bor_cant.miz



    begin

    reserve Omega for non empty set,

Sigma for SigmaField of Omega,

Prob for Probability of Sigma,

A for SetSequence of Sigma,

n,n1,n2 for Nat;

    definition

      let D be set;

      let x,y be ExtReal, a,b be Element of D;

      :: original: IFGT

      redefine

      func IFGT (x,y,a,b) -> Element of D ;

      coherence by XXREAL_0:def 11;

    end

    theorem :: BOR_CANT:1

    

     Th1: for k be Element of NAT , x be Element of REAL st k is odd & x > 0 & x <= 1 holds (((( - x) rExpSeq ) . (k + 1)) + ((( - x) rExpSeq ) . (k + 2))) >= 0

    proof

      let k be Element of NAT , x be Element of REAL ;

      assume that

       A1: k is odd and

       A2: x > 0 and

       A3: x <= 1;

      consider m be Nat such that

       A4: k = ((2 * m) + 1) by A1, ABIAN: 9;

      set q = (m + 1);

      

       A5: (k + 2) = ((2 * q) + 1) by A4;

      consider m be Nat such that

       A6: k = ((2 * m) + 1) by A1, ABIAN: 9;

      

       A7: for k be Element of NAT st k is even holds (( - x) |^ k) > 0

      proof

        let k be Element of NAT ;

        assume k is even;

        then

        consider m be Nat such that

         A8: k = (2 * m) by ABIAN:def 2;

        defpred J2[ Nat] means (( - x) |^ (2 * $1)) > 0 ;

        

         A9: J2[ 0 ] by NEWTON: 4;

        

         A10: for k be Nat st J2[k] holds J2[(k + 1)]

        proof

          let k be Nat;

          assume

           A11: J2[k];

          (( - x) |^ (2 * (k + 1))) = (( - x) |^ ((2 * k) + 2));

          then

           A12: (( - x) |^ (2 * (k + 1))) = ((( - x) |^ (2 * k)) * (( - x) |^ 2)) by NEWTON: 8;

          (( - x) * ( - x)) > 0 by A2;

          then (( - x) |^ 2) > 0 by NEWTON: 81;

          hence thesis by A11, A12;

        end;

        for k be Nat holds J2[k] from NAT_1:sch 2( A9, A10);

        hence thesis by A8;

      end;

      

       A13: ((x |^ (k + 2)) / (( - x) |^ (k + 1))) = x

      proof

        (x |^ (k + 2)) = (x |^ ((k + 1) + 1));

        then (x |^ (k + 2)) = ((x |^ (k + 1)) * x) by NEWTON: 6;

        then (x |^ (k + 2)) = (x * (( - x) |^ (k + 1))) by A6, POWER: 1;

        then ((x |^ (k + 2)) / (( - x) |^ (k + 1))) = ((x * (( - x) |^ (k + 1))) * ((( - x) |^ (k + 1)) " )) by XCMPLX_0:def 9;

        then

         A15: ((x |^ (k + 2)) / (( - x) |^ (k + 1))) = (x * ((( - x) |^ (k + 1)) * ((( - x) |^ (k + 1)) " )));

        ((( - x) |^ (k + 1)) * ((( - x) |^ (k + 1)) " )) = 1

        proof

          

           A17: 1 <= ((( - x) |^ (k + 1)) / (( - x) |^ (k + 1))) by A6, A7, XREAL_1: 181;

           0 < (( - x) |^ (k + 1)) by A6, A7;

          then

           A18: ((( - x) |^ (k + 1)) / (( - x) |^ (k + 1))) <= 1 by XREAL_1: 185;

          ((( - x) |^ (k + 1)) / (( - x) |^ (k + 1))) = 1 by A17, A18, XXREAL_0: 1;

          hence thesis by XCMPLX_0:def 9;

        end;

        hence thesis by A15;

      end;

      

       A19: 1 <= (((k + 2) ! ) / ((k + 1) ! ))

      proof

        ((k + 2) ! ) = (((k + 1) + 1) * ((k + 1) ! )) by NEWTON: 15;

        then

         A20: (((k + 2) ! ) * (((k + 1) ! ) " )) = (((k + 1) + 1) * (((k + 1) ! ) * (((k + 1) ! ) " )));

        

         A21: 1 <= (((k + 1) ! ) / ((k + 1) ! )) by XREAL_1: 181;

        (((k + 1) ! ) / ((k + 1) ! )) <= 1 by XREAL_1: 183;

        then (((k + 1) ! ) / ((k + 1) ! )) = 1 by A21, XXREAL_0: 1;

        then (((k + 2) ! ) * (((k + 1) ! ) " )) = (((k + 1) + 1) * 1) by A20, XCMPLX_0:def 9;

        then (((k + 2) ! ) * (((k + 1) ! ) " )) >= 1 by NAT_1: 11;

        hence thesis by XCMPLX_0:def 9;

      end;

      ((x |^ (k + 2)) / (( - x) |^ (k + 1))) <= (((k + 2) ! ) / ((k + 1) ! )) implies (((( - x) rExpSeq ) . (k + 1)) + ((( - x) rExpSeq ) . (k + 2))) >= 0

      proof

        assume ((x |^ (k + 2)) / (( - x) |^ (k + 1))) <= (((k + 2) ! ) / ((k + 1) ! ));

        then ((x |^ (k + 2)) * ((( - x) |^ (k + 1)) " )) <= (((k + 2) ! ) / ((k + 1) ! )) by XCMPLX_0:def 9;

        then

         A24: ((x |^ (k + 2)) * ((( - x) |^ (k + 1)) " )) <= ((((k + 1) ! ) " ) * ((k + 2) ! )) by XCMPLX_0:def 9;

        (( - x) |^ (k + 1)) > 0 by A6, A7;

        then

         A25: ((x |^ (k + 2)) / ((k + 2) ! )) <= ((((k + 1) ! ) " ) / ((( - x) |^ (k + 1)) " )) by A24, XREAL_1: 102;

        

         A26: ((((k + 1) ! ) " ) * 1) = (1 / ((k + 1) ! )) by XCMPLX_0:def 9;

        ((((k + 1) ! ) " ) / ((( - x) |^ (k + 1)) " )) = ((1 / ((k + 1) ! )) * (((( - x) |^ (k + 1)) " ) " )) & (1 * (((k + 1) ! ) " )) = (1 / ((k + 1) ! )) by A26, XCMPLX_0:def 9;

        then

         A27: ((((k + 1) ! ) " ) / ((( - x) |^ (k + 1)) " )) = ((( - x) |^ (k + 1)) / ((k + 1) ! )) by XCMPLX_0:def 9;

        ((x rExpSeq ) . (k + 2)) <= ((( - x) |^ (k + 1)) / ((k + 1) ! )) by A25, A27, SIN_COS:def 5;

        then ((x rExpSeq ) . (k + 2)) <= ((( - x) rExpSeq ) . (k + 1)) by SIN_COS:def 5;

        then (((x rExpSeq ) . (k + 2)) - ((( - x) rExpSeq ) . (k + 1))) <= (((( - x) rExpSeq ) . (k + 1)) - ((( - x) rExpSeq ) . (k + 1))) by XREAL_1: 9;

        then

         A28: (((x rExpSeq ) . (k + 2)) - ((( - x) rExpSeq ) . (k + 1))) <= 0 & ( - (((x rExpSeq ) . (k + 2)) - ((( - x) rExpSeq ) . (k + 1)))) >= 0 ;

        ( - ((x rExpSeq ) . (k + 2))) = ((( - x) rExpSeq ) . (k + 2))

        proof

          defpred J3[ Nat] means ( - (x |^ ((2 * $1) + 1))) = (( - x) |^ ((2 * $1) + 1));

          

           A30: J3[ 0 ];

          

           A31: for k be Nat st J3[k] holds J3[(k + 1)]

          proof

            let k be Nat;

            assume

             A32: J3[k];

            ( - (x |^ ((2 * (k + 1)) + 1))) = ( - ((x |^ (((2 * k) + 1) + 1)) * x)) by NEWTON: 6;

            then ( - (x |^ ((2 * (k + 1)) + 1))) = ( - (((x |^ ((2 * k) + 1)) * x) * x)) by NEWTON: 6;

            then ( - (x |^ ((2 * (k + 1)) + 1))) = (((( - x) |^ ((2 * k) + 1)) * ( - x)) * ( - x)) by A32;

            then ( - (x |^ ((2 * (k + 1)) + 1))) = ((( - x) |^ (((2 * k) + 1) + 1)) * ( - x)) by NEWTON: 6;

            hence thesis by NEWTON: 6;

          end;

          

           A33: for k be Nat holds J3[k] from NAT_1:sch 2( A30, A31);

          consider m be Element of NAT such that

           A34: (k + 2) = ((2 * m) + 1) by A5;

          

           A35: ( - (x |^ (k + 2))) = (( - x) |^ (k + 2)) by A33, A34;

          ( - ((x rExpSeq ) . (k + 2))) = ( - ((x |^ (k + 2)) / ((k + 2) ! ))) by SIN_COS:def 5;

          then ( - ((x rExpSeq ) . (k + 2))) = ( - ((x |^ (k + 2)) * (((k + 2) ! ) " ))) by XCMPLX_0:def 9;

          then ( - ((x rExpSeq ) . (k + 2))) = (( - (x |^ (k + 2))) * (((k + 2) ! ) " ));

          then ( - ((x rExpSeq ) . (k + 2))) = (( - (x |^ (k + 2))) / ((k + 2) ! )) by XCMPLX_0:def 9;

          hence thesis by A35, SIN_COS:def 5;

        end;

        hence thesis by A28;

      end;

      hence thesis by A3, A19, A13, XXREAL_0: 2;

    end;

    theorem :: BOR_CANT:2

    

     Th2: for x be Element of REAL holds (1 + x) <= ( exp_R . x)

    proof

      let x be Element of REAL ;

      per cases ;

        suppose

         A1: x > 0 ;

        reconsider 1x = (1 + x) as Element of REAL by XREAL_0:def 1;

        set B2 = ( NAT --> 1x);

        

         A2: for n be Nat st x > 0 holds (B2 . n) <= (( Partial_Sums (x rExpSeq )) . (n + 1))

        proof

          let n be Nat;

          defpred J[ Nat] means (B2 . $1) <= (( Partial_Sums (x rExpSeq )) . (1 + $1));

          (( Partial_Sums (x rExpSeq )) . 1) = ((( Partial_Sums (x rExpSeq )) . 0 ) + ((x rExpSeq ) . ( 0 + 1))) by SERIES_1:def 1;

          then

           A3: (( Partial_Sums (x rExpSeq )) . 1) = (((x rExpSeq ) . 0 ) + ((x rExpSeq ) . 1)) by SERIES_1:def 1;

          

           A4: ((x rExpSeq ) . 0 ) = ((x |^ 0 ) / ( 0 ! )) by SIN_COS:def 5

          .= 1 by NEWTON: 4, NEWTON: 12;

          ((x rExpSeq ) . 1) = ((x |^ 1) / (1 ! )) by SIN_COS:def 5;

          then

           A5: J[ 0 ] by A4, A3, NEWTON: 13;

          

           A6: for k be Nat st J[k] holds J[(k + 1)]

          proof

            let k be Nat;

            assume

             A7: J[k];

            

             A8: (( Partial_Sums (x rExpSeq )) . (1 + (k + 1))) = ((( Partial_Sums (x rExpSeq )) . (k + 1)) + ((x rExpSeq ) . ((k + 1) + 1))) by SERIES_1:def 1;

            

             A9: ((x rExpSeq ) . ((k + 1) + 1)) > 0

            proof

              (x |^ ((k + 1) + 1)) > 0 & (((k + 1) + 1) ! ) > 0 by A1, NEWTON: 83;

              then ((x |^ ((k + 1) + 1)) / (((k + 1) + 1) ! )) > 0 ;

              hence thesis by SIN_COS:def 5;

            end;

            

             A10: (1 + x) <= (( Partial_Sums (x rExpSeq )) . (k + 1)) by A7, FUNCOP_1: 7, ORDINAL1:def 12;

            (( Partial_Sums (x rExpSeq )) . (k + 1)) <= (((x rExpSeq ) . ((k + 1) + 1)) + (( Partial_Sums (x rExpSeq )) . (k + 1))) by A9, XREAL_1: 31;

            hence thesis by A8, A10, XXREAL_0: 2;

          end;

          for k be Nat holds J[k] from NAT_1:sch 2( A5, A6);

          hence thesis;

        end;

        

         A11: (B2 . n) <= ((( Partial_Sums (x rExpSeq )) ^\ 1) . n)

        proof

          (B2 . n) <= (( Partial_Sums (x rExpSeq )) . (n + 1)) by A1, A2;

          hence thesis by NAT_1:def 3;

        end;

        

         A12: ( lim B2) = (B2 . 1) by SEQ_4: 26

        .= (1 + x);

        

         A13: ( Partial_Sums (x rExpSeq )) is convergent by SERIES_1:def 2, SIN_COS: 45;

        then

         A14: ( lim (( Partial_Sums (x rExpSeq )) ^\ 1)) = ( lim ( Partial_Sums (x rExpSeq ))) & (( Partial_Sums (x rExpSeq )) ^\ 1) is convergent by SEQ_4: 20;

        ( lim B2) <= ( lim (( Partial_Sums (x rExpSeq )) ^\ 1)) by A13, A11, SEQ_2: 18;

        then ( lim B2) <= ( Sum (x rExpSeq )) by A14, SERIES_1:def 3;

        hence thesis by A12, SIN_COS:def 22;

      end;

        suppose x = 0 ;

        hence thesis by SIN_COS: 51;

      end;

        suppose

         A15: x < 0 ;

        set y = ( - x);

        (1 - y) <= ( exp_R . ( - y))

        proof

          per cases ;

            suppose

             A16: y <= 1;

            for x be Element of REAL st x > 0 & x <= 1 holds (1 - x) <= ( exp_R . ( - x))

            proof

              let x be Element of REAL ;

              assume that

               A17: x > 0 and

               A18: x <= 1;

              reconsider 1x = (1 - x) as Element of REAL by XREAL_0:def 1;

              set B2 = ( NAT --> 1x);

              

               A19: for n be Nat holds (B2 . n) <= (( Partial_Sums (( - x) rExpSeq )) . (n + 1))

              proof

                let n be Nat;

                defpred J[ Nat] means (B2 . $1) <= (( Partial_Sums (( - x) rExpSeq )) . ($1 + 1));

                (( Partial_Sums (( - x) rExpSeq )) . ( 0 + 1)) = ((( Partial_Sums (( - x) rExpSeq )) . 0 ) + ((( - x) rExpSeq ) . 1)) by SERIES_1:def 1;

                then

                 A20: (( Partial_Sums (( - x) rExpSeq )) . ( 0 + 1)) = (((( - x) rExpSeq ) . 0 ) + ((( - x) rExpSeq ) . 1)) by SERIES_1:def 1;

                ((( - x) rExpSeq ) . 1) = ((( - x) |^ 1) / (1 ! )) by SIN_COS:def 5;

                then

                 A21: ((( - x) rExpSeq ) . 1) = ( - x) by NEWTON: 13;

                ((( - x) rExpSeq ) . 0 ) = ((( - x) |^ 0 ) / ( 0 ! )) by SIN_COS:def 5

                .= 1 by NEWTON: 4, NEWTON: 12;

                then

                 A22: J[ 0 ] by A21, A20;

                

                 A23: for k be Nat st J[k] holds J[(k + 1)]

                proof

                  let k be Nat;

                  assume

                   A24: J[k];

                  per cases ;

                    suppose k is even;

                    then

                    consider m be Nat such that

                     A25: k = (2 * m) by ABIAN:def 2;

                    

                     A26: (1 - x) <= (( Partial_Sums (( - x) rExpSeq )) . (k + 1)) by A24, FUNCOP_1: 7, ORDINAL1:def 12;

                    

                     A27: for k be Element of NAT st k is even & k > 0 holds for y be Real holds ((y rExpSeq ) . k) >= 0

                    proof

                      let k be Element of NAT ;

                      assume that

                       A28: k is even and

                       A29: k > 0 ;

                      let y be Real;

                      per cases ;

                        suppose y > 0 ;

                        then (y |^ k) > 0 by NEWTON: 83;

                        then ((y |^ k) / (k ! )) > 0 ;

                        hence thesis by SIN_COS:def 5;

                      end;

                        suppose y = 0 ;

                        then (y |^ k) = 0 by A29, NEWTON: 84;

                        then ((y |^ k) / (k ! )) = 0 ;

                        hence thesis by SIN_COS:def 5;

                      end;

                        suppose

                         A31: y < 0 ;

                        consider m be Nat such that

                         A32: k = (2 * m) by A28, ABIAN:def 2;

                        (y |^ k) = (y |^ (m + m)) by A32;

                        then (y |^ k) = ((y |^ m) * (y |^ m)) by NEWTON: 8;

                        then (y |^ k) = ((y * y) |^ m) by NEWTON: 7;

                        then (y |^ k) >= 0 by A31, NEWTON: 83;

                        then ((y |^ k) / (k ! )) >= 0 ;

                        hence thesis by SIN_COS:def 5;

                      end;

                    end;

                    ((( - x) rExpSeq ) . (k + 2)) >= 0 by A25, A27;

                    then

                     A35: (( Partial_Sums (( - x) rExpSeq )) . (k + 1)) <= ((( Partial_Sums (( - x) rExpSeq )) . (k + 1)) + ((( - x) rExpSeq ) . (k + 2))) by XREAL_1: 31;

                    (1 - x) <= ((( Partial_Sums (( - x) rExpSeq )) . (k + 1)) + ((( - x) rExpSeq ) . ((k + 1) + 1))) by A26, A35, XXREAL_0: 2;

                    hence thesis by SERIES_1:def 1;

                  end;

                    suppose k is odd;

                    then

                    consider m be Nat such that

                     A36: k = ((2 * m) + 1) by ABIAN: 9;

                    for k be Element of NAT , x be Element of REAL st k is odd & x > 0 & x <= 1 holds (1 - x) <= (( Partial_Sums (( - x) rExpSeq )) . k)

                    proof

                      let k be Element of NAT , x be Element of REAL ;

                      assume

                       A38: k is odd;

                      assume

                       A39: x > 0 ;

                      assume

                       A40: x <= 1;

                      defpred J[ Nat] means (1 - x) <= (( Partial_Sums (( - x) rExpSeq )) . ((2 * $1) + 1));

                      (( Partial_Sums (( - x) rExpSeq )) . ((2 * 0 ) + 1)) = ((( Partial_Sums (( - x) rExpSeq )) . 0 ) + ((( - x) rExpSeq ) . 1)) by SERIES_1:def 1;

                      then

                       A41: (( Partial_Sums (( - x) rExpSeq )) . ((2 * 0 ) + 1)) = (((( - x) rExpSeq ) . 0 ) + ((( - x) rExpSeq ) . 1)) by SERIES_1:def 1;

                      

                       A42: ((( - x) rExpSeq ) . 0 ) = ((( - x) |^ 0 ) / ( 0 ! )) by SIN_COS:def 5

                      .= 1 by NEWTON: 4, NEWTON: 12;

                      ((( - x) rExpSeq ) . 1) = ((( - x) |^ 1) / (1 ! )) by SIN_COS:def 5;

                      then

                       A44: J[ 0 ] by A41, A42, NEWTON: 13;

                      

                       A45: for k be Nat st J[k] holds J[(k + 1)]

                      proof

                        let k be Nat;

                        assume

                         A46: J[k];

                        (( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 1)) <= (( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 3))

                        proof

                          (( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 3)) = ((( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 2)) + ((( - x) rExpSeq ) . (((2 * k) + 2) + 1))) by SERIES_1:def 1;

                          then (( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 3)) = ((( Partial_Sums (( - x) rExpSeq )) . (((2 * k) + 1) + 1)) + ((( - x) rExpSeq ) . ((2 * k) + 3)));

                          then (( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 3)) = (((( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 1)) + ((( - x) rExpSeq ) . ((2 * k) + 2))) + ((( - x) rExpSeq ) . ((2 * k) + 3))) by SERIES_1:def 1;

                          then

                           A47: (( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 3)) = ((( Partial_Sums (( - x) rExpSeq )) . ((2 * k) + 1)) + (((( - x) rExpSeq ) . ((2 * k) + 2)) + ((( - x) rExpSeq ) . ((2 * k) + 3))));

                          (((( - x) rExpSeq ) . (((2 * k) + 1) + 1)) + ((( - x) rExpSeq ) . (((2 * k) + 1) + 2))) >= 0 by A39, A40, Th1;

                          hence thesis by A47, XREAL_1: 31;

                        end;

                        hence thesis by A46, XXREAL_0: 2;

                      end;

                      

                       A48: for k be Nat holds J[k] from NAT_1:sch 2( A44, A45);

                      consider m be Nat such that

                       A49: k = ((2 * m) + 1) by A38, ABIAN: 9;

                      thus thesis by A48, A49;

                    end;

                    hence thesis by A36, A17, A18;

                  end;

                end;

                for k be Nat holds J[k] from NAT_1:sch 2( A22, A23);

                hence thesis;

              end;

              

               A50: for n be Nat holds (B2 . n) <= ((( Partial_Sums (( - x) rExpSeq )) ^\ 1) . n)

              proof

                let n be Nat;

                (B2 . n) <= (( Partial_Sums (( - x) rExpSeq )) . (n + 1)) by A19;

                hence thesis by NAT_1:def 3;

              end;

              

               A51: ( lim B2) = (B2 . 1) by SEQ_4: 26

              .= (1 - x);

              

               A52: ( Partial_Sums (( - x) rExpSeq )) is convergent by SERIES_1:def 2, SIN_COS: 45;

              then

               A53: ( lim (( Partial_Sums (( - x) rExpSeq )) ^\ 1)) = ( lim ( Partial_Sums (( - x) rExpSeq ))) & (( Partial_Sums (( - x) rExpSeq )) ^\ 1) is convergent by SEQ_4: 20;

              ( lim B2) <= ( lim (( Partial_Sums (( - x) rExpSeq )) ^\ 1)) by A52, A50, SEQ_2: 18;

              then ( lim B2) <= ( Sum (( - x) rExpSeq )) by A53, SERIES_1:def 3;

              hence thesis by A51, SIN_COS:def 22;

            end;

            hence thesis by A15, A16;

          end;

            suppose

             A54: y > 1;

            then 0 < ( exp_R . ( - y)) by SIN_COS: 53;

            hence thesis by A54, XREAL_1: 49;

          end;

        end;

        hence thesis;

      end;

    end;

    definition

      let s be Real_Sequence;

      :: BOR_CANT:def1

      func JSum (s) -> Real_Sequence means

      : Def1: for d be Nat holds (it . d) = ( Sum (( - (s . d)) rExpSeq ));

      existence

      proof

        deffunc U( Nat) = ( In (( Sum (( - (s . $1)) rExpSeq )), REAL ));

        consider f be Real_Sequence such that

         A1: for d be Element of NAT holds (f . d) = U(d) from FUNCT_2:sch 4;

        take f;

        let d be Nat;

        d in NAT by ORDINAL1:def 12;

        then (f . d) = U(d) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let f1,f2 be Real_Sequence;

        assume that

         A2: for d be Nat holds (f1 . d) = ( Sum (( - (s . d)) rExpSeq )) and

         A3: for d be Nat holds (f2 . d) = ( Sum (( - (s . d)) rExpSeq ));

        let d be Element of NAT ;

        (f1 . d) = ( Sum (( - (s . d)) rExpSeq )) by A2;

        hence thesis by A3;

      end;

    end

    theorem :: BOR_CANT:3

    

     Th3: (( Partial_Product ( JSum (Prob * A))) . n) = ( exp_R . ( - (( Partial_Sums (Prob * A)) . n)))

    proof

      defpred J[ Nat] means ( exp_R . ( - (( Partial_Sums (Prob * A)) . $1))) = (( Partial_Product ( JSum (Prob * A))) . $1);

      

       A1: ( exp_R . ( - (( Partial_Sums (Prob * A)) . 0 ))) = ( exp_R . ( - ((Prob * A) . 0 ))) by SERIES_1:def 1;

      (( Partial_Product ( JSum (Prob * A))) . 0 ) = (( JSum (Prob * A)) . 0 ) by SERIES_3:def 1;

      then (( Partial_Product ( JSum (Prob * A))) . 0 ) = ( Sum (( - ((Prob * A) . 0 )) rExpSeq )) by Def1;

      then

       A2: J[ 0 ] by A1, SIN_COS:def 22;

