projpl_1.miz



    begin

    reserve G for IncProjStr;

    reserve a,a1,a2,b,b1,b2,c,d,p,q,r for POINT of G;

    reserve A,B,C,D,M,N,P,Q,R for LINE of G;

    notation

      let G, a, P;

      antonym a |' P for a on P;

    end

    definition

      let G, a, b, P;

      :: PROJPL_1:def1

      pred a,b |' P means a |' P & b |' P;

    end

    definition

      let G, a, P, Q;

      :: PROJPL_1:def2

      pred a on P,Q means a on P & a on Q;

    end

    definition

      let G, a, P, Q, R;

      :: PROJPL_1:def3

      pred a on P,Q,R means a on P & a on Q & a on R;

    end

    theorem :: PROJPL_1:1

    

     Th1: ( {a, b} on P implies {b, a} on P) & ( {a, b, c} on P implies {a, c, b} on P & {b, a, c} on P & {b, c, a} on P & {c, a, b} on P & {c, b, a} on P) & (a on (P,Q) implies a on (Q,P)) & (a on (P,Q,R) implies a on (P,R,Q) & a on (Q,P,R) & a on (Q,R,P) & a on (R,P,Q) & a on (R,Q,P))

    proof

      thus {a, b} on P implies {b, a} on P;

      thus {a, b, c} on P implies {a, c, b} on P & {b, a, c} on P & {b, c, a} on P & {c, a, b} on P & {c, b, a} on P

      proof

        assume

         A1: {a, b, c} on P;

        then

         A2: c on P by INCSP_1: 2;

        a on P & b on P by A1, INCSP_1: 2;

        hence thesis by A2, INCSP_1: 2;

      end;

      thus a on (P,Q) implies a on (Q,P);

      assume

       A3: a on (P,Q,R);

      then

       A4: a on R;

      a on P & a on Q by A3;

      hence thesis by A4;

    end;

    definition

      let IT be IncProjStr;

      :: PROJPL_1:def4

      attr IT is configuration means for p,q be POINT of IT, P,Q be LINE of IT st p on P & q on P & p on Q & q on Q holds p = q or P = Q;

    end

    theorem :: PROJPL_1:2

    

     Th2: G is configuration iff for p, q, P, Q st {p, q} on P & {p, q} on Q holds p = q or P = Q

    proof

      hereby

        assume

         A1: G is configuration;

        let p, q, P, Q;

        assume that

         A2: {p, q} on P and

         A3: {p, q} on Q;

        

         A4: p on Q & q on Q by A3, INCSP_1: 1;

        p on P & q on P by A2, INCSP_1: 1;

        hence p = q or P = Q by A1, A4;

      end;

      hereby

        assume

         A5: for p, q, P, Q st {p, q} on P & {p, q} on Q holds p = q or P = Q;

        now

          let p, q, P, Q;

          assume p on P & q on P & p on Q & q on Q;

          then {p, q} on P & {p, q} on Q by INCSP_1: 1;

          hence p = q or P = Q by A5;

        end;

        hence G is configuration;

      end;

    end;

    theorem :: PROJPL_1:3

    G is configuration iff for p, q, P, Q st p on (P,Q) & q on (P,Q) holds p = q or P = Q

    proof

      thus G is configuration implies for p, q, P, Q st p on (P,Q) & q on (P,Q) holds p = q or P = Q;

      hereby

        assume

         A1: for p, q, P, Q st p on (P,Q) & q on (P,Q) holds p = q or P = Q;

        now

          let p, q, P, Q;

          assume p on P & q on P & p on Q & q on Q;

          then p on (P,Q) & q on (P,Q);

          hence p = q or P = Q by A1;

        end;

        hence G is configuration;

      end;

    end;

    theorem :: PROJPL_1:4

    

     Th4: G is IncProjSp iff G is configuration & (for p, q holds ex P st {p, q} on P) & (ex p, P st p |' P) & (for P holds ex a, b, c st (a,b,c) are_mutually_distinct & {a, b, c} on P) & for a, b, c, d, p, M, N, P, Q st {a, b, p} on M & {c, d, p} on N & {a, c} on P & {b, d} on Q & p |' P & p |' Q & M <> N holds ex q st q on (P,Q)

    proof

      hereby

        assume

         A1: G is IncProjSp;

        then for p, q, P, Q st p on P & q on P & p on Q & q on Q holds p = q or P = Q by INCPROJ:def 4;

        hence G is configuration;

        thus for p, q holds ex P st {p, q} on P

        proof

          let p, q;

          consider P such that

           A2: p on P & q on P by A1, INCPROJ:def 5;

          take P;

          thus thesis by A2, INCSP_1: 1;

        end;

        thus ex p, P st p |' P by A1, INCPROJ:def 6;

        thus for P holds ex a, b, c st (a,b,c) are_mutually_distinct & {a, b, c} on P

        proof

          let P;

          consider a, b, c such that

           A3: a <> b & b <> c & c <> a and

           A4: a on P & b on P & c on P by A1, INCPROJ:def 7;

          take a, b, c;

          thus (a,b,c) are_mutually_distinct by A3, ZFMISC_1:def 5;

          thus thesis by A4, INCSP_1: 2;

        end;

        thus for a, b, c, d, p, M, N, P, Q st {a, b, p} on M & {c, d, p} on N & {a, c} on P & {b, d} on Q & p |' P & p |' Q & M <> N holds ex q st q on (P,Q)

        proof

          let a, b, c, d, p, M, N, P, Q such that

           A5: {a, b, p} on M and

           A6: {c, d, p} on N and

           A7: {a, c} on P and

           A8: {b, d} on Q and

           A9: p |' P & p |' Q & M <> N;

