robbins5.miz
begin
reserve L for non
empty
LattStr;
reserve v64,v65,v66,v67,v103,v3,v102,v101,v100,v2,v1,v0 for
Element of L;
definition
let L;
::
ROBBINS5:def1
attr L is
satisfying_Sholander_1 means for v0, v1, v2 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
end
theorem ::
ROBBINS5:1
Lemma1: L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v0 holds (v0
"/\" v0)
= v0
proof
assume
A2: L is
join-absorbing;
assume
A3: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A7: for v65, v66 holds v65
= ((v66
"/\" v65)
"\/" (v65
"/\" v65))
proof
let v65, v66;
(v65
"/\" (v65
"\/" v66))
= v65 by
A2;
hence thesis by
A3;
end;
A11: for v1, v0 holds ((v0
"/\" v1)
"/\" v1)
= (v0
"/\" v1)
proof
let v1, v0;
((v0
"/\" v1)
"\/" (v1
"/\" v1))
= v1 by
A7;
hence thesis by
A2;
end;
A18: for v65, v64, v0 holds ((v0
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" (v65
"\/" (v0
"/\" v64)))
proof
let v65, v64, v0;
((v0
"/\" v64)
"/\" v64)
= (v0
"/\" v64) by
A11;
hence thesis by
A3;
end;
A35: for v65, v64, v66 holds (v65
"/\" (v66
"\/" v64))
= (v65
"/\" (v66
"\/" (v64
"/\" v65)))
proof
let v65, v64, v66;
((v64
"/\" v65)
"\/" (v66
"/\" v65))
= (v65
"/\" (v66
"\/" v64)) by
A3;
hence thesis by
A18;
end;
A40: for v64, v0 holds (v64
"/\" v64)
= (v64
"/\" ((v0
"/\" v64)
"\/" v64))
proof
let v64, v0;
((v0
"/\" v64)
"\/" (v64
"/\" v64))
= v64 by
A7;
hence thesis by
A35;
end;
A49: for v64, v65 holds ((v64
"/\" v64)
"\/" ((v65
"/\" v64)
"/\" v64))
= (v64
"/\" v64)
proof
let v64, v65;
(v64
"/\" ((v65
"/\" v64)
"\/" v64))
= ((v64
"/\" v64)
"\/" ((v65
"/\" v64)
"/\" v64)) by
A3;
hence thesis by
A40;
end;
A51: for v64, v65 holds ((v64
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" v64)
proof
let v64, v65;
((v65
"/\" v64)
"/\" v64)
= (v65
"/\" v64) by
A11;
hence thesis by
A49;
end;
let v65;
((v65
"/\" v65)
"\/" (v65
"/\" v65))
= v65 by
A7;
hence thesis by
A51;
end;
theorem ::
ROBBINS5:2
JoinIdem: L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v0 holds (v0
"\/" v0)
= v0
proof
assume
A3: L is
join-absorbing;
assume
A4: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A8: for v65, v66 holds v65
= ((v66
"/\" v65)
"\/" (v65
"/\" v65))
proof
let v65, v66;
(v65
"/\" (v65
"\/" v66))
= v65 by
A3;
hence thesis by
A4;
end;
A12: for v1, v0 holds ((v0
"/\" v1)
"/\" v1)
= (v0
"/\" v1)
proof
let v1, v0;
((v0
"/\" v1)
"\/" (v1
"/\" v1))
= v1 by
A8;
hence thesis by
A3;
end;
A15: for v65, v64, v0 holds ((v0
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" (v65
"\/" (v0
"/\" v64)))
proof
let v65, v64, v0;
((v0
"/\" v64)
"/\" v64)
= (v0
"/\" v64) by
A12;
hence thesis by
A4;
end;
A19: for v65, v64, v66 holds (v65
"/\" (v66
"\/" v64))
= (v65
"/\" (v66
"\/" (v64
"/\" v65)))
proof
let v65, v64, v66;
((v64
"/\" v65)
"\/" (v66
"/\" v65))
= (v65
"/\" (v66
"\/" v64)) by
A4;
hence thesis by
A15;
end;
A24: for v64, v0 holds (v64
"/\" v64)
= (v64
"/\" ((v0
"/\" v64)
"\/" v64))
proof
let v64, v0;
((v0
"/\" v64)
"\/" (v64
"/\" v64))
= v64 by
A8;
hence thesis by
A19;
end;
A35: for v64, v1 holds ((v64
"/\" v64)
"\/" (((v1
"/\" v64)
"\/" v64)
"/\" ((v1
"/\" v64)
"\/" v64)))
= ((v1
"/\" v64)
"\/" v64)
proof
let v64, v1;
(v64
"/\" ((v1
"/\" v64)
"\/" v64))
= (v64
"/\" v64) by
A24;
hence thesis by
A8;
end;
A42: for v0, v1 holds (v0
"\/" (((v1
"/\" v0)
"\/" v0)
"/\" ((v1
"/\" v0)
"\/" v0)))
= ((v1
"/\" v0)
"\/" v0)
proof
let v0, v1;
(v0
"/\" v0)
= v0 by
A3,
A4,
Lemma1;
hence thesis by
A35;
end;
A44: for v0, v1 holds (v0
"\/" ((v1
"/\" v0)
"\/" v0))
= ((v1
"/\" v0)
"\/" v0)
proof
let v0, v1;
(((v1
"/\" v0)
"\/" v0)
"/\" ((v1
"/\" v0)
"\/" v0))
= ((v1
"/\" v0)
"\/" v0) by
A3,
A4,
Lemma1;
hence thesis by
A42;
end;
A46: for v1, v0 holds ((v0
"/\" v1)
"\/" v1)
= v1
proof
let v1, v0;
(v1
"/\" v1)
= v1 by
A3,
A4,
Lemma1;
hence thesis by
A8;
end;
A48: for v0, v1 holds (v0
"\/" v0)
= ((v1
"/\" v0)
"\/" v0)
proof
let v0, v1;
((v1
"/\" v0)
"\/" v0)
= v0 by
A46;
hence thesis by
A44;
end;
now
let v0, v1;
((v1
"/\" v0)
"\/" v0)
= v0 by
A46;
hence (v0
"\/" v0)
= v0 by
A48;
end;
hence thesis;
end;
theorem ::
ROBBINS5:3
MeetCom: L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v0, v1 holds (v0
"/\" v1)
= (v1
"/\" v0)
proof
assume
A3: L is
join-absorbing;
assume
A4: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A53: for v2, v0 holds (v0
"/\" (v2
"\/" v2))
= (v2
"/\" v0)
proof
let v2, v0;
((v2
"/\" v0)
"\/" (v2
"/\" v0))
= (v0
"/\" (v2
"\/" v2)) by
A4;
hence thesis by
A3,
A4,
JoinIdem;
end;
let v2, v0;
(v2
"\/" v2)
= v2 by
A3,
A4,
JoinIdem;
hence thesis by
A53;
end;
theorem ::
ROBBINS5:4
JoinCom: L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v0, v1 holds (v0
"\/" v1)
= (v1
"\/" v0)
proof
assume
A3: L is
join-absorbing;
assume
A4: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A8: for v65, v66 holds v65
= ((v66
"/\" v65)
"\/" (v65
"/\" v65))
proof
let v65, v66;
(v65
"/\" (v65
"\/" v66))
= v65 by
A3;
hence thesis by
A4;
end;
A12: for v1, v0 holds ((v0
"/\" v1)
"/\" v1)
= (v0
"/\" v1)
proof
let v1, v0;
((v0
"/\" v1)
"\/" (v1
"/\" v1))
= v1 by
A8;
hence thesis by
A3;
end;
A15: for v65, v64, v0 holds ((v0
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" (v65
"\/" (v0
"/\" v64)))
proof
let v65, v64, v0;
((v0
"/\" v64)
"/\" v64)
= (v0
"/\" v64) by
A12;
hence thesis by
A4;
end;
A19: for v65, v64, v66 holds (v65
"/\" (v66
"\/" v64))
= (v65
"/\" (v66
"\/" (v64
"/\" v65)))
proof
let v65, v64, v66;
((v64
"/\" v65)
"\/" (v66
"/\" v65))
= (v65
"/\" (v66
"\/" v64)) by
A4;
hence thesis by
A15;
end;
A24: for v64, v0 holds (v64
"/\" v64)
= (v64
"/\" ((v0
"/\" v64)
"\/" v64))
proof
let v64, v0;
((v0
"/\" v64)
"\/" (v64
"/\" v64))
= v64 by
A8;
hence thesis by
A19;
end;
A29: for v64, v65 holds ((v64
"/\" v64)
"\/" ((v65
"/\" v64)
"/\" v64))
= (v64
"/\" v64)
proof
let v64, v65;
(v64
"/\" ((v65
"/\" v64)
"\/" v64))
= ((v64
"/\" v64)
"\/" ((v65
"/\" v64)
"/\" v64)) by
A4;
hence thesis by
A24;
end;
A31: for v64, v65 holds ((v64
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" v64)
proof
let v64, v65;
((v65
"/\" v64)
"/\" v64)
= (v65
"/\" v64) by
A12;
hence thesis by
A29;
end;
A42: for v64, v65 holds (v64
"/\" (v65
"\/" v64))
= v64
proof
let v64, v65;
((v64
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" (v65
"\/" v64)) by
A4;
then (v64
"/\" (v65
"\/" v64))
= (v64
"/\" v64) by
A31
.= v64 by
A4,
A3,
Lemma1;
hence thesis;
end;
A46: for v2, v1 holds ((v2
"/\" (v1
"\/" v2))
"\/" (v1
"/\" (v1
"\/" v2)))
= (v1
"\/" v2)
proof
let v2, v1;
((v1
"\/" v2)
"/\" (v1
"\/" v2))
= ((v2
"/\" (v1
"\/" v2))
"\/" (v1
"/\" (v1
"\/" v2))) by
A4;
hence thesis by
A4,
A3,
Lemma1;
end;
A48: for v2, v1 holds (v2
"\/" (v1
"/\" (v1
"\/" v2)))
= (v1
"\/" v2)
proof
let v2, v1;
(v2
"/\" (v1
"\/" v2))
= v2 by
A42;
hence thesis by
A46;
end;
let v1, v2;
(v1
"/\" (v1
"\/" v2))
= v1 by
A3;
hence thesis by
A48;
end;
theorem ::
ROBBINS5:5
MeetAssoc: L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v0, v1, v2 holds ((v0
"/\" v1)
"/\" v2)
= (v0
"/\" (v1
"/\" v2))
proof
assume
A2: L is
join-absorbing;
assume
A3: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A7: for v65, v66 holds v65
= ((v66
"/\" v65)
"\/" (v65
"/\" v65))
proof
let v65, v66;
(v65
