robbins2.miz
begin
definition
let L be non
empty
ComplLLattStr;
::
ROBBINS2:def1
attr L is
satisfying_DN_1 means
:
Def1: for x,y,z,u be
Element of L holds ((((((x
+ y)
` )
+ z)
` )
+ ((x
+ (((z
` )
+ ((z
+ u)
` ))
` ))
` ))
` )
= z;
end
registration
cluster
TrivComplLat ->
satisfying_DN_1;
coherence by
STRUCT_0:def 10;
cluster
TrivOrtLat ->
satisfying_DN_1;
coherence by
STRUCT_0:def 10;
end
registration
cluster
join-commutative
join-associative
satisfying_DN_1 for non
empty
ComplLLattStr;
existence
proof
take
TrivComplLat ;
thus thesis;
end;
end
reserve L for
satisfying_DN_1 non
empty
ComplLLattStr;
reserve x,y,z for
Element of L;
theorem ::
ROBBINS2:1
Th1: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z,u,v be
Element of L holds ((((x
+ y)
` )
+ ((((((z
+ u)
` )
+ x)
` )
+ (((y
` )
+ ((y
+ v)
` ))
` ))
` ))
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z,u,v be
Element of L;
set X = ((((z
+ u)
` )
+ x)
` ), Y = ((z
+ (((x
` )
+ ((x
+ u)
` ))
` ))
` );
set Z = y, U = v;
((((((X
+ Y)
` )
+ Z)
` )
+ ((X
+ (((Z
` )
+ ((Z
+ U)
` ))
` ))
` ))
` )
= Z by
Def1;
hence thesis by
Def1;
end;
theorem ::
ROBBINS2:2
Th2: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z,u be
Element of L holds ((((x
+ y)
` )
+ ((((z
+ x)
` )
+ (((y
` )
+ ((y
+ u)
` ))
` ))
` ))
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z,u be
Element of L;
set v = the
Element of L;
((((x
+ z)
` )
+ ((((((y
+ u)
` )
+ x)
` )
+ (((z
` )
+ ((z
+ v)
` ))
` ))
` ))
` )
= z by
Th1;
hence thesis by
Th1;
end;
theorem ::
ROBBINS2:3
Th3: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x be
Element of L holds ((((x
+ (x
` ))
` )
+ x)
` )
= (x
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x be
Element of L;
set y = the
Element of L;
set V = ((x
+ y)
` );
((((x
+ (x
` ))
` )
+ ((((((((x
` )
` )
+ y)
` )
+ x)
` )
+ ((((x
` )
` )
+ (((x
` )
+ V)
` ))
` ))
` ))
` )
= (x
` ) by
Th1;
hence thesis by
Def1;
end;
theorem ::
ROBBINS2:4
Th4: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z,u be
Element of L holds ((((x
+ y)
` )
+ ((((z
+ x)
` )
+ ((((((y
+ (y
` ))
` )
+ y)
` )
+ ((y
+ u)
` ))
` ))
` ))
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z,u be
Element of L;
((((y
+ (y
` ))
` )
+ y)
` )
= (y
` ) by
Th3;
hence thesis by
Th2;
end;
theorem ::
ROBBINS2:5
Th5: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((x
+ y)
` )
+ ((((z
+ x)
` )
+ y)
` ))
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set u = the
Element of L;
set U = (((y
` )
+ ((y
+ u)
` ))
` );
((((x
+ y)
` )
+ ((((z
+ x)
` )
+ ((((((y
+ (y
` ))
` )
+ y)
` )
+ ((y
+ U)
` ))
` ))
` ))
` )
= y by
Th4;
hence thesis by
Def1;
end;
theorem ::
ROBBINS2:6
Th6: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((((x
+ y)
` )
+ (((x
` )
+ y)
` ))
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set Z = ((x
+ (x
` ))
` );
((((x
+ y)
` )
+ ((((Z
+ x)
` )
+ y)
` ))
` )
= y by
Th5;
hence thesis by
Th3;
end;
theorem ::
ROBBINS2:7
Th7: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((((((x
+ y)
` )
+ x)
` )
+ ((x
+ y)
` ))
` )
= x
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set X = ((x
+ y)
` );
((((X
+ x)
` )
+ ((((x
+ X)
` )
+ ((((((x
+ (x
` ))
` )
+ x)
` )
+ ((x
+ y)
` ))
` ))
` ))
` )
= x by
Th4;
hence thesis by
Th5;
end;
theorem ::
ROBBINS2:8
Th8: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((x
+ ((((x
+ y)
` )
+ x)
` ))
` )
= ((x
+ y)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set X = ((x
+ y)
` ), Y = x;
((((((X
+ Y)
` )
+ X)
` )
+ ((X
+ Y)
` ))
` )
= X by
Th7;
hence thesis by
Th7;
end;
theorem ::
ROBBINS2:9
Th9: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((((x
+ y)
` )
+ z)
` )
+ ((x
+ z)
` ))
` )
= z
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set X = ((x
+ y)
` ), Y = z, Z = ((((x
+ y)
` )
+ x)
` );
((((X
+ Y)
` )
+ ((((Z
+ X)
` )
+ Y)
` ))
` )
= Y by
Th5;
hence thesis by
Th7;
end;
theorem ::
ROBBINS2:10
Th10: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((x
+ ((((y