      

       A3: for k be Nat st J[k] holds J[(k + 1)]

      proof

        let k be Nat;

        assume

         A4: J[k];

        (( Partial_Product ( JSum (Prob * A))) . (k + 1)) = ((( Partial_Product ( JSum (Prob * A))) . k) * (( JSum (Prob * A)) . (k + 1))) by SERIES_3:def 1;

        then

         A6: (( Partial_Product ( JSum (Prob * A))) . (k + 1)) = (( exp_R . ( - (( Partial_Sums (Prob * A)) . k))) * ( Sum (( - ((Prob * A) . (k + 1))) rExpSeq ))) by A4, Def1;

        

         A7: (( exp_R ( - (( Partial_Sums (Prob * A)) . k))) * ( exp_R ( - ((Prob * A) . (k + 1))))) = ( exp_R (( - (( Partial_Sums (Prob * A)) . k)) + ( - ((Prob * A) . (k + 1))))) by SIN_COS: 50;

        ( - ((( Partial_Sums (Prob * A)) . k) + ((Prob * A) . (k + 1)))) = ( - (( Partial_Sums (Prob * A)) . (k + 1))) by SERIES_1:def 1;

        hence thesis by A7, A6, SIN_COS:def 22;

      end;

      for k be Nat holds J[k] from NAT_1:sch 2( A2, A3);

      hence thesis;

    end;

    theorem :: BOR_CANT:4

    

     Th4: (( Partial_Product (Prob * ( Complement A))) . n) <= (( Partial_Product ( JSum (Prob * A))) . n)

    proof

      defpred J[ Nat] means (( Partial_Product (Prob * ( Complement A))) . $1) <= (( Partial_Product ( JSum (Prob * A))) . $1);

      

       A1: (( Partial_Product (Prob * ( Complement A))) . 0 ) = ((Prob * ( Complement A)) . 0 ) by SERIES_3:def 1;

      ( dom (Prob * ( Complement A))) = NAT by FUNCT_2:def 1;

      then

       A2: ((Prob * ( Complement A)) . 0 ) = (Prob . (( Complement A) . 0 )) by FUNCT_1: 12;

      

       A3: (( Partial_Product (Prob * ( Complement A))) . 0 ) = (Prob . ((A . 0 ) ` )) by A2, A1, PROB_1:def 2;

      (Prob . ((A . 0 ) ` )) = (Prob . (( [#] Sigma) \ (A . 0 ))) by SUBSET_1:def 4;

      then

       A4: (( Partial_Product (Prob * ( Complement A))) . 0 ) = (1 - (Prob . (A . 0 ))) by A3, PROB_1: 32;

      (( Partial_Product ( JSum (Prob * A))) . 0 ) = (( JSum (Prob * A)) . 0 ) by SERIES_3:def 1;

      then (( Partial_Product ( JSum (Prob * A))) . 0 ) = ( Sum (( - ((Prob * A) . 0 )) rExpSeq )) by Def1;

      then

       A5: (( Partial_Product ( JSum (Prob * A))) . 0 ) = ( exp_R . ( - ((Prob * A) . 0 ))) by SIN_COS:def 22;

      

       A6: ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

      (1 + ( - (Prob . (A . 0 )))) <= ( exp_R . ( - (Prob . (A . 0 )))) by Th2;

      then

       A7: J[ 0 ] by A4, A6, A5, FUNCT_1: 12;

      

       A8: for k be Nat st J[k] holds J[(k + 1)]

      proof

        let k be Nat;

        assume

         A9: J[k];

        (Prob . (( Complement A) . (k + 1))) = (Prob . ((A . (k + 1)) ` )) & ((A . (k + 1)) ` ) = (( [#] Sigma) \ (A . (k + 1))) by PROB_1:def 2, SUBSET_1:def 4;

        then

         A10: (Prob . (( Complement A) . (k + 1))) = (1 - (Prob . (A . (k + 1)))) by PROB_1: 32;

        

         A11: (1 + ( - (Prob . (A . (k + 1))))) <= ( exp_R . ( - (Prob . (A . (k + 1))))) by Th2;

        ( dom (Prob * ( Complement A))) = NAT by FUNCT_2:def 1;

        then

         A12: ((Prob * ( Complement A)) . (k + 1)) <= ( exp_R . ( - (Prob . (A . (k + 1))))) by A11, A10, FUNCT_1: 12;

        

         A13: (((Prob * ( Complement A)) . (k + 1)) * (( Partial_Product ( JSum (Prob * A))) . k)) <= (( exp_R . ( - (Prob . (A . (k + 1))))) * (( Partial_Product ( JSum (Prob * A))) . k))

        proof

          for n be Nat holds (( JSum (Prob * A)) . n) > 0

          proof

            let n be Nat;

            

             A14: ( exp_R . ( - ((Prob * A) . n))) > 0 by SIN_COS: 54;

            (( JSum (Prob * A)) . n) = ( Sum (( - ((Prob * A) . n)) rExpSeq )) by Def1;

            hence thesis by A14, SIN_COS:def 22;

          end;

          then (( Partial_Product ( JSum (Prob * A))) . k) > 0 by SERIES_3: 43;

          hence thesis by A12, XREAL_1: 64;

        end;

        

         A15: ((( Partial_Product (Prob * ( Complement A))) . k) * ((Prob * ( Complement A)) . (k + 1))) <= ((( Partial_Product ( JSum (Prob * A))) . k) * ((Prob * ( Complement A)) . (k + 1)))

        proof

          for n be Element of NAT holds ((Prob * ( Complement A)) . n) >= 0

          proof

            let n be Element of NAT ;

            

             A16: (Prob . (( Complement A) . n)) >= 0 by PROB_1:def 8;

            ( dom (Prob * ( Complement A))) = NAT by FUNCT_2:def 1;

            hence thesis by A16, FUNCT_1: 12;

          end;

          then ((Prob * ( Complement A)) . (k + 1)) >= 0 ;

          hence thesis by A9, XREAL_1: 64;

        end;

        ((( Partial_Product (Prob * ( Complement A))) . k) * ((Prob * ( Complement A)) . (k + 1))) <= (( exp_R . ( - (Prob . (A . (k + 1))))) * (( Partial_Product ( JSum (Prob * A))) . k)) by A15, A13, XXREAL_0: 2;

        then (( Partial_Product (Prob * ( Complement A))) . (k + 1)) <= (( exp_R . ( - (Prob . (A . (k + 1))))) * (( Partial_Product ( JSum (Prob * A))) . k)) by SERIES_3:def 1;

        then (( Partial_Product (Prob * ( Complement A))) . (k + 1)) <= (( Sum (( - (Prob . (A . (k + 1)))) rExpSeq )) * (( Partial_Product ( JSum (Prob * A))) . k)) by SIN_COS:def 22;

        then (( Partial_Product (Prob * ( Complement A))) . (k + 1)) <= (( Sum (( - (Prob . (A . (k + 1)))) rExpSeq )) * ( exp_R . ( - (( Partial_Sums (Prob * A)) . k)))) by Th3;

        then (( Partial_Product (Prob * ( Complement A))) . (k + 1)) <= (( exp_R ( - (Prob . (A . (k + 1))))) * ( exp_R ( - (( Partial_Sums (Prob * A)) . k)))) by SIN_COS:def 22;

        then

         A17: (( Partial_Product (Prob * ( Complement A))) . (k + 1)) <= ( exp_R (( - (Prob . (A . (k + 1)))) + ( - (( Partial_Sums (Prob * A)) . k)))) by SIN_COS: 50;

        ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

        then ((Prob * A) . (k + 1)) = (Prob . (A . (k + 1))) by FUNCT_1: 12;

        then (( - (Prob . (A . (k + 1)))) + ( - (( Partial_Sums (Prob * A)) . k))) = ( - (((Prob * A) . (k + 1)) + (( Partial_Sums (Prob * A)) . k)));

        then (( Partial_Product (Prob * ( Complement A))) . (k + 1)) <= ( exp_R . ( - (( Partial_Sums (Prob * A)) . (k + 1)))) by A17, SERIES_1:def 1;

        hence thesis by Th3;

      end;

      for k be Nat holds J[k] from NAT_1:sch 2( A7, A8);

      hence thesis;

    end;

    definition

      let n1,n2 be Nat;

      :: BOR_CANT:def2

      func Special_Function (n1,n2) -> sequence of NAT means

      : Def2: for n be Nat holds (it . n) = ( IFGT (n,n1,(n + n2),n));

      existence

      proof

        deffunc U( Nat) = ( In (( IFGT ($1,n1,($1 + n2),$1)), NAT ));

        consider f be sequence of NAT such that

         A1: for n be Element of NAT holds (f . n) = U(n) from FUNCT_2:sch 4;

        take f;

        let n;

        n in NAT by ORDINAL1:def 12;

        

        hence (f . n) = U(n) by A1

        .= ( IFGT (n,n1,(n + n2),n));

      end;

      uniqueness

      proof

        let s1,s2 be sequence of NAT ;

        assume that

         A2: for n be Nat holds (s1 . n) = ( IFGT (n,n1,(n + n2),n)) and

         A3: for n be Nat holds (s2 . n) = ( IFGT (n,n1,(n + n2),n));

        let n be Element of NAT ;

        (s1 . n) = ( IFGT (n,n1,(n + n2),n)) & (s2 . n) = ( IFGT (n,n1,(n + n2),n)) by A2, A3;

        hence thesis;

      end;

    end

    definition

      let k be Nat;

      :: BOR_CANT:def3

      func Special_Function2 (k) -> sequence of NAT means

      : Def3: for n be Nat holds (it . n) = (n + k);

      existence

      proof

        deffunc U( Nat) = ( In (($1 + k), NAT ));

        consider f be sequence of NAT such that

         A1: for n be Element of NAT holds (f . n) = U(n) from FUNCT_2:sch 4;

        take f;

        let n be Nat;

        n in NAT by ORDINAL1:def 12;

        then (f . n) = U(n) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let s1,s2 be sequence of NAT ;

        assume that

         A2: for n be Nat holds (s1 . n) = (n + k) and

         A3: for n be Nat holds (s2 . n) = (n + k);

        let n be Element of NAT ;

        (s1 . n) = (n + k) & (s2 . n) = (n + k) by A2, A3;

        hence thesis;

      end;

    end

    definition

      let k be Nat;

      :: BOR_CANT:def4

      func Special_Function3 (k) -> sequence of NAT means

      : Def4: for n be Nat holds (it . n) = ( IFGT (n,k, 0 ,1));

      existence

      proof

        deffunc U( Nat) = ( IFGT ($1,k, 0 ,1));

        consider f be sequence of NAT such that

         A1: for n be Element of NAT holds (f . n) = U(n) from FUNCT_2:sch 4;

        take f;

        let n be Nat;

        n in NAT by ORDINAL1:def 12;

        hence thesis by A1;

      end;

      uniqueness

      proof

        let s1,s2 be sequence of NAT ;

        assume that

         A2: for n be Nat holds (s1 . n) = ( IFGT (n,k, 0 ,1)) and

         A3: for n be Nat holds (s2 . n) = ( IFGT (n,k, 0 ,1));

        let n be Element of NAT ;

        (s1 . n) = ( IFGT (n,k, 0 ,1)) & (s2 . n) = ( IFGT (n,k, 0 ,1)) by A2, A3;

        hence thesis;

      end;

    end

    definition

      let n1,n2 be Nat;

      :: BOR_CANT:def5

      func Special_Function4 (n1,n2) -> sequence of NAT means

      : Def5: for n be Nat holds (it . n) = ( IFGT (n,(n1 + 1),(n + n2),n));

      existence

      proof

        deffunc U( Nat) = ( In (( IFGT ($1,(n1 + 1),($1 + n2),$1)), NAT ));

        consider f be sequence of NAT such that

         A1: for n be Element of NAT holds (f . n) = U(n) from FUNCT_2:sch 4;

        take f;

        let n be Nat;

        n in NAT by ORDINAL1:def 12;

        then (f . n) = U(n) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let s1,s2 be sequence of NAT ;

        assume that

         A2: for n be Nat holds (s1 . n) = ( IFGT (n,(n1 + 1),(n + n2),n)) and

         A3: for n be Nat holds (s2 . n) = ( IFGT (n,(n1 + 1),(n + n2),n));

        let n be Element of NAT ;

        (s1 . n) = ( IFGT (n,(n1 + 1),(n + n2),n)) & (s2 . n) = ( IFGT (n,(n1 + 1),(n + n2),n)) by A2, A3;

        hence thesis;

      end;

    end

    registration

      let n1,n2 be Nat;

      cluster ( Special_Function (n1,n2)) -> one-to-one;

      coherence

      proof

        let x1,x2 be object;

        assume that

         A1: x1 in ( dom ( Special_Function (n1,n2))) and

         A2: x2 in ( dom ( Special_Function (n1,n2)));

        assume

         A3: (( Special_Function (n1,n2)) . x1) = (( Special_Function (n1,n2)) . x2);

        reconsider x1 as Element of NAT by A1;

        reconsider x2 as Element of NAT by A2;

        

         A4: (( Special_Function (n1,n2)) . x2) = ( IFGT (x2,n1,(x2 + n2),x2)) & (( Special_Function (n1,n2)) . x1) = ( IFGT (x1,n1,(x1 + n2),x1)) by Def2;

        per cases ;

          suppose x1 <= n1 & x2 <= n1;

          then ( IFGT (x2,n1,(x2 + n2),x2)) = x2 & ( IFGT (x1,n1,(x1 + n2),x1)) = x1 by XXREAL_0:def 11;

          hence thesis by A4, A3;

        end;

          suppose

           A6: x1 <= n1 & x2 > n1;

          then ( IFGT (x2,n1,(x2 + n2),x2)) = (x2 + n2) by XXREAL_0:def 11;

          then

           A7: (( Special_Function (n1,n2)) . x2) = (x2 + n2) by Def2;

          ( IFGT (x1,n1,(x1 + n2),x1)) = x1 by A6, XXREAL_0:def 11;

          then

           A9: (( Special_Function (n1,n2)) . x1) = x1 by Def2;

          x1 <> x2 implies (( Special_Function (n1,n2)) . x1) <> (( Special_Function (n1,n2)) . x2)

          proof

            assume x1 <> x2;

            x1 < x2 & 0 <= n2 by A6, XXREAL_0: 2;

            hence thesis by A9, A7, XREAL_1: 31;

          end;

          hence thesis by A3;

        end;

          suppose

           A10: x2 <= n1 & x1 > n1;

          (( Special_Function (n1,n2)) . x1) = ( IFGT (x1,n1,(x1 + n2),x1)) by Def2;

          then

           A12: (( Special_Function (n1,n2)) . x1) = (x1 + n2) by A10, XXREAL_0:def 11;

          (( Special_Function (n1,n2)) . x2) = ( IFGT (x2,n1,(x2 + n2),x2)) by Def2;

          then

           A14: (( Special_Function (n1,n2)) . x2) = x2 by A10, XXREAL_0:def 11;

          x2 <> x1 implies (( Special_Function (n1,n2)) . x2) <> (( Special_Function (n1,n2)) . x1)

          proof

            assume x2 <> x1;

            x2 < x1 & 0 <= n2 by A10, XXREAL_0: 2;

            hence thesis by A14, A12, XREAL_1: 31;

          end;

          hence thesis by A3;

        end;

          suppose

           A15: x1 > n1 & x2 > n1;

          ( IFGT (x2,n1,(x2 + n2),x2)) = (x2 + n2) & ( IFGT (x1,n1,(x1 + n2),x1)) = (x1 + n2) by A15, XXREAL_0:def 11;

          then (x2 + n2) = (x1 + n2) by A4, A3;

          hence thesis;

        end;

      end;

      cluster ( Special_Function4 (n1,n2)) -> one-to-one;

      coherence

      proof

        let x1,x2 be object;

        assume that

         A16: x1 in ( dom ( Special_Function4 (n1,n2))) and

         A17: x2 in ( dom ( Special_Function4 (n1,n2)));

        assume

         A18: (( Special_Function4 (n1,n2)) . x1) = (( Special_Function4 (n1,n2)) . x2);

        reconsider x1 as Element of NAT by A16;

        reconsider x2 as Element of NAT by A17;

        per cases ;

          suppose

           A19: x1 <= (n1 + 1) & x2 <= (n1 + 1);

          

           A20: (( Special_Function4 (n1,n2)) . x2) = ( IFGT (x2,(n1 + 1),(x2 + n2),x2)) & (( Special_Function4 (n1,n2)) . x1) = ( IFGT (x1,(n1 + 1),(x1 + n2),x1)) by Def5;

          ( IFGT (x2,(n1 + 1),(x2 + n2),x2)) = x2 & ( IFGT (x1,(n1 + 1),(x1 + n2),x1)) = x1 by A19, XXREAL_0:def 11;

          hence thesis by A20, A18;

        end;

          suppose

           A21: x1 > (n1 + 1) & x2 <= (n1 + 1);

          (( Special_Function4 (n1,n2)) . x2) = ( IFGT (x2,(n1 + 1),(x2 + n2),x2)) & (( Special_Function4 (n1,n2)) . x1) = ( IFGT (x1,(n1 + 1),(x1 + n2),x1)) by Def5;

          then

           A23: (( Special_Function4 (n1,n2)) . x2) = x2 & (( Special_Function4 (n1,n2)) . x1) = (x1 + n2) by A21, XXREAL_0:def 11;

          x1 <> x2 implies (( Special_Function4 (n1,n2)) . x2) <> (( Special_Function4 (n1,n2)) . x1)

          proof

            assume x1 <> x2;

            (( Special_Function4 (n1,n2)) . x1) > ((n1 + 1) + n2) & ((n1 + 1) + n2) >= (n1 + 1) by A23, A21, XREAL_1: 6, XREAL_1: 31;

            hence thesis by A21, A23, XXREAL_0: 2;

          end;

          hence thesis by A18;

        end;

          suppose

           A24: x1 <= (n1 + 1) & x2 > (n1 + 1);

          then

           A25: (( Special_Function4 (n1,n2)) . x2) = ( IFGT (x2,(n1 + 1),(x2 + n2),x2)) & (( Special_Function4 (n1,n2)) . x1) = ( IFGT (x1,(n1 + 1),(x1 + n2),x1)) & ( IFGT (x2,(n1 + 1),(x2 + n2),x2)) = (x2 + n2) & ( IFGT (x1,(n1 + 1),(x1 + n2),x1)) = x1 by Def5, XXREAL_0:def 11;

          x1 <> x2 implies ((( Special_Function4 (n1,n2)) . x2) <> (( Special_Function4 (n1,n2)) . x1))

          proof

            assume x1 <> x2;

            (( Special_Function4 (n1,n2)) . x2) > ((n1 + 1) + n2) & ((n1 + 1) + n2) >= (n1 + 1) by A25, A24, XREAL_1: 6, XREAL_1: 31;

            hence thesis by A24, A25, XXREAL_0: 2;

          end;

          hence thesis by A18;

        end;

          suppose

           A26: x1 > (n1 + 1) & x2 > (n1 + 1);

          

           A27: (( Special_Function4 (n1,n2)) . x2) = ( IFGT (x2,(n1 + 1),(x2 + n2),x2)) & (( Special_Function4 (n1,n2)) . x1) = ( IFGT (x1,(n1 + 1),(x1 + n2),x1)) by Def5;

          ( IFGT (x2,(n1 + 1),(x2 + n2),x2)) = (x2 + n2) & ( IFGT (x1,(n1 + 1),(x1 + n2),x1)) = (x1 + n2) by A26, XXREAL_0:def 11;

          then (x1 + n2) = (x2 + n2) by A27, A18;

          hence thesis;

        end;

      end;

    end

    registration

      let n be Nat;

      cluster ( Special_Function2 n) -> one-to-one;

      coherence

      proof

        let x1,x2 be object;

        assume that

         A1: x1 in ( dom ( Special_Function2 n)) and

         A2: x2 in ( dom ( Special_Function2 n));

        assume

         A3: (( Special_Function2 n) . x1) = (( Special_Function2 n) . x2);

        reconsider x1 as Element of NAT by A1;

        reconsider x2 as Element of NAT by A2;

        (( Special_Function2 n) . x2) = (x2 + n) by Def3;

        then (x1 + n) = (x2 + n) by A3, Def3;

        hence thesis;

      end;

    end

    registration

      let Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let s be Nat;

      let A be SetSequence of Sigma;

      cluster (A ^\ s) -> Sigma -valued;

      coherence ;

    end

    theorem :: BOR_CANT:5

    

     Th5: (for A,B be SetSequence of Sigma st n > n1 & B = (A * ( Special_Function (n1,n2))) holds (( Partial_Product (Prob * B)) . n) = ((( Partial_Product (Prob * A)) . n1) * (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . ((n - n1) - 1)))) & (for A,B,C be SetSequence of Sigma, e be sequence of NAT st n > n1 & C = (A * e) & B = (C * ( Special_Function (n1,n2))) holds (( Partial_Intersection B) . n) = ((( Partial_Intersection C) . n1) /\ (( Partial_Intersection (C ^\ ((n1 + n2) + 1))) . ((n - n1) - 1))))

    proof

      

       A1: for A,B be SetSequence of Sigma st n > n1 & B = (A * ( Special_Function (n1,n2))) holds (( Partial_Product (Prob * B)) . n) = ((( Partial_Product (Prob * A)) . n1) * (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . ((n - n1) - 1)))

      proof

        let A,B be SetSequence of Sigma;

        assume that

         A2: n > n1 and

         A3: B = (A * ( Special_Function (n1,n2)));

        

         A4: for q be Element of NAT st q <= n1 holds (( Partial_Product (Prob * B)) . q) = (( Partial_Product (Prob * A)) . q)

        proof

          let q be Element of NAT ;

          assume

           A5: q <= n1;

          defpred J[ Nat] means (( Partial_Product (Prob * B)) . ($1 * (( Special_Function3 n1) . $1))) = (( Partial_Product (Prob * A)) . ($1 * (( Special_Function3 n1) . $1)));

          

           A6: J[ 0 ]

          proof

            

             A7: (( Partial_Product (Prob * B)) . 0 ) = ((Prob * B) . 0 ) by SERIES_3:def 1;

            

             A8: (( Partial_Product (Prob * A)) . 0 ) = ((Prob * A) . 0 ) by SERIES_3:def 1;

            ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

            then

             A9: ((Prob * B) . 0 ) = (Prob . (B . 0 )) by FUNCT_1: 12;

            

             A10: ( dom (A * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

            (( Special_Function (n1,n2)) . 0 ) = ( IFGT ( 0 ,n1,( 0 + n2), 0 )) & ( IFGT ( 0 ,n1,( 0 + n2), 0 )) = 0 by Def2, XXREAL_0:def 11;

            then

             A11: ((Prob * B) . 0 ) = (Prob . (A . 0 )) by A10, A3, A9, FUNCT_1: 12;

            ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

            hence thesis by A11, A7, A8, FUNCT_1: 12;

          end;

          

           A12: for k be Nat st J[k] holds J[(k + 1)]

          proof

            let k be Nat;

            assume

             A13: J[k];

            per cases ;

              suppose

               A14: k < n1;

              then

               A15: (( Special_Function3 n1) . k) = ( IFGT (k,n1, 0 ,1)) & ( IFGT (k,n1, 0 ,1)) = 1 by Def4, XXREAL_0:def 11;

              

               V: (k + 1) <= n1 by A14, NAT_1: 13;

              then

               A16: (( Special_Function3 n1) . (k + 1)) = ( IFGT ((k + 1),n1, 0 ,1)) & ( IFGT ((k + 1),n1, 0 ,1)) = 1 by Def4, XXREAL_0:def 11;

              

               A17: ((Prob * B) . (k + 1)) = ((Prob * A) . (k + 1))

              proof

                ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

                then

                 A18: ((Prob * B) . (k + 1)) = (Prob . (B . (k + 1))) by FUNCT_1: 12;

                

                 A19: ( dom (A * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

                (( Special_Function (n1,n2)) . (k + 1)) = ( IFGT ((k + 1),n1,((k + 1) + n2),(k + 1))) & ( IFGT ((k + 1),n1,((k + 1) + n2),(k + 1))) = (k + 1) by Def2, XXREAL_0:def 11, V;

                then

                 A20: ((Prob * B) . (k + 1)) = (Prob . (A . (k + 1))) by A19, A3, A18, FUNCT_1: 12;

                ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

                hence thesis by A20, FUNCT_1: 12;

              end;

              (( Partial_Product (Prob * B)) . (k + 1)) = ((( Partial_Product (Prob * A)) . k) * ((Prob * A) . (k + 1))) by A15, A13, A17, SERIES_3:def 1;

              hence thesis by A16, SERIES_3:def 1;

            end;

              suppose not k < n1;

              then n1 < (k + 1) by XREAL_1: 145;

              then

               A22: (( Special_Function3 n1) . (k + 1)) = ( IFGT ((k + 1),n1, 0 ,1)) & ( IFGT ((k + 1),n1, 0 ,1)) = 0 by Def4, XXREAL_0:def 11;

              

               A23: ((Prob * B) . 0 ) = ((Prob * A) . 0 )

              proof

                ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

                then

                 A24: ((Prob * B) . 0 ) = (Prob . (B . 0 )) by FUNCT_1: 12;

                

                 A25: ( dom (A * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

                (( Special_Function (n1,n2)) . 0 ) = ( IFGT ( 0 ,n1,( 0 + n2), 0 )) & ( IFGT ( 0 ,n1,( 0 + n2), 0 )) = 0 by Def2, XXREAL_0:def 11;

                then

                 A26: ((Prob * B) . 0 ) = (Prob . (A . 0 )) by A25, A3, A24, FUNCT_1: 12;

                ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

                hence thesis by A26, FUNCT_1: 12;

              end;

              (( Partial_Product (Prob * B)) . ((k + 1) * (( Special_Function3 n1) . (k + 1)))) = ((Prob * B) . 0 ) & (( Partial_Product (Prob * A)) . ((k + 1) * (( Special_Function3 n1) . (k + 1)))) = ((Prob * A) . 0 ) by A22, SERIES_3:def 1;

              hence thesis by A23;

            end;

          end;

          

           A27: for k be Nat holds J[k] from NAT_1:sch 2( A6, A12);

          (( Partial_Product (Prob * B)) . q) = (( Partial_Product (Prob * A)) . q)

          proof

            (( Special_Function3 n1) . q) = ( IFGT (q,n1, 0 ,1)) & ( IFGT (q,n1, 0 ,1)) = 1 by Def4, A5, XXREAL_0:def 11;

            then (q * (( Special_Function3 n1) . q)) = q;

            hence thesis by A27;

          end;

          hence thesis;

        end;

        defpred J[ Nat] means (( Partial_Product (Prob * B)) . (($1 + n1) + 1)) = ((( Partial_Product (Prob * A)) . n1) * (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . (((($1 + n1) + 1) - n1) - 1)));

        

         A28: n1 in NAT by ORDINAL1:def 12;

        (( Partial_Product (Prob * B)) . (( 0 + n1) + 1)) = ((( Partial_Product (Prob * B)) . n1) * ((Prob * B) . (n1 + 1))) & n1 <= n1 by SERIES_3:def 1;

        then

         A29: (( Partial_Product (Prob * B)) . (( 0 + n1) + 1)) = ((( Partial_Product (Prob * A)) . n1) * ((Prob * B) . (n1 + 1))) by A4, A28;

        

         A30: ( dom (A * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

        n1 < (n1 + 1) by NAT_1: 13;

        then (( Special_Function (n1,n2)) . (n1 + 1)) = ( IFGT ((n1 + 1),n1,((n1 + 1) + n2),(n1 + 1))) & ( IFGT ((n1 + 1),n1,((n1 + 1) + n2),(n1 + 1))) = ((n1 + 1) + n2) by Def2, XXREAL_0:def 11;

        then

         A32: (Prob . (B . (n1 + 1))) = (Prob . (A . ((n1 + 1) + n2))) by A30, A3, FUNCT_1: 12;

        

         A33: (A . (((n1 + n2) + 1) + 0 )) = ((A ^\ ((n1 + n2) + 1)) . 0 ) by NAT_1:def 3;

        ( dom (Prob * (A ^\ ((n1 + n2) + 1)))) = NAT by FUNCT_2:def 1;

        then

         A34: (Prob . (B . (n1 + 1))) = ((Prob * (A ^\ ((n1 + n2) + 1))) . 0 ) by A33, A32, FUNCT_1: 12;

        ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

        then ((Prob * B) . (n1 + 1)) = ((Prob * (A ^\ ((n1 + n2) + 1))) . 0 ) by A34, FUNCT_1: 12;

        then

         A35: J[ 0 ] by A29, SERIES_3:def 1;

        

         A36: for k be Nat st J[k] holds J[(k + 1)]

        proof

          let k be Nat;

          assume

           A37: J[k];

          

           A38: (( Partial_Product (Prob * B)) . (((k + 1) + n1) + 1)) = (((( Partial_Product (Prob * A)) . n1) * (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . k)) * ((Prob * B) . (((k + 1) + n1) + 1))) by A37, SERIES_3:def 1;

          

           A39: ((Prob * B) . (((k + 1) + n1) + 1)) = ((Prob * (A ^\ ((n1 + n2) + 1))) . (k + 1))

          proof

            set j = (((k + 1) + n1) + 1);

            

             A40: ( dom (A * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

            n1 < (n1 + ((k + 1) + 1)) by NAT_1: 19, XREAL_1: 31;

            then (( Special_Function (n1,n2)) . j) = ( IFGT (j,n1,(j + n2),j)) & ( IFGT (j,n1,(j + n2),j)) = (j + n2) by Def2, XXREAL_0:def 11;

            then (B . (((k + 1) + n1) + 1)) = (A . (((n1 + n2) + 1) + (k + 1))) by A40, A3, FUNCT_1: 12;

            then

             A41: (Prob . (B . (((k + 1) + n1) + 1))) = (Prob . ((A ^\ ((n1 + n2) + 1)) . (k + 1))) by NAT_1:def 3;

            ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

            then

             A42: ((Prob * B) . (((k + 1) + n1) + 1)) = (Prob . ((A ^\ ((n1 + n2) + 1)) . (k + 1))) by A41, FUNCT_1: 12;

            ( dom (Prob * (A ^\ ((n1 + n2) + 1)))) = NAT by FUNCT_2:def 1;

            hence thesis by A42, FUNCT_1: 12;

          end;

          ((( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . k) * ((Prob * (A ^\ ((n1 + n2) + 1))) . (k + 1))) = (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . (k + 1)) by SERIES_3:def 1;

          hence thesis by A39, A38;

        end;

        

         A43: for k be Nat holds J[k] from NAT_1:sch 2( A35, A36);

        ((n - n1) - 1) is Element of NAT

        proof

          (n1 + 1) <= n by A2, NAT_1: 13;

          then ((n1 + 1) - 1) <= (n - 1) by XREAL_1: 9;

          then n1 <= (n - 1) & (n - 1) is Element of NAT by A2, NAT_1: 20;

          then ((n - 1) - n1) is Element of NAT by NAT_1: 21;

          hence thesis;

        end;

        then

        consider k be Element of NAT such that

         A44: k = ((n - n1) - 1);

        (( Partial_Product (Prob * B)) . n) = ((( Partial_Product (Prob * A)) . n1) * (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . ((((((n - n1) - 1) + n1) + 1) - n1) - 1))) by A43, A44;

        hence thesis;

      end;

      for A,B,C be SetSequence of Sigma, n1,n2,n be Nat, e be sequence of NAT st n > n1 & C = (A * e) & B = (C * ( Special_Function (n1,n2))) holds (( Partial_Intersection B) . n) = ((( Partial_Intersection C) . n1) /\ (( Partial_Intersection (C ^\ ((n1 + n2) + 1))) . ((n - n1) - 1)))

      proof

        let A,B,C be SetSequence of Sigma;

        let n1,n2,n be Nat;

        let e be sequence of NAT ;

        assume

         A45: n > n1;

        assume C = (A * e);

        assume

         A46: B = (C * ( Special_Function (n1,n2)));

        reconsider B as SetSequence of Sigma;

        

         A47: (( Partial_Intersection B) . n1) = (( Partial_Intersection C) . n1)

        proof

          for x be object holds x in (( Partial_Intersection B) . n1) iff x in (( Partial_Intersection C) . n1)

          proof

            let x be object;

            hereby

              assume

               A48: x in (( Partial_Intersection B) . n1);

              x in (( Partial_Intersection C) . n1)

              proof

                for knat be Nat st knat <= n1 holds x in (C . knat)

                proof

                  let knat be Nat;

                  assume

                   A50: knat <= n1;

                  reconsider knat as Element of NAT by ORDINAL1:def 12;

                  

                   A51: x in (B . knat) by A50, A48, PROB_3: 25;

                  

                   A52: ( dom (C * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

                  (( Special_Function (n1,n2)) . knat) = ( IFGT (knat,n1,(knat + n2),knat)) & ( IFGT (knat,n1,(knat + n2),knat)) = knat by Def2, A50, XXREAL_0:def 11;

                  hence thesis by A52, A46, A51, FUNCT_1: 12;

                end;

                hence thesis by PROB_3: 25;

              end;

              hence x in (( Partial_Intersection C) . n1);

            end;

            assume

             A53: x in (( Partial_Intersection C) . n1);

            x in (( Partial_Intersection B) . n1)

            proof

              for knat be Nat st knat <= n1 holds x in (B . knat)

              proof

                let knat be Nat;

                assume

                 A54: knat <= n1;

                reconsider knat as Element of NAT by ORDINAL1:def 12;

                

                 A55: x in (C . knat) by A53, A54, PROB_3: 25;

                

                 A56: ( dom (C * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

                (( Special_Function (n1,n2)) . knat) = ( IFGT (knat,n1,(knat + n2),knat)) & ( IFGT (knat,n1,(knat + n2),knat)) = knat by Def2, A54, XXREAL_0:def 11;

                hence thesis by A56, A46, A55, FUNCT_1: 12;

              end;

              hence thesis by PROB_3: 25;

            end;

            hence x in (( Partial_Intersection B) . n1);

          end;

          hence thesis by TARSKI: 2;

        end;

        

         A57: for x be set holds ((for knat be Nat st knat <= n holds x in (B . knat)) implies (for knat be Nat st knat <= n1 holds x in (B . knat)) & (for knat be Nat st n1 < knat & knat <= n holds x in (B . knat))) by A45, XXREAL_0: 2;

        

         A58: for x be object holds x in (( Partial_Intersection (C ^\ ((n1 + n2) + 1))) . ((n - n1) - 1)) implies (for qnat be Nat st n1 < qnat & qnat <= n holds x in (B . qnat))

        proof

          let x be object;

          assume

           A59: x in (( Partial_Intersection (C ^\ ((n1 + n2) + 1))) . ((n - n1) - 1));

          

           A60: ((n - n1) - 1) >= 0 & ((n - n1) - 1) is Element of NAT

          proof

            (n - n1) is Element of NAT by A45, NAT_1: 21;

            hence thesis by A45, NAT_1: 20, XREAL_1: 50;

          end;

          

           A61: for knat be Nat st knat <= ((n - n1) - 1) holds x in (C . (knat + ((n1 + n2) + 1)))

          proof

            let knat be Nat;

            assume knat <= ((n - n1) - 1);

            then x in ((C ^\ ((n1 + n2) + 1)) . knat) by A60, A59, PROB_3: 25;

            hence thesis by NAT_1:def 3;

          end;

          for qnat be Nat st n1 < qnat & qnat <= n holds x in (B . qnat)

          proof

            let qnat be Nat;

            assume that

             A62: n1 < qnat and

             A63: qnat <= n;

            (n1 + 1) <= qnat & qnat <= n by A62, A63, NAT_1: 13;

            then (qnat - (n1 + 1)) is Element of NAT by NAT_1: 21;

            then

            consider knat be Nat such that

             A66: knat = ((qnat - n1) - 1);

            

             A67: ((qnat - n1) - 1) <= ((n - n1) - 1)

            proof

              (qnat - (n1 + 1)) <= (n - (n1 + 1)) by A63, XREAL_1: 9;

              hence thesis;

            end;

            

             A68: x in (C . (knat + ((n1 + n2) + 1))) by A66, A67, A61;

            x in (B . qnat)

            proof

              reconsider qnat as Element of NAT by ORDINAL1:def 12;

              

               A69: ( dom (C * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

              (( Special_Function (n1,n2)) . qnat) = ( IFGT (qnat,n1,(qnat + n2),qnat)) & ( IFGT (qnat,n1,(qnat + n2),qnat)) = (qnat + n2) by Def2, A62, XXREAL_0:def 11;

              hence thesis by A69, A46, A66, A68, FUNCT_1: 12;

            end;

            hence thesis;

          end;

          hence thesis;

        end;

        

         A70: for x be object holds (for qnat be Nat st n1 < qnat & qnat <= n holds x in (B . qnat)) implies x in (( Partial_Intersection (C ^\ ((n1 + n2) + 1))) . ((n - n1) - 1))

        proof

          let x be object;

          assume

           A71: for qnat be Nat st n1 < qnat & qnat <= n holds x in (B . qnat);

          

           A72: ((n - n1) - 1) >= 0 & ((n - n1) - 1) is Element of NAT

          proof

            (n - n1) is Element of NAT by A45, NAT_1: 21;

            hence thesis by A45, NAT_1: 20, XREAL_1: 50;

          end;

          x in (( Partial_Intersection (C ^\ ((n1 + n2) + 1))) . ((n - n1) - 1))

          proof

            

             A73: for qnat be Nat st 0 <= ((qnat - n1) - 1) & ((qnat - n1) - 1) <= ((n - n1) - 1) holds x in (B . qnat)

            proof

              let qnat be Nat;

              assume that

               A74: 0 <= ((qnat - n1) - 1) and

               A75: ((qnat - n1) - 1) <= ((n - n1) - 1);

              ( 0 + (n1 + 1)) <= ((qnat - (n1 + 1)) + (n1 + 1)) by A74, XREAL_1: 6;

              then ((n1 + 1) - 1) <= (qnat - 1) by XREAL_1: 9;

              then n1 <= (qnat - 1) & qnat < (qnat + 1) by NAT_1: 13;

              then n1 <= (qnat - 1) & (qnat - 1) < ((qnat + 1) - 1) by XREAL_1: 9;

              then

               A76: n1 < qnat by XXREAL_0: 2;

              ((qnat - (n1 + 1)) + (n1 + 1)) <= ((n - (n1 + 1)) + (n1 + 1)) by A75, XREAL_1: 6;

              hence thesis by A76, A71;

            end;

            for knat be Nat st 0 <= knat & knat <= ((n - n1) - 1) holds x in ((C ^\ ((n1 + n2) + 1)) . knat)

            proof

              let knat be Nat;

              assume that 0 <= knat and

               A77: knat <= ((n - n1) - 1);

              set qnat = ((knat + n1) + 1);

              ((qnat - n1) - 1) <= ((n - n1) - 1) by A77;

              then

               A79: x in (B . qnat) by A73;

              

               A80: ( dom (C * ( Special_Function (n1,n2)))) = NAT by FUNCT_2:def 1;

              n1 < qnat by NAT_1: 13, XREAL_1: 31;

              then (( Special_Function (n1,n2)) . qnat) = ( IFGT (qnat,n1,(qnat + n2),qnat)) & ( IFGT (qnat,n1,(qnat + n2),qnat)) = (qnat + n2) by Def2, XXREAL_0:def 11;

              then (B . qnat) = (C . (((n1 + n2) + 1) + knat)) by A46, A80, FUNCT_1: 12;

              hence thesis by A79, NAT_1:def 3;

            end;

            then for knat be Nat st knat <= ((n - n1) - 1) holds x in ((C ^\ ((n1 + n2) + 1)) . knat);

            hence thesis by A72, PROB_3: 25;

          end;

          hence thesis;

        end;

        

         A82: for x be set holds (x in (( Partial_Intersection B) . n) iff (for knat be Nat st knat <= n1 holds x in (B . knat)) & (for knat be Nat st n1 < knat & knat <= n holds x in (B . knat)))

        proof

          let x be set;

          x in (( Partial_Intersection B) . n) iff for knat be Nat st knat <= n holds x in (B . knat) by PROB_3: 25;

          hence thesis by A57;

        end;

        

         A83: for x be set holds ((x in (( Partial_Intersection B) . n)) iff (x in (( Partial_Intersection B) . n1) & (for knat be Nat st n1 < knat & knat <= n holds x in (B . knat))))

        proof

          let x be set;

          x in (( Partial_Intersection B) . n1) iff for knat be Nat st knat <= n1 holds x in (B . knat) by PROB_3: 25;

          hence thesis by A82;

        end;

        for x be object holds ((x in (( Partial_Intersection B) . n)) iff (x in (( Partial_Intersection B) . n1) & x in (( Partial_Intersection (C ^\ ((n1 + n2) + 1))) . ((n - n1) - 1))))

        proof

          let x be object;

          x in (( Partial_Intersection (C ^\ ((n1 + n2) + 1))) . ((n - n1) - 1)) iff for knat be Nat st n1 < knat & knat <= n holds x in (B . knat) by A58, A70;

          hence thesis by A83;

        end;

        hence thesis by A47, XBOOLE_0:def 4;

      end;

      hence thesis by A1;

    end;

    definition

      let Omega be non empty set, Sigma be SigmaField of Omega, Prob be Probability of Sigma, A be SetSequence of Sigma;

      :: BOR_CANT:def6

      pred A is_all_independent_wrt Prob means

      : Def6: for B be SetSequence of Sigma st (ex e be sequence of NAT st (e is one-to-one & (for n be Nat holds (A . (e . n)) = (B . n)))) holds (for n be Nat holds (( Partial_Product (Prob * B)) . n) = (Prob . (( Partial_Intersection B) . n)));

    end

    theorem :: BOR_CANT:6

    

     Th6: n > n1 & A is_all_independent_wrt Prob implies (Prob . ((( Partial_Intersection ( Complement A)) . n1) /\ (( Partial_Intersection (A ^\ ((n1 + n2) + 1))) . ((n - n1) - 1)))) = ((( Partial_Product (Prob * ( Complement A))) . n1) * (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . ((n - n1) - 1)))

    proof

      assume that

       A1: n > n1 and

       A2: A is_all_independent_wrt Prob;

      

       A3: for A,B be SetSequence of Sigma, k,n be Element of NAT st B = (A * ( Special_Function2 k)) holds (( Partial_Product (Prob * (A ^\ k))) . n) = (( Partial_Product (Prob * B)) . n)

      proof

        let A,B be SetSequence of Sigma;

        let k,n be Element of NAT ;

        assume

         A4: B = (A * ( Special_Function2 k));

        defpred J[ Nat] means (( Partial_Product (Prob * (A ^\ k))) . $1) = (( Partial_Product (Prob * B)) . $1);

        ( dom (Prob * (A ^\ k))) = NAT by FUNCT_2:def 1;

        then

         A5: ((Prob * (A ^\ k)) . 0 ) = (Prob . ((A ^\ k) . 0 )) by FUNCT_1: 12;

        ((Prob * (A ^\ k)) . 0 ) = (Prob . (A . ( 0 + k))) by A5, NAT_1:def 3;

        then

         A6: (( Partial_Product (Prob * (A ^\ k))) . 0 ) = (Prob . (A . k)) by SERIES_3:def 1;

        

         A7: (( Partial_Product (Prob * B)) . 0 ) = ((Prob * B) . 0 ) by SERIES_3:def 1;

        

         A8: (( Special_Function2 k) . 0 ) = ( 0 + k) by Def3;

        ( dom (A * ( Special_Function2 k))) = NAT by FUNCT_2:def 1;

        then

         A9: (Prob . (B . 0 )) = (Prob . (A . k)) by A8, A4, FUNCT_1: 12;

        ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

        then

         A10: J[ 0 ] by A9, A7, A6, FUNCT_1: 12;

        

         A11: for q be Nat st J[q] holds J[(q + 1)]

        proof

          let q be Nat;

          assume J[q];

          then

           A13: (( Partial_Product (Prob * (A ^\ k))) . (q + 1)) = ((( Partial_Product (Prob * B)) . q) * ((Prob * (A ^\ k)) . (q + 1))) by SERIES_3:def 1;

          ((Prob * (A ^\ k)) . (q + 1)) = ((Prob * B) . (q + 1))

          proof

            ( dom (Prob * (A ^\ k))) = NAT by FUNCT_2:def 1;

            then

             A14: ((Prob * (A ^\ k)) . (q + 1)) = (Prob . ((A ^\ k) . (q + 1))) by FUNCT_1: 12;

            ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

            then

             A15: ((Prob * B) . (q + 1)) = (Prob . (B . (q + 1))) by FUNCT_1: 12;

            ( dom (A * ( Special_Function2 k))) = NAT by FUNCT_2:def 1;

            then

             A16: (B . (q + 1)) = (A . (( Special_Function2 k) . (q + 1))) by A4, FUNCT_1: 12;

            (( Special_Function2 k) . (q + 1)) = ((q + 1) + k) & ((q + 1) + k) = ((q + 1) + k) by Def3;

            hence thesis by A16, A15, A14, NAT_1:def 3;

          end;

          hence thesis by A13, SERIES_3:def 1;

        end;

        for k be Nat holds J[k] from NAT_1:sch 2( A10, A11);

        hence thesis;

      end;

      

       A17: for m,m1,m2 be Element of NAT , e be sequence of NAT , C,B be SetSequence of Sigma st m1 < m & e is one-to-one & C = (A * e) & B = (C * ( Special_Function (m1,m2))) holds (Prob . (( Partial_Intersection B) . m)) = ((( Partial_Product (Prob * C)) . m1) * (( Partial_Product (Prob * (C ^\ ((m1 + m2) + 1)))) . ((m - m1) - 1)))

      proof

        let m,m1,m2 be Element of NAT ;

        let e be sequence of NAT ;

        let C,B be SetSequence of Sigma;

        assume that

         A18: m1 < m and

         A19: e is one-to-one and

         A20: C = (A * e) and

         A21: B = (C * ( Special_Function (m1,m2)));

        B is SetSequence of Sigma & (e * ( Special_Function (m1,m2))) is sequence of NAT & (e * ( Special_Function (m1,m2))) is one-to-one & (for n be Nat holds (A . ((e * ( Special_Function (m1,m2))) . n)) = (B . n))

        proof

          for n be Nat holds (A . ((e * ( Special_Function (m1,m2))) . n)) = (B . n)

          proof

            let n be Nat;

            

             A22: ( dom ((A * e) * ( Special_Function (m1,m2)))) = NAT by FUNCT_2:def 1;

            reconsider n as Element of NAT by ORDINAL1:def 12;

            

             A23: (B . n) = ((A * e) . (( Special_Function (m1,m2)) . n)) by A21, A20, A22, FUNCT_1: 12;

            ( dom (A * e)) = NAT by FUNCT_2:def 1;

            then

             A24: (B . n) = (A . (e . (( Special_Function (m1,m2)) . n))) by A23, FUNCT_1: 12;

            ( dom (e * ( Special_Function (m1,m2)))) = NAT by FUNCT_2:def 1;

            hence thesis by A24, FUNCT_1: 12;

          end;

          hence thesis by A19, FUNCT_1: 24;

        end;

        then (Prob . (( Partial_Intersection B) . m)) = (( Partial_Product (Prob * B)) . m) by A2;

        hence thesis by A18, A21, Th5;

      end;

      

       A25: for m,m1 be Element of NAT , e be sequence of NAT , C,B be SetSequence of Sigma st C = (A * e) & e is one-to-one & B = (C * ( Special_Function2 m1)) holds (Prob . (( Partial_Intersection B) . m)) = (( Partial_Product (Prob * (C ^\ m1))) . m)

      proof

        let m,m1 be Element of NAT ;

        let e be sequence of NAT ;

        let C,B be SetSequence of Sigma;

        assume that

         A26: C = (A * e) and

         A27: e is one-to-one and

         A28: B = (C * ( Special_Function2 m1));

        

         A29: B is SetSequence of Sigma & ( Special_Function2 m1) is sequence of NAT & ( dom (e * ( Special_Function2 m1))) <> {} & (e * ( Special_Function2 m1)) is one-to-one & (for n be Nat holds (A . ((e * ( Special_Function2 m1)) . n)) = (B . n))

        proof

          for n be Nat holds (A . ((e * ( Special_Function2 m1)) . n)) = (B . n)

          proof

            let n be Nat;

            reconsider n as Element of NAT by ORDINAL1:def 12;