"/\" (v65
"\/" v66))
= v65 by
A2;
hence thesis by
A3;
end;
A11: for v1, v0 holds ((v0
"/\" v1)
"/\" v1)
= (v0
"/\" v1)
proof
let v1, v0;
((v0
"/\" v1)
"\/" (v1
"/\" v1))
= v1 by
A7;
hence thesis by
A2;
end;
A14: for v1, v64, v2 holds (((v2
"/\" v64)
"\/" (v1
"/\" v64))
"/\" (v1
"\/" v2))
= (v64
"/\" (v1
"\/" v2))
proof
let v1, v64, v2;
(v64
"/\" (v1
"\/" v2))
= ((v2
"/\" v64)
"\/" (v1
"/\" v64)) by
A3;
hence thesis by
A11;
end;
A18: for v65, v64, v0 holds ((v0
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" (v65
"\/" (v0
"/\" v64)))
proof
let v65, v64, v0;
((v0
"/\" v64)
"/\" v64)
= (v0
"/\" v64) by
A11;
hence thesis by
A3;
end;
A22: for v65, v64, v66 holds (v65
"/\" (v66
"\/" v64))
= (v65
"/\" (v66
"\/" (v64
"/\" v65)))
proof
let v65, v64, v66;
((v64
"/\" v65)
"\/" (v66
"/\" v65))
= (v65
"/\" (v66
"\/" v64)) by
A3;
hence thesis by
A18;
end;
A27: for v64, v0 holds (v64
"/\" v64)
= (v64
"/\" ((v0
"/\" v64)
"\/" v64))
proof
let v64, v0;
((v0
"/\" v64)
"\/" (v64
"/\" v64))
= v64 by
A7;
hence thesis by
A22;
end;
A32: for v64, v65 holds ((v64
"/\" v64)
"\/" ((v65
"/\" v64)
"/\" v64))
= (v64
"/\" v64)
proof
let v64, v65;
(v64
"/\" ((v65
"/\" v64)
"\/" v64))
= ((v64
"/\" v64)
"\/" ((v65
"/\" v64)
"/\" v64)) by
A3;
hence thesis by
A27;
end;
A34: for v64, v65 holds ((v64
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" v64)
proof
let v64, v65;
((v65
"/\" v64)
"/\" v64)
= (v65
"/\" v64) by
A11;
hence thesis by
A32;
end;
A55: for v0, v1 holds (v0
"\/" (v1
"/\" v0))
= v0
proof
let v0, v1;
(v0
"/\" v0)
= v0 by
A2,
A3,
Lemma1;
hence thesis by
A34;
end;
A57: for v1, v0 holds ((v0
"/\" v1)
"\/" v1)
= v1
proof
let v1, v0;
(v1
"/\" v1)
= v1 by
A2,
A3,
Lemma1;
hence thesis by
A7;
end;
A72: for v66, v65, v64 holds ((v64
"/\" ((v64
"/\" v65)
"\/" (v66
"/\" v65)))
"\/" (v66
"/\" ((v64
"/\" v65)
"\/" (v66
"/\" v65))))
= (v65
"/\" (v66
"\/" v64))
proof
let v66, v65, v64;
(((v64
"/\" v65)
"\/" (v66
"/\" v65))
"/\" (v66
"\/" v64))
= ((v64
"/\" ((v64
"/\" v65)
"\/" (v66
"/\" v65)))
"\/" (v66
"/\" ((v64
"/\" v65)
"\/" (v66
"/\" v65)))) by
A3;
hence thesis by
A14;
end;
A82: for v65, v66 holds ((v66
"/\" v65)
"/\" (v66
"\/" v66))
= (v65
"/\" (v66
"\/" v66))
proof
let v65, v66;
((v66
"/\" v65)
"\/" (v66
"/\" v65))
= (v66
"/\" v65) by
JoinIdem,
A2,
A3;
hence thesis by
A14;
end;
A84: for v65, v66 holds ((v66
"/\" v65)
"/\" v66)
= (v65
"/\" (v66
"\/" v66))
proof
let v65, v66;
(v66
"\/" v66)
= v66 by
JoinIdem,
A2,
A3;
hence thesis by
A82;
end;
A86: for v65, v66 holds ((v66
"/\" v65)
"/\" v66)
= (v65
"/\" v66)
proof
let v65, v66;
(v66
"\/" v66)
= v66 by
JoinIdem,
A2,
A3;
hence thesis by
A84;
end;
A89: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v1
"/\" v0)
"\/" (v2
"/\" v0))
proof
let v0, v2, v1;
((v2
"/\" v0)
"\/" (v1
"/\" v0))
= (v0
"/\" (v1
"\/" v2)) by
A3;
hence thesis by
A2,
A3,
JoinCom;
end;
A92: for v1, v2, v0 holds ((v0
"/\" (v1
"/\" (v0
"\/" v2)))
"\/" (v2
"/\" ((v0
"/\" v1)
"\/" (v2
"/\" v1))))
= (v1
"/\" (v2
"\/" v0))
proof
let v1, v2, v0;
((v0
"/\" v1)
"\/" (v2
"/\" v1))
= (v1
"/\" (v0
"\/" v2)) by
A89;
hence thesis by
A72;
end;
A93: for v1, v2, v0 holds ((v0
"/\" (v1
"/\" (v0
"\/" v2)))
"\/" (v2
"/\" (v1
"/\" (v0
"\/" v2))))
= (v1
"/\" (v2
"\/" v0))
proof
let v1, v2, v0;
((v0
"/\" v1)
"\/" (v2
"/\" v1))
= (v1
"/\" (v0
"\/" v2)) by
A89;
hence thesis by
A92;
end;
A95: for v1, v2, v0 holds ((v1
"/\" (v0
"\/" v2))
"/\" (v0
"\/" v2))
= (v1
"/\" (v2
"\/" v0))
proof
let v1, v2, v0;
((v0
"/\" (v1
"/\" (v0
"\/" v2)))
"\/" (v2
"/\" (v1
"/\" (v0
"\/" v2))))
= ((v1
"/\" (v0
"\/" v2))
"/\" (v0
"\/" v2)) by
A89;
hence thesis by
A93;
end;
A97: for v1, v2, v0 holds (v1
"/\" (v0
"\/" v2))
= (v1
"/\" (v2
"\/" v0))
proof
let v1, v2, v0;
((v1
"/\" (v0
"\/" v2))
"/\" (v0
"\/" v2))
= (v1
"/\" (v0
"\/" v2)) by
A11;
hence thesis by
A95;
end;
A101: for v64, v65 holds ((v65
"/\" v64)
"\/" v65)
= v65
proof
let v64, v65;
(v64
"/\" v65)
= (v65
"/\" v64) by
A2,
A3,
MeetCom;
hence thesis by
A57;
end;
A105: for v65, v64 holds (v64
"\/" (v64
"/\" v65))
= v64
proof
let v65, v64;
(v65
"/\" v64)
= (v64
"/\" v65) by
A2,
A3,
MeetCom;
hence thesis by
A55;
end;
A109: for v65, v66, v64 holds (v64
"/\" (v65
"\/" (v64
"/\" v66)))
= (v64
"/\" (v65
"\/" v66))
proof
let v65, v66, v64;
(v66
"/\" v64)
= (v64
"/\" v66) by
A2,
A3,
MeetCom;
hence thesis by
A22;
end;
A115: for v1, v65 holds ((v65
"/\" v1)
"\/" (v1
"/\" v65))
= (v65
"/\" v1)
proof
let v1, v65;
((v65
"/\" v1)
"/\" v65)
= (v1
"/\" v65) by
A86;
hence thesis by
A105;
end;
A119: for v64, v66, v65 holds ((v65
"\/" v66)
"/\" v64)
= (v64
"/\" (v66
"\/" v65))
proof
let v64, v66, v65;
(v64
"/\" (v65
"\/" v66))
= ((v65
"\/" v66)
"/\" v64) by
A2,
A3,
MeetCom;
hence thesis by
A97;
end;
A123: for v66, v1, v0 holds ((v0
"/\" v1)
"/\" v66)
= (v66
"/\" ((v1
"/\" v0)
"\/" (v0
"/\" v1)))
proof
let v66, v1, v0;
((v0
"/\" v1)
"\/" (v1
"/\" v0))
= (v0
"/\" v1) by
A115;
hence thesis by
A119;
end;
A125: for v66, v1, v0 holds ((v0
"/\" v1)
"/\" v66)
= (v66
"/\" (v1
"/\" v0))
proof
let v66, v1, v0;
((v1
"/\" v0)
"\/" (v0
"/\" v1))
= (v1
"/\" v0) by
A115;
hence thesis by
A123;
end;
A130: for v66, v64, v0 holds (v64
"/\" (v66
"/\" (v0
"\/" v64)))
= (v64
"/\" ((v0
"/\" v66)
"\/" v66))
proof
let v66, v64, v0;
((v0
"/\" v66)
"\/" (v64
"/\" v66))
= (v66
"/\" (v0
"\/" v64)) by
A89;
hence thesis by
A109;
end;
A132: for v66, v64, v0 holds (v64
"/\" (v66
"/\" (v0
"\/" v64)))
= (v64
"/\" v66)
proof
let v66, v64, v0;
((v0
"/\" v66)
"\/" v66)
= v66 by
A57;
hence thesis by
A130;
end;
A136: for v65, v66, v64 holds (v64
"/\" ((v64
"\/" v66)
"/\" v65))
= (v64
"/\" v65)
proof
let v65, v66, v64;
(v65
"/\" (v66
"\/" v64))
= ((v64
"\/" v66)
"/\" v65) by
A119;
hence thesis by
A132;
end;
A140: for v65, v64, v66 holds (((v66
"\/" v64)
"/\" v65)
"/\" v64)
= (v64
"/\" v65)
proof
let v65, v64, v66;
(v64
"/\" (v65
"/\" (v66
"\/" v64)))
= (((v66
"\/" v64)
"/\" v65)
"/\" v64) by
A125;
hence thesis by
A132;
end;
A144: for v66, v1, v65 holds ((v65
"/\" v1)
"/\" (v65
"/\" v66))
= ((v65
"/\" v1)
"/\" v66)
proof
let v66, v1, v65;
((v65
"/\" v1)
"\/" v65)
= v65 by
A101;
hence thesis by
A136;
end;
A148: for v1, v66, v64 holds ((v64
"/\" v66)
"/\" (v64
"/\" v1))
= ((v64
"/\" v1)
"/\" v66)
proof
let v1, v66, v64;
(v64
"\/" (v64
"/\" v1))
= v64 by
A105;
hence thesis by
A140;
end;
A150: for v1, v66, v64 holds ((v64
"/\" v66)
"/\" v1)
= ((v64
"/\" v1)
"/\" v66)
proof
let v1, v66, v64;
((v64
"/\" v66)
"/\" (v64
"/\" v1))
= ((v64
"/\" v66)
"/\" v1) by
A144;
hence thesis by
A148;
end;
AA: for v66, v65, v64 holds (v66
"/\" (v64
"/\" v65))
= ((v64
"/\" v66)
"/\" v65)
proof
let v66, v65, v64;
((v64
"/\" v65)
"/\" v66)
= (v66
"/\" (v64
"/\" v65)) by
A2,
A3,
MeetCom;
hence thesis by
A150;
end;
let v0, v1, v2;
(v0
"/\" (v1
"/\" v2))
= ((v1
"/\" v0)
"/\" v2) by
AA
.= ((v0
"/\" v1)
"/\" v2) by
A2,
A3,
MeetCom;
hence thesis;
end;
theorem ::
ROBBINS5:6
(for v1, v0 holds (v0
"/\" (v0
"\/" v1))
= v0) implies for v0, v1 holds (v0
"/\" (v0
"\/" v1))
= v0;
theorem ::
ROBBINS5:7
MeetAbsor: L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v1, v0 holds (v0
"\/" (v0
"/\" v1))
= v0
proof
assume
A2: L is
join-absorbing;
assume
