complex2.miz



    begin

    theorem :: COMPLEX2:1

    

     Th1: for a,b be Real st b > 0 holds ex r be Real st r = ((b * ( - [\(a / b)/])) + a) & 0 <= r & r < b

    proof

      let a,b be Real such that

       A1: b > 0 ;

      set ab = [\(a / b)/];

      set i = ( - ab);

      take r = ((b * i) + a);

      thus r = ((b * i) + a);

      ab <= (a / b) by INT_1:def 6;

      then (ab * b) <= ((a / b) * b) by A1, XREAL_1: 64;

      then (ab * b) <= a by A1, XCMPLX_1: 87;

      then ( - (ab * b)) >= ( - a) by XREAL_1: 24;

      then ((b * i) + a) >= (a + ( - a)) by XREAL_1: 6;

      hence 0 <= r;

      ((a / b) - 1) < ab by INT_1:def 6;

      then ( - ((a / b) - 1)) > i by XREAL_1: 24;

      then ((( - (a / b)) + 1) * b) > (i * b) by A1, XREAL_1: 68;

      then (( - ((a / b) * b)) + b) > (i * b);

      then (( - a) + b) > (i * b) by A1, XCMPLX_1: 87;

      then ((( - a) + b) + a) > r by XREAL_1: 8;

      hence thesis;

    end;

    theorem :: COMPLEX2:2

    

     Th2: for a,b,c be Real st a > 0 & b >= 0 & c >= 0 & b < a & c < a holds for i be Integer st b = (c + (a * i)) holds b = c

    proof

      let a,b,c be Real such that

       A1: a > 0 and

       A2: b >= 0 and

       A3: c >= 0 and

       A4: b < a and

       A5: c < a;

      

       A6: ( 0 + a) <= (c + a) by A3, XREAL_1: 7;

      let i be Integer such that

       A7: b = (c + (a * i));

      per cases ;

        suppose i < 0 ;

        then i <= ( - 1) by INT_1: 8;

        then (a * i) <= (a * ( - 1)) by A1, XREAL_1: 64;

        then (c + (a * i)) <= (c - a) by XREAL_1: 7;

        hence thesis by A2, A5, A7, XREAL_1: 49;

      end;

        suppose i = 0 ;

        hence thesis by A7;

      end;

        suppose i > 0 ;

        then ( 0 + 1) <= i by INT_1: 7;

        then (a * i) >= a by A1, XREAL_1: 151;

        then (c + (a * i)) >= (c + a) by XREAL_1: 7;

        hence thesis by A4, A7, A6, XXREAL_0: 2;

      end;

    end;

    theorem :: COMPLEX2:3

    

     Th3: for a,b be Real holds ( sin (a - b)) = ((( sin a) * ( cos b)) - (( cos a) * ( sin b))) & ( cos (a - b)) = ((( cos a) * ( cos b)) + (( sin a) * ( sin b)))

    proof

      let th1,th2 be Real;

      

      thus ( sin (th1 - th2)) = ( sin . (th1 + ( - th2))) by SIN_COS:def 17

      .= ((( sin . th1) * ( cos . ( - th2))) + (( cos . th1) * ( sin . ( - th2)))) by SIN_COS: 74

      .= ((( sin . th1) * ( cos . th2)) + (( cos . th1) * ( sin . ( - th2)))) by SIN_COS: 30

      .= ((( sin . th1) * ( cos . th2)) + (( cos . th1) * ( - ( sin . th2)))) by SIN_COS: 30

      .= ((( sin th1) * ( cos . th2)) - (( cos . th1) * ( sin . th2))) by SIN_COS:def 17

      .= ((( sin th1) * ( cos th2)) - (( cos . th1) * ( sin . th2))) by SIN_COS:def 19

      .= ((( sin th1) * ( cos th2)) - (( cos th1) * ( sin . th2))) by SIN_COS:def 19

      .= ((( sin th1) * ( cos th2)) - (( cos th1) * ( sin th2))) by SIN_COS:def 17;

      

      thus ( cos (th1 - th2)) = ( cos . (th1 + ( - th2))) by SIN_COS:def 19

      .= ((( cos . th1) * ( cos . ( - th2))) - (( sin . th1) * ( sin . ( - th2)))) by SIN_COS: 74

      .= ((( cos . th1) * ( cos . th2)) - (( sin . th1) * ( sin . ( - th2)))) by SIN_COS: 30

      .= ((( cos . th1) * ( cos . th2)) - (( sin . th1) * ( - ( sin . th2)))) by SIN_COS: 30

      .= ((( cos th1) * ( cos . th2)) + (( sin . th1) * ( sin . th2))) by SIN_COS:def 19

      .= ((( cos th1) * ( cos th2)) + (( sin . th1) * ( sin . th2))) by SIN_COS:def 19

      .= ((( cos th1) * ( cos th2)) + (( sin th1) * ( sin . th2))) by SIN_COS:def 17

      .= ((( cos th1) * ( cos th2)) + (( sin th1) * ( sin th2))) by SIN_COS:def 17;

    end;

    theorem :: COMPLEX2:4

    for a be Real holds ( sin . (a - PI )) = ( - ( sin . a)) & ( cos . (a - PI )) = ( - ( cos . a))

    proof

      let th be Real;

      

      thus ( sin . (th - PI )) = ((( sin . th) * ( cos . ( - PI ))) + (( cos . th) * ( sin . ( - PI )))) by SIN_COS: 74

      .= ((( sin . th) * ( cos . PI )) + (( cos . th) * ( sin . ( - PI )))) by SIN_COS: 30

      .= ((( sin . th) * ( cos . PI )) + (( cos . th) * ( - ( sin . PI )))) by SIN_COS: 30

      .= ( - ( sin . th)) by SIN_COS: 76;

      

      thus ( cos . (th - PI )) = ((( cos . th) * ( cos . ( - PI ))) - (( sin . th) * ( sin . ( - PI )))) by SIN_COS: 74

      .= ((( cos . th) * ( cos . PI )) - (( sin . th) * ( sin . ( - PI )))) by SIN_COS: 30

      .= ((( cos . th) * ( cos . PI )) - (( sin . th) * ( - ( sin . PI )))) by SIN_COS: 30

      .= ( - ( cos . th)) by SIN_COS: 76;

    end;

    theorem :: COMPLEX2:5

    

     Th5: for a be Real holds ( sin (a - PI )) = ( - ( sin a)) & ( cos (a - PI )) = ( - ( cos a))

    proof

      let r be Real;

      

      thus ( sin (r - PI )) = ((( sin r) * ( cos PI )) - (( cos r) * ( sin PI ))) by Th3

      .= ( - ( sin r)) by SIN_COS: 77;

      

      thus ( cos (r - PI )) = ((( cos r) * ( cos PI )) + (( sin r) * ( sin PI ))) by Th3

      .= ( - ( cos r)) by SIN_COS: 77;

    end;

    theorem :: COMPLEX2:6

    

     Th6: for a,b be Real st a in ]. 0 , ( PI / 2).[ & b in ]. 0 , ( PI / 2).[ holds a < b iff ( sin a) < ( sin b)

    proof

      let a,b be Real;

      assume a in ]. 0 , ( PI / 2).[ & b in ]. 0 , ( PI / 2).[;

      then

       A1: a in ( ]. 0 , ( PI / 2).[ /\ ( dom sin )) & b in ( ]. 0 , ( PI / 2).[ /\ ( dom sin )) by SIN_COS: 24, XBOOLE_0:def 4;

      

       A2: ( sin a) = ( sin . a) & ( sin b) = ( sin . b) by SIN_COS:def 17;

      hence a < b implies ( sin a) < ( sin b) by A1, RFUNCT_2: 20, SIN_COS2: 2;

      assume

       A3: ( sin a) < ( sin b);

      assume a >= b;

      then a > b by A3, XXREAL_0: 1;

      hence contradiction by A2, A1, A3, RFUNCT_2: 20, SIN_COS2: 2;

    end;

    theorem :: COMPLEX2:7

    

     Th7: for a,b be Real st a in ].( PI / 2), PI .[ & b in ].( PI / 2), PI .[ holds a < b iff ( sin a) > ( sin b)

    proof

      let a,b be Real;

      assume a in ].( PI / 2), PI .[ & b in ].( PI / 2), PI .[;

      then

       A1: a in ( ].( PI / 2), PI .[ /\ ( dom sin )) & b in ( ].( PI / 2), PI .[ /\ ( dom sin )) by SIN_COS: 24, XBOOLE_0:def 4;

      

       A2: ( sin a) = ( sin . a) & ( sin b) = ( sin . b) by SIN_COS:def 17;

      hence a < b implies ( sin a) > ( sin b) by A1, RFUNCT_2: 21, SIN_COS2: 3;

      assume

       A3: ( sin a) > ( sin b);

      assume a >= b;

      then a > b by A3, XXREAL_0: 1;

      hence contradiction by A2, A1, A3, RFUNCT_2: 21, SIN_COS2: 3;

    end;

    theorem :: COMPLEX2:8

    

     Th8: for a be Real, i be Integer holds ( sin a) = ( sin (((2 * PI ) * i) + a))

    proof

      let r be Real, i be Integer;

      

       A1: ( sin . r) = ( sin r) by SIN_COS:def 17;

      

       A2: ( sin . (((2 * PI ) * i) + r)) = ( sin (((2 * PI ) * i) + r)) by SIN_COS:def 17;

      

       A3: ( sin . (((2 * PI ) * ( - i)) + (((2 * PI ) * i) + r))) = ( sin (((2 * PI ) * ( - i)) + (((2 * PI ) * i) + r))) by SIN_COS:def 17;

      per cases ;

        suppose i >= 0 ;

        then

        reconsider iN = i as Element of NAT by INT_1: 3;

        ( sin r) = ( sin (((2 * PI ) * iN) + r)) by A1, A2, SIN_COS2: 10;

        hence thesis;

      end;

        suppose i < 0 ;

        then

        reconsider iN = ( - i) as Element of NAT by INT_1: 3;

        set aa = (((2 * PI ) * i) + r);

        ( sin aa) = ( sin (((2 * PI ) * iN) + aa)) by A2, A3, SIN_COS2: 10;

        hence thesis;

      end;

    end;

    theorem :: COMPLEX2:9

    

     Th9: for a be Real, i be Integer holds ( cos a) = ( cos (((2 * PI ) * i) + a))

    proof

      let r be Real, i be Integer;

      

       A1: ( cos . r) = ( cos r) by SIN_COS:def 19;

      

       A2: ( cos . (((2 * PI ) * i) + r)) = ( cos (((2 * PI ) * i) + r)) by SIN_COS:def 19;

      

       A3: ( cos . (((2 * PI ) * ( - i)) + (((2 * PI ) * i) + r))) = ( cos (((2 * PI ) * ( - i)) + (((2 * PI ) * i) + r))) by SIN_COS:def 19;

      per cases ;

        suppose i >= 0 ;

        then

        reconsider iN = i as Element of NAT by INT_1: 3;

        ( cos r) = ( cos (((2 * PI ) * iN) + r)) by A1, A2, SIN_COS2: 11;

        hence thesis;

      end;

        suppose i < 0 ;

        then

        reconsider iN = ( - i) as Element of NAT by INT_1: 3;

        set aa = (((2 * PI ) * i) + r);

        ( cos aa) = ( cos (((2 * PI ) * iN) + aa)) by A2, A3, SIN_COS2: 11;

        hence thesis;

      end;

    end;

    theorem :: COMPLEX2:10

    

     Th10: for a be Real st ( sin a) = 0 holds ( cos a) <> 0

    proof

      let a be Real;

      assume that

       A1: ( sin a) = 0 and

       A2: ( cos a) = 0 ;

      consider r be Real such that

       A3: r = (((2 * PI ) * ( - [\(a / (2 * PI ))/])) + a) and

       A4: 0 <= r & r < (2 * PI ) by Th1, COMPTRIG: 5;

      

       A5: ( cos a) = ( cos r) by A3, Th9;

      ( sin a) = ( sin r) by A3, Th8;

      then r = 0 or r = PI by A4, A1, COMPTRIG: 17;

      hence thesis by A5, A2, COMPTRIG: 5, COMPTRIG: 18;

    end;

    theorem :: COMPLEX2:11

    

     Th11: for a,b be Real st 0 <= a & a < (2 * PI ) & 0 <= b & b < (2 * PI ) & ( sin a) = ( sin b) & ( cos a) = ( cos b) holds a = b

    proof

      let r,s be Real such that

       A1: 0 <= r and

       A2: r < (2 * PI ) & 0 <= s and

       A3: s < (2 * PI ) and

       A4: ( sin r) = ( sin s) & ( cos r) = ( cos s);

      

       A5: ( cos (r - s)) = ((( cos r) * ( cos s)) + (( sin r) * ( sin s))) by Th3

      .= 1 by A4, SIN_COS: 29;

      

       A6: ( sin (r - s)) = ((( sin r) * ( cos s)) - (( cos r) * ( sin s))) by Th3

      .= 0 by A4;

      

       A7: ( cos (s - r)) = ((( cos r) * ( cos s)) + (( sin r) * ( sin s))) by Th3

      .= 1 by A4, SIN_COS: 29;

      

       A8: ( sin (s - r)) = ((( sin s) * ( cos r)) - (( cos s) * ( sin r))) by Th3

      .= 0 by A4;

      per cases by XXREAL_0: 1;

        suppose

         A9: r > s;

        (r + 0 ) < ((2 * PI ) + s) by A2, XREAL_1: 8;

        then

         A10: (r - s) < (2 * PI ) by XREAL_1: 19;

        r > (s + 0 ) by A9;

        then 0 <= (r - s) by XREAL_1: 20;

        then (r - s) = 0 or (r - s) = PI by A6, A10, COMPTRIG: 17;

        hence thesis by A5, SIN_COS: 77;

      end;

        suppose r < s;

        then s > (r + 0 );

        then

         A11: 0 <= (s - r) by XREAL_1: 20;

        (s + 0 ) < ((2 * PI ) + r) by A1, A3, XREAL_1: 8;

        then (s - r) < (2 * PI ) by XREAL_1: 19;

        then (s - r) = 0 or (s - r) = PI by A8, A11, COMPTRIG: 17;

        hence thesis by A7, SIN_COS: 77;

      end;

        suppose r = s;

        hence thesis;

      end;

    end;

    begin

    

     Lm1: ( Arg 0 ) = 0 by COMPTRIG: 35;

    ::$Canceled

    theorem :: COMPLEX2:13

    

     Th12: for z be Complex st z <> 0 holds (( Arg z) < PI implies ( Arg ( - z)) = (( Arg z) + PI )) & (( Arg z) >= PI implies ( Arg ( - z)) = (( Arg z) - PI ))

    proof

      let z be Complex;

      assume

       A1: z <> 0 ;

      then

       A2: |.z.| <> 0 by COMPLEX1: 45;

      z = (( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) by COMPTRIG: 62;

      then

       A3: ( - z) = (( - ( |.z.| * ( cos ( Arg z)))) + (( - ( |.z.| * ( sin ( Arg z)))) * <i> ));

      ( Arg z) < (2 * PI ) by COMPTRIG: 34;

      then (( Arg z) + 0 ) < ((2 * PI ) + PI ) by COMPTRIG: 5, XREAL_1: 8;

      then

       A4: (( Arg z) - PI ) < (2 * PI ) by XREAL_1: 19;

