euclid10.miz



    begin

    theorem :: EUCLID10:1

    

     Thm1: for a be Real holds ( sin ( PI - a)) = ( sin a)

    proof

      let a be Real;

      ( sin ( PI - a)) = (( 0 * ( cos a)) - (( cos PI ) * ( sin a))) by SIN_COS: 77, SIN_COS: 82

      .= ( sin a) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:2

    for a be Real holds ( cos ( PI - a)) = ( - ( cos a))

    proof

      let a be Real;

      ( cos ( PI - a)) = ((( cos PI ) * ( cos a)) + (( sin PI ) * ( sin a))) by SIN_COS: 83

      .= ( - ( cos a)) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:3

    for a be Real holds ( sin ((2 * PI ) - a)) = ( - ( sin a))

    proof

      let a be Real;

      ( sin ((2 * PI ) - a)) = (( 0 * ( cos a)) - (( cos (2 * PI )) * ( sin a))) by SIN_COS: 77, SIN_COS: 82

      .= ( - ( sin a)) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:4

    for a be Real holds ( cos ((2 * PI ) - a)) = ( cos a)

    proof

      let a be Real;

      ( cos ((2 * PI ) - a)) = ((1 * ( cos a)) + ( 0 * ( sin a))) by SIN_COS: 77, SIN_COS: 83

      .= ( cos a);

      hence thesis;

    end;

    theorem :: EUCLID10:5

    

     Thm2: for a be Real holds ( sin (( - (2 * PI )) + a)) = ( sin a)

    proof

      let a be Real;

      ( sin (( - (2 * PI )) + a)) = ( sin (a - (2 * PI )))

      .= ((( sin a) * 1) - (( cos a) * ( sin (2 * PI )))) by SIN_COS: 77, SIN_COS: 82

      .= ( sin a) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:6

    for a be Real holds ( cos (( - (2 * PI )) + a)) = ( cos a)

    proof

      let a be Real;

      ( cos (( - (2 * PI )) + a)) = ( cos (a - (2 * PI )))

      .= ((( cos a) * 1) + (( sin a) * ( sin (2 * PI )))) by SIN_COS: 77, SIN_COS: 83

      .= ( cos a) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:7

    

     Thm3: for a be Real holds ( sin (((3 * PI ) / 2) + a)) = ( - ( cos a))

    proof

      let a be Real;

      ( sin (((3 * PI ) / 2) + a)) = ((( sin ((3 * PI ) / 2)) * ( cos a)) + (( cos ((3 * PI ) / 2)) * ( sin a))) by SIN_COS: 75

      .= ( - ( cos a)) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:8

    

     Thm4: for a be Real holds ( cos (((3 * PI ) / 2) + a)) = ( sin a)

    proof

      let a be Real;

      ( cos (((3 * PI ) / 2) + a)) = ((( cos ((3 * PI ) / 2)) * ( cos a)) - (( sin ((3 * PI ) / 2)) * ( sin a))) by SIN_COS: 75

      .= ( - ( - ( sin a))) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:9

    for a be Real holds ( sin (((3 * PI ) / 2) + a)) = ( - ( sin (( PI / 2) - a)))

    proof

      let a be Real;

      ( sin (((3 * PI ) / 2) + a)) = ( - ( cos a)) by Thm3

      .= ( - ( sin (( PI / 2) - a))) by SIN_COS: 79;

      hence thesis;

    end;

    theorem :: EUCLID10:10

    for a be Real holds ( cos (((3 * PI ) / 2) + a)) = ( cos (( PI / 2) - a))

    proof

      let a be Real;

      ( cos (((3 * PI ) / 2) + a)) = ( sin a) by Thm4

      .= ( cos (( PI / 2) - a)) by SIN_COS: 79;

      hence thesis;

    end;

    theorem :: EUCLID10:11

    

     Thm5: for a be Real holds ( sin (((2 * PI ) / 3) - a)) = ( sin (( PI / 3) + a))

    proof

      let a be Real;

      ( sin (((2 * PI ) / 3) - a)) = ( sin ( PI - (( PI / 3) + a)))

      .= ((( sin PI ) * ( cos (( PI / 3) + a))) - (( cos PI ) * ( sin (( PI / 3) + a)))) by SIN_COS: 82

      .= ( sin (( PI / 3) + a)) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:12

    

     Thm6: for a be Real holds ( cos (((2 * PI ) / 3) - a)) = ( - ( cos (( PI / 3) + a)))

    proof

      let a be Real;

      ( cos (((2 * PI ) / 3) - a)) = ( cos ( PI - (( PI / 3) + a)))

      .= ((( cos PI ) * ( cos (( PI / 3) + a))) + (( sin PI ) * ( sin (( PI / 3) + a)))) by SIN_COS: 83

      .= ( - ( cos (( PI / 3) + a))) by SIN_COS: 77;

      hence thesis;

    end;

    theorem :: EUCLID10:13

    

     Thm7: for a be Real holds ( sin (((2 * PI ) / 3) + a)) = ( sin (( PI / 3) - a))

    proof

      let a be Real;

      ( sin (((2 * PI ) / 3) + a)) = ( sin ( PI - (( PI / 3) - a)))

      .= ((( sin PI ) * ( cos (( PI / 3) - a))) - (( cos PI ) * ( sin (( PI / 3) - a)))) by SIN_COS: 82

      .= ( sin (( PI / 3) - a)) by SIN_COS: 77;

      hence thesis;

    end;

    

     Lm1: ( angle ( |[ 0 , 0 ]|, |[ 0 , 1]|, |[(( sqrt 3) / 2), (1 / 2)]|)) < PI

    proof

      set O = ( euc2cpx |[ 0 , 0 ]|);

      set A = ( euc2cpx |[ 0 , 1]|);

      set B = ( euc2cpx |[(( sqrt 3) / 2), (1 / 2)]|);

      ( |[ 0 , 0 ]| `1 ) = 0 & ( |[ 0 , 0 ]| `2 ) = 0 & ( |[ 0 , 1]| `1 ) = 0 & ( |[ 0 , 1]| `2 ) = 1 & ( |[(( sqrt 3) / 2), (1 / 2)]| `1 ) = (( sqrt 3) / 2) & ( |[(( sqrt 3) / 2), (1 / 2)]| `2 ) = (1 / 2) by EUCLID: 52;

      then

       A1: O = ( 0 + ( 0 * <i> )) & A = ( 0 + (1 * <i> )) & B = ((( sqrt 3) / 2) + ((1 / 2) * <i> )) by EUCLID_3:def 2;

      

       A2: ( Arg (( - 1) * <i> )) = ((3 / 2) * PI ) by COMPTRIG: 38;

      (B - A) = ((( sqrt 3) / 2) + (( - (1 / 2)) * <i> )) by A1;

      then

       A3: ( Re (B - A)) = (( sqrt 3) / 2) & ( Im (B - A)) = ( - (1 / 2)) by COMPLEX1: 12;

      ( sqrt 3) > 0 by SQUARE_1: 25;

      then ( Arg (B - A)) in ].((3 / 2) * PI ), (2 * PI ).[ by A3, COMPTRIG: 44;

      then ((3 / 2) * PI ) < ( Arg (B - A)) & ( Arg (B - A)) < (2 * PI ) by XXREAL_1: 4;

      then

       A4: (((3 / 2) * PI ) - ((3 / 2) * PI )) < (( Arg (B - A)) - ((3 / 2) * PI )) & (( Arg (B - A)) - ((3 / 2) * PI )) < ((2 * PI ) - ((3 / 2) * PI )) by XREAL_1: 14;

      set th = (( Arg (B - A)) - ( Arg (O - A)));

       PI in ]. 0 , 4.[ by SIN_COS:def 28;

      then

       A5: 0 < PI by XXREAL_1: 4;

      th < ((1 / 2) * PI ) & ((1 / 2) * PI ) < PI by A1, A2, A4, A5, XREAL_1: 157;

      then

       A6: not PI <= th by XXREAL_0: 2;

      ( angle (O,A,B)) = th by A1, A2, A4, COMPLEX2:def 4;

      hence thesis by A6, EUCLID_3:def 4;

    end;

    

     Lm2: |. |[(( sqrt 3) / 2), (1 / 2)]|.| = 1

    proof

      set B = |[(( sqrt 3) / 2), (1 / 2)]|;

      (B `1 ) = (( sqrt 3) / 2) & (B `2 ) = (1 / 2) by EUCLID: 52;

      then

       A1: |.B.| = ( sqrt (((( sqrt 3) / 2) ^2 ) + ((1 / 2) ^2 ))) by JGRAPH_1: 30;

      

       A2: ((( sqrt 3) / 2) ^2 ) = ((( sqrt 3) / 2) * (( sqrt 3) / 2)) by SQUARE_1:def 1;

      