A3: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A7: for v65, v66 holds v65
= ((v66
"/\" v65)
"\/" (v65
"/\" v65))
proof
let v65, v66;
(v65
"/\" (v65
"\/" v66))
= v65 by
A2;
hence thesis by
A3;
end;
A51: for v1, v0 holds ((v0
"/\" v1)
"\/" v1)
= v1
proof
let v1, v0;
(v1
"/\" v1)
= v1 by
A2,
A3,
Lemma1;
hence thesis by
A7;
end;
A74: for v64, v65 holds ((v65
"/\" v64)
"\/" v65)
= v65
proof
let v64, v65;
(v64
"/\" v65)
= (v65
"/\" v64) by
A2,
A3,
MeetCom;
hence thesis by
A51;
end;
let v1, v0;
((v0
"/\" v1)
"\/" v0)
= v0 by
A74;
hence thesis by
A2,
A3,
JoinCom;
end;
theorem ::
ROBBINS5:8
JoinAssoc: L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v0, v1, v2 holds ((v0
"\/" v1)
"\/" v2)
= (v0
"\/" (v1
"\/" v2))
proof
assume
A2: L is
join-absorbing;
assume
A3: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A7: for v65, v66 holds v65
= ((v66
"/\" v65)
"\/" (v65
"/\" v65))
proof
let v65, v66;
(v65
"/\" (v65
"\/" v66))
= v65 by
A2;
hence thesis by
A3;
end;
A11: for v1, v0 holds ((v0
"/\" v1)
"/\" v1)
= (v0
"/\" v1)
proof
let v1, v0;
((v0
"/\" v1)
"\/" (v1
"/\" v1))
= v1 by
A7;
hence thesis by
A2;
end;
A14: for v64, v2, v1 holds ((v2
"/\" (v64
"/\" (v1
"\/" v2)))
"\/" (v1
"/\" (v64
"/\" (v1
"\/" v2))))
= (v64
"/\" (v1
"\/" v2))
proof
let v64, v2, v1;
((v64
"/\" (v1
"\/" v2))
"/\" (v1
"\/" v2))
= ((v2
"/\" (v64
"/\" (v1
"\/" v2)))
"\/" (v1
"/\" (v64
"/\" (v1
"\/" v2)))) by
A3;
hence thesis by
A11;
end;
A18: for v65, v64, v0 holds ((v0
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" (v65
"\/" (v0
"/\" v64)))
proof
let v65, v64, v0;
((v0
"/\" v64)
"/\" v64)
= (v0
"/\" v64) by
A11;
hence thesis by
A3;
end;
A22: for v65, v1, v66 holds (v66
"\/" (v65
"/\" (v66
"\/" v1)))
= ((v66
"\/" v1)
"/\" (v65
"\/" v66))
proof
let v65, v1, v66;
(v66
"/\" (v66
"\/" v1))
= v66 by
A2;
hence thesis by
A3;
end;
A25: for v0, v2, v1 holds ((v2
"/\" v0)
"/\" (v0
"/\" (v1
"\/" v2)))
= (v2
"/\" v0)
proof
let v0, v2, v1;
((v2
"/\" v0)
"\/" (v1
"/\" v0))
= (v0
"/\" (v1
"\/" v2)) by
A3;
hence thesis by
A2;
end;
A29: for v66, v1, v64 holds (v64
"/\" ((v64
"\/" v1)
"/\" (v66
"\/" v64)))
= (v64
"/\" (v64
"\/" v1))
proof
let v66, v1, v64;
(v64
"/\" (v64
"\/" v1))
= v64 by
A2;
hence thesis by
A25;
end;
A31: for v66, v1, v64 holds (v64
"/\" ((v64
"\/" v1)
"/\" (v66
"\/" v64)))
= v64
proof
let v66, v1, v64;
(v64
"/\" (v64
"\/" v1))
= v64 by
A2;
hence thesis by
A29;
end;
A35: for v65, v64, v66 holds (v65
"/\" (v66
"\/" v64))
= (v65
"/\" (v66
"\/" (v64
"/\" v65)))
proof
let v65, v64, v66;
((v64
"/\" v65)
"\/" (v66
"/\" v65))
= (v65
"/\" (v66
"\/" v64)) by
A3;
hence thesis by
A18;
end;
A40: for v64, v0 holds (v64
"/\" v64)
= (v64
"/\" ((v0
"/\" v64)
"\/" v64))
proof
let v64, v0;
((v0
"/\" v64)
"\/" (v64
"/\" v64))
= v64 by
A7;
hence thesis by
A35;
end;
A49: for v64, v65 holds ((v64
"/\" v64)
"\/" ((v65
"/\" v64)
"/\" v64))
= (v64
"/\" v64)
proof
let v64, v65;
(v64
"/\" ((v65
"/\" v64)
"\/" v64))
= ((v64
"/\" v64)
"\/" ((v65
"/\" v64)
"/\" v64)) by
A3;
hence thesis by
A40;
end;
A51: for v64, v65 holds ((v64
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" v64)
proof
let v64, v65;
((v65
"/\" v64)
"/\" v64)
= (v65
"/\" v64) by
A11;
hence thesis by
A49;
end;
A64: for v64, v65 holds (v64
"/\" (v65
"\/" v64))
= (v64
"/\" v64)
proof
let v64, v65;
((v64
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" (v65
"\/" v64)) by
A3;
hence thesis by
A51;
end;
A66: for v64, v65 holds (v64
"/\" (v65
"\/" v64))
= v64
proof
let v64, v65;
(v64
"/\" v64)
= v64 by
A2,
A3,
Lemma1;
hence thesis by
A64;
end;
A72: for v0, v1 holds (v0
"\/" (v1
"/\" v0))
= v0
proof
let v0, v1;
(v0
"\/" (v1
"/\" v0))
= (v0
"\/" (v0
"/\" v1)) by
A2,
A3,
MeetCom
.= v0 by
A2,
A3,
MeetAbsor;
hence thesis;
end;
A76: for v1, v0 holds ((v0
"/\" v1)
"\/" v1)
= v1
proof
let v1, v0;
(v1
"/\" v1)
= v1 by
A2,
A3,
Lemma1;
hence thesis by
A7;
end;
A91: for v2, v0 holds (v0
"/\" (v2
"\/" v2))
= (v2
"/\" v0)
proof
let v2, v0;
((v2
"/\" v0)
"\/" (v2
"/\" v0))
= (v0
"/\" (v2
"\/" v2)) by
A3;
hence thesis by
JoinIdem,
A2,
A3;
end;
A93: for v2, v0 holds (v0
"/\" v2)
= (v2
"/\" v0)
proof
let v2, v0;
(v2
"\/" v2)
= v2 by
JoinIdem,
A2,
A3;
hence thesis by
A91;
end;
A97: for v66, v65, v1 holds ((v66
"/\" (v1
"\/" v65))
"\/" v65)
= ((v1
"\/" v65)
"/\" (v65
"\/" v66))
proof
let v66, v65, v1;
(v65
"/\" (v1
"\/" v65))
= v65 by
A66;
hence thesis by
A3;
end;
A101: for v1, v65 holds ((v65
"\/" v1)
"\/" v65)
= (v65
"\/" v1)
proof
let v1, v65;
(v65
"/\" (v65
"\/" v1))
= v65 by
A2;
hence thesis by
A72;
end;
A111: for v64, v65 holds (v64
"/\" (v65
"/\" v64))
= (v65
"/\" v64)
proof
let v64, v65;
(v64
"/\" (v65
"/\" v64))
= (v64
"/\" (v64
"/\" v65)) by
A2,
A3,
MeetCom
.= ((v64
"/\" v64)
"/\" v65) by
MeetAssoc,
A2,
A3
.= (v64
"/\" v65) by
A2,
A3,
Lemma1
.= (v65
"/\" v64) by
MeetCom,
A2,
A3;
hence thesis;
end;
A115: for v1, v64 holds ((v64
"/\" ((v64
"\/" v1)
"/\" (v64
"\/" v64)))
"\/" v64)
= ((v64
"\/" v1)
"/\" (v64
"\/" v64))
proof
let v1, v64;
(v64
"/\" ((v64
"\/" v1)
"/\" (v64
"\/" v64)))
= v64 by
A31;
hence thesis by
A14;
end;
A117: for v1, v64 holds ((v64
"/\" ((v64
"\/" v1)
"/\" v64))
"\/" v64)
= ((v64
"\/" v1)
"/\" (v64
"\/" v64))
proof
let v1, v64;
(v64
"\/" v64)
= v64 by
JoinIdem,
A2,
A3;
hence thesis by
A115;
end;
A119: for v1, v64 holds (((v64
"\/" v1)
"/\" v64)
"\/" v64)
= ((v64
"\/" v1)
"/\" (v64
"\/" v64))
proof
let v1, v64;
(v64
"/\" ((v64
"\/" v1)
"/\" v64))
= ((v64
"\/" v1)
"/\" v64) by
A111;
hence thesis by
A117;
end;
A121: for v1, v64 holds v64
= ((v64
"\/" v1)
"/\" (v64
"\/" v64))
proof
let v1, v64;
(((v64
"\/" v1)
"/\" v64)
"\/" v64)
= v64 by
A76;
hence thesis by
A119;
end;
A123: for v1, v64 holds v64
= ((v64
"\/" v1)
"/\" v64)
proof
let v1, v64;
(v64
"\/" v64)
= v64 by
JoinIdem,
A2,
A3;
hence thesis by
A121;
end;
A134: for v65, v1, v64 holds (v64
"/\" (v65
"\/" v64))
= (v64
"/\" (v65
"\/" (v64
"\/" v1)))
proof
let v65, v1, v64;
((v64
"\/" v1)
"/\" v64)
= v64 by
A123;
hence thesis by
A35;
end;
A136: for v65, v1, v64 holds v64
= (v64
"/\" (v65
"\/" (v64
"\/" v1)))
proof
let v65, v1, v64;
(v64
"/\" (v65
"\/" v64))
= v64 by
A66;
hence thesis by
A134;
end;
A141: for v65, v66, v64 holds (v64
"\/" ((v64
"\/" v66)
"/\" v65))
= ((v64
"\/" v66)
"/\" (v65
"\/" v64))
proof
let v65, v66, v64;
(v65
"/\" (v64
"\/" v66))
= ((v64
"\/" v66)
"/\" v65) by
A93;
hence thesis by
A22;
end;
A150: for v1, v66, v64 holds (v64
"/\" ((v64
"\/" v66)
"\/" v1))
= v64
proof
let v1, v66, v64;
(((v64
"\/" v66)
"\/" v1)
"\/" (v64
"\/" v66))
= ((v64
"\/" v66)
"\/" v1) by
A101;
hence thesis by
A136;
end;
A160: for v66, v1, v64 holds (v64
"\/" v66)
= (((v64
"\/" v1)
"\/" v66)
"/\" (v66
"\/" v64))
proof
let v66, v1, v64;
(v64
"/\" ((v64
"\/" v1)
"\/" v66))
= v64 by
A150;
hence thesis by
A97;
end;
A176: for v64, v66, v65 holds ((v65
"\/" v66)
"\/" v64)
= (v64
"\/" (v66
"\/" v65))
proof
let v64, v66, v65;
(v64
"\/" (v65
"\/" v66))
= ((v65
"\/" v66)
"\/" v64) by
A2,
A3,
JoinCom;
hence thesis by
A2,
A3,
JoinCom;
end;
A180: for v66, v65, v64 holds ((v66
"\/" v64)
"/\" ((v64
"\/" v65)
"\/" v66))
= (v64
"\/" v66)
proof
let v66, v65, v64;
(((v64
"\/" v65)
"\/" v66)
"/\" (v66
"\/" v64))
= ((v66
"\/" v64)
"/\" ((v64
"\/" v65)