          

           A10: a on M & b on M by A5, INCSP_1: 2;

          

           A11: a on P & c on P by A7, INCSP_1: 1;

          

           A12: d on N & p on N by A6, INCSP_1: 2;

          

           A13: b on Q & d on Q by A8, INCSP_1: 1;

          p on M & c on N by A5, A6, INCSP_1: 2;

          then

          consider q such that

           A14: q on P & q on Q by A1, A9, A10, A12, A11, A13, INCPROJ:def 8;

          take q;

          thus thesis by A14;

        end;

      end;

      hereby

        assume that

         A15: G is configuration and

         A16: for p, q holds ex P st {p, q} on P and

         A17: ex p, P st p |' P and

         A18: for P holds ex a, b, c st (a,b,c) are_mutually_distinct & {a, b, c} on P and

         A19: for a, b, c, d, p, M, N, P, Q st {a, b, p} on M & {c, d, p} on N & {a, c} on P & {b, d} on Q & p |' P & p |' Q & M <> N holds ex q st q on (P,Q);

         A20:

        now

          let p, q;

          consider P such that

           A21: {p, q} on P by A16;

          take P;

          thus p on P & q on P by A21, INCSP_1: 1;

        end;

         A22:

        now

          let P;

          consider a, b, c such that

           A23: (a,b,c) are_mutually_distinct and

           A24: {a, b, c} on P by A18;

          

           A25: a <> b & b <> c by A23, ZFMISC_1:def 5;

          

           A26: b on P & c on P by A24, INCSP_1: 2;

          c <> a & a on P by A23, A24, INCSP_1: 2, ZFMISC_1:def 5;

          hence ex a, b, c st a <> b & b <> c & c <> a & a on P & b on P & c on P by A25, A26;

        end;

        

         A27: for a, b, c, d, p, q, M, N, P, Q st a on M & b on M & c on N & d on N & p on M & p on N & a on P & c on P & b on Q & d on Q & not p on P & not p on Q & M <> N holds ex q st q on P & q on Q

        proof

          let a, b, c, d, p, q, M, N, P, Q such that

           A28: a on M & b on M & c on N & d on N & p on M & p on N and

           A29: a on P & c on P & b on Q & d on Q and

           A30: ( not p on P) & not p on Q & M <> N;

          

           A31: {a, c} on P & {b, d} on Q by A29, INCSP_1: 1;

           {a, b, p} on M & {c, d, p} on N by A28, INCSP_1: 2;

          then

          consider q1 be POINT of G such that

           A32: q1 on (P,Q) by A19, A30, A31;

          take q1;

          thus thesis by A32;

        end;

        for p, q, P, Q st p on P & q on P & p on Q & q on Q holds p = q or P = Q by A15;

        hence G is IncProjSp by A17, A20, A22, A27, INCPROJ:def 4, INCPROJ:def 5, INCPROJ:def 6, INCPROJ:def 7, INCPROJ:def 8;

      end;

    end;

    definition

      mode IncProjectivePlane is 2-dimensional IncProjSp;

    end

    definition

      let G, a, b, c;

      :: PROJPL_1:def5

      pred a,b,c are_collinear means ex P st {a, b, c} on P;

    end

    notation

      let G, a, b, c;

      antonym a,b,c is_a_triangle for a,b,c are_collinear ;

    end

    theorem :: PROJPL_1:5

    

     Th5: (a,b,c) are_collinear iff ex P st a on P & b on P & c on P

    proof

      (ex P st {a, b, c} on P) iff ex P st a on P & b on P & c on P

      proof

        hereby

          given P such that

           A1: {a, b, c} on P;

          take P;

          thus a on P & b on P & c on P by A1, INCSP_1: 2;

        end;

        thus (ex P st a on P & b on P & c on P) implies ex P st {a, b, c} on P by INCSP_1: 2;

      end;

      hence thesis;

    end;

    theorem :: PROJPL_1:6

    (a,b,c) is_a_triangle iff for P holds a |' P or b |' P or c |' P by Th5;

    definition

      let G, a, b, c, d;

      :: PROJPL_1:def6

      pred a,b,c,d is_a_quadrangle means (a,b,c) is_a_triangle & (b,c,d) is_a_triangle & (c,d,a) is_a_triangle & (d,a,b) is_a_triangle ;

    end

    theorem :: PROJPL_1:7

    