       A3: ((1 / 2) ^2 ) = ((1 / 2) * (1 / 2)) by SQUARE_1:def 1;

      (( sqrt 3) ^2 ) = 3 by SQUARE_1:def 2;

      then (((( sqrt 3) * ( sqrt 3)) / 2) / 2) = ((3 / 2) / 2) by SQUARE_1:def 1;

      hence thesis by A1, A2, A3, SQUARE_1: 18;

    end;

    

     Lm3: for O,A,B be Point of ( TOP-REAL 2) st O = |[ 0 , 0 ]| & A = |[ 0 , 1]| & B = |[(( sqrt 3) / 2), (1 / 2)]| holds |.(O - A).| = |.(O - B).| & |.(O - A).| = |.(A - B).| & |.(O - A).| = 1

    proof

      let O,A,B be Point of ( TOP-REAL 2) such that

       A1: O = |[ 0 , 0 ]| and

       A2: A = |[ 0 , 1]| and

       A3: B = |[(( sqrt 3) / 2), (1 / 2)]|;

      

       A4: (A `1 ) = 0 & (A `2 ) = 1 & (O `1 ) = 0 & (O `2 ) = 0 & (B `1 ) = (( sqrt 3) / 2) & (B `2 ) = (1 / 2) by A1, A2, A3, EUCLID: 52;

      then

       A5: (A - O) = |[( 0 - 0 ), (1 - 0 )]| by EUCLID: 61;

      ( 0 ^2 ) = ( 0 * 0 ) & (1 ^2 ) = (1 * 1) by SQUARE_1:def 1;

      then

       A6: |.A.| = ( sqrt (( 0 * 0 ) + (1 * 1))) by A4, JGRAPH_1: 30;

      

       A7: (B - O) = |[((( sqrt 3) / 2) - 0 ), ((1 / 2) - 0 )]| by A4, EUCLID: 61

      .= |[(( sqrt 3) / 2), (1 / 2)]|;

      (A - B) = |[( 0 - (( sqrt 3) / 2)), (1 - (1 / 2))]| by A4, EUCLID: 61;

      then ((A - B) `1 ) = ( - (( sqrt 3) / 2)) & ((A - B) `2 ) = (1 / 2) by EUCLID: 52;

      then

       A8: |.(A - B).| = ( sqrt ((( - (( sqrt 3) / 2)) ^2 ) + ((1 / 2) ^2 ))) by JGRAPH_1: 30;

      

       A9: (( - (( sqrt 3) / 2)) ^2 ) = (( - (( sqrt 3) / 2)) * ( - (( sqrt 3) / 2))) by SQUARE_1:def 1;

      

       A10: ((1 / 2) ^2 ) = ((1 / 2) * (1 / 2)) by SQUARE_1:def 1;

      (( sqrt 3) ^2 ) = 3 by SQUARE_1:def 2;

      then

       A11: (((( sqrt 3) * ( sqrt 3)) / 2) / 2) = ((3 / 2) / 2) by SQUARE_1:def 1;

       |.(O - B).| = |.(B - O).| by EUCLID_6: 43;

      hence thesis by EUCLID_6: 43, A6, A5, A2, A9, A10, A8, A11, SQUARE_1: 18, A7, Lm2;

    end;

    

     Lm4: for O,A,B be Point of ( TOP-REAL 2) st O = |[ 0 , 0 ]| & A = |[ 0 , 1]| & B = |[(( sqrt 3) / 2), (1 / 2)]| holds O <> A & A <> B & O <> B & A <> O & B <> A & B <> O

    proof

      let O,A,B be Point of ( TOP-REAL 2) such that

       A1: O = |[ 0 , 0 ]| and

       A2: A = |[ 0 , 1]| and

       A3: B = |[(( sqrt 3) / 2), (1 / 2)]|;

      O <> A & A <> B & O <> B

      proof

        (O `2 ) = 0 & (B `2 ) = (1 / 2) by A1, A3, EUCLID: 52;

        hence thesis by A2, EUCLID: 52;

      end;

      hence thesis;

    end;

    

     Lm5: for O,A,B be Point of ( TOP-REAL 2) st O = |[ 0 , 0 ]| & A = |[ 0 , 1]| & B = |[(( sqrt 3) / 2), (1 / 2)]| holds ( angle (B,O,A)) = ( angle (O,A,B)) & ( angle (O,A,B)) = ( angle (A,B,O))

    proof

      let O,A,B be Point of ( TOP-REAL 2) such that

       A1: O = |[ 0 , 0 ]| and

       A2: A = |[ 0 , 1]| and

       A3: B = |[(( sqrt 3) / 2), (1 / 2)]|;

      

       A4: |.(O - A).| = |.(O - B).| & |.(O - A).| = |.(A - B).| by A1, A2, A3, Lm3;

      then

       A5: |.(O - A).| = |.(B - O).| & |.(A - O).| = |.(O - B).| & |.(O - A).| = |.(B - A).| & |.(A - O).| = |.(A - B).| by EUCLID_6: 43;

      O <> A & A <> B & O <> B by A1, A2, A3, Lm4;

      hence thesis by A4, A5, EUCLID_6: 16;

    end;

    

     Lm6: for O,A,B be Point of ( TOP-REAL 2) st O = |[ 0 , 0 ]| & A = |[ 0 , 1]| & B = |[(( sqrt 3) / 2), (1 / 2)]| & ( angle (O,A,B)) < PI holds ( angle (B,O,A)) = ( PI / 3)

    proof

      let O,A,B be Point of ( TOP-REAL 2) such that

       A1: O = |[ 0 , 0 ]| and

       A2: A = |[ 0 , 1]| and

       A3: B = |[(( sqrt 3) / 2), (1 / 2)]| and

       A4: ( angle (O,A,B)) < PI ;

      A <> O & O <> B & B <> A by A1, A2, A3, Lm4;

      then

       A5: ((( angle (O,A,B)) + ( angle (A,B,O))) + ( angle (B,O,A))) = PI by A4, EUCLID_3: 47;

      ( angle (B,O,A)) = ( angle (O,A,B)) & ( angle (O,A,B)) = ( angle (A,B,O)) by A1, A2, A3, Lm5;

      hence thesis by A5;

    end;

    theorem :: EUCLID10:14

    

     Thm8: ( cos ( PI / 3)) = (1 / 2)

    proof

      set O = |[ 0 , 0 ]|;

      set A = |[ 0 , 1]|;

      set B = |[(( sqrt 3) / 2), (1 / 2)]|;

      set a = |.(B - O).|;

      set b = |.(A - O).|;

      set c = |.(A - B).|;

       |.(O - A).| = |.(O - B).| & |.(O - A).| = |.(A - B).| & |.(O - A).| = 1 by Lm3;

      then

       A1: b = 1 & c = 1 & a = 1 by EUCLID_6: 43;

      (1 ^2 ) = (1 * 1) by SQUARE_1:def 1

      .= 1;

      then 1 = ((1 + 1) - (((2 * 1) * 1) * ( cos ( angle (B,O,A))))) by A1, EUCLID_6: 7;

      hence thesis by Lm1, Lm6;

    end;

    theorem :: EUCLID10:15

    

     Thm9: ( sin ( PI / 3)) = (( sqrt 3) / 2)

    proof

      

       A1: ((( sin ( PI / 3)) ^2 ) + (( cos ( PI / 3)) ^2 )) = 1 by SIN_COS: 29;

      

       A2: (( cos ( PI / 3)) ^2 ) = (( cos ( PI / 3)) * ( cos ( PI / 3))) by SQUARE_1:def 1

      .= (1 / 4) by Thm8;

      ( sin ( PI / 3)) >= 0

      proof

        

         A3: (( PI / 2) - ( PI / 3)) in ]. 0 , ( PI / 2).[

        proof

          set n = (( PI / 2) - ( PI / 3));

          ( PI / 6) < ( PI / 2) by COMPTRIG: 5, XREAL_1: 76;

          hence thesis by COMPTRIG: 5, XXREAL_1: 4;

        end;

        ( sin ( PI / 3)) = ( cos (( PI / 2) - ( PI / 3))) by SIN_COS: 79;

        hence thesis by A3, SIN_COS: 81;

      end;

      then ( sin ( PI / 3)) = ( sqrt (3 / 4)) by A1, A2, SQUARE_1: 22;

      hence thesis by SQUARE_1: 20, SQUARE_1: 30;

    end;

    theorem :: EUCLID10:16

    

     Thm10: ( tan ( PI / 3)) = ( sqrt 3)

    proof

      ( tan ( PI / 3)) = ((( sqrt 3) / 2) / (1 / 2)) by Thm8, Thm9, SIN_COS4:def 1

      .= ( sqrt 3);

      hence thesis;

    end;

    theorem :: EUCLID10:17

    

     Thm11: ( sin ( PI / 6)) = (1 / 2)

    proof

      ( sin ( PI / 6)) = ( sin (( PI / 2) - ( PI / 3)))