      

       A5: ( - z) = (( |.( - z).| * ( cos ( Arg ( - z)))) + (( |.( - z).| * ( sin ( Arg ( - z)))) * <i> )) by COMPTRIG: 62;

      

       A6: |.z.| = |.( - z).| by COMPLEX1: 52;

      then ( |.z.| * ( sin ( Arg ( - z)))) = ( |.z.| * ( - ( sin ( Arg z)))) by A5, A3, COMPLEX1: 77;

      then

       A7: ( sin ( Arg ( - z))) = ( - ( sin ( Arg z))) by A2, XCMPLX_1: 5;

      then

       A8: ( sin ( Arg ( - z))) = ( sin (( Arg z) + PI )) by SIN_COS: 79;

      ( |.z.| * ( cos ( Arg ( - z)))) = ( |.z.| * ( - ( cos ( Arg z)))) by A5, A3, A6, COMPLEX1: 77;

      then

       A9: ( cos ( Arg ( - z))) = ( - ( cos ( Arg z))) by A2, XCMPLX_1: 5;

      then

       A10: ( cos ( Arg ( - z))) = ( cos (( Arg z) + PI )) by SIN_COS: 79;

      hereby

        assume ( Arg z) < PI ;

        then

         A11: (( Arg z) + PI ) < ( PI + PI ) by XREAL_1: 8;

         0 <= ( Arg z) by COMPTRIG: 34;

        hence ( Arg ( - z)) = (( Arg z) + PI ) by A1, A5, A10, A8, A11, COMPTRIG: 5, COMPTRIG:def 1;

      end;

      assume ( Arg z) >= PI ;

      then

       A12: (( Arg z) - PI ) >= ( PI - PI ) by XREAL_1: 9;

      

       A13: ( sin ( Arg ( - z))) = ( sin (( Arg z) - PI )) by A7, Th5;

      ( cos ( Arg ( - z))) = ( cos (( Arg z) - PI )) by A9, Th5;

      hence thesis by A1, A5, A13, A12, A4, COMPTRIG:def 1;

    end;

    ::$Canceled

    theorem :: COMPLEX2:15

    

     Th13: for z be Complex holds ( Arg z) = 0 iff z = |.z.|

    proof

      let z be Complex;

      hereby

        assume ( Arg z) = 0 ;

        then z = (( |.z.| * ( cos 0 )) + (( |.z.| * ( sin 0 )) * <i> )) by COMPTRIG: 62;

        hence z = |.z.| by SIN_COS: 31;

      end;

      assume z = |.z.|;

      hence thesis by COMPTRIG: 35, COMPLEX1: 46;

    end;

    theorem :: COMPLEX2:16

    

     Th14: for z be Complex st z <> 0 holds ( Arg z) < PI iff ( Arg ( - z)) >= PI

    proof

      let z be Complex;

      assume

       A1: z <> 0 ;

      thus ( Arg z) < PI implies ( Arg ( - z)) >= PI

      proof

        ( Arg z) >= 0 by COMPTRIG: 34;

        then

         A2: ( PI + 0 ) <= ( PI + ( Arg z)) by XREAL_1: 7;

        assume ( Arg z) < PI ;

        hence thesis by A1, A2, Th12;

      end;

      thus ( Arg ( - z)) >= PI implies ( Arg z) < PI

      proof

        (2 * PI ) > ( Arg ( - z)) by COMPTRIG: 34;

        then

         A3: (( PI + PI ) - PI ) > (( Arg ( - z)) - PI ) by XREAL_1: 9;

        assume ( Arg ( - z)) >= PI ;

        then ( Arg ( - ( - z))) = (( Arg ( - z)) - PI ) by A1, Th12;

        hence thesis by A3;

      end;

    end;

    theorem :: COMPLEX2:17

    

     Th15: for x,y be Complex st x <> y or (x - y) <> 0 holds ( Arg (x - y)) < PI iff ( Arg (y - x)) >= PI

    proof

      let z1,z2 be Complex;

      assume z1 <> z2 or (z1 - z2) <> 0 ;

      then (z1 - z2) <> 0c ;

      then ( Arg (z1 - z2)) < PI iff ( Arg ( - (z1 - z2))) >= PI by Th14;

      hence thesis;

    end;

    theorem :: COMPLEX2:18

    

     Th16: for z be Complex holds ( Arg z) in ]. 0 , PI .[ iff ( Im z) > 0

    proof

      let z be Complex;

      thus ( Arg z) in ]. 0 , PI .[ implies ( Im z) > 0

      proof

        assume ( Arg z) in ]. 0 , PI .[;

        then

         A1: 0 < ( Arg z) & ( Arg z) < PI by XXREAL_1: 4;

        

         A2: ( Arg z) < ( PI / 2) or ( Arg z) = ( PI / 2) or ( Arg z) > ( PI / 2) by XXREAL_0: 1;

        now

          per cases by A1, A2, XXREAL_1: 4;

            case ( Arg z) in ]. 0 , ( PI / 2).[;

            hence thesis by COMPTRIG: 41;

          end;

            case ( Arg z) = ( PI / 2);

            hence thesis by COMPTRIG: 48, SIN_COS: 77;

          end;

            case ( Arg z) in ].( PI / 2), PI .[;

            hence thesis by COMPTRIG: 42;

          end;

        end;

        hence thesis;

      end;

      

       A3: ].( PI / 2), PI .[ c= ]. 0 , PI .[ by COMPTRIG: 5, XXREAL_1: 46;

      

       A4: ]. 0 , ( PI / 2).[ c= ]. 0 , PI .[ by COMPTRIG: 5, XXREAL_1: 46;

      thus ( Im z) > 0 implies ( Arg z) in ]. 0 , PI .[

      proof

        assume

         A5: ( Im z) > 0 ;

        now

          per cases ;

            case ( Re z) > 0 ;

            then ( Arg z) in ]. 0 , ( PI / 2).[ by A5, COMPTRIG: 41;

            hence thesis by A4;

          end;

            case ( Re z) = 0 ;

            then z = ( 0 + (( Im z) * <i> )) by COMPLEX1: 13;

            then ( Arg z) = ( PI / 2) by A5, COMPTRIG: 37;

            hence thesis by COMPTRIG: 5, XXREAL_1: 4;

          end;

            case ( Re z) < 0 ;

            then ( Arg z) in ].( PI / 2), PI .[ by A5, COMPTRIG: 42;

            hence thesis by A3;

          end;

        end;

        hence thesis;

      end;

    end;

    theorem :: COMPLEX2:19

    for z be Complex st ( Arg z) <> 0 holds ( Arg z) < PI iff ( sin ( Arg z)) > 0

    proof

      let z be Complex;

      

       A1: ( Arg z) >= 0 by COMPTRIG: 34;

      assume

       A2: ( Arg z) <> 0 ;

      hereby

        assume ( Arg z) < PI ;

        then ( Arg z) in ]. 0 , PI .[ by A2, A1, XXREAL_1: 4;

        then ( Im z) > 0 by Th16;

        hence ( sin ( Arg z)) > 0 by COMPTRIG: 45;

      end;

      

       A3: ]. 0 , ( PI / 2).[ c= ]. 0 , PI .[ by COMPTRIG: 5, XXREAL_1: 46;

      thus ( sin ( Arg z)) > 0 implies ( Arg z) < PI

      proof

        assume

         A4: ( sin ( Arg z)) > 0 ;

        then

         A5: ( Im z) > 0 by COMPTRIG: 48;

        now

          per cases ;

            suppose ( Re z) > 0 ;

            then ( Arg z) in ]. 0 , ( PI / 2).[ by A5, COMPTRIG: 41;

            hence thesis by A3, XXREAL_1: 4;

          end;

            suppose ( Re z) = 0 ;

            then z = ( 0 + (( Im z) * <i> )) by COMPLEX1: 13;

            hence thesis by A4, COMPTRIG: 5, COMPTRIG: 37, COMPTRIG: 48;

          end;

            suppose ( Re z) < 0 ;

            then ( Arg z) in ].( PI / 2), PI .[ by A5, COMPTRIG: 42;

            hence thesis by XXREAL_1: 4;

          end;

        end;

        hence thesis;

      end;

    end;

    theorem :: COMPLEX2:20

    for x,y be Complex st ( Arg x) < PI & ( Arg y) < PI holds ( Arg (x + y)) < PI

    proof

      let z1,z2 be Complex;

      assume that

       A1: ( Arg z1) < PI and

       A2: ( Arg z2) < PI ;

      

       A3: |.z2.| = ( |.z2.| + ( 0 * <i> ));

      

       A4: |.z1.| = ( |.z1.| + ( 0 * <i> ));

      per cases by COMPTRIG: 34;

        suppose

         A5: ( Arg z1) = 0 ;

        then z1 = |.z1.| by Th13;

        then

         A6: ( Im z1) = 0 by A4, COMPLEX1: 12;

        per cases by COMPTRIG: 34;

          suppose ( Arg z2) = 0 ;

          then z2 = |.z2.| by Th13;

          then

           A7: (z1 + z2) = (( |.z1.| + |.z2.|) + ( 0 * <i> )) by A5, Th13;

           0 <= |.z1.| & 0 <= |.z2.| by COMPLEX1: 46;

          hence thesis by A7, COMPTRIG: 5, COMPTRIG: 35;

        end;

          suppose ( Arg z2) > 0 ;

          then ( Arg z2) in ]. 0 , PI .[ by A2, XXREAL_1: 4;

          then

           A8: ( Im z2) > 0 by Th16;

          ( Im (z1 + z2)) = (( Im z1) + ( Im z2)) by COMPLEX1: 8;

          then ( Arg (z1 + z2)) in ]. 0 , PI .[ by A6, A8, Th16;

          hence thesis by XXREAL_1: 4;

        end;

      end;

        suppose ( Arg z1) > 0 ;

        then ( Arg z1) in ]. 0 , PI .[ by A1, XXREAL_1: 4;

        then

         A9: ( Im z1) > 0 by Th16;

        per cases by COMPTRIG: 34;

          suppose ( Arg z2) = 0 ;

          then z2 = |.z2.| by Th13;

          then

           A10: ( Im z2) = 0 by A3, COMPLEX1: 12;

          ( Im (z1 + z2)) = (( Im z1) + ( Im z2)) by COMPLEX1: 8;

          then ( Arg (z1 + z2)) in ]. 0 , PI .[ by A9, A10, Th16;

          hence thesis by XXREAL_1: 4;

        end;

          suppose ( Arg z2) > 0 ;

          then ( Arg z2) in ]. 0 , PI .[ by A2, XXREAL_1: 4;

          then

           A11: ( Im z2) > 0 by Th16;

          ( Im (z1 + z2)) = (( Im z1) + ( Im z2)) by COMPLEX1: 8;

          then ( Arg (z1 + z2)) in ]. 0 , PI .[ by A9, A11, Th16;

          hence thesis by XXREAL_1: 4;

        end;

      end;

    end;

    theorem :: COMPLEX2:21

    

     Th19: for z be Complex holds ( Arg z) = 0 iff ( Re z) >= 0 & ( Im z) = 0

    proof

      let z be Complex;

      

       A1: |.z.| = ( |.z.| + ( 0 * <i> ));

      hereby

        assume ( Arg z) = 0 ;

        then

         A2: z = |.z.| by Th13;

        then ( Re z) = |.z.| by A1, COMPLEX1: 12;

        hence ( Re z) >= 0 & ( Im z) = 0 by A1, A2, COMPLEX1: 12, COMPLEX1: 46;

      end;

      assume that

       A3: ( Re z) >= 0 and

       A4: ( Im z) = 0 ;

      z = (( Re z) + ( 0 * <i> )) by A4, COMPLEX1: 13;

      hence thesis by A3, COMPTRIG: 35;

    end;

    theorem :: COMPLEX2:22

    

     Th20: for z be Complex holds ( Arg z) = PI iff ( Re z) < 0 & ( Im z) = 0

    proof

      let z be Complex;

      hereby

        assume

         A1: ( Arg z) = PI ;

        per cases ;

          suppose

           A2: z <> 0 ;

          reconsider zz = |.z.| as Element of REAL by XREAL_0:def 1;

          

           A3: z = ((zz * ( cos PI )) + (( |.z.| * ( sin PI )) * <i> )) & ( - ( - |.z.|)) > 0 by A1, COMPLEX1: 47, COMPTRIG:def 1, A2;

          ( cos PI ) = ( - 1) & ( sin PI ) = 0 by SIN_COS: 77;

          then

           A5: z = ((zz * ( - 1)) + ((zz * 0 ) * <i> )) by A3;

          hence ( Re z) < 0 by COMPLEX1:def 1, A3;

          thus ( Im z) = 0 by COMPLEX1:def 2, A5;

        end;

          suppose z = 0 ;

          hence ( Re z) < 0 & ( Im z) = 0 by A1, COMPTRIG: 5, COMPTRIG: 35;

        end;

      end;

      assume that

       A6: ( Re z) < 0 and

       A7: ( Im z) = 0 ;

      z = (( Re z) + ( 0 * <i> )) by A7, COMPLEX1: 13;

      hence thesis by A6, COMPTRIG: 36;

    end;

    theorem :: COMPLEX2:23

    

     Th21: for z be Complex holds ( Im z) = 0 iff ( Arg z) = 0 or ( Arg z) = PI

    proof

      let z be Complex;

      hereby

        

         A1: ( Arg (( Re z) + ( 0 * <i> ))) = 0 or ( Arg (( Re z) + ( 0 * <i> ))) = PI by COMPTRIG: 35, COMPTRIG: 36;

        assume ( Im z) = 0 ;

        hence ( Arg z) = 0 or ( Arg z) = PI by A1, COMPLEX1: 13;

      end;

      assume ( Arg z) = 0 or ( Arg z) = PI ;

      hence thesis by Th19, Th20;

    end;

    theorem :: COMPLEX2:24

    

     Th22: for z be Complex st ( Arg z) <= PI holds ( Im z) >= 0

    proof

      let z be Complex;

      assume

       A1: ( Arg z) <= PI ;

      per cases by A1, COMPTRIG: 34, XXREAL_0: 1;

        suppose ( Arg z) = PI or ( Arg z) = 0 ;

        hence thesis by Th21;

      end;

        suppose 0 < ( Arg z) & ( Arg z) < PI ;

        then ( Arg z) in ]. 0 , PI .[ by XXREAL_1: 4;

        hence thesis by Th16;

      end;

    end;

    theorem :: COMPLEX2:25

    

     Th23: for z be Element of COMPLEX st z <> 0 holds ( cos ( Arg ( - z))) = ( - ( cos ( Arg z))) & ( sin ( Arg ( - z))) = ( - ( sin ( Arg z)))

    proof

      let a be Element of COMPLEX ;

      

       A1: |.( - a).| = |.a.| by COMPLEX1: 52;

      assume a <> 0 ;

      then

       A2: |.a.| <> 0 by COMPLEX1: 45;

      a = (( |.a.| * ( cos ( Arg a))) + (( |.a.| * ( sin ( Arg a))) * <i> )) & ( - a) = (( |.( - a).| * ( cos ( Arg ( - a)))) + (( |.( - a).| * ( sin ( Arg ( - a)))) * <i> )) by COMPTRIG: 62;

      then

       A3: ( 0 + ( 0 * <i> )) = ((( |.a.| * ( cos ( Arg a))) + ( |.a.| * ( cos ( Arg ( - a))))) + ((( |.a.| * ( sin ( Arg a))) + ( |.a.| * ( sin ( Arg ( - a))))) * <i> )) by A1;

      then ( |.a.| * (( sin ( Arg a)) + ( sin ( Arg ( - a))))) = 0 by COMPLEX1: 4, COMPLEX1: 12;

      then

       A4: (( sin ( Arg a)) + ( - ( - ( sin ( Arg ( - a)))))) = 0 by A2;