     Th7: G is IncProjSp implies ex A, B st A <> B

    proof

      set a = the POINT of G;

      assume G is IncProjSp;

      then

      consider A, B, C such that a on A and a on B and a on C and

       A1: A <> B and B <> C and C <> A by PROJRED1: 5;

      take A, B;

      thus thesis by A1;

    end;

    theorem :: PROJPL_1:8

    

     Th8: G is IncProjSp implies ex b, c st {b, c} on A & (a,b,c) are_mutually_distinct

    proof

      assume

       A1: G is IncProjSp;

      then

      consider b such that

       A2: b on A & b <> a and b <> a by PROJRED1: 8;

      consider c such that

       A3: c on A & c <> a & c <> b by A1, PROJRED1: 8;

      take b, c;

      thus thesis by A2, A3, INCSP_1: 1, ZFMISC_1:def 5;

    end;

    theorem :: PROJPL_1:9

    

     Th9: G is IncProjSp & A <> B implies ex b st b on A & b |' B & a <> b

    proof

      assume that

       A1: G is IncProjSp and

       A2: A <> B;

      consider b, c such that

       A3: {b, c} on A and

       A4: (a,b,c) are_mutually_distinct by A1, Th8;

      

       A5: a <> c by A4, ZFMISC_1:def 5;

      

       A6: c on A by A3, INCSP_1: 1;

      

       A7: b <> c by A4, ZFMISC_1:def 5;

      

       A8: b on A by A3, INCSP_1: 1;

      

       A9: a <> b by A4, ZFMISC_1:def 5;

      now

        per cases by A1, A2, A7, A8, A6, INCPROJ:def 4;

          case b |' B;

          hence thesis by A9, A8;

        end;

          case c |' B;

          hence thesis by A5, A6;

        end;

      end;

      hence thesis;

    end;

    theorem :: PROJPL_1:10

    

     Th10: G is configuration & {a1, a2} on A & a1 <> a2 & b |' A implies (a1,a2,b) is_a_triangle

    proof

      assume that

       A1: G is configuration and

       A2: {a1, a2} on A and

       A3: a1 <> a2 & b |' A and

       A4: (a1,a2,b) are_collinear ;

      

       A5: a1 on A & a2 on A by A2, INCSP_1: 1;

      ex P st a1 on P & a2 on P & b on P by A4, Th5;

      hence contradiction by A1, A3, A5;

    end;

    theorem :: PROJPL_1:11

    

     Th11: (a,b,c) are_collinear implies (a,c,b) are_collinear & (b,a,c) are_collinear & (b,c,a) are_collinear & (c,a,b) are_collinear & (c,b,a) are_collinear

    proof

      assume (a,b,c) are_collinear ;

      then

      consider P such that

       A1: {a, b, c} on P;

      

       A2: {c, b, a} on P by A1, Th1;

      

       A3: {b, c, a} on P & {c, a, b} on P by A1, Th1;

       {a, c, b} on P & {b, a, c} on P by A1, Th1;

      hence thesis by A3, A2;

    end;

    theorem :: PROJPL_1:12

    (a,b,c) is_a_triangle implies (a,c,b) is_a_triangle & (b,a,c) is_a_triangle & (b,c,a) is_a_triangle & (c,a,b) is_a_triangle & (c,b,a) is_a_triangle by Th11;

    theorem :: PROJPL_1:13

    

     Th13: (a,b,c,d) is_a_quadrangle implies (a,c,b,d) is_a_quadrangle & (b,a,c,d) is_a_quadrangle & (b,c,a,d) is_a_quadrangle & (c,a,b,d) is_a_quadrangle & (c,b,a,d) is_a_quadrangle & (a,b,d,c) is_a_quadrangle & (a,c,d,b) is_a_quadrangle & (b,a,d,c) is_a_quadrangle & (b,c,d,a) is_a_quadrangle & (c,a,d,b) is_a_quadrangle & (c,b,d,a) is_a_quadrangle & (a,d,b,c) is_a_quadrangle & (a,d,c,b) is_a_quadrangle & (b,d,a,c) is_a_quadrangle & (b,d,c,a) is_a_quadrangle & (c,d,a,b) is_a_quadrangle & (c,d,b,a) is_a_quadrangle & (d,a,b,c) is_a_quadrangle & (d,a,c,b) is_a_quadrangle & (d,b,a,c) is_a_quadrangle & (d,b,c,a) is_a_quadrangle & (d,c,a,b) is_a_quadrangle & (d,c,b,a) is_a_quadrangle by Th11;

    theorem :: PROJPL_1:14

    

     Th14: G is configuration & {a1, a2} on A & {b1, b2} on B & (a1,a2) |' B & (b1,b2) |' A & a1 <> a2 & b1 <> b2 implies (a1,a2,b1,b2) is_a_quadrangle

    proof

      assume that

       A1: G is configuration and

       A2: {a1, a2} on A and

       A3: {b1, b2} on B and

       A4: (a1,a2) |' B and

       A5: (b1,b2) |' A and

       A6: a1 <> a2 and

       A7: b1 <> b2;

      b1 |' A by A5;

      then

       A8: (a1,a2,b1) is_a_triangle by A1, A2, A6, Th10;

      b2 |' A by A5;

      then (a1,a2,b2) is_a_triangle by A1, A2, A6, Th10;

      then

       A9: (b2,a1,a2) is_a_triangle by Th11;

      a2 |' B by A4;

      then (b1,b2,a2) is_a_triangle by A1, A3, A7, Th10;

      then

       A10: (a2,b1,b2) is_a_triangle by Th11;

      a1 |' B by A4;

      then (b1,b2,a1) is_a_triangle by A1, A3, A7, Th10;

      hence thesis by A8, A10, A9;

    end;

    theorem :: PROJPL_1:15

    