"\/" v66)) by
A93;
hence thesis by
A160;
end;
A184: for v65, v1, v0 holds ((v0
"\/" v1)
"\/" (v0
"\/" v65))
= (((v0
"\/" v1)
"\/" v65)
"/\" ((v65
"\/" v0)
"\/" (v0
"\/" v1)))
proof
let v65, v1, v0;
(((v0
"\/" v1)
"\/" v65)
"/\" (v65
"\/" v0))
= (v0
"\/" v65) by
A160;
hence thesis by
A141;
end;
A186: for v65, v1, v0 holds ((v0
"\/" v1)
"\/" (v0
"\/" v65))
= (v65
"\/" (v0
"\/" v1))
proof
let v65, v1, v0;
(((v0
"\/" v1)
"\/" v65)
"/\" ((v65
"\/" v0)
"\/" (v0
"\/" v1)))
= (v65
"\/" (v0
"\/" v1)) by
A180;
hence thesis by
A184;
end;
A190: for v65, v66, v64 holds ((v64
"\/" v66)
"\/" (v65
"\/" v64))
= (v66
"\/" (v64
"\/" v65))
proof
let v65, v66, v64;
((v64
"\/" v65)
"\/" (v64
"\/" v66))
= ((v64
"\/" v66)
"\/" (v65
"\/" v64)) by
A176;
hence thesis by
A186;
end;
A194: for v66, v65, v64 holds ((v64
"\/" v65)
"\/" (v66
"\/" v64))
= (v66
"\/" (v64
"\/" v65))
proof
let v66, v65, v64;
((v64
"\/" v65)
"\/" (v64
"\/" v66))
= ((v64
"\/" v65)
"\/" (v66
"\/" v64)) by
A2,
A3,
JoinCom;
hence thesis by
A186;
end;
A196: for v65, v66, v64 holds (v65
"\/" (v64
"\/" v66))
= (v66
"\/" (v64
"\/" v65))
proof
let v65, v66, v64;
((v64
"\/" v65)
"\/" (v66
"\/" v64))
= (v65
"\/" (v64
"\/" v66)) by
A190;
hence thesis by
A194;
end;
let v0, v1, v2;
(v0
"\/" (v1
"\/" v2))
= (v2
"\/" (v1
"\/" v0)) by
A196
.= ((v1
"\/" v0)
"\/" v2) by
A2,
A3,
JoinCom
.= ((v0
"\/" v1)
"\/" v2) by
A2,
A3,
JoinCom;
hence thesis;
end;
theorem ::
ROBBINS5:9
Seventh: L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v0, v1, v2 holds (v0
"/\" (v1
"\/" v2))
= ((v0
"/\" v1)
"\/" (v0
"/\" v2))
proof
assume
A3: L is
join-absorbing;
assume
A4: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A72: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v1
"/\" v0)
"\/" (v2
"/\" v0))
proof
let v0, v2, v1;
((v2
"/\" v0)
"\/" (v1
"/\" v0))
= (v0
"/\" (v1
"\/" v2)) by
A4;
hence thesis by
A3,
A4,
JoinCom;
end;
A79: for v66, v64, v65 holds ((v65
"/\" v64)
"\/" (v66
"/\" v65))
= (v65
"/\" (v64
"\/" v66))
proof
let v66, v64, v65;
(v64
"/\" v65)
= (v65
"/\" v64) by
A3,
A4,
MeetCom;
hence thesis by
A72;
end;
let v0, v1, v2;
(v0
"/\" (v1
"\/" v2))
= ((v0
"/\" v1)
"\/" (v2
"/\" v0)) by
A79
.= ((v0
"/\" v1)
"\/" (v0
"/\" v2)) by
A3,
A4,
MeetCom;
hence thesis;
end;
theorem ::
ROBBINS5:10
L is
join-absorbing & (for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0))) implies for v0, v1, v2 holds (v0
"\/" (v1
"/\" v2))
= ((v0
"\/" v1)
"/\" (v0
"\/" v2))
proof
assume
A2: L is
join-absorbing;
assume
A3: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
A7: for v65, v66 holds v65
= ((v66
"/\" v65)
"\/" (v65
"/\" v65))
proof
let v65, v66;
(v65
"/\" (v65
"\/" v66))
= v65 by
A2;
hence thesis by
A3;
end;
A12: for v1, v64, v2 holds (((v2
"/\" v64)
"\/" (v1
"/\" v64))
"\/" ((v1
"\/" v2)
"/\" (v1
"\/" v2)))
= (v1
"\/" v2)
proof
let v1, v64, v2;
(v64
"/\" (v1
"\/" v2))
= ((v2
"/\" v64)
"\/" (v1
"/\" v64)) by
A3;
hence thesis by
A7;
end;
A15: for v1, v0 holds ((v0
"/\" v1)
"/\" v1)
= (v0
"/\" v1)
proof
let v1, v0;
((v0
"/\" v1)
"/\" v1)
= (v0
"/\" (v1
"/\" v1)) by
A2,
A3,
MeetAssoc
.= (v0
"/\" v1) by
A2,
A3,
Lemma1;
hence thesis;
end;
A22: for v65, v64, v0 holds ((v0
"/\" v64)
"\/" (v65
"/\" v64))
= (v64
"/\" (v65
"\/" (v0
"/\" v64)))
proof
let v65, v64, v0;
((v0
"/\" v64)
"/\" v64)
= (v0
"/\" v64) by
A15;
hence thesis by
A3;
end;
A26: for v66, v1, v65 holds ((v66
"/\" (v65
"\/" v1))
"\/" v65)
= ((v65
"\/" v1)
"/\" (v65
"\/" v66))
proof
let v66, v1, v65;
(v65
"/\" (v65
"\/" v1))
= v65 by
A2;
hence thesis by
A3;
end;
A29: for v0, v2, v1 holds ((v2
"/\" v0)
"/\" (v0
"/\" (v1
"\/" v2)))
= (v2
"/\" v0)
proof
let v0, v2, v1;
((v2
"/\" v0)
"\/" (v1
"/\" v0))
= (v0
"/\" (v1
"\/" v2)) by
A3;
hence thesis by
A2;
end;
A39: for v65, v64, v66 holds (v65
"/\" (v66
"\/" v64))
= (v65
"/\" (v66
"\/" (v64
"/\" v65)))
proof
let v65, v64, v66;
((v64
"/\" v65)
"\/" (v66
"/\" v65))
= (v65
"/\" (v66
"\/" v64)) by
A3;
hence thesis by
A22;
end;
A44: for v0, v65, v64 holds (((v64
"/\" v65)
"\/" (v0
"/\" v65))
"\/" (((v0
"/\" v65)
"\/" v64)
"/\" ((v0
"/\" v65)
"\/" v64)))
= ((v0
"/\" v65)
"\/" v64)
proof
let v0, v65, v64;
((v0
"/\" v65)
"/\" v65)
= (v0
"/\" v65) by
A15;
hence thesis by
A12;
end;
A53: for v66, v1, v65, v2 holds ((v66
"/\" (v1
"\/" (v2
"/\" v65)))
"\/" (v65
"/\" (v1
"\/" v2)))
= ((v1
"\/" (v2
"/\" v65))
"/\" (v65
"\/" v66))
proof
let v66, v1, v65, v2;
(v65
"/\" (v1
"\/" (v2
"/\" v65)))
= (v65
"/\" (v1
"\/" v2)) by
A39;
hence thesis by
A3;
end;
A89: for v2, v1, v0 holds (((v0
"/\" v1)
"\/" (v2
"/\" v1))
"\/" ((v2
"/\" v1)
"\/" v0))
= ((v2
"/\" v1)
"\/" v0)
proof
let v2, v1, v0;
(((v2
"/\" v1)
"\/" v0)
"/\" ((v2
"/\" v1)
"\/" v0))
= ((v2
"/\" v1)
"\/" v0) by
A2,
A3,
Lemma1;
hence thesis by
A44;
end;
A94: for v0, v1 holds (v0
"\/" (v1
"\/" v0))
= (v1
"\/" v0)
proof
let v0, v1;
(v0
"\/" (v1
"\/" v0))
= (v0
"\/" (v0
"\/" v1)) by
JoinCom,
A2,
A3
.= ((v0
"\/" v0)
"\/" v1) by
JoinAssoc,
A2,
A3
.= (v0
"\/" v1) by
JoinIdem,
A2,
A3
.= (v1
"\/" v0) by
JoinCom,
A2,
A3;
hence thesis;
end;
A121: for v64, v65 holds (v64
"/\" (v65
"/\" v64))
= (v65
"/\" v64)
proof
let v64, v65;
(v64
"/\" (v65
"/\" v64))
= (v64
"/\" (v64
"/\" v65)) by
MeetCom,
A2,
A3
.= ((v64
"/\" v64)
"/\" v65) by
MeetAssoc,
A2,
A3
.= (v64
"/\" v65) by
A2,
A3,
Lemma1;
hence thesis by
A2,
A3,
MeetCom;
end;
A137: for v0, v2, v1 holds (v0
"/\" (v1
"\/" v2))
= ((v1
"/\" v0)
"\/" (v2
"/\" v0))
proof
let v0, v2, v1;
((v2
"/\" v0)
"\/" (v1
"/\" v0))
= (v0
"/\" (v1
"\/" v2)) by
A3;
hence thesis by
A2,
A3,
JoinCom;
end;
A140: for v1, v2, v0 holds ((v1
"/\" (v0
"\/" v2))
"\/" ((v2
"/\" v1)
"\/" v0))
= ((v2
"/\" v1)
"\/" v0)
proof
let v1, v2, v0;
((v0
"/\" v1)
"\/" (v2
"/\" v1))
= (v1
"/\" (v0
"\/" v2)) by
A137;
hence thesis by
A89;
end;
A150: for v1, v65 holds (v65
"/\" (v65
"/\" v1))
= (v65
"/\" v1)
proof
let v1, v65;
(v65
"/\" (v65
"/\" v1))
= ((v65
"/\" v65)
"/\" v1) by
A2,
A3,
MeetAssoc
.= (v65
"/\" v1) by
A2,
A3,
Lemma1;
hence thesis;
end;
A154: for v64, v2, v65 holds ((v64
"/\" (v65
"\/" v2))
"\/" v65)
= ((v65
"\/" (v2
"/\" v64))
"/\" (v65
"\/" v64))
proof
let v64, v2, v65;
(v64
"/\" (v65
"\/" (v2
"/\" v64)))
= (v64
"/\" (v65
"\/" v2)) by
A39;
hence thesis by
A26;
end;
A156: for v64, v2, v65 holds ((v65
"\/" v2)
"/\" (v65
"\/" v64))
= ((v65
"\/" (v2
"/\" v64))
"/\" (v65
"\/" v64))
proof
let v64, v2, v65;
((v64
"/\" (v65
"\/" v2))
"\/" v65)
= ((v65
"\/" v2)
"/\" (v65
"\/" v64)) by
A26;
hence thesis by
A154;
end;
A161: for v66, v64, v1 holds ((v1
"/\" v64)
"/\" ((v1
"/\" v64)
"/\" (v66
"\/" v64)))
= (v64
"/\" (v1
"/\" v64))
proof
let v66, v64, v1;
(v64
"/\" (v1
"/\" v64))
= (v1
"/\" v64) by
A121;
hence thesis by
A29;
end;
A163: for v66, v64, v1 holds ((v1
"/\" v64)
"/\" (v66
"\/" v64))
= (v64
"/\" (v1
"/\" v64))
proof
let v66, v64, v1;
((v1
"/\" v64)
"/\" ((v1
"/\" v64)
"/\" (v66
"\/" v64)))
= ((v1
"/\" v64)
"/\" (v66
"\/" v64)) by
A150;
hence thesis by
A161;
end;
A165: for v66, v64, v1 holds ((v1
"/\" v64)
"/\" (v66
"\/" v64))
= (v1
"/\" v64)
proof
let v66, v64, v1;
(v64
"/\" (v1
"/\" v64))
= (v1
"/\" v64) by
A121;
hence thesis by
A163;
end;
A169: for v65, v66, v0 holds ((v0
"/\" v66)
"\/" v65)
= ((v65
"\/" v66)
"/\" (v65
"\/" (v0