+ z)
` )
+ ((y
+ x)
` ))
` ))
` )
= ((y
+ x)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set Z = ((y
+ x)
` ), X = ((y
+ z)
` ), Y = x;
((((((X
+ Y)
` )
+ Z)
` )
+ ((X
+ Z)
` ))
` )
= Z by
Th9;
hence thesis by
Th9;
end;
theorem ::
ROBBINS2:11
Th11: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((((((x
+ y)
` )
+ z)
` )
+ (((x
` )
+ y)
` ))
` )
+ y)
` )
= (((x
` )
+ y)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set X = ((x
+ y)
` ), Z = (((x
` )
+ y)
` ), Y = z;
((((((X
+ Y)
` )
+ Z)
` )
+ ((X
+ Z)
` ))
` )
= Z by
Th9;
hence thesis by
Th6;
end;
theorem ::
ROBBINS2:12
Th12: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((x
+ ((((y
+ z)
` )
+ ((z
+ x)
` ))
` ))
` )
= ((z
+ x)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set Y = z, Z = ((((y
+ x)
` )
+ ((y
+ z)
` ))
` );
((x
+ ((((Y
+ Z)
` )
+ ((Y
+ x)
` ))
` ))
` )
= ((Y
+ x)
` ) by
Th10;
hence thesis by
Th10;
end;
theorem ::
ROBBINS2:13
Th13: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z,u be
Element of L holds ((((x
+ y)
` )
+ ((((z
+ x)
` )
+ (((y
` )
+ ((u
+ y)
` ))
` ))
` ))
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z,u be
Element of L;
set U = ((((u
+ z)
` )
+ ((u
+ y)
` ))
` );
((((x
+ y)
` )
+ ((((z
+ x)
` )
+ (((y
` )
+ ((y
+ U)
` ))
` ))
` ))
` )
= y by
Th2;
hence thesis by
Th10;
end;
theorem ::
ROBBINS2:14
Th14: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((x
+ y)
` )
= ((y
+ x)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set Z = y, X = x, Y = ((y
+ x)
` );
((((Y
+ Z)
` )
+ ((Z
+ X)
` ))
` )
= y by
Th7;
hence thesis by
Th12;
end;
theorem ::
ROBBINS2:15
Th15: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((((x
+ y)
` )
+ ((y
+ z)
` ))
` )
+ z)
` )
= ((y
+ z)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set Y = ((((x
+ y)
` )
+ ((y
+ z)
` ))
` );
((z
+ Y)
` )
= ((Y
+ z)
` ) by
Th14;
hence thesis by
Th12;
end;
theorem ::
ROBBINS2:16
Th16: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((x
+ ((((x
+ y)
` )
+ z)
` ))
` )
+ z)
` )
= ((((x
+ y)
` )
+ z)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set X = ((((x
+ y)
` )
+ x)
` ), Y = ((x
+ y)
` );
((X
+ Y)
` )
= x by
Th7;
hence thesis by
Th15;
end;
theorem ::
ROBBINS2:17
Th17: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((((((x
+ y)
` )
+ x)
` )
+ y)
` )
= ((y
+ y)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set X = ((x
+ y)
` );
((X
+ ((((X
+ x)
` )
+ y)
` ))
` )
= y by
Th5;
hence thesis by
Th16;
end;
theorem ::
ROBBINS2:18
Th18: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((x
` )
+ ((y
+ x)
` ))
` )
= x
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set X = ((y
+ x)
` );
((X
+ (((((x
` )
+ y)
` )
+ (((x
` )
+ X)
` ))
` ))
` )
= x by
Th13;
hence thesis by
Th10;
end;
theorem ::
ROBBINS2:19
Th19: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((((x
+ y)
` )
+ (y
` ))
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
(((y
` )
+ ((x
+ y)
` ))
` )
= y by
Th18;
hence thesis by
Th14;
end;
theorem ::
ROBBINS2:20
Th20: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((x
+ ((y
+ (x
` ))
` ))
` )
= (x
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set Z = (x
` ), X = y, Y = x;
((((((X
+ Y)
` )
+ Z)
` )
+ ((X
+ Z)
` ))
` )
= Z by
Th9;
hence thesis by
Th19;
end;
theorem ::
ROBBINS2:21
Th21: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x be
Element of L holds ((x
+ x)
` )
= (x
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x be
Element of L;
set y = the
Element of L;
set Y = ((y
+ x)
` );
((x
+ ((Y
+ (x
` ))
` ))
` )
= (x
` ) by
Th20;
hence thesis by
Th19;
end;
theorem ::
ROBBINS2:22
Th22: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((((((x
+ y)
` )
+ x)
` )
+ y)
` )
= (y
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
(y
` )
= ((y
+ y)
` ) by
Th21
.= ((((((x
+ y)
` )
+ x)
` )
+ y)
` ) by
Th17;
hence thesis;
end;
theorem ::
ROBBINS2:23
Th23: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x be
Element of L holds ((x