      ( |.a.| * (( cos ( Arg a)) + ( cos ( Arg ( - a))))) = 0 by A3, COMPLEX1: 4, COMPLEX1: 12;

      then (( cos ( Arg a)) + ( - ( - ( cos ( Arg ( - a)))))) = 0 by A2;

      hence thesis by A4;

    end;

    theorem :: COMPLEX2:26

    

     Th24: for a be Complex st a <> 0 holds ( cos ( Arg a)) = (( Re a) / |.a.|) & ( sin ( Arg a)) = (( Im a) / |.a.|)

    proof

      let a be Complex;

      a = (( |.a.| * ( cos ( Arg a))) + (( |.a.| * ( sin ( Arg a))) * <i> )) by COMPTRIG: 62;

      then

       A1: ( Re a) = ( |.a.| * ( cos ( Arg a))) & ( Im a) = ( |.a.| * ( sin ( Arg a))) by COMPLEX1: 12;

      assume a <> 0 ;

      hence thesis by A1, COMPLEX1: 45, XCMPLX_1: 89;

    end;

    theorem :: COMPLEX2:27

    

     Th25: for a be Complex, r be Real st r > 0 holds ( Arg (a * r)) = ( Arg a)

    proof

      let a be Complex, r be Real such that

       A1: r > 0 ;

      per cases ;

        suppose a = 0 ;

        hence thesis;

      end;

        suppose

         A2: a <> 0 ;

        then

         A3: ( sin ( Arg a)) = (( Im a) / |.a.|) by Th24;

        set b = (a * r);

        

         A4: |.b.| = ( |.a.| * |.r.|) by COMPLEX1: 65

        .= ( |.a.| * r) by A1, ABSVALUE:def 1;

        

         A5: ( cos ( Arg a)) = (( Re a) / |.a.|) by A2, Th24;

        

         A6: 0 <= ( Arg a) & ( Arg a) < (2 * PI ) by COMPTRIG: 34;

        r = (r + ( 0 * <i> ));

        then

         A7: ( Re r) = r & ( Im r) = 0 by COMPLEX1: 12;

        

        then

         A8: ( Im b) = ((( Re a) * 0 ) + (r * ( Im a))) by COMPLEX1: 9

        .= (r * ( Im a));

        

         A9: ( sin ( Arg b)) = (( Im b) / |.b.|) by A1, A2, Th24

        .= ( sin ( Arg a)) by A1, A8, A4, A3, XCMPLX_1: 91;

        

         A10: 0 <= ( Arg b) & ( Arg b) < (2 * PI ) by COMPTRIG: 34;

        

         A11: ( Re b) = ((( Re a) * r) - ( 0 * ( Im a))) by A7, COMPLEX1: 9

        .= (r * ( Re a));

        ( cos ( Arg b)) = (( Re b) / |.b.|) by A1, A2, Th24

        .= ( cos ( Arg a)) by A1, A11, A4, A5, XCMPLX_1: 91;

        hence thesis by A9, A10, A6, Th11;

      end;

    end;

    theorem :: COMPLEX2:28

    

     Th26: for a be Complex, r be Real st r < 0 holds ( Arg (a * r)) = ( Arg ( - a))

    proof

      let a be Complex, r be Real such that

       A1: r < 0 ;

      per cases ;

        suppose a = 0 ;

        hence thesis;

      end;

        suppose

         A2: a <> 0 ;

        then

         A3: ( cos ( Arg a)) = (( Re a) / |.a.|) by Th24;

        

         A4: 0 <= ( Arg ( - a)) & ( Arg ( - a)) < (2 * PI ) by COMPTRIG: 34;

        

         A5: ( sin ( Arg a)) = (( Im a) / |.a.|) by A2, Th24;

        set b = (a * r);

        

         A6: a in COMPLEX by XCMPLX_0:def 2;

        

         A7: 0 <= ( Arg b) & ( Arg b) < (2 * PI ) by COMPTRIG: 34;

        

         A8: |.b.| = ( |.a.| * |.r.|) by COMPLEX1: 65

        .= ( |.a.| * ( - r)) by A1, ABSVALUE:def 1;

        r = (r + ( 0 * <i> ));

        then

         A9: ( Re r) = r & ( Im r) = 0 by COMPLEX1: 12;

        

        then ( Im b) = ((( Re a) * 0 ) + (r * ( Im a))) by COMPLEX1: 9

        .= (r * ( Im a));

        

        then

         A10: ( sin ( Arg b)) = ((r * ( Im a)) / ( - ( |.a.| * r))) by A1, A2, A8, Th24

        .= ( - ((r * ( Im a)) / ( |.a.| * r))) by XCMPLX_1: 188

        .= ( - ( sin ( Arg a))) by A1, A5, XCMPLX_1: 91

        .= ( sin ( Arg ( - a))) by A2, A6, Th23;

        ( Re b) = ((( Re a) * r) - ( 0 * ( Im a))) by A9, COMPLEX1: 9

        .= (r * ( Re a));

        

        then ( cos ( Arg b)) = ((r * ( Re a)) / ( - ( |.a.| * r))) by A1, A2, A8, Th24

        .= ( - ((r * ( Re a)) / ( |.a.| * r))) by XCMPLX_1: 188

        .= ( - ( cos ( Arg a))) by A1, A3, XCMPLX_1: 91

        .= ( cos ( Arg ( - a))) by A2, A6, Th23;

        hence thesis by A10, A7, A4, Th11;

      end;

    end;

    begin

    definition

      let x,y be Complex;

      :: COMPLEX2:def1

      func x .|. y -> Element of COMPLEX equals (x * (y *' ));

      correctness by XCMPLX_0:def 2;

    end

    reserve a,b,c,d,x,y,z for Complex;

    theorem :: COMPLEX2:29

    

     Th27: (x .|. y) = (((( Re x) * ( Re y)) + (( Im x) * ( Im y))) + ((( - (( Re x) * ( Im y))) + (( Im x) * ( Re y))) * <i> ))

    proof

      x = (( Re x) + (( Im x) * <i> )) & (y *' ) = (( Re y) - (( Im y) * <i> )) by COMPLEX1: 13, COMPLEX1:def 11;

      hence thesis;

    end;

    theorem :: COMPLEX2:30

    

     Th28: (z .|. z) = ((( Re z) * ( Re z)) + (( Im z) * ( Im z))) & (z .|. z) = ((( Re z) ^2 ) + (( Im z) ^2 ))

    proof

      

      thus (z .|. z) = (((( Re z) * ( Re z)) + (( Im z) * ( Im z))) + ((( - (( Im z) * ( Re z))) + (( Im z) * ( Re z))) * <i> )) by Th27

      .= ((( Re z) * ( Re z)) + (( Im z) * ( Im z)));

      hence thesis;

    end;

    theorem :: COMPLEX2:31

    

     Th29: (z .|. z) = ( |.z.| ^2 ) & ( |.z.| ^2 ) = ( Re (z .|. z))

    proof

      

       A1: (( Re z) ^2 ) >= 0 & (( Im z) ^2 ) >= 0 by XREAL_1: 63;

      

       A2: |.z.| = ( sqrt ((( Re z) ^2 ) + (( Im z) ^2 ))) by COMPLEX1:def 12;

      

      thus

       A3: (z .|. z) = ((( Re z) ^2 ) + (( Im z) ^2 )) by Th28

      .= ( |.z.| ^2 ) by A1, A2, SQUARE_1:def 2;

      ( |.z.| ^2 ) = (( |.z.| ^2 ) + ( 0 * <i> ) qua Complex);

      hence thesis by A3, COMPLEX1: 12;

    end;

    theorem :: COMPLEX2:32

    

     Th30: |.(x .|. y).| = ( |.x.| * |.y.|)

    proof

      

      thus |.(x .|. y).| = ( |.x.| * |.(y *' ).|) by COMPLEX1: 65

      .= ( |.x.| * |.y.|) by COMPLEX1: 53;

    end;

    theorem :: COMPLEX2:33

    (x .|. x) = 0 implies x = 0

    proof

      assume (x .|. x) = 0 ;

      then ((( Re x) ^2 ) + (( Im x) ^2 )) = 0 by Th28;

      hence thesis by COMPLEX1: 5;

    end;

    theorem :: COMPLEX2:34

    

     Th32: (y .|. x) = ((x .|. y) *' )

    proof

      

      thus (y .|. x) = (((y * (x *' )) *' ) *' )

      .= ((((x *' ) *' ) * (y *' )) *' ) by COMPLEX1: 35

      .= ((x .|. y) *' );

    end;

    theorem :: COMPLEX2:35

    ((x + y) .|. z) = ((x .|. z) + (y .|. z));

    theorem :: COMPLEX2:36

    

     Th34: (x .|. (y + z)) = ((x .|. y) + (x .|. z))

    proof

      

      thus (x .|. (y + z)) = (x * ((y *' ) + (z *' ))) by COMPLEX1: 32

      .= ((x .|. y) + (x .|. z));

    end;

    theorem :: COMPLEX2:37

    ((a * x) .|. y) = (a * (x .|. y));

    theorem :: COMPLEX2:38

    

     Th36: (x .|. (a * y)) = ((a *' ) * (x .|. y))

    proof

      

      thus (x .|. (a * y)) = (x * ((a *' ) * (y *' ))) by COMPLEX1: 35

      .= ((a *' ) * (x .|. y));

    end;

    theorem :: COMPLEX2:39

    ((a * x) .|. y) = (x .|. ((a *' ) * y))

    proof

      

      thus ((a * x) .|. y) = (x * (((a *' ) *' ) * (y *' )))

      .= (x .|. ((a *' ) * y)) by COMPLEX1: 35;

    end;

    theorem :: COMPLEX2:40

    (((a * x) + (b * y)) .|. z) = ((a * (x .|. z)) + (b * (y .|. z)));

    theorem :: COMPLEX2:41

    (x .|. ((a * y) + (b * z))) = (((a *' ) * (x .|. y)) + ((b *' ) * (x .|. z)))

    proof

      

      thus (x .|. ((a * y) + (b * z))) = ((x .|. (a * y)) + (x .|. (b * z))) by Th34

      .= (((a *' ) * (x .|. y)) + (x .|. (b * z))) by Th36

      .= (((a *' ) * (x .|. y)) + ((b *' ) * (x .|. z))) by Th36;

    end;

    theorem :: COMPLEX2:42

    

     Th40: (( - x) .|. y) = (x .|. ( - y))

    proof

      

      thus (( - x) .|. y) = (( - ( 1r *' )) * (x .|. y)) by COMPLEX1: 30, COMPLEX1:def 4

      .= ((( - 1r ) *' ) * (x .|. y)) by COMPLEX1: 33

      .= (x .|. (( - 1r ) * y)) by Th36

      .= (x .|. ( - y)) by COMPLEX1:def 4;

    end;

    theorem :: COMPLEX2:43

    (( - x) .|. y) = ( - (x .|. y));

    theorem :: COMPLEX2:44

    

     Th42: ( - (x .|. y)) = (x .|. ( - y))

    proof

      

      thus ( - (x .|. y)) = (( - x) .|. y)

      .= (x .|. ( - y)) by Th40;

    end;

    theorem :: COMPLEX2:45

    (( - x) .|. ( - y)) = (x .|. y)

    proof

      (( - x) .|. ( - y)) = ( - (x .|. ( - y)))

      .= ( - ( - (x .|. y))) by Th42;

      hence thesis;

    end;

    theorem :: COMPLEX2:46

    ((x - y) .|. z) = ((x .|. z) - (y .|. z));

    theorem :: COMPLEX2:47

    

     Th45: (x .|. (y - z)) = ((x .|. y) - (x .|. z))

    proof

      

      thus (x .|. (y - z)) = (x * ((y *' ) - (z *' ))) by COMPLEX1: 34

      .= ((x .|. y) - (x .|. z));

    end;

    theorem :: COMPLEX2:48

    ((x + y) .|. (x + y)) = ((((x .|. x) + (x .|. y)) + (y .|. x)) + (y .|. y))

    proof

      ((x + y) .|. (x + y)) = ((x .|. (x + y)) + (y .|. (x + y)))

      .= (((x .|. x) + (x .|. y)) + (y .|. (x + y))) by Th34

      .= (((x .|. x) + (x .|. y)) + ((y .|. x) + (y .|. y))) by Th34

      .= ((((x .|. x) + (x .|. y)) + (y .|. x)) + (y .|. y));

      hence thesis;

    end;

    theorem :: COMPLEX2:49

    

     Th47: ((x - y) .|. (x - y)) = ((((x .|. x) - (x .|. y)) - (y .|. x)) + (y .|. y))

    proof

      ((x - y) .|. (x - y)) = ((x .|. (x - y)) - (y .|. (x - y)))

      .= (((x .|. x) - (x .|. y)) - (y .|. (x - y))) by Th45

      .= (((x .|. x) - (x .|. y)) - ((y .|. x) - (y .|. y))) by Th45

      .= ((((x .|. x) - (x .|. y)) - (y .|. x)) + (y .|. y));

      hence thesis;

    end;

    

     Lm2: ( |.z.| ^2 ) = ((( Re z) ^2 ) + (( Im z) ^2 ))

    proof

      

      thus ( |.z.| ^2 ) = |.(z * z).| by COMPLEX1: 65

      .= ((( Re z) ^2 ) + (( Im z) ^2 )) by COMPLEX1: 68;

    end;

    theorem :: COMPLEX2:50

    

     Th48: ( Re (x .|. y)) = 0 iff ( Im (x .|. y)) = ( |.x.| * |.y.|) or ( Im (x .|. y)) = ( - ( |.x.| * |.y.|))

    proof

      hereby

        assume

         A1: ( Re (x .|. y)) = 0 ;

        (( |.x.| * |.y.|) ^2 ) = ( |.(x .|. y).| ^2 ) by Th30

        .= (( 0 ^2 ) + (( Im (x .|. y)) ^2 )) by A1, Lm2

        .= (( Im (x .|. y)) ^2 );

        hence ( Im (x .|. y)) = ( |.x.| * |.y.|) or ( Im (x .|. y)) = ( - ( |.x.| * |.y.|)) by SQUARE_1: 40;

      end;

      hereby

        assume ( Im (x .|. y)) = ( |.x.| * |.y.|) or ( Im (x .|. y)) = ( - ( |.x.| * |.y.|));

        

        then (( Im (x .|. y)) ^2 ) = (( |.x.| * |.y.|) ^2 )

        .= ( |.(x .|. y).| ^2 ) by Th30

        .= ((( Re (x .|. y)) ^2 ) + (( Im (x .|. y)) ^2 )) by Lm2;

        hence ( Re (x .|. y)) = 0 ;

      end;

    end;

    begin

    definition

      let a be Complex, r be Real;