     Th15: G is IncProjSp implies ex a, b, c, d st (a,b,c,d) is_a_quadrangle

    proof

      assume

       A1: G is IncProjSp;

      then

      consider A, B such that

       A2: A <> B by Th7;

      consider a, b such that

       A3: a on A & a |' B and

       A4: b on B & b |' A by A1, A2, PROJRED1: 3;

      consider q such that

       A5: q on B & q |' A and

       A6: b <> q by A1, A3, Th9;

      

       A7: {b, q} on B & (b,q) |' A by A4, A5, INCSP_1: 1;

      

       A8: G is configuration by A1, Th4;

      consider p such that

       A9: p on A & p |' B and

       A10: a <> p by A1, A3, Th9;

      take a, p, b, q;

       {a, p} on A & (a,p) |' B by A3, A9, INCSP_1: 1;

      hence thesis by A10, A6, A8, A7, Th14;

    end;

    definition

      let G be IncProjSp;

      :: PROJPL_1:def7

      mode Quadrangle of G -> Element of [:the Points of G, the Points of G, the Points of G, the Points of G:] means ((it `1_4 ),(it `2_4 ),(it `3_4 ),(it `4_4 )) is_a_quadrangle ;

      existence

      proof

        consider a,b,c,d be POINT of G such that

         A1: (a,b,c,d) is_a_quadrangle by Th15;

        reconsider e = [a, b, c, d] as Element of [:the Points of G, the Points of G, the Points of G, the Points of G:];

        

         A2: (e `3_4 ) = c by MCART_1:def 10;

        take e;

        (e `1_4 ) = a & (e `2_4 ) = b by MCART_1:def 8, MCART_1:def 9;

        hence thesis by A1, A2, MCART_1:def 11;

      end;

    end

    definition

      let G be IncProjSp, a,b be POINT of G;

      assume

       A1: a <> b;

      :: PROJPL_1:def8

      func a * b -> LINE of G means

      : Def8: {a, b} on it ;

      existence by Th4;

      uniqueness

      proof

        G is configuration by Th4;

        hence thesis by A1, Th2;

      end;

    end

    theorem :: PROJPL_1:16

    

     Th16: for G be IncProjSp, a,b be POINT of G, L be LINE of G st a <> b holds a on (a * b) & b on (a * b) & (a * b) = (b * a) & (a on L & b on L implies L = (a * b))

    proof

      let G be IncProjSp, a,b be POINT of G, L be LINE of G;

      assume

       A1: a <> b;

      then {a, b} on (a * b) by Def8;

      hence a on (a * b) & b on (a * b) & (a * b) = (b * a) by A1, Def8, INCSP_1: 1;

      assume a on L & b on L;

      then {a, b} on L by INCSP_1: 1;

      hence thesis by A1, Def8;

    end;

    begin

    theorem :: PROJPL_1:17

    

     Th17: (ex a, b, c st (a,b,c) is_a_triangle ) & (for p, q holds ex M st {p, q} on M) implies ex p, P st p |' P

    proof

      assume that

       A1: ex a, b, c st (a,b,c) is_a_triangle and

       A2: for p, q holds ex M st {p, q} on M;

      consider a, b, c such that

       A3: (a,b,c) is_a_triangle by A1;

      consider P such that

       A4: {a, b} on P by A2;

      take c, P;

      a on P & b on P by A4, INCSP_1: 1;

      hence thesis by A3, Th5;

    end;

    theorem :: PROJPL_1:18

    (ex a, b, c, d st (a,b,c,d) is_a_quadrangle ) implies ex a, b, c st (a,b,c) is_a_triangle ;

    theorem :: PROJPL_1:19

    

     Th19: (a,b,c) is_a_triangle & {a, b} on P & {a, c} on Q implies P <> Q

    proof

      assume that

       A1: (a,b,c) is_a_triangle and

       A2: {a, b} on P and

       A3: {a, c} on Q;

      

       A4: c on Q by A3, INCSP_1: 1;

      a on P & b on P by A2, INCSP_1: 1;

      hence thesis by A1, A4, Th5;

    end;

    theorem :: PROJPL_1:20

    

     Th20: (a,b,c,d) is_a_quadrangle & {a, b} on P & {a, c} on Q & {a, d} on R implies (P,Q,R) are_mutually_distinct

    proof

      assume that

       A1: (a,b,c,d) is_a_quadrangle and

       A2: {a, b} on P and

       A3: {a, c} on Q and

       A4: {a, d} on R;