` )
` )
= x
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x be
Element of L;
((x
` )
` )
= ((((((x
+ (x
` ))
` )
+ x)
` )
+ (x
` ))
` ) by
Th22
.= x by
Th19;
hence thesis;
end;
theorem ::
ROBBINS2:24
Th24: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((((x
+ y)
` )
+ x)
` )
+ y)
= ((y
` )
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
(((((((x
+ y)
` )
+ x)
` )
+ y)
` )
` )
= ((y
` )
` ) by
Th22;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:25
Th25: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((x
+ y)
` )
` )
= (y
+ x)
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
(((x
+ y)
` )
` )
= (((y
+ x)
` )
` ) by
Th14
.= (y
+ x) by
Th23;
hence thesis;
end;
theorem ::
ROBBINS2:26
Th26: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (x
+ ((((y
+ z)
` )
+ ((y
+ x)
` ))
` ))
= (((y
+ x)
` )
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
(((x
+ ((((y
+ z)
` )
+ ((y
+ x)
` ))
` ))
` )
` )
= (((y
+ x)
` )
` ) by
Th10;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:27
Th27: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (x
+ y)
= (y
+ x)
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
(x
+ y)
= (((x
+ y)
` )
` ) by
Th23
.= (y
+ x) by
Th25;
hence thesis;
end;
Lm1: for L be
satisfying_DN_1 non
empty
ComplLLattStr holds L is
join-commutative
proof
let L;
for x, y holds (x
+ y)
= (y
+ x) by
Th27;
hence thesis by
LATTICES:def 4;
end;
registration
cluster
satisfying_DN_1 ->
join-commutative for non
empty
ComplLLattStr;
coherence by
Lm1;
end
theorem ::
ROBBINS2:28
Th28: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((((x
+ y)
` )
+ x)
` )
+ y)
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
(((((x
+ y)
` )
+ x)
` )
+ y)
= ((y
` )
` ) by
Th24;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:29
for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((((x
+ y)
` )
+ y)
` )
+ x)
= x by
Th28;
theorem ::
ROBBINS2:30
for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (x
+ ((((y
+ x)
` )
+ y)
` ))
= x by
Th28;
theorem ::
ROBBINS2:31
Th31: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((x
+ (y
` ))
` )
+ (((y
` )
+ y)
` ))
= ((x
+ (y
` ))
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set X = ((x
+ (y
` ))
` );
(X
+ ((((y
+ X)
` )
+ y)
` ))
= X by
Th28;
hence thesis by
Th20;
end;
theorem ::
ROBBINS2:32
Th32: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((x
+ y)
` )
+ ((y
+ (y
` ))
` ))
= ((x
+ y)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set X = ((x
+ y)
` ), Y = (y
` );
(X
+ ((((Y
+ X)
` )
+ Y)
` ))
= X by
Th28;
hence thesis by
Th18;
end;
theorem ::
ROBBINS2:33
for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((x
+ y)
` )
+ (((y
` )
+ y)
` ))
= ((x
+ y)
` ) by
Th32;
theorem ::
ROBBINS2:34
Th34: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((((x
+ (y
` ))
` )
` )
+ y)
` )
= (((y
` )
+ y)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set Y = (y
` ), Z = y;
((((((x
+ Y)
` )
+ ((Y
+ Z)
` ))
` )
+ Z)
` )
= ((Y
+ Z)
` ) by
Th15;
hence thesis by
Th31;
end;
theorem ::
ROBBINS2:35
Th35: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((x
+ (y
` ))
+ y)
` )
= (((y
` )
+ y)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
(((((x
+ (y
` ))
` )
` )
+ y)
` )
= (((y
` )
+ y)
` ) by
Th34;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:36
Th36: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (((((((x
+ (y
` ))
+ z)
` )
+ y)
` )
+ (((y
` )
+ y)
` ))
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
(((x
+ (y
` ))
+ y)
` )
= (((y
` )
+ y)
` ) by
Th35;
hence thesis by
Th9;
end;
theorem ::
ROBBINS2:37
Th37: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (x
+ ((((y
+ z)
` )
+ ((y
+ x)
` ))
` ))
= (y
+ x)
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
(x
+ ((((y
+ z)
` )
+ ((y
+ x)
` ))
` ))
= (((y
+ x)
` )
` ) by
Th26;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:38
Th38: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (x
+ ((y
+ ((((z