      .= (1 / 2) by Thm8, SIN_COS: 79;

      hence thesis;

    end;

    theorem :: EUCLID10:18

    

     Thm12: ( cos ( PI / 6)) = (( sqrt 3) / 2)

    proof

      ( cos ( PI / 6)) = ( cos (( PI / 2) - ( PI / 3)))

      .= (( sqrt 3) / 2) by Thm9, SIN_COS: 79;

      hence thesis;

    end;

    theorem :: EUCLID10:19

    

     Thm13: ( tan ( PI / 6)) = (( sqrt 3) / 3)

    proof

      ( tan ( PI / 6)) = ((1 / 2) / (( sqrt 3) / 2)) by Thm11, Thm12, SIN_COS4:def 1

      .= (1 / ( sqrt 3)) by XCMPLX_1: 55;

      hence thesis by SQUARE_1: 33;

    end;

    theorem :: EUCLID10:20

    ( sin ( - ( PI / 6))) = ( - (1 / 2)) & ( cos ( - ( PI / 6))) = (( sqrt 3) / 2) & ( tan ( - ( PI / 6))) = ( - (( sqrt 3) / 3)) & ( sin ( - ( PI / 3))) = ( - (( sqrt 3) / 2)) & ( cos ( - ( PI / 3))) = (1 / 2) & ( tan ( - ( PI / 3))) = ( - ( sqrt 3)) by SIN_COS: 31, SIN_COS4: 1, Thm8, Thm9, Thm11, Thm12, Thm10, Thm13;

    theorem :: EUCLID10:21

    ( arcsin (1 / 2)) = ( PI / 6) & ( arcsin (( sqrt 3) / 2)) = ( PI / 3)

    proof

      ( PI / 6) < ( PI / 2) & ( PI / 3) < ( PI / 2) & ( - ( PI / 2)) <= ( PI / 6) & ( - ( PI / 2)) <= ( PI / 3) by XREAL_1: 76, COMPTRIG: 5;

      hence thesis by Thm9, Thm11, SIN_COS6: 69;

    end;

    theorem :: EUCLID10:22

    

     Thm14: ( sin ((2 * PI ) / 3)) = (( sqrt 3) / 2)

    proof

      ( sin ((2 * PI ) / 3)) = ( sin (((2 * PI ) / 3) - 0 ))

      .= ( sin (( PI / 3) + 0 )) by Thm5

      .= ( sin ( PI / 3));

      hence thesis by Thm9;

    end;

    theorem :: EUCLID10:23

    

     Thm15: ( cos ((2 * PI ) / 3)) = ( - (1 / 2))

    proof

      ( cos ((2 * PI ) / 3)) = ( cos (((2 * PI ) / 3) - 0 ))

      .= ( - ( cos (( PI / 3) + 0 ))) by Thm6

      .= ( - ( cos ( PI / 3)));

      hence thesis by Thm8;

    end;

    begin

    theorem :: EUCLID10:24

    

     Thm16: for x be Real holds (( sin ( - x)) ^2 ) = (( sin x) ^2 )

    proof

      let x be Real;

      (( sin ( - x)) ^2 ) = (( sin ( - x)) * ( sin ( - x))) by SQUARE_1:def 1

      .= (( - ( sin x)) * ( sin ( - x))) by SIN_COS: 31

      .= (( - ( sin x)) * ( - ( sin x))) by SIN_COS: 31

      .= (( sin x) * ( sin x));

      hence thesis by SQUARE_1:def 1;

    end;

    theorem :: EUCLID10:25

    

     Thm17: for x,y,z be Real st ((x + y) + z) = PI holds (((( sin x) ^2 ) + (( sin y) ^2 )) - (((2 * ( sin x)) * ( sin y)) * ( cos z))) = (( sin z) ^2 )

    proof

      let x,y,z be Real such that

       A1: ((x + y) + z) = PI ;

      ( sin ((x + y) - PI )) = ( - ( sin (x + y))) by COMPLEX2: 5;

      then ( - ( sin ((x + y) - PI ))) = ( sin (x + y));

      then

       A2: (( sin ( - ((x + y) - PI ))) ^2 ) = (( sin (x + y)) ^2 ) by SIN_COS: 31;

      

       A3: ((( cos y) ^2 ) + (( sin y) ^2 )) = 1 by SIN_COS: 29;

      

       A4: ((( cos x) ^2 ) + (( sin x) ^2 )) = 1 by SIN_COS: 29;

      

       A5: (( sin (x + y)) ^2 ) = (((( sin x) * ( cos y)) + (( cos x) * ( sin y))) ^2 ) by SIN_COS: 75

      .= ((((( sin x) * ( cos y)) ^2 ) + ((2 * (( sin x) * ( cos y))) * (( cos x) * ( sin y)))) + ((( cos x) * ( sin y)) ^2 )) by SQUARE_1: 4

      .= ((((( sin x) * ( cos y)) * (( sin x) * ( cos y))) + ((((2 * ( sin x)) * ( cos y)) * ( cos x)) * ( sin y))) + ((( cos x) * ( sin y)) ^2 )) by SQUARE_1:def 1

      .= ((((( sin x) * ( cos y)) * (( sin x) * ( cos y))) + ((((2 * ( sin x)) * ( cos y)) * ( cos x)) * ( sin y))) + ((( cos x) * ( sin y)) * (( cos x) * ( sin y)))) by SQUARE_1:def 1

      .= ((((( sin x) * ( sin x)) * (( cos y) * ( cos y))) + ((((2 * ( sin x)) * ( cos y)) * ( cos x)) * ( sin y))) + (((( cos x) * ( cos x)) * ( sin y)) * ( sin y)))

      .= ((((( sin x) ^2 ) * (( cos y) * ( cos y))) + ((((2 * ( sin x)) * ( cos y)) * ( cos x)) * ( sin y))) + (((( cos x) * ( cos x)) * ( sin y)) * ( sin y))) by SQUARE_1:def 1

      .= ((((( sin x) ^2 ) * (( cos y) ^2 )) + ((((2 * ( sin x)) * ( cos y)) * ( cos x)) * ( sin y))) + (((( cos x) * ( cos x)) * ( sin y)) * ( sin y))) by SQUARE_1:def 1

      .= ((((( sin x) ^2 ) * (( cos y) ^2 )) + ((((2 * ( sin x)) * ( cos y)) * ( cos x)) * ( sin y))) + (((( cos x) ^2 ) * ( sin y)) * ( sin y))) by SQUARE_1:def 1

      .= ((((( sin x) ^2 ) * (( cos y) ^2 )) + ((((2 * ( sin x)) * ( cos y)) * ( cos x)) * ( sin y))) + ((( cos x) ^2 ) * (( sin y) * ( sin y))))

      .= ((((( sin x) ^2 ) * (( cos y) ^2 )) + ((((2 * ( sin x)) * ( cos y)) * ( cos x)) * ( sin y))) + ((( cos x) ^2 ) * (( sin y) ^2 ))) by SQUARE_1:def 1;

      (((( sin x) ^2 ) + (( sin y) ^2 )) - (((2 * ( sin x)) * ( sin y)) * ( cos z))) = (((( sin x) ^2 ) + (( sin y) ^2 )) - (((2 * ( sin x)) * ( sin y)) * ( cos ( - ((x + y) - PI ))))) by A1

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) - (((2 * ( sin x)) * ( sin y)) * ( cos ((x + y) - PI )))) by SIN_COS: 31

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) - (((2 * ( sin x)) * ( sin y)) * ( - ( cos (x + y))))) by COMPLEX2: 5

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ( cos (x + y))))

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ((( cos x) * ( cos y)) - (( sin x) * ( sin y))))) by SIN_COS: 75

      .= ((((( sin x) ^2 ) + (( sin y) ^2 )) + ((((2 * ( sin x)) * ( sin y)) * ( cos x)) * ( cos y))) - (((2 * (( sin x) * ( sin x))) * ( sin y)) * ( sin y)))

      .= ((((( sin x) ^2 ) + (( sin y) ^2 )) + ((((2 * ( sin x)) * ( sin y)) * ( cos x)) * ( cos y))) - (((2 * (( sin x) ^2 )) * ( sin y)) * ( sin y))) by SQUARE_1:def 1

      .= ((((( sin x) ^2 ) + (( sin y) ^2 )) + ((((2 * ( sin x)) * ( sin y)) * ( cos x)) * ( cos y))) - ((2 * (( sin x) ^2 )) * (( sin y) * ( sin y))))

      .= ((((( sin x) ^2 ) + (( sin y) ^2 )) + ((((2 * ( sin x)) * ( sin y)) * ( cos x)) * ( cos y))) - ((2 * (( sin x) ^2 )) * (( sin y) ^2 ))) by SQUARE_1:def 1