            ( dom (A * (e * ( Special_Function2 m1)))) = NAT by FUNCT_2:def 1;

            then

             A31: ((A * (e * ( Special_Function2 m1))) . n) = (A . ((e * ( Special_Function2 m1)) . n)) by FUNCT_1: 12;

            ( dom (A * e)) = NAT by FUNCT_2:def 1;

            then

             A32: ((A * e) . (( Special_Function2 m1) . n)) = (A . (e . (( Special_Function2 m1) . n))) by FUNCT_1: 12;

            ( dom (e * ( Special_Function2 m1))) = NAT by FUNCT_2:def 1;

            then

             A33: ((A * e) . (( Special_Function2 m1) . n)) = ((A * (e * ( Special_Function2 m1))) . n) by A32, A31, FUNCT_1: 12;

            ( dom ((A * e) * ( Special_Function2 m1))) = NAT by FUNCT_2:def 1;

            then

             A34: (B . n) = ((A * (e * ( Special_Function2 m1))) . n) by A33, A28, A26, FUNCT_1: 12;

            ( dom (A * (e * ( Special_Function2 m1)))) = NAT by FUNCT_2:def 1;

            hence thesis by A34, FUNCT_1: 12;

          end;

          hence thesis by A27, FUNCT_1: 24;

        end;

        (Prob . (( Partial_Intersection B) . m)) = (( Partial_Product (Prob * B)) . m) by A2, A29;

        hence thesis by A28, A3;

      end;

      

       A35: for q be Nat holds (Prob . ((( Partial_Intersection ( Complement A)) . n1) /\ (( Partial_Intersection (A ^\ ((n1 + n2) + 1))) . q))) = ((( Partial_Product (Prob * ( Complement A))) . n1) * (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . q))

      proof

        let q be Nat;

        defpred J[ Nat] means for e be sequence of NAT , q,n2 be Nat, C be SetSequence of Sigma st e is one-to-one & C = (A * e) holds (Prob . ((( Partial_Intersection ( Complement C)) . $1) /\ (( Partial_Intersection (C ^\ (($1 + n2) + 1))) . q))) = ((( Partial_Product (Prob * ( Complement C))) . $1) * (( Partial_Product (Prob * (C ^\ (($1 + n2) + 1)))) . q));

        

         A36: J[ 0 ]

        proof

          let e be sequence of NAT ;

          let q,n2 be Nat;

          let C be SetSequence of Sigma;

          assume

           A37: e is one-to-one;

          assume

           A38: C = (A * e);

          (Prob . ((( Partial_Intersection ( Complement C)) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) = (Prob . ((( Complement C) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) by PROB_3: 21;

          then (Prob . ((( Partial_Intersection ( Complement C)) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) = (Prob . (((C . 0 ) ` ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) by PROB_1:def 2;

          then (Prob . ((( Partial_Intersection ( Complement C)) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) = (Prob . ((Omega \ (C . 0 )) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) by SUBSET_1:def 4;

          then

           A39: (Prob . ((( Partial_Intersection ( Complement C)) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) = (Prob . ((Omega /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)) \ ((C . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)))) by XBOOLE_1: 111;

          

           A40: (Prob . ((( Partial_Intersection ( Complement C)) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) = (Prob . ((( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q) \ ((C . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)))) by A39, XBOOLE_1: 28;

          

           A41: (Prob . ((( Partial_Intersection ( Complement C)) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) = ((Prob . (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)) - (Prob . ((C . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)))) by A40, PROB_1: 33, XBOOLE_1: 17;

          consider m1 be Element of NAT such that

           A42: m1 = 0 ;

          reconsider m = ((m1 + 1) + q) as Element of NAT by ORDINAL1:def 12;

          reconsider m2 = n2 as Element of NAT by ORDINAL1:def 12;

          consider B be SetSequence of Omega such that

           A43: B = (C * ( Special_Function (m1,m2)));

          reconsider B as SetSequence of Sigma by A43;

          

           A44: m1 < m & C = (A * e) & B = (C * ( Special_Function (m1,m2)))

          proof

            m1 < (m1 + 1) & (m1 + 1) <= ((m1 + 1) + q) by NAT_1: 13, XREAL_1: 31;

            hence thesis by A38, A43, XXREAL_0: 2;

          end;

          then (Prob . (( Partial_Intersection B) . m)) = (Prob . ((( Partial_Intersection C) . m1) /\ (( Partial_Intersection (C ^\ ((m1 + m2) + 1))) . ((m - m1) - 1)))) by Th5;

          then ((( Partial_Product (Prob * C)) . 0 ) * (( Partial_Product (Prob * (C ^\ (( 0 + n2) + 1)))) . q)) = (Prob . ((( Partial_Intersection C) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) by A44, A37, A17, A42;

          then ((Prob . (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)) - ((( Partial_Product (Prob * C)) . 0 ) * (( Partial_Product (Prob * (C ^\ (( 0 + n2) + 1)))) . q))) = ((Prob . (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)) - (Prob . ((C . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)))) by PROB_3: 21;

          then

           A45: (Prob . ((( Partial_Intersection ( Complement C)) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) = ((Prob . (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)) - (((Prob * C) . 0 ) * (( Partial_Product (Prob * (C ^\ (( 0 + n2) + 1)))) . q))) by A41, SERIES_3:def 1;

          ((Prob * C) . 0 ) = (1 - ((Prob * ( Complement C)) . 0 ))

          proof

            (C . 0 ) = (((C . 0 ) ` ) ` ) & (((C . 0 ) ` ) ` ) = (Omega \ ((C . 0 ) ` )) by SUBSET_1:def 4;

            then (Prob . (C . 0 )) = (Prob . (( [#] Sigma) \ ((C . 0 ) ` ))) & ((C . 0 ) ` ) is Event of Sigma by PROB_1: 20;

            then

             A46: (Prob . (C . 0 )) = (1 - (Prob . ((C . 0 ) ` ))) by PROB_1: 32;

            ( dom (Prob * C)) = NAT by FUNCT_2:def 1;

            then

             A47: ((Prob * C) . 0 ) = (1 - (Prob . ((C . 0 ) ` ))) by A46, FUNCT_1: 12;

            ( dom (Prob * ( Complement C))) = NAT by FUNCT_2:def 1;

            then ((Prob * ( Complement C)) . 0 ) = (Prob . (( Complement C) . 0 )) by FUNCT_1: 12;

            hence thesis by A47, PROB_1:def 2;

          end;

          then

           A48: (Prob . ((( Partial_Intersection ( Complement C)) . 0 ) /\ (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q))) = ((Prob . (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)) - ((( Partial_Product (Prob * (C ^\ (( 0 + n2) + 1)))) . q) - (((Prob * ( Complement C)) . 0 ) * (( Partial_Product (Prob * (C ^\ (( 0 + n2) + 1)))) . q)))) by A45;

          set m1 = (( 0 + n2) + 1);

          set m = q;

          set B = (C * ( Special_Function2 m1));

          reconsider B as SetSequence of Sigma;

          

           A49: for A,B,C be SetSequence of Sigma, k,n be Element of NAT , e be sequence of NAT st B = (C * ( Special_Function2 k)) holds (( Partial_Intersection (C ^\ k)) . n) = (( Partial_Intersection B) . n)

          proof

            let A,B,C be SetSequence of Sigma;

            let k,n be Element of NAT ;

            let e be sequence of NAT ;

            assume

             A50: B = (C * ( Special_Function2 k));

            

             A51: for x be set holds (for knat be Nat st knat <= n holds x in ((C ^\ k) . knat)) iff (for knat be Nat st knat <= n holds x in (B . knat))

            proof

              let x be set;

              hereby

                assume

                 A52: for knat be Nat st knat <= n holds x in ((C ^\ k) . knat);

                thus for knat be Nat st knat <= n holds x in (B . knat)

                proof

                  let knat be Nat;

                  assume

                   A53: knat <= n;

                  reconsider knat as Element of NAT by ORDINAL1:def 12;

                  ( dom (C * ( Special_Function2 k))) = NAT by FUNCT_2:def 1;

                  then

                   A54: ((C * ( Special_Function2 k)) . knat) = (C . (( Special_Function2 k) . knat)) by FUNCT_1: 12;

                  (( Special_Function2 k) . knat) = (knat + k) & (knat + k) = (knat + k) by Def3;

                  then x in (B . knat) iff x in ((C ^\ k) . knat) by A50, A54, NAT_1:def 3;

                  hence thesis by A53, A52;

                end;

              end;

              assume

               A55: for knat be Nat st knat <= n holds x in (B . knat);

              thus for knat be Nat st knat <= n holds x in ((C ^\ k) . knat)

              proof

                let knat be Nat;

                assume

                 A56: knat <= n;

                reconsider knat as Element of NAT by ORDINAL1:def 12;

                ( dom (C * ( Special_Function2 k))) = NAT by FUNCT_2:def 1;

                then

                 A57: ((C * ( Special_Function2 k)) . knat) = (C . (( Special_Function2 k) . knat)) by FUNCT_1: 12;

                (( Special_Function2 k) . knat) = (knat + k) & (knat + k) = (knat + k) by Def3;

                then x in (B . knat) iff x in ((C ^\ k) . knat) by A50, A57, NAT_1:def 3;

                hence thesis by A55, A56;

              end;

            end;

            for x be object holds (x in (( Partial_Intersection (C ^\ k)) . n) iff (x in (( Partial_Intersection B) . n)))

            proof

              let x be object;

              (x in (( Partial_Intersection (C ^\ k)) . n) iff for knat be Nat st knat <= n holds x in ((C ^\ k) . knat)) & (x in (( Partial_Intersection B) . n) iff for knat be Nat st knat <= n holds x in (B . knat)) by PROB_3: 25;

              hence thesis by A51;

            end;

            hence thesis by TARSKI: 2;

          end;

          m in NAT by ORDINAL1:def 12;

          then

           A58: (Prob . (( Partial_Intersection B) . m)) = (( Partial_Product (Prob * (C ^\ m1))) . m) by A38, A37, A25;

          q in NAT by ORDINAL1:def 12;

          then (Prob . (( Partial_Intersection (C ^\ (( 0 + n2) + 1))) . q)) = (( Partial_Product (Prob * (C ^\ (( 0 + n2) + 1)))) . q) by A49, A58;

          hence thesis by A48, SERIES_3:def 1;

        end;

        

         A59: for k be Nat st J[k] holds J[(k + 1)]

        proof

          let k be Nat;

          assume

           A60: J[k];

          let e be sequence of NAT ;

          let q,n2 be Nat;

          let C be SetSequence of Sigma;

          assume

           A61: e is one-to-one;

          assume

           A62: C = (A * e);

          (Prob . ((( Partial_Intersection ( Complement C)) . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = (Prob . (((( Partial_Intersection ( Complement C)) . k) /\ (( Complement C) . (k + 1))) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) by PROB_3: 21;

          then (Prob . ((( Partial_Intersection ( Complement C)) . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = (Prob . ((((C . (k + 1)) ` ) /\ (( Partial_Intersection ( Complement C)) . k)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) by PROB_1:def 2;

          then (Prob . ((( Partial_Intersection ( Complement C)) . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = (Prob . (((C . (k + 1)) ` ) /\ ((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q)))) by XBOOLE_1: 16;

          then (Prob . ((( Partial_Intersection ( Complement C)) . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = (Prob . ((Omega \ (C . (k + 1))) /\ ((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q)))) by SUBSET_1:def 4;

          then

           A63: (Prob . ((( Partial_Intersection ( Complement C)) . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = (Prob . ((Omega /\ ((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) \ ((C . (k + 1)) /\ ((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))))) by XBOOLE_1: 50;

          

           A64: (Prob . ((( Partial_Intersection ( Complement C)) . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = (Prob . (((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q)) \ ((C . (k + 1)) /\ ((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))))) by A63, XBOOLE_1: 28;

          

           A65: (Prob . ((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = ((( Partial_Product (Prob * ( Complement C))) . k) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q))

          proof

            (Prob . ((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = ((( Partial_Product (Prob * ( Complement C))) . k) * (( Partial_Product (Prob * (C ^\ ((k + (1 + n2)) + 1)))) . q)) by A61, A62, A60;

            hence thesis;

          end;

          

           A66: (Prob . ((( Partial_Intersection ( Complement C)) . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = (((( Partial_Product (Prob * ( Complement C))) . k) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q)) - ((((Prob * C) . (k + 1)) * (( Partial_Product (Prob * ( Complement C))) . k)) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q)))

          proof

            ((((Prob * C) . (k + 1)) * (( Partial_Product (Prob * ( Complement C))) . k)) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q)) = (Prob . ((C . (k + 1)) /\ ((( Partial_Intersection ( Complement C)) . k) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))))

            proof

              consider F be SetSequence of Omega such that

               A67: F = (C * ( Special_Function4 (k,n2)));

              F is SetSequence of Sigma

              proof

                for n be Nat holds (F . n) is Event of Sigma

                proof

                  let n be Nat;

                  ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                  then (F . n) = (C . (( Special_Function4 (k,n2)) . n)) by A67, FUNCT_1: 12, ORDINAL1:def 12;

                  hence thesis;

                end;

                hence thesis by PROB_1: 25;

              end;

              then

              reconsider F as SetSequence of Sigma;

              (e * ( Special_Function4 (k,n2))) is one-to-one & ( dom (e * ( Special_Function4 (k,n2)))) <> {} by A61, FUNCT_1: 24;

              then

              consider f be sequence of NAT such that

               A70: f = (e * ( Special_Function4 (k,n2))) & f is one-to-one & ( dom f) <> {} ;

              

               A71: for q be object st q in NAT holds (F . q) = ((A * f) . q)

              proof

                let q be object;

                assume q in NAT ;

                then

                reconsider q as Element of NAT ;

                ( dom (A * e)) = NAT by FUNCT_2:def 1;

                then

                 A72: ((A * e) . (( Special_Function4 (k,n2)) . q)) = (A . (e . (( Special_Function4 (k,n2)) . q))) by FUNCT_1: 12;

                ( dom ((A * e) * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                then

                 A73: (((A * e) * ( Special_Function4 (k,n2))) . q) = (A . (e . (( Special_Function4 (k,n2)) . q))) by A72, FUNCT_1: 12;

                ( dom (e * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                then

                 A74: (((A * e) * ( Special_Function4 (k,n2))) . q) = (A . ((e * ( Special_Function4 (k,n2))) . q)) by A73, FUNCT_1: 12;

                ( dom (A * f)) = NAT by FUNCT_2:def 1;

                hence thesis by A70, A74, A62, A67, FUNCT_1: 12;

              end;

              

               A75: (Prob . ((( Partial_Intersection ( Complement F)) . k) /\ (( Partial_Intersection (F ^\ ((k + 0 ) + 1))) . (q + 1)))) = ((( Partial_Product (Prob * ( Complement F))) . k) * (( Partial_Product (Prob * (F ^\ ((k + 0 ) + 1)))) . (q + 1))) by A70, A71, A60, FUNCT_2: 12;

              

               A76: (( Partial_Intersection ( Complement C)) . k) = (( Partial_Intersection ( Complement F)) . k)

              proof

                

                 A77: for x be set holds (for knat be Nat st knat <= k holds (x in (( Complement C) . knat) iff x in (( Complement F) . knat)))

                proof

                  let x be set;

                  let knat be Nat;

                  assume knat <= k;

                  then

                   A78: knat <= (k + 1) by NAT_1: 13;

                  reconsider knat as Element of NAT by ORDINAL1:def 12;

                  ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                  then

                   A79: ((C * ( Special_Function4 (k,n2))) . knat) = (C . (( Special_Function4 (k,n2)) . knat)) by FUNCT_1: 12;

                  (( Special_Function4 (k,n2)) . knat) = ( IFGT (knat,(k + 1),(knat + n2),knat)) & ( IFGT (knat,(k + 1),(knat + n2),knat)) = knat by Def5, A78, XXREAL_0:def 11;

                  then (( Complement F) . knat) = ((C . knat) ` ) by A67, A79, PROB_1:def 2;

                  hence thesis by PROB_1:def 2;

                end;

                

                 A80: for x be object holds ((for knat be Nat st knat <= k holds x in (( Complement C) . knat)) iff (for knat be Nat st knat <= k holds x in (( Complement F) . knat)))

                proof

                  let x be object;

                  hereby

                    assume

                     A81: (for knat be Nat st knat <= k holds x in (( Complement C) . knat));

                    thus (for knat be Nat st knat <= k holds x in (( Complement F) . knat))

                    proof

                      let knat be Nat;

                      assume

                       A82: knat <= k;

                      then x in (( Complement C) . knat) iff x in (( Complement F) . knat) by A77;

                      hence thesis by A82, A81;

                    end;

                  end;

                  assume

                   A83: (for knat be Nat st knat <= k holds x in (( Complement F) . knat));

                  thus (for knat be Nat st knat <= k holds x in (( Complement C) . knat))

                  proof

                    let knat be Nat;

                    assume

                     A84: knat <= k;

                    then x in (( Complement C) . knat) iff x in (( Complement F) . knat) by A77;

                    hence thesis by A84, A83;

                  end;

                end;

                for x be object holds (x in (( Partial_Intersection ( Complement C)) . k) iff x in (( Partial_Intersection ( Complement F)) . k))

                proof

                  let x be object;

                  x in (( Partial_Intersection ( Complement C)) . k) iff for knat be Nat st knat <= k holds x in (( Complement C) . knat) by PROB_3: 25;

                  then x in (( Partial_Intersection ( Complement C)) . k) iff for knat be Nat st knat <= k holds x in (( Complement F) . knat) by A80;

                  hence thesis by PROB_3: 25;

                end;

                hence thesis by TARSKI: 2;

              end;

              

               A85: (( Partial_Intersection (F ^\ (k + 1))) . (q + 1)) = ((C . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))

              proof

                

                 A86: for x be set holds (for knat be Nat st knat <= q holds (x in ((F ^\ ((k + 1) + 1)) . knat) iff x in ((C ^\ (((k + 1) + n2) + 1)) . knat)))

                proof

                  let x be set;

                  let knat be Nat;

                  assume knat <= q;

                  reconsider knat as Element of NAT by ORDINAL1:def 12;

                  

                   A87: ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                  set j = (((knat + k) + 1) + 1);

                  j > (k + 1)

                  proof

                    (k + 1) < ((k + 1) + 1) & (k + 2) <= ((k + 2) + knat) by NAT_1: 12, NAT_1: 13;

                    hence thesis by XXREAL_0: 2;

                  end;

                  then (( Special_Function4 (k,n2)) . j) = ( IFGT (j,(k + 1),(j + n2),j)) & ( IFGT (j,(k + 1),(j + n2),j)) = (j + n2) by Def5, XXREAL_0:def 11;

                  then (F . (knat + ((k + 1) + 1))) = (C . (knat + (((k + 1) + n2) + 1))) by A67, A87, FUNCT_1: 12;

                  then ((F ^\ ((k + 1) + 1)) . knat) = (C . (knat + (((k + 1) + n2) + 1))) by NAT_1:def 3;

                  hence thesis by NAT_1:def 3;

                end;

                

                 A88: for x be object holds ((for knat be Nat st knat <= q holds x in ((C ^\ (((k + 1) + n2) + 1)) . knat)) iff (for knat be Nat st knat <= q holds x in ((F ^\ ((k + 1) + 1)) . knat)))

                proof

                  let x be object;

                  hereby

                    assume

                     A89: for knat be Nat st knat <= q holds x in ((C ^\ (((k + 1) + n2) + 1)) . knat);

                    thus (for knat be Nat st knat <= q holds x in ((F ^\ ((k + 1) + 1)) . knat))

                    proof

                      let knat be Nat;

                      assume

                       A90: knat <= q;

                      then x in ((C ^\ (((k + 1) + n2) + 1)) . knat) iff x in ((F ^\ ((k + 1) + 1)) . knat) by A86;

                      hence thesis by A90, A89;

                    end;

                  end;

                  assume

                   A91: (for knat be Nat st knat <= q holds x in ((F ^\ ((k + 1) + 1)) . knat));

                  thus for knat be Nat st knat <= q holds x in ((C ^\ (((k + 1) + n2) + 1)) . knat)

                  proof

                    let knat be Nat;

                    assume

                     A92: knat <= q;

                    then x in ((C ^\ (((k + 1) + n2) + 1)) . knat) iff x in ((F ^\ ((k + 1) + 1)) . knat) by A86;

                    hence thesis by A92, A91;

                  end;

                end;

                

                 A93: for x be object holds (x in (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q) iff x in (( Partial_Intersection (F ^\ ((k + 1) + 1))) . q))

                proof

                  let x be object;

                  x in (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q) iff for knat be Nat st knat <= q holds x in ((C ^\ (((k + 1) + n2) + 1)) . knat) by PROB_3: 25;

                  then x in (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q) iff for knat be Nat st knat <= q holds x in ((F ^\ ((k + 1) + 1)) . knat) by A88;

                  hence thesis by PROB_3: 25;

                end;

                ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . q) /\ (C . (k + 1))) = (( Partial_Intersection (F ^\ (k + 1))) . (q + 1))

                proof

                  defpred J[ Nat] means ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . $1) /\ (C . (k + 1))) = (( Partial_Intersection (F ^\ (k + 1))) . ($1 + 1));

                  

                   A94: J[ 0 ]

                  proof

                    ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . 0 ) /\ (C . (k + 1))) = (((F ^\ ((k + 1) + 1)) . 0 ) /\ (C . (k + 1))) by PROB_3: 21;

                    then ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . 0 ) /\ (C . (k + 1))) = ((F . ( 0 + ((k + 1) + 1))) /\ (C . (k + 1))) by NAT_1:def 3;

                    then

                     A95: ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . 0 ) /\ (C . (k + 1))) = (((F ^\ (k + 1)) . ( 0 + 1)) /\ (C . (k + 1))) by NAT_1:def 3;

                    

                     A96: ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                    (( Special_Function4 (k,n2)) . (k + 1)) = ( IFGT ((k + 1),(k + 1),((k + 1) + n2),(k + 1))) & ( IFGT ((k + 1),(k + 1),((k + 1) + n2),(k + 1))) = (k + 1) by Def5, XXREAL_0:def 11;

                    then ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . 0 ) /\ (C . (k + 1))) = (((F ^\ (k + 1)) . ( 0 + 1)) /\ (F . ( 0 + (k + 1)))) by A67, A96, A95, FUNCT_1: 12;

                    then ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . 0 ) /\ (C . (k + 1))) = (((F ^\ (k + 1)) . ( 0 + 1)) /\ ((F ^\ (k + 1)) . 0 )) by NAT_1:def 3;

                    then ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . 0 ) /\ (C . (k + 1))) = ((( Partial_Intersection (F ^\ (k + 1))) . 0 ) /\ ((F ^\ (k + 1)) . ( 0 + 1))) by PROB_3: 21;

                    hence thesis by PROB_3: 21;

                  end;

                  

                   A97: for q be Nat st J[q] holds J[(q + 1)]

                  proof

                    let q be Nat;

                    assume

                     A98: J[q];

                    ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . (q + 1)) /\ (C . (k + 1))) = (((( Partial_Intersection (F ^\ ((k + 1) + 1))) . q) /\ ((F ^\ ((k + 1) + 1)) . (q + 1))) /\ (C . (k + 1))) by PROB_3: 21;

                    then

                     A99: ((( Partial_Intersection (F ^\ ((k + 1) + 1))) . (q + 1)) /\ (C . (k + 1))) = ((( Partial_Intersection (F ^\ (k + 1))) . (q + 1)) /\ ((F ^\ ((k + 1) + 1)) . (q + 1))) by A98, XBOOLE_1: 16;

                    ((F ^\ ((k + 1) + 1)) . (q + 1)) = ((F ^\ (k + 1)) . ((q + 1) + 1))

                    proof

                      ((F ^\ ((k + 1) + 1)) . (q + 1)) = (F . ((q + 1) + ((k + 1) + 1))) by NAT_1:def 3;

                      then ((F ^\ ((k + 1) + 1)) . (q + 1)) = (F . (((q + 1) + 1) + (k + 1)));

                      hence thesis by NAT_1:def 3;

                    end;

                    hence thesis by A99, PROB_3: 21;

                  end;

                  for k be Nat holds J[k] from NAT_1:sch 2( A94, A97);

                  hence thesis;

                end;

                hence thesis by A93, TARSKI: 2;

              end;

              

               A100: (( Partial_Product (Prob * (F ^\ (k + 1)))) . (q + 1)) = (((Prob * C) . (k + 1)) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q))

              proof

                defpred J[ Nat] means (( Partial_Product (Prob * (F ^\ (k + 1)))) . ($1 + 1)) = (((Prob * C) . (k + 1)) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . $1));