+ y)
` )
+ x)
` ))
` ))
= (((z
+ y)
` )
+ x)
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set Y = ((z
+ y)
` ), Z = (y
` );
(x
+ ((((Y
+ Z)
` )
+ ((Y
+ x)
` ))
` ))
= (Y
+ x) by
Th37;
hence thesis by
Th19;
end;
theorem ::
ROBBINS2:39
for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (x
+ ((((y
+ x)
` )
+ ((y
+ z)
` ))
` ))
= (y
+ x) by
Th37;
theorem ::
ROBBINS2:40
Th40: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (((((x
+ y)
` )
+ ((((x
+ y)
` )
+ ((x
+ z)
` ))
` ))
` )
+ y)
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set Y = ((((x
+ y)
` )
+ ((x
+ z)
` ))
` );
(((((y
+ Y)
` )
+ Y)
` )
+ y)
= y by
Th28;
hence thesis by
Th37;
end;
theorem ::
ROBBINS2:41
Th41: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((((x
+ (y
` ))
+ z)
` )
+ y)
` )
` )
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
((((((x
+ (y
` ))
+ z)
` )
+ y)
` )
+ (((y
` )
+ y)
` ))
= (((((x
+ (y
` ))
+ z)
` )
+ y)
` ) by
Th32;
hence thesis by
Th36;
end;
theorem ::
ROBBINS2:42
Th42: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (x
+ (((y
+ (x
` ))
+ z)
` ))
= x
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
((((((y
+ (x
` ))
+ z)
` )
+ x)
` )
` )
= x by
Th41;
hence thesis by
Th25;
end;
theorem ::
ROBBINS2:43
Th43: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((x
` )
+ (((y
+ x)
+ z)
` ))
= (x
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set X = (x
` );
(X
+ (((y
+ (X
` ))
+ z)
` ))
= X by
Th42;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:44
Th44: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds (((x
+ y)
` )
+ x)
= (x
+ (y
` ))
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
set Z = x;
(x
+ ((y
+ ((((Z
+ y)
` )
+ x)
` ))
` ))
= (((Z
+ y)
` )
+ x) by
Th38;
hence thesis by
Th28;
end;
theorem ::
ROBBINS2:45
Th45: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y be
Element of L holds ((x
+ ((x
+ (y
` ))
` ))
` )
= ((x
+ y)
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y be
Element of L;
((x
+ ((((x
+ y)
` )
+ x)
` ))
` )
= ((x
+ y)
` ) by
Th8;
hence thesis by
Th44;
end;
theorem ::
ROBBINS2:46
Th46: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (((((x
+ y)
` )
+ (x
+ z))
` )
+ y)
= y
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
((((x
+ y)
` )
+ ((((x
+ y)
` )
+ ((x
+ z)
` ))
` ))
` )
= ((((x
+ y)
` )
+ (x
+ z))
` ) by
Th45;
hence thesis by
Th40;
end;
theorem ::
ROBBINS2:47
Th47: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (((((((x
+ y)
` )
+ z)
` )
+ (((x
` )
+ y)
` ))
` )
+ y)
= ((((x
` )
+ y)
` )
` )
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
(((((((((x
+ y)
` )
+ z)
` )
+ (((x
` )
+ y)
` ))
` )
+ y)
` )
` )
= ((((x
` )
+ y)
` )
` ) by
Th11;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:48
Th48: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (((((((x
+ y)
` )
+ z)
` )
+ (((x
` )
+ y)
` ))
` )
+ y)
= ((x
` )
+ y)
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
(((((((x
+ y)
` )
+ z)
` )
+ (((x
` )
+ y)
` ))
` )
+ y)
= ((((x
` )
+ y)
` )
` ) by
Th47;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:49
Th49: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((x
` )
+ (((((y
+ x)
` )
` )
+ (y
+ z))
` ))
` )
+ (y
+ z))
= ((((y
+ x)
` )
` )
+ (y
+ z))
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set X = ((y
+ x)
` ), Y = (y
+ z), Z = x;
(((((((X
+ Y)
` )
+ Z)
` )
+ (((X
` )
+ Y)
` ))
` )
+ Y)
= ((X
` )
+ Y) by
Th48;
hence thesis by
Th46;
end;
theorem ::
ROBBINS2:50
Th50: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((x
` )
+ (((y
+ x)
+ (y
+ z))
` ))
` )
+ (y
+ z))
= ((((y
+ x)
` )
` )
+ (y
+ z))
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
((((x
` )
+ (((((y
+ x)
` )
` )
+ (y
+ z))
` ))
` )
+ (y
+ z))
= ((((y
+ x)
` )
` )
+ (y
+ z)) by
Th49;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:51
Th51: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((((x
` )
+ (((y
+ x)
+ (y
+ z))
` ))
` )
+ (y
+ z))
= ((y
+ x)
+ (y
+ z))
