yellow_5.miz
    
    begin
    
    theorem :: 
    
    YELLOW_5:1
    
    for L be
    reflexive
    antisymmetric
    with_suprema  
    RelStr holds for a be 
    Element of L holds (a 
    "\/" a) 
    = a 
    
    proof
    
      let L be
    reflexive
    antisymmetric
    with_suprema  
    RelStr, a be 
    Element of L; 
    
      a
    <= a; 
    
      then a
    <= (a 
    "\/" a) & (a 
    "\/" a) 
    <= a by 
    YELLOW_0: 22;
    
      hence thesis by
    YELLOW_0:def 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:2
    
    
    
    
    
    Th2: for L be 
    reflexive
    antisymmetric
    with_infima  
    RelStr holds for a be 
    Element of L holds (a 
    "/\" a) 
    = a 
    
    proof
    
      let L be
    reflexive
    antisymmetric
    with_infima  
    RelStr, a be 
    Element of L; 
    
      a
    <= a; 
    
      then (a
    "/\" a) 
    <= a & a 
    <= (a 
    "/\" a) by 
    YELLOW_0: 23;
    
      hence thesis by
    YELLOW_0:def 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:3
    
    for L be
    transitive
    antisymmetric
    with_suprema  
    RelStr holds for a,b,c be 
    Element of L holds (a 
    "\/" b) 
    <= c implies a 
    <= c 
    
    proof
    
      let L be
    transitive
    antisymmetric
    with_suprema  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      
    
      
    
    A1: a 
    <= (a 
    "\/" b) by 
    YELLOW_0: 22;
    
      assume (a
    "\/" b) 
    <= c; 
    
      hence thesis by
    A1,
    YELLOW_0:def 2;
    
    end;
    
    theorem :: 
    
    YELLOW_5:4
    
    for L be
    transitive
    antisymmetric
    with_infima  
    RelStr holds for a,b,c be 
    Element of L holds c 
    <= (a 
    "/\" b) implies c 
    <= a 
    
    proof
    
      let L be
    transitive
    antisymmetric
    with_infima  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      
    
      
    
    A1: (a 
    "/\" b) 
    <= a by 
    YELLOW_0: 23;
    
      assume c
    <= (a 
    "/\" b); 
    
      hence thesis by
    A1,
    YELLOW_0:def 2;
    
    end;
    
    theorem :: 
    
    YELLOW_5:5
    
    for L be
    antisymmetric
    transitive
    with_suprema
    with_infima  
    RelStr holds for a,b,c be 
    Element of L holds (a 
    "/\" b) 
    <= (a 
    "\/" c) 
    
    proof
    
      let L be
    antisymmetric
    transitive
    with_suprema
    with_infima  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      (a
    "/\" b) 
    <= a & a 
    <= (a 
    "\/" c) by 
    YELLOW_0: 22,
    YELLOW_0: 23;
    
      hence thesis by
    YELLOW_0:def 2;
    
    end;
    
    theorem :: 
    
    YELLOW_5:6
    
    
    
    
    
    Th6: for L be 
    antisymmetric
    transitive
    with_infima  
    RelStr holds for a,b,c be 
    Element of L holds a 
    <= b implies (a 
    "/\" c) 
    <= (b 
    "/\" c) 
    
    proof
    
      let L be
    antisymmetric
    transitive
    with_infima  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      
    
      
    
    A1: (a 
    "/\" c) 
    <= a by 
    YELLOW_0: 23;
    
      
    
      
    
    A2: (a 
    "/\" c) 
    <= c by 
    YELLOW_0: 23;
    
      assume a
    <= b; 
    
      then (a
    "/\" c) 
    <= b by 
    A1,
    YELLOW_0:def 2;
    
      hence thesis by
    A2,
    YELLOW_0: 23;
    
    end;
    
    theorem :: 
    
    YELLOW_5:7
    
    
    
    
    
    Th7: for L be 
    antisymmetric
    transitive
    with_suprema  
    RelStr holds for a,b,c be 
    Element of L holds a 
    <= b implies (a 
    "\/" c) 
    <= (b 
    "\/" c) 
    
    proof
    
      let L be non
    empty
    antisymmetric
    transitive
    with_suprema  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      
    
      
    
    A1: b 
    <= (b 
    "\/" c) by 
    YELLOW_0: 22;
    
      
    
      
    
    A2: c 
    <= (b 
    "\/" c) by 
    YELLOW_0: 22;
    
      assume a
    <= b; 
    
      then a
    <= (b 
    "\/" c) by 
    A1,
    YELLOW_0:def 2;
    
      hence thesis by
    A2,
    YELLOW_0: 22;
    
    end;
    
    theorem :: 
    
    YELLOW_5:8
    
    
    
    
    
    Th8: for L be 
    sup-Semilattice holds for a,b be 
    Element of L holds a 
    <= b implies (a 
    "\/" b) 
    = b 
    
    proof
    
      let L be
    sup-Semilattice;
    
      let a,b be
    Element of L; 
    
      
    
      
    
    A1: b 
    <= b; 
    
      assume a
    <= b; 
    
      then b
    <= (a 
    "\/" b) & (a 
    "\/" b) 
    <= b by 
    A1,
    YELLOW_0: 22;
    
      hence thesis by
    YELLOW_0:def 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:9
    
    
    
    
    
    Th9: for L be 
    sup-Semilattice holds for a,b,c be 
    Element of L holds a 
    <= c & b 
    <= c implies (a 
    "\/" b) 
    <= c 
    
    proof
    
      let L be
    sup-Semilattice;
    
      let a,b,c be
    Element of L; 
    
      assume that
    
      
    
    A1: a 
    <= c and 
    
      
    
    A2: b 
    <= c; 
    
      (c
    "\/" b) 
    = c by 
    A2,
    Th8;
    
      hence thesis by
    A1,
    Th7;
    
    end;
    
    theorem :: 
    
    YELLOW_5:10
    
    
    
    
    
    Th10: for L be 
    Semilattice holds for a,b be 
    Element of L holds b 
    <= a implies (a 
    "/\" b) 
    = b 
    
    proof
    
      let L be
    Semilattice;
    
      let a,b be
    Element of L; 
    
      assume b
    <= a; 
    
      then (b
    "/\" b) 
    <= (a 
    "/\" b) by 
    Th6;
    
      then (a
    "/\" b) 
    <= b & b 
    <= (a 
    "/\" b) by 
    Th2,
    YELLOW_0: 23;
    
      hence thesis by
    YELLOW_0:def 3;
    
    end;
    
    begin
    
    theorem :: 
    
    YELLOW_5:11
    
    
    
    
    
    Th11: for L be 
    Boolean  
    LATTICE, x,y be 
    Element of L holds y 
    is_a_complement_of x iff y 
    = ( 
    'not' x) 
    
    proof
    
      let L be
    Boolean  
    LATTICE, x,y be 
    Element of L; 
    
      
    
      
    
    A1: for x be 
    Element of L holds ( 
    'not' ( 
    'not' x)) 
    = x by 
    WAYBEL_1: 87;
    
      then
    
      
    
    A2: ( 
    'not' x) 
    is_a_complement_of x by 
    WAYBEL_1: 86;
    
      then
    
      
    
    A3: (x 
    "/\" ( 
    'not' x)) 
    = ( 
    Bottom L) by 
    WAYBEL_1:def 23;
    
      
    
      
    
    A4: (x 
    "\/" ( 
    'not' x)) 
    = ( 
    Top L) by 
    A2,
    WAYBEL_1:def 23;
    
      hereby
    
        assume
    
        
    
    A5: y 
    is_a_complement_of x; 
    
        then
    
        
    
    A6: (x 
    "/\" y) 
    = ( 
    Bottom L) by 
    WAYBEL_1:def 23;
    
        
    
        
    
    A7: ( 
    Top L) 
    >= ( 
    'not' x) by 
    YELLOW_0: 45;
    
        
    
        
    
    A8: ( 
    Bottom L) 
    <= (y 
    "/\" ( 
    'not' x)) by 
    YELLOW_0: 44;
    