                

                 A101: J[ 0 ]

                proof

                  

                   A102: ((F ^\ (k + 1)) . ( 0 + 1)) = ((C * ( Special_Function4 (k,n2))) . ((k + 1) + 1)) by A67, NAT_1:def 3;

                  

                   A103: ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                  set j = ((k + 1) + 1);

                  j > (k + 1) by NAT_1: 13;

                  then (( Special_Function4 (k,n2)) . j) = ( IFGT (j,(k + 1),(j + n2),j)) & ( IFGT (j,(k + 1),(j + n2),j)) = (j + n2) by Def5, XXREAL_0:def 11;

                  then ((F ^\ (k + 1)) . ( 0 + 1)) = (C . ( 0 + (((k + 1) + n2) + 1))) by A103, A102, FUNCT_1: 12;

                  then

                   A104: (Prob . ((F ^\ (k + 1)) . ( 0 + 1))) = (Prob . ((C ^\ (((k + 1) + n2) + 1)) . 0 )) by NAT_1:def 3;

                  ( dom (Prob * (F ^\ (k + 1)))) = NAT & ( dom (Prob * (C ^\ (((k + 1) + n2) + 1)))) = NAT by FUNCT_2:def 1;

                  then ((Prob * (F ^\ (k + 1))) . ( 0 + 1)) = (Prob . ((C ^\ (((k + 1) + n2) + 1)) . 0 )) & (Prob . ((F ^\ (k + 1)) . ( 0 + 1))) = ((Prob * (C ^\ (((k + 1) + n2) + 1))) . 0 ) & (Prob . ((F ^\ (k + 1)) . ( 0 + 1))) = (Prob . ((C ^\ (((k + 1) + n2) + 1)) . 0 )) by A104, FUNCT_1: 12;

                  then

                   A105: ((( Partial_Product (Prob * (F ^\ (k + 1)))) . 0 ) * ((Prob * (F ^\ (k + 1))) . ( 0 + 1))) = (((Prob * (F ^\ (k + 1))) . 0 ) * ((Prob * (C ^\ (((k + 1) + n2) + 1))) . 0 )) by SERIES_3:def 1;

                  ((Prob * (F ^\ (k + 1))) . 0 ) = ((Prob * C) . (k + 1))

                  proof

                    

                     A106: ((F ^\ (k + 1)) . 0 ) = (F . ( 0 + (k + 1))) by NAT_1:def 3;

                    

                     A107: ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                    

                     A108: (F . (k + 1)) = (C . (( Special_Function4 (k,n2)) . (k + 1))) by A67, A107, FUNCT_1: 12;

                    

                     A109: (( Special_Function4 (k,n2)) . (k + 1)) = ( IFGT ((k + 1),(k + 1),((k + 1) + n2),(k + 1))) & ( IFGT ((k + 1),(k + 1),((k + 1) + n2),(k + 1))) = (k + 1) by Def5, XXREAL_0:def 11;

                    ( dom (Prob * C)) = NAT by FUNCT_2:def 1;

                    then

                     A110: (Prob . ((F ^\ (k + 1)) . 0 )) = ((Prob * C) . (k + 1)) by A109, A108, A106, FUNCT_1: 12;

                    ( dom (Prob * (F ^\ (k + 1)))) = NAT by FUNCT_2:def 1;

                    hence thesis by A110, FUNCT_1: 12;

                  end;

                  then (( Partial_Product (Prob * (F ^\ (k + 1)))) . ( 0 + 1)) = (((Prob * C) . (k + 1)) * ((Prob * (C ^\ (((k + 1) + n2) + 1))) . 0 )) by A105, SERIES_3:def 1;

                  hence thesis by SERIES_3:def 1;

                end;

                

                 A111: for q be Nat st J[q] holds J[(q + 1)]

                proof

                  let q be Nat;

                  assume

                   A112: J[q];

                  

                   A113: ((Prob * (F ^\ (k + 1))) . ((q + 1) + 1)) = ((Prob * (C ^\ (((k + 1) + n2) + 1))) . (q + 1))

                  proof

                    

                     A114: ((F ^\ (k + 1)) . ((q + 1) + 1)) = ((C * ( Special_Function4 (k,n2))) . (((q + 1) + 1) + (k + 1))) by A67, NAT_1:def 3;

                    

                     A115: ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                    set j = (((q + 1) + 1) + (k + 1));

                    j > (k + 1)

                    proof

                      (k + 1) < ((k + 1) + 1) & ((k + 1) + 1) <= (((k + 1) + 1) + (q + 1)) by NAT_1: 13, XREAL_1: 31;

                      hence thesis by XXREAL_0: 2;

                    end;

                    then (( Special_Function4 (k,n2)) . j) = ( IFGT (j,(k + 1),(j + n2),j)) & ( IFGT (j,(k + 1),(j + n2),j)) = (j + n2) by Def5, XXREAL_0:def 11;

                    then ((F ^\ (k + 1)) . ((q + 1) + 1)) = (C . ((q + 1) + (((k + 1) + n2) + 1))) by A115, A114, FUNCT_1: 12;

                    then

                     A116: (Prob . ((F ^\ (k + 1)) . ((q + 1) + 1))) = (Prob . ((C ^\ (((k + 1) + n2) + 1)) . (q + 1))) by NAT_1:def 3;

                    ( dom (Prob * (F ^\ (k + 1)))) = NAT & ( dom (Prob * (C ^\ (((k + 1) + n2) + 1)))) = NAT by FUNCT_2:def 1;

                    then ((Prob * (F ^\ (k + 1))) . ((q + 1) + 1)) = (Prob . ((C ^\ (((k + 1) + n2) + 1)) . (q + 1))) & (Prob . ((F ^\ (k + 1)) . ((q + 1) + 1))) = ((Prob * (C ^\ (((k + 1) + n2) + 1))) . (q + 1)) & (Prob . ((F ^\ (k + 1)) . ((q + 1) + 1))) = (Prob . ((C ^\ (((k + 1) + n2) + 1)) . (q + 1))) by A116, FUNCT_1: 12;

                    hence thesis;

                  end;

                  (( Partial_Product (Prob * (F ^\ (k + 1)))) . ((q + 1) + 1)) = ((((Prob * C) . (k + 1)) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q)) * ((Prob * (C ^\ (((k + 1) + n2) + 1))) . (q + 1))) by A112, A113, SERIES_3:def 1;

                  then (( Partial_Product (Prob * (F ^\ (k + 1)))) . ((q + 1) + 1)) = (((Prob * C) . (k + 1)) * ((( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q) * ((Prob * (C ^\ (((k + 1) + n2) + 1))) . (q + 1))));

                  hence thesis by SERIES_3:def 1;

                end;

                for k be Nat holds J[k] from NAT_1:sch 2( A101, A111);

                hence thesis;

              end;

              defpred J[ Nat] means (for k be Element of NAT st k <= $1 holds (C . k) = (F . k)) implies (( Partial_Product (Prob * ( Complement F))) . $1) = (( Partial_Product (Prob * ( Complement C))) . $1);

              ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

              then

               A117: ((C * ( Special_Function4 (k,n2))) . 0 ) = (C . (( Special_Function4 (k,n2)) . 0 )) by FUNCT_1: 12;

              

               A118: ( IFGT ( 0 ,(k + 1),( 0 + n2), 0 )) = 0 by XXREAL_0:def 11;

              then ((F . 0 ) ` ) = ((C . 0 ) ` ) by Def5, A117, A67;

              then (( Complement F) . 0 ) = ((C . 0 ) ` ) by PROB_1:def 2;

              then (Prob . (( Complement F) . 0 )) = (Prob . (( Complement C) . 0 )) & ( dom (Prob * ( Complement F))) = NAT & ( dom (Prob * ( Complement C))) = NAT by FUNCT_2:def 1, PROB_1:def 2;

              then (Prob . (( Complement F) . 0 )) = (Prob . (( Complement C) . 0 )) & ((Prob * ( Complement F)) . 0 ) = (Prob . (( Complement F) . 0 )) & ((Prob * ( Complement C)) . 0 ) = (Prob . (( Complement C) . 0 )) by FUNCT_1: 12;

              then

               A119: (( Partial_Product (Prob * ( Complement F))) . 0 ) = ((Prob * ( Complement C)) . 0 ) & (F . 0 ) = (C . 0 ) by A118, Def5, A117, A67, SERIES_3:def 1;

              

               A120: J[ 0 ] by A119, SERIES_3:def 1;

              

               A121: for q be Nat st J[q] holds J[(q + 1)]

              proof

                let q be Nat;

                assume

                 A122: J[q];

                

                 A123: (for k be Element of NAT st k <= (q + 1) holds (C . k) = (F . k)) implies (for k be Element of NAT st k <= q holds (C . k) = (F . k))

                proof

                  assume

                   A124: (for k be Element of NAT st k <= (q + 1) holds (C . k) = (F . k));

                  let k be Element of NAT ;

                  assume k <= q;

                  then k <= (q + 1) by NAT_1: 13;

                  hence thesis by A124;

                end;

                (for k be Element of NAT st k <= (q + 1) holds (C . k) = (F . k)) implies (( Partial_Product (Prob * ( Complement F))) . (q + 1)) = (( Partial_Product (Prob * ( Complement C))) . (q + 1))

                proof

                  assume

                   A125: (for k be Element of NAT st k <= (q + 1) holds (C . k) = (F . k));

                  then (q + 1) <= (q + 1) implies ((C . (q + 1)) ` ) = ((F . (q + 1)) ` );

                  then (q + 1) <= (q + 1) implies (( Complement C) . (q + 1)) = ((F . (q + 1)) ` ) by PROB_1:def 2;

                  then

                   A126: ((( Partial_Product (Prob * ( Complement F))) . q) * (Prob . (( Complement F) . (q + 1)))) = ((( Partial_Product (Prob * ( Complement C))) . q) * (Prob . (( Complement C) . (q + 1)))) by A125, A123, A122, PROB_1:def 2;

                  ( dom (Prob * ( Complement C))) = NAT & ( dom (Prob * ( Complement F))) = NAT by FUNCT_2:def 1;

                  then ((Prob * ( Complement C)) . (q + 1)) = (Prob . (( Complement C) . (q + 1))) & ((Prob * ( Complement F)) . (q + 1)) = (Prob . (( Complement F) . (q + 1))) by FUNCT_1: 12;

                  then (( Partial_Product (Prob * ( Complement F))) . (q + 1)) = ((( Partial_Product (Prob * ( Complement C))) . q) * ((Prob * ( Complement C)) . (q + 1))) by A126, SERIES_3:def 1;

                  hence thesis by SERIES_3:def 1;

                end;

                hence thesis;

              end;

              

               A127: for k be Nat holds J[k] from NAT_1:sch 2( A120, A121);

              for q be Element of NAT st q <= k holds (C . q) = (F . q)

              proof

                let q be Element of NAT ;

                assume q <= k;

                then

                 A128: q <= (k + 1) by NAT_1: 13;

                

                 A129: ( dom (C * ( Special_Function4 (k,n2)))) = NAT by FUNCT_2:def 1;

                (( Special_Function4 (k,n2)) . q) = ( IFGT (q,(k + 1),(q + n2),q)) & ( IFGT (q,(k + 1),(q + n2),q)) = q by Def5, A128, XXREAL_0:def 11;

                hence thesis by A129, A67, FUNCT_1: 12;

              end;

              then (Prob . ((( Partial_Intersection ( Complement C)) . k) /\ ((C . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q)))) = ((( Partial_Product (Prob * ( Complement C))) . k) * (((Prob * C) . (k + 1)) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q))) by A127, A100, A85, A76, A75;

              hence thesis by XBOOLE_1: 16;

            end;

            hence thesis by A65, A64, PROB_1: 33, XBOOLE_1: 17;

          end;

          ((Prob * C) . (k + 1)) = (1 - ((Prob * ( Complement C)) . (k + 1)))

          proof

            (C . (k + 1)) = (((C . (k + 1)) ` ) ` ) & (((C . (k + 1)) ` ) ` ) = (Omega \ ((C . (k + 1)) ` )) by SUBSET_1:def 4;

            then (Prob . (C . (k + 1))) = (Prob . (( [#] Sigma) \ ((C . (k + 1)) ` ))) & ((C . (k + 1)) ` ) is Event of Sigma by PROB_1: 20;

            then

             A130: (Prob . (C . (k + 1))) = (1 - (Prob . ((C . (k + 1)) ` ))) by PROB_1: 32;

            ( dom (Prob * C)) = NAT by FUNCT_2:def 1;

            then

             A131: ((Prob * C) . (k + 1)) = (1 - (Prob . ((C . (k + 1)) ` ))) by A130, FUNCT_1: 12;

            ( dom (Prob * ( Complement C))) = NAT by FUNCT_2:def 1;

            then ((Prob * ( Complement C)) . (k + 1)) = (Prob . (( Complement C) . (k + 1))) by FUNCT_1: 12;

            hence thesis by A131, PROB_1:def 2;

          end;

          then (Prob . ((( Partial_Intersection ( Complement C)) . (k + 1)) /\ (( Partial_Intersection (C ^\ (((k + 1) + n2) + 1))) . q))) = ((((Prob * ( Complement C)) . (k + 1)) * (( Partial_Product (Prob * ( Complement C))) . k)) * (( Partial_Product (Prob * (C ^\ (((k + 1) + n2) + 1)))) . q)) by A66;

          hence thesis by SERIES_3:def 1;

        end;

        

         A132: for k be Nat holds J[k] from NAT_1:sch 2( A36, A59);

        ex e be sequence of NAT st (A * e) = A & e is one-to-one & ( dom e) <> {}

        proof

          set e = ( Special_Function2 0 );

          

           A133: ( dom e) <> {} ;

          A is sequence of ( bool Omega) & (A * e) is sequence of ( bool Omega) & for n be object st n in NAT holds ((A * e) . n) = (A . n)

          proof

            for n be object st n in NAT holds ((A * e) . n) = (A . n) & (A . (e . n)) = (A . n)

            proof

              let n be object;

              assume n in NAT ;

              then

              reconsider n as Element of NAT ;

              

               A135: (e . n) = (n + 0 ) by Def3;

              ( dom (A * e)) = NAT by FUNCT_2:def 1;

              hence thesis by A135, FUNCT_1: 12;

            end;

            hence thesis;

          end;

          hence thesis by A133, FUNCT_2: 12;

        end;

        hence (Prob . ((( Partial_Intersection ( Complement A)) . n1) /\ (( Partial_Intersection (A ^\ ((n1 + n2) + 1))) . q))) = ((( Partial_Product (Prob * ( Complement A))) . n1) * (( Partial_Product (Prob * (A ^\ ((n1 + n2) + 1)))) . q)) by A132;

      end;

      ((n - n1) - 1) is Element of NAT

      proof

        (n1 + 1) <= n by A1, NAT_1: 13;

        then ((n1 + 1) - 1) <= (n - 1) by XREAL_1: 9;

        then n1 <= (n - 1) & (n - 1) is Element of NAT by A1, NAT_1: 20;

        then ((n - 1) - n1) is Element of NAT by NAT_1: 21;

        hence thesis;

      end;

      hence thesis by A35;

    end;

    theorem :: BOR_CANT:7

    

     Th7: (( Partial_Intersection ( Complement A)) . n) = ((( Partial_Union A) . n) ` )

    proof

      for x be object holds (x in (( Partial_Intersection ( Complement A)) . n) iff x in ((( Partial_Union A) . n) ` ))

      proof

        let x be object;

        hereby

          assume

           A1: x in (( Partial_Intersection ( Complement A)) . n);

          for knat be Nat st knat <= n holds not x in (A . knat)

          proof

            let knat be Nat;

            assume knat <= n;

            then

             A2: x in (( Complement A) . knat) by A1, PROB_3: 25;

            reconsider knat as Element of NAT by ORDINAL1:def 12;

            (( Complement A) . knat) = ((A . knat) ` ) by PROB_1:def 2;

            then (( Complement A) . knat) = (Omega \ (A . knat)) by SUBSET_1:def 4;

            hence thesis by A2, XBOOLE_0:def 5;

          end;

          then

           A3: not x in (( Partial_Union A) . n) by PROB_3: 26;

          x in (Omega \ (( Partial_Union A) . n)) by A1, A3, XBOOLE_0:def 5;

          hence x in ((( Partial_Union A) . n) ` ) by SUBSET_1:def 4;

        end;

        assume

         A4: x in ((( Partial_Union A) . n) ` );

        x in (Omega \ (( Partial_Union A) . n)) by A4, SUBSET_1:def 4;

        then

         A5: x in Omega & not x in (( Partial_Union A) . n) by XBOOLE_0:def 5;

        for knat be Nat st knat <= n holds x in (( Complement A) . knat)

        proof

          let knat be Nat;

          assume knat <= n;

          then x in Omega & not x in (A . knat) by A5, PROB_3: 26;

          then

           A6: x in (Omega \ (A . knat)) by XBOOLE_0:def 5;

          reconsider knat as Element of NAT by ORDINAL1:def 12;

          x in ((A . knat) ` ) by A6, SUBSET_1:def 4;

          hence thesis by PROB_1:def 2;

        end;

        hence x in (( Partial_Intersection ( Complement A)) . n) by PROB_3: 25;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: BOR_CANT:8

    

     Th8: (Prob . (( Partial_Intersection ( Complement A)) . n)) = (1 - (Prob . (( Partial_Union A) . n)))

    proof

      

       A1: (Prob . (( Partial_Intersection ( Complement A)) . n)) = (Prob . ((( Partial_Union A) . n) ` )) by Th7;

      (Prob . ((( Partial_Union A) . n) ` )) = (Prob . (( [#] Sigma) \ (( Partial_Union A) . n))) by SUBSET_1:def 4;

      hence thesis by A1, PROB_1: 32;

    end;

    

     Lemacik0: for X be set holds for F be SetSequence of X, n be Nat holds (( superior_setsequence F) . n) = ( union ( rng (F ^\ n)))

    proof

      let X be set;

      let F be SetSequence of X, n be Nat;

      { (F . k) where k be Nat : n <= k } = ( rng (F ^\ n)) by SETLIM_1: 6;

      hence (( superior_setsequence F) . n) = ( union ( rng (F ^\ n))) by SETLIM_1:def 3;

    end;

    definition

      let X be set, A be SetSequence of X;

      :: original: superior_setsequence

      redefine

      :: BOR_CANT:def7

      func superior_setsequence A -> SetSequence of X means

      : Def7: for n be Nat holds (it . n) = ( Union (A ^\ n));

      compatibility

      proof

        let f be SetSequence of X;

        thus f = ( superior_setsequence A) implies for n be Nat holds (f . n) = ( Union (A ^\ n)) by Lemacik0;

        assume

         A1: for n be Nat holds (f . n) = ( Union (A ^\ n));

        for n be Element of NAT holds (f . n) = (( superior_setsequence A) . n)

        proof

          let n be Element of NAT ;

          (f . n) = ( Union (A ^\ n)) by A1

          .= (( superior_setsequence A) . n) by Lemacik0;

          hence thesis;

        end;

        hence thesis by FUNCT_2:def 8;

      end;

      coherence

      proof

        for n holds (( superior_setsequence A) . n) = ( union { (A . k) where k be Nat : n <= k }) by SETLIM_1:def 3;

        hence thesis;

      end;

    end

    registration

      let Omega be non empty set, Sigma be SigmaField of Omega, A be SetSequence of Sigma;

      cluster ( superior_setsequence A) -> Sigma -valued;

      coherence

      proof

        defpred P[ set] means (( superior_setsequence A) . $1) is Event of Sigma;

        (( superior_setsequence A) . 0 ) = ( Union (A ^\ 0 )) by Def7;

        then

         A1: P[ 0 ] by PROB_1: 17;

        

         A2: for k be Nat st P[k] holds P[(k + 1)]

        proof

          let k be Nat;

          assume (( superior_setsequence A) . k) is Event of Sigma;

          ( Union (A ^\ (k + 1))) in Sigma by PROB_1: 17;

          hence thesis by Def7;

        end;

        for k be Nat holds P[k] from NAT_1:sch 2( A1, A2);

        hence thesis by PROB_1: 25;

      end;

    end

    definition

      let Omega be non empty set, Sigma be SigmaField of Omega, A be SetSequence of Sigma;

      :: BOR_CANT:def8

      func @lim_sup A -> Event of Sigma equals ( lim_sup A);

      coherence

      proof

        ( lim_sup A) = ( @Intersection ( superior_setsequence A));

        hence thesis;

      end;

    end

    definition

      let X be set, A be SetSequence of X;

      :: original: inferior_setsequence

      redefine

      :: BOR_CANT:def9

      func inferior_setsequence A -> SetSequence of X means

      : Def9: for n be Nat holds (it . n) = ( Intersection (A ^\ n));

      coherence

      proof

        for n holds (( inferior_setsequence A) . n) = ( meet { (A . k) where k be Nat : n <= k }) by SETLIM_1:def 2;

        hence thesis;

      end;

      compatibility

      proof

        let f be SetSequence of X;

        thus f = ( inferior_setsequence A) implies for n be Nat holds (f . n) = ( Intersection (A ^\ n))

        proof

          assume

           AA: f = ( inferior_setsequence A);

          let n be Nat;

          for x be object holds x in (( inferior_setsequence A) . n) iff x in ( Intersection (A ^\ n))

          proof

            let x be object;

            hereby

              assume

               A3: x in (( inferior_setsequence A) . n);

              for k be Nat holds x in ((A ^\ n) . k)

              proof

                let k be Nat;

                x in (A . (k + n)) by A3, SETLIM_1: 19;

                hence thesis by NAT_1:def 3;

              end;

              hence x in ( Intersection (A ^\ n)) by PROB_1: 13;

            end;

            assume

             A5: x in ( Intersection (A ^\ n));

            for k be Nat holds x in (A . (n + k))

            proof

              let k be Nat;

              x in ((A ^\ n) . k) by A5, PROB_1: 13;

              hence thesis by NAT_1:def 3;

            end;

            hence thesis by SETLIM_1: 19;

          end;

          hence thesis by AA, TARSKI: 2;

        end;

        assume

         B1: for n be Nat holds (f . n) = ( Intersection (A ^\ n));

        for n be Element of NAT holds (f . n) = (( inferior_setsequence A) . n)

        proof

          let n be Element of NAT ;

          for x be object holds x in (f . n) iff x in (( inferior_setsequence A) . n)

          proof

            let x be object;

            hereby

              assume x in (f . n);

              then

               A5: x in ( Intersection (A ^\ n)) by B1;

              for k be Nat holds x in (A . (n + k))

              proof

                let k be Nat;

                x in ((A ^\ n) . k) by A5, PROB_1: 13;

                hence thesis by NAT_1:def 3;

              end;

              hence x in (( inferior_setsequence A) . n) by SETLIM_1: 19;

            end;

            assume

             A3: x in (( inferior_setsequence A) . n);

            for k be Nat holds x in ((A ^\ n) . k)

            proof

              let k be Nat;

              x in (A . (k + n)) by A3, SETLIM_1: 19;

              hence thesis by NAT_1:def 3;

            end;

            then x in ( Intersection (A ^\ n)) by PROB_1: 13;

            hence thesis by B1;

          end;

          hence thesis by TARSKI: 2;

        end;

        then f = ( inferior_setsequence A);

        hence thesis;

      end;

    end

    registration

      let Omega be non empty set, Sigma be SigmaField of Omega, A be SetSequence of Sigma;

      cluster ( inferior_setsequence A) -> Sigma -valued;

      coherence

      proof

        defpred P[ set] means (( inferior_setsequence A) . $1) is Event of Sigma;

        

         A1: ( Union ( Complement (A ^\ 0 ))) is Event of Sigma by PROB_1: 26;

        (( inferior_setsequence A) . 0 ) = ( Intersection (A ^\ 0 )) by Def9;

        then

         A2: P[ 0 ] by A1, PROB_1: 20;

        

         A3: for k be Nat st P[k] holds P[(k + 1)]

        proof

          let k be Nat;

          assume (( inferior_setsequence A) . k) is Event of Sigma;

          

           A4: ( Union ( Complement (A ^\ (k + 1)))) is Event of Sigma by PROB_1: 26;