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
((((x
` )
+ (((y
+ x)
+ (y
+ z))
` ))
` )
+ (y
+ z))
= ((((y
+ x)
` )
` )
+ (y
+ z)) by
Th50;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:52
Th52: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (((x
` )
` )
+ (y
+ z))
= ((y
+ x)
+ (y
+ z))
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
((x
` )
+ (((y
+ x)
+ (y
+ z))
` ))
= (x
` ) by
Th43;
hence thesis by
Th51;
end;
theorem ::
ROBBINS2:53
Th53: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((x
+ y)
+ (x
+ z))
= (y
+ (x
+ z))
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
set Y = x, X = y;
(((X
` )
` )
+ (Y
+ z))
= ((Y
+ X)
+ (Y
+ z)) by
Th52;
hence thesis by
Th23;
end;
theorem ::
ROBBINS2:54
for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((x
+ y)
+ (x
+ z))
= (z
+ (x
+ y)) by
Th53;
theorem ::
ROBBINS2:55
Th55: for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (x
+ (y
+ z))
= (z
+ (y
+ x))
proof
let L be
satisfying_DN_1 non
empty
ComplLLattStr;
let x,y,z be
Element of L;
((y
+ x)
+ (y
+ z))
= (z
+ (y
+ x)) by
Th53;
hence thesis by
Th53;
end;
theorem ::
ROBBINS2:56
for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds (x
+ (y
+ z))
= (y
+ (z
+ x)) by
Th55;
theorem ::
ROBBINS2:57
for L be
satisfying_DN_1 non
empty
ComplLLattStr, x,y,z be
Element of L holds ((x
+ y)
+ z)
= (x
+ (y
+ z)) by
Th55;
Lm2: for L be
satisfying_DN_1 non
empty
ComplLLattStr holds L is
join-associative
proof
let L;
for x, y, z holds ((x
+ y)
+ z)
= (x
+ (y
+ z)) by
Th55;
hence thesis by
LATTICES:def 5;
end;
Lm3: L is
Robbins
proof
for x, y holds ((((x
+ y)
` )
+ ((x
+ (y
` ))
` ))
` )
= x by
Th6;
hence thesis by
ROBBINS1:def 5;
end;
registration
cluster
satisfying_DN_1 ->
join-associative for non
empty
ComplLLattStr;
coherence by
Lm2;
cluster
satisfying_DN_1 ->
Robbins for non
empty
ComplLLattStr;
coherence by
Lm3;
end
theorem ::
ROBBINS2:58
Th58: for L be non
empty
ComplLLattStr, x,z be
Element of L st L is
join-commutative
join-associative
Huntington holds ((z
+ x)
*' (z
+ (x
` )))
= z
proof
let L be non
empty
ComplLLattStr;
let x,z be
Element of L;
assume L is
join-commutative
join-associative
Huntington;
then
reconsider L9 = L as
join-commutative
join-associative
Huntington non
empty
ComplLLattStr;
reconsider z9 = z, x9 = x as
Element of L9;
((z9
+ x9)
*' (z9
+ (x9
` )))
= (z9
+ (x9
*' (x9
` ))) by
ROBBINS1: 31
.= (z9
+ (
Bot L9)) by
ROBBINS1: 15
.= z9 by
ROBBINS1: 13;
hence thesis;
end;
theorem ::
ROBBINS2:59
Th59: for L be
join-commutative
join-associative non
empty
ComplLLattStr st L is
Robbins holds L is
satisfying_DN_1
proof
let L be
join-commutative
join-associative non
empty
ComplLLattStr;
assume L is
Robbins;
then
reconsider L9 = L as
join-commutative
join-associative
Robbins non
empty
ComplLLattStr;
let x,y,z,u be
Element of L;
A1: L9 is
Huntington;
then
A2: ((z
+ x)
*' (z
+ (x
` )))
= z by
Th58;
A3: ((((x
+ y)
` )
+ z)
*' z)
= ((z
+ ((x
+ y)
` ))
*' z)
.= (z
*' (z
+ ((x
+ y)
` )))
.= z by
A1,
ROBBINS1: 21;
A4: (((((x
+ y)
` )
+ z)
*' x)
+ z)
= (z
+ ((((x
+ y)
` )
+ z)
*' x))
.= ((z
+ (((x
+ y)
` )
+ z))
*' (z
+ x)) by
A1,
ROBBINS1: 31
.= (((((x
+ y)
` )
+ z)
+ z)
*' (z
+ x))
.= ((((x
+ y)
` )
+ (z
+ z))
*' (z
+ x)) by
LATTICES:def 5
.= ((((x
+ y)
` )
+ z)
*' (z
+ x)) by
A1,
ROBBINS1: 12
.= ((((((x
` )
*' (y
` ))
` )
` )
+ z)
*' (z
+ x)) by
A1,
ROBBINS1: 17
.= ((((x
` )
*' (y
` ))
+ z)
*' (z
+ x)) by
A1,
ROBBINS1: 3
.= ((z
+ ((x
` )
*' (y
` )))
*' (z
+ x))
.= (((z
+ (x
` ))
*' (z
+ (y
` )))
*' (z
+ x)) by
A1,
ROBBINS1: 31
.= ((z
+ x)
*' ((z
+ (x
` ))
*' (z
+ (y
` ))))
.= ((z
+ x)
*' (((x
` )
+ z)
*' (z
+ (y
` ))))
.= ((z
+ x)
*' (((x
` )
+ z)
*' ((y
` )
+ z)))
.= (((z
+ x)
*' ((x
` )
+ z))
*' ((y
` )
+ z)) by
A1,
ROBBINS1: 16
.= (((z
+ x)
*' (z
+ (x
` )))
*' ((y
` )
+ z))
.= (z
*' (z
+ (y
` ))) by
A2
.= z by
A1,
ROBBINS1: 21;
((((((x
+ y)
` )
+ z)
` )
+ ((x
+ (((z
` )
+ ((z
+ u)
` ))
` ))
` ))
` )
= ((((((((x
+ y)
` )
+ z)
` )
` )
*' (((x
+ (((z
` )
