tarski_0.miz



    begin

    reserve x,y,z,a for object;

    reserve X,Y,Z for set;

    theorem :: TARSKI_0:1

    for x be object holds x is set;

    theorem :: TARSKI_0:2

    (for x be object holds x in X iff x in Y) implies X = Y;

    theorem :: TARSKI_0:3

    for x,y be object holds ex z be set st for a be object holds a in z iff a = x or a = y;

    theorem :: TARSKI_0:4

    for X be set holds ex Z be set st for x be object holds x in Z iff ex Y be set st x in Y & Y in X;

    theorem :: TARSKI_0:5

    x in X implies ex Y st Y in X & not ex x st x in X & x in Y;

    scheme :: TARSKI_0:sch1

    Replacement { A() -> set , P[ object, object] } :

ex X st for x holds x in X iff ex y st y in A() & P[y, x]

      provided for x,y,z be object st P[x, y] & P[x, z] holds y = z;

      thus thesis;

    end;