        (
    Top L) 
    >= y by 
    YELLOW_0: 45;
    
        
    
        then
    
        
    
    A9: y 
    = ((x 
    "\/" ( 
    'not' x)) 
    "/\" y) by 
    A4,
    YELLOW_0: 25
    
        .= ((x
    "/\" y) 
    "\/" (y 
    "/\" ( 
    'not' x))) by 
    WAYBEL_1:def 3
    
        .= (y
    "/\" ( 
    'not' x)) by 
    A6,
    A8,
    YELLOW_0: 24;
    
        (x
    "\/" y) 
    = ( 
    Top L) by 
    A5,
    WAYBEL_1:def 23;
    
        
    
        then (
    'not' x) 
    = ((x 
    "\/" y) 
    "/\" ( 
    'not' x)) by 
    A7,
    YELLOW_0: 25
    
        .= ((x
    "/\" ( 
    'not' x)) 
    "\/" (y 
    "/\" ( 
    'not' x))) by 
    WAYBEL_1:def 3
    
        .= (y
    "/\" ( 
    'not' x)) by 
    A3,
    A8,
    YELLOW_0: 24;
    
        hence y
    = ( 
    'not' x) by 
    A9;
    
      end;
    
      thus thesis by
    A1,
    WAYBEL_1: 86;
    
    end;
    
    definition
    
      let L be non
    empty  
    RelStr, a,b be 
    Element of L; 
    
      :: 
    
    YELLOW_5:def1
    
      func a
    
    \ b -> 
    Element of L equals (a 
    "/\" ( 
    'not' b)); 
    
      correctness ;
    
    end
    
    definition
    
      let L be non
    empty  
    RelStr, a,b be 
    Element of L; 
    
      :: 
    
    YELLOW_5:def2
    
      func a
    
    \+\ b -> 
    Element of L equals ((a 
    \ b) 
    "\/" (b 
    \ a)); 
    
      correctness ;
    
    end
    
    definition
    
      let L be
    antisymmetric
    with_infima
    with_suprema  
    RelStr, a,b be 
    Element of L; 
    
      :: original:
    \+\
    
      redefine
    
      func a
    
    \+\ b; 
    
      commutativity
    
      proof
    
        let a,b be
    Element of L; 
    
        
    
        thus (a
    \+\ b) 
    = ((a 
    \ b) 
    "\/" (b 
    \ a)) 
    
        .= (b
    \+\ a); 
    
      end;
    
    end
    
    definition
    
      let L be non
    empty  
    RelStr, a,b be 
    Element of L; 
    
      :: 
    
    YELLOW_5:def3
    
      pred a
    
    meets b means (a 
    "/\" b) 
    <> ( 
    Bottom L); 
    
    end
    
    notation
    
      let L be non
    empty  
    RelStr, a,b be 
    Element of L; 
    
      antonym a 
    
    misses b for a 
    meets b; 
    
    end
    
    notation
    
      let L be
    with_infima
    antisymmetric  
    RelStr, a,b be 
    Element of L; 
    
      antonym a 
    
    misses b for a 
    meets b; 
    
    end
    
    definition
    
      let L be
    with_infima
    antisymmetric  
    RelStr, a,b be 
    Element of L; 
    
      :: original:
    meets
    
      redefine
    
      pred a
    
    meets b; 
    
      symmetry
    
      proof
    
        let a,b be
    Element of L; 
    
        (a
    "/\" b) 
    <> ( 
    Bottom L) implies (b 
    "/\" a) 
    <> ( 
    Bottom L); 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    YELLOW_5:12
    
    for L be
    antisymmetric
    transitive
    with_infima
    with_suprema  
    RelStr holds for a,b,c be 
    Element of L holds a 
    <= c implies (a 
    \ b) 
    <= c 
    
    proof
    
      let L be
    antisymmetric
    transitive
    with_infima
    with_suprema  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      
    
      
    
    A1: (a 
    "/\" ( 
    'not' b)) 
    <= a by 
    YELLOW_0: 23;
    
      assume a
    <= c; 
    
      hence thesis by
    A1,
    YELLOW_0:def 2;
    
    end;
    
    theorem :: 
    
    YELLOW_5:13
    
    for L be
    antisymmetric
    transitive
    with_infima
    with_suprema  
    RelStr holds for a,b,c be 
    Element of L holds a 
    <= b implies (a 
    \ c) 
    <= (b 
    \ c) by 
    Th6;
    
    theorem :: 
    
    YELLOW_5:14
    
    for L be
    LATTICE holds for a,b,c be 
    Element of L holds (a 
    \ b) 
    <= c & (b 
    \ a) 
    <= c implies (a 
    \+\ b) 
    <= c by 
    Th9;
    
    theorem :: 
    
    YELLOW_5:15
    
    for L be
    LATTICE holds for a be 
    Element of L holds a 
    meets a iff a 
    <> ( 
    Bottom L) by 
    Th2;
    
    theorem :: 
    
    YELLOW_5:16
    
    for L be
    antisymmetric
    transitive
    with_infima  
    RelStr st L is 
    distributive holds for a,b,c be 
    Element of L holds ((a 
    "/\" b) 
    "\/" (a 
    "/\" c)) 
    = a implies a 
    <= (b 
    "\/" c) 
    
    proof
    
      let L be
    antisymmetric
    transitive
    with_infima  
    RelStr such that 
    
      
    
    A1: L is 
    distributive;
    
      let a,b,c be
    Element of L; 
    
      assume ((a
    "/\" b) 
    "\/" (a 
    "/\" c)) 
    = a; 
    
      then ((b
    "\/" c) 
    "/\" a) 
    = a by 
    A1,
    WAYBEL_1:def 3;
    
      hence thesis by
    YELLOW_0: 23;
    
    end;
    
    theorem :: 
    
    YELLOW_5:17
    
    
    
    
    
    Th17: for L be 
    LATTICE st L is 
    distributive holds for a,b,c be 
    Element of L holds (a 
    "\/" (b 
    "/\" c)) 
    = ((a 
    "\/" b) 
    "/\" (a 
    "\/" c)) 
    
    proof
    
      let L be
    LATTICE such that 
    
      
    
    A1: L is 
    distributive;
    
      let a,b,c be
    Element of L; 
    
      ((a
    "\/" b) 
    "/\" (a 
    "\/" c)) 
    = (((a 
    "\/" b) 
    "/\" a) 
    "\/" ((a 
    "\/" b) 
    "/\" c)) by 
    A1,
    WAYBEL_1:def 3
    
      .= (a
    "\/" ((a 
    "\/" b) 
    "/\" c)) by 
    LATTICE3: 18
    
      .= (a
    "\/" ((c 
    "/\" a) 
    "\/" (c 
    "/\" b))) by 
    A1,
    WAYBEL_1:def 3
    
      .= ((a
    "\/" (c 
    "/\" a)) 
    "\/" (c 
    "/\" b)) by 
    LATTICE3: 14
    
      .= (a
    "\/" (c 
    "/\" b)) by 
    LATTICE3: 17;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    YELLOW_5:18
    
    for L be
    LATTICE st L is 
    distributive holds for a,b,c be 
    Element of L holds ((a 
    "\/" b) 
    \ c) 
    = ((a 
    \ c) 
    "\/" (b 
    \ c)) 
    
    proof
    
      let L be
    with_suprema
    with_infima
    reflexive
    transitive
    antisymmetric non 
    empty  
    RelStr such that 
    
      
    
    A1: L is 
    distributive;
    
      let a,b,c be
    Element of L; 
    
      
    
      thus ((a
    "\/" b) 
    \ c) 
    = ((a 
    "\/" b) 
    "/\" ( 
    'not' c)) 
    
      .= (((
    'not' c) 
    "/\" a) 
    "\/" (( 
    'not' c) 
    "/\" b)) by 
    A1,
    WAYBEL_1:def 3
    
      .= ((a
    \ c) 
    "\/" (b 
    \ c)); 
    
    end;
    
    begin
    
    theorem :: 
    
    YELLOW_5:19
    
    
    
    
    