+ ((z
+ u)
` ))
` ))
` )
` ))
` )
` ) by
A1,
ROBBINS1: 17
.= ((((((x
+ y)
` )
+ z)
` )
` )
*' (((x
+ (((z
` )
+ ((z
+ u)
` ))
` ))
` )
` )) by
A1,
ROBBINS1: 3
.= ((((((x
+ y)
` )
+ z)
` )
` )
*' (x
+ (((z
` )
+ ((z
+ u)
` ))
` ))) by
A1,
ROBBINS1: 3
.= ((((x
+ y)
` )
+ z)
*' (x
+ (((z
` )
+ ((z
+ u)
` ))
` ))) by
A1,
ROBBINS1: 3
.= ((((((x
+ y)
` )
` )
*' (z
` ))
` )
*' (x
+ (((z
` )
+ ((z
+ u)
` ))
` ))) by
A1,
ROBBINS1: 17
.= ((((x
+ y)
*' (z
` ))
` )
*' (x
+ (((z
` )
+ ((z
+ u)
` ))
` ))) by
A1,
ROBBINS1: 3
.= ((((x
+ y)
*' (z
` ))
` )
*' (x
+ (((((z
` )
` )
*' (((z
+ u)
` )
` ))
` )
` ))) by
A1,
ROBBINS1: 17
.= ((((x
+ y)
*' (z
` ))
` )
*' (x
+ (((z
*' (((z
+ u)
` )
` ))
` )
` ))) by
A1,
ROBBINS1: 3
.= ((((x
+ y)
*' (z
` ))
` )
*' (x
+ (z
*' (((z
+ u)
` )
` )))) by
A1,
ROBBINS1: 3
.= ((((x
+ y)
*' (z
` ))
` )
*' (x
+ (z
*' (z
+ u)))) by
A1,
ROBBINS1: 3
.= ((((x
+ y)
*' (z
` ))
` )
*' (x
+ z)) by
A1,
ROBBINS1: 21
.= (((((x
+ y)
*' (z
` ))
` )
*' x)
+ ((((x
+ y)
*' (z
` ))
` )
*' z)) by
A1,
ROBBINS1: 30
.= (((((((x
+ y)
` )
` )
*' (z
` ))
` )
*' x)
+ ((((x
+ y)
*' (z
` ))
` )
*' z)) by
A1,
ROBBINS1: 3
.= (((((x
+ y)
` )
+ z)
*' x)
+ ((((x
+ y)
*' (z
` ))
` )
*' z)) by
A1,
ROBBINS1: 17
.= (((((x
+ y)
` )
+ z)
*' x)
+ ((((((x
+ y)
` )
` )
*' (z
` ))
` )
*' z)) by
A1,
ROBBINS1: 3
.= z by
A1,
A3,
A4,
ROBBINS1: 17;
hence thesis;
end;
registration
cluster
join-commutative
join-associative
Robbins ->
satisfying_DN_1 for non
empty
ComplLLattStr;
coherence by
Th59;
end
registration
cluster
satisfying_DN_1
de_Morgan for
preOrthoLattice;
existence
proof
take
TrivOrtLat ;
thus thesis;
end;
end
registration
cluster
satisfying_DN_1
de_Morgan ->
Boolean for
preOrthoLattice;
coherence ;
cluster
Boolean ->
satisfying_DN_1 for
well-complemented
preOrthoLattice;
coherence ;
end
begin
definition
let L be non
empty
ComplLLattStr;
::
ROBBINS2:def2
attr L is
satisfying_MD_1 means for x,y be
Element of L holds ((((x
` )
+ y)
` )
+ x)
= x;
::
ROBBINS2:def3
attr L is
satisfying_MD_2 means for x,y,z be
Element of L holds ((((x
` )
+ y)
` )
+ (z
+ y))
= (y
+ (z
+ x));
end
Lm4:
now
let L be non
empty
ComplLLattStr;
assume
A1: L is
satisfying_MD_1
satisfying_MD_2;
A2: for x,y be
Element of L holds ((x
` )
+ ((x
` )
+ y))
= ((x
` )
+ y)
proof
let x,y be
Element of L;
set X = ((x
` )
+ y);
((X
` )
+ x)
= x by
A1;
hence thesis by
A1;
end;
A3: for x,y be
Element of L holds ((((x
` )
+ y)
` )
+ y)
= (y
+ x)
proof
let x,y be
Element of L;
set X = ((x
` )
+ y);
A4: ((X
` )
+ ((X
` )
+ y))
= (y
+ ((X
` )
+ x)) by
A1;
((((x
` )
+ y)
` )
+ y)
= ((X
` )
+ ((X
` )
+ y)) by
A2
.= (y
+ x) by
A1,
A4;
hence thesis;
end;
A5: for x be
Element of L holds (x
+ x)
= x
proof
let x be
Element of L;
(x
+ x)
= ((((x
` )
+ x)
` )
+ x) by
A3
.= x by
A1;
hence thesis;
end;
A6: for x,y be
Element of L holds (x
+ (x
+ y))
= (x
+ y)
proof
let x,y be
Element of L;
(x
+ (x
+ y))
= ((((y
` )
+ x)
` )
+ (x
+ x)) by
A1
.= ((((y
` )
+ x)
` )
+ x) by
A5
.= (x
+ y) by
A3;
hence thesis;
end;
A7: for x,y be
Element of L holds ((x
+ y)
+ y)
= (x
+ y)
proof
let x,y be
Element of L;
set Y = (x
+ y);
((x
+ y)
+ y)
= ((((y
` )
+ (x
+ y))
` )
+ (x
+ y)) by
A3
.= ((((y
` )
+ (x
+ y))
` )
+ (x
+ (x
+ y))) by
A6
.= (Y
+ (x
+ y)) by
A1
.= (x
+ y) by
A5;
hence thesis;
end;
A8: for x,y be
Element of L holds ((x
+ y)
+ x)
= (x
+ y)
proof
let x,y be
Element of L;
((x
+ y)
+ x)
= (((((y
` )
+ x)
` )
+ x)
+ x) by
A3
.= ((((y
` )
+ x)
` )
+ x) by
A7
.= (x
+ y) by
A3;
hence thesis;
end;
A9: for x,y be
Element of L holds (x
+ (y
+ (y
+ x)))
= (y
+ x)
proof
let x,y be
Element of L;
set Z = (y
+ x);
(x
+ (y
+ (y
+ x)))
= ((((Z
` )
+ x)
` )
+ (y
+ x)) by
A1
.= (y
+ x) by
A1;
hence thesis;
end;
A10: for x,y be
Element of L holds (x
+ (y
+ x))
= (y
+ x)
proof
let x,y be
Element of L;
(x
+ (y
+ x))
= (x
+ (y
+ (y
+ x))) by
A6
.= (y
+ x) by
A9;
hence thesis;
end;
A11: for x,y be
Element of L holds (((x
+ (y
` ))
` )
+ y)
= y
proof
let x,y be
Element of L;
(((x
+ (y
` ))