      (c,d,a) is_a_triangle by A1;

      then (a,c,d) is_a_triangle by Th11;

      then

       A5: Q <> R by A3, A4, Th19;

      (d,a,b) is_a_triangle by A1;

      then (a,d,b) is_a_triangle by Th11;

      then

       A6: R <> P by A2, A4, Th19;

      (a,b,c) is_a_triangle by A1;

      then P <> Q by A2, A3, Th19;

      hence thesis by A5, A6, ZFMISC_1:def 5;

    end;

    theorem :: PROJPL_1:21

    

     Th21: G is configuration & a on (P,Q,R) & (P,Q,R) are_mutually_distinct & a |' A & p on (A,P) & q on (A,Q) & r on (A,R) implies (p,q,r) are_mutually_distinct

    proof

      assume that

       A1: G is configuration and

       A2: a on (P,Q,R) and

       A3: (P,Q,R) are_mutually_distinct and

       A4: a |' A and

       A5: p on (A,P) and

       A6: q on (A,Q) and

       A7: r on (A,R);

      

       A8: a on R & r on R by A2, A7;

      

       A9: a on Q & q on Q by A2, A6;

      Q <> R & q on A by A3, A6, ZFMISC_1:def 5;

      then

       A10: q <> r by A1, A4, A9, A8;

      

       A11: p on P by A5;

      

       A12: a on P & p on A by A2, A5;

      R <> P by A3, ZFMISC_1:def 5;

      then

       A13: r <> p by A1, A4, A12, A11, A8;

      P <> Q by A3, ZFMISC_1:def 5;

      then p <> q by A1, A4, A12, A11, A9;

      hence thesis by A10, A13, ZFMISC_1:def 5;

    end;

    theorem :: PROJPL_1:22

    

     Th22: G is configuration & (for p, q holds ex M st {p, q} on M) & (for P, Q holds ex a st a on (P,Q)) & (ex a, b, c, d st (a,b,c,d) is_a_quadrangle ) implies for P holds ex a, b, c st (a,b,c) are_mutually_distinct & {a, b, c} on P

    proof

      assume that

       A1: G is configuration and

       A2: for p, q holds ex M st {p, q} on M and

       A3: for P, Q holds ex a st a on (P,Q) and

       A4: ex a, b, c, d st (a,b,c,d) is_a_quadrangle ;

      hereby

        let P;

        consider a, b, c, d such that

         A5: (a,b,c,d) is_a_quadrangle by A4;

        

         A6: (a,b,c) is_a_triangle by A5;

        thus ex a, b, c st (a,b,c) are_mutually_distinct & {a, b, c} on P

        proof

          now

            per cases by A6, Th5;

              case

               A7: a |' P;

              consider B such that

               A8: {a, b} on B by A2;

              consider D such that

               A9: {a, d} on D by A2;

              consider C such that

               A10: {a, c} on C by A2;

              

               A11: a on D by A9, INCSP_1: 1;

              

               A12: a on C by A10, INCSP_1: 1;

              a on B by A8, INCSP_1: 1;

              then

               A13: a on (B,C,D) by A12, A11;

              consider p such that

               A14: p on (P,B) by A3;

              

               A15: (B,C,D) are_mutually_distinct by A5, A8, A10, A9, Th20;

              consider q such that

               A16: q on (P,C) by A3;

              

               A17: q on P by A16;

              consider r such that

               A18: r on (P,D) by A3;

              

               A19: r on P by A18;

              p on P by A14;

              then {p, q, r} on P by A17, A19, INCSP_1: 2;

              hence thesis by A1, A7, A13, A15, A14, A16, A18, Th21;

            end;

              case

               A20: b |' P;

              consider B such that

               A21: {b, a} on B by A2;

              consider D such that

               A22: {b, d} on D by A2;

              consider C such that

               A23: {b, c} on C by A2;

              

               A24: b on D by A22, INCSP_1: 1;

              

               A25: b on C by A23, INCSP_1: 1;

              b on B by A21, INCSP_1: 1;

              then

               A26: b on (B,C,D) by A25, A24;

              consider q such that

               A27: q on (P,C) by A3;

              (b,a,c,d) is_a_quadrangle by A5, Th13;

              then

               A28: (B,C,D) are_mutually_distinct by A21, A23, A22, Th20;

              consider p such that

               A29: p on (P,B) by A3;

              

               A30: q on P by A27;

              consider r such that

               A31: r on (P,D) by A3;

              

               A32: r on P by A31;

              p on P by A29;

              then {p, q, r} on P by A30, A32, INCSP_1: 2;

              hence thesis by A1, A20, A26, A28, A29, A27, A31, Th21;

            end;

              case

               A33: c |' P;

              consider B such that

               A34: {c, a} on B by A2;

              consider D such that

               A35: {c, d} on D by A2;

              consider C such that

               A36: {c, b} on C by A2;

              

               A37: c on D by A35, INCSP_1: 1;

              

               A38: c on C by A36, INCSP_1: 1;

              c on B by A34, INCSP_1: 1;

              then

               A39: c on (B,C,D) by A38, A37;

              consider q such that

               A40: q on (P,C) by A3;