    Th19: for L be 
    lower-bounded non 
    empty
    antisymmetric  
    RelStr holds for a be 
    Element of L holds a 
    <= ( 
    Bottom L) implies a 
    = ( 
    Bottom L) 
    
    proof
    
      let L be
    lower-bounded non 
    empty
    antisymmetric  
    RelStr;
    
      let a be
    Element of L; 
    
      
    
      
    
    A1: ( 
    Bottom L) 
    <= a by 
    YELLOW_0: 44;
    
      assume a
    <= ( 
    Bottom L); 
    
      hence thesis by
    A1,
    YELLOW_0:def 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:20
    
    for L be
    lower-bounded  
    Semilattice holds for a,b,c be 
    Element of L holds a 
    <= b & a 
    <= c & (b 
    "/\" c) 
    = ( 
    Bottom L) implies a 
    = ( 
    Bottom L) 
    
    proof
    
      let L be
    lower-bounded  
    Semilattice;
    
      let a,b,c be
    Element of L; 
    
      assume that
    
      
    
    A1: a 
    <= b and 
    
      
    
    A2: a 
    <= c and 
    
      
    
    A3: (b 
    "/\" c) 
    = ( 
    Bottom L); 
    
      (a
    "/\" c) 
    <= (b 
    "/\" c) by 
    A1,
    Th6;
    
      then a
    <= (b 
    "/\" c) by 
    A2,
    Th10;
    
      hence thesis by
    A3,
    Th19;
    
    end;
    
    theorem :: 
    
    YELLOW_5:21
    
    for L be
    lower-bounded
    antisymmetric
    with_suprema  
    RelStr holds for a,b be 
    Element of L holds (a 
    "\/" b) 
    = ( 
    Bottom L) implies a 
    = ( 
    Bottom L) & b 
    = ( 
    Bottom L) 
    
    proof
    
      let L be
    lower-bounded
    antisymmetric
    with_suprema  
    RelStr;
    
      let a,b be
    Element of L; 
    
      assume (a
    "\/" b) 
    = ( 
    Bottom L); 
    
      then a
    <= ( 
    Bottom L) & b 
    <= ( 
    Bottom L) by 
    YELLOW_0: 22;
    
      hence thesis by
    Th19;
    
    end;
    
    theorem :: 
    
    YELLOW_5:22
    
    for L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr holds for a,b,c be 
    Element of L holds a 
    <= b & (b 
    "/\" c) 
    = ( 
    Bottom L) implies (a 
    "/\" c) 
    = ( 
    Bottom L) 
    
    proof
    
      let L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      assume a
    <= b & (b 
    "/\" c) 
    = ( 
    Bottom L); 
    
      then
    
      
    
    A1: (a 
    "/\" c) 
    <= ( 
    Bottom L) by 
    Th6;
    
      (
    Bottom L) 
    <= (a 
    "/\" c) by 
    YELLOW_0: 44;
    
      hence thesis by
    A1,
    YELLOW_0:def 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:23
    
    for L be
    lower-bounded  
    Semilattice holds for a be 
    Element of L holds (( 
    Bottom L) 
    \ a) 
    = ( 
    Bottom L) 
    
    proof
    
      let L be
    lower-bounded  
    Semilattice;
    
      let a be
    Element of L; 
    
      
    
      thus ((
    Bottom L) 
    \ a) 
    = (( 
    Bottom L) 
    "/\" ( 
    'not' a)) 
    
      .= (
    Bottom L) by 
    Th10,
    YELLOW_0: 44;
    
    end;
    
    theorem :: 
    
    YELLOW_5:24
    
    for L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr holds for a,b,c be 
    Element of L holds a 
    meets b & b 
    <= c implies a 
    meets c 
    
    proof
    
      let L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      assume
    
      
    
    A1: a 
    meets b; 
    
      
    
      
    
    A2: ( 
    Bottom L) 
    <= (a 
    "/\" b) by 
    YELLOW_0: 44;
    
      assume b
    <= c; 
    
      then
    
      
    
    A3: (a 
    "/\" b) 
    <= (a 
    "/\" c) by 
    Th6;
    
      assume not a
    meets c; 
    
      then not (a
    "/\" c) 
    <> ( 
    Bottom L); 
    
      then (a
    "/\" b) 
    = ( 
    Bottom L) by 
    A3,
    A2,
    YELLOW_0:def 3;
    
      hence contradiction by
    A1;
    
    end;
    
    theorem :: 
    
    YELLOW_5:25
    
    
    
    
    
    Th25: for L be 
    lower-bounded
    with_infima
    antisymmetric  
    RelStr holds for a be 
    Element of L holds (a 
    "/\" ( 
    Bottom L)) 
    = ( 
    Bottom L) 
    
    proof
    
      let L be
    lower-bounded
    with_infima
    antisymmetric  
    RelStr;
    
      let a be
    Element of L; 
    
      (
    Bottom L) 
    <= (a 
    "/\" ( 
    Bottom L)) & (a 
    "/\" ( 
    Bottom L)) 
    <= ( 
    Bottom L) by 
    YELLOW_0: 23,
    YELLOW_0: 44;
    
      hence thesis by
    YELLOW_0:def 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:26
    
    for L be
    lower-bounded
    antisymmetric
    transitive
    with_infima
    with_suprema  
    RelStr holds for a,b,c be 
    Element of L holds a 
    meets (b 
    "/\" c) implies a 
    meets b 
    
    proof
    
      let L be
    lower-bounded
    antisymmetric
    transitive
    with_infima
    with_suprema  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      assume
    
      
    
    A1: a 
    meets (b 
    "/\" c); 
    
      assume
    
      
    
    A2: not a 
    meets b; 
    
      (a
    "/\" (b 
    "/\" c)) 
    = ((a 
    "/\" b) 
    "/\" c) by 
    LATTICE3: 16
    
      .= ((
    Bottom L) 
    "/\" c) by 
    A2
    
      .= (
    Bottom L) by 
    Th25;
    
      hence contradiction by
    A1;
    
    end;
    
    theorem :: 
    
    YELLOW_5:27
    
    for L be
    lower-bounded
    antisymmetric
    transitive
    with_infima
    with_suprema  
    RelStr holds for a,b,c be 
    Element of L holds a 
    meets (b 
    \ c) implies a 
    meets b 
    
    proof
    
      let L be
    lower-bounded
    antisymmetric
    transitive
    with_infima
    with_suprema  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      assume
    
      
    
    A1: a 
    meets (b 
    \ c); 
    
      assume
    
      
    
    A2: not a 
    meets b; 
    
      (a
    "/\" (b 
    \ c)) 
    = ((a 
    "/\" b) 
    "/\" ( 
    'not' c)) by 
    LATTICE3: 16
    
      .= ((
    Bottom L) 
    "/\" ( 
    'not' c)) by 
    A2
    
      .= (
    Bottom L) by 
    Th25;
    
      hence contradiction by
    A1;
    
    end;
    
    theorem :: 
    
    YELLOW_5:28
    
    for L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr holds for a be 
    Element of L holds a 
    misses ( 
    Bottom L) by 
    Th25;
    
    theorem :: 
    
    YELLOW_5:29
    
    for L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr holds for a,b,c be 
    Element of L holds a 
    misses c & b 
    <= c implies a 
    misses b 
    
    proof
    
      let L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      assume that
    
      
    
    A1: a 
    misses c and 
    
      
    
    A2: b 
    <= c; 
    
      (a
    "/\" c) 
    = ( 
    Bottom L) by 
    A1;
    
      then
    
      
    
    A3: (a 
    "/\" b) 
    <= ( 
    Bottom L) by 
    A2,
    Th6;
    
      (
    Bottom L) 
    <= (a 
    "/\" b) by 
    YELLOW_0: 44;
    
      then (a
    "/\" b) 
    = ( 
    Bottom L) by 
    A3,
    YELLOW_0:def 3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    YELLOW_5:30
    
    for L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr holds for a,b,c be 
    Element of L holds a 
    misses b or a 
    misses c implies a 
    misses (b 
    "/\" c) 
    
    proof
    
      let L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      assume
    
      
    