"/\" v66)))
proof
let v65, v66, v0;
((v0
"/\" v66)
"/\" (v65
"\/" v66))
= (v0
"/\" v66) by
A165;
hence thesis by
A26;
end;
A173: for v64, v65, v67, v66 holds ((v67
"/\" (v65
"\/" v66))
"\/" (v64
"/\" (v65
"\/" (v66
"/\" v67))))
= ((v65
"\/" (v66
"/\" v67))
"/\" (v67
"\/" v64))
proof
let v64, v65, v67, v66;
((v64
"/\" (v65
"\/" (v66
"/\" v67)))
"\/" (v67
"/\" (v65
"\/" v66)))
= ((v67
"/\" (v65
"\/" v66))
"\/" (v64
"/\" (v65
"\/" (v66
"/\" v67)))) by
A2,
A3,
JoinCom;
hence thesis by
A53;
end;
A177: for v64, v66, v65 holds ((v64
"/\" (v65
"\/" v66))
"\/" ((v65
"\/" v64)
"/\" (v65
"\/" (v66
"/\" v64))))
= ((v66
"/\" v64)
"\/" v65)
proof
let v64, v66, v65;
((v66
"/\" v64)
"\/" v65)
= ((v65
"\/" v64)
"/\" (v65
"\/" (v66
"/\" v64))) by
A169;
hence thesis by
A140;
end;
A179: for v65, v64, v66 holds ((v65
"\/" (v66
"/\" v64))
"/\" (v64
"\/" (v65
"\/" v64)))
= ((v66
"/\" v64)
"\/" v65)
proof
let v65, v64, v66;
((v64
"/\" (v65
"\/" v66))
"\/" ((v65
"\/" v64)
"/\" (v65
"\/" (v66
"/\" v64))))
= ((v65
"\/" (v66
"/\" v64))
"/\" (v64
"\/" (v65
"\/" v64))) by
A173;
hence thesis by
A177;
end;
A181: for v65, v64, v66 holds ((v65
"\/" (v66
"/\" v64))
"/\" (v65
"\/" v64))
= ((v66
"/\" v64)
"\/" v65)
proof
let v65, v64, v66;
(v64
"\/" (v65
"\/" v64))
= (v65
"\/" v64) by
A94;
hence thesis by
A179;
end;
A183: for v64, v66, v65 holds ((v65
"\/" v66)
"/\" (v65
"\/" v64))
= ((v66
"/\" v64)
"\/" v65)
proof
let v64, v66, v65;
((v65
"\/" (v66
"/\" v64))
"/\" (v65
"\/" v64))
= ((v65
"\/" v66)
"/\" (v65
"\/" v64)) by
A156;
hence thesis by
A181;
end;
let v0, v1, v2;
(v0
"\/" (v1
"/\" v2))
= ((v1
"/\" v2)
"\/" v0) by
A2,
A3,
JoinCom
.= ((v0
"\/" v1)
"/\" (v0
"\/" v2)) by
A183;
hence thesis;
end;
reserve L for
distributive
join-commutative
meet-commutative non
empty
LattStr;
reserve v0,v1,v2 for
Element of L;
theorem ::
ROBBINS5:11
LatToSho: for v0, v1, v2 holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0)) by
LATTICES:def 11;
theorem ::
ROBBINS5:12
Combined: for L be non
empty
LattStr holds L is
distributive
Lattice iff L is
join-absorbing
satisfying_Sholander_1
proof
let L be non
empty
LattStr;
thus L is
distributive
Lattice implies L is
join-absorbing
satisfying_Sholander_1 by
LatToSho;
assume
A1: L is
join-absorbing
satisfying_Sholander_1;
then
A2: for v0,v2,v1 be
Element of L holds (v0
"/\" (v1
"\/" v2))
= ((v2
"/\" v0)
"\/" (v1
"/\" v0));
then
A3: L is
distributive by
Seventh,
A1;
A4: L is
meet-commutative
join-commutative by
A2,
A1,
MeetCom,
JoinCom;
A5: L is
meet-associative
join-associative by
A2,
A1,
MeetAssoc,
JoinAssoc;
for v0,v1 be
Element of L holds ((v0
"/\" v1)
"\/" v1)
= v1
proof
let v0,v1 be
Element of L;
((v0
"/\" v1)
"\/" v1)
= (v1
"\/" (v0
"/\" v1)) by
A4
.= (v1
"\/" (v1
"/\" v0)) by
A4
.= v1 by
MeetAbsor,
A1,
A2;
hence thesis;
end;
then L is
meet-absorbing;
hence thesis by
A3,
A4,
A5,
A1;
end;
registration
cluster
join-absorbing
satisfying_Sholander_1 ->
distributive
Lattice-like for non
empty
LattStr;
coherence by
Combined;
cluster
distributive
join-commutative
meet-commutative ->
satisfying_Sholander_1 for non
empty
LattStr;
coherence by
LatToSho;
end
begin
reserve L for non
empty
LattStr;
reserve v103,v3,v102,v101,v100,v2,v1,v0 for
Element of L;
definition
let L;
::
ROBBINS5:def2
attr L is
satisfying_McKenzie_1 means for v1, v2, v0 holds (v0
"\/" (v1
"/\" (v0
"/\" v2)))
= v0;
::
ROBBINS5:def3
attr L is
satisfying_McKenzie_2 means for v1, v2, v0 holds (v0
"/\" (v1
"\/" (v0
"\/" v2)))
= v0;
::
ROBBINS5:def4
attr L is
satisfying_McKenzie_3 means for v2, v1, v0 holds (((v0
"/\" v1)
"\/" (v1
"/\" v2))
"\/" v1)
= v1;
::
ROBBINS5:def5
attr L is
satisfying_McKenzie_4 means for v2, v1, v0 holds (((v0
"\/" v1)
"/\" (v1
"\/" v2))
"/\" v1)
= v1;
end
theorem ::
ROBBINS5:13
MainMcKenzie: (L is
satisfying_McKenzie_1
satisfying_McKenzie_2 & (for v2, v1, v0 holds (((v0
"/\" v1)
"\/" (v1
"/\" v2))
"\/" v1)
= v1) & (for v2, v1, v0 holds (((v0
"\/" v1)
"/\" (v1
"\/" v2))
"/\" v1)
= v1)) implies ((for v1, v0 holds (v0
"/\" (v0
"\/" v1))
= v0) & (for v1, v0 holds (v0
"\/" (v0
"/\" v1))
= v0) & L is
join-commutative
meet-commutative
meet-associative
join-associative)
proof
assume
A2: L is
satisfying_McKenzie_1;
assume
A3: L is
satisfying_McKenzie_2;
assume
A4: for v2, v1, v0 holds (((v0
"/\" v1)
"\/" (v1
"/\" v2))
"\/" v1)
= v1;
assume
A5: for v2, v1, v0 holds (((v0
"\/" v1)
"/\" (v1
"\/" v2))
"/\" v1)
= v1;
A9: for v100, v101 holds (v100
"\/" (v101
"/\" v100))
= v100
proof
now
let v101, v1, v2, v100;
(v100
"/\" (v1
"\/" (v100
"\/" v2)))
= v100 by
A3;
hence (v100
"\/" (v101
"/\" v100))
= v100 by
A2;
end;
hence thesis;
end;
A13: for v100, v101 holds (v100
"/\" (v101
"\/" v100))
= v100
proof
now
let v101, v1, v2, v100;
(v100
"\/" (v1
"/\" (v100
"/\" v2)))
= v100 by
A2;
hence (v100
"/\" (v101
"\/" v100))
= v100 by
A3;
end;
hence thesis;
end;
A17: for v101, v100 holds ((v100
"/\" v101)
"\/" v101)
= v101
proof
now
let v2, v101, v100;
((v100
"/\" v101)
"\/" (v101
"/\" ((v100
"/\" v101)
"/\" v2)))
= (v100
"/\" v101) by
A2;
hence ((v100
"/\" v101)
"\/" v101)
= v101 by
A4;
end;
hence thesis;
end;
A21: for v102, v100 holds (v100
"/\" (v100
"\/" v102))
= v100
proof
now
let v2, v0, v102, v100;
(((v0
"/\" (v100
"\/" v102))
"\/" ((v100
"\/" v102)
"/\" v2))
"\/" (v100
"\/" v102))
= (v100
"\/" v102) by
A4;
hence (v100
"/\" (v100
"\/" v102))
= v100 by
A3;
end;
hence thesis;
end;
A25: for v102, v1, v2, v100 holds ((v100
"\/" ((v1
"\/" (v100
"\/" v2))
"/\" v102))
"\/" (v1
"\/" (v100
"\/" v2)))
= (v1
"\/" (v100
"\/" v2))
proof
let v102, v1, v2, v100;
(v100
"/\" (v1
"\/" (v100
"\/" v2)))
= v100 by
A3;
hence thesis by
A4;
end;
A33: for v102, v100 holds (v100
"\/" (v100
"/\" v102))
= v100
proof
now
let v2, v0, v102, v100;
(((v0
"\/" (v100
"/\" v102))
"/\" ((v100
"/\" v102)
"\/" v2))
"/\" (v100
"/\" v102))
= (v100
"/\" v102) by
A5;
hence (v100
"\/" (v100
"/\" v102))
= v100 by
A2;
end;
hence thesis;
end;
A37: for v102, v1, v2, v100 holds ((v100
"/\" ((v1
"/\" (v100
"/\" v2))
"\/" v102))
"/\" (v1
"/\" (v100
"/\" v2)))
= (v1
"/\" (v100
"/\" v2))
proof
let v102, v1, v2, v100;
(v100
"\/" (v1
"/\" (v100
"/\" v2)))
= v100 by
A2;
hence thesis by
A5;
end;
A41: for v101, v100 holds ((v100
"\/" v101)
"/\" v101)
= v101
proof
now
let v2, v101, v100;
((v100
"\/" v101)
"/\" (v101
"\/" ((v100
"\/" v101)
"\/" v2)))
= (v100
"\/" v101) by
A3;
hence ((v100
"\/" v101)
"/\" v101)
= v101 by
A5;
end;
hence thesis;
end;
A49: for v102, v100, v1 holds ((v100
"/\" ((v1
"/\" v100)
"\/" v102))
"/\" (v1
"/\" v100))
= (v1
"/\" v100)
proof
let v102, v100, v1;
(v100
"\/" (v1
"/\" v100))
= v100 by
A9;
hence thesis by
A5;
end;
A53: for v102, v100, v1 holds ((v100
"\/" ((v1
"\/" v100)
"/\" v102))
"\/" (v1
"\/" v100))
= (v1
"\/" v100)
proof
let v102, v100, v1;
(v100
"/\" (v1
"\/" v100))
= v100 by
A13;
hence thesis by
A4;
end;
A57: for v1, v2, v100 holds (v100
"\/" (v1
"\/" (v100
"\/" v2)))
= (v1
"\/" (v100
"\/" v2))
proof
let v1, v2, v100;
(v100
"/\" (v1
"\/" (v100
"\/" v2)))
= v100 by
A3;
hence thesis by
A17;
end;
A61: for v100, v1 holds (v100
"\/" (v1
"\/" v100))
= (v1
"\/" v100)
proof
let v100, v1;
(v100
"/\" (v1
"\/" v100))
= v100 by
A13;
hence thesis by
A17;