          (( inferior_setsequence A) . (k + 1)) = ( Intersection (A ^\ (k + 1))) by Def9;

          hence thesis by A4, PROB_1: 20;

        end;

        for k be Nat holds P[k] from NAT_1:sch 2( A2, A3);

        hence thesis by PROB_1: 25;

      end;

    end

    definition

      let Omega be non empty set, Sigma be SigmaField of Omega, A be SetSequence of Sigma;

      :: BOR_CANT:def10

      func @lim_inf A -> Event of Sigma equals ( lim_inf A);

      coherence by PROB_1: 26;

    end

    theorem :: BOR_CANT:9

    

     Th9: (( inferior_setsequence ( Complement A)) . n) = ((( superior_setsequence A) . n) ` )

    proof

      set B = ( Complement A);

      n in NAT by ORDINAL1:def 12;

      then (( inferior_setsequence B) . n) = ((( superior_setsequence ( Complement B)) . n) ` ) by SETLIM_1: 30;

      hence thesis;

    end;

    theorem :: BOR_CANT:10

    

     Th10: A is_all_independent_wrt Prob implies (Prob . (( Partial_Intersection ( Complement A)) . n)) = (( Partial_Product (Prob * ( Complement A))) . n)

    proof

      assume

       A1: A is_all_independent_wrt Prob;

      defpred J[ Nat] means (Prob . (( Partial_Intersection ( Complement A)) . $1)) = (( Partial_Product (Prob * ( Complement A))) . $1);

      ( dom (Prob * ( Complement A))) = NAT by FUNCT_2:def 1;

      then

       A2: ((Prob * ( Complement A)) . 0 ) = (Prob . (( Complement A) . 0 )) by FUNCT_1: 12;

      (( Partial_Product (Prob * ( Complement A))) . 0 ) = ((Prob * ( Complement A)) . 0 ) by SERIES_3:def 1;

      then

       A4: J[ 0 ] by A2, PROB_3: 21;

      

       A5: for k be Nat st J[k] holds J[(k + 1)]

      proof

        let k be Nat;

        assume

         A6: J[k];

        (((( Partial_Intersection ( Complement A)) . k) /\ (( Partial_Intersection ( Complement A)) . k)) /\ (( Complement A) . (k + 1))) = ((( Partial_Intersection ( Complement A)) . k) /\ ((A . (k + 1)) ` )) by PROB_1:def 2;

        then (((( Partial_Intersection ( Complement A)) . k) /\ (( Partial_Intersection ( Complement A)) . k)) /\ (( Complement A) . (k + 1))) = ((( Partial_Intersection ( Complement A)) . k) /\ (Omega \ (A . (k + 1)))) by SUBSET_1:def 4;

        then

         A7: (((( Partial_Intersection ( Complement A)) . k) /\ (( Partial_Intersection ( Complement A)) . k)) /\ (( Complement A) . (k + 1))) = (((( Partial_Intersection ( Complement A)) . k) /\ Omega) \ ((( Partial_Intersection ( Complement A)) . k) /\ (A . (k + 1)))) by XBOOLE_1: 50;

        

         A8: ((( Partial_Intersection ( Complement A)) . k) /\ Omega) = (( Partial_Intersection ( Complement A)) . k) by XBOOLE_1: 28;

        (Prob . ((( Partial_Intersection ( Complement A)) . k) \ ((( Partial_Intersection ( Complement A)) . k) /\ (A . (k + 1))))) = ((Prob . (( Partial_Intersection ( Complement A)) . k)) - (Prob . ((( Partial_Intersection ( Complement A)) . k) /\ (A . (k + 1))))) by PROB_1: 33, XBOOLE_1: 17;

        then

         A10: (Prob . (( Partial_Intersection ( Complement A)) . (k + 1))) = ((Prob . (( Partial_Intersection ( Complement A)) . k)) - (Prob . ((( Partial_Intersection ( Complement A)) . k) /\ (A . (k + 1))))) by A7, A8, PROB_3: 21;

        for A be SetSequence of Sigma holds for k be Nat st A is_all_independent_wrt Prob holds (Prob . ((( Partial_Intersection ( Complement A)) . k) /\ (A . (k + 1)))) = ((( Partial_Product (Prob * ( Complement A))) . k) * ((Prob * A) . (k + 1)))

        proof

          let A be SetSequence of Sigma;

          let k be Nat;

          assume

           A11: A is_all_independent_wrt Prob;

          set n = (k + 1);

          reconsider n1 = k as Element of NAT by ORDINAL1:def 12;

          n1 < (k + 1) by NAT_1: 13;

          then (Prob . ((( Partial_Intersection ( Complement A)) . k) /\ (( Partial_Intersection (A ^\ ((k + 0 ) + 1))) . ((n - k) - 1)))) = ((( Partial_Product (Prob * ( Complement A))) . k) * (( Partial_Product (Prob * (A ^\ ((k + 0 ) + 1)))) . ((n - k) - 1))) by A11, Th6;

          then

           A12: (Prob . ((( Partial_Intersection ( Complement A)) . k) /\ ((A ^\ (k + 1)) . 0 ))) = ((( Partial_Product (Prob * ( Complement A))) . k) * (( Partial_Product (Prob * (A ^\ (k + 1)))) . 0 )) by PROB_3: 21;

          

           A13: ((A ^\ (k + 1)) . 0 ) = (A . ( 0 + (k + 1))) by NAT_1:def 3;

          then

           A14: (Prob . ((( Partial_Intersection ( Complement A)) . k) /\ (A . (k + 1)))) = ((( Partial_Product (Prob * ( Complement A))) . k) * ((Prob * (A ^\ (k + 1))) . 0 )) by A12, SERIES_3:def 1;

          ( dom (Prob * (A ^\ (k + 1)))) = NAT by FUNCT_2:def 1;

          then

           A15: (Prob . ((( Partial_Intersection ( Complement A)) . k) /\ (A . (k + 1)))) = ((( Partial_Product (Prob * ( Complement A))) . k) * (Prob . (A . (k + 1)))) by A13, A14, FUNCT_1: 12;

          ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

          hence thesis by A15, FUNCT_1: 12;

        end;

        then

         A16: (Prob . (( Partial_Intersection ( Complement A)) . (k + 1))) = ((( Partial_Product (Prob * ( Complement A))) . k) - ((( Partial_Product (Prob * ( Complement A))) . k) * ((Prob * A) . (k + 1)))) by A6, A10, A1;

        (A . (k + 1)) = (((A . (k + 1)) ` ) ` ) & (((A . (k + 1)) ` ) ` ) = (Omega \ ((A . (k + 1)) ` )) by SUBSET_1:def 4;

        then (Prob . (A . (k + 1))) = (Prob . (( [#] Sigma) \ ((A . (k + 1)) ` ))) & ((A . (k + 1)) ` ) is Event of Sigma by PROB_1: 20;

        then

         A17: (Prob . (A . (k + 1))) = (1 - (Prob . ((A . (k + 1)) ` ))) by PROB_1: 32;

        ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

        then

         A18: ((Prob * A) . (k + 1)) = (1 - (Prob . ((A . (k + 1)) ` ))) by A17, FUNCT_1: 12;

        ( dom (Prob * ( Complement A))) = NAT by FUNCT_2:def 1;

        then ((Prob * ( Complement A)) . (k + 1)) = (Prob . (( Complement A) . (k + 1))) by FUNCT_1: 12;

        then ((Prob * A) . (k + 1)) = (1 - ((Prob * ( Complement A)) . (k + 1))) by A18, PROB_1:def 2;

        then (Prob . (( Partial_Intersection ( Complement A)) . (k + 1))) = (((( Partial_Product (Prob * ( Complement A))) . k) - (( Partial_Product (Prob * ( Complement A))) . k)) + ((( Partial_Product (Prob * ( Complement A))) . k) * ((Prob * ( Complement A)) . (k + 1)))) by A16;

        hence thesis by SERIES_3:def 1;

      end;

      for k be Nat holds J[k] from NAT_1:sch 2( A4, A5);

      hence thesis;

    end;

    ::$Canceled

    definition

      let Omega be non empty set;

      let Sigma be SigmaField of Omega;

      let Prob be Probability of Sigma;

      let A be SetSequence of Sigma;

      :: BOR_CANT:def11

      func Sum_Shift_Seq (Prob,A) -> Real_Sequence means

      : Def11: for n be Nat holds (it . n) = ( Sum (Prob * (A ^\ n)));

      existence

      proof

        deffunc J( Nat) = ( In (( Sum (Prob * (A ^\ $1))), REAL ));

        consider f be Real_Sequence such that

         A1: for k be Element of NAT holds (f . k) = J(k) from FUNCT_2:sch 4;

        take f;

        let k be Nat;

        k in NAT by ORDINAL1:def 12;

        then (f . k) = J(k) by A1;

        hence thesis;

      end;

      uniqueness

      proof

        let J1,J2 be Real_Sequence;

        assume that

         A2: for n be Nat holds (J1 . n) = ( Sum (Prob * (A ^\ n))) and

         A3: for n be Nat holds (J2 . n) = ( Sum (Prob * (A ^\ n)));

        let n be Element of NAT ;

        (J1 . n) = ( Sum (Prob * (A ^\ n))) by A2;

        hence thesis by A3;

      end;

    end

    theorem :: BOR_CANT:13

    

     Th13: ( Partial_Sums (Prob * A)) is convergent implies ((Prob . ( @lim_sup A)) = 0 & ( lim ( Sum_Shift_Seq (Prob,A))) = 0 & ( Sum_Shift_Seq (Prob,A)) is convergent)

    proof

      assume

       A1: ( Partial_Sums (Prob * A)) is convergent;

      then

       A2: (Prob * A) is summable by SERIES_1:def 2;

      

       A3: for n be Nat holds 0 <= ((Prob * ( Partial_Intersection ( superior_setsequence A))) . n)

      proof

        let n be Nat;

        ( dom (Prob * ( Partial_Intersection ( superior_setsequence A)))) = NAT by FUNCT_2:def 1;

        then ((Prob * ( Partial_Intersection ( superior_setsequence A))) . n) = (Prob . (( Partial_Intersection ( superior_setsequence A)) . n)) by FUNCT_1: 12, ORDINAL1:def 12;

        hence thesis by PROB_1:def 8;

      end;

      

       A5: ( Intersection ( Partial_Intersection ( superior_setsequence A))) = ( Intersection ( superior_setsequence A)) by PROB_3: 29;

      ( Partial_Intersection ( superior_setsequence A)) is non-ascending by PROB_3: 27;

      then

       A7: ( lim (Prob * ( Partial_Intersection ( superior_setsequence A)))) = (Prob . ( Intersection ( Partial_Intersection ( superior_setsequence A)))) & (Prob * ( Partial_Intersection ( superior_setsequence A))) is convergent by PROB_1:def 8;

      

       A8: for A be SetSequence of Sigma holds for n,s be Nat holds ((Prob * ( Partial_Union (A ^\ s))) . n) <= (( Partial_Sums (Prob * (A ^\ s))) . n)

      proof

        let A be SetSequence of Sigma;

        let n,s be Nat;

        defpred P[ set] means ((Prob * ( Partial_Union (A ^\ s))) . $1) <= (( Partial_Sums (Prob * (A ^\ s))) . $1);

        

         A9: (( Partial_Sums (Prob * (A ^\ s))) . 0 ) = ((Prob * (A ^\ s)) . 0 ) by SERIES_1:def 1;

        ( dom (Prob * (A ^\ s))) = NAT by FUNCT_2:def 1;

        then

         A11: ((Prob * (A ^\ s)) . 0 ) = (Prob . ((A ^\ s) . 0 )) by FUNCT_1: 12;

        

         A12: (Prob . (( Partial_Union (A ^\ s)) . 0 )) = (Prob . ((A ^\ s) . 0 )) by PROB_3:def 2;

        ( dom (Prob * ( Partial_Union (A ^\ s)))) = NAT by FUNCT_2:def 1;

        then

         A14: P[ 0 ] by A12, A11, A9, FUNCT_1: 12;

        

         A15: for k be Nat st P[k] holds P[(k + 1)]

        proof

          let k be Nat;

          assume

           A16: ((Prob * ( Partial_Union (A ^\ s))) . k) <= (( Partial_Sums (Prob * (A ^\ s))) . k);

          

           A17: ( dom (Prob * ( Partial_Union (A ^\ s)))) = NAT by FUNCT_2:def 1;

          

           A18: (Prob . ((( Partial_Union (A ^\ s)) . k) \/ ((A ^\ s) . (k + 1)))) <= ((Prob . (( Partial_Union (A ^\ s)) . k)) + (Prob . ((A ^\ s) . (k + 1)))) by PROB_1: 39;

          ( dom (Prob * (A ^\ s))) = NAT by FUNCT_2:def 1;

          then

           A19: ((Prob * (A ^\ s)) . (k + 1)) = (Prob . ((A ^\ s) . (k + 1))) by FUNCT_1: 12;

          

           A20: (Prob . (( Partial_Union (A ^\ s)) . (k + 1))) <= ((Prob . (( Partial_Union (A ^\ s)) . k)) + ((Prob * (A ^\ s)) . (k + 1))) implies ((Prob . (( Partial_Union (A ^\ s)) . (k + 1))) - (Prob . (( Partial_Union (A ^\ s)) . k))) <= ((Prob * (A ^\ s)) . (k + 1)) by XREAL_1: 20;

          

           A21: ((Prob . (( Partial_Union (A ^\ s)) . (k + 1))) - ((Prob * (A ^\ s)) . (k + 1))) <= (Prob . (( Partial_Union (A ^\ s)) . k)) & (Prob . (( Partial_Union (A ^\ s)) . k)) <= (( Partial_Sums (Prob * (A ^\ s))) . k) implies ((Prob . (( Partial_Union (A ^\ s)) . (k + 1))) - ((Prob * (A ^\ s)) . (k + 1))) <= (( Partial_Sums (Prob * (A ^\ s))) . k) by XXREAL_0: 2;

          

           A22: ((Prob . (( Partial_Union (A ^\ s)) . (k + 1))) - ((Prob * (A ^\ s)) . (k + 1))) <= (( Partial_Sums (Prob * (A ^\ s))) . k) implies (Prob . (( Partial_Union (A ^\ s)) . (k + 1))) <= ((( Partial_Sums (Prob * (A ^\ s))) . k) + ((Prob * (A ^\ s)) . (k + 1))) by XREAL_1: 20;

          

           A23: (Prob . (( Partial_Union (A ^\ s)) . (k + 1))) <= (( Partial_Sums (Prob * (A ^\ s))) . (k + 1)) by A18, A19, A20, A17, A16, A21, A22, FUNCT_1: 12, PROB_3:def 2, SERIES_1:def 1, XREAL_1: 12, ORDINAL1:def 12;

          ( dom (Prob * ( Partial_Union (A ^\ s)))) = NAT by FUNCT_2:def 1;

          hence thesis by A23, FUNCT_1: 12;

        end;

        for k be Nat holds P[k] from NAT_1:sch 2( A14, A15);

        hence thesis;

      end;

      

       A24: for k be Nat holds ( Partial_Sums ((Prob * A) ^\ k)) is convergent

      proof

        let k be Nat;

        ((Prob * A) ^\ k) is summable by A2, SERIES_1: 12;

        hence thesis by SERIES_1:def 2;

      end;

      

       A25: for A be SetSequence of Sigma holds for n be Nat holds (Prob * (A ^\ n)) = ((Prob * A) ^\ n)

      proof

        let A be SetSequence of Sigma;

        let n be Nat;

        for k be Element of NAT holds ((Prob * (A ^\ n)) . k) = (((Prob * A) ^\ n) . k)

        proof

          let k be Element of NAT ;

          ( dom (Prob * (A ^\ n))) = NAT by FUNCT_2:def 1;

          then

           A26: ((Prob * (A ^\ n)) . k) = (Prob . ((A ^\ n) . k)) by FUNCT_1: 12;

          ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

          then

           A27: (Prob . (A . (n + k))) = ((Prob * A) . (n + k)) by FUNCT_1: 12;

          ((Prob * A) . (k + n)) = (((Prob * A) ^\ n) . k) by NAT_1:def 3;

          hence thesis by A26, A27, NAT_1:def 3;

        end;

        hence thesis;

      end;

      

       A28: for n be Nat holds ( Partial_Sums (Prob * (A ^\ n))) is convergent

      proof

        let n be Nat;

        ( Partial_Sums (Prob * (A ^\ n))) = ( Partial_Sums ((Prob * A) ^\ n)) by A25;

        hence thesis by A24;

      end;

      

       A29: for n be Nat holds ( lim (Prob * ( Partial_Union (A ^\ n)))) <= ( lim ( Partial_Sums (Prob * (A ^\ n))))

      proof

        let n be Nat;

        

         A30: for k be Nat holds ((Prob * ( Partial_Union (A ^\ n))) . k) <= (( Partial_Sums (Prob * (A ^\ n))) . k) by A8;

        

         A31: (Prob * ( Partial_Union (A ^\ n))) is convergent by PROB_3: 41;

        ( Partial_Sums (Prob * (A ^\ n))) is convergent by A28;

        hence thesis by A31, A30, SEQ_2: 18;

      end;

      

       A32: for n be Nat holds (Prob . ( Union (A ^\ n))) <= ( lim ( Partial_Sums (Prob * (A ^\ n))))

      proof

        let n be Nat;

        ( lim (Prob * ( Partial_Union (A ^\ n)))) <= ( lim ( Partial_Sums (Prob * (A ^\ n)))) by A29;

        hence thesis by PROB_3: 41;

      end;

      

       A33: for n be Nat holds (Prob . ( Union (A ^\ n))) <= ( Sum (Prob * (A ^\ n)))

      proof

        let n be Nat;

        ( lim ( Partial_Sums (Prob * (A ^\ n)))) = ( Sum (Prob * (A ^\ n))) by SERIES_1:def 3;

        hence thesis by A32;

      end;

      

       A34: for n be Nat holds ((Prob * ( superior_setsequence A)) . n) <= (( Sum_Shift_Seq (Prob,A)) . n)

      proof

        let n be Nat;

        ( dom (Prob * ( superior_setsequence A))) = NAT by FUNCT_2:def 1;

        then

         A36: ((Prob * ( superior_setsequence A)) . n) = (Prob . (( superior_setsequence A) . n)) by FUNCT_1: 12, ORDINAL1:def 12;

        

         A37: (Prob . ( Union (A ^\ n))) <= ( Sum (Prob * (A ^\ n))) by A33;

        ( Sum (Prob * (A ^\ n))) = (( Sum_Shift_Seq (Prob,A)) . n) by Def11;

        hence thesis by Def7, A36, A37;

      end;

      

       A38: 0 <= ( lim (Prob * ( Partial_Intersection ( superior_setsequence A)))) by A7, A3, SEQ_2: 17;

      

       A39: ( Sum_Shift_Seq (Prob,A)) is convergent implies ( lim (Prob * ( Partial_Intersection ( superior_setsequence A)))) <= ( lim ( Sum_Shift_Seq (Prob,A)))

      proof

        assume

         A40: ( Sum_Shift_Seq (Prob,A)) is convergent;

        

         A41: for n be Nat holds ((Prob * ( Partial_Intersection ( superior_setsequence A))) . n) <= ((Prob * ( superior_setsequence A)) . n)

        proof

          let n be Nat;

          

           A42: (Prob . (( Partial_Intersection ( superior_setsequence A)) . n)) <= (Prob . (( superior_setsequence A) . n)) by PROB_1: 34, PROB_3: 23;

          

           A43: ( dom (Prob * ( Partial_Intersection ( superior_setsequence A)))) = NAT by FUNCT_2:def 1;

          ( dom (Prob * ( superior_setsequence A))) = NAT by FUNCT_2:def 1;

          then ((Prob * ( superior_setsequence A)) . n) = (Prob . (( superior_setsequence A) . n)) by FUNCT_1: 12, ORDINAL1:def 12;

          hence thesis by A43, A42, FUNCT_1: 12, ORDINAL1:def 12;

        end;

        ( lim (Prob * ( Partial_Intersection ( superior_setsequence A)))) <= ( lim ( Sum_Shift_Seq (Prob,A)))

        proof

          for n be Nat holds ((Prob * ( Partial_Intersection ( superior_setsequence A))) . n) <= (( Sum_Shift_Seq (Prob,A)) . n)

          proof

            let n be Nat;

            

             A47: ((Prob * ( Partial_Intersection ( superior_setsequence A))) . n) <= ((Prob * ( superior_setsequence A)) . n) by A41;

            ((Prob * ( superior_setsequence A)) . n) <= (( Sum_Shift_Seq (Prob,A)) . n) by A34;

            hence thesis by A47, XXREAL_0: 2;

          end;

          hence thesis by A7, A40, SEQ_2: 18;

        end;

        hence thesis;

      end;

      for A be SetSequence of Sigma holds ( Partial_Sums (Prob * A)) is convergent implies ( 0 = ( lim ( Sum_Shift_Seq (Prob,A))) & ( Sum_Shift_Seq (Prob,A)) is convergent)

      proof

        let A be SetSequence of Sigma;

        assume

         A50: ( Partial_Sums (Prob * A)) is convergent;

        

         A52: for n be Nat holds (( Sum (Prob * A)) - ( Sum ((Prob * A) ^\ (n + 1)))) = (( Partial_Sums (Prob * A)) . n)

        proof

          let n be Nat;

          (( Sum (Prob * A)) - ( Sum ((Prob * A) ^\ (n + 1)))) = (((( Partial_Sums (Prob * A)) . n) + ( Sum ((Prob * A) ^\ (n + 1)))) - ( Sum ((Prob * A) ^\ (n + 1)))) by A50, SERIES_1: 15, SERIES_1:def 2;

          hence thesis;

        end;

        

         A53: for n,m be Nat holds |.((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)).| = |.(((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n)).|

        proof

          let n,m be Nat;

          

           A54: ((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)) = ((( Partial_Sums (Prob * A)) . m) - (( Sum (Prob * A)) - ( Sum ((Prob * A) ^\ (n + 1))))) by A52;

          ((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)) = ((( Sum (Prob * A)) - ( Sum ((Prob * A) ^\ (m + 1)))) - (( Sum (Prob * A)) - ( Sum ((Prob * A) ^\ (n + 1))))) by A52, A54;

          then

           A56: ((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)) = (( Sum ((Prob * A) ^\ (n + 1))) - ( Sum ((Prob * A) ^\ (m + 1))));

          

           A57: for A be SetSequence of Sigma holds for n be Element of NAT holds (Prob * (A ^\ n)) = ((Prob * A) ^\ n)

          proof

            let A be SetSequence of Sigma;

            let n be Element of NAT ;

            for k be Element of NAT holds ((Prob * (A ^\ n)) . k) = (((Prob * A) ^\ n) . k)

            proof

              let k be Element of NAT ;

              ( dom (Prob * (A ^\ n))) = NAT by FUNCT_2:def 1;

              then

               A58: ((Prob * (A ^\ n)) . k) = (Prob . ((A ^\ n) . k)) by FUNCT_1: 12;

              ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

              then

               A59: (Prob . (A . (n + k))) = ((Prob * A) . (n + k)) by FUNCT_1: 12;

              ((Prob * A) . (k + n)) = (((Prob * A) ^\ n) . k) by NAT_1:def 3;

              hence thesis by A58, A59, NAT_1:def 3;

            end;

            hence thesis;

          end;

          

           A60: for n be Nat holds ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) = ( Sum ((Prob * A) ^\ (n + 1)))

          proof

            let n be Nat;

            

             A61: ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) = (( Sum_Shift_Seq (Prob,A)) . (n + 1)) by NAT_1:def 3;

            (( Sum_Shift_Seq (Prob,A)) . (n + 1)) = ( Sum (Prob * (A ^\ (n + 1)))) by Def11;

            hence thesis by A57, A61;

          end;

          

           A62: |.((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)).| = |.(((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m)).|

          proof

            ((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)) = (((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ( Sum ((Prob * A) ^\ (m + 1)))) by A56, A60;

            hence thesis by A60;

          end;

           |.(((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m)).| = |.(((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n)).|

          proof

            per cases ;

              suppose (((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m)) = 0 ;

              hence thesis;

            end;

              suppose 0 < (((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m));

              then

               A63: ( - 0 ) > ( - (((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m)));

               |.(((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n)).| = ( - (((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n))) by A63, ABSVALUE:def 1;

              hence thesis;

            end;

              suppose (((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m)) < 0 ;

              then |.(((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m)).| = ( - (((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m))) by ABSVALUE:def 1;

              hence thesis;

            end;

          end;

          hence thesis by A62;

        end;

        