    A1: a 
    misses b or a 
    misses c; 
    
      per cases by
    A1;
    
        suppose
    
        
    
    A2: a 
    misses b; 
    
        (a
    "/\" (b 
    "/\" c)) 
    = ((a 
    "/\" b) 
    "/\" c) by 
    LATTICE3: 16
    
        .= ((
    Bottom L) 
    "/\" c) by 
    A2
    
        .= (
    Bottom L) by 
    Th25;
    
        hence thesis;
    
      end;
    
        suppose
    
        
    
    A3: a 
    misses c; 
    
        (a
    "/\" (b 
    "/\" c)) 
    = ((a 
    "/\" c) 
    "/\" b) by 
    LATTICE3: 16
    
        .= ((
    Bottom L) 
    "/\" b) by 
    A3
    
        .= (
    Bottom L) by 
    Th25;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    YELLOW_5:31
    
    for L be
    lower-bounded  
    LATTICE holds for a,b,c be 
    Element of L holds a 
    <= b & a 
    <= c & b 
    misses c implies a 
    = ( 
    Bottom L) 
    
    proof
    
      let L be
    lower-bounded  
    LATTICE;
    
      let a,b,c be
    Element of L; 
    
      assume that
    
      
    
    A1: a 
    <= b and 
    
      
    
    A2: a 
    <= c and 
    
      
    
    A3: b 
    misses c; 
    
      (b
    "/\" c) 
    = ( 
    Bottom L) by 
    A3;
    
      then (
    Bottom L) 
    <= (a 
    "/\" c) & (a 
    "/\" c) 
    <= ( 
    Bottom L) by 
    A1,
    Th6,
    YELLOW_0: 44;
    
      then (a
    "/\" c) 
    = ( 
    Bottom L) by 
    YELLOW_0:def 3;
    
      hence thesis by
    A2,
    Th10;
    
    end;
    
    theorem :: 
    
    YELLOW_5:32
    
    for L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr holds for a,b,c be 
    Element of L holds a 
    misses b implies (a 
    "/\" c) 
    misses (b 
    "/\" c) 
    
    proof
    
      let L be
    lower-bounded
    antisymmetric
    transitive
    with_infima  
    RelStr;
    
      let a,b,c be
    Element of L; 
    
      assume
    
      
    
    A1: a 
    misses b; 
    
      ((a
    "/\" c) 
    "/\" (b 
    "/\" c)) 
    = (c 
    "/\" (a 
    "/\" (b 
    "/\" c))) by 
    LATTICE3: 16
    
      .= ((c
    "/\" (a 
    "/\" b)) 
    "/\" c) by 
    LATTICE3: 16
    
      .= ((c
    "/\" ( 
    Bottom L)) 
    "/\" c) by 
    A1
    
      .= ((
    Bottom L) 
    "/\" c) by 
    Th25
    
      .= (
    Bottom L) by 
    Th25;
    
      hence thesis;
    
    end;
    
    begin
    
    reserve L for
    Boolean non 
    empty  
    RelStr;
    
    reserve a,b,c,d for
    Element of L; 
    
    theorem :: 
    
    YELLOW_5:33
    
    (((a
    "/\" b) 
    "\/" (b 
    "/\" c)) 
    "\/" (c 
    "/\" a)) 
    = (((a 
    "\/" b) 
    "/\" (b 
    "\/" c)) 
    "/\" (c 
    "\/" a)) 
    
    proof
    
      (((a
    "/\" b) 
    "\/" (b 
    "/\" c)) 
    "\/" (c 
    "/\" a)) 
    = (((a 
    "\/" (b 
    "/\" c)) 
    "/\" (b 
    "\/" (b 
    "/\" c))) 
    "\/" (c 
    "/\" a)) by 
    WAYBEL_1: 5
    
      .= (((a
    "\/" (b 
    "/\" c)) 
    "/\" b) 
    "\/" (c 
    "/\" a)) by 
    LATTICE3: 17
    
      .= (((a
    "\/" (b 
    "/\" c)) 
    "\/" (c 
    "/\" a)) 
    "/\" (b 
    "\/" (c 
    "/\" a))) by 
    WAYBEL_1: 5
    
      .= (((a
    "\/" (b 
    "/\" c)) 
    "\/" (c 
    "/\" a)) 
    "/\" ((b 
    "\/" c) 
    "/\" (b 
    "\/" a))) by 
    WAYBEL_1: 5
    
      .= (((b
    "/\" c) 
    "\/" (a 
    "\/" (c 
    "/\" a))) 
    "/\" ((b 
    "\/" c) 
    "/\" (b 
    "\/" a))) by 
    LATTICE3: 14
    
      .= (((b
    "/\" c) 
    "\/" a) 
    "/\" ((b 
    "\/" c) 
    "/\" (b 
    "\/" a))) by 
    LATTICE3: 17
    
      .= (((b
    "\/" a) 
    "/\" (c 
    "\/" a)) 
    "/\" ((b 
    "\/" c) 
    "/\" (b 
    "\/" a))) by 
    WAYBEL_1: 5
    
      .= ((b
    "\/" a) 
    "/\" (((c 
    "\/" a) 
    "/\" (b 
    "\/" a)) 
    "/\" (b 
    "\/" c))) by 
    LATTICE3: 16
    
      .= ((b
    "\/" a) 
    "/\" ((b 
    "\/" a) 
    "/\" ((c 
    "\/" a) 
    "/\" (b 
    "\/" c)))) by 
    LATTICE3: 16
    
      .= (((b
    "\/" a) 
    "/\" (b 
    "\/" a)) 
    "/\" ((c 
    "\/" a) 
    "/\" (b 
    "\/" c))) by 
    LATTICE3: 16
    
      .= ((b
    "\/" a) 
    "/\" ((c 
    "\/" a) 
    "/\" (b 
    "\/" c))) by 
    Th2
    
      .= (((a
    "\/" b) 
    "/\" (b 
    "\/" c)) 
    "/\" (c 
    "\/" a)) by 
    LATTICE3: 16;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    YELLOW_5:34
    
    
    
    
    
    Th34: (a 
    "/\" ( 
    'not' a)) 
    = ( 
    Bottom L) & (a 
    "\/" ( 
    'not' a)) 
    = ( 
    Top L) 
    
    proof
    
      (
    'not' a) 
    is_a_complement_of a by 
    Th11;
    
      hence thesis by
    WAYBEL_1:def 23;
    
    end;
    
    theorem :: 
    
    YELLOW_5:35
    
    (a
    \ b) 
    <= c implies a 
    <= (b 
    "\/" c) 
    
    proof
    
      
    
      
    
    A1: a 
    <= (a 
    "\/" b) by 
    YELLOW_0: 22;
    
      assume (a
    \ b) 
    <= c; 
    
      then
    
      
    
    A2: ((a 
    "/\" ( 
    'not' b)) 
    "\/" b) 
    <= (c 
    "\/" b) by 
    Th7;
    
      ((a
    "/\" ( 
    'not' b)) 
    "\/" b) 
    = ((b 
    "\/" a) 
    "/\" (b 
    "\/" ( 
    'not' b))) by 
    Th17
    
      .= ((b
    "\/" a) 
    "/\" ( 
    Top L)) by 
    Th34
    
      .= (a
    "\/" b) by 
    WAYBEL_1: 4;
    
      hence thesis by
    A2,
    A1,
    YELLOW_0:def 2;
    
    end;
    
    theorem :: 
    
    YELLOW_5:36
    
    
    
    
    
    Th36: ( 
    'not' (a 
    "\/" b)) 
    = (( 
    'not' a) 
    "/\" ( 
    'not' b)) & ( 
    'not' (a 
    "/\" b)) 
    = (( 
    'not' a) 
    "\/" ( 
    'not' b)) 
    
    proof
    
      
    
      
    
    A1: ((a 
    "\/" b) 
    "/\" (( 
    'not' a) 
    "/\" ( 
    'not' b))) 
    = (((a 
    "\/" b) 
    "/\" ( 
    'not' a)) 
    "/\" ( 
    'not' b)) by 
    LATTICE3: 16
    