      :: COMPLEX2:def2

      func Rotate (a,r) -> Element of COMPLEX equals (( |.a.| * ( cos (r + ( Arg a)))) + (( |.a.| * ( sin (r + ( Arg a)))) * <i> ));

      correctness by XCMPLX_0:def 2;

    end

    reserve r for Real;

    theorem :: COMPLEX2:51

    ( Rotate (a, 0 )) = a by COMPTRIG: 62;

    theorem :: COMPLEX2:52

    

     Th50: for a be Complex holds ( Rotate (a,r)) = 0 iff a = 0

    proof

      let a be Complex;

      hereby

        assume ( Rotate (a,r)) = 0 ;

        then

         A1: ( Rotate (a,r)) = ( 0 + ( 0 * <i> ));

        per cases by A1, COMPLEX1: 77;

          suppose |.a.| = 0 ;

          hence a = 0 by COMPLEX1: 45;

        end;

          suppose ( cos (r + ( Arg a))) = 0 & ( sin (r + ( Arg a))) = 0 ;

          hence a = 0 by Th10;

        end;

      end;

      assume a = 0 ;

      hence thesis by COMPLEX1: 44;

    end;

    theorem :: COMPLEX2:53

    

     Th51: for a be Complex holds |.( Rotate (a,r)).| = |.a.|

    proof

      let a be Complex;

      ( Re ( Rotate (a,r))) = ( |.a.| * ( cos (r + ( Arg a)))) & ( Im ( Rotate (a,r))) = ( |.a.| * ( sin (r + ( Arg a)))) by COMPLEX1: 12;

      

      hence |.( Rotate (a,r)).| = ( sqrt ((( |.a.| * ( cos (r + ( Arg a)))) ^2 ) + (( |.a.| * ( sin (r + ( Arg a)))) ^2 ))) by COMPLEX1:def 12

      .= ( sqrt (( |.a.| ^2 ) * ((( cos (r + ( Arg a))) ^2 ) + (( sin (r + ( Arg a))) ^2 ))))

      .= ( sqrt (( |.a.| ^2 ) * 1)) by SIN_COS: 29

      .= |.a.| by COMPLEX1: 46, SQUARE_1: 22;

    end;

    theorem :: COMPLEX2:54

    

     Th52: for a be Complex st a <> 0 holds ex i be Integer st ( Arg ( Rotate (a,r))) = (((2 * PI ) * i) + (r + ( Arg a)))

    proof

      let a be Complex;

      

       A1: |.a.| = |.( Rotate (a,r)).| by Th51;

      assume a <> 0 ;

      then

       A2: ( Rotate (a,r)) <> 0c by Th50;

      take ( - [\((r + ( Arg a)) / (2 * PI ))/]);

      consider AR be Real such that

       A3: AR = (((2 * PI ) * ( - [\((r + ( Arg a)) / (2 * PI ))/])) + (r + ( Arg a))) and

       A4: 0 <= AR & AR < (2 * PI ) by Th1, COMPTRIG: 5;

      ( cos (r + ( Arg a))) = ( cos AR) & ( sin (r + ( Arg a))) = ( sin AR) by A3, Th8, Th9;

      hence thesis by A2, A1, A3, A4, COMPTRIG:def 1;

    end;

    theorem :: COMPLEX2:55

    ( Rotate (a,( - ( Arg a)))) = |.a.| by SIN_COS: 31;

    theorem :: COMPLEX2:56

    

     Th54: ( Re ( Rotate (a,r))) = ((( Re a) * ( cos r)) - (( Im a) * ( sin r))) & ( Im ( Rotate (a,r))) = ((( Re a) * ( sin r)) + (( Im a) * ( cos r)))

    proof

      a = (( |.a.| * ( cos ( Arg a))) + (( |.a.| * ( sin ( Arg a))) * <i> )) by COMPTRIG: 62;

      then

       A1: ( Re a) = ( |.a.| * ( cos ( Arg a))) & ( Im a) = ( |.a.| * ( sin ( Arg a))) by COMPLEX1: 12;

      

      thus ( Re ( Rotate (a,r))) = ( |.a.| * ( cos (r + ( Arg a)))) by COMPLEX1: 12

      .= ( |.a.| * ((( cos r) * ( cos ( Arg a))) - (( sin r) * ( sin ( Arg a))))) by SIN_COS: 75

      .= ((( Re a) * ( cos r)) - (( Im a) * ( sin r))) by A1;

      

      thus ( Im ( Rotate (a,r))) = ( |.a.| * ( sin (r + ( Arg a)))) by COMPLEX1: 12

      .= ( |.a.| * ((( sin r) * ( cos ( Arg a))) + (( cos r) * ( sin ( Arg a))))) by SIN_COS: 75

      .= ((( Re a) * ( sin r)) + (( Im a) * ( cos r))) by A1;

    end;

    theorem :: COMPLEX2:57

    

     Th55: ( Rotate ((a + b),r)) = (( Rotate (a,r)) + ( Rotate (b,r)))

    proof

      set ab = (a + b);

      set rab = ( Rotate (ab,r)), ra = ( Rotate (a,r)), rb = ( Rotate (b,r));

      

       A1: ( Re ab) = (( Re a) + ( Re b)) & ( Im ab) = (( Im a) + ( Im b)) by COMPLEX1: 8;

      

       A2: ( Im rab) = ((( Re ab) * ( sin r)) + (( Im ab) * ( cos r))) by Th54;

      ( Im ra) = ((( Re a) * ( sin r)) + (( Im a) * ( cos r))) & ( Im rb) = ((( Re b) * ( sin r)) + (( Im b) * ( cos r))) by Th54;

      

      then

       A3: ( Im (ra + rb)) = (((( Re a) * ( sin r)) + (( Im a) * ( cos r))) + ((( Re b) * ( sin r)) + (( Im b) * ( cos r)))) by COMPLEX1: 8

      .= ( Im rab) by A2, A1;

      

       A4: ( Re rab) = ((( Re ab) * ( cos r)) - (( Im ab) * ( sin r))) by Th54;

      ( Re ra) = ((( Re a) * ( cos r)) - (( Im a) * ( sin r))) & ( Re rb) = ((( Re b) * ( cos r)) - (( Im b) * ( sin r))) by Th54;

      

      then ( Re (ra + rb)) = (((( Re a) * ( cos r)) - (( Im a) * ( sin r))) + ((( Re b) * ( cos r)) - (( Im b) * ( sin r)))) by COMPLEX1: 8

      .= ( Re rab) by A4, A1;

      hence thesis by A3, COMPLEX1: 3;

    end;

    theorem :: COMPLEX2:58

    

     Th56: ( Rotate (( - a),r)) = ( - ( Rotate (a,r)))

    proof

      per cases ;

        suppose

         A1: a <> 0c ;

        

         A2: ( cos (r + ( Arg ( - a)))) = ( - ( cos (r + ( Arg a)))) & ( sin (r + ( Arg ( - a)))) = ( - ( sin (r + ( Arg a))))

        proof

          per cases ;

            suppose ( Arg a) < PI ;

            then ( Arg ( - a)) = ( PI + ( Arg a)) by A1, Th12;

            then (r + ( Arg ( - a))) = ( PI + (r + ( Arg a)));

            hence thesis by SIN_COS: 79;

          end;

            suppose ( Arg a) >= PI ;

            then ( Arg ( - a)) = (( Arg a) - PI ) by A1, Th12;

            then (r + ( Arg ( - a))) = ((( Arg a) + r) - PI );

            hence thesis by Th5;

          end;

        end;

         |.a.| = |.( - a).| by COMPLEX1: 52;

        hence thesis by A2;

      end;

        suppose

         A3: a = 0c ;

        

        hence ( Rotate (( - a),r)) = ( - 0 ) by Th50

        .= ( - ( Rotate (a,r))) by A3, Th50;

      end;

    end;

    theorem :: COMPLEX2:59

    

     Th57: ( Rotate ((a - b),r)) = (( Rotate (a,r)) - ( Rotate (b,r)))

    proof

      

      thus ( Rotate ((a - b),r)) = (( Rotate (a,r)) + ( Rotate (( - b),r))) by Th55

      .= (( Rotate (a,r)) - ( Rotate (b,r))) by Th56;

    end;

    theorem :: COMPLEX2:60

    

     Th58: ( Rotate (a, PI )) = ( - a)

    proof

      

       A1: a = (( |.a.| * ( cos ( Arg a))) + (( |.a.| * ( sin ( Arg a))) * <i> )) by COMPTRIG: 62;

      

       A2: ( |.a.| * ( - ( sin ( Arg a)))) = ( - ( |.a.| * ( sin ( Arg a))))

      .= ( - ( Im a)) by A1, COMPLEX1: 12;

      

       A3: ( |.a.| * ( - ( cos ( Arg a)))) = ( - ( |.a.| * ( cos ( Arg a))))

      .= ( - ( Re a)) by A1, COMPLEX1: 12;

      

      thus ( Rotate (a, PI )) = (( |.a.| * ( - ( cos ( Arg a)))) + (( |.a.| * ( sin ( PI + ( Arg a)))) * <i> )) by SIN_COS: 79

      .= (( |.a.| * ( - ( cos ( Arg a)))) + (( |.a.| * ( - ( sin ( Arg a)))) * <i> )) by SIN_COS: 79

      .= ( - a) by A3, A2, COMPLEX1: 83;

    end;

    begin

    definition

      let a,b be Complex;

      :: COMPLEX2:def3

      func angle (a,b) -> Real equals

      : Def3: ( Arg ( Rotate (b,( - ( Arg a))))) if ( Arg a) = 0 or b <> 0

      otherwise ((2 * PI ) - ( Arg a));

      correctness ;

    end

    theorem :: COMPLEX2:61

    

     Th59: for a be Complex holds r >= 0 implies ( angle (r,a)) = ( Arg a)

    proof

      let a be Complex;

      assume r >= 0 ;

      then ( Arg r) = 0 by COMPTRIG: 35;

      

      hence ( angle (r,a)) = ( Arg ( Rotate (a,( - 0 )))) by Def3

      .= ( Arg a) by COMPTRIG: 62;

    end;

    theorem :: COMPLEX2:62

    

     Th60: for a,b be Complex holds ( Arg a) = ( Arg b) & a <> 0 & b <> 0 implies ( Arg ( Rotate (a,r))) = ( Arg ( Rotate (b,r)))

    proof

      let a,b be Complex;

      assume that

       A1: ( Arg a) = ( Arg b) and

       A2: a <> 0 and

       A3: b <> 0 ;

      consider i be Integer such that

       A4: ( Arg ( Rotate (a,r))) = (((2 * PI ) * i) + (r + ( Arg a))) by A2, Th52;

      consider j be Integer such that

       A5: ( Arg ( Rotate (b,r))) = (((2 * PI ) * j) + (r + ( Arg b))) by A3, Th52;

      

       A6: 0 <= ( Arg ( Rotate (a,r))) & 0 <= ( Arg ( Rotate (b,r))) by COMPTRIG: 34;

      

       A7: ( Arg ( Rotate (a,r))) < (2 * PI ) & ( Arg ( Rotate (b,r))) < (2 * PI ) by COMPTRIG: 34;

      ( Arg ( Rotate (b,r))) = (((2 * PI ) * (j - i)) + ( Arg ( Rotate (a,r)))) by A1, A4, A5;

      hence thesis by A6, A7, Th2;

    end;

    theorem :: COMPLEX2:63

    

     Th61: r > 0 implies ( angle (a,b)) = ( angle ((a * r),(b * r)))

    proof

      assume

       A1: r > 0 ;

      then

       A2: ( Arg (a * r)) = ( Arg a) by Th25;

      per cases ;

        suppose

         A3: b <> 0 ;

        

        hence ( angle (a,b)) = ( Arg ( Rotate (b,( - ( Arg a))))) by Def3

        .= ( Arg ( Rotate ((b * r),( - ( Arg (a * r)))))) by A1, A2, A3, Th25, Th60

        .= ( angle ((a * r),(b * r))) by A1, A3, Def3;

      end;

        suppose

         A4: b = 0 ;

        thus thesis

        proof

          per cases ;

            suppose

             A5: ( Arg a) = 0 ;

            

            hence ( angle (a,b)) = ( Arg ( Rotate (b,( - ( Arg a))))) by Def3

            .= ( Arg 0c ) by A4, Th50

            .= ( Arg ( Rotate ((b * r),( - ( Arg (a * r)))))) by A4, Th50

            .= ( angle ((a * r),(b * r))) by A2, A5, Def3;

          end;

            suppose

             A6: ( Arg a) <> 0 ;

            

            hence ( angle (a,b)) = ((2 * PI ) - ( Arg a)) by A4, Def3

            .= ( angle ((a * r),(b * r))) by A2, A4, A6, Def3;

          end;

        end;

      end;

    end;

    theorem :: COMPLEX2:64

    

     Th62: a <> 0 & b <> 0 & ( Arg a) = ( Arg b) implies ( Arg ( - a)) = ( Arg ( - b))

    proof

      assume a <> 0 & b <> 0 & ( Arg a) = ( Arg b);

      then ( Arg ( Rotate (a, PI ))) = ( Arg ( Rotate (b, PI ))) by Th60;

      then ( Arg ( - a)) = ( Arg ( Rotate (b, PI ))) by Th58;

      hence thesis by Th58;

    end;

    theorem :: COMPLEX2:65

    

     Th63: a <> 0 & b <> 0 implies ( angle (a,b)) = ( angle (( Rotate (a,r)),( Rotate (b,r))))

    proof

      assume that

       A1: a <> 0 and

       A2: b <> 0 ;

      consider i be Integer such that

       A3: ( Arg ( Rotate (b,( - ( Arg a))))) = (((2 * PI ) * i) + (( - ( Arg a)) + ( Arg b))) by A2, Th52;

      consider l be Integer such that

       A4: ( Arg ( Rotate (b,r))) = (((2 * PI ) * l) + (r + ( Arg b))) by A2, Th52;

      consider k be Integer such that

       A5: ( Arg ( Rotate (a,r))) = (((2 * PI ) * k) + (r + ( Arg a))) by A1, Th52;

      

       A6: 0 <= ( Arg ( Rotate (( Rotate (b,r)),( - ( Arg ( Rotate (a,r))))))) & ( Arg ( Rotate (( Rotate (b,r)),( - ( Arg ( Rotate (a,r))))))) < (2 * PI ) by COMPTRIG: 34;

      

       A7: 0 <= ( Arg ( Rotate (b,( - ( Arg a))))) & ( Arg ( Rotate (b,( - ( Arg a))))) < (2 * PI ) by COMPTRIG: 34;

      

       A8: ( Rotate (b,r)) <> 0 by A2, Th50;

      then

      consider j be Integer such that

       A9: ( Arg ( Rotate (( Rotate (b,r)),( - ( Arg ( Rotate (a,r))))))) = (((2 * PI ) * j) + (( - ( Arg ( Rotate (a,r)))) + ( Arg ( Rotate (b,r))))) by Th52;

      

       A10: ( Arg ( Rotate (( Rotate (b,r)),( - ( Arg ( Rotate (a,r))))))) = (((2 * PI ) * (((j - k) + l) - i)) + ( Arg ( Rotate (b,( - ( Arg a)))))) by A3, A9, A5, A4;

      

      thus ( angle (a,b)) = ( Arg ( Rotate (b,( - ( Arg a))))) by A2, Def3

      .= ( Arg ( Rotate (( Rotate (b,r)),( - ( Arg ( Rotate (a,r))))))) by A10, A7, A6, Th2