end;
A65: for v1, v101 holds ((v101
"\/" v1)
"\/" v101)
= (v101
"\/" v1)
proof
let v1, v101;
(v101
"/\" (v101
"\/" v1))
= v101 by
A21;
hence thesis by
A9;
end;
A69: for v1, v100 holds (v100
"\/" (v100
"\/" v1))
= (v100
"\/" v1)
proof
let v1, v100;
(v100
"/\" (v100
"\/" v1))
= v100 by
A21;
hence thesis by
A17;
end;
A73: for v1, v101 holds ((v101
"/\" v1)
"/\" v101)
= (v101
"/\" v1)
proof
let v1, v101;
(v101
"\/" (v101
"/\" v1))
= v101 by
A33;
hence thesis by
A13;
end;
A77: for v1, v2, v100 holds (v100
"/\" (v1
"/\" (v100
"/\" v2)))
= (v1
"/\" (v100
"/\" v2))
proof
let v1, v2, v100;
(v100
"\/" (v1
"/\" (v100
"/\" v2)))
= v100 by
A2;
hence thesis by
A41;
end;
A81: for v100, v1 holds (v100
"/\" (v1
"/\" v100))
= (v1
"/\" v100)
proof
let v100, v1;
(v100
"\/" (v1
"/\" v100))
= v100 by
A9;
hence thesis by
A41;
end;
A85: for v1, v2, v101 holds ((v1
"/\" (v101
"/\" v2))
"\/" v101)
= (v101
"\/" (v1
"/\" (v101
"/\" v2)))
proof
let v1, v2, v101;
(v101
"\/" (v1
"/\" (v101
"/\" v2)))
= v101 by
A2;
hence thesis by
A61;
end;
A88: for v0, v2, v1 holds ((v0
"/\" (v1
"/\" v2))
"\/" v1)
= v1
proof
let v0, v2, v1;
(v1
"\/" (v0
"/\" (v1
"/\" v2)))
= v1 by
A2;
hence thesis by
A85;
end;
A91: for v1, v101 holds ((v101
"/\" v1)
"\/" v101)
= (v101
"\/" (v101
"/\" v1))
proof
let v1, v101;
(v101
"\/" (v101
"/\" v1))
= v101 by
A33;
hence thesis by
A61;
end;
A94: for v1, v0 holds ((v0
"/\" v1)
"\/" v0)
= v0
proof
let v1, v0;
(v0
"\/" (v0
"/\" v1))
= v0 by
A33;
hence thesis by
A91;
end;
A97: for v1, v102, v100 holds (v100
"/\" ((v100
"\/" v102)
"\/" v1))
= v100
proof
let v1, v102, v100;
(((v100
"\/" v102)
"\/" v1)
"\/" (v100
"\/" v102))
= ((v100
"\/" v102)
"\/" v1) by
A65;
hence thesis by
A3;
end;
A101: for v1, v101 holds ((v101
"\/" v1)
"/\" v101)
= v101
proof
let v1, v101;
((v101
"\/" v1)
"\/" v101)
= (v101
"\/" v1) by
A65;
hence thesis by
A41;
end;
A105: for v103, v102, v100 holds ((v100
"\/" v103)
"\/" (v103
"\/" (v100
"\/" v102)))
= (v103
"\/" (v100
"\/" v102))
proof
let v103, v102, v100;
((v103
"\/" (v100
"\/" v102))
"/\" v103)
= v103 by
A101;
hence thesis by
A25;
end;
A109: for v101, v100, v1 holds (v100
"\/" (v101
"/\" (v1
"/\" v100)))
= v100
proof
let v101, v100, v1;
(v100
"/\" (v1
"/\" v100))
= (v1
"/\" v100) by
A81;
hence thesis by
A2;
end;
A113: for v103, v102, v100 holds ((v100
"/\" v103)
"/\" (v103
"/\" (v100
"/\" v102)))
= (v103
"/\" (v100
"/\" v102))
proof
let v103, v102, v100;
((v103
"/\" (v100
"/\" v102))
"\/" v103)
= v103 by
A94;
hence thesis by
A37;
end;
A117: for v1, v102, v101 holds (((v101
"/\" v102)
"/\" v1)
"\/" v101)
= v101
proof
let v1, v102, v101;
(((v101
"/\" v102)
"/\" v1)
"/\" (v101
"/\" v102))
= ((v101
"/\" v102)
"/\" v1) by
A73;
hence thesis by
A88;
end;
A121: for v2, v1, v101 holds (((v101
"\/" v1)
"\/" v2)
"/\" v101)
= (v101
"/\" ((v101
"\/" v1)
"\/" v2))
proof
let v2, v1, v101;
(v101
"/\" ((v101
"\/" v1)
"\/" v2))
= v101 by
A97;
hence thesis by
A81;
end;
A124: for v2, v1, v0 holds (((v0
"\/" v1)
"\/" v2)
"/\" v0)
= v0
proof
let v2, v1, v0;
(v0
"/\" ((v0
"\/" v1)
"\/" v2))
= v0 by
A97;
hence thesis by
A121;
end;
A127: for v1, v100, v2 holds (v100
"/\" (v1
"/\" (v2
"/\" v100)))
= (v1
"/\" (v2
"/\" v100))
proof
let v1, v100, v2;
(v100
"\/" (v1
"/\" (v2
"/\" v100)))
= v100 by
A109;
hence thesis by
A41;
end;
A131: for v0, v102, v101 holds ((v101
"/\" v102)
"\/" (v0
"\/" v101))
= (v0
"\/" v101)
proof
let v0, v102, v101;
((v0
"\/" v101)
"/\" v101)
= v101 by
A41;
hence thesis by
A117;
end;
A135: for v1, v102, v101 holds ((v101
"/\" v102)
"\/" (v101
"\/" v1))
= (v101
"\/" v1)
proof
let v1, v102, v101;
((v101
"\/" v1)
"/\" v101)
= v101 by
A101;
hence thesis by
A117;
end;
A139: for v0, v102, v101 holds ((v101
"\/" v102)
"/\" (v0
"/\" v101))
= (v0
"/\" v101)
proof
let v0, v102, v101;
((v0
"/\" v101)
"\/" v101)
= v101 by
A17;
hence thesis by
A124;
end;
A143: for v102, v100 holds ((v100
"/\" v102)
"/\" (v102
"/\" v100))
= (v102
"/\" v100)
proof
let v102, v100;
((v102
"/\" v100)
"\/" v102)
= v102 by
A94;
hence thesis by
A49;
end;
A147: for v100, v1, v102 holds ((v100
"/\" v102)
"/\" ((v102
"/\" v1)
"/\" v100))
= ((v102
"/\" v1)
"/\" v100)
proof
let v100, v1, v102;
(((v102
"/\" v1)
"/\" v100)
"\/" v102)
= v102 by
A117;
hence thesis by
A49;
end;
A151: for v102, v100 holds ((v100
"\/" v102)
"\/" (v102
"\/" v100))
= (v102
"\/" v100)
proof
let v102, v100;
((v102
"\/" v100)
"/\" v102)
= v102 by
A101;
hence thesis by
A53;
end;
A155: for v100, v101, v2 holds ((v100
"/\" (v2
"\/" v101))
"/\" (v101
"/\" v100))
= (v101
"/\" v100)
proof
let v100, v101, v2;
((v101
"/\" v100)
"\/" (v2
"\/" v101))
= (v2
"\/" v101) by
A131;
hence thesis by
A49;
end;
A159: for v100, v2, v101 holds ((v100
"/\" (v101
"\/" v2))
"/\" (v101
"/\" v100))
= (v101
"/\" v100)
proof
let v100, v2, v101;
((v101
"/\" v100)
"\/" (v101
"\/" v2))
= (v101
"\/" v2) by
A135;
hence thesis by
A49;
end;
A163: for v100, v101, v2 holds ((v100
"\/" (v2
"/\" v101))
"\/" (v101
"\/" v100))
= (v101
"\/" v100)
proof
let v100, v101, v2;
((v101
"\/" v100)
"/\" (v2
"/\" v101))
= (v2
"/\" v101) by
A139;
hence thesis by
A53;
end;
A167: for v1, v0 holds ((v0
"/\" v1)
"\/" (v1
"/\" v0))
= (v0
"/\" v1)
proof
let v1, v0;
((v0
"/\" v1)
"/\" (v1
"/\" v0))
= (v1
"/\" v0) by
A143;
hence thesis by
A33;
end;
A170: for v0, v1 holds ((v1
"/\" v0)
"\/" (v0
"/\" v1))
= (v0
"/\" v1)
proof
let v0, v1;
((v0
"/\" v1)
"/\" (v1
"/\" v0))
= (v1
"/\" v0) by
A143;
hence thesis by
A94;
end;
A173: for v1, v0 holds (v0
"/\" v1)
= (v1
"/\" v0)
proof
let v1, v0;
((v0
"/\" v1)
"\/" (v1
"/\" v0))
= (v0
"/\" v1) by
A167;
hence thesis by
A170;
end;
A182: for v1, v0 holds ((v0
"\/" v1)
"/\" (v1
"\/" v0))
= (v0
"\/" v1)
proof
let v1, v0;
((v0
"\/" v1)
"\/" (v1
"\/" v0))
= (v1
"\/" v0) by
A151;
hence thesis by
A21;
end;
A185: for v0, v1 holds ((v1
"\/" v0)
"\/" (v0
"\/" v1))
= ((v0
"\/" v1)
"\/" (v1
"\/" v0))
proof
let v0, v1;
((v0
"\/" v1)
"\/" (v1
"\/" v0))
= (v1
"\/" v0) by
A151;
hence thesis by
A65;
end;
A188: for v0, v1 holds (v1
"\/" v0)
= ((v1
"\/" v0)
"\/" (v0
"\/" v1))
proof
let v0, v1;
((v0
"\/" v1)
"\/" (v1
"\/" v0))
= (v1
"\/" v0) by
A151;
hence thesis by
A185;
end;
A191: for v1, v0 holds (v0
"\/" v1)
= (v1
"\/" v0)
proof
let v1, v0;
((v0
"\/" v1)
"\/" (v1
"\/" v0))
= (v1
"\/" v0) by
A151;
hence thesis by
A188;
end;
A200: for v100, v2, v101 holds ((v100
"\/" v101)
"\/" (v100
"\/" (v101
"\/" v2)))
= (v101
"\/" (v100
"\/" (v101
"\/" v2)))
proof
let v100, v2, v101;
(v101
"\/" (v100
"\/" (v101
"\/" v2)))
= (v100
"\/" (v101
"\/" v2)) by
A57;
hence thesis by
A105;
end;
A203: for v0, v2, v1 holds ((v0
"\/" v1)
"\/" (v0
"\/" (v1
"\/" v2)))
= (v0
"\/" (v1
"\/" v2))
proof
let v0, v2, v1;
(v1
"\/" (v0
"\/" (v1
"\/" v2)))
= (v0
"\/" (v1
"\/" v2)) by
A57;
hence thesis by
A200;
end;
A205: for v1, v2, v0 holds ((v0
"\/" v1)
"\/" ((v0
"\/" v2)
"\/" v1))
= (v1
"\/" (v0
"\/" v2))
proof
let v1, v2, v0;
(v1
"\/" (v0
"\/" v2))
= ((v0
"\/" v2)
"\/" v1) by
A191;
hence thesis by
A105;
end;
A208: for v102, v100, v1 holds ((v100
"\/" (v102
"\/" (v1
"/\" v100)))
"\/" (v100
"\/" v102))
= ((v102
"\/" (v1
"/\" v100))
"\/" (v100
"\/" v102))
proof
let v102, v100, v1;
((v102
"\/" (v1
"/\" v100))
"\/" (v100