      .= ((((
    'not' a) 
    "/\" a) 
    "\/" (( 
    'not' a) 
    "/\" b)) 
    "/\" ( 
    'not' b)) by 
    WAYBEL_1:def 3
    
      .= (((
    Bottom L) 
    "\/" (( 
    'not' a) 
    "/\" b)) 
    "/\" ( 
    'not' b)) by 
    Th34
    
      .= (((
    'not' a) 
    "/\" b) 
    "/\" ( 
    'not' b)) by 
    WAYBEL_1: 3
    
      .= ((
    'not' a) 
    "/\" (b 
    "/\" ( 
    'not' b))) by 
    LATTICE3: 16
    
      .= ((
    'not' a) 
    "/\" ( 
    Bottom L)) by 
    Th34
    
      .= (
    Bottom L) by 
    WAYBEL_1: 3;
    
      ((a
    "\/" b) 
    "\/" (( 
    'not' a) 
    "/\" ( 
    'not' b))) 
    = (a 
    "\/" (b 
    "\/" (( 
    'not' a) 
    "/\" ( 
    'not' b)))) by 
    LATTICE3: 14
    
      .= (a
    "\/" ((b 
    "\/" ( 
    'not' a)) 
    "/\" (b 
    "\/" ( 
    'not' b)))) by 
    Th17
    
      .= (a
    "\/" ((b 
    "\/" ( 
    'not' a)) 
    "/\" ( 
    Top L))) by 
    Th34
    
      .= (a
    "\/" (b 
    "\/" ( 
    'not' a))) by 
    WAYBEL_1: 4
    
      .= ((a
    "\/" ( 
    'not' a)) 
    "\/" b) by 
    LATTICE3: 14
    
      .= ((
    Top L) 
    "\/" b) by 
    Th34
    
      .= (
    Top L) by 
    WAYBEL_1: 4;
    
      then ((
    'not' a) 
    "/\" ( 
    'not' b)) 
    is_a_complement_of (a 
    "\/" b) by 
    A1,
    WAYBEL_1:def 23;
    
      hence (
    'not' (a 
    "\/" b)) 
    = (( 
    'not' a) 
    "/\" ( 
    'not' b)) by 
    Th11;
    
      
    
      
    
    A2: ((a 
    "/\" b) 
    "/\" (( 
    'not' a) 
    "\/" ( 
    'not' b))) 
    = (a 
    "/\" (b 
    "/\" (( 
    'not' a) 
    "\/" ( 
    'not' b)))) by 
    LATTICE3: 16
    
      .= (a
    "/\" ((b 
    "/\" ( 
    'not' a)) 
    "\/" (b 
    "/\" ( 
    'not' b)))) by 
    WAYBEL_1:def 3
    
      .= (a
    "/\" ((b 
    "/\" ( 
    'not' a)) 
    "\/" ( 
    Bottom L))) by 
    Th34
    
      .= (a
    "/\" (b 
    "/\" ( 
    'not' a))) by 
    WAYBEL_1: 3
    
      .= ((a
    "/\" ( 
    'not' a)) 
    "/\" b) by 
    LATTICE3: 16
    
      .= ((
    Bottom L) 
    "/\" b) by 
    Th34
    
      .= (
    Bottom L) by 
    WAYBEL_1: 3;
    
      ((a
    "/\" b) 
    "\/" (( 
    'not' a) 
    "\/" ( 
    'not' b))) 
    = (((a 
    "/\" b) 
    "\/" ( 
    'not' a)) 
    "\/" ( 
    'not' b)) by 
    LATTICE3: 14
    
      .= ((((
    'not' a) 
    "\/" a) 
    "/\" (( 
    'not' a) 
    "\/" b)) 
    "\/" ( 
    'not' b)) by 
    Th17
    
      .= (((
    Top L) 
    "/\" (( 
    'not' a) 
    "\/" b)) 
    "\/" ( 
    'not' b)) by 
    Th34
    
      .= (((
    'not' a) 
    "\/" b) 
    "\/" ( 
    'not' b)) by 
    WAYBEL_1: 4
    
      .= ((
    'not' a) 
    "\/" (b 
    "\/" ( 
    'not' b))) by 
    LATTICE3: 14
    
      .= ((
    'not' a) 
    "\/" ( 
    Top L)) by 
    Th34
    
      .= (
    Top L) by 
    WAYBEL_1: 4;
    
      then ((
    'not' a) 
    "\/" ( 
    'not' b)) 
    is_a_complement_of (a 
    "/\" b) by 
    A2,
    WAYBEL_1:def 23;
    
      hence (
    'not' (a 
    "/\" b)) 
    = (( 
    'not' a) 
    "\/" ( 
    'not' b)) by 
    Th11;
    
    end;
    
    theorem :: 
    
    YELLOW_5:37
    
    
    
    
    
    Th37: a 
    <= b implies ( 
    'not' b) 
    <= ( 
    'not' a) 
    
    proof
    
      assume a
    <= b; 
    
      
    
      then (
    'not' a) 
    = ( 
    'not' (b 
    "/\" a)) by 
    Th10
    
      .= ((
    'not' b) 
    "\/" ( 
    'not' a)) by 
    Th36;
    
      hence thesis by
    YELLOW_0: 22;
    
    end;
    
    theorem :: 
    
    YELLOW_5:38
    
    a
    <= b implies (c 
    \ b) 
    <= (c 
    \ a) 
    
    proof
    
      assume a
    <= b; 
    
      then (
    'not' b) 
    <= ( 
    'not' a) by 
    Th37;
    
      then (c
    "/\" ( 
    'not' b)) 
    <= (c 
    "/\" ( 
    'not' a)) by 
    Th6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    YELLOW_5:39
    
    a
    <= b & c 
    <= d implies (a 
    \ d) 
    <= (b 
    \ c) 
    
    proof
    
      assume that
    
      
    
    A1: a 
    <= b and 
    
      
    
    A2: c 
    <= d; 
    
      (
    'not' d) 
    <= ( 
    'not' c) by 
    A2,
    Th37;
    
      then
    
      
    
    A3: (a 
    "/\" ( 
    'not' d)) 
    <= (a 
    "/\" ( 
    'not' c)) by 
    Th6;
    
      (a
    "/\" ( 
    'not' c)) 
    <= (b 
    "/\" ( 
    'not' c)) by 
    A1,
    Th6;
    
      hence thesis by
    A3,
    YELLOW_0:def 2;
    
    end;
    
    theorem :: 
    
    YELLOW_5:40
    
    a
    <= (b 
    "\/" c) implies (a 
    \ b) 
    <= c & (a 
    \ c) 
    <= b 
    
    proof
    
      assume
    
      
    
    A1: a 
    <= (b 
    "\/" c); 
    
      ((b
    "\/" c) 
    "/\" ( 
    'not' b)) 
    = ((( 
    'not' b) 
    "/\" b) 
    "\/" (( 
    'not' b) 
    "/\" c)) by 
    WAYBEL_1:def 3
    
      .= ((
    Bottom L) 
    "\/" (( 
    'not' b) 
    "/\" c)) by 
    Th34
    
      .= (c
    "/\" ( 
    'not' b)) by 
    WAYBEL_1: 3;
    
      then (c
    "/\" ( 
    'not' b)) 
    <= c & (a 
    "/\" ( 
    'not' b)) 
    <= (c 
    "/\" ( 
    'not' b)) by 
    A1,
    Th6,
    YELLOW_0: 23;
    
      hence (a
    \ b) 
    <= c by 
    YELLOW_0:def 2;
    
      ((b
    "\/" c) 
    "/\" ( 
    'not' c)) 
    = ((( 
    'not' c) 
    "/\" b) 
    "\/" (( 
    'not' c) 
    "/\" c)) by 
    WAYBEL_1:def 3
    