      .= (((((( sin x) ^2 ) * (1 - (( sin y) ^2 ))) + (( sin y) ^2 )) + ((((2 * ( sin x)) * ( sin y)) * ( cos x)) * ( cos y))) - ((( sin x) ^2 ) * (( sin y) ^2 )))

      .= ((((( sin x) ^2 ) * (( cos y) ^2 )) + ((( sin y) ^2 ) * (1 - (( sin x) ^2 )))) + ((((2 * ( sin x)) * ( sin y)) * ( cos x)) * ( cos y))) by A3

      .= ((((( sin x) ^2 ) * (( cos y) ^2 )) + ((( sin y) ^2 ) * (( cos x) ^2 ))) + ((((2 * ( sin x)) * ( sin y)) * ( cos x)) * ( cos y))) by A4;

      hence thesis by A1, A2, A5;

    end;

    theorem :: EUCLID10:26

    for x,y,z be Real st ((x - y) + z) = PI holds (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ( cos z))) = (( sin z) ^2 )

    proof

      let x,y,z be Real;

      assume ((x - y) + z) = PI ;

      then

       A1: ((x + ( - y)) + z) = PI ;

      (((( sin x) ^2 ) + (( sin ( - y)) ^2 )) - (((2 * ( sin x)) * ( sin ( - y))) * ( cos z))) = (((( sin x) ^2 ) + (( sin ( - y)) ^2 )) - (((2 * ( sin x)) * ( - ( sin y))) * ( cos z))) by SIN_COS: 31

      .= (((( sin x) ^2 ) + (( sin ( - y)) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ( cos z)))

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ( cos z))) by Thm16;

      hence thesis by A1, Thm17;

    end;

    theorem :: EUCLID10:27

    for x,y,z be Real st ((x - (( - (2 * PI )) + y)) + z) = PI holds (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ( cos z))) = (( sin z) ^2 )

    proof

      let x,y,z be Real;

      assume ((x - (( - (2 * PI )) + y)) + z) = PI ;

      then

       A1: ((x + ( - (( - (2 * PI )) + y))) + z) = PI ;

      (((( sin x) ^2 ) + (( sin ( - (( - (2 * PI )) + y))) ^2 )) - (((2 * ( sin x)) * ( sin ( - (( - (2 * PI )) + y)))) * ( cos z))) = (((( sin x) ^2 ) + (( sin ( - (( - (2 * PI )) + y))) ^2 )) - (((2 * ( sin x)) * ( - ( sin (( - (2 * PI )) + y)))) * ( cos z))) by SIN_COS: 31

      .= (((( sin x) ^2 ) + (( sin ( - (( - (2 * PI )) + y))) ^2 )) + (((2 * ( sin x)) * ( sin (( - (2 * PI )) + y))) * ( cos z)))

      .= (((( sin x) ^2 ) + (( sin (( - (2 * PI )) + y)) ^2 )) + (((2 * ( sin x)) * ( sin (( - (2 * PI )) + y))) * ( cos z))) by Thm16

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin (( - (2 * PI )) + y))) * ( cos z))) by Thm2

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ( cos z))) by Thm2;

      hence thesis by A1, Thm17;

    end;

    theorem :: EUCLID10:28

    for x,y,z be Real st ((( PI - x) - ( PI - y)) + z) = PI holds (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ( cos z))) = (( sin z) ^2 )

    proof

      let x,y,z be Real;

      assume ((( PI - x) - ( PI - y)) + z) = PI ;

      then

       A1: ((( PI - x) + ( - ( PI - y))) + z) = PI ;

      (((( sin ( PI - x)) ^2 ) + (( sin ( - ( PI - y))) ^2 )) - (((2 * ( sin ( PI - x))) * ( sin ( - ( PI - y)))) * ( cos z))) = (((( sin ( PI - x)) ^2 ) + (( sin ( - ( PI - y))) ^2 )) - (((2 * ( sin ( PI - x))) * ( - ( sin ( PI - y)))) * ( cos z))) by SIN_COS: 31

      .= (((( sin ( PI - x)) ^2 ) + (( sin ( - ( PI - y))) ^2 )) + (((2 * ( sin ( PI - x))) * ( sin ( PI - y))) * ( cos z)))

      .= (((( sin ( PI - x)) ^2 ) + (( sin ( PI - y)) ^2 )) + (((2 * ( sin ( PI - x))) * ( sin ( PI - y))) * ( cos z))) by Thm16

      .= (((( sin x) ^2 ) + (( sin ( PI - y)) ^2 )) + (((2 * ( sin ( PI - x))) * ( sin ( PI - y))) * ( cos z))) by Thm1

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin ( PI - x))) * ( sin ( PI - y))) * ( cos z))) by Thm1

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin ( PI - y))) * ( cos z))) by Thm1

      .= (((( sin x) ^2 ) + (( sin y) ^2 )) + (((2 * ( sin x)) * ( sin y)) * ( cos z))) by Thm1;

      hence thesis by A1, Thm17;

    end;

    theorem :: EUCLID10:29

    

     Thm18: for a be Real holds ( sin (3 * a)) = (((4 * ( sin a)) * ( sin (( PI / 3) + a))) * ( sin (( PI / 3) - a)))

    proof

      let a be Real;

      

       A1: ((( sqrt 3) / 2) ^2 ) = ((( sqrt 3) / 2) * (( sqrt 3) / 2)) by SQUARE_1:def 1

      .= (((( sqrt 3) * ( sqrt 3)) / 2) / 2)

      .= ((( sqrt (3 * 3)) / 2) / 2) by SQUARE_1: 29

      .= ((( sqrt (3 ^2 )) / 2) / 2) by SQUARE_1:def 1

      .= ((3 / 2) / 2) by SQUARE_1: 22

      .= (3 / 4);

      ( sin (3 * a)) = (( - (4 * (( sin a) |^ 3))) + (3 * ( sin a))) by SIN_COS5: 16

      .= ((((4 * ( sin a)) * 3) / 4) - (4 * (( sin a) |^ (2 + 1))))

      .= ((((4 * ( sin a)) * 3) / 4) - (4 * ((( sin a) |^ 2) * ( sin a)))) by NEWTON: 6

      .= ((4 * ( sin a)) * (((( sqrt 3) / 2) ^2 ) - (( sin a) |^ 2))) by A1

      .= ((4 * ( sin a)) * ((( sin ( PI / 3)) ^2 ) - (( sin a) ^2 ))) by Thm9, NEWTON: 81

      .= ((4 * ( sin a)) * ((( sin ( PI / 3)) - ( sin a)) * (( sin ( PI / 3)) + ( sin a)))) by SQUARE_1: 8

      .= (((4 * ( sin a)) * (( sin ( PI / 3)) + ( sin a))) * (( sin ( PI / 3)) - ( sin a)))

      .= (((4 * ( sin a)) * (2 * (( cos ((( PI / 3) - a) / 2)) * ( sin ((( PI / 3) + a) / 2))))) * (( sin ( PI / 3)) - ( sin a))) by SIN_COS4: 15

      .= (((4 * ( sin a)) * (2 * (( cos ((( PI / 3) - a) / 2)) * ( sin ((( PI / 3) + a) / 2))))) * (2 * (( cos ((( PI / 3) + a) / 2)) * ( sin ((( PI / 3) - a) / 2))))) by SIN_COS4: 16

      .= (((4 * ( sin a)) * ((2 * ( sin ((( PI / 3) - a) / 2))) * ( cos ((( PI / 3) - a) / 2)))) * ((2 * ( sin ((( PI / 3) + a) / 2))) * ( cos ((( PI / 3) + a) / 2))))

      .= (((4 * ( sin a)) * ( sin (2 * ((( PI / 3) - a) / 2)))) * ((2 * ( sin ((( PI / 3) + a) / 2))) * ( cos ((( PI / 3) + a) / 2)))) by SIN_COS5: 5

      .= (((4 * ( sin a)) * ( sin (2 * ((( PI / 3) - a) / 2)))) * ( sin (2 * ((( PI / 3) + a) / 2)))) by SIN_COS5: 5

      .= (((4 * ( sin a)) * ( sin (( PI / 3) - a))) * ( sin (( PI / 3) + a)));

      hence thesis;

    end;

    begin

    

     Lm7: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( angle (A,B,C)) <> 0

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume

       A1: (A,B,C) is_a_triangle ;

      then

       A2: (A,B,C) are_mutually_distinct by EUCLID_6: 20;

      now

        assume ( angle (A,B,C)) = 0 ;

        then ( angle (B,C,A)) = PI or ( angle (B,A,C)) = PI by A2, MENELAUS: 8;

        then C in ( LSeg (B,A)) or A in ( LSeg (B,C)) by EUCLID_6: 11;

        hence contradiction by A1, TOPREAL9: 67;

      end;

      hence thesis;

    end;

    theorem :: EUCLID10:30

    