      .= ( angle (( Rotate (a,r)),( Rotate (b,r)))) by A8, Def3;

    end;

    theorem :: COMPLEX2:66

    r < 0 & a <> 0 & b <> 0 implies ( angle (a,b)) = ( angle ((a * r),(b * r)))

    proof

      assume that

       A1: r < 0 and

       A2: a <> 0 and

       A3: b <> 0 ;

      consider i be Integer such that

       A4: ( Arg ( Rotate (( - b),( - ( Arg ( - a)))))) = (((2 * PI ) * i) + (( - ( Arg ( - a))) + ( Arg ( - b)))) by A3, Th52;

      set br = (b * r), ar = (a * r);

      ( Arg (b * r)) = ( Arg ( - b)) & ( Arg (a * r)) = ( Arg ( - a)) by A1, Th26;

      then

      consider j be Integer such that

       A5: ( Arg ( Rotate (br,( - ( Arg ar))))) = (((2 * PI ) * j) + (( - ( Arg ( - a))) + ( Arg ( - b)))) by A1, A3, Th52;

      

       A6: ( Arg ( Rotate (br,( - ( Arg ar))))) = (((2 * PI ) * (j - i)) + ( Arg ( Rotate (( - b),( - ( Arg ( - a))))))) by A4, A5;

      

       A7: 0 <= ( Arg ( Rotate (br,( - ( Arg ar))))) & ( Arg ( Rotate (br,( - ( Arg ar))))) < (2 * PI ) by COMPTRIG: 34;

      

       A8: 0 <= ( Arg ( Rotate (( - b),( - ( Arg ( - a)))))) & ( Arg ( Rotate (( - b),( - ( Arg ( - a)))))) < (2 * PI ) by COMPTRIG: 34;

      

      thus ( angle (a,b)) = ( angle (( Rotate (a, PI )),( Rotate (b, PI )))) by A2, A3, Th63

      .= ( angle (( - a),( Rotate (b, PI )))) by Th58

      .= ( angle (( - a),( - b))) by Th58

      .= ( Arg ( Rotate (( - b),( - ( Arg ( - a)))))) by A3, Def3

      .= ( Arg ( Rotate (br,( - ( Arg ar))))) by A6, A7, A8, Th2

      .= ( angle ((a * r),(b * r))) by A1, A3, Def3;

    end;

    theorem :: COMPLEX2:67

    a <> 0 & b <> 0 implies ( angle (a,b)) = ( angle (( - a),( - b)))

    proof

      assume a <> 0 & b <> 0 ;

      

      hence ( angle (a,b)) = ( angle (( Rotate (a, PI )),( Rotate (b, PI )))) by Th63

      .= ( angle (( - a),( Rotate (b, PI )))) by Th58

      .= ( angle (( - a),( - b))) by Th58;

    end;

    theorem :: COMPLEX2:68

    b <> 0 & ( angle (a,b)) = 0 implies ( angle (a,( - b))) = PI

    proof

      assume that

       A1: b <> 0 and

       A2: ( angle (a,b)) = 0 ;

      

       A3: ( Arg ( Rotate (b,( - ( Arg a))))) = 0 by A1, A2, Def3;

      

       A4: ( Arg ( Rotate (( - b),( - ( Arg a))))) = ( Arg ( - ( Rotate (b,( - ( Arg a)))))) by Th56;

      ( Rotate (b,( - ( Arg a)))) <> 0 by A1, Th50;

      

      then ( Arg ( - ( Rotate (b,( - ( Arg a)))))) = (( Arg ( Rotate (b,( - ( Arg a))))) + PI ) by A3, Th12, COMPTRIG: 5

      .= PI by A3;

      hence thesis by A1, A4, Def3;

    end;

    theorem :: COMPLEX2:69

    

     Th67: a <> 0 & b <> 0 implies ( cos ( angle (a,b))) = (( Re (a .|. b)) / ( |.a.| * |.b.|)) & ( sin ( angle (a,b))) = ( - (( Im (a .|. b)) / ( |.a.| * |.b.|)))

    proof

      assume that

       A1: a <> 0 and

       A2: b <> 0 ;

      

       A3: |.a.| <> 0 & |.b.| <> 0 by A1, A2, COMPLEX1: 45;

      set ra = ( Rotate (a,( - ( Arg a)))), rb = ( Rotate (b,( - ( Arg a)))), r = ( - ( Arg a));

      set mabi = (( |.a.| * |.b.|) " );

      

       A4: |.a.| >= 0 & |.b.| >= 0 by COMPLEX1: 46;

      ( angle (a,b)) = ( angle (ra,rb)) by A1, A2, Th63;

      

      then

       A5: ( angle (a,b)) = ( angle (( |.a.| * mabi),(rb * mabi))) by A3, A4, Th61, SIN_COS: 31

      .= ( Arg (rb * mabi)) by A4, Th59;

      

       A6: a = (( |.a.| * ( cos ( Arg a))) + (( |.a.| * ( sin ( Arg a))) * <i> )) by COMPTRIG: 62;

      then ( Re a) = ( |.a.| * ( cos ( Arg a))) by COMPLEX1: 12;

      then

       A7: ( cos ( Arg a)) = (( Re a) / |.a.|) by A1, COMPLEX1: 45, XCMPLX_1: 89;

      ( Im a) = ( |.a.| * ( sin ( Arg a))) by A6, COMPLEX1: 12;

      then

       A8: ( sin ( Arg a)) = (( Im a) / |.a.|) by A1, COMPLEX1: 45, XCMPLX_1: 89;

      

       A9: (a .|. b) = (((( Re a) * ( Re b)) + (( Im a) * ( Im b))) + ((( - (( Re a) * ( Im b))) + (( Im a) * ( Re b))) * <i> )) by Th27;

      then

       A10: ( Re (a .|. b)) = ((( Re a) * ( Re b)) + (( Im a) * ( Im b))) by COMPLEX1: 12;

      ( Re rb) = ((( Re b) * ( cos r)) - (( Im b) * ( sin r))) by Th54;

      

      then

       A11: ( Re rb) = ((( Re b) * ( cos r)) - (( Im b) * ( - ( sin ( Arg a))))) by SIN_COS: 31

      .= ((( Re b) * (( Re a) / |.a.|)) + (( Im b) * (( Im a) / |.a.|))) by A7, A8, SIN_COS: 31

      .= (( Re (a .|. b)) / |.a.|) by A10;

      

       A12: (( Im rb) ^2 ) >= 0 by XREAL_1: 63;

      ( Im rb) = ((( Re b) * ( sin r)) + (( Im b) * ( cos r))) by Th54;

      

      then

       A13: ( Im rb) = ((( Re b) * ( - ( sin ( Arg a)))) + (( Im b) * ( cos r))) by SIN_COS: 31

      .= ((( - ( Re b)) * (( Im a) / |.a.|)) + (( Im b) * (( Re a) / |.a.|))) by A7, A8, SIN_COS: 31

      .= ( - (( - ((( - ( Re b)) * ( Im a)) + (( Im b) * ( Re a)))) / |.a.|))

      .= ( - (( Im (a .|. b)) / |.a.|)) by A9, COMPLEX1: 12;

      set IT = (rb * mabi);

      set mab = ( |.a.| * |.b.|);

      

       A14: (mabi ^2 ) >= 0 & (( Re rb) ^2 ) >= 0 by XREAL_1: 63;

      mabi = (mabi + ( 0 * <i> ));

      then

       A15: ( Re mabi) = mabi & ( Im mabi) = 0 by COMPLEX1: 12;

      

      then

       A16: ( Re IT) = ((( Re rb) * mabi) - (( Im rb) * 0 )) by COMPLEX1: 9

      .= (( Re rb) * mabi);

      

       A17: ( Im IT) = ((( Re rb) * 0 ) + (( Im rb) * mabi)) by A15, COMPLEX1: 9

      .= (( Im rb) * mabi);

      

      then

       A18: |.IT.| = ( sqrt (((( Re rb) * mabi) ^2 ) + ((( Im rb) * mabi) ^2 ))) by A16, COMPLEX1:def 12

      .= ( sqrt ((mabi ^2 ) * ((( Re rb) ^2 ) + (( Im rb) ^2 ))))

      .= (( sqrt (mabi ^2 )) * ( sqrt ((( Re rb) ^2 ) + (( Im rb) ^2 )))) by A14, A12, SQUARE_1: 29

      .= (mabi * ( sqrt ((( Re rb) ^2 ) + (( Im rb) ^2 )))) by A4, SQUARE_1: 22

      .= (mabi * |.rb.|) by COMPLEX1:def 12

      .= (mabi * |.b.|) by Th51;

      

       A19: IT = (( |.IT.| * ( cos ( Arg IT))) + (( |.IT.| * ( sin ( Arg IT))) * <i> )) by COMPTRIG: 62;

      then ( |.IT.| * ( cos ( Arg IT))) = (( Re rb) * mabi) by A16, COMPLEX1: 12;

      

      hence ( cos ( angle (a,b))) = ((( Re rb) * mabi) / |.IT.|) by A3, A5, A18, XCMPLX_1: 89

      .= (( Re rb) * (mabi / |.IT.|))

      .= ((( Re (a .|. b)) / |.a.|) * ((mabi / mabi) / |.b.|)) by A11, A18, XCMPLX_1: 78

      .= ((( Re (a .|. b)) / |.a.|) * (1 / |.b.|)) by A3, XCMPLX_1: 60

      .= ((( Re (a .|. b)) * 1) / ( |.a.| * |.b.|)) by XCMPLX_1: 76

      .= (( Re (a .|. b)) / mab);

      ( |.IT.| * ( sin ( Arg IT))) = (( Im rb) * mabi) by A19, A17, COMPLEX1: 12;

      

      hence ( sin ( angle (a,b))) = ((( Im rb) * mabi) / |.IT.|) by A3, A5, A18, XCMPLX_1: 89

      .= (( Im rb) * (mabi / |.IT.|))

      .= (( - (( Im (a .|. b)) / |.a.|)) * ((mabi / mabi) / |.b.|)) by A13, A18, XCMPLX_1: 78

      .= ((( - ( Im (a .|. b))) / |.a.|) * (1 / |.b.|)) by A3, XCMPLX_1: 60

      .= ((( - ( Im (a .|. b))) * 1) / ( |.a.| * |.b.|)) by XCMPLX_1: 76

      .= ( - (( Im (a .|. b)) / mab));

    end;

    definition

      let x,y,z be Complex;

      :: COMPLEX2:def4

      func angle (x,y,z) -> Real equals

      : Def4: (( Arg (z - y)) - ( Arg (x - y))) if (( Arg (z - y)) - ( Arg (x - y))) >= 0

      otherwise ((2 * PI ) + (( Arg (z - y)) - ( Arg (x - y))));

      correctness ;

    end

    theorem :: COMPLEX2:70

    

     Th68: 0 <= ( angle (x,y,z)) & ( angle (x,y,z)) < (2 * PI )

    proof

      now

        per cases ;

          case

           A1: (( Arg (z - y)) - ( Arg (x - y))) >= 0 ;

          ( Arg (x - y)) >= 0 by COMPTRIG: 34;

          then (( Arg (z - y)) + 0 ) <= (( Arg (z - y)) + ( Arg (x - y))) by XREAL_1: 7;

          then

           A2: ( Arg (z - y)) < (2 * PI ) & (( Arg (z - y)) - ( Arg (x - y))) <= ( Arg (z - y)) by COMPTRIG: 34, XREAL_1: 20;

          ( angle (x,y,z)) = (( Arg (z - y)) - ( Arg (x - y))) by A1, Def4;

          hence thesis by A1, A2, XXREAL_0: 2;

        end;

          case

           A3: (( Arg (z - y)) - ( Arg (x - y))) < 0 ;

          ( Arg (z - y)) >= 0 by COMPTRIG: 34;

          then (( Arg (x - y)) + 0 ) <= (( Arg (x - y)) + ( Arg (z - y))) by XREAL_1: 7;

          then ( Arg (x - y)) < (2 * PI ) & (( Arg (x - y)) - ( Arg (z - y))) <= ( Arg (x - y)) by COMPTRIG: 34, XREAL_1: 20;

          then (( Arg (x - y)) - ( Arg (z - y))) < (2 * PI ) by XXREAL_0: 2;

          then

           A4: ((2 * PI ) - (( Arg (x - y)) - ( Arg (z - y)))) > 0 by XREAL_1: 50;

          ((( Arg (z - y)) - ( Arg (x - y))) + (2 * PI )) < ( 0 + (2 * PI )) by A3, XREAL_1: 8;

          hence thesis by A3, A4, Def4;

        end;

      end;

      hence thesis;

    end;

    theorem :: COMPLEX2:71

    

     Th69: ( angle (x,y,z)) = ( angle ((x - y), 0 ,(z - y)))

    proof

      now

        per cases ;

          case

           A1: (( Arg ((z - y) - 0c )) - ( Arg ((x - y) - 0c ))) >= 0 ;

          then ( angle ((x - y), 0c ,(z - y))) = (( Arg (z - y)) - ( Arg (x - y))) by Def4;

          hence ( angle ((x - y), 0c ,(z - y))) = ( angle (x,y,z)) by A1, Def4;

        end;

          case

           A2: (( Arg ((z - y) - 0c )) - ( Arg ((x - y) - 0c ))) < 0 ;

          then ( angle ((x - y), 0c ,(z - y))) = ((2 * PI ) + (( Arg (z - y)) - ( Arg (x - y)))) by Def4;

          hence ( angle ((x - y), 0c ,(z - y))) = ( angle (x,y,z)) by A2, Def4;

        end;

      end;

      hence thesis;

    end;

    theorem :: COMPLEX2:72

    

     Th70: ( angle (a,b,c)) = ( angle ((a + d),(b + d),(c + d)))

    proof

      

      thus ( angle (a,b,c)) = ( angle ((a - b), 0c ,(c - b))) by Th69

      .= ( angle (((a + d) - (b + d)), 0c ,((c + d) - (b + d))))

      .= ( angle ((a + d),(b + d),(c + d))) by Th69;

    end;

    theorem :: COMPLEX2:73

    

     Th71: ( angle (a,b)) = ( angle (a, 0 ,b))

    proof

      set ab2 = ( angle (a,b));

      

       A1: 0 <= ( Arg ( Rotate (b,( - ( Arg a))))) & ( Arg ( Rotate (b,( - ( Arg a))))) < (2 * PI ) by COMPTRIG: 34;

      per cases ;

        suppose

         A2: b <> 0 ;

        then

         A3: ab2 = ( Arg ( Rotate (b,( - ( Arg a))))) by Def3;

        thus thesis

        proof

          per cases ;

            suppose (( Arg (b - 0c )) - ( Arg (a - 0c ))) >= 0 ;

            then

             A4: ( angle (a, 0c ,b)) = (( - ( Arg a)) + ( Arg b)) by Def4;

            

             A5: ( angle (a, 0c ,b)) < (2 * PI ) by Th68;

            (ex i be Integer st ( Arg ( Rotate (b,( - ( Arg a))))) = (((2 * PI ) * i) + (( - ( Arg a)) + ( Arg b)))) & 0 <= ( angle (a, 0c ,b)) by A2, Th52, Th68;

            hence thesis by A1, A3, A4, A5, Th2;

          end;

            suppose

             A6: (( Arg (b - 0c )) - ( Arg (a - 0c ))) < 0 ;

            consider i be Integer such that

             A7: ( Arg ( Rotate (b,( - ( Arg a))))) = (((2 * PI ) * i) + (( - ( Arg a)) + ( Arg b))) by A2, Th52;