      .= (((
    'not' c) 
    "/\" b) 
    "\/" ( 
    Bottom L)) by 
    Th34
    
      .= ((
    'not' c) 
    "/\" b) by 
    WAYBEL_1: 3;
    
      then ((
    'not' c) 
    "/\" b) 
    <= b & (a 
    "/\" ( 
    'not' c)) 
    <= (( 
    'not' c) 
    "/\" b) by 
    A1,
    Th6,
    YELLOW_0: 23;
    
      hence thesis by
    YELLOW_0:def 2;
    
    end;
    
    theorem :: 
    
    YELLOW_5:41
    
    (
    'not' a) 
    <= ( 
    'not' (a 
    "/\" b)) & ( 
    'not' b) 
    <= ( 
    'not' (a 
    "/\" b)) 
    
    proof
    
      (
    'not' a) 
    <= (( 
    'not' a) 
    "\/" ( 
    'not' b)) & ( 
    'not' b) 
    <= (( 
    'not' a) 
    "\/" ( 
    'not' b)) by 
    YELLOW_0: 22;
    
      hence thesis by
    Th36;
    
    end;
    
    theorem :: 
    
    YELLOW_5:42
    
    (
    'not' (a 
    "\/" b)) 
    <= ( 
    'not' a) & ( 
    'not' (a 
    "\/" b)) 
    <= ( 
    'not' b) 
    
    proof
    
      ((
    'not' a) 
    "/\" ( 
    'not' b)) 
    <= ( 
    'not' a) & (( 
    'not' a) 
    "/\" ( 
    'not' b)) 
    <= ( 
    'not' b) by 
    YELLOW_0: 23;
    
      hence thesis by
    Th36;
    
    end;
    
    theorem :: 
    
    YELLOW_5:43
    
    a
    <= (b 
    \ a) implies a 
    = ( 
    Bottom L) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <= (b 
    \ a); 
    
      ((b
    "/\" ( 
    'not' a)) 
    "/\" a) 
    = (b 
    "/\" (( 
    'not' a) 
    "/\" a)) by 
    LATTICE3: 16
    
      .= (b
    "/\" ( 
    Bottom L)) by 
    Th34
    
      .= (
    Bottom L) by 
    WAYBEL_1: 3;
    
      hence thesis by
    A1,
    Th10;
    
    end;
    
    theorem :: 
    
    YELLOW_5:44
    
    a
    <= b implies b 
    = (a 
    "\/" (b 
    \ a)) 
    
    proof
    
      assume
    
      
    
    A1: a 
    <= b; 
    
      (a
    "\/" (b 
    \ a)) 
    = ((a 
    "\/" b) 
    "/\" (a 
    "\/" ( 
    'not' a))) by 
    WAYBEL_1: 5
    
      .= (b
    "/\" (( 
    'not' a) 
    "\/" a)) by 
    A1,
    Th8
    
      .= (b
    "/\" ( 
    Top L)) by 
    Th34
    
      .= b by
    WAYBEL_1: 4;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    YELLOW_5:45
    
    (a
    \ b) 
    = ( 
    Bottom L) iff a 
    <= b 
    
    proof
    
      thus (a
    \ b) 
    = ( 
    Bottom L) implies a 
    <= b 
    
      proof
    
        assume (a
    \ b) 
    = ( 
    Bottom L); 
    
        then ((b
    "\/" a) 
    "/\" (b 
    "\/" ( 
    'not' b))) 
    <= (b 
    "\/" ( 
    Bottom L)) by 
    Th17;
    
        then ((b
    "\/" a) 
    "/\" (b 
    "\/" ( 
    'not' b))) 
    <= b by 
    WAYBEL_1: 3;
    
        then ((a
    "\/" b) 
    "/\" ( 
    Top L)) 
    <= b by 
    Th34;
    
        then
    
        
    
    A1: (a 
    "\/" b) 
    <= b by 
    WAYBEL_1: 4;
    
        a
    <= (a 
    "\/" b) by 
    YELLOW_0: 22;
    
        hence thesis by
    A1,
    YELLOW_0:def 2;
    
      end;
    
      thus a
    <= b implies (a 
    \ b) 
    = ( 
    Bottom L) 
    
      proof
    
        assume a
    <= b; 
    
        then (a
    "/\" ( 
    'not' b)) 
    <= (b 
    "/\" ( 
    'not' b)) by 
    Th6;
    
        then
    
        
    
    A2: (a 
    "/\" ( 
    'not' b)) 
    <= ( 
    Bottom L) by 
    Th34;
    
        (
    Bottom L) 
    <= (a 
    \ b) by 
    YELLOW_0: 44;
    
        hence thesis by
    A2,
    YELLOW_0:def 3;
    
      end;
    
    end;
    
    theorem :: 
    
    YELLOW_5:46
    
    a
    <= (b 
    "\/" c) & (a 
    "/\" c) 
    = ( 
    Bottom L) implies a 
    <= b 
    
    proof
    
      assume a
    <= (b 
    "\/" c) & (a 
    "/\" c) 
    = ( 
    Bottom L); 
    
      then (a
    "/\" (b 
    "\/" c)) 
    = a & (a 
    "/\" (b 
    "\/" c)) 
    = ((a 
    "/\" b) 
    "\/" ( 
    Bottom L)) by 
    Th10,
    WAYBEL_1:def 3;
    
      then (a
    "/\" b) 
    = a by 
    WAYBEL_1: 3;
    
      hence thesis by
    YELLOW_0: 23;
    
    end;
    
    theorem :: 
    
    YELLOW_5:47
    
    (a
    "\/" b) 
    = ((a 
    \ b) 
    "\/" b) 
    
    proof
    
      
    
      thus ((a
    \ b) 
    "\/" b) 
    = ((b 
    "\/" a) 
    "/\" (b 
    "\/" ( 
    'not' b))) by 
    Th17
    
      .= ((b
    "\/" a) 
    "/\" ( 
    Top L)) by 
    Th34
    
      .= (a
    "\/" b) by 
    WAYBEL_1: 4;
    
    end;
    
    theorem :: 
    
    YELLOW_5:48
    
    (a
    \ (a 
    "\/" b)) 
    = ( 
    Bottom L) 
    
    proof
    
      
    
      thus (a
    \ (a 
    "\/" b)) 
    = (a 
    "/\" (( 
    'not' a) 
    "/\" ( 
    'not' b))) by 
    Th36
    
      .= ((a
    "/\" ( 
    'not' a)) 
    "/\" ( 
    'not' b)) by 
    LATTICE3: 16
    
      .= ((
    Bottom L) 
    "/\" ( 
    'not' b)) by 
    Th34
    
      .= (
    Bottom L) by 
    WAYBEL_1: 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:49
    
    (a
    \ (a 
    "/\" b)) 
    = (a 
    \ b) 
    
    proof
    
      
    
      thus (a
    \ (a 
    "/\" b)) 
    = (a 
    "/\" (( 
    'not' a) 
    "\/" ( 
    'not' b))) by 
    Th36
    
      .= ((a
    "/\" ( 
    'not' a)) 
    "\/" (a 
    "/\" ( 
    'not' b))) by 
    WAYBEL_1:def 3
    
      .= ((
    Bottom L) 
    "\/" (a 
    "/\" ( 
    'not' b))) by 
    Th34
    
      .= (a
    \ b) by 
    WAYBEL_1: 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:50
    
    ((a
    \ b) 
    "/\" b) 
    = ( 
    Bottom L) 
    
    proof
    
      
    
      thus ((a
    \ b) 
    "/\" b) 
    = (a 
    "/\" (( 
    'not' b) 
    "/\" b)) by 
    LATTICE3: 16
    
      .= (a
    "/\" ( 
    Bottom L)) by 
    Th34
    
      .= (
    Bottom L) by 
    WAYBEL_1: 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:51
    
    (a
    "\/" (b 
    \ a)) 
    = (a 
    "\/" b) 
    
    proof
    
      
    
      thus (a
    "\/" (b 
    \ a)) 
    = ((a 
    "\/" b) 
    "/\" (a 
    "\/" ( 
    'not' a))) by 
    Th17
    
      .= ((a
    "\/" b) 
    "/\" ( 
    Top L)) by 
    Th34
    
      .= (a
    "\/" b) by 
    WAYBEL_1: 4;
    
    end;
    
    theorem :: 
    