     Thm19: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( angle (A,B,C)) is non zero & ( angle (B,C,A)) is non zero & ( angle (C,A,B)) is non zero & ( angle (A,C,B)) is non zero & ( angle (C,B,A)) is non zero & ( angle (B,A,C)) is non zero

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume

       A1: (A,B,C) is_a_triangle ;

      then (B,C,A) is_a_triangle & (C,A,B) is_a_triangle & (B,A,C) is_a_triangle & (A,C,B) is_a_triangle & (C,B,A) is_a_triangle by MENELAUS: 15;

      hence thesis by A1, Lm7;

    end;

    

     Lm9: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( angle (A,B,C)) = ((2 * PI ) - ( angle (C,B,A))) & ( angle (C,B,A)) = ((2 * PI ) - ( angle (A,B,C)))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume (A,B,C) is_a_triangle ;

      then ( angle (A,B,C)) <> 0 by Thm19;

      hence ( angle (A,B,C)) = ((2 * PI ) - ( angle (C,B,A))) by EUCLID_3: 38;

      hence thesis;

    end;

    theorem :: EUCLID10:31

    

     Thm20: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( angle (A,B,C)) = ((2 * PI ) - ( angle (C,B,A))) & ( angle (B,C,A)) = ((2 * PI ) - ( angle (A,C,B))) & ( angle (C,A,B)) = ((2 * PI ) - ( angle (B,A,C))) & ( angle (B,A,C)) = ((2 * PI ) - ( angle (C,A,B))) & ( angle (A,C,B)) = ((2 * PI ) - ( angle (B,C,A))) & ( angle (C,B,A)) = ((2 * PI ) - ( angle (A,B,C)))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume (A,B,C) is_a_triangle ;

      then (B,C,A) is_a_triangle & (C,A,B) is_a_triangle & (B,A,C) is_a_triangle & (A,C,B) is_a_triangle & (C,B,A) is_a_triangle by MENELAUS: 15;

      hence thesis by Lm9;

    end;

    theorem :: EUCLID10:32

    for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & |((B - A), (C - A))| = 0 holds ( |.(C - B).| * ( sin ( angle (C,B,A)))) = |.(A - C).| or ( |.(C - B).| * ( - ( sin ( angle (C,B,A))))) = |.(A - C).|

    proof

      let A,B,C be Point of ( TOP-REAL 2) such that

       A1: (A,B,C) is_a_triangle and

       A2: |((B - A), (C - A))| = 0 ;

      

       A3: (A,B,C) are_mutually_distinct by A1, EUCLID_6: 20;

      then

       A4: ( |.(C - B).| * ( sin ( angle (C,B,A)))) = ( |.(C - A).| * ( sin ( angle (B,A,C)))) by EUCLID_6: 6;

      ( sin ( angle (B,A,C))) = 1 or ( sin ( angle (B,A,C))) = ( - 1) by A2, A3, SIN_COS: 77, EUCLID_3: 45;

      hence thesis by A4, EUCLID_6: 43;

    end;

    theorem :: EUCLID10:33

    for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & ( angle (B,A,C)) = ( PI / 2) holds (( angle (C,B,A)) + ( angle (A,C,B))) = ( PI / 2)

    proof

      let A,B,C be Point of ( TOP-REAL 2) such that

       A1: (A,B,C) is_a_triangle and

       A2: ( angle (B,A,C)) = ( PI / 2);

      

       A3: (A,B,C) are_mutually_distinct by A1, EUCLID_6: 20;

      ((( angle (B,A,C)) + ( angle (A,C,B))) + ( angle (C,B,A))) = PI by A2, COMPTRIG: 5, A3, EUCLID_3: 47;

      hence thesis by A2;

    end;

    theorem :: EUCLID10:34

    

     Thm21: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & ( angle (B,A,C)) = ( PI / 2) holds ( |.(C - B).| * ( sin ( angle (C,B,A)))) = |.(A - C).| & ( |.(C - B).| * ( sin ( angle (A,C,B)))) = |.(A - B).| & ( |.(C - B).| * ( cos ( angle (C,B,A)))) = |.(A - B).| & ( |.(C - B).| * ( cos ( angle (A,C,B)))) = |.(A - C).|

    proof

      let A,B,C be Point of ( TOP-REAL 2) such that

       A1: (A,B,C) is_a_triangle and

       A2: ( angle (B,A,C)) = ( PI / 2);

      

       A3: (A,B,C) are_mutually_distinct by A1, EUCLID_6: 20;

      then

       A4: ( |.(C - B).| * ( sin ( angle (C,B,A)))) = ( |.(C - A).| * ( sin ( angle (B,A,C)))) by EUCLID_6: 6;

      

       A5: ( |.(B - A).| * ( sin ( angle (B,A,C)))) = ( |.(B - C).| * ( sin ( angle (A,C,B)))) by A3, EUCLID_6: 6;

      thus

       A6: ( |.(C - B).| * ( sin ( angle (C,B,A)))) = |.(A - C).| by A2, A4, SIN_COS: 77, EUCLID_6: 43;

      ( |.(A - B).| * ( sin ( angle (B,A,C)))) = ( |.(B - C).| * ( sin ( angle (A,C,B)))) by A5, EUCLID_6: 43;

      hence

       A7: ( |.(C - B).| * ( sin ( angle (A,C,B)))) = |.(A - B).| by A2, SIN_COS: 77, EUCLID_6: 43;

      ((( angle (B,A,C)) + ( angle (A,C,B))) + ( angle (C,B,A))) = PI by A2, A3, COMPTRIG: 5, EUCLID_3: 47;

      then ( sin ( angle (A,C,B))) = ( sin (( PI / 2) - ( angle (C,B,A)))) by A2;

      hence ( |.(C - B).| * ( cos ( angle (C,B,A)))) = |.(A - B).| by A7, SIN_COS: 79;

      ((( angle (B,A,C)) + ( angle (A,C,B))) + ( angle (C,B,A))) = PI by A2, A3, COMPTRIG: 5, EUCLID_3: 47;

      then ( sin ( angle (C,B,A))) = ( sin (( PI / 2) - ( angle (A,C,B)))) by A2;

      hence ( |.(C - B).| * ( cos ( angle (A,C,B)))) = |.(A - C).| by A6, SIN_COS: 79;

    end;

    theorem :: EUCLID10:35

    for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & ( angle (B,A,C)) = ( PI / 2) holds ( tan ( angle (A,C,B))) = ( |.(A - B).| / |.(A - C).|) & ( tan ( angle (C,B,A))) = ( |.(A - C).| / |.(A - B).|)

    proof

      let A,B,C be Point of ( TOP-REAL 2) such that

       A1: (A,B,C) is_a_triangle and

       A2: ( angle (B,A,C)) = ( PI / 2);

      

       A3: (A,B,C) are_mutually_distinct by A1, EUCLID_6: 20;

      ( |.(C - B).| * ( sin ( angle (A,C,B)))) = |.(A - B).| & ( |.(C - B).| * ( cos ( angle (A,C,B)))) = |.(A - C).| by A1, A2, Thm21;

      then ((( |.(C - B).| / |.(C - B).|) * ( sin ( angle (A,C,B)))) / ( cos ( angle (A,C,B)))) = ( |.(A - B).| / |.(A - C).|) by XCMPLX_1: 83;

      then

       A4: ((1 * ( sin ( angle (A,C,B)))) / ( cos ( angle (A,C,B)))) = ( |.(A - B).| / |.(A - C).|) by A3, EUCLID_6: 42, XCMPLX_1: 60;

      hence ( tan ( angle (A,C,B))) = ( |.(A - B).| / |.(A - C).|) by SIN_COS4:def 1;

      ((( angle (B,A,C)) + ( angle (A,C,B))) + ( angle (C,B,A))) = PI by A2, A3, COMPTRIG: 5, EUCLID_3: 47;

      

      then ( tan ( angle (C,B,A))) = (( sin (( PI / 2) - ( angle (A,C,B)))) / ( cos (( PI / 2) - ( angle (A,C,B))))) by A2, SIN_COS4:def 1

      .= (( cos ( angle (A,C,B))) / ( cos (( PI / 2) - ( angle (A,C,B))))) by SIN_COS: 79

      .= (( cos ( angle (A,C,B))) / ( sin ( angle (A,C,B)))) by SIN_COS: 79

      .= (1 / (( sin ( angle (A,C,B))) / ( cos ( angle (A,C,B))))) by XCMPLX_1: 57

      .= ( |.(A - C).| / |.(A - B).|) by A4, XCMPLX_1: 57;

      hence thesis;

    end;

    begin

    registration

      let a,b be Real, r be negative Real;

      cluster ( circle (a,b,r)) -> empty;

      coherence

      proof

        ( circle (a,b,r)) = ( Sphere ( |[a, b]|,r)) by TOPREAL9: 52;

        hence thesis;

      end;

    end

    theorem :: EUCLID10:36

    