              (c,a,b,d) is_a_quadrangle by A5, Th13;

              then

               A41: (B,C,D) are_mutually_distinct by A34, A36, A35, Th20;

              consider p such that

               A42: p on (P,B) by A3;

              

               A43: q on P by A40;

              consider r such that

               A44: r on (P,D) by A3;

              

               A45: r on P by A44;

              p on P by A42;

              then {p, q, r} on P by A43, A45, INCSP_1: 2;

              hence thesis by A1, A33, A39, A41, A42, A40, A44, Th21;

            end;

          end;

          hence thesis;

        end;

      end;

    end;

    theorem :: PROJPL_1:23

    

     Th23: G is IncProjectivePlane iff G is configuration & (for p, q holds ex M st {p, q} on M) & (for P, Q holds ex a st a on (P,Q)) & ex a, b, c, d st (a,b,c,d) is_a_quadrangle

    proof

      hereby

        assume

         A1: G is IncProjectivePlane;

        hence G is configuration by Th4;

        thus for p, q holds ex M st {p, q} on M by A1, Th4;

        thus for P, Q holds ex a st a on (P,Q)

        proof

          let P, Q;

          consider a such that

           A2: a on P & a on Q by A1, INCPROJ:def 9;

          take a;

          thus thesis by A2;

        end;

        thus ex a, b, c, d st (a,b,c,d) is_a_quadrangle by A1, Th15;

      end;

      hereby

        assume that

         A3: G is configuration and

         A4: for p, q holds ex M st {p, q} on M and

         A5: for P, Q holds ex a st a on (P,Q) and

         A6: ex a, b, c, d st (a,b,c,d) is_a_quadrangle ;

        ex a, b, c st (a,b,c) is_a_triangle by A6;

        then

         A7: ex p, P st p |' P by A4, Th17;

        (for P holds ex a, b, c st (a,b,c) are_mutually_distinct & {a, b, c} on P) & for a, b, c, d, p, M, N, P, Q st {a, b, p} on M & {c, d, p} on N & {a, c} on P & {b, d} on Q & p |' P & p |' Q & M <> N holds ex q st q on (P,Q) by A3, A4, A5, A6, Th22;

        then

        reconsider G9 = G as IncProjSp by A3, A4, A7, Th4;

        for P,Q be LINE of G9 holds ex a be POINT of G9 st a on P & a on Q

        proof

          let P,Q be LINE of G9;

          consider a be POINT of G9 such that

           A8: a on (P,Q) by A5;

          take a;

          thus thesis by A8;

        end;

        hence G is IncProjectivePlane by INCPROJ:def 9;

      end;

    end;

    reserve G for IncProjectivePlane;

    reserve a,q for POINT of G;

    reserve A,B for LINE of G;

    definition

      let G, A, B;

      assume

       A1: A <> B;

      :: PROJPL_1:def9

      func A * B -> POINT of G means

      : Def9: it on (A,B);

      existence by Th23;

      uniqueness

      proof

        G is configuration by Th4;

        hence thesis by A1;

      end;

    end

    theorem :: PROJPL_1:24

    

     Th24: A <> B implies (A * B) on A & (A * B) on B & (A * B) = (B * A) & (a on A & a on B implies a = (A * B))

    proof

      assume

       A1: A <> B;

      then (A * B) on (A,B) by Def9;

      then (A * B) on (B,A);

      hence (A * B) on A & (A * B) on B & (A * B) = (B * A) by A1, Def9;

      assume a on A & a on B;

      then a on (A,B);

      hence thesis by A1, Def9;

    end;

    theorem :: PROJPL_1:25

    A <> B & a on A & q |' A & a <> (A * B) implies ((q * a) * B) on B & ((q * a) * B) |' A

    proof

      assume that

       A1: A <> B and

       A2: a on A and

       A3: q |' A and

       A4: a <> (A * B);

      set D = (q * a);

      

       A5: a on D & q on D by A2, A3, Th16;

      set d = (D * B);

      

       A6: G is configuration by Th23;

      

       A7: a |' B by A1, A2, A4, Th24;

      then

       A8: (q * a) <> B by A2, A3, Th16;

      hence ((q * a) * B) on B by Th24;

      assume

       A9: d on A;

      d on D by A8, Th24;

      then a = d by A2, A3, A6, A9, A5;

      hence thesis by A7, A8, Th24;

    end;

    begin

    reserve G for IncProjSp;

    reserve a,b,c,d for POINT of G;

    reserve P for LINE of G;

    theorem :: PROJPL_1:26

    