            

             A8: (((2 * PI ) * i) + (( - ( Arg a)) + ( Arg b))) = (((2 * PI ) * (i - 1)) + ((2 * PI ) + (( - ( Arg a)) + ( Arg b))));

            

             A9: ( angle (a, 0c ,b)) = ((2 * PI ) + (( Arg b) + ( - ( Arg a)))) by A6, Def4;

            then 0 <= ((2 * PI ) + (( - ( Arg a)) + ( Arg b))) & ((2 * PI ) + (( - ( Arg a)) + ( Arg b))) < (2 * PI ) by Th68;

            hence thesis by A1, A3, A9, A7, A8, Th2;

          end;

        end;

      end;

        suppose

         A10: b = 0 ;

        thus thesis

        proof

          per cases ;

            suppose

             A11: ( Arg a) = 0 ;

            then

             A12: (( Arg (b - 0c )) - ( Arg (a - 0c ))) = 0 by A10, COMPTRIG: 35;

            ab2 = ( Arg ( Rotate (b,( - ( Arg a))))) by A11, Def3

            .= 0 by A10, Lm1, Th50;

            hence thesis by A12, Def4;

          end;

            suppose

             A13: ( Arg a) <> 0 ;

            then

             A14: 0 < ( - ( - ( Arg a))) by COMPTRIG: 34;

            (( Arg (b - 0c )) - ( Arg (a - 0c ))) = ( - ( Arg a)) by A10, Lm1;

            then ( angle (a, 0c ,b)) = ((2 * PI ) - ( Arg a)) by A14, Def4;

            hence thesis by A10, A13, Def3;

          end;

        end;

      end;

    end;

    theorem :: COMPLEX2:74

    

     Th72: ( angle (x,y,z)) = 0 implies ( Arg (x - y)) = ( Arg (z - y)) & ( angle (z,y,x)) = 0

    proof

      assume

       A1: ( angle (x,y,z)) = 0 ;

      now

        per cases ;

          case (( Arg (z - y)) - ( Arg (x - y))) >= 0 ;

          then (( Arg (z - y)) - ( Arg (x - y))) = 0 by A1, Def4;

          hence thesis by Def4;

        end;

          case

           A2: (( Arg (z - y)) - ( Arg (x - y))) < 0 ;

          then ( - (( Arg (z - y)) - ( Arg (x - y)))) > 0 ;

          then

           A3: ( angle (z,y,x)) = (( Arg (x - y)) - ( Arg (z - y))) by Def4;

          ( angle (x,y,z)) = ((2 * PI ) + (( Arg (z - y)) - ( Arg (x - y)))) by A2, Def4;

          hence contradiction by A1, A3, Th68;

        end;

      end;

      hence thesis;

    end;

    theorem :: COMPLEX2:75

    

     Th73: a <> 0 & b <> 0 implies (( Re (a .|. b)) = 0 iff ( angle (a, 0 ,b)) = ( PI / 2) or ( angle (a, 0 ,b)) = ((3 / 2) * PI ))

    proof

      

       A1: ( - (( Im (a .|. b)) / ( |.a.| * |.b.|))) = (( - ( Im (a .|. b))) / ( |.a.| * |.b.|));

      assume

       A2: a <> 0 & b <> 0 ;

      then

       A3: |.a.| <> 0 & |.b.| <> 0 by COMPLEX1: 45;

      

       A4: ( angle (a,b)) = ( angle (a, 0c ,b)) & 0 <= ( angle (a, 0c ,b)) by Th68, Th71;

      

       A5: ( angle (a, 0c ,b)) < (2 * PI ) & ( PI / 2) < (2 * PI ) by Th68, COMPTRIG: 5, XXREAL_0: 2;

      

       A6: ( cos ( angle (a,b))) = (( Re (a .|. b)) / ( |.a.| * |.b.|)) by A2, Th67;

      

       A7: ( sin ( angle (a,b))) = ( - (( Im (a .|. b)) / ( |.a.| * |.b.|))) by A2, Th67;

      hereby

        assume

         A8: ( Re (a .|. b)) = 0 ;

        then ( Im (a .|. b)) = ( |.a.| * |.b.|) or ( Im (a .|. b)) = ( - ( |.a.| * |.b.|)) by Th48;

        then ( sin ( angle (a,b))) = 1 or ( sin ( angle (a,b))) = ( - 1) by A7, A3, A1, XCMPLX_1: 60;

        hence ( angle (a, 0 ,b)) = ( PI / 2) or ( angle (a, 0 ,b)) = ((3 / 2) * PI ) by A6, A4, A5, A8, Th11, COMPTRIG: 5, SIN_COS: 77;

      end;

      assume ( angle (a, 0 ,b)) = ( PI / 2) or ( angle (a, 0 ,b)) = ((3 / 2) * PI );

      hence thesis by A6, A3, Th71, SIN_COS: 77;

    end;

    theorem :: COMPLEX2:76

    a <> 0 & b <> 0 implies (( Im (a .|. b)) = ( |.a.| * |.b.|) or ( Im (a .|. b)) = ( - ( |.a.| * |.b.|)) iff ( angle (a, 0 ,b)) = ( PI / 2) or ( angle (a, 0 ,b)) = ((3 / 2) * PI ))

    proof

      assume

       A1: a <> 0 & b <> 0 ;

      hereby

        assume ( Im (a .|. b)) = ( |.a.| * |.b.|) or ( Im (a .|. b)) = ( - ( |.a.| * |.b.|));

        then ( Re (a .|. b)) = 0 by Th48;

        hence ( angle (a, 0 ,b)) = ( PI / 2) or ( angle (a, 0 ,b)) = ((3 / 2) * PI ) by A1, Th73;

      end;

      hereby

        assume ( angle (a, 0 ,b)) = ( PI / 2) or ( angle (a, 0 ,b)) = ((3 / 2) * PI );

        then ( Re (a .|. b)) = 0 by A1, Th73;

        hence ( Im (a .|. b)) = ( |.a.| * |.b.|) or ( Im (a .|. b)) = ( - ( |.a.| * |.b.|)) by Th48;

      end;

    end;

    

     Lm3: for a,b,c be Complex st a <> b & c <> b holds ( Re ((a - b) .|. (c - b))) = 0 iff ( angle (a,b,c)) = ( PI / 2) or ( angle (a,b,c)) = ((3 / 2) * PI )

    proof

      let x,y,z be Complex;

      assume x <> y & z <> y;

      then

       A1: (x - y) <> 0c & (z - y) <> 0c ;

      ( angle (x,y,z)) = ( angle ((x - y), 0c ,(z - y))) by Th69;

      hence thesis by A1, Th73;

    end;

    theorem :: COMPLEX2:77

    x <> y & z <> y & (( angle (x,y,z)) = ( PI / 2) or ( angle (x,y,z)) = ((3 / 2) * PI )) implies (( |.(x - y).| ^2 ) + ( |.(z - y).| ^2 )) = ( |.(x - z).| ^2 )

    proof

      assume

       A1: x <> y & z <> y & (( angle (x,y,z)) = ( PI / 2) or ( angle (x,y,z)) = ((3 / 2) * PI ));

      set x3 = (x - z);

      

       A2: (( |.(x - y).| ^2 ) + ( |.(z - y).| ^2 )) = (( Re ((x - y) .|. (x - y))) + ( |.(z - y).| ^2 )) by Th29

      .= (( Re ((x - y) .|. (x - y))) + ( Re ((z - y) .|. (z - y)))) by Th29

      .= ( Re (((x - y) .|. (x - y)) + ((z - y) .|. (z - y)))) by COMPLEX1: 8;

      x3 = ((x - y) - (z - y));

      then ((x - z) .|. (x - z)) = (((((x - y) .|. (x - y)) - ((x - y) .|. (z - y))) - ((z - y) .|. (x - y))) + ((z - y) .|. (z - y))) by Th47;

      

      then ( Re ((x - z) .|. (x - z))) = ( Re ((((x - y) .|. (x - y)) + ((z - y) .|. (z - y))) - (((x - y) .|. (z - y)) + ((z - y) .|. (x - y)))))

      .= (( Re (((x - y) .|. (x - y)) + ((z - y) .|. (z - y)))) - ( Re (((x - y) .|. (z - y)) + ((z - y) .|. (x - y))))) by COMPLEX1: 19

      .= (( Re (((x - y) .|. (x - y)) + ((z - y) .|. (z - y)))) - (( Re ((x - y) .|. (z - y))) + ( Re ((z - y) .|. (x - y))))) by COMPLEX1: 8

      .= (( Re (((x - y) .|. (x - y)) + ((z - y) .|. (z - y)))) - (( Re ((x - y) .|. (z - y))) + ( Re (((x - y) .|. (z - y)) *' )))) by Th32

      .= (( Re (((x - y) .|. (x - y)) + ((z - y) .|. (z - y)))) - (( Re ((x - y) .|. (z - y))) + ( Re ((x - y) .|. (z - y))))) by COMPLEX1: 27

      .= (( Re (((x - y) .|. (x - y)) + ((z - y) .|. (z - y)))) - ( 0 + ( Re ((x - y) .|. (z - y))))) by A1, Lm3

      .= (( Re (((x - y) .|. (x - y)) + ((z - y) .|. (z - y)))) - 0 ) by A1, Lm3

      .= ( Re (((x - y) .|. (x - y)) + ((z - y) .|. (z - y))));

      hence thesis by A2, Th29;

    end;

    theorem :: COMPLEX2:78

    

     Th76: a <> b & b <> c implies ( angle (a,b,c)) = ( angle (( Rotate (a,r)),( Rotate (b,r)),( Rotate (c,r))))

    proof

      set cb = (c - b), ab = (a - b);

      set rc = ( Rotate (c,r)), rb = ( Rotate (b,r)), ra = ( Rotate (a,r));

      set rcb = (( Rotate (c,r)) - ( Rotate (b,r))), rab = (( Rotate (a,r)) - ( Rotate (b,r)));

      assume that

       A1: a <> b and

       A2: b <> c;

      

       A3: 0 <= ( angle (a,b,c)) & ( angle (a,b,c)) < (2 * PI ) by Th68;

      cb <> 0 by A2;

      then

      consider cbi be Integer such that

       A4: ( Arg ( Rotate (cb,r))) = (((2 * PI ) * cbi) + (r + ( Arg cb))) by Th52;

      ab <> 0 by A1;

      then

      consider abi be Integer such that

       A5: ( Arg ( Rotate (ab,r))) = (((2 * PI ) * abi) + (r + ( Arg ab))) by Th52;

      

       A6: 0 <= ( angle (( Rotate (a,r)),( Rotate (b,r)),( Rotate (c,r)))) & ( angle (( Rotate (a,r)),( Rotate (b,r)),( Rotate (c,r)))) < (2 * PI ) by Th68;

      rab = ( Rotate (ab,r)) by Th57;

      

      then

       A7: (( Arg rcb) - ( Arg rab)) = (((((2 * PI ) * cbi) + r) + ( Arg cb)) - ((((2 * PI ) * abi) + r) + ( Arg ab))) by A5, A4, Th57

      .= ((( Arg cb) - ( Arg ab)) + ((2 * PI ) * (cbi - abi)));

      per cases ;

        suppose (( Arg (c - b)) - ( Arg (a - b))) >= 0 ;

        then

         A8: ( angle (a,b,c)) = (( Arg (c - b)) - ( Arg (a - b))) by Def4;

        thus ( angle (a,b,c)) = ( angle (( Rotate (a,r)),( Rotate (b,r)),( Rotate (c,r))))

        proof

          per cases ;

            suppose (( Arg rcb) - ( Arg rab)) >= 0 ;

            then ( angle (ra,rb,rc)) = (( Arg rcb) - ( Arg rab)) by Def4;

            hence thesis by A3, A6, A7, A8, Th2;

          end;

            suppose (( Arg rcb) - ( Arg rab)) < 0 ;

            

            then ( angle (ra,rb,rc)) = (((( Arg cb) - ( Arg ab)) + ((2 * PI ) * (cbi - abi))) + (2 * PI )) by A7, Def4

            .= ((( Arg cb) - ( Arg ab)) + ((2 * PI ) * ((cbi - abi) + 1)));

            hence thesis by A3, A6, A8, Th2;

          end;

        end;

      end;

        suppose (( Arg cb) - ( Arg ab)) < 0 ;

        then

         A9: ( angle (a,b,c)) = ((2 * PI ) + (( Arg cb) - ( Arg ab))) by Def4;

        thus thesis

        proof

          per cases ;

            suppose (( Arg rcb) - ( Arg rab)) >= 0 ;

            then ( angle (ra,rb,rc)) = (((2 * PI ) + (( Arg cb) - ( Arg ab))) + ((2 * PI ) * ((cbi - abi) + ( - 1)))) by A7, Def4;

            hence thesis by A3, A6, A9, Th2;

          end;

            suppose (( Arg rcb) - ( Arg rab)) < 0 ;

            

            then ( angle (ra,rb,rc)) = (((( Arg cb) - ( Arg ab)) + ((2 * PI ) * (cbi - abi))) + (2 * PI )) by A7, Def4

            .= (((2 * PI ) + (( Arg cb) - ( Arg ab))) + ((2 * PI ) * (cbi - abi)));

            hence thesis by A3, A6, A9, Th2;

          end;

        end;

      end;

    end;

    theorem :: COMPLEX2:79

    

     Th77: ( angle (a,b,a)) = 0

    proof

      (( Arg (a - b)) - ( Arg (a - b))) = 0 ;

      hence thesis by Def4;

    end;

    

     Lm4: ( angle (x,y,z)) <> 0 implies ( angle (z,y,x)) = ((2 * PI ) - ( angle (x,y,z)))

    proof

      assume

       A1: ( angle (x,y,z)) <> 0 ;

      now

        per cases ;

          case

           A2: (( Arg (x - y)) - ( Arg (z - y))) > 0 ;

          then ( - ( - (( Arg (x - y)) - ( Arg (z - y))))) > 0 ;

          

          then ( angle (x,y,z)) = ((2 * PI ) + (( Arg (z - y)) - ( Arg (x - y)))) by Def4

          .= ((2 * PI ) - (( Arg (x - y)) - ( Arg (z - y))));

          hence thesis by A2, Def4;

        end;

          case

           A3: (( Arg (x - y)) - ( Arg (z - y))) <= 0 ;

          (( Arg (x - y)) - ( Arg (z - y))) <> 0 by A1, Def4;

          then

           A4: ( angle (z,y,x)) = ((2 * PI ) - (( Arg (z - y)) - ( Arg (x - y)))) by A3, Def4;

          ( - ( - (( Arg (x - y)) - ( Arg (z - y))))) <= 0 by A3;

          

          then (( angle (x,y,z)) + ( angle (z,y,x))) = (((2 * PI ) - (( Arg (z - y)) - ( Arg (x - y)))) + (( Arg (z - y)) - ( Arg (x - y)))) by A4, Def4

          .= (2 * PI );

          hence thesis;

        end;

      end;

      hence thesis;

    end;

    theorem :: COMPLEX2:80

    