     Thm23: for a,b be Real holds ( circle (a,b, 0 )) = { |[a, b]|}

    proof

      let a,b be Real;

      now

        hereby

          let t be object;

          assume t in { p where p be Point of ( TOP-REAL 2) : |.(p - |[a, b]|).| = 0 };

          then

          consider p0 be Point of ( TOP-REAL 2) such that

           A1: t = p0 and

           A2: |.(p0 - |[a, b]|).| = 0 ;

          p0 = |[a, b]| by A2, EUCLID_6: 42;

          hence t in { |[a, b]|} by A1, TARSKI:def 1;

        end;

        let t be object;

        assume

         A3: t in { |[a, b]|};

        then

         A4: t = |[a, b]| by TARSKI:def 1;

        reconsider p0 = t as Point of ( TOP-REAL 2) by A3, TARSKI:def 1;

         |.(p0 - |[a, b]|).| = 0 by A4, EUCLID_6: 42;

        hence t in { p where p be Point of ( TOP-REAL 2) : |.(p - |[a, b]|).| = 0 };

      end;

      then { p where p be Point of ( TOP-REAL 2) : |.(p - |[a, b]|).| = 0 } c= { |[a, b]|} & { |[a, b]|} c= { p where p be Point of ( TOP-REAL 2) : |.(p - |[a, b]|).| = 0 };

      hence thesis by JGRAPH_6:def 5;

    end;

    registration

      let a,b be Real;

      cluster ( circle (a,b, 0 )) -> trivial;

      coherence

      proof

        ( circle (a,b, 0 )) = { |[a, b]|} by Thm23;

        hence thesis;

      end;

    end

    theorem :: EUCLID10:37

    

     Thm24: for A,B,C be Point of ( TOP-REAL 2), a,b,r be Real st (A,B,C) is_a_triangle & A in ( circle (a,b,r)) & B in ( circle (a,b,r)) holds r is positive

    proof

      let A,B,C be Point of ( TOP-REAL 2), a,b,r be Real such that

       A1: (A,B,C) is_a_triangle and

       A2: A in ( circle (a,b,r)) & B in ( circle (a,b,r));

      

       A3: (A,B,C) are_mutually_distinct by A1, EUCLID_6: 20;

      assume not r is positive;

      per cases ;

        suppose r < 0 ;

        hence contradiction by A2;

      end;

        suppose r = 0 ;

        then A in { |[a, b]|} & B in { |[a, b]|} by A2, Thm23;

        then A = |[a, b]| & B = |[a, b]| by TARSKI:def 1;

        hence contradiction by A3;

      end;

    end;

    theorem :: EUCLID10:38

    

     Thm25: for A be Point of ( TOP-REAL 2), a,b be Real, r be positive Real st A in ( circle (a,b,r)) holds A <> |[a, b]|

    proof

      let A be Point of ( TOP-REAL 2), a,b be Real, r be positive Real such that

       A1: A in ( circle (a,b,r));

      ( circle (a,b,r)) = { p where p be Point of ( TOP-REAL 2) : |.(p - |[a, b]|).| = r } by JGRAPH_6:def 5;

      then

      consider p0 be Point of ( TOP-REAL 2) such that

       A2: A = p0 and

       A3: |.(p0 - |[a, b]|).| = r by A1;

      thus thesis by A2, A3, EUCLID_6: 42;

    end;

    theorem :: EUCLID10:39

    for A,B,C be Point of ( TOP-REAL 2), a,b,r be Real st (A,B,C) is_a_triangle & ( angle (C,B,A)) in ]. 0 , PI .[ & ( angle (B,A,C)) in ]. 0 , PI .[ & A in ( circle (a,b,r)) & B in ( circle (a,b,r)) & C in ( circle (a,b,r)) & |[a, b]| in ( LSeg (A,C)) holds ( angle (C,B,A)) = ( PI / 2)

    proof

      let A,B,C be Point of ( TOP-REAL 2), a,b,r be Real such that

       A1: (A,B,C) is_a_triangle and

       A2: ( angle (C,B,A)) in ]. 0 , PI .[ and

       A3: ( angle (B,A,C)) in ]. 0 , PI .[ and

       A4: A in ( circle (a,b,r)) & B in ( circle (a,b,r)) & C in ( circle (a,b,r)) and

       A5: |[a, b]| in ( LSeg (A,C));

      

       A6: (A,B,C) are_mutually_distinct by A1, EUCLID_6: 20;

      set O = |[a, b]|;

      

       A7: ( angle (C,B,A)) > 0 & ( angle (C,B,A)) < PI by A2, XXREAL_1: 4;

      

       A8: ( angle (B,A,C)) > 0 & ( angle (B,A,C)) < PI by A3, XXREAL_1: 4;

      

       A9: ( circle (a,b,r)) = { p where p be Point of ( TOP-REAL 2) : |.(p - |[a, b]|).| = r } by JGRAPH_6:def 5;

      consider JA be Point of ( TOP-REAL 2) such that

       A10: A = JA and

       A11: |.(JA - |[a, b]|).| = r by A4, A9;

      consider JB be Point of ( TOP-REAL 2) such that

       A12: B = JB and

       A13: |.(JB - |[a, b]|).| = r by A4, A9;

      consider JC be Point of ( TOP-REAL 2) such that

       A14: C = JC and

       A15: |.(JC - |[a, b]|).| = r by A4, A9;

      r is positive by A1, A4, Thm24;

      then

       A16: O <> A & O <> C by A4, Thm25;

      

       A17: ( angle (C,B,A)) < PI by A2, XXREAL_1: 4;

      

       A18: |.(B - O).| = |.(O - C).| & B <> C by A12, A13, A14, A15, A6, EUCLID_6: 43;

      

       A19: ( angle (C,B,O)) < PI

      proof

        assume ( angle (C,B,O)) >= PI ;

        then ( angle (O,C,B)) >= PI by A18, EUCLID_6: 16;

        then

         A20: ( angle (A,C,B)) >= PI by A5, A16, EUCLID_6: 9;

        ((( angle (C,B,A)) + ( angle (B,A,C))) + ( angle (A,C,B))) = PI by A17, A6, EUCLID_3: 47;

        then

         A21: (( angle (C,B,A)) + ( angle (B,A,C))) = ( PI - ( angle (A,C,B)));

        ( angle (B,A,C)) <= 0

        proof

          assume

           A22: ( angle (B,A,C)) > 0 ;

          ( angle (C,B,A)) > 0 by A2, XXREAL_1: 4;

          hence contradiction by A21, A20, A22, XREAL_1: 47;

        end;

        hence contradiction by A3, XXREAL_1: 4;

      end;

      

       A23: (A,O,B) is_a_triangle & (C,O,B) is_a_triangle

      proof

        

         A23a: r is positive by A1, A4, Thm24;

        then

         A24: O <> B & O <> A & O <> C by A4, Thm25;

         not A in ( Line (O,B))

        proof

          assume

           A25: A in ( Line (O,B));

          B in ( Line (O,B)) by RLTOPSP1: 72;

          then ( Line (A,B)) = ( Line (O,B)) by A6, A25, RLTOPSP1: 75;

          then O in ( Line (A,B)) & A in ( Line (A,B)) by RLTOPSP1: 72;

          then

           A26: ( Line (O,A)) = ( Line (A,B)) by A4, A23a, Thm25, RLTOPSP1: 75;

          O in ( Line (A,C)) & A in ( Line (A,C)) by A5, MENELAUS: 12, RLTOPSP1: 72;

          then ( Line (O,A)) = ( Line (A,C)) by A4, A23a, Thm25, RLTOPSP1: 75;

          then A in ( Line (A,B)) & B in ( Line (A,B)) & C in ( Line (A,B)) by A26, RLTOPSP1: 72;

          hence contradiction by A1, RLTOPSP1:def 16;

        end;

        hence (A,O,B) is_a_triangle by A24, MENELAUS: 13;

         not (C,O,B) are_collinear

        proof

          assume

           A28: (C,O,B) are_collinear ;

          then C in ( Line (O,B)) & B in ( Line (O,B)) by A24, MENELAUS: 13, RLTOPSP1: 72;

          then

           A29: ( Line (C,B)) = ( Line (O,B)) by A6, RLTOPSP1: 75;

          C in ( Line (O,B)) & O in ( Line (O,B)) & O <> C by A28, A24, MENELAUS: 13, RLTOPSP1: 72;

          then

           A30: ( Line (C,O)) = ( Line (O,B)) by RLTOPSP1: 75;

          

