 is non
empty iff (
AND3 ((
NOT1 nq3),nq2,(
NOT1 nq1))) is non
empty) & (ns3 is non
empty iff (
AND3 ((
NOT1 nq3),nq2,nq1)) is non
empty) & (ns4 is non
empty iff (
AND3 (nq3,(
NOT1 nq2),(
NOT1 nq1))) is non
empty) & (ns5 is non
empty iff (
AND3 (nq3,(
NOT1 nq2),nq1)) is non
empty) & (ns6 is non
empty iff (
AND3 (nq3,nq2,(
NOT1 nq1))) is non
empty) & (ns7 is non
empty iff (
AND3 (nq3,nq2,nq1)) is non
empty) & (nq1 is non
empty iff (
AND2 ((
NOT1 q1),R)) is non
empty) & (nq2 is non
empty iff (
AND2 ((
XOR2 (q1,q2)),R)) is non
empty) & (nq3 is non
empty iff (
AND2 ((
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))),R)) is non
empty) implies (ns1 is non
empty iff (
AND2 (s0,R)) is non
empty) & (ns2 is non
empty iff (
AND2 (s1,R)) is non
empty) & (ns3 is non
empty iff (
AND2 (s2,R)) is non
empty) & (ns4 is non
empty iff (
AND2 (s3,R)) is non
empty) & (ns5 is non
empty iff (
AND2 (s4,R)) is non
empty) & (ns6 is non
empty iff (
AND2 (s5,R)) is non
empty) & (ns7 is non
empty iff (
AND2 (s6,R)) is non
empty) & (ns0 is non
empty iff (
OR2 (s7,(
NOT1 R))) is non
empty)
proof
assume that
A1: s0 is non
empty iff (
AND3 ((
NOT1 q3),(
NOT1 q2),(
NOT1 q1))) is non
empty and
A2: s1 is non
empty iff (
AND3 ((
NOT1 q3),(
NOT1 q2),q1)) is non
empty and
A3: s2 is non
empty iff (
AND3 ((
NOT1 q3),q2,(
NOT1 q1))) is non
empty and
A4: s3 is non
empty iff (
AND3 ((
NOT1 q3),q2,q1)) is non
empty and
A5: s4 is non
empty iff (
AND3 (q3,(
NOT1 q2),(
NOT1 q1))) is non
empty and
A6: s5 is non
empty iff (
AND3 (q3,(
NOT1 q2),q1)) is non
empty and
A7: s6 is non
empty iff (
AND3 (q3,q2,(
NOT1 q1))) is non
empty and
A8: s7 is non
empty iff (
AND3 (q3,q2,q1)) is non
empty and
A9: ns0 is non
empty iff (
AND3 ((
NOT1 nq3),(
NOT1 nq2),(
NOT1 nq1))) is non
empty and
A10: ns1 is non
empty iff (
AND3 ((
NOT1 nq3),(
NOT1 nq2),nq1)) is non
empty and
A11: ns2 is non
empty iff (
AND3 ((
NOT1 nq3),nq2,(
NOT1 nq1))) is non
empty and
A12: ns3 is non
empty iff (
AND3 ((
NOT1 nq3),nq2,nq1)) is non
empty and
A13: ns4 is non
empty iff (
AND3 (nq3,(
NOT1 nq2),(
NOT1 nq1))) is non
empty and
A14: ns5 is non
empty iff (
AND3 (nq3,(
NOT1 nq2),nq1)) is non
empty and
A15: ns6 is non
empty iff (
AND3 (nq3,nq2,(
NOT1 nq1))) is non
empty and
A16: ns7 is non
empty iff (
AND3 (nq3,nq2,nq1)) is non
empty and
A17: nq1 is non
empty iff (
AND2 ((
NOT1 q1),R)) is non
empty and
A18: nq2 is non
empty iff (
AND2 ((
XOR2 (q1,q2)),R)) is non
empty and
A19: nq3 is non
empty iff (
AND2 ((
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))),R)) is non
empty;
ns1 is non
empty iff not nq3 is non
empty & ( not (
XOR2 (q1,q2)) is non
empty or not R is non
empty) & not q1 is non
empty & R is non
empty by
A10,
A17,
A18;
then ns1 is non
empty iff ( not q3 is non
empty or not (
NOT1 q1) is non
empty) & ( not q1 is non
empty or not (
XOR2 (q2,q3)) is non
empty) & not q2 is non
empty & not q1 is non
empty & R is non
empty by
A19;
hence ns1 is non
empty iff (
AND2 (s0,R)) is non
empty by
A1;
ns2 is non
empty iff not nq3 is non
empty & (
XOR2 (q1,q2)) is non
empty & R is non
empty & ( not (
NOT1 q1) is non
empty or not R is non
empty) by
A11,
A17,
A18;
then ns2 is non
empty iff not nq3 is non
empty & (
XOR2 (q1,q2)) is non
empty & R is non
empty & q1 is non
empty;
then ns2 is non
empty iff not (
AND2 (q3,(
NOT1 q1))) is non
empty & not (
AND2 (q1,(
XOR2 (q2,q3)))) is non
empty & not q2 is non
empty & q1 is non
empty & R is non