     Th26: (a,b,c) is_a_triangle implies (a,b,c) are_mutually_distinct

    proof

      assume that

       A1: (a,b,c) is_a_triangle and

       A2: not (a,b,c) are_mutually_distinct ;

      now

        per cases by A2, ZFMISC_1:def 5;

          case

           A3: a = b;

          ex P st b on P & c on P by INCPROJ:def 5;

          hence contradiction by A1, A3, Th5;

        end;

          case

           A4: b = c;

          ex P st a on P & b on P by INCPROJ:def 5;

          hence contradiction by A1, A4, Th5;

        end;

          case

           A5: c = a;

          ex P st b on P & c on P by INCPROJ:def 5;

          hence contradiction by A1, A5, Th5;

        end;

      end;

      hence thesis;

    end;

    theorem :: PROJPL_1:27

    (a,b,c,d) is_a_quadrangle implies (a,b,c,d) are_mutually_distinct

    proof

      assume that

       A1: (a,b,c,d) is_a_quadrangle and

       A2: not (a,b,c,d) are_mutually_distinct ;

      now

        per cases by A2, ZFMISC_1:def 6;

          case a = b;

          then not (a,b,c) are_mutually_distinct by ZFMISC_1:def 5;

          then not (a,b,c) is_a_triangle by Th26;

          hence contradiction by A1;

        end;

          case b = c;

          then not (a,b,c) are_mutually_distinct by ZFMISC_1:def 5;

          then not (a,b,c) is_a_triangle by Th26;

          hence contradiction by A1;

        end;

          case c = a;

          then not (a,b,c) are_mutually_distinct by ZFMISC_1:def 5;

          then not (a,b,c) is_a_triangle by Th26;

          hence contradiction by A1;

        end;

          case d = a;

          then not (d,a,b) are_mutually_distinct by ZFMISC_1:def 5;

          then not (d,a,b) is_a_triangle by Th26;

          hence contradiction by A1;

        end;

          case d = b;

          then not (d,a,b) are_mutually_distinct by ZFMISC_1:def 5;

          then not (d,a,b) is_a_triangle by Th26;

          hence contradiction by A1;

        end;

          case d = c;

          then not (b,c,d) are_mutually_distinct by ZFMISC_1:def 5;

          then not (b,c,d) is_a_triangle by Th26;

          hence contradiction by A1;

        end;

      end;

      hence thesis;

    end;

    reserve G for IncProjectivePlane;

    theorem :: PROJPL_1:28

    

     Th28: for a,b,c,d be POINT of G st (a * c) = (b * d) holds a = c or b = d or c = d or (a * c) = (c * d)

    proof

      let a,b,c,d be POINT of G;

      assume that

       A1: (a * c) = (b * d) & not a = c & not b = d and

       A2: not c = d;

      c on (a * c) & d on (a * c) by A1, Th16;

      hence thesis by A2, Th16;

    end;

    theorem :: PROJPL_1:29

    for a,b,c,d be POINT of G st (a * c) = (b * d) holds a = c or b = d or c = d or a on (c * d)

    proof

      let a,b,c,d be POINT of G;

      assume that

       A1: (a * c) = (b * d) and

       A2: not a = c and

       A3: ( not b = d) & not c = d;

      (a * c) = (c * d) by A1, A2, A3, Th28;

      hence thesis by A2, Th16;

    end;

    theorem :: PROJPL_1:30

    for G be IncProjectivePlane, e,m,m9 be POINT of G, I be LINE of G st m on I & m9 on I & m <> m9 & e |' I holds (m * e) <> (m9 * e) & (e * m) <> (e * m9)

    proof

      let G be IncProjectivePlane, e,m,m9 be POINT of G, I be LINE of G such that

       A1: m on I and

       A2: m9 on I and

       A3: m <> m9 and

       A4: e |' I;

      set L1 = (m * e), L2 = (m9 * e);

       A5:

      now

        m on L1 by A1, A4, Th16;

        then

         A6: m on (I,L1) by A1;

        e on L1 by A1, A4, Th16;

        then

         A7: m = (I * L1) by A4, A6, Def9;

        assume

         A8: (m * e) = (m9 * e);

        m9 on L2 by A2, A4, Th16;

        then

         A9: m9 on (I,L2) by A2;

        e on L2 by A2, A4, Th16;

        hence contradiction by A3, A4, A8, A9, A7, Def9;

      end;

      now

        assume

         A10: (e * m) = (e * m9);

        (m * e) = (e * m) by A1, A4, Th16;

        hence contradiction by A2, A4, A5, A10, Th16;

      end;

      hence thesis by A5;

    end;

    theorem :: PROJPL_1:31

    for G be IncProjectivePlane, e be POINT of G, I,L1,L2 be LINE of G st e on L1 & e on L2 & L1 <> L2 & e |' I holds (I * L1) <> (I * L2) & (L1 * I) <> (L2 * I)

    proof

      let G be IncProjectivePlane, e be POINT of G, I,L1,L2 be LINE of G such that

       A1: e on L1 and

       A2: e on L2 and

       A3: L1 <> L2 and

       A4: e |' I;

      set p1 = (I * L1), p2 = (I * L2);

       A5:

      now

        p1 on L1 by A1, A4, Th24;

        then

         A6: {e, p1} on L1 by A1, INCSP_1: 1;

        p1 on I by A1, A4, Th24;

        then

         A7: L1 = (e * p1) by A4, A6, Def8;

        assume

         A8: (I * L1) = (I * L2);

        p2 on L2 by A2, A4, Th24;

        then

         A9: {e, p2} on L2 by A2, INCSP_1: 1;

        p2 on I by A2, A4, Th24;

        hence contradiction by A3, A4, A8, A9, A7, Def8;

      end;

      now

        assume

         A10: (L1 * I) = (L2 * I);