           A31: O in ( Line (A,C)) & A in ( Line (A,C)) & C in ( Line (C,A)) by A5, MENELAUS: 12, RLTOPSP1: 72;

          then ( Line (C,O)) = ( Line (A,C)) by A4, A23a, Thm25, RLTOPSP1: 75;

          hence contradiction by A30, A31, A29, A1, A6, MENELAUS: 13;

        end;

        hence (C,O,B) is_a_triangle ;

      end;

      then

       A32: (A,O,B) are_mutually_distinct & (C,O,B) are_mutually_distinct by EUCLID_6: 20;

      then ( angle (B,A,O)) < PI by A8, A5, EUCLID_6: 10;

      then

       A33: ((( angle (B,A,O)) + ( angle (A,O,B))) + ( angle (O,B,A))) = PI by A32, EUCLID_3: 47;

       |.(O - A).| = |.(B - O).| by A10, A11, A12, A13, EUCLID_6: 43;

      then

       A34: ( angle (O,A,B)) = ( angle (A,B,O)) by A6, EUCLID_6: 16;

       |.(O - B).| = |.(C - O).| by A12, A13, A14, A15, EUCLID_6: 43;

      then

       A35: ( angle (O,B,C)) = ( angle (B,C,O)) by A6, EUCLID_6: 16;

      

       A36: (((( angle (C,B,O)) + ( angle (O,C,B))) + ( angle (O,B,A))) + ( angle (B,A,O))) = PI or (((( angle (C,B,O)) + ( angle (O,C,B))) + ( angle (O,B,A))) + ( angle (B,A,O))) = ( - PI )

      proof

        

         A37: (( angle (A,O,B)) + ( angle (B,O,C))) = PI or (( angle (A,O,B)) + ( angle (B,O,C))) = (3 * PI ) by A32, A5, EUCLID_6: 13;

        ((( angle (C,B,O)) + ( angle (B,O,C))) + ( angle (O,C,B))) = PI by A19, A32, EUCLID_3: 47;

        hence thesis by A33, A37;

      end;

      ( angle (O,C,B)) = ( angle (C,B,O)) & ( angle (B,A,O)) = ( angle (O,B,A))

      proof

        ((2 * PI ) - ( angle (C,B,O))) = ( angle (O,B,C)) & ((2 * PI ) - ( angle (O,C,B))) = ( angle (B,C,O)) by A23, Thm20;

        hence ( angle (O,C,B)) = ( angle (C,B,O)) by A35;

        ((2 * PI ) - ( angle (O,B,A))) = ( angle (A,B,O)) & ((2 * PI ) - ( angle (O,A,B))) = ( angle (B,A,O)) by A23, Thm20;

        hence thesis by A34;

      end;

      then (( angle (C,B,O)) + ( angle (O,B,A))) = ( PI / 2) or (( angle (C,B,O)) + ( angle (O,B,A))) = ( - ( PI / 2)) by A36;

      then ( angle (C,B,A)) = ( PI / 2) or (( angle (C,B,A)) + (2 * PI )) = ( PI / 2) or ( angle (C,B,A)) = ( - ( PI / 2)) or (( angle (C,B,A)) + (2 * PI )) = ( - ( PI / 2)) by EUCLID_6: 4;

      then ( angle (C,B,A)) = ( PI / 2) or ( angle (C,B,A)) = ( - ((3 * PI ) / 2)) or ( angle (C,B,A)) = ( - ( PI / 2)) or ( angle (C,B,A)) = ( - ((5 * PI ) / 2));

      hence thesis by A7;

    end;

    theorem :: EUCLID10:40

    

     Thm26: for A,B,C be Point of ( TOP-REAL 2), r be positive Real st ( angle (A,B,C)) is non zero holds ( sin (r * ( angle (C,B,A)))) = ((( sin ((r * 2) * PI )) * ( cos (r * ( angle (A,B,C))))) - (( cos ((r * 2) * PI )) * ( sin (r * ( angle (A,B,C))))))

    proof

      let A,B,C be Point of ( TOP-REAL 2), r be positive Real;

      assume ( angle (A,B,C)) is non zero;

      then ( angle (C,B,A)) = ((2 * PI ) - ( angle (A,B,C))) by EUCLID_3: 37;

      then (r * ( angle (C,B,A))) = (((r * 2) * PI ) - (r * ( angle (A,B,C))));

      hence thesis by SIN_COS: 82;

    end;

    theorem :: EUCLID10:41

    for A,B,C be Point of ( TOP-REAL 2) st ( angle (A,B,C)) is non zero holds ( sin (( angle (C,B,A)) / 3)) = (((( sqrt 3) / 2) * ( cos (( angle (A,B,C)) / 3))) + ((1 / 2) * ( sin (( angle (A,B,C)) / 3))))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume ( angle (A,B,C)) is non zero;

      

      then ( sin ((1 / 3) * ( angle (C,B,A)))) = ((( sin ((2 * PI ) / 3)) * ( cos ((1 / 3) * ( angle (A,B,C))))) - (( cos (((1 / 3) * 2) * PI )) * ( sin ((1 / 3) * ( angle (A,B,C)))))) by Thm26

      .= (((( sqrt 3) / 2) * ( cos (( angle (A,B,C)) / 3))) + ((1 / 2) * ( sin (( angle (A,B,C)) / 3)))) by Thm14, Thm15;

      hence thesis;

    end;

    begin

    theorem :: EUCLID10:42

    

     Thm27: for A,B,C be Point of ( TOP-REAL 2) holds ( the_area_of_polygon3 (A,B,C)) = ( the_area_of_polygon3 (B,C,A)) & ( the_area_of_polygon3 (A,B,C)) = ( the_area_of_polygon3 (C,A,B))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      

       A1: ( the_area_of_polygon3 (A,B,C)) = ((((((A `1 ) * (B `2 )) - ((B `1 ) * (A `2 ))) + (((B `1 ) * (C `2 )) - ((C `1 ) * (B `2 )))) + (((C `1 ) * (A `2 )) - ((A `1 ) * (C `2 )))) / 2) by EUCLID_6:def 1;

      ( the_area_of_polygon3 (B,C,A)) = ((((((B `1 ) * (C `2 )) - ((C `1 ) * (B `2 ))) + (((C `1 ) * (A `2 )) - ((A `1 ) * (C `2 )))) + (((A `1 ) * (B `2 )) - ((B `1 ) * (A `2 )))) / 2) by EUCLID_6:def 1;

      hence ( the_area_of_polygon3 (A,B,C)) = ( the_area_of_polygon3 (B,C,A)) by A1;

      ( the_area_of_polygon3 (C,A,B)) = ((((((C `1 ) * (A `2 )) - ((A `1 ) * (C `2 ))) + (((A `1 ) * (B `2 )) - ((B `1 ) * (A `2 )))) + (((B `1 ) * (C `2 )) - ((C `1 ) * (B `2 )))) / 2) by EUCLID_6:def 1;

      hence thesis by A1;

    end;

    theorem :: EUCLID10:43

    

     Thm28: for A,B,C be Point of ( TOP-REAL 2) holds ( the_area_of_polygon3 (A,B,C)) = ( - ( the_area_of_polygon3 (B,A,C)))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      

       A1: ( the_area_of_polygon3 (A,B,C)) = ((((((A `1 ) * (B `2 )) - ((B `1 ) * (A `2 ))) + (((B `1 ) * (C `2 )) - ((C `1 ) * (B `2 )))) + (((C `1 ) * (A `2 )) - ((A `1 ) * (C `2 )))) / 2) by EUCLID_6:def 1;

      ( the_area_of_polygon3 (B,A,C)) = ((((((B `1 ) * (A `2 )) - ((A `1 ) * (B `2 ))) + (((A `1 ) * (C `2 )) - ((C `1 ) * (A `2 )))) + (((C `1 ) * (B `2 )) - ((B `1 ) * (C `2 )))) / 2) by EUCLID_6:def 1;

      hence thesis by A1;

    end;

    definition

      let A,B,C be Point of ( TOP-REAL 2);

      :: EUCLID10:def1

      func the_diameter_of_the_circumcircle (A,B,C) -> Real equals (((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / 2) / ( the_area_of_polygon3 (A,B,C)));

      correctness ;

    end

    theorem :: EUCLID10:44

    

     Thm29: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( the_diameter_of_the_circumcircle (A,B,C)) = ( |.(C - A).| / ( sin ( angle (C,B,A))))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume (A,B,C) is_a_triangle ;

      then

       A2: (A,B,C) are_mutually_distinct by EUCLID_6: 20;

      ( the_diameter_of_the_circumcircle (A,B,C)) = (((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / 2) / ((( |.(A - B).| * |.(C - B).|) * ( sin ( angle (C,B,A)))) / 2)) by EUCLID_6: 5

      .= (((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / 2) / ((1 / 2) * (( |.(A - B).| * |.(C - B).|) * ( sin ( angle (C,B,A))))))

      .= ((((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / 2) / (1 / 2)) / ( |.(A - B).| * ( |.(C - B).| * ( sin ( angle (C,B,A)))))) by XCMPLX_1: 78