` )
+ y)
= ((((y
` )
+ (x
+ (y
` )))
` )
+ y) by
A10
.= y by
A1;
hence thesis;
end;
A12: for x be
Element of L holds (((x
` )
` )
+ x)
= x
proof
let x be
Element of L;
((((x
` )
+ (x
` ))
` )
+ x)
= x by
A1;
hence thesis by
A5;
end;
A13: for x be
Element of L holds (x
+ ((x
` )
` ))
= x
proof
let x be
Element of L;
(x
+ ((x
` )
` ))
= ((((x
` )
` )
+ x)
+ ((x
` )
` )) by
A12
.= (((x
` )
` )
+ x) by
A8
.= x by
A12;
hence thesis;
end;
A14: for x,y be
Element of L holds (x
+ (((x
` )
` )
+ y))
= (x
+ y)
proof
let x,y be
Element of L;
(x
+ (((x
` )
` )
+ y))
= ((((y
` )
+ x)
` )
+ (((x
` )
` )
+ x)) by
A1
.= ((((y
` )
+ x)
` )
+ x) by
A12
.= (x
+ y) by
A3;
hence thesis;
end;
A15: for x be
Element of L holds (x
+ ((((x
` )
` )
` )
` ))
= x
proof
let x be
Element of L;
(x
+ ((((x
` )
` )
` )
` ))
= (x
+ (((x
` )
` )
+ ((((x
` )
` )
` )
` ))) by
A14
.= (x
+ ((x
` )
` )) by
A13
.= x by
A13;
hence thesis;
end;
A16: for x be
Element of L holds (((x
` )
` )
` )
= (x
` )
proof
let x be
Element of L;
(((x
` )
` )
` )
= (((x
+ ((((x
` )
` )
` )
` ))
` )
+ (((x
` )
` )
` )) by
A11
.= ((x
` )
+ (((x
` )
` )
` )) by
A15
.= (x
` ) by
A13;
hence thesis;
end;
A17: for x,y,z be
Element of L holds ((((x
` )
+ y)
` )
+ ((((x
` )
+ z)
` )
+ y))
= (y
+ x)
proof
let x,y,z be
Element of L;
((((x
` )
+ y)
` )
+ ((((x
` )
+ z)
` )
+ y))
= (y
+ ((((x
` )
+ z)
` )
+ x)) by
A1
.= (y
+ x) by
A1;
hence thesis;
end;
A18: for x,y be
Element of L holds (x
+ ((y
` )
` ))
= (x
+ y)
proof
let x,y be
Element of L;
(x
+ y)
= ((((y
` )
+ x)
` )
+ ((((y
` )
+ x)
` )
+ x)) by
A17
.= ((((y
` )
+ x)
` )
+ ((((((y
` )
` )
` )
+ x)
` )
+ x)) by
A16
.= ((((((y
` )
` )
` )
+ x)
` )
+ ((((((y
` )
` )
` )
+ x)
` )
+ x)) by
A16
.= (x
+ ((y
` )
` )) by
A17;
hence thesis;
end;
A19: for x be
Element of L holds ((x
` )
` )
= x
proof
let x be
Element of L;
((x
` )
` )
= ((((((x
` )
` )
` )
+ ((x
` )
` ))
` )
+ ((x
` )
` )) by
A1
.= ((((x
` )
+ ((x
` )
` ))
` )
+ ((x
` )
` )) by
A16
.= ((((x
` )
+ ((x
` )
` ))
` )
+ x) by
A18
.= x by
A1;
hence thesis;
end;
A20: for x,y,z be
Element of L holds ((((x
` )
+ ((((y
+ x)
` )
+ z)
` ))
` )
+ (y
+ ((((y
+ x)
` )
+ z)
` )))
= (y
+ x)
proof
let x,y,z be
Element of L;
set P = ((((y
+ x)
` )
+ z)
` );
((((x
` )
+ P)
` )
+ (y
+ P))
= (P
+ (y
+ x)) by
A1
.= (y
+ x) by
A1;
hence thesis;
end;
A21: for x,y be
Element of L holds ((((x
` )
+ ((x
+ y)
` ))
` )
+ ((y
` )
+ ((x
+ y)
` )))
= ((y
` )
+ x)
proof
let x,y be
Element of L;
((((x
` )
+ ((x
+ y)
` ))
` )
+ ((y
` )
+ ((x
+ y)
` )))
= ((((x
` )
+ ((x
+ y)
` ))
` )
+ ((y
` )
+ (((((y
` )
+ x)
` )
+ x)
` ))) by
A3
.= ((((x
` )
+ (((((y
` )
+ x)
` )
+ x)
` ))
` )
+ ((y
` )
+ (((((y
` )
+ x)
` )
+ x)
` ))) by
A3
.= ((y
` )
+ x) by
A20;
hence thesis;
end;
A22: for x,y be
Element of L holds (x
+ (((x
` )
+ y)
` ))
= x
proof
let x,y be
Element of L;
(x
+ (((x
` )
+ y)
` ))
= (((((x
` )
+ y)
` )
+ x)
+ (((x
` )
+ y)
` )) by
A1
.= ((((x
` )
+ y)
` )
+ x) by
A8
.= x by
A1;
hence thesis;
end;
A23: for x,y be
Element of L holds ((x
` )
+ ((x
+ y)
` ))
= (x
` )
proof
let x,y be
Element of L;
(x
` )
= ((x
` )
+ ((((x
` )
` )
+ y)
` )) by
A22
.= ((x
` )
+ ((x
+ y)
` )) by
A19;
hence thesis;
end;
A24: for x,y be
Element of L holds (x
+ ((y
+ (x
` ))
` ))
= x
proof
let x,y be
Element of L;
(x
+ ((y
+ (x
` ))
` ))
= ((((y
+ (x
` ))
` )
+ x)
+ ((y
+ (x
` ))
` )) by
A11
.= (((y
+ (x
` ))
` )
+ x) by
A8
.= x by
A11;
hence thesis;
end;
A25: for x,y be
Element of L holds ((x
` )
+ ((y
+ x)
` ))
= (x
` )
proof
let x,y be
Element of L;
(x
` )
= ((x
` )
+ ((y
+ ((x
` )
` ))
` )) by
A24
.= ((x
` )
+ ((y
+ x)
` )) by
A19;
hence thesis;
end;
A26: for x,y be
Element of L holds (x
+ (y
` ))
= ((y
` )
+ x)
proof
let x,y be
Element of L;
((y
` )
+ x)
= ((((x
` )
+ ((x
+ y)
` ))
` )
+ ((y
` )
+ ((x
+ y)
` ))) by
A21
.= (((x
` )
` )
+ ((y
` )
+ ((x
+ y)
` ))) by
A23
.= (((x
` )
` )
+ (y
` )) by
A25
.= (x
+ (y
` )) by
A19;
hence thesis;
end;
A27: for x,y be
Element of L holds (x
+ y)