"\/" v102))
= (v100
"\/" v102) by
A163;
hence thesis by
A105;
end;
A211: for v1, v0, v2 holds ((v0
"\/" v1)
"\/" (v0
"\/" (v1
"\/" (v2
"/\" v0))))
= ((v1
"\/" (v2
"/\" v0))
"\/" (v0
"\/" v1))
proof
let v1, v0, v2;
((v0
"\/" (v1
"\/" (v2
"/\" v0)))
"\/" (v0
"\/" v1))
= ((v0
"\/" v1)
"\/" (v0
"\/" (v1
"\/" (v2
"/\" v0)))) by
A191;
hence thesis by
A208;
end;
A213: for v1, v0, v2 holds (v0
"\/" (v1
"\/" (v2
"/\" v0)))
= ((v1
"\/" (v2
"/\" v0))
"\/" (v0
"\/" v1))
proof
let v1, v0, v2;
((v0
"\/" v1)
"\/" (v0
"\/" (v1
"\/" (v2
"/\" v0))))
= (v0
"\/" (v1
"\/" (v2
"/\" v0))) by
A203;
hence thesis by
A211;
end;
A215: for v1, v0, v2 holds (v0
"\/" (v1
"\/" (v2
"/\" v0)))
= (v0
"\/" v1)
proof
let v1, v0, v2;
((v1
"\/" (v2
"/\" v0))
"\/" (v0
"\/" v1))
= (v0
"\/" v1) by
A163;
hence thesis by
A213;
end;
A218: for v101, v102, v1 holds ((v1
"\/" v102)
"\/" (v101
"\/" v102))
= ((v1
"\/" v102)
"\/" v101)
proof
let v101, v102, v1;
(v102
"/\" (v1
"\/" v102))
= v102 by
A13;
hence thesis by
A215;
end;
A221: for v1, v0, v2 holds (v0
"\/" ((v2
"/\" v0)
"\/" v1))
= (v0
"\/" v1)
proof
let v1, v0, v2;
(v1
"\/" (v2
"/\" v0))
= ((v2
"/\" v0)
"\/" v1) by
A191;
hence thesis by
A215;
end;
A224: for v2, v1, v0 holds ((v0
"\/" v1)
"\/" (v0
"\/" v2))
= (v1
"\/" (v0
"\/" v2))
proof
let v2, v1, v0;
((v0
"\/" v1)
"\/" ((v0
"\/" v2)
"\/" v1))
= ((v0
"\/" v1)
"\/" (v0
"\/" v2)) by
A218;
hence thesis by
A205;
end;
A227: for v102, v1, v101 holds ((v101
"\/" v1)
"\/" (v101
"\/" v102))
= ((v101
"\/" v1)
"\/" v102)
proof
let v102, v1, v101;
(v101
"/\" (v101
"\/" v1))
= v101 by
A21;
hence thesis by
A221;
end;
A230: for v1, v2, v0 holds (v1
"\/" (v0
"\/" v2))
= ((v0
"\/" v1)
"\/" v2)
proof
let v1, v2, v0;
((v0
"\/" v1)
"\/" (v0
"\/" v2))
= (v1
"\/" (v0
"\/" v2)) by
A224;
hence thesis by
A227;
end;
A236: for v102, v1, v0 holds ((v1
"\/" v0)
"\/" ((v0
"\/" v1)
"\/" v102))
= ((v1
"\/" v0)
"\/" v102)
proof
let v102, v1, v0;
((v0
"\/" v1)
"/\" (v1
"\/" v0))
= (v0
"\/" v1) by
A182;
hence thesis by
A221;
end;
A239: for v0, v2, v1 holds ((v0
"\/" v1)
"\/" (v0
"\/" (v1
"\/" v2)))
= ((v0
"\/" v1)
"\/" v2)
proof
let v0, v2, v1;
((v1
"\/" v0)
"\/" v2)
= (v0
"\/" (v1
"\/" v2)) by
A230;
hence thesis by
A236;
end;
A241: for v0, v2, v1 holds (v1
"\/" (v0
"\/" (v0
"\/" (v1
"\/" v2))))
= ((v0
"\/" v1)
"\/" v2)
proof
let v0, v2, v1;
((v0
"\/" v1)
"\/" (v0
"\/" (v1
"\/" v2)))
= (v1
"\/" (v0
"\/" (v0
"\/" (v1
"\/" v2)))) by
A230;
hence thesis by
A239;
end;
A244: for v1, v2, v0 holds (v0
"\/" (v1
"\/" (v0
"\/" v2)))
= ((v1
"\/" v0)
"\/" v2)
proof
let v1, v2, v0;
(v1
"\/" (v1
"\/" (v0
"\/" v2)))
= (v1
"\/" (v0
"\/" v2)) by
A69;
hence thesis by
A241;
end;
A246: for v1, v2, v0 holds (v1
"\/" (v0
"\/" v2))
= ((v1
"\/" v0)
"\/" v2)
proof
let v1, v2, v0;
(v0
"\/" (v1
"\/" (v0
"\/" v2)))
= (v1
"\/" (v0
"\/" v2)) by
A57;
hence thesis by
A244;
end;
A257: for v1, v2, v0 holds ((v1
"/\" v0)
"/\" (v1
"/\" (v0
"/\" v2)))
= (v1
"/\" (v0
"/\" v2))
proof
let v1, v2, v0;
(v0
"/\" v1)
= (v1
"/\" v0) by
A173;
hence thesis by
A113;
end;
A261: for v102, v100, v1 holds ((v100
"/\" (v102
"/\" (v1
"\/" v100)))
"/\" (v100
"/\" v102))
= ((v102
"/\" (v1
"\/" v100))
"/\" (v100
"/\" v102))
proof
let v102, v100, v1;
((v102
"/\" (v1
"\/" v100))
"/\" (v100
"/\" v102))
= (v100
"/\" v102) by
A155;
hence thesis by
A113;
end;
A264: for v1, v0, v2 holds ((v0
"/\" v1)
"/\" (v0
"/\" (v1
"/\" (v2
"\/" v0))))
= ((v1
"/\" (v2
"\/" v0))
"/\" (v0
"/\" v1))
proof
let v1, v0, v2;
((v0
"/\" (v1
"/\" (v2
"\/" v0)))
"/\" (v0
"/\" v1))
= ((v0
"/\" v1)
"/\" (v0
"/\" (v1
"/\" (v2
"\/" v0)))) by
A173;
hence thesis by
A261;
end;
A266: for v1, v0, v2 holds (v0
"/\" (v1
"/\" (v2
"\/" v0)))
= ((v1
"/\" (v2
"\/" v0))
"/\" (v0
"/\" v1))
proof
let v1, v0, v2;
((v0
"/\" v1)
"/\" (v0
"/\" (v1
"/\" (v2
"\/" v0))))
= (v0
"/\" (v1
"/\" (v2
"\/" v0))) by
A257;
hence thesis by
A264;
end;
A268: for v1, v0, v2 holds (v0
"/\" (v1
"/\" (v2
"\/" v0)))
= (v0
"/\" v1)
proof
let v1, v0, v2;
((v1
"/\" (v2
"\/" v0))
"/\" (v0
"/\" v1))
= (v0
"/\" v1) by
A155;
hence thesis by
A266;
end;
A271: for v101, v0, v2, v1 holds (((v0
"/\" (v1
"\/" v2))
"/\" v101)
"/\" (v101
"/\" (v1
"/\" v0)))
= (v101
"/\" ((v0
"/\" (v1
"\/" v2))
"/\" (v1
"/\" v0)))
proof
let v101, v0, v2, v1;
((v0
"/\" (v1
"\/" v2))
"/\" (v1
"/\" v0))
= (v1
"/\" v0) by
A159;
hence thesis by
A113;
end;
A274: for v3, v0, v2, v1 holds (((v0
"/\" (v1
"\/" v2))
"/\" v3)
"/\" (v3
"/\" (v1
"/\" v0)))
= (v3
"/\" (v1
"/\" v0))
proof
let v3, v0, v2, v1;
((v0
"/\" (v1
"\/" v2))
"/\" (v1
"/\" v0))
= (v1
"/\" v0) by
A159;
hence thesis by
A271;
end;
A277: for v102, v2, v100 holds ((v100
"/\" (v102
"/\" (v100
"\/" v2)))
"/\" (v100
"/\" v102))
= ((v102
"/\" (v100
"\/" v2))
"/\" (v100
"/\" v102))
proof
let v102, v2, v100;
((v102
"/\" (v100
"\/" v2))
"/\" (v100
"/\" v102))
= (v100
"/\" v102) by
A159;
hence thesis by
A113;
end;
A280: for v1, v2, v0 holds ((v0
"/\" v1)
"/\" (v0
"/\" (v1
"/\" (v0
"\/" v2))))
= ((v1
"/\" (v0
"\/" v2))
"/\" (v0
"/\" v1))
proof
let v1, v2, v0;
((v0
"/\" (v1
"/\" (v0
"\/" v2)))
"/\" (v0
"/\" v1))
= ((v0
"/\" v1)
"/\" (v0
"/\" (v1
"/\" (v0
"\/" v2)))) by
A173;
hence thesis by
A277;
end;
A282: for v1, v2, v0 holds (v0
"/\" (v1
"/\" (v0
"\/" v2)))
= ((v1
"/\" (v0
"\/" v2))
"/\" (v0
"/\" v1))
proof
let v1, v2, v0;
((v0
"/\" v1)
"/\" (v0
"/\" (v1
"/\" (v0
"\/" v2))))
= (v0
"/\" (v1
"/\" (v0
"\/" v2))) by
A257;
hence thesis by
A280;
end;
A284: for v1, v2, v0 holds (v0
"/\" (v1
"/\" (v0
"\/" v2)))
= (v0
"/\" v1)
proof
let v1, v2, v0;
((v1
"/\" (v0
"\/" v2))
"/\" (v0
"/\" v1))
= (v0
"/\" v1) by
A159;
hence thesis by
A282;
end;
A287: for v101, v1, v102 holds ((v102
"/\" v1)
"/\" (v101
"/\" v102))
= ((v102
"/\" v1)
"/\" v101)
proof
let v101, v1, v102;
(v102
"\/" (v102
"/\" v1))
= v102 by
A33;
hence thesis by
A268;
end;
A290: for v1, v0, v2 holds (v0
"/\" ((v2
"\/" v0)
"/\" v1))
= (v0
"/\" v1)
proof
let v1, v0, v2;
(v1
"/\" (v2
"\/" v0))
= ((v2
"\/" v0)
"/\" v1) by
A173;
hence thesis by
A268;
end;
A293: for v2, v1, v0 holds ((v0
"/\" v1)
"/\" (v1
"/\" v2))
= ((v1
"/\" v2)
"/\" v0)
proof
let v2, v1, v0;
((v0
"/\" v1)
"/\" ((v1
"/\" v2)
"/\" v0))
= ((v0
"/\" v1)
"/\" (v1
"/\" v2)) by
A287;
hence thesis by
A147;
end;
A295: for v1, v2, v0 holds (v0
"/\" ((v0
"\/" v2)
"/\" v1))
= (v0
"/\" v1)
proof
let v1, v2, v0;
(v1
"/\" (v0
"\/" v2))
= ((v0
"\/" v2)
"/\" v1) by
A173;
hence thesis by
A284;
end;
A299: for v102, v101, v1 holds ((v1
"/\" v101)
"/\" (v101
"/\" v102))
= ((v1
"/\" v101)
"/\" v102)
proof
let v102, v101, v1;
(v101
"\/" (v1
"/\" v101))
= v101 by
A9;
hence thesis by
A290;
end;
A303: for v102, v1, v101 holds ((v101
"/\" v1)
"/\" (v101
"/\" v102))
= ((v101
"/\" v1)
"/\" v102)
proof
let v102, v1, v101;
(v101
"\/" (v101
"/\" v1))
= v101 by
A33;
hence thesis by
A290;
end;
A307: for v101, v2, v100, v1 holds ((v100
"/\" v101)
"/\" (v101
"/\" (v100
"/\" v2)))
= (v101
"/\" (v100
"/\" ((v1
"\/" v100)
"/\" v2)))
proof
let v101, v2, v100, v1;
(v100
"/\" ((v1
"\/" v100)
"/\" v2))
= (v100
"/\" v2) by
A290;
hence thesis by
A113;
end;
A310: for v1, v2, v0, v3 holds ((v0
"/\" v1)
"/\" (v0
"/\" v2))
= (v1
"/\" (v0
"/\" ((v3
"\/" v0)
"/\" v2)))
proof
let v1, v2, v0, v3;
((v0
"/\" v1)