    YELLOW_5:52
    
    ((a
    "/\" b) 
    "\/" (a 
    \ b)) 
    = a 
    
    proof
    
      
    
      thus ((a
    "/\" b) 
    "\/" (a 
    \ b)) 
    = (((a 
    "/\" b) 
    "\/" a) 
    "/\" ((a 
    "/\" b) 
    "\/" ( 
    'not' b))) by 
    Th17
    
      .= (a
    "/\" ((a 
    "/\" b) 
    "\/" ( 
    'not' b))) by 
    LATTICE3: 17
    
      .= (a
    "/\" ((( 
    'not' b) 
    "\/" a) 
    "/\" (( 
    'not' b) 
    "\/" b))) by 
    Th17
    
      .= (a
    "/\" ((( 
    'not' b) 
    "\/" a) 
    "/\" ( 
    Top L))) by 
    Th34
    
      .= (a
    "/\" (( 
    'not' b) 
    "\/" a)) by 
    WAYBEL_1: 4
    
      .= a by
    LATTICE3: 18;
    
    end;
    
    theorem :: 
    
    YELLOW_5:53
    
    (a
    \ (b 
    \ c)) 
    = ((a 
    \ b) 
    "\/" (a 
    "/\" c)) 
    
    proof
    
      
    
      thus (a
    \ (b 
    \ c)) 
    = (a 
    "/\" (( 
    'not' b) 
    "\/" ( 
    'not' ( 
    'not' c)))) by 
    Th36
    
      .= (a
    "/\" (( 
    'not' b) 
    "\/" c)) by 
    WAYBEL_1: 87
    
      .= ((a
    \ b) 
    "\/" (a 
    "/\" c)) by 
    WAYBEL_1:def 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:54
    
    (a
    \ (a 
    \ b)) 
    = (a 
    "/\" b) 
    
    proof
    
      
    
      thus (a
    \ (a 
    \ b)) 
    = (a 
    "/\" (( 
    'not' a) 
    "\/" ( 
    'not' ( 
    'not' b)))) by 
    Th36
    
      .= (a
    "/\" (( 
    'not' a) 
    "\/" b)) by 
    WAYBEL_1: 87
    
      .= ((a
    "/\" ( 
    'not' a)) 
    "\/" (a 
    "/\" b)) by 
    WAYBEL_1:def 3
    
      .= ((
    Bottom L) 
    "\/" (a 
    "/\" b)) by 
    Th34
    
      .= (a
    "/\" b) by 
    WAYBEL_1: 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:55
    
    ((a
    "\/" b) 
    \ b) 
    = (a 
    \ b) 
    
    proof
    
      
    
      thus ((a
    "\/" b) 
    \ b) 
    = ((a 
    "\/" b) 
    "/\" ( 
    'not' b)) 
    
      .= ((a
    "/\" ( 
    'not' b)) 
    "\/" (b 
    "/\" ( 
    'not' b))) by 
    WAYBEL_1:def 3
    
      .= ((a
    "/\" ( 
    'not' b)) 
    "\/" ( 
    Bottom L)) by 
    Th34
    
      .= (a
    \ b) by 
    WAYBEL_1: 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:56
    
    (a
    "/\" b) 
    = ( 
    Bottom L) iff (a 
    \ b) 
    = a 
    
    proof
    
      thus (a
    "/\" b) 
    = ( 
    Bottom L) implies (a 
    \ b) 
    = a 
    
      proof
    
        assume (a
    "/\" b) 
    = ( 
    Bottom L); 
    
        then a
    <= ( 
    'not' b) by 
    WAYBEL_1: 82;
    
        then (a
    "/\" a) 
    <= (a 
    "/\" ( 
    'not' b)) by 
    Th6;
    
        then
    
        
    
    A1: a 
    <= (a 
    "/\" ( 
    'not' b)) by 
    Th2;
    
        (a
    \ b) 
    <= a by 
    YELLOW_0: 23;
    
        hence thesis by
    A1,
    YELLOW_0:def 3;
    
      end;
    
      thus (a
    \ b) 
    = a implies (a 
    "/\" b) 
    = ( 
    Bottom L) 
    
      proof
    
        assume (a
    \ b) 
    = a; 
    
        then ((
    'not' a) 
    "\/" ( 
    'not' ( 
    'not' b))) 
    = ( 
    'not' a) by 
    Th36;
    
        then (a
    "/\" (( 
    'not' a) 
    "\/" b)) 
    <= (a 
    "/\" ( 
    'not' a)) by 
    WAYBEL_1: 87;
    
        then ((a
    "/\" ( 
    'not' a)) 
    "\/" (a 
    "/\" b)) 
    <= (a 
    "/\" ( 
    'not' a)) by 
    WAYBEL_1:def 3;
    
        then ((
    Bottom L) 
    "\/" (a 
    "/\" b)) 
    <= (a 
    "/\" ( 
    'not' a)) by 
    Th34;
    
        then ((
    Bottom L) 
    "\/" (a 
    "/\" b)) 
    <= ( 
    Bottom L) by 
    Th34;
    
        then
    
        
    
    A2: (a 
    "/\" b) 
    <= ( 
    Bottom L) by 
    WAYBEL_1: 3;
    
        (
    Bottom L) 
    <= (a 
    "/\" b) by 
    YELLOW_0: 44;
    
        hence thesis by
    A2,
    YELLOW_0:def 3;
    
      end;
    
    end;
    
    theorem :: 
    
    YELLOW_5:57
    
    (a
    \ (b 
    "\/" c)) 
    = ((a 
    \ b) 
    "/\" (a 
    \ c)) 
    
    proof
    
      
    
      thus (a
    \ (b 
    "\/" c)) 
    = (a 
    "/\" (( 
    'not' b) 
    "/\" ( 
    'not' c))) by 
    Th36
    
      .= ((a
    "/\" a) 
    "/\" (( 
    'not' b) 
    "/\" ( 
    'not' c))) by 
    Th2
    
      .= (((a
    "/\" a) 
    "/\" ( 
    'not' b)) 
    "/\" ( 
    'not' c)) by 
    LATTICE3: 16
    
      .= ((a
    "/\" (a 
    "/\" ( 
    'not' b))) 
    "/\" ( 
    'not' c)) by 
    LATTICE3: 16
    
      .= ((a
    \ b) 
    "/\" (a 
    \ c)) by 
    LATTICE3: 16;
    
    end;
    
    theorem :: 
    
    YELLOW_5:58
    
    (a
    \ (b 
    "/\" c)) 
    = ((a 
    \ b) 
    "\/" (a 
    \ c)) 
    
    proof
    
      
    
      thus (a
    \ (b 
    "/\" c)) 
    = (a 
    "/\" (( 
    'not' b) 
    "\/" ( 
    'not' c))) by 
    Th36
    
      .= ((a
    \ b) 
    "\/" (a 
    \ c)) by 
    WAYBEL_1:def 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:59
    
    (a
    "/\" (b 
    \ c)) 
    = ((a 
    "/\" b) 
    \ (a 
    "/\" c)) 
    
    proof
    
      
    
      thus ((a
    "/\" b) 
    \ (a 
    "/\" c)) 
    = ((a 
    "/\" b) 
    "/\" (( 
    'not' a) 
    "\/" ( 
    'not' c))) by 
    Th36
    
      .= (((a
    "/\" b) 
    "/\" ( 
    'not' a)) 
    "\/" ((a 
    "/\" b) 
    "/\" ( 
    'not' c))) by 
    WAYBEL_1:def 3
    
      .= (((a
    "/\" ( 
    'not' a)) 
    "/\" b) 
    "\/" ((a 
    "/\" b) 
    "/\" ( 
    'not' c))) by 
    LATTICE3: 16
    
      .= (((
    Bottom L) 
    "/\" b) 
    "\/" ((a 
    "/\" b) 
    "/\" ( 
    'not' c))) by 
    Th34
    
      .= ((
    Bottom L) 
    "\/" ((a 
    "/\" b) 
    "/\" ( 
    'not' c))) by 
    WAYBEL_1: 3
    