         A65: (for sr be Real st 0 < sr holds ex n be Nat st for m be Nat st n <= m holds |.((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)).| < sr) implies (for sr be Real st 0 < sr holds ex n be Nat st for m be Nat st n <= m holds |.(((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n)).| < sr)

        proof

          assume

           A66: for sr be Real st 0 < sr holds ex n be Nat st for m be Nat st n <= m holds |.((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)).| < sr;

          let sr be Real such that

           A67: 0 < sr;

          consider n be Nat such that

           A68: for m be Nat st n <= m holds |.((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)).| < sr by A66, A67;

          take n;

          let m be Nat such that

           A69: n <= m;

           |.((( Partial_Sums (Prob * A)) . m) - (( Partial_Sums (Prob * A)) . n)).| = |.(((( Sum_Shift_Seq (Prob,A)) ^\ 1) . m) - ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n)).| by A53;

          hence thesis by A68, A69;

        end;

        

         A70: ( Partial_Sums (Prob * A)) is convergent & (( Sum_Shift_Seq (Prob,A)) ^\ 1) is convergent by A50, A65, SEQ_4: 41;

        

         A71: ( dom ((( Sum_Shift_Seq (Prob,A)) ^\ 1) + ( Partial_Sums (Prob * A)))) = NAT by FUNCT_2:def 1;

        consider B be Real_Sequence such that

         A72: B = ((( Sum_Shift_Seq (Prob,A)) ^\ 1) + ( Partial_Sums (Prob * A)));

        reconsider SP = ( Sum (Prob * A)) as Element of REAL by XREAL_0:def 1;

        set B1 = ( NAT --> SP);

        

         A74: for n be Nat holds (B1 . n) = (B . n)

        proof

          let n be Nat;

          

           A75: for n be Nat holds ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) = ( Sum ((Prob * A) ^\ (n + 1)))

          proof

            let n be Nat;

            

             A76: ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) = (( Sum_Shift_Seq (Prob,A)) . (n + 1)) by NAT_1:def 3;

            

             A77: for A be SetSequence of Sigma holds for n be Element of NAT holds (Prob * (A ^\ n)) = ((Prob * A) ^\ n)

            proof

              let A be SetSequence of Sigma;

              let n be Element of NAT ;

              for k be Element of NAT holds ((Prob * (A ^\ n)) . k) = (((Prob * A) ^\ n) . k)

              proof

                let k be Element of NAT ;

                ( dom (Prob * (A ^\ n))) = NAT by FUNCT_2:def 1;

                then

                 A78: ((Prob * (A ^\ n)) . k) = (Prob . ((A ^\ n) . k)) by FUNCT_1: 12;

                ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

                then

                 A79: (Prob . (A . (n + k))) = ((Prob * A) . (n + k)) by FUNCT_1: 12;

                ((Prob * A) . (k + n)) = (((Prob * A) ^\ n) . k) by NAT_1:def 3;

                hence thesis by A78, A79, NAT_1:def 3;

              end;

              hence thesis;

            end;

            (( Sum_Shift_Seq (Prob,A)) . (n + 1)) = ( Sum (Prob * (A ^\ (n + 1)))) by Def11;

            hence thesis by A76, A77;

          end;

          

           A81: ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n) = ( Sum ((Prob * A) ^\ (n + 1))) by A75;

          ( Sum (Prob * A)) = ((( Partial_Sums (Prob * A)) . n) + ( Sum ((Prob * A) ^\ (n + 1)))) by A50, SERIES_1: 15, SERIES_1:def 2;

          then (B1 . n) = ((( Partial_Sums (Prob * A)) . n) + ((( Sum_Shift_Seq (Prob,A)) ^\ 1) . n)) by A81, FUNCOP_1: 7, ORDINAL1:def 12;

          hence thesis by A71, A72, VALUED_1:def 1, ORDINAL1:def 12;

        end;

        

         A82: ( lim B1) = ( lim B)

        proof

          ex k be Nat st for n be Nat st k <= n holds (B1 . n) = (B . n)

          proof

            take 1;

            thus thesis by A74;

          end;

          hence thesis by SEQ_4: 19;

        end;

        

         A83: ( Sum (Prob * A)) = (B1 . 1)

        .= ( lim B) by A82, SEQ_4: 26;

        ( lim B) = (( lim (( Sum_Shift_Seq (Prob,A)) ^\ 1)) + ( lim ( Partial_Sums (Prob * A)))) by A72, A70, SEQ_2: 6;

        then ( Sum (Prob * A)) = (( lim (( Sum_Shift_Seq (Prob,A)) ^\ 1)) + ( Sum (Prob * A))) by A83, SERIES_1:def 3;

        hence thesis by A70, SEQ_4: 21, SEQ_4: 22;

      end;

      hence thesis by A5, A7, A38, A39, A1;

    end;

    theorem :: BOR_CANT:14

    

     Th14: (for X be set, A be SetSequence of X holds for n be Nat, x be object holds ((ex k be Nat st x in ((A ^\ n) . k)) iff (ex k be Nat st k >= n & x in (A . k)))) & (for X be set, A be SetSequence of X holds for x be object holds x in ( Intersection ( superior_setsequence A)) iff for m be Nat holds ex n be Nat st n >= m & x in (A . n)) & (for A be SetSequence of Sigma holds for x be object holds x in ( @Intersection ( superior_setsequence A)) iff for m be Nat holds ex n be Nat st n >= m & x in (A . n)) & (for X be set, A be SetSequence of X holds for x be object holds ((x in ( Union ( inferior_setsequence A))) iff (ex n be Nat st for k be Nat st k >= n holds x in (A . k)))) & (for A be SetSequence of Sigma holds for x be object holds ((x in ( Union ( inferior_setsequence A))) iff (ex n be Nat st for k be Nat st k >= n holds x in (A . k)))) & (for A be SetSequence of Sigma holds for x be Element of Omega holds ((x in ( Union ( inferior_setsequence ( Complement A)))) iff (ex n be Nat st for k be Nat st k >= n holds not x in (A . k))))

    proof

      

       A1: for X be set, A be SetSequence of X holds for n be Nat, x be set holds ((ex k be Nat st x in ((A ^\ n) . k)) iff (ex k be Nat st k >= n & x in (A . k)))

      proof

        let X be set, A be SetSequence of X;

        let n be Nat, x be set;

        hereby

          given k be Nat such that

           A2: x in ((A ^\ n) . k);

          

           A3: x in (A . (k + n)) by A2, NAT_1:def 3;

          consider k be Nat such that

           A4: x in (A . (k + n)) by A3;

          consider k be Nat such that

           A5: k >= n & x in (A . k) by A4, NAT_1: 11;

          thus ex k be Nat st k >= n & x in (A . k) by A5;

        end;

        given k be Nat such that

         A6: k >= n & x in (A . k);

        consider knat be Nat such that

         A7: k = (n + knat) by A6, NAT_1: 10;

        reconsider knat as Element of NAT by ORDINAL1:def 12;

        x in (A . k) implies x in ((A ^\ n) . knat) by A7, NAT_1:def 3;

        hence thesis by A6;

      end;

      

       A8: for X be set, A be SetSequence of X holds for x be object holds x in ( Intersection ( superior_setsequence A)) iff for m be Nat holds ex n be Nat st n >= m & x in (A . n)

      proof

        let X be set, A be SetSequence of X;

        let x be object;

        hereby

          assume

           A9: x in ( Intersection ( superior_setsequence A));

          

           A10: for n be Nat holds (x in (( superior_setsequence A) . n) implies ex k be Nat st k >= n & x in (A . k))

          proof

            let n be Nat;

            assume

             A11: x in (( superior_setsequence A) . n);

            x in (( superior_setsequence A) . n) implies x in ( Union (A ^\ n)) by Def7;

            then ex k be Nat st x in ((A ^\ n) . k) by A11, PROB_1: 12;

            then

            consider k be Nat such that

             A14: k >= n & x in (A . k) by A1;

            take k;

            thus thesis by A14;

          end;

          for m be Nat holds ex n be Nat st n >= m & x in (A . n)

          proof

            let m be Nat;

            x in (( superior_setsequence A) . m) by A9, PROB_1: 13;

            hence thesis by A10;

          end;

          hence for m be Nat holds ex n be Nat st n >= m & x in (A . n);

        end;

        assume

         A16: for m be Nat holds ex n be Nat st n >= m & x in (A . n);

        

         A17: for m be Nat holds ((ex n be Nat st n >= m & x in (A . n)) implies (x in (( superior_setsequence A) . m)))

        proof

          let m be Nat;

          given n be Nat such that

           A18: n >= m & x in (A . n);

          ex k be Nat st x in ((A ^\ m) . k) by A18, A1;

          then x in ( Union (A ^\ m)) by PROB_1: 12;

          hence thesis by Def7;

        end;

        for m be Nat holds x in (( superior_setsequence A) . m)

        proof

          let m be Nat;

          ex n be Nat st n >= m & x in (A . n) by A16;

          hence thesis by A17;

        end;

        hence thesis by PROB_1: 13;

      end;

      

       A19: for A be SetSequence of Sigma holds for x be object holds x in ( @Intersection ( superior_setsequence A)) iff for m be Nat holds ex n be Nat st n >= m & x in (A . n)

      proof

        let A be SetSequence of Sigma;

        let x be object;

        ( @Intersection ( superior_setsequence A)) = ( Intersection ( superior_setsequence A)) by PROB_2:def 1;

        hence thesis by A8;

      end;

      

       A20: for X be set, A be SetSequence of X holds for x be object holds (x in ( Union ( inferior_setsequence A)) iff (ex n be Nat st for k be Nat st k >= n holds x in (A . k)))

      proof

        let X be set, A be SetSequence of X;

        let x be object;

        hereby

          assume x in ( Union ( inferior_setsequence A));

          then

          consider n be Nat such that

           A21: x in (( inferior_setsequence A) . n) by PROB_1: 12;

          

           A22: (( inferior_setsequence A) . n) = ( Intersection (A ^\ n)) by Def9;

          for k be Nat st k >= n holds x in (A . k)

          proof

            let k be Nat;

            assume n <= k;

            then

            consider knat be Nat such that

             A24: k = (n + knat) by NAT_1: 10;

            reconsider knat as Element of NAT by ORDINAL1:def 12;

            x in (A . k) iff x in ((A ^\ n) . knat) by A24, NAT_1:def 3;

            hence thesis by A22, A21, PROB_1: 13;

          end;

          hence ex n be Nat st for k be Nat st k >= n holds x in (A . k);

        end;

        given n be Nat such that

         A26: for k be Nat st k >= n holds x in (A . k);

        set knat = the Nat;

        for s be Nat holds x in ((A ^\ n) . s)

        proof

          let s be Nat;

          x in ((A ^\ n) . s) iff x in (A . (n + s)) by NAT_1:def 3;

          hence thesis by A26, NAT_1: 12;

        end;

        then x in ( Intersection (A ^\ n)) by PROB_1: 13;

        then x in (( inferior_setsequence A) . n) by Def9;

        hence thesis by PROB_1: 12;

      end;

      for A be SetSequence of Sigma holds for x be Element of Omega holds ((x in ( Union ( inferior_setsequence ( Complement A)))) iff (ex n be Nat st for k be Nat st k >= n holds not x in (A . k)))

      proof

        let A be SetSequence of Sigma;

        let x be Element of Omega;

        hereby

          assume x in ( Union ( inferior_setsequence ( Complement A)));

          then

          consider n be Nat such that

           A27: x in (( inferior_setsequence ( Complement A)) . n) by PROB_1: 12;

          

           A28: (( inferior_setsequence ( Complement A)) . n) = ( Intersection (( Complement A) ^\ n)) by Def9;

          set m = the Element of NAT ;

          for k be Nat st k >= n holds not x in (A . k)

          proof

            let k be Nat;

            assume

             A29: n <= k;

            consider knat be Nat such that

             A30: k = (n + knat) by A29, NAT_1: 10;

            reconsider knat as Element of NAT by ORDINAL1:def 12;

            

             A31: x in (( Complement A) . k) iff x in ((( Complement A) ^\ n) . knat) by A30, NAT_1:def 3;

            x in ((A . k) ` ) by A28, A27, A31, PROB_1: 13, PROB_1:def 2;

            then x in (Omega \ (A . k)) by SUBSET_1:def 4;

            hence thesis by XBOOLE_0:def 5;

          end;

          hence ex n be Nat st for k be Nat st k >= n holds not x in (A . k);

        end;

        given n be Nat such that

         A32: for k be Nat st k >= n holds not x in (A . k);

        set k = the Element of NAT ;

        

         A33: for k be Nat st n <= k holds x in (( Complement A) . k)

        proof

          let k be Nat;

          assume

           A34: n <= k;

          

           A35: not x in (A . k) by A34, A32;

          x in (Omega \ (A . k)) by A35, XBOOLE_0:def 5;

          then x in ((A . k) ` ) by SUBSET_1:def 4;

          hence thesis by PROB_1:def 2;

        end;

        for s be Nat holds x in ((( Complement A) ^\ n) . s)

        proof

          let s be Nat;

          x in ((( Complement A) ^\ n) . s) iff x in (( Complement A) . (n + s)) by NAT_1:def 3;

          hence thesis by A33, NAT_1: 12;

        end;

        then x in ( Intersection (( Complement A) ^\ n)) by PROB_1: 13;

        then x in (( inferior_setsequence ( Complement A)) . n) by Def9;

        hence x in ( Union ( inferior_setsequence ( Complement A))) by PROB_1: 12;

      end;

      hence thesis by A1, A8, A19, A20;

    end;

    

     Lemma: ( lim_inf A) = ( @lim_inf A);

    theorem :: BOR_CANT:15

    

     Th15: ( @lim_inf ( Complement A)) = (( @lim_sup A) ` ) & ((Prob . ( @lim_inf ( Complement A))) + (Prob . ( @lim_sup A))) = 1 & ((Prob . ( lim_inf ( Complement A))) + (Prob . ( lim_sup A))) = 1

    proof

      

       A18: for A holds ( lim_inf A) = ( @lim_inf A);

      

       A23: ( @lim_inf ( Complement A)) = (( @lim_sup A) ` )

      proof

        reconsider CA = ( Complement A) as SetSequence of Sigma;

        for x be object holds (x in ( @lim_inf ( Complement A)) iff x in (( @lim_sup A) ` ))

        proof

          let x be object;

          hereby

            assume x in ( @lim_inf ( Complement A));

            then x in ( @lim_inf CA);

            then x in Omega & ex n be Nat st for k be Nat st k >= n holds not x in (A . k) by Th14;

            then x in Omega & not (x in ( @lim_sup A)) by Th14;

            then x in (Omega \ ( @lim_sup A)) by XBOOLE_0:def 5;

            hence x in (( @lim_sup A) ` ) by SUBSET_1:def 4;

          end;

          assume

           A24: x in (( @lim_sup A) ` );

          x in (Omega \ ( @lim_sup A)) by A24, SUBSET_1:def 4;

          then not x in ( Intersection ( superior_setsequence A)) by XBOOLE_0:def 5;

          then ex m be Nat st for n be Nat st n >= m holds not x in (A . n) by Th14;

          then x in ( @lim_inf CA) by A24, Th14;

          hence thesis;

        end;

        hence thesis by TARSKI: 2;

      end;

      ((Prob . ( @lim_inf ( Complement A))) + (Prob . ( @lim_sup A))) = 1

      proof

        ((Prob . (( [#] Sigma) \ ( @lim_sup A))) + (Prob . ( @lim_sup A))) = 1 by PROB_1: 31;

        hence thesis by A23, SUBSET_1:def 4;

      end;

      hence thesis by A18, A23;

    end;

    theorem :: BOR_CANT:16

    

     Th16: (( Partial_Sums (Prob * A)) is convergent implies (Prob . ( lim_sup A)) = 0 & (Prob . ( lim_inf ( Complement A))) = 1) & (A is_all_independent_wrt Prob & ( Partial_Sums (Prob * A)) is divergent_to+infty implies (Prob . ( lim_inf ( Complement A))) = 0 & (Prob . ( lim_sup A)) = 1)

    proof

      

       A1: ( Partial_Sums (Prob * A)) is convergent implies (Prob . ( lim_inf ( Complement A))) = 1

      proof

        assume

         A2: ( Partial_Sums (Prob * A)) is convergent;

        

         A3: (Prob . ( lim_inf ( Complement A))) = (Prob . ( @lim_inf ( Complement A))) by Lemma;

        for A be SetSequence of Sigma holds ( Partial_Sums (Prob * A)) is convergent implies ((Prob . ( @lim_inf ( Complement A))) = 1 & ( lim ( Sum_Shift_Seq (Prob,A))) = 0 & ( Sum_Shift_Seq (Prob,A)) is convergent)

        proof

          let A be SetSequence of Sigma;

          assume

           A4: ( Partial_Sums (Prob * A)) is convergent;

          (((Prob . ( @lim_sup A)) + (Prob . ( @lim_inf ( Complement A)))) = ( 0 + (Prob . ( @lim_inf ( Complement A)))) & ( lim ( Sum_Shift_Seq (Prob,A))) = 0 & ( Sum_Shift_Seq (Prob,A)) is convergent) by A4, Th13;

          hence thesis by Th15;

        end;

        hence thesis by A2, A3;

      end;

      

       A5: for A be SetSequence of Sigma st ( Partial_Sums (Prob * A)) is convergent holds (Prob . ( lim_sup A)) = 0

      proof

        let A be SetSequence of Sigma;

        assume

         A6: ( Partial_Sums (Prob * A)) is convergent;

        (Prob . ( lim_sup A)) = (Prob . ( @lim_sup A));

        hence thesis by A6, Th13;

      end;

      for B be SetSequence of Sigma st B is_all_independent_wrt Prob & ( Partial_Sums (Prob * B)) is divergent_to+infty holds (Prob . ( lim_inf ( Complement B))) = 0 & (Prob . ( lim_sup B)) = 1

      proof

        let B be SetSequence of Sigma;

        assume that

         A7: B is_all_independent_wrt Prob and

         A8: ( Partial_Sums (Prob * B)) is divergent_to+infty;

        

         A9: (Prob . ( @lim_sup B)) = (Prob . ( lim_sup B));

        

         A10: (Prob . ( @lim_inf ( Complement B))) = (Prob . ( lim_inf ( Complement B))) by Lemma;

        for B be SetSequence of Sigma st B is_all_independent_wrt Prob & ( Partial_Sums (Prob * B)) is divergent_to+infty holds (Prob . ( @lim_inf ( Complement B))) = 0 & (Prob . ( @lim_sup B)) = 1

        proof

          let B be SetSequence of Sigma;

          assume that

           A11: B is_all_independent_wrt Prob and

           A12: ( Partial_Sums (Prob * B)) is divergent_to+infty;

          reconsider CB = ( Complement B) as SetSequence of Sigma;

          

           A15: (Prob . ( @lim_inf CB)) = ( lim (Prob * ( inferior_setsequence ( Complement B)))) by PROB_2: 10;

          

           A16: for n be Nat holds ((Prob * ( inferior_setsequence ( Complement B))) . n) = 0

          proof

            let n be Nat;

            ( dom (Prob * ( inferior_setsequence ( Complement B)))) = NAT by FUNCT_2:def 1;

            then

             A18: ((Prob * ( inferior_setsequence ( Complement B))) . n) = (Prob . (( inferior_setsequence ( Complement B)) . n)) by FUNCT_1: 12, ORDINAL1:def 12;

            (( inferior_setsequence ( Complement B)) . n) = ( Intersection (( Complement B) ^\ n)) by Def9;

            then

             A19: ((Prob * ( inferior_setsequence ( Complement B))) . n) = (Prob . ( Intersection ( Partial_Intersection (( Complement B) ^\ n)))) by A18, PROB_3: 29;

            ( Partial_Intersection (( Complement B) ^\ n)) is non-ascending by PROB_3: 27;

            then

             A20: ((Prob * ( inferior_setsequence ( Complement B))) . n) = ( lim (Prob * ( Partial_Intersection (( Complement B) ^\ n)))) by A19, PROB_1:def 8;

            

             A21: for k be Nat holds ((Prob * ( Partial_Intersection ( Complement (B ^\ n)))) . k) <= (((1 + ( Partial_Sums (Prob * (B ^\ n)))) " ) . k)

            proof

              let k be Nat;

              

               A22: for k be Nat holds (B ^\ k) is_all_independent_wrt Prob

              proof

                let k be Nat;

                for C be SetSequence of Sigma st (ex e be sequence of NAT st (e is one-to-one & (for n be Nat holds ((B ^\ k) . (e . n)) = (C . n)))) holds (for n be Nat holds (( Partial_Product (Prob * C)) . n) = (Prob . (( Partial_Intersection C) . n)))

                proof

                  let C be SetSequence of Sigma;

                  given e be sequence of NAT such that

                   A23: e is one-to-one and

                   A24: for n be Nat holds ((B ^\ k) . (e . n)) = (C . n);

                  

                   A25: (B ^\ k) = (B * ( Special_Function2 k))

                  proof

                    for n be object st n in NAT holds ((B ^\ k) . n) = ((B * ( Special_Function2 k)) . n)

                    proof

                      let n be object;

                      assume n in NAT ;

                      then

                      reconsider n as Element of NAT ;

                      ( dom (B * ( Special_Function2 k))) = NAT by FUNCT_2:def 1;

                      then

                       A26: ((B * ( Special_Function2 k)) . n) = (B . (( Special_Function2 k) . n)) by FUNCT_1: 12;

                      (( Special_Function2 k) . n) = (n + k) by Def3;

                      hence thesis by A26, NAT_1:def 3;

                    end;

                    hence thesis;

                  end;

                  

                   A27: for n be Nat holds ((B * ( Special_Function2 k)) . (e . n)) = (B . ((( Special_Function2 k) * e) . n))

                  proof

                    let n be Nat;

                    reconsider n as Element of NAT by ORDINAL1:def 12;

                    ( dom (B * ( Special_Function2 k))) = NAT & ( dom (( Special_Function2 k) * e)) = NAT by FUNCT_2:def 1;

                    then ((B * ( Special_Function2 k)) . (e . n)) = (B . (( Special_Function2 k) . (e . n))) & ((( Special_Function2 k) * e) . n) = (( Special_Function2 k) . (e . n)) by FUNCT_1: 12;

                    hence thesis;

                  end;

                  

                   A28: for n be Nat holds (B . ((( Special_Function2 k) * e) . n)) = (C . n)

                  proof

                    let n be Nat;

                    ((B * ( Special_Function2 k)) . (e . n)) = (C . n) by A25, A24;

                    hence thesis by A27;

                  end;

                  (( Special_Function2 k) * e) is one-to-one by A23, FUNCT_1: 24;

                  hence thesis by A11, A28;

                end;

                hence thesis by Def6;

              end;

              

               A29: for A be SetSequence of Sigma holds for n be Nat holds (( Partial_Product (Prob * ( Complement A))) . n) <= (((1 + ( Partial_Sums (Prob * A))) . n) " )

              proof

                let A be SetSequence of Sigma;

                let n be Nat;

                reconsider n as Element of NAT by ORDINAL1:def 12;

                

                 A30: (( Partial_Product (Prob * ( Complement A))) . n) <= (1 / (1 + (( Partial_Sums (Prob * A)) . n)))

                proof

                  (( Partial_Product (Prob * ( Complement A))) . n) <= (( Partial_Product ( JSum (Prob * A))) . n) by Th4;

                  then

                   A31: (( Partial_Product (Prob * ( Complement A))) . n) <= ( exp_R . ( - (( Partial_Sums (Prob * A)) . n))) by Th3;

                  ( exp_R . ( - (( Partial_Sums (Prob * A)) . n))) <= (1 / (1 + (( Partial_Sums (Prob * A)) . n)))

                  proof

                    

                     A32: for n be Nat holds ((Prob * A) . n) >= 0

                    proof

                      let n be Nat;

                      reconsider n as Element of NAT by ORDINAL1:def 12;

                      ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

                      then ((Prob * A) . n) = (Prob . (A . n)) by FUNCT_1: 12;

                      hence thesis by PROB_1:def 8;

                    end;

                    

                     A33: for n be Nat holds (( Partial_Sums (Prob * A)) . n) >= 0

                    proof

                      let n be Nat;

                      defpred J[ Nat] means (( Partial_Sums (Prob * A)) . $1) >= 0 ;

                      (( Partial_Sums (Prob * A)) . 0 ) = ((Prob * A) . 0 ) by SERIES_1:def 1;

                      then

                       A34: J[ 0 ] by A32;