empty by
A19;
then ns2 is non
empty iff ( not q3 is non
empty or q1 is non
empty) & not q3 is non
empty & not q2 is non
empty & q1 is non
empty & R is non
empty;
hence ns2 is non
empty iff (
AND2 (s1,R)) is non
empty by
A2;
ns3 is non
empty iff not nq3 is non
empty & (
XOR2 (q1,q2)) is non
empty & R is non
empty & not q1 is non
empty & R is non
empty by
A12,
A17,
A18;
then ns3 is non
empty iff ( not q3 is non
empty or not (
NOT1 q1) is non
empty) & ( not q1 is non
empty or not (
XOR2 (q2,q3)) is non
empty) & q2 is non
empty & not q1 is non
empty & R is non
empty by
A19;
hence ns3 is non
empty iff (
AND2 (s2,R)) is non
empty by
A3;
ns4 is non
empty iff (
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))) is non
empty & R is non
empty & not nq2 is non
empty & not (
AND2 ((
NOT1 q1),R)) is non
empty by
A13,
A17,
A19;
then ns4 is non
empty iff (
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))) is non
empty & R is non
empty & not (
XOR2 (q1,q2)) is non
empty & q1 is non
empty by
A18;
then ns4 is non
empty iff (q3 is non
empty & (
NOT1 q1) is non
empty or q1 is non
empty & (
XOR2 (q2,q3)) is non
empty) & R is non
empty & q2 is non
empty & q1 is non
empty;
then ns4 is non
empty iff not q3 is non
empty & R is non
empty & q2 is non
empty & q1 is non
empty;
hence ns4 is non
empty iff (
AND2 (s3,R)) is non
empty by
A4;
ns5 is non
empty iff nq3 is non
empty & ( not (
XOR2 (q1,q2)) is non
empty or not R is non
empty) & not q1 is non
empty & R is non
empty by
A14,
A17,
A18;
then ns5 is non
empty iff (
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))) is non
empty & not q2 is non
empty & not q1 is non
empty & R is non
empty by
A19;
then ns5 is non
empty iff q3 is non
empty & (
NOT1 q2) is non
empty & (
NOT1 q1) is non
empty & R is non
empty;
hence ns5 is non
empty iff (
AND2 (s4,R)) is non
empty by
A5;
ns6 is non
empty iff nq3 is non
empty & (
XOR2 (q1,q2)) is non
empty & R is non
empty & ( not (
NOT1 q1) is non
empty or not R is non
empty) by
A15,
A17,
A18;
then ns6 is non
empty iff nq3 is non
empty & (
XOR2 (q1,q2)) is non
empty & R is non
empty & q1 is non
empty;
then ns6 is non
empty iff (q3 is non
empty & (
NOT1 q1) is non
empty or q1 is non
empty & (
XOR2 (q2,q3)) is non
empty) & R is non
empty & not q2 is non
empty & q1 is non
empty by
A19;
then ns6 is non
empty iff q3 is non
empty & R is non
empty & not q2 is non
empty & q1 is non
empty;
hence ns6 is non
empty iff (
AND2 (s5,R)) is non
empty by
A6;
ns7 is non
empty iff nq3 is non
empty & (
XOR2 (q1,q2)) is non
empty & not q1 is non
empty & R is non
empty by
A16,
A17,
A18;
then ns7 is non
empty iff (
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))) is non
empty & q2 is non
empty & not q1 is non
empty & R is non
empty by
A19;
then ns7 is non
empty iff q3 is non
empty & q2 is non
empty & (
NOT1 q1) is non
empty & R is non
empty;
hence ns7 is non
empty iff (
AND2 (s6,R)) is non
empty by
A7;
ns0 is non
empty iff q1 is non
empty & not (
XOR2 (q1,q2)) is non
empty & not (
OR2 ((
AND2 (q3,(
NOT1 q1))),(
AND2 (q1,(
XOR2 (q2,q3)))))) is non
empty or not R is non
empty by
A9,
A17,
A18,
A19;
then ns0 is non
empty iff q1 is non
empty & q2 is non
empty & not (
AND2 (q3,(
NOT1 q1))) is non
empty & not (
XOR2 (q2,q3)) is non
empty or not R is non
empty;
then ns0 is non
empty iff q1 is non
empty & q2 is non
empty & q1 is non
empty & q3 is non
empty or not R is non
empty;
hence thesis by
A8;
end;
end;