      .= ((a
    "/\" b) 
    "/\" ( 
    'not' c)) by 
    WAYBEL_1: 3
    
      .= (a
    "/\" (b 
    \ c)) by 
    LATTICE3: 16;
    
    end;
    
    theorem :: 
    
    YELLOW_5:60
    
    ((a
    "\/" b) 
    \ (a 
    "/\" b)) 
    = ((a 
    \ b) 
    "\/" (b 
    \ a)) 
    
    proof
    
      
    
      thus ((a
    "\/" b) 
    \ (a 
    "/\" b)) 
    = ((a 
    "\/" b) 
    "/\" (( 
    'not' a) 
    "\/" ( 
    'not' b))) by 
    Th36
    
      .= (((a
    "\/" b) 
    "/\" ( 
    'not' a)) 
    "\/" ((a 
    "\/" b) 
    "/\" ( 
    'not' b))) by 
    WAYBEL_1:def 3
    
      .= (((a
    "/\" ( 
    'not' a)) 
    "\/" (b 
    "/\" ( 
    'not' a))) 
    "\/" ((a 
    "\/" b) 
    "/\" ( 
    'not' b))) by 
    WAYBEL_1:def 3
    
      .= (((
    Bottom L) 
    "\/" (b 
    "/\" ( 
    'not' a))) 
    "\/" ((a 
    "\/" b) 
    "/\" ( 
    'not' b))) by 
    Th34
    
      .= ((b
    \ a) 
    "\/" ((a 
    "\/" b) 
    "/\" ( 
    'not' b))) by 
    WAYBEL_1: 3
    
      .= ((b
    \ a) 
    "\/" ((a 
    "/\" ( 
    'not' b)) 
    "\/" (b 
    "/\" ( 
    'not' b)))) by 
    WAYBEL_1:def 3
    
      .= ((b
    \ a) 
    "\/" ((a 
    "/\" ( 
    'not' b)) 
    "\/" ( 
    Bottom L))) by 
    Th34
    
      .= ((a
    \ b) 
    "\/" (b 
    \ a)) by 
    WAYBEL_1: 3;
    
    end;
    
    theorem :: 
    
    YELLOW_5:61
    
    ((a
    \ b) 
    \ c) 
    = (a 
    \ (b 
    "\/" c)) 
    
    proof
    
      
    
      thus ((a
    \ b) 
    \ c) 
    = (a 
    "/\" (( 
    'not' b) 
    "/\" ( 
    'not' c))) by 
    LATTICE3: 16
    
      .= (a
    \ (b 
    "\/" c)) by 
    Th36;
    
    end;
    
    theorem :: 
    
    YELLOW_5:62
    
    
    
    
    
    Th62: ( 
    'not' ( 
    Bottom L)) 
    = ( 
    Top L) 
    
    proof
    
      ((
    Bottom L) 
    "/\" ( 
    Top L)) 
    = ( 
    Bottom L) & (( 
    Bottom L) 
    "\/" ( 
    Top L)) 
    = ( 
    Top L) by 
    WAYBEL_1: 3;
    
      then (
    Top L) 
    is_a_complement_of ( 
    Bottom L) by 
    WAYBEL_1:def 23;
    
      hence thesis by
    Th11;
    
    end;
    
    theorem :: 
    
    YELLOW_5:63
    
    (
    'not' ( 
    Top L)) 
    = ( 
    Bottom L) 
    
    proof
    
      ((
    Bottom L) 
    "/\" ( 
    Top L)) 
    = ( 
    Bottom L) & (( 
    Bottom L) 
    "\/" ( 
    Top L)) 
    = ( 
    Top L) by 
    WAYBEL_1: 3;
    
      then (
    Bottom L) 
    is_a_complement_of ( 
    Top L) by 
    WAYBEL_1:def 23;
    
      hence thesis by
    Th11;
    
    end;
    
    theorem :: 
    
    YELLOW_5:64
    
    (a
    \ a) 
    = ( 
    Bottom L) by 
    Th34;
    
    theorem :: 
    
    YELLOW_5:65
    
    (a
    \ ( 
    Bottom L)) 
    = a 
    
    proof
    
      
    
      thus (a
    \ ( 
    Bottom L)) 
    = (a 
    "/\" ( 
    Top L)) by 
    Th62
    
      .= a by
    WAYBEL_1: 4;
    
    end;
    
    theorem :: 
    
    YELLOW_5:66
    
    (
    'not' (a 
    \ b)) 
    = (( 
    'not' a) 
    "\/" b) 
    
    proof
    
      
    
      thus (
    'not' (a 
    \ b)) 
    = (( 
    'not' a) 
    "\/" ( 
    'not' ( 
    'not' b))) by 
    Th36
    
      .= ((
    'not' a) 
    "\/" b) by 
    WAYBEL_1: 87;
    
    end;
    
    theorem :: 
    
    YELLOW_5:67
    
    (a
    "/\" b) 
    misses (a 
    \ b) 
    
    proof
    
      ((a
    "/\" b) 
    "/\" (a 
    \ b)) 
    = (((a 
    "/\" b) 
    "/\" ( 
    'not' b)) 
    "/\" a) by 
    LATTICE3: 16
    
      .= ((a
    "/\" (b 
    "/\" ( 
    'not' b))) 
    "/\" a) by 
    LATTICE3: 16
    
      .= ((a
    "/\" ( 
    Bottom L)) 
    "/\" a) by 
    Th34
    
      .= ((
    Bottom L) 
    "/\" a) by 
    WAYBEL_1: 3
    
      .= (
    Bottom L) by 
    WAYBEL_1: 3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    YELLOW_5:68
    
    (a
    \ b) 
    misses b 
    
    proof
    
      ((a
    \ b) 
    "/\" b) 
    = (a 
    "/\" (( 
    'not' b) 
    "/\" b)) by 
    LATTICE3: 16
    
      .= (a
    "/\" ( 
    Bottom L)) by 
    Th34
    
      .= (
    Bottom L) by 
    WAYBEL_1: 3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    YELLOW_5:69
    
    a
    misses b implies ((a 
    "\/" b) 
    \ b) 
    = a 
    
    proof
    
      assume a
    misses b; 
    
      then (a
    "/\" b) 
    = ( 
    Bottom L); 
    
      then ((a
    "\/" ( 
    'not' b)) 
    "/\" (b 
    "\/" ( 
    'not' b))) 
    <= (( 
    Bottom L) 
    "\/" ( 
    'not' b)) by 
    Th17;
    
      then ((a
    "\/" ( 
    'not' b)) 
    "/\" (b 
    "\/" ( 
    'not' b))) 
    <= ( 
    'not' b) by 
    WAYBEL_1: 3;
    
      then ((a
    "\/" ( 
    'not' b)) 
    "/\" ( 
    Top L)) 
    <= ( 
    'not' b) by 
    Th34;
    
      then
    
      
    
    A1: (a 
    "\/" ( 
    'not' b)) 
    <= ( 
    'not' b) by 
    WAYBEL_1: 4;
    
      (
    'not' b) 
    <= (a 
    "\/" ( 
    'not' b)) by 
    YELLOW_0: 22;
    
      then (a
    "\/" ( 
    'not' b)) 
    = ( 
    'not' b) by 
    A1,
    YELLOW_0:def 3;
    
      then
    
      
    
    A2: a 
    <= ( 
    'not' b) by 
    YELLOW_0: 22;
    
      ((a
    "\/" b) 
    \ b) 
    = ((a 
    "\/" b) 
    "/\" ( 
    'not' b)) 
    
      .= ((a
    "/\" ( 
    'not' b)) 
    "\/" (b 
    "/\" ( 
    'not' b))) by 
    WAYBEL_1:def 3
    
      .= ((a
    "/\" ( 
    'not' b)) 
    "\/" ( 
    Bottom L)) by 
    Th34
    
      .= (a
    "/\" ( 
    'not' b)) by 
    WAYBEL_1: 3
    
      .= a by
    A2,
    Th10;
    
      hence thesis;
    
    end;