                      

                       A35: for k be Nat st J[k] holds J[(k + 1)]

                      proof

                        let k be Nat;

                        assume

                         A36: J[k];

                        

                         A37: ((Prob * A) . (k + 1)) >= 0 by A32;

                        (( Partial_Sums (Prob * A)) . (k + 1)) = ((( Partial_Sums (Prob * A)) . k) + ((Prob * A) . (k + 1))) by SERIES_1:def 1;

                        hence thesis by A36, A37;

                      end;

                      for k be Nat holds J[k] from NAT_1:sch 2( A34, A35);

                      hence thesis;

                    end;

                    for x be Element of REAL st x >= 0 holds ( exp_R . ( - x)) <= (1 / (1 + x))

                    proof

                      let x be Element of REAL ;

                      assume

                       A38: x >= 0 ;

                      per cases ;

                        suppose

                         A39: x > 0 ;

                        

                         A40: ( exp_R . ( - x)) >= 0 by SIN_COS: 54;

                        set z = ( - x);

                        

                         A41: (( exp_R x) * ( exp_R z)) = ( exp_R (x + z)) by SIN_COS: 50;

                        (( exp_R . ( - x)) * (1 + x)) <= 1 by Th2, A40, A41, SIN_COS: 51, XREAL_1: 64;

                        hence thesis by A39, XREAL_1: 77;

                      end;

                        suppose x <= 0 ;

                        then x = 0 by A38;

                        hence thesis by SIN_COS: 51;

                      end;

                    end;

                    hence thesis by A33;

                  end;

                  hence thesis by A31, XXREAL_0: 2;

                end;

                for A be SetSequence of Sigma holds for n be Nat holds (1 / (1 + (( Partial_Sums (Prob * A)) . n))) = (((1 + ( Partial_Sums (Prob * A))) . n) " )

                proof

                  let A be SetSequence of Sigma;

                  let n be Nat;

                  n in NAT by ORDINAL1:def 12;

                  then (1 / (1 + (( Partial_Sums (Prob * A)) . n))) = (1 / ((1 + ( Partial_Sums (Prob * A))) . n)) by VALUED_1: 2;

                  then (1 / (1 + (( Partial_Sums (Prob * A)) . n))) = (1 * (((1 + ( Partial_Sums (Prob * A))) . n) " )) by XCMPLX_0:def 9;

                  hence thesis;

                end;

                hence thesis by A30;

              end;

              reconsider k as Element of NAT by ORDINAL1:def 12;

              ( dom (Prob * ( Partial_Intersection ( Complement (B ^\ n))))) = NAT by FUNCT_2:def 1;

              then ((Prob * ( Partial_Intersection ( Complement (B ^\ n)))) . k) = (Prob . (( Partial_Intersection ( Complement (B ^\ n))) . k)) by FUNCT_1: 12;

              then ((Prob * ( Partial_Intersection ( Complement (B ^\ n)))) . k) = (( Partial_Product (Prob * ( Complement (B ^\ n)))) . k) by A22, Th10;

              then ((Prob * ( Partial_Intersection ( Complement (B ^\ n)))) . k) <= (((1 + ( Partial_Sums (Prob * (B ^\ n)))) . k) " ) by A29;

              hence thesis by VALUED_1: 10;

            end;

            

             A42: ( Partial_Sums (Prob * (B ^\ n))) is divergent_to+infty

            proof

              per cases ;

                suppose n = 0 ;

                hence thesis by A12, NAT_1: 47;

              end;

                suppose n <> 0 ;

                then

                reconsider y = (n - 1) as Element of NAT by NAT_1: 20;

                set B2 = ( NAT --> ( - (( Partial_Sums (Prob * B)) . y)));

                

                 A44: (( Partial_Sums (Prob * B)) + B2) is divergent_to+infty by A12, LIMFUNC1: 18;

                for r be Real holds ex q be Nat st for m be Nat st q <= m holds r < (( Partial_Sums (Prob * (B ^\ n))) . m)

                proof

                  let r be Real;

                  for r be Real holds ex q be Nat st for m be Nat st q <= m holds r < (( Partial_Sums (Prob * (B ^\ n))) . m)

                  proof

                    let r be Real;

                    

                     A45: for m be Nat st n <= m holds ((( Partial_Sums (Prob * B)) + B2) . m) = (( Partial_Sums (Prob * (B ^\ n))) . (m - n))

                    proof

                      let m be Nat;

                      assume n <= m;

                      then

                      consider knat be Nat such that

                       A46: m = (n + knat) by NAT_1: 10;

                      reconsider knat as Nat;

                      defpred J[ Nat] means ((( Partial_Sums (Prob * B)) + B2) . (n + $1)) = (( Partial_Sums (Prob * (B ^\ n))) . ((n + $1) - n));

                      

                       A47: J[ 0 ]

                      proof

                        ( dom (( Partial_Sums (Prob * B)) + B2)) = NAT by FUNCT_2:def 1;

                        then ((( Partial_Sums (Prob * B)) + B2) . n) = ((( Partial_Sums (Prob * B)) . n) + (B2 . n)) by VALUED_1:def 1, ORDINAL1:def 12;

                        then ((( Partial_Sums (Prob * B)) + B2) . n) = ((( Partial_Sums (Prob * B)) . n) + ( - (( Partial_Sums (Prob * B)) . (n - 1)))) by FUNCOP_1: 7, ORDINAL1:def 12;

                        then ((( Partial_Sums (Prob * B)) + B2) . n) = ((( Partial_Sums (Prob * B)) . n) - (( Partial_Sums (Prob * B)) . (n - 1)));

                        then

                         A49: ((( Partial_Sums (Prob * B)) + B2) . n) = (((( Partial_Sums (Prob * B)) . (n - 1)) + ((Prob * B) . ((n - 1) + 1))) - (( Partial_Sums (Prob * B)) . (n - 1))) by SERIES_1:def 1;

                        ( dom (Prob * (B ^\ n))) = NAT by FUNCT_2:def 1;

                        then

                         A50: ((Prob * (B ^\ n)) . 0 ) = (Prob . ((B ^\ n) . 0 )) by FUNCT_1: 12;

                        

                         A51: ((B ^\ n) . 0 ) = (B . ( 0 + n)) by NAT_1:def 3;

                        ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

                        then ((( Partial_Sums (Prob * B)) + B2) . n) = ((Prob * (B ^\ n)) . 0 ) by A51, A50, A49, FUNCT_1: 12, ORDINAL1:def 12;

                        hence thesis by SERIES_1:def 1;

                      end;

                      

                       A52: for k be Nat st J[k] holds J[(k + 1)]

                      proof

                        let k be Nat;

                        assume

                         A54: J[k];

                        

                         A55: ( dom (( Partial_Sums (Prob * B)) + B2)) = NAT by FUNCT_2:def 1;

                        ((( Partial_Sums (Prob * B)) + B2) . ((n + k) + 1)) = ((( Partial_Sums (Prob * B)) . ((n + k) + 1)) + (B2 . ((n + k) + 1))) by A55, VALUED_1:def 1;

                        then ((( Partial_Sums (Prob * B)) + B2) . ((n + k) + 1)) = (((( Partial_Sums (Prob * B)) . (n + k)) + ((Prob * B) . ((n + k) + 1))) + (B2 . ((n + k) + 1))) by SERIES_1:def 1;

                        then ((( Partial_Sums (Prob * B)) + B2) . ((n + k) + 1)) = (((( Partial_Sums (Prob * B)) . (n + k)) + ((Prob * B) . ((n + k) + 1))) + (B2 . (n + k))) by FUNCOP_1: 7, ORDINAL1:def 12;

                        then ((( Partial_Sums (Prob * B)) + B2) . ((n + k) + 1)) = (((( Partial_Sums (Prob * B)) . (n + k)) + (B2 . (n + k))) + ((Prob * B) . ((n + k) + 1)));

                        then

                         A56: ((( Partial_Sums (Prob * B)) + B2) . ((n + k) + 1)) = ((( Partial_Sums (Prob * (B ^\ n))) . ((n + k) - n)) + ((Prob * B) . ((n + k) + 1))) by A55, A54, VALUED_1:def 1, ORDINAL1:def 12;

                        ((Prob * (B ^\ n)) . (((n + k) - n) + 1)) = ((Prob * B) . ((n + k) + 1))

                        proof

                          ( dom (Prob * (B ^\ n))) = NAT by FUNCT_2:def 1;

                          then

                           A57: ((Prob * (B ^\ n)) . (((n + k) - n) + 1)) = (Prob . ((B ^\ n) . (k + 1))) by FUNCT_1: 12;

                          

                           A58: ((B ^\ n) . (k + 1)) = (B . (n + (k + 1))) by NAT_1:def 3;

                          ( dom (Prob * B)) = NAT by FUNCT_2:def 1;

                          hence thesis by A58, A57, FUNCT_1: 12;

                        end;

                        hence thesis by A56, SERIES_1:def 1;

                      end;

                      for k be Nat holds J[k] from NAT_1:sch 2( A47, A52);

                      hence thesis by A46;

                    end;

                    

                     A59: ex q be Nat st for m be Nat st (q + n) <= (m + n) holds r < ((( Partial_Sums (Prob * B)) + B2) . (m + n))

                    proof

                      consider q be Nat such that

                       A60: for m be Nat st q <= m holds r < ((( Partial_Sums (Prob * B)) + B2) . m) by A44, LIMFUNC1:def 4;

                      take q;

                      let m be Nat;

                      assume (q + n) <= (m + n);

                      then q <= (q + n) & (q + n) <= (m + n) by NAT_1: 11;

                      then q <= (m + n) by XXREAL_0: 2;

                      hence thesis by A60;

                    end;

                    consider q be Nat such that

                     A61: for m be Nat st (q + n) <= (m + n) holds r < ((( Partial_Sums (Prob * B)) + B2) . (m + n)) by A59;

                    take s = (q + n);

                    let m be Nat;

                    assume

                     A62: s <= m;

                    set z = (m + n);

                    ((( Partial_Sums (Prob * B)) + B2) . z) = (( Partial_Sums (Prob * (B ^\ n))) . (z - n)) by A45, NAT_1: 12;

                    hence thesis by A62, A61, NAT_1: 12;

                  end;

                  hence thesis;

                end;

                hence thesis by LIMFUNC1:def 4;

              end;

            end;

            

             A63: for A be SetSequence of Sigma holds ( Partial_Sums (Prob * A)) is divergent_to+infty implies ( lim ((1 + ( Partial_Sums (Prob * A))) " )) = 0 & ((1 + ( Partial_Sums (Prob * A))) " ) is convergent

            proof

              let A be SetSequence of Sigma;

              

               A64: for A be SetSequence of Sigma holds (for r be Real holds ex n be Nat st for m be Nat st n <= m holds r < (( Partial_Sums (Prob * A)) . m)) implies (for r be Real holds ex n be Nat st for m be Nat st n <= m holds r < ((1 + ( Partial_Sums (Prob * A))) . m))

              proof

                let A be SetSequence of Sigma;

                assume

                 A65: (for r be Real holds ex n be Nat st for m be Nat st n <= m holds r < (( Partial_Sums (Prob * A)) . m));

                let r be Real;

                consider n be Nat such that

                 A66: for m be Nat st n <= m holds r < (( Partial_Sums (Prob * A)) . m) by A65;

                take n;

                for m be Nat st n <= m holds r < ((1 + ( Partial_Sums (Prob * A))) . m)

                proof

                  let m be Nat;

                  

                   A67: m in NAT by ORDINAL1:def 12;

                  assume n <= m;

                  then

                   A68: r < (( Partial_Sums (Prob * A)) . m) by A66;

                  

                   A69: (( Partial_Sums (Prob * A)) . m) < ((( Partial_Sums (Prob * A)) . m) + 1) by XREAL_1: 29;

                  ((1 + ( Partial_Sums (Prob * A))) . m) = ((( Partial_Sums (Prob * A)) . m) + 1) by VALUED_1: 2, A67;

                  hence thesis by A68, A69, XXREAL_0: 2;

                end;

                hence thesis;

              end;

              assume ( Partial_Sums (Prob * A)) is divergent_to+infty;

              then for r be Real holds ex n be Nat st for m be Nat st n <= m holds r < (( Partial_Sums (Prob * A)) . m) by LIMFUNC1:def 4;

              then for r be Real holds ex n be Nat st for m be Nat st n <= m holds r < ((1 + ( Partial_Sums (Prob * A))) . m) by A64;

              then (1 + ( Partial_Sums (Prob * A))) is divergent_to+infty by LIMFUNC1:def 4;

              hence thesis by LIMFUNC1: 34;

            end;

            ( Partial_Intersection ( Complement (B ^\ n))) is non-ascending by PROB_3: 27;

            then

             A70: (Prob * ( Partial_Intersection ( Complement (B ^\ n)))) is convergent & ((1 + ( Partial_Sums (Prob * (B ^\ n)))) " ) is convergent by A42, A63, PROB_1:def 8;

            

             A71: ( lim ((1 + ( Partial_Sums (Prob * (B ^\ n)))) " )) = 0 by A42, A63;

            

             A72: for k be Nat holds 0 <= ((Prob * ( Partial_Intersection ( Complement (B ^\ n)))) . k)

            proof

              let k be Nat;

              ( dom (Prob * ( Partial_Intersection ( Complement (B ^\ n))))) = NAT by FUNCT_2:def 1;

              then ((Prob * ( Partial_Intersection ( Complement (B ^\ n)))) . k) = (Prob . (( Partial_Intersection ( Complement (B ^\ n))) . k)) by FUNCT_1: 12, ORDINAL1:def 12;

              hence thesis by PROB_1:def 8;

            end;

            

             A74: ( lim (Prob * ( Partial_Intersection ( Complement (B ^\ n))))) <= 0 by A70, A21, A71, SEQ_2: 18;

            ( Complement (B ^\ n)) = (( Complement B) ^\ n)

            proof

              for k be object st k in NAT holds (( Complement (B ^\ n)) . k) = ((( Complement B) ^\ n) . k)

              proof

                let k be object;

                assume k in NAT ;

                then

                reconsider k as Nat;

                

                 A75: (( Complement (B ^\ n)) . k) = (((B ^\ n) . k) ` ) by PROB_1:def 2;

                ((( Complement B) ^\ n) . k) = (( Complement B) . (k + n)) by NAT_1:def 3;

                then ((( Complement B) ^\ n) . k) = ((B . (k + n)) ` ) by PROB_1:def 2;

                hence thesis by A75, NAT_1:def 3;

              end;

              hence thesis;

            end;

            hence thesis by A72, A70, A74, A20, SEQ_2: 17;

          end;

          set B2 = ( seq_const 0 );

          ex n be Nat st (B2 . n) = 0

          proof

            take 1;

            thus thesis;

          end;

          then

           A77: ( lim B2) = 0 by SEQ_4: 25;

          

           A78: B2 is convergent & ex k be Nat st for n be Nat st k <= n holds (B2 . n) = ((Prob * ( inferior_setsequence ( Complement B))) . n)

          proof

            ex k be Nat st for n be Nat st k <= n holds (B2 . n) = ((Prob * ( inferior_setsequence ( Complement B))) . n)

            proof

              take 0 ;

              thus thesis by A16;

            end;

            hence thesis;

          end;

          (Prob . ( @lim_inf ( Complement B))) = 0 & ((Prob . ( @lim_inf ( Complement B))) + (Prob . ( @lim_sup B))) = 1 by A15, A78, A77, Th15, SEQ_4: 19;

          hence thesis;

        end;

        hence thesis by A9, A10, A7, A8;

      end;

      hence thesis by A5, A1;

    end;

    theorem :: BOR_CANT:17

    

     Th17: ( not ( Partial_Sums (Prob * A)) is convergent & A is_all_independent_wrt Prob) implies ((Prob . ( lim_inf ( Complement A))) = 0 & (Prob . ( lim_sup A)) = 1)

    proof

      assume

       A1: not ( Partial_Sums (Prob * A)) is convergent;

      assume

       A2: A is_all_independent_wrt Prob;

      

       A3: for n be Nat holds ((Prob * A) . n) >= 0

      proof

        let n be Nat;

        ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

        then ((Prob * A) . n) = (Prob . (A . n)) by FUNCT_1: 12, ORDINAL1:def 12;

        hence thesis by PROB_1:def 8;

      end;

      

       A5: ( not (Prob * A) is summable implies not ( Partial_Sums (Prob * A)) is bounded_above) & not (Prob * A) is summable by A3, A1, SERIES_1: 17, SERIES_1:def 2;

      ( Partial_Sums (Prob * A)) is divergent_to+infty by A5, A3, LIMFUNC1: 29, SERIES_1: 16;

      hence thesis by A2, Th16;

    end;

    theorem :: BOR_CANT:18

    A is_all_independent_wrt Prob implies ((Prob . ( lim_inf ( Complement A))) = 0 or (Prob . ( lim_inf ( Complement A))) = 1) & ((Prob . ( lim_sup A)) = 0 or (Prob . ( lim_sup A)) = 1)

    proof

      assume

       A1: A is_all_independent_wrt Prob;

      per cases ;

        suppose ( Partial_Sums (Prob * A)) is convergent;

        hence thesis by Th16;

      end;

        suppose not ( Partial_Sums (Prob * A)) is convergent;

        hence thesis by A1, Th17;

      end;

    end;

    theorem :: BOR_CANT:19

    (( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . n) <= ((( Partial_Sums (Prob * A)) . ((n1 + 1) + n)) - (( Partial_Sums (Prob * A)) . n1))

    proof

      

       A1: ( dom (Prob * (A ^\ (n1 + 1)))) = NAT by FUNCT_2:def 1;

      

       A2: ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

      defpred P[ Nat] means (( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . $1) <= ((( Partial_Sums (Prob * A)) . (($1 + n1) + 1)) - (( Partial_Sums (Prob * A)) . n1));

      

       A3: ((( Partial_Sums (Prob * A)) . (n1 + 1)) - (( Partial_Sums (Prob * A)) . n1)) = (((( Partial_Sums (Prob * A)) . n1) + ((Prob * A) . (n1 + 1))) - (( Partial_Sums (Prob * A)) . n1)) by SERIES_1:def 1;

      

       A4: (Prob . ((A ^\ (n1 + 1)) . 0 )) = (Prob . (A . ((n1 + 1) + 0 ))) by NAT_1:def 3;

      

       A5: (Prob . (A . (n1 + 1))) = ((Prob * A) . (n1 + 1)) by A2, FUNCT_1: 12;

      

       A6: ((Prob * (A ^\ (n1 + 1))) . 0 ) = ((Prob * A) . (n1 + 1)) by A1, A4, A5, FUNCT_1: 12;

      

       A7: P[ 0 ] by A6, A3, SERIES_1:def 1;

      

       A8: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat;

        assume

         A9: (( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . k) <= ((( Partial_Sums (Prob * A)) . ((k + n1) + 1)) - (( Partial_Sums (Prob * A)) . n1));

        

         A10: ((( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . k) + ((Prob * (A ^\ (n1 + 1))) . (k + 1))) <= (((( Partial_Sums (Prob * A)) . ((k + n1) + 1)) - (( Partial_Sums (Prob * A)) . n1)) + ((Prob * (A ^\ (n1 + 1))) . (k + 1))) by A9, XREAL_1: 6;

        

         A11: (( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . (k + 1)) <= (((( Partial_Sums (Prob * A)) . ((k + n1) + 1)) - (( Partial_Sums (Prob * A)) . n1)) + ((Prob * (A ^\ (n1 + 1))) . (k + 1))) by A10, SERIES_1:def 1;

        

         A12: ((( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . (k + 1)) + (( Partial_Sums (Prob * A)) . n1)) <= ((((( Partial_Sums (Prob * A)) . ((k + n1) + 1)) + ((Prob * (A ^\ (n1 + 1))) . (k + 1))) - (( Partial_Sums (Prob * A)) . n1)) + (( Partial_Sums (Prob * A)) . n1)) by A11, XREAL_1: 6;

        

         A13: (((( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . (k + 1)) + (( Partial_Sums (Prob * A)) . n1)) - (( Partial_Sums (Prob * A)) . ((k + n1) + 1))) <= ((((Prob * (A ^\ (n1 + 1))) . (k + 1)) + (( Partial_Sums (Prob * A)) . ((k + n1) + 1))) - (( Partial_Sums (Prob * A)) . ((k + n1) + 1))) by A12, XREAL_1: 9;

        

         A14: ((A ^\ (n1 + 1)) . (k + 1)) = (A . ((n1 + 1) + (k + 1))) by NAT_1:def 3;

        

         A15: ( dom (Prob * A)) = NAT by FUNCT_2:def 1;

        

         A16: ( dom (Prob * (A ^\ (n1 + 1)))) = NAT by FUNCT_2:def 1;

        

         A17: (Prob . ((A ^\ (n1 + 1)) . (k + 1))) = ((Prob * (A ^\ (n1 + 1))) . (k + 1)) by A16, FUNCT_1: 12;

        

         A18: (((( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . (k + 1)) + (( Partial_Sums (Prob * A)) . n1)) - (( Partial_Sums (Prob * A)) . ((k + n1) + 1))) <= ((Prob * A) . ((n1 + k) + 2)) by A13, A17, A14, A15, FUNCT_1: 12;

        

         A19: ((((( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . (k + 1)) + (( Partial_Sums (Prob * A)) . n1)) - (( Partial_Sums (Prob * A)) . ((k + n1) + 1))) + (( Partial_Sums (Prob * A)) . ((k + n1) + 1))) <= (((Prob * A) . ((n1 + k) + 2)) + (( Partial_Sums (Prob * A)) . ((k + n1) + 1))) by A18, XREAL_1: 6;

        

         A20: (( Partial_Sums (Prob * A)) . (((k + n1) + 1) + 1)) = ((( Partial_Sums (Prob * A)) . ((k + n1) + 1)) + ((Prob * A) . (((k + n1) + 1) + 1))) by SERIES_1:def 1;

        (((( Partial_Sums (Prob * (A ^\ (n1 + 1)))) . (k + 1)) + (( Partial_Sums (Prob * A)) . n1)) - (( Partial_Sums (Prob * A)) . n1)) <= ((( Partial_Sums (Prob * A)) . ((k + n1) + 2)) - (( Partial_Sums (Prob * A)) . n1)) by A19, A20, XREAL_1: 9;

        hence thesis;

      end;

      for n be Nat holds P[n] from NAT_1:sch 2( A7, A8);

      then P[n];

      hence thesis;

    end;

    theorem :: BOR_CANT:20

    (Prob . (( inferior_setsequence ( Complement A)) . n)) = (1 - (Prob . (( superior_setsequence A) . n)))

    proof

      

       A1: (Prob . (( inferior_setsequence ( Complement A)) . n)) = (Prob . ((( superior_setsequence A) . n) ` )) by Th9;

      (Prob . ((( superior_setsequence A) . n) ` )) = (Prob . (( [#] Sigma) \ (( superior_setsequence A) . n))) by SUBSET_1:def 4;

      hence thesis by A1, PROB_1: 32;

    end;

    theorem :: BOR_CANT:21

    (( Complement A) is_all_independent_wrt Prob implies (Prob . (( Partial_Intersection A) . n)) = (( Partial_Product (Prob * A)) . n)) & (A is_all_independent_wrt Prob implies (1 - (Prob . (( Partial_Union A) . n))) = (( Partial_Product (Prob * ( Complement A))) . n))

    proof

      thus ( Complement A) is_all_independent_wrt Prob implies (Prob . (( Partial_Intersection A) . n)) = (( Partial_Product (Prob * A)) . n)

      proof

        assume

         A1: ( Complement A) is_all_independent_wrt Prob;

        (( Partial_Intersection ( Complement ( Complement A))) . n) = (( Partial_Intersection A) . n) & (( Partial_Product (Prob * ( Complement ( Complement A)))) . n) = (( Partial_Product (Prob * A)) . n) & (Prob . (( Partial_Intersection ( Complement ( Complement A))) . n)) = (( Partial_Product (Prob * ( Complement ( Complement A)))) . n) by A1, Th10;

        hence thesis;

      end;

      assume A is_all_independent_wrt Prob;

      then (Prob . (( Partial_Intersection ( Complement A)) . n)) = (( Partial_Product (Prob * ( Complement A))) . n) & (Prob . (( Partial_Intersection ( Complement A)) . n)) = (1 - (Prob . (( Partial_Union A) . n))) by Th10, Th8;

      hence thesis;

    end;