     Th78: ( angle (a,b,c)) <> 0 iff (( angle (a,b,c)) + ( angle (c,b,a))) = (2 * PI )

    proof

      hereby

        assume ( angle (a,b,c)) <> 0 ;

        then ( angle (c,b,a)) = ((2 * PI ) - ( angle (a,b,c))) by Lm4;

        hence (( angle (a,b,c)) + ( angle (c,b,a))) = (2 * PI );

      end;

      assume (( angle (a,b,c)) + ( angle (c,b,a))) = (2 * PI ) & ( angle (a,b,c)) = 0 ;

      hence contradiction by Th68;

    end;

    theorem :: COMPLEX2:81

    ( angle (a,b,c)) <> 0 implies ( angle (c,b,a)) <> 0

    proof

      assume ( angle (a,b,c)) <> 0 ;

      then

       A1: (( angle (a,b,c)) + ( angle (c,b,a))) = (2 * PI ) by Th78;

      assume not thesis;

      hence contradiction by A1, Th68;

    end;

    theorem :: COMPLEX2:82

    ( angle (a,b,c)) = PI implies ( angle (c,b,a)) = PI

    proof

      assume

       A1: ( angle (a,b,c)) = PI ;

      then (( angle (a,b,c)) + ( angle (c,b,a))) = ( 0 + (2 * PI )) by Th78, COMPTRIG: 5;

      hence thesis by A1;

    end;

    theorem :: COMPLEX2:83

    

     Th81: a <> b & a <> c & b <> c implies ( angle (a,b,c)) <> 0 or ( angle (b,c,a)) <> 0 or ( angle (c,a,b)) <> 0

    proof

      assume that

       A1: a <> b & a <> c and

       A2: b <> c;

      

       A3: (b - a) <> 0 & (a - c) <> 0 by A1;

      (c - b) <> 0 by A2;

      then

       A4: ( Arg (c - b)) < PI iff ( Arg ( - (c - b))) >= PI by Th14;

      

       A5: ( - (b - a)) = (a - b) & ( - (a - c)) = (c - a);

      

       A6: ( - (c - a)) = (a - c);

      assume

       A7: not thesis;

      then

       A8: ( Arg (a - c)) = ( Arg (b - c)) by Th72;

      ( Arg (b - a)) = ( Arg (c - a)) by A7, Th72;

      then ( Arg (a - b)) = ( Arg (a - c)) by A3, A5, A6, Th62;

      hence thesis by A7, A8, A4, Th72;

    end;

    

     Lm5: ( Im a) = 0 & ( Re a) > 0 & 0 < ( Arg b) & ( Arg b) < PI implies ((( angle (a, 0c ,b)) + ( angle ( 0c ,b,a))) + ( angle (b,a, 0c ))) = PI & 0 < ( angle ( 0c ,b,a)) & 0 < ( angle (b,a, 0c ))

    proof

      assume that

       A1: ( Im a) = 0 and

       A2: ( Re a) > 0 and

       A3: 0 < ( Arg b) and

       A4: ( Arg b) < PI ;

      a = (( Re a) + ( 0 * <i> )) by A1, COMPLEX1: 13;

      then

       A5: ( Arg a) = 0 by A2, COMPTRIG: 35;

      

      then

       A6: (( Arg a) - ( Arg ( - a))) = (( Arg a) - (( Arg a) + PI )) by A2, Th12, COMPLEX1: 4, COMPTRIG: 5

      .= ( - PI );

      (( Arg (b - 0c )) - ( Arg (a - 0c ))) >= 0 by A3, A5;

      then

       A7: ( angle (a, 0c ,b)) = (( Arg b) - ( Arg a)) by Def4;

      ( Arg b) in ]. 0 , PI .[ by A3, A4, XXREAL_1: 4;

      then

       A8: ( Im b) > 0 by Th16;

      

      then

       A9: (( Arg b) - ( Arg ( - b))) = (( Arg b) - (( Arg b) + PI )) by A4, Th12, COMPLEX1: 4

      .= ( - PI );

      

       A10: ( Im (a - b)) = (( Im a) - ( Im b)) by COMPLEX1: 19

      .= ( - ( Im b)) by A1;

      then

       A11: ( Arg (a - b)) > PI by A8, Th22;

      then ( Arg (b - a)) <= PI by A8, A10, Th15, COMPLEX1: 4;

      then

       A12: ( - ( Arg (b - a))) >= ( - PI ) by XREAL_1: 24;

      

       A13: (( Arg (a - b)) - ( Arg (b - a))) = (( Arg (a - b)) - ( Arg ( - (a - b))))

      .= (( Arg (a - b)) - (( Arg (a - b)) - PI )) by A8, A10, A11, Th12, COMPLEX1: 4

      .= PI ;

      ( Arg ( - a)) = (( Arg a) + PI ) by A2, A5, Th12, COMPLEX1: 4, COMPTRIG: 5

      .= PI by A5;

      then (( Arg ( - a)) + ( - ( Arg (b - a)))) >= (( 0 - PI ) + PI ) by A12, XREAL_1: 7;

      then

       A14: ( angle (b,a, 0c )) = (( Arg ( 0c - a)) - ( Arg (b - a))) by Def4;

      now

        let a,b be Complex such that

         A15: ( Im a) = 0 and

         A16: ( Re a) > 0 and

         A17: 0 < ( Arg b) & ( Arg b) < PI ;

        

         A18: (( Re b) + ( - ( Re a))) < (( Re b) + 0 ) by A16, XREAL_1: 8;

        set ba = (b - a);

        set B = ( Arg b), BA = ( Arg ba), mb = |.b.|, mba = |.(b - a).|;

        

         A19: ( Re (b - a)) = (( Re b) - ( Re a)) by COMPLEX1: 19;

        (b - a) = ((mba * ( cos BA)) + ((mba * ( sin BA)) * <i> )) & (b - a) = (( Re ba) + (( Im ba) * <i> )) by COMPTRIG: 62, COMPLEX1: 13;

        then

         A20: ( Im ba) = (mba * ( sin BA)) by COMPLEX1: 77;

        set Rb = ( Re b), Rba = ( Re ba), Ib = ( Im b), Iba = ( Im ba);

        

         A21: ( Im (b - a)) = (( Im b) - ( Im a)) by COMPLEX1: 19

        .= ( Im b) by A15;

        then

         A22: mb = ( sqrt ((Rb ^2 ) + (Ib ^2 ))) & mba = ( sqrt ((Rba ^2 ) + (Ib ^2 ))) by COMPLEX1:def 12;

        

         A23: (Rb ^2 ) >= 0 & (Ib ^2 ) >= 0 by XREAL_1: 63;

        

         A24: (Rba ^2 ) >= 0 & (Ib ^2 ) >= 0 by XREAL_1: 63;

        ( Arg b) in ]. 0 , PI .[ by A17, XXREAL_1: 4;

        then

         A25: ( Im b) > 0 by Th16;

        then

         A26: mb >= 0 by COMPLEX1: 4, COMPLEX1: 47;

        

         A27: mba >= 0 by A25, A21, COMPLEX1: 4, COMPLEX1: 47;

        

         A28: ( sin BA) > 0 by A25, A21, COMPTRIG: 45;

        

         A29: mb <> 0 by A25, COMPLEX1: 4, COMPLEX1: 47;

        b = ((mb * ( cos B)) + ((mb * ( sin B)) * <i> )) & b = (( Re b) + (( Im b) * <i> )) by COMPTRIG: 62, COMPLEX1: 13;

        then ( Im b) = (mb * ( sin B)) by COMPLEX1: 77;

        then

         A30: (mba / mb) = (( sin B) / ( sin BA)) by A21, A20, A29, A28, XCMPLX_1: 94;

        per cases ;

          suppose

           A31: 0 < ( Re ba);

          then (Rb ^2 ) > (Rba ^2 ) by A19, A18, SQUARE_1: 16;

          then ((Rb ^2 ) + (Ib ^2 )) > ((Rba ^2 ) + (Ib ^2 )) by XREAL_1: 8;

          then mb > mba by A22, A24, SQUARE_1: 27;

          then (mba / mb) < 1 by A27, XREAL_1: 189;

          then ((( sin B) / ( sin BA)) * ( sin BA)) < (1 * ( sin BA)) by A28, A30, XREAL_1: 68;

          then

           A32: ( sin B) < (1 * ( sin BA)) by A28, XCMPLX_1: 87;

          B in ]. 0 , ( PI / 2).[ & BA in ]. 0 , ( PI / 2).[ by A25, A21, A19, A18, A31, COMPTRIG: 41;

          then BA > B by A32, Th6;

          then (BA + ( - B)) > (B + ( - B)) by XREAL_1: 8;

          hence (( Arg ba) - ( Arg b)) > 0 ;

        end;

          suppose

           A33: 0 = Rba;

          then ba = ( 0 + (Iba * <i> )) by COMPLEX1: 13;

          then

           A34: BA = ( PI / 2) by A25, A21, COMPTRIG: 37;

          B in ]. 0 , ( PI / 2).[ by A16, A25, A19, A33, COMPTRIG: 41;

          then B < BA by A34, XXREAL_1: 4;

          then (B + ( - B)) < (BA + ( - B)) by XREAL_1: 8;

          hence (( Arg ba) - ( Arg b)) > 0 ;

        end;

          suppose

           A35: 0 > ( Re ba);

          thus (( Arg ba) - ( Arg b)) > 0

          proof

            per cases ;

              suppose 0 < ( Re b);

              then B in ]. 0 , ( PI / 2).[ by A25, COMPTRIG: 41;

              then

               A36: B < ( PI / 2) by XXREAL_1: 4;

              BA in ].( PI / 2), PI .[ by A25, A21, A35, COMPTRIG: 42;

              then BA > ( PI / 2) by XXREAL_1: 4;

              then BA > B by A36, XXREAL_0: 2;

              then (B + ( - B)) < (BA + ( - B)) by XREAL_1: 8;

              hence thesis;

            end;

              suppose 0 = ( Re b);

              then b = ( 0 + (Ib * <i> )) by COMPLEX1: 13;

              then

               A37: B = ( PI / 2) by A25, COMPTRIG: 37;

              BA in ].( PI / 2), PI .[ by A25, A21, A35, COMPTRIG: 42;

              then B < BA by A37, XXREAL_1: 4;

              then (B + ( - B)) < (BA + ( - B)) by XREAL_1: 8;

              hence thesis;

            end;

              suppose

               A38: 0 > ( Re b);

              then (Rb ^2 ) < (Rba ^2 ) by A19, A18, SQUARE_1: 44;

              then ((Rb ^2 ) + (Ib ^2 )) < ((Rba ^2 ) + (Ib ^2 )) by XREAL_1: 8;

              then mb < mba by A22, A23, SQUARE_1: 27;

              then (mba / mb) > 1 by A26, A29, XREAL_1: 187;

              then ((( sin B) / ( sin BA)) * ( sin BA)) > (1 * ( sin BA)) by A28, A30, XREAL_1: 68;

              then

               A39: ( sin B) > (1 * ( sin BA)) by A28, XCMPLX_1: 87;

              

               A40: B in ].( PI / 2), PI .[ by A25, A38, COMPTRIG: 42;

              BA in ].( PI / 2), PI .[ by A25, A21, A35, COMPTRIG: 42;

              then BA > B by A40, A39, Th7;

              then (BA + ( - B)) > (B + ( - B)) by XREAL_1: 8;

              hence thesis;

            end;

          end;

        end;

      end;

      then (( Arg (b - a)) - ( Arg b)) > 0 by A1, A2, A3, A4;

      then (( Arg ( - (a - b))) - ( Arg b)) > 0 ;

      then ((( Arg (a - b)) - PI ) - ( Arg b)) > 0 by A8, A10, A11, Th12, COMPLEX1: 4;

      then

       A41: (( Arg (a - b)) - (( Arg b) + PI )) > 0 ;

      then (( Arg (a - b)) - ( Arg ( - b))) > 0 by A4, A8, Th12, COMPLEX1: 4;

      then ( angle ( 0c ,b,a)) = (( Arg (a - b)) - ( Arg ( 0c - b))) by Def4;

      

      hence ((( angle (a, 0c ,b)) + ( angle ( 0c ,b,a))) + ( angle (b,a, 0c ))) = ((((( Arg b) - ( Arg ( - b))) - ( Arg a)) + ( Arg (a - b))) + (( Arg ( - a)) - ( Arg (b - a)))) by A7, A14

      .= PI by A9, A6, A13;

      (( Arg (a - b)) - ( Arg ( 0c - b))) > 0 by A4, A8, A41, Th12, COMPLEX1: 4;

      hence 0 < ( angle ( 0c ,b,a)) by Def4;

      

       A42: ( Arg a) >= 0 by COMPTRIG: 34;

      (2 * PI ) > ( 0 + ( Arg (a - b))) by COMPTRIG: 34;

      then

       A43: ((2 * PI ) - ( Arg (a - b))) > 0 by XREAL_1: 20;

      (( Arg ( - a)) - (( Arg (a - b)) - PI )) = (( Arg a) + ((2 * PI ) - ( Arg (a - b)))) by A6;

      hence thesis by A14, A13, A43, A42;

    end;

    theorem :: COMPLEX2:84

    

     Th82: a <> b & b <> c & 0 < ( angle (a,b,c)) & ( angle (a,b,c)) < PI implies ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = PI & 0 < ( angle (b,c,a)) & 0 < ( angle (c,a,b))

    proof

      assume that

       A1: a <> b and

       A2: b <> c and

       A3: 0 < ( angle (a,b,c)) and

       A4: ( angle (a,b,c)) < PI ;

      

       A5: (c - b) <> 0 by A2;

      set r = ( - ( Arg (a + ( - b))));

      set A = ( Rotate ((a + ( - b)),r)), B = ( Rotate ((c + ( - b)),r));

      

       A6: ( Rotate ( 0c ,r)) = 0c by Th50;

      

       A7: (c + ( - b)) <> (a + ( - b)) by A3, Th77;

      

       A8: ( angle (b,c,a)) = ( angle ((b + ( - b)),(c + ( - b)),(a + ( - b)))) by Th70

      .= ( angle ( 0c ,B,A)) by A6, A7, A5, Th76;

      

       A9: ( angle ((a + ( - b)), 0c ,(c + ( - b)))) = ( angle ((a + ( - b)),(b + ( - b)),(c + ( - b))))

      .= ( angle (a,b,c)) by Th70;

      

       A10: (a - b) <> 0 by A1;

      then

       A11: ( angle ((a + ( - b)), 0c ,(c + ( - b)))) = ( angle (A, 0c ,B)) by A6, A5, Th76;

      (a + ( - b)) <> 0c by A1;

      then |.(a + ( - b)).| > 0 by COMPLEX1: 47;

      then

       A12: ( Im A) = 0 & ( Re A) > 0 by COMPLEX1: 12, SIN_COS: 31;

      then

       A13: ( Arg A) = 0c by Th19;

      then (( Arg (B - 0c )) - ( Arg (A - 0c ))) >= 0 by COMPTRIG: 34;

      then

       A14: ( angle (a,b,c)) = ( Arg B) by A9, A11, A13, Def4;

      

       A15: ( angle (c,a,b)) = ( angle ((c + ( - b)),(a + ( - b)),(b + ( - b)))) by Th70