= (y
+ x)
proof
let x,y be
Element of L;
((y
` )
` )
= y by
A19;
hence thesis by
A26;
end;
hence L is
join-commutative by
LATTICES:def 4;
A28: for x,y,z be
Element of L holds ((((((x
` )
+ y)
` )
+ z)
` )
+ ((x
` )
+ z))
= (z
+ ((x
` )
+ y))
proof
let x,y,z be
Element of L;
((((((x
` )
+ y)
` )
+ z)
` )
+ ((x
` )
+ z))
= (z
+ ((x
` )
+ ((x
` )
+ y))) by
A1
.= (z
+ ((x
` )
+ y)) by
A2;
hence thesis;
end;
A29: for x,y be
Element of L holds (x
+ ((y
` )
+ x))
= ((y
` )
+ x)
proof
let x,y be
Element of L;
(x
+ ((y
` )
+ x))
= ((((((y
` )
+ x)
` )
+ x)
` )
+ ((y
` )
+ x)) by
A28
.= ((y
` )
+ x) by
A1;
hence thesis;
end;
A30: for x,y be
Element of L holds (((x
+ y)
` )
+ x)
= ((y
` )
+ x)
proof
let x,y be
Element of L;
set Y = ((y
` )
+ x);
((y
` )
+ x)
= (x
+ ((y
` )
+ x)) by
A29
.= ((((Y
` )
+ x)
` )
+ x) by
A3
.= (((x
+ y)
` )
+ x) by
A3;
hence thesis;
end;
A31: for x,y be
Element of L holds (((x
+ y)
` )
+ (((y
` )
+ x)
` ))
= ((x
` )
+ (((y
` )
+ x)
` ))
proof
let x,y be
Element of L;
(((x
+ y)
` )
+ (((y
` )
+ x)
` ))
= ((((((y
` )
+ x)
` )
+ x)
` )
+ (((y
` )
+ x)
` )) by
A3
.= ((x
` )
+ (((y
` )
+ x)
` )) by
A30;
hence thesis;
end;
for x,y be
Element of L holds ((((x
` )
+ (y
` ))
` )
+ (((x
` )
+ y)
` ))
= x
proof
let x,y be
Element of L;
((((x
` )
+ (y
` ))
` )
+ (((x
` )
+ y)
` ))
= ((((y
` )
+ (x
` ))
` )
+ (((x
` )
+ y)
` )) by
A27
.= ((((x
` )
+ y)
` )
+ (((y
` )
+ (x
` ))
` )) by
A27
.= (((x
` )
` )
+ (((y
` )
+ (x
` ))
` )) by
A31
.= (x
+ (((y
` )
+ (x
` ))
` )) by
A19
.= x by
A24;
hence thesis;
end;
hence L is
Huntington by
ROBBINS1:def 6;
A32: for x,y,z be
Element of L holds ((x
+ y)
+ (y
+ z))
= ((x
+ y)
+ z)
proof
let x,y,z be
Element of L;
set Y = (x
+ y);
((x
+ y)
+ z)
= ((((z
` )
+ Y)
` )
+ Y) by
A3
.= ((((z
` )
+ Y)
` )
+ (y
+ Y)) by
A10
.= (Y
+ (y
+ z)) by
A1;
hence thesis;
end;
for x,y,z be
Element of L holds ((x
+ y)
+ z)
= (x
+ (y
+ z))
proof
let x,y,z be
Element of L;
for x,y,z be
Element of L holds ((x
+ y)
+ (z
+ x))
= (y
+ (x
+ z))
proof
let x,y,z be
Element of L;
((x
+ y)
+ (z
+ x))
= ((z
+ x)
+ (x
+ y)) by
A27
.= ((z
+ x)
+ y) by
A32
.= ((x
+ z)
+ y) by
A27
.= (y
+ (x
+ z)) by
A27;
hence thesis;
end;
then ((y
+ x)
+ (z
+ y))
= (x
+ (y
+ z));
then
A33: ((x
+ y)
+ (z
+ y))
= (x
+ (y
+ z)) by
A27;
((x
+ y)
+ z)
= ((x
+ y)
+ (y
+ z)) by
A32
.= (x
+ (y
+ z)) by
A27,
A33;
hence thesis;
end;
hence L is
join-associative by
LATTICES:def 5;
end;
registration
cluster
satisfying_MD_1
satisfying_MD_2 ->
join-commutative
join-associative
Huntington for non
empty
ComplLLattStr;
coherence by
Lm4;
cluster
join-commutative
join-associative
Huntington ->
satisfying_MD_1
satisfying_MD_2 for non
empty
ComplLLattStr;
coherence
proof
let L be non
empty
ComplLLattStr;
assume L is
join-commutative
join-associative
Huntington;
then
reconsider L9 = L as
join-commutative
join-associative
Huntington non
empty
ComplLLattStr;
A1: L9 is
satisfying_MD_2
proof
let x,y,z be
Element of L9;
set Z = (z
+ y);
A2: (Z
+ (y
` ))
= (z
+ (y
+ (y
` ))) by
LATTICES:def 5
.= (z
+ (
Top L9)) by
ROBBINS1:def 8
.= (
Top L9) by
ROBBINS1: 19;
((((x
` )
+ y)
` )
+ (z
+ y))
= ((((x
` )
+ ((y
` )
` ))
` )
+ (z
+ y)) by
ROBBINS1: 3
.= ((x
*' (y
` ))
+ (z
+ y)) by
ROBBINS1:def 4
.= ((Z
+ x)
*' (Z
+ (y
` ))) by
ROBBINS1: 31
.= (Z
+ x) by
A2,
ROBBINS1: 14
.= (y
+ (z
+ x)) by
LATTICES:def 5;
hence thesis;
end;
L9 is
satisfying_MD_1
proof
let x,y be
Element of L9;
((((x
` )
+ y)
` )
+ x)
= ((((x
` )
+ ((y
` )
` ))
` )
+ x) by
ROBBINS1: 3
.= ((x
*' (y
` ))
+ x) by
ROBBINS1:def 4
.= x by
ROBBINS1: 20;
hence thesis;
end;
hence thesis by
A1;
end;
end
registration
cluster
satisfying_MD_1
satisfying_MD_2
satisfying_DN_1
de_Morgan for
preOrthoLattice;
existence
proof
take
TrivOrtLat ;
thus thesis;
end;
end
registration
cluster
satisfying_MD_1
satisfying_MD_2
de_Morgan ->
Boolean for
preOrthoLattice;
coherence ;
cluster
Boolean ->
satisfying_MD_1
satisfying_MD_2 for
well-complemented
preOrthoLattice;
coherence ;
end