        (L1 * I) = (I * L1) by A1, A4, Th24;

        hence contradiction by A2, A4, A5, A10, Th24;

      end;

      hence thesis by A5;

    end;

    theorem :: PROJPL_1:32

    for G be IncProjSp, a,b,q,q1 be POINT of G st q on (a * b) & q on (a * q1) & q <> a & q1 <> a & a <> b holds q1 on (a * b)

    proof

      let G be IncProjSp, a,b,q,q1 be POINT of G;

      assume that

       A1: q on (a * b) & q on (a * q1) & q <> a and

       A2: q1 <> a and

       A3: a <> b;

      a on (a * b) & a on (a * q1) by A2, A3, Th16;

      then (a * b) = (a * q1) by A1, INCPROJ:def 4;

      hence thesis by A2, Th16;

    end;

    theorem :: PROJPL_1:33

    for G be IncProjSp, a,b,c be POINT of G st c on (a * b) & a <> c holds b on (a * c)

    proof

      let G be IncProjSp, a,b,c be POINT of G;

      assume that

       A1: c on (a * b) and

       A2: a <> c;

      now

        assume

         A3: a <> b;

        then a on (a * b) by Th16;

        then (a * b) = (a * c) by A1, A2, Th16;

        hence thesis by A3, Th16;

      end;

      hence thesis by A2, Th16;

    end;

    theorem :: PROJPL_1:34

    for G be IncProjectivePlane, q1,q2,r1,r2 be POINT of G, H be LINE of G st r1 <> r2 & r1 on H & r2 on H & q1 |' H & q2 |' H holds (q1 * r1) <> (q2 * r2)

    proof

      let G be IncProjectivePlane, q1,q2,r1,r2 be POINT of G, H be LINE of G such that

       A1: r1 <> r2 and

       A2: r1 on H and

       A3: r2 on H and

       A4: q1 |' H and

       A5: q2 |' H and

       A6: (q1 * r1) = (q2 * r2);

      set L1 = (q1 * r1), L2 = (q2 * r2);

      

       A7: q1 on L1 by A2, A4, Th16;

      r2 on L2 by A3, A5, Th16;

      then

       A8: r2 on (L2,H) by A3;

      r1 on L1 by A2, A4, Th16;

      then r1 on (L1,H) by A2;

      then r1 = (L1 * H) by A4, A7, Def9;

      hence contradiction by A1, A4, A6, A7, A8, Def9;

    end;

    theorem :: PROJPL_1:35

    

     Th35: for a,b,c be POINT of G st a on (b * c) holds a = c or b = c or b on (c * a)

    proof

      let a,b,c be POINT of G;

      assume that

       A1: a on (b * c) and

       A2: a <> c and

       A3: b <> c;

      c on (b * c) by A3, Th16;

      then

       A4: {c, a} on (b * c) by A1, INCSP_1: 1;

      b on (b * c) by A3, Th16;

      hence thesis by A2, A4, Def8;

    end;

    theorem :: PROJPL_1:36

    for a,b,c be POINT of G st a on (b * c) holds b = a or b = c or c on (b * a)

    proof

      let a,b,c be POINT of G;

      assume that

       A1: a on (b * c) & b <> a and

       A2: b <> c;

      (b * c) = (c * b) by A2, Th16;

      hence thesis by A1, A2, Th35;

    end;

    theorem :: PROJPL_1:37

    for e,x1,x2,p1,p2 be POINT of G holds for H,I be LINE of G st x1 on I & x2 on I & e |' I & x1 <> x2 & p1 <> e & p2 <> e & p1 on (e * x1) & p2 on (e * x2) holds ex r be POINT of G st r on (p1 * p2) & r on H & r <> e

    proof

      let e,x1,x2,p1,p2 be POINT of G;

      let H,I be LINE of G such that

       A1: x1 on I and

       A2: x2 on I and

       A3: e |' I and

       A4: x1 <> x2 and

       A5: p1 <> e and

       A6: p2 <> e and

       A7: p1 on (e * x1) and

       A8: p2 on (e * x2);

      set L1 = (e * x1), L2 = (e * x2), L = (p1 * p2);

      

       A9: e on L1 by A1, A3, Th16;

      

       A10: e on L2 by A2, A3, Th16;

      x1 on L1 & x2 on L2 by A1, A2, A3, Th16;

      then

       A11: L1 <> L2 by A1, A2, A3, A4, A9, INCPROJ:def 4;

      then

       A12: p1 <> p2 by A5, A7, A8, A9, A10, INCPROJ:def 4;

      then p2 on L by Th16;

      then

       A13: L <> L1 by A6, A8, A9, A10, A11, INCPROJ:def 4;

      consider r be POINT of G such that

       A14: r on L and

       A15: r on H by INCPROJ:def 9;

      p1 on L by A12, Th16;

      then r <> e by A5, A7, A14, A9, A13, INCPROJ:def 4;

      hence thesis by A14, A15;

    end;