      .= ( angle (B,A, 0c )) by A6, A10, A7, Th76;

      hence ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = PI by A3, A4, A9, A11, A12, A14, A8, Lm5;

      thus 0 < ( angle (b,c,a)) by A3, A4, A12, A14, A8, Lm5;

      thus thesis by A3, A4, A12, A14, A15, Lm5;

    end;

    theorem :: COMPLEX2:85

    

     Th83: a <> b & b <> c & ( angle (a,b,c)) > PI implies ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = (5 * PI ) & ( angle (b,c,a)) > PI & ( angle (c,a,b)) > PI

    proof

      assume that

       A1: a <> b & b <> c and

       A2: ( angle (a,b,c)) > PI ;

      

       A3: ( angle (c,b,a)) < PI

      proof

        assume not thesis;

        then (( angle (a,b,c)) + ( angle (c,b,a))) > ( PI + PI ) by A2, XREAL_1: 8;

        hence contradiction by A2, Th78, COMPTRIG: 5;

      end;

      

       A4: (( angle (a,b,c)) + ( angle (c,b,a))) = ((2 * PI ) + 0 ) by A2, Th78, COMPTRIG: 5;

      then

       A5: ( angle (c,b,a)) <> 0 by Th68;

      

       A6: 0 <= ( angle (c,b,a)) by Th68;

      then ( angle (b,a,c)) > 0 by A1, A5, A3, Th82;

      then

       A7: (( angle (c,a,b)) + ( angle (b,a,c))) = ((2 * PI ) + 0 ) by Th78;

      ( angle (a,c,b)) > 0 by A1, A6, A5, A3, Th82;

      then (( angle (b,c,a)) + ( angle (a,c,b))) = ((2 * PI ) + 0 ) by Th78;

      then ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = ((((2 * PI ) + (2 * PI )) + (2 * PI )) - ((( angle (c,b,a)) + ( angle (b,a,c))) + ( angle (a,c,b)))) by A4, A7;

      

      hence

       A8: ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = (((((2 * PI ) + (2 * PI )) + PI ) + PI ) - PI ) by A1, A6, A5, A3, Th82

      .= (5 * PI );

      

       A9: ( angle (a,b,c)) < (2 * PI ) by Th68;

      ( angle (b,c,a)) < (2 * PI ) by Th68;

      then

       A10: (((2 * PI ) + (2 * PI )) + PI ) = (5 * PI ) & (( angle (a,b,c)) + ( angle (b,c,a))) < ((2 * PI ) + (2 * PI )) by A9, XREAL_1: 8;

      

       A11: (((2 * PI ) + PI ) + (2 * PI )) = (5 * PI );

      hereby

        assume ( angle (b,c,a)) <= PI ;

        then

         A12: (( angle (a,b,c)) + ( angle (b,c,a))) < ((2 * PI ) + PI ) by A9, XREAL_1: 8;

        ( angle (c,a,b)) < (2 * PI ) by Th68;

        hence contradiction by A8, A11, A12, XREAL_1: 8;

      end;

      assume ( angle (c,a,b)) <= PI ;

      hence contradiction by A8, A10, XREAL_1: 8;

    end;

    

     Lm6: ( Im a) = 0 & ( Re a) > 0 & ( Arg b) = PI implies ((( angle (a, 0 ,b)) + ( angle ( 0 ,b,a))) + ( angle (b,a, 0 ))) = PI & 0 = ( angle ( 0 ,b,a)) & 0 = ( angle (b,a, 0 ))

    proof

      assume that

       A1: ( Im a) = 0 and

       A2: ( Re a) > 0 and

       A3: ( Arg b) = PI ;

      

       A4: ( Im (a - b)) = (( Im a) - ( Im b)) by COMPLEX1: 19

      .= ( - ( Im b)) by A1;

      

       A5: (( Re b) + 0 ) < ( Re a) by A2, A3, Th20;

      then (( Re a) - ( Re b)) > 0 by XREAL_1: 20;

      then

       A6: ( Re (a - b)) > 0 by COMPLEX1: 19;

      a = (( Re a) + ( 0 * <i> )) by A1, COMPLEX1: 13;

      then

       A7: ( Arg a) = 0 by A2, COMPTRIG: 35;

      then

       A8: (( Arg (b - 0c )) - ( Arg (a - 0c ))) > 0 by A3, COMPTRIG: 5;

      ( - ( - (( Re a) - ( Re b)))) > 0 by A5, XREAL_1: 20;

      then (( Re b) - ( Re a)) < 0 ;

      then

       A9: ( Re (b - a)) < 0 by COMPLEX1: 19;

      

       A10: ( Im (b - a)) = (( Im b) - ( Im a)) by COMPLEX1: 19

      .= 0 by A1, A3, Th20;

      then

       A11: ( - ( Arg (b - a))) = ( - PI ) by A9, Th20;

      

       A12: ( Arg (b - a)) = PI by A9, A10, Th20;

      

       A13: ( Arg ( - b)) = (( Arg b) - PI ) by A3, Lm1, Th12, COMPTRIG: 5;

      

       A14: ( Im b) = 0 by A3, Th20;

      then

       A15: ( Arg (a - b)) = 0 by A4, A6, Th19;

      ( Arg ( - a)) = (( Arg a) + PI ) by A2, A7, Th12, COMPLEX1: 4, COMPTRIG: 5

      .= PI by A7;

      then

       A16: ( angle (b,a, 0c )) = (( Arg ( 0c - a)) - ( Arg (b - a))) by A11, Def4;

      

       A17: (( Arg a) - ( Arg ( - a))) = (( Arg a) - (( Arg a) + PI )) by A2, A7, Th12, COMPLEX1: 4, COMPTRIG: 5

      .= ( - PI );

      

       A18: ( Arg ( - b)) = (( Arg b) - PI ) by A3, Lm1, Th12, COMPTRIG: 5;

      then

       A19: (( Arg (a - b)) - ( Arg ( 0c - b))) = 0 by A3, A14, A4, A6, Th19;

      then ( angle ( 0c ,b,a)) = (( Arg (a - b)) - ( Arg ( - b))) by Def4;

      

      hence

       A20: ((( angle (a, 0 ,b)) + ( angle ( 0 ,b,a))) + ( angle (b,a, 0 ))) = (((( Arg b) - ( Arg a)) + (( Arg (a - b)) - ( Arg ( - b)))) + (( Arg ( 0 - a)) - ( Arg (b - a)))) by A8, A16, Def4

      .= ((((( Arg b) - ( Arg ( - b))) - ( Arg a)) + ( Arg (a - b))) + (( Arg ( - a)) - ( Arg (b - a))))

      .= PI by A15, A12, A13, A17;

      ((( Arg (a - b)) + PI ) - ( Arg b)) = 0 by A3, A14, A4, A6, Th19;

      then

       A21: ( angle ( 0c ,b,a)) = (( Arg (a - b)) - ( Arg ( 0c - b))) by A18, Def4;

      thus 0 = ( angle ( 0 ,b,a)) by A19, Def4;

      ( angle (a, 0c ,b)) = (( Arg b) - ( Arg a)) by A8, Def4;

      hence thesis by A3, A7, A19, A21, A20, XCMPLX_1: 3;

    end;

    theorem :: COMPLEX2:86

    

     Th84: a <> b & b <> c & ( angle (a,b,c)) = PI implies ( angle (b,c,a)) = 0 & ( angle (c,a,b)) = 0

    proof

      assume that

       A1: a <> b and

       A2: b <> c and

       A3: ( angle (a,b,c)) = PI ;

      

       A4: (c - b) <> 0 by A2;

      set r = ( - ( Arg (a + ( - b))));

      set A = ( Rotate ((a + ( - b)),r)), B = ( Rotate ((c + ( - b)),r));

      

       A5: ( Rotate ( 0c ,r)) = 0c by Th50;

      

       A6: ( angle ((a + ( - b)), 0c ,(c + ( - b)))) = ( angle ((a + ( - b)),(b + ( - b)),(c + ( - b))))

      .= ( angle (a,b,c)) by Th70;

      

       A7: (c + ( - b)) <> (a + ( - b)) by A3, Th77, COMPTRIG: 5;

      

       A8: (a - b) <> 0 by A1;

      then

       A9: ( angle ((a + ( - b)), 0c ,(c + ( - b)))) = ( angle (A, 0c ,B)) by A5, A4, Th76;

      (a + ( - b)) <> 0c by A1;

      then |.(a + ( - b)).| > 0 by COMPLEX1: 47;

      then

       A10: ( Im A) = 0 & ( Re A) > 0 by COMPLEX1: 12, SIN_COS: 31;

      then

       A11: ( Arg A) = 0c by Th19;

      then (( Arg (B - 0c )) - ( Arg (A - 0c ))) >= 0 by COMPTRIG: 34;

      then

       A12: ( angle (a,b,c)) = ( Arg B) by A6, A9, A11, Def4;

      ( angle (b,c,a)) = ( angle ((b + ( - b)),(c + ( - b)),(a + ( - b)))) by Th70

      .= ( angle ( 0c ,B,A)) by A5, A7, A4, Th76;

      hence ( angle (b,c,a)) = 0 by A3, A10, A12, Lm6;

      ( angle (c,a,b)) = ( angle ((c + ( - b)),(a + ( - b)),(b + ( - b)))) by Th70

      .= ( angle (B,A, 0c )) by A5, A8, A7, Th76;

      hence thesis by A3, A10, A12, Lm6;

    end;

    theorem :: COMPLEX2:87

    

     Th85: a <> b & a <> c & b <> c & ( angle (a,b,c)) = 0 implies ( angle (b,c,a)) = 0 & ( angle (c,a,b)) = PI or ( angle (b,c,a)) = PI & ( angle (c,a,b)) = 0

    proof

      assume that

       A1: a <> b and

       A2: a <> c and

       A3: b <> c and

       A4: ( angle (a,b,c)) = 0 ;

      per cases by A1, A2, A3, A4, Th81;

        suppose

         A5: ( angle (b,c,a)) <> 0 ;

        

         A6: 0 <= ( angle (b,c,a)) by Th68;

        thus thesis

        proof

          per cases by XXREAL_0: 1;

            suppose ( angle (b,c,a)) < PI ;

            hence thesis by A2, A3, A4, A5, A6, Th82;

          end;

            suppose ( angle (b,c,a)) = PI ;

            hence thesis by A2, A3, Th84;

          end;

            suppose ( angle (b,c,a)) > PI ;

            hence thesis by A2, A3, A4, Th83, COMPTRIG: 5;

          end;

        end;

      end;

        suppose

         A7: ( angle (c,a,b)) <> 0 ;

        

         A8: 0 <= ( angle (c,a,b)) by Th68;

        thus thesis

        proof

          per cases by XXREAL_0: 1;

            suppose ( angle (c,a,b)) < PI ;

            hence thesis by A1, A2, A4, A7, A8, Th82;

          end;

            suppose ( angle (c,a,b)) = PI ;

            hence thesis by A1, A2, Th84;

          end;

            suppose ( angle (c,a,b)) > PI ;

            hence thesis by A1, A2, A4, Th83, COMPTRIG: 5;

          end;

        end;

      end;

    end;

    theorem :: COMPLEX2:88

    ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = PI or ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = (5 * PI ) iff a <> b & a <> c & b <> c

    proof

      hereby

        assume

         A1: ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = PI or ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = (5 * PI );

        per cases by A1;

          suppose

           A2: ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = PI ;

          thus a <> b & a <> c & b <> c

          proof

            assume

             A3: not (a <> b & a <> c & b <> c);

            per cases by A3;

              suppose

               A4: a = b;

              

               A5: ( angle (a,c,a)) = 0 by Th77;

               not (( angle (a,a,c)) = 0 & ( angle (c,a,a)) = 0 ) by A2, A4, Th77, COMPTRIG: 5;

              hence contradiction by A2, A4, A5, Th78, COMPTRIG: 5;

            end;

              suppose

               A6: a = c;

              

               A7: ( angle (a,b,a)) = 0 by Th77;

               not (( angle (a,a,b)) = 0 & ( angle (b,a,a)) = 0 ) by A2, A6, Th77, COMPTRIG: 5;

              hence contradiction by A2, A6, A7, Th78, COMPTRIG: 5;

            end;

              suppose

               A8: b = c;

              

               A9: ( angle (b,a,b)) = 0 by Th77;

               not (( angle (a,b,b)) = 0 & ( angle (b,b,a)) = 0 ) by A2, A8, Th77, COMPTRIG: 5;

              hence contradiction by A2, A8, A9, Th78, COMPTRIG: 5;

            end;

          end;

        end;

          suppose

           A10: ((( angle (a,b,c)) + ( angle (b,c,a))) + ( angle (c,a,b))) = (5 * PI );

          

           A11: ((2 + 2) * PI ) < (5 * PI ) by COMPTRIG: 5, XREAL_1: 68;

          then

           A12: ((2 * PI ) + (2 * PI )) < (5 * PI );

          thus a <> b & a <> c & b <> c

          proof

            assume

             A13: not (a <> b & a <> c & b <> c);

            per cases by A13;

              suppose a = b;

              then ( angle (b,c,a)) = 0 by Th77;

              then

               A14: (( angle (a,b,c)) + ( angle (b,c,a))) < (2 * PI ) by Th68;

              ( angle (c,a,b)) < (2 * PI ) by Th68;

              hence contradiction by A10, A12, A14, XREAL_1: 8;

            end;

              suppose

               A15: b = c;

              ( angle (a,b,c)) < (2 * PI ) & ( angle (b,c,a)) < (2 * PI ) by Th68;

              then

               A16: (( angle (a,b,c)) + ( angle (b,c,a))) < ((2 * PI ) + (2 * PI )) by XREAL_1: 8;

              ( angle (c,a,b)) = 0 by A15, Th77;

              hence contradiction by A10, A11, A16;

            end;

              suppose a = c;

              then ( angle (a,b,c)) = 0 by Th77;

              then

               A17: (( angle (a,b,c)) + ( angle (b,c,a))) < (2 * PI ) by Th68;

              ( angle (c,a,b)) < (2 * PI ) by Th68;

              hence contradiction by A10, A12, A17, XREAL_1: 8;

            end;

          end;

        end;

      end;

      assume that

       A18: a <> b and

       A19: a <> c and

       A20: b <> c;

      per cases by XXREAL_0: 1;

        suppose

         A21: ( angle (a,b,c)) = 0 ;

        (( angle (b,c,a)) + ( angle (c,a,b))) = PI

        proof

          per cases by A18, A19, A20, A21, Th85;

            suppose ( angle (b,c,a)) = 0 & ( angle (c,a,b)) = PI ;

            hence thesis;

          end;

            suppose ( angle (b,c,a)) = PI & ( angle (c,a,b)) = 0 ;

            hence thesis;

          end;

        end;

        hence thesis by A21;

      end;

        suppose

         A22: 0 <> ( angle (a,b,c)) & ( angle (a,b,c)) < PI ;

         0 <= ( angle (a,b,c)) by Th68;

        hence thesis by A18, A20, A22, Th82;

      end;

        suppose

         A23: 0 <> ( angle (a,b,c)) & ( angle (a,b,c)) = PI ;

        then ( angle (b,c,a)) = 0 by A18, A20, Th84;

        hence thesis by A18, A20, A23, Th84;

      end;

        suppose 0 <> ( angle (a,b,c)) & ( angle (a,b,c)) > PI ;

        hence thesis by A18, A20, Th83;

      end;

    end;