"/\" (v1
"/\" (v0
"/\" v2)))
= ((v0
"/\" v1)
"/\" (v0
"/\" v2)) by
A299;
hence thesis by
A307;
end;
A312: for v1, v2, v0, v3 holds ((v0
"/\" v1)
"/\" v2)
= (v1
"/\" (v0
"/\" ((v3
"\/" v0)
"/\" v2)))
proof
let v1, v2, v0, v3;
((v0
"/\" v1)
"/\" (v0
"/\" v2))
= ((v0
"/\" v1)
"/\" v2) by
A303;
hence thesis by
A310;
end;
A314: for v2, v1, v0 holds ((v0
"/\" v1)
"/\" v2)
= (v1
"/\" (v0
"/\" v2))
proof
now
let v1, v2, v0, v3;
(v0
"/\" ((v3
"\/" v0)
"/\" v2))
= (v0
"/\" v2) by
A290;
hence ((v0
"/\" v1)
"/\" v2)
= (v1
"/\" (v0
"/\" v2)) by
A312;
end;
hence thesis;
end;
A316: for v0, v2, v1 holds (v1
"/\" (v0
"/\" (v1
"/\" v2)))
= ((v1
"/\" v2)
"/\" v0)
proof
let v0, v2, v1;
((v0
"/\" v1)
"/\" (v1
"/\" v2))
= (v1
"/\" (v0
"/\" (v1
"/\" v2))) by
A314;
hence thesis by
A293;
end;
A319: for v1, v2, v0 holds (v1
"/\" (v0
"/\" v2))
= ((v0
"/\" v2)
"/\" v1)
proof
let v1, v2, v0;
(v0
"/\" (v1
"/\" (v0
"/\" v2)))
= (v1
"/\" (v0
"/\" v2)) by
A77;
hence thesis by
A316;
end;
A322: for v0, v2, v1 holds (v0
"/\" (v1
"/\" v2))
= (v2
"/\" (v1
"/\" v0))
proof
let v0, v2, v1;
((v1
"/\" v2)
"/\" v0)
= (v2
"/\" (v1
"/\" v0)) by
A314;
hence thesis by
A319;
end;
A324: for v0, v3, v2, v1 holds (((v1
"\/" v2)
"/\" (v0
"/\" v3))
"/\" (v3
"/\" (v1
"/\" v0)))
= (v3
"/\" (v1
"/\" v0))
proof
let v0, v3, v2, v1;
((v0
"/\" (v1
"\/" v2))
"/\" v3)
= ((v1
"\/" v2)
"/\" (v0
"/\" v3)) by
A314;
hence thesis by
A274;
end;
A327: for v2, v3, v1, v0 holds ((v0
"/\" v2)
"/\" (v3
"/\" ((v0
"\/" v1)
"/\" (v2
"/\" v3))))
= (v3
"/\" (v0
"/\" v2))
proof
let v2, v3, v1, v0;
(((v0
"\/" v1)
"/\" (v2
"/\" v3))
"/\" (v3
"/\" (v0
"/\" v2)))
= ((v0
"/\" v2)
"/\" (v3
"/\" ((v0
"\/" v1)
"/\" (v2
"/\" v3)))) by
A322;
hence thesis by
A324;
end;
A330: for v1, v2, v3, v0 holds ((v0
"/\" v1)
"/\" ((v0
"\/" v3)
"/\" (v1
"/\" v2)))
= (v2
"/\" (v0
"/\" v1))
proof
let v1, v2, v3, v0;
(v2
"/\" ((v0
"\/" v3)
"/\" (v1
"/\" v2)))
= ((v0
"\/" v3)
"/\" (v1
"/\" v2)) by
A127;
hence thesis by
A327;
end;
A333: for v1, v3, v2, v0 holds (v1
"/\" (v0
"/\" ((v0
"\/" v2)
"/\" (v1
"/\" v3))))
= (v3
"/\" (v0
"/\" v1))
proof
let v1, v3, v2, v0;
((v0
"/\" v1)
"/\" ((v0
"\/" v2)
"/\" (v1
"/\" v3)))
= (v1
"/\" (v0
"/\" ((v0
"\/" v2)
"/\" (v1
"/\" v3)))) by
A314;
hence thesis by
A330;
end;
A336: for v1, v3, v0 holds (v0
"/\" (v1
"/\" (v0
"/\" v3)))
= (v3
"/\" (v1
"/\" v0))
proof
now
let v0, v3, v2, v1;
(v1
"/\" ((v1
"\/" v2)
"/\" (v0
"/\" v3)))
= (v1
"/\" (v0
"/\" v3)) by
A295;
hence (v0
"/\" (v1
"/\" (v0
"/\" v3)))
= (v3
"/\" (v1
"/\" v0)) by
A333;
end;
hence thesis;
end;
A339: for v1, v2, v0 holds (v1
"/\" (v0
"/\" v2))
= (v2
"/\" (v1
"/\" v0))
proof
let v1, v2, v0;
(v0
"/\" (v1
"/\" (v0
"/\" v2)))
= (v1
"/\" (v0
"/\" v2)) by
A77;
hence thesis by
A336;
end;
for v0, v2, v1 holds (v0
"/\" (v1
"/\" v2))
= ((v0
"/\" v1)
"/\" v2)
proof
let v0, v2, v1;
(v0
"/\" (v1
"/\" v2))
= (v2
"/\" (v0
"/\" v1)) by
A339
.= ((v0
"/\" v1)
"/\" v2) by
A173;
hence thesis;
end;
hence thesis by
A173,
A191,
A21,
A33,
A246;
end;
theorem ::
ROBBINS5:14
AuxiliaryMcKenzie: L is
join-commutative
join-associative
meet-commutative
meet-associative & (for v1, v0 holds (v0
"/\" (v0
"\/" v1))
= v0) & (for v1, v0 holds (v0
"\/" (v0
"/\" v1))
= v0) implies (for v1, v2, v0 holds (v0
"\/" (v1
"/\" (v0
"/\" v2)))
= v0) & (for v1, v2, v0 holds (v0
"/\" (v1
"\/" (v0
"\/" v2)))
= v0) & (for v2, v1, v0 holds (((v0
"/\" v1)
"\/" (v1
"/\" v2))
"\/" v1)
= v1) & (for v2, v1, v0 holds (((v0
"\/" v1)
"/\" (v1
"\/" v2))
"/\" v1)
= v1)
proof
assume
A2: L is
join-commutative;
assume
A3: L is
join-associative;
assume
A4: L is
meet-commutative;
assume
A5: L is
meet-associative;
assume
A6: for v1, v0 holds (v0
"/\" (v0
"\/" v1))
= v0;
assume
A7: for v1, v0 holds (v0
"\/" (v0
"/\" v1))
= v0;
thus for v1, v2, v0 holds (v0
"\/" (v1
"/\" (v0
"/\" v2)))
= v0
proof
let v1, v2, v0;
(v0
"\/" (v1
"/\" (v0
"/\" v2)))
= (v0
"\/" ((v1
"/\" v0)
"/\" v2)) by
A5
.= (v0
"\/" ((v0
"/\" v1)
"/\" v2)) by
A4
.= (v0
"\/" (v0
"/\" (v1
"/\" v2))) by
A5
.= v0 by
A7;
hence thesis;
end;
thus for v1, v2, v0 holds (v0
"/\" (v1
"\/" (v0
"\/" v2)))
= v0
proof
let v1, v2, v0;
(v0
"/\" (v1
"\/" (v0
"\/" v2)))
= (v0
"/\" ((v1
"\/" v0)
"\/" v2)) by
A3
.= (v0
"/\" ((v0
"\/" v1)
"\/" v2)) by
A2
.= (v0
"/\" (v0
"\/" (v1
"\/" v2))) by
A3
.= v0 by
A6;
hence thesis;
end;
thus for v2, v1, v0 holds (((v0
"/\" v1)
"\/" (v1
"/\" v2))
"\/" v1)
= v1
proof
let v2, v1, v0;
(((v0
"/\" v1)
"\/" (v1
"/\" v2))
"\/" v1)
= ((v0
"/\" v1)
"\/" ((v1
"/\" v2)
"\/" v1)) by
A3
.= ((v0
"/\" v1)
"\/" (v1
"\/" (v1
"/\" v2))) by
A2
.= ((v0
"/\" v1)
"\/" v1) by
A7
.= (v1
"\/" (v0
"/\" v1)) by
A2
.= (v1
"\/" (v1
"/\" v0)) by
A4
.= v1 by
A7;
hence thesis;
end;
let v2, v1, v0;
(((v0
"\/" v1)
"/\" (v1
"\/" v2))
"/\" v1)
= ((v0
"\/" v1)
"/\" ((v1
"\/" v2)
"/\" v1)) by
A5
.= ((v0
"\/" v1)
"/\" (v1
"/\" (v1
"\/" v2))) by
A4
.= ((v0
"\/" v1)
"/\" v1) by
A6
.= (v1
"/\" (v0
"\/" v1)) by
A4
.= (v1
"/\" (v1
"\/" v0)) by
A2
.= v1 by
A6;
hence thesis;
end;
definition
let L be non
empty
LattStr;
::
ROBBINS5:def6
attr L is
satisfying_4_McKenzie_axioms means L is
satisfying_McKenzie_1 & L is
satisfying_McKenzie_2 & L is
satisfying_McKenzie_3 & L is
satisfying_McKenzie_4;
end
registration
cluster
satisfying_4_McKenzie_axioms ->
satisfying_McKenzie_1
satisfying_McKenzie_2
satisfying_McKenzie_3
satisfying_McKenzie_4 for non
empty
LattStr;
coherence ;
cluster
satisfying_McKenzie_1
satisfying_McKenzie_2
satisfying_McKenzie_3
satisfying_McKenzie_4 ->
satisfying_4_McKenzie_axioms for non
empty
LattStr;
coherence ;
end
reserve L for non
empty
LattStr;
theorem ::
ROBBINS5:15
CombinedMcKenzie: L is
Lattice iff L is
satisfying_4_McKenzie_axioms
proof
thus L is
Lattice implies L is
satisfying_4_McKenzie_axioms
proof
assume
A1: L is
Lattice;
C1: for v1, v0 holds (v0
"/\" (v0
"\/" v1))
= v0 by
A1,
LATTICES:def 9;
for v1, v0 holds (v0
"\/" (v0
"/\" v1))
= v0
proof
let v1, v0;
A2: L is
join-commutative
meet-commutative
meet-absorbing by
A1;
then (v0
"\/" (v0
"/\" v1))
= ((v0
"/\" v1)
"\/" v0)
.= ((v1
"/\" v0)
"\/" v0) by
A2
.= v0 by
A2;
hence thesis;
end;
then L is
satisfying_McKenzie_1 & L is
satisfying_McKenzie_2 & L is
satisfying_McKenzie_3 & L is
satisfying_McKenzie_4 by
AuxiliaryMcKenzie,
A1,
C1;
hence thesis;
end;
assume L is
satisfying_4_McKenzie_axioms;
then
b1: L is
satisfying_McKenzie_1 & L is
satisfying_McKenzie_2 & L is
satisfying_McKenzie_3 & L is
satisfying_McKenzie_4;
then
B1: (for v1,v0 be
Element of L holds (v0
"/\" (v0
"\/" v1))
= v0) & (for v1,v0 be
Element of L holds (v0
"\/" (v0
"/\" v1))
= v0) & L is
join-commutative
meet-commutative
meet-associative
join-associative by
MainMcKenzie;
B2: for v0,v1 be
Element of L holds ((v1
"/\" v0)
"\/" v0)
= v0
proof
let v0, v1;
((v1
"/\" v0)
"\/" v0)
= (v0
"\/" (v1
"/\" v0)) by
B1
.= (v0
"\/" (v0
"/\" v1)) by
B1
.= v0 by
b1,
MainMcKenzie;
hence thesis;
end;
L is
meet-absorbing
join-absorbing by
b1,
B2,
MainMcKenzie;
hence thesis by
B1;
end;
registration
cluster
Lattice-like ->
satisfying_4_McKenzie_axioms for non
empty
LattStr;
coherence by
CombinedMcKenzie;
cluster
satisfying_4_McKenzie_axioms ->
Lattice-like for non
empty
LattStr;
coherence by
CombinedMcKenzie;
end