      .= (((((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / 2) / (1 / 2)) / |.(A - B).|) / ( |.(C - B).| * ( sin ( angle (C,B,A))))) by XCMPLX_1: 78

      .= (((( |.(A - B).| * ( |.(B - C).| * |.(C - A).|)) / |.(A - B).|) / |.(C - B).|) / ( sin ( angle (C,B,A)))) by XCMPLX_1: 78

      .= ((( |.(B - C).| * |.(C - A).|) / |.(C - B).|) / ( sin ( angle (C,B,A)))) by XCMPLX_1: 89, A2, EUCLID_6: 42

      .= ((( |.(B - C).| * |.(C - A).|) / |.(B - C).|) / ( sin ( angle (C,B,A)))) by EUCLID_6: 43

      .= ( |.(C - A).| / ( sin ( angle (C,B,A)))) by XCMPLX_1: 89, A2, EUCLID_6: 42;

      hence thesis;

    end;

    theorem :: EUCLID10:45

    for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( the_diameter_of_the_circumcircle (A,B,C)) = ( - ( |.(C - A).| / ( sin ( angle (A,B,C)))))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume (A,B,C) is_a_triangle ;

      

      then ( the_diameter_of_the_circumcircle (A,B,C)) = ( |.(C - A).| / ( sin ( angle (C,B,A)))) by Thm29

      .= ( |.(C - A).| / ( - ( sin ( angle (A,B,C))))) by EUCLID_6: 2

      .= ( - ( |.(C - A).| / ( sin ( angle (A,B,C))))) by XCMPLX_1: 188;

      hence thesis;

    end;

    theorem :: EUCLID10:46

    for A,B,C be Point of ( TOP-REAL 2) holds ( the_diameter_of_the_circumcircle (A,B,C)) = ( the_diameter_of_the_circumcircle (B,C,A)) by Thm27;

    theorem :: EUCLID10:47

    

     Thm31: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( the_diameter_of_the_circumcircle (A,B,C)) = ( - ( the_diameter_of_the_circumcircle (B,A,C)))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      

       A3: |.(B - A).| = |.(A - B).| & |.(A - C).| = |.(C - A).| & |.(C - B).| = |.(B - C).| by EUCLID_6: 43;

      ( the_diameter_of_the_circumcircle (B,A,C)) = (((( |.(A - B).| * |.(C - A).|) * |.(B - C).|) / 2) / ( - ( the_area_of_polygon3 (A,B,C)))) by A3, Thm28

      .= ( - (((( |.(A - B).| * |.(C - A).|) * |.(B - C).|) / 2) / ( the_area_of_polygon3 (A,B,C)))) by XCMPLX_1: 188;

      hence thesis;

    end;

    theorem :: EUCLID10:48

    

     Thm32: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( the_diameter_of_the_circumcircle (A,B,C)) = ( - ( the_diameter_of_the_circumcircle (A,C,B)))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume (A,B,C) is_a_triangle ;

      then

       A2: (A,C,B) is_a_triangle & (B,C,A) is_a_triangle by MENELAUS: 15;

      ( the_diameter_of_the_circumcircle (A,B,C)) = ( the_diameter_of_the_circumcircle (B,C,A)) by Thm27

      .= ( - ( the_diameter_of_the_circumcircle (C,B,A))) by A2, Thm31;

      hence thesis by Thm27;

    end;

    theorem :: EUCLID10:49

    

     Thm33: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds ( the_diameter_of_the_circumcircle (A,B,C)) = ( - ( the_diameter_of_the_circumcircle (C,B,A)))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume (A,B,C) is_a_triangle ;

      then ( the_diameter_of_the_circumcircle (A,B,C)) = ( - ( the_diameter_of_the_circumcircle (A,C,B))) by Thm32;

      hence thesis by Thm27;

    end;

    begin

    

     Lm10: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds |.(A - B).| = (( the_diameter_of_the_circumcircle (A,B,C)) * ( sin ( angle (A,C,B))))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume (A,B,C) is_a_triangle ;

      then

       A2: ( the_area_of_polygon3 (A,B,C)) <> 0 by MENELAUS: 9;

      set k = ((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / ( the_area_of_polygon3 (B,C,A)));

      

       A3: ( the_area_of_polygon3 (B,C,A)) = ((( |.(B - C).| * |.(A - C).|) * ( sin ( angle (A,C,B)))) / 2) by EUCLID_6: 5;

      ( the_area_of_polygon3 (B,C,A)) <> 0 by A2, Thm27;

      then

       A4: |.(A - B).| = (( |.(A - B).| * ( the_area_of_polygon3 (B,C,A))) / ( the_area_of_polygon3 (B,C,A))) by XCMPLX_1: 89;

      

       A5: |.(A - B).| = ((((( |.(A - B).| * |.(B - C).|) * |.(A - C).|) * ( sin ( angle (A,C,B)))) / 2) / ( the_area_of_polygon3 (B,C,A))) by A4, A3;

      set abc = (( |.(A - B).| * |.(B - C).|) * |.(C - A).|);

      set S = ( the_area_of_polygon3 (B,C,A));

      set an = ( sin ( angle (A,C,B)));

      

       A6: (((abc * an) / 2) / S) = ((((abc * an) * 1) / 2) * (1 / S)) by XCMPLX_1: 99

      .= ((((abc * (1 / S)) * 1) / 2) * an)

      .= ((k / 2) * an) by XCMPLX_1: 99;

      (k / 2) = (((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) * (1 / ( the_area_of_polygon3 (B,C,A)))) / 2) by XCMPLX_1: 99

      .= (((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / 2) * (1 / ( the_area_of_polygon3 (B,C,A))))

      .= (((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / 2) * (1 / ( the_area_of_polygon3 (A,B,C)))) by Thm27

      .= (((( |.(A - B).| * |.(B - C).|) * |.(C - A).|) / 2) / ( the_area_of_polygon3 (A,B,C))) by XCMPLX_1: 99;

      hence thesis by A6, A5, EUCLID_6: 43;

    end;

    theorem :: EUCLID10:50

    

     Thm34: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds |.(A - B).| = (( the_diameter_of_the_circumcircle (A,B,C)) * ( sin ( angle (A,C,B)))) & |.(B - C).| = (( the_diameter_of_the_circumcircle (A,B,C)) * ( sin ( angle (B,A,C)))) & |.(C - A).| = (( the_diameter_of_the_circumcircle (A,B,C)) * ( sin ( angle (C,B,A))))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume

       A1: (A,B,C) is_a_triangle ;

      then

       A2: (B,C,A) is_a_triangle & (C,A,B) is_a_triangle by MENELAUS: 15;

      

       A3: |.(B - C).| = (( the_diameter_of_the_circumcircle (B,C,A)) * ( sin ( angle (B,A,C)))) by A2, Lm10;

      thus |.(A - B).| = (( the_diameter_of_the_circumcircle (A,B,C)) * ( sin ( angle (A,C,B)))) by A1, Lm10;

      thus |.(B - C).| = (( the_diameter_of_the_circumcircle (A,B,C)) * ( sin ( angle (B,A,C)))) by A3, Thm27;

       |.(C - A).| = (( the_diameter_of_the_circumcircle (C,A,B)) * ( sin ( angle (C,B,A)))) by A2, Lm10;

      hence |.(C - A).| = (( the_diameter_of_the_circumcircle (A,B,C)) * ( sin ( angle (C,B,A)))) by Thm27;

    end;

    theorem :: EUCLID10:51

    for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle holds |.(A - B).| = ((((( the_diameter_of_the_circumcircle (A,B,C)) * 4) * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( PI / 3) - (( angle (A,C,B)) / 3))))

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume

       A1: (A,B,C) is_a_triangle ;

       |.(A - B).| = (( the_diameter_of_the_circumcircle (A,B,C)) * ( sin (3 * (( angle (A,C,B)) / 3)))) by A1, Lm10;

      then |.(A - B).| = (( the_diameter_of_the_circumcircle (A,B,C)) * (((4 * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( PI / 3) - (( angle (A,C,B)) / 3))))) by Thm18;

      hence thesis;

    end;

    theorem :: EUCLID10:52

    for A,B,C,P be Point of ( TOP-REAL 2) st (A,B,P) are_mutually_distinct & ( angle (P,B,A)) = (( angle (C,B,A)) / 3) & ( angle (B,A,P)) = (( angle (B,A,C)) / 3) & ( angle (A,P,B)) < PI holds ( |.(A - P).| * ( sin ( PI - ((( angle (C,B,A)) / 3) + (( angle (B,A,C)) / 3))))) = ( |.(A - B).| * ( sin (( angle (C,B,A)) / 3)))

    proof

      let A,B,C,P be Point of ( TOP-REAL 2);

      assume that

       A1: (A,B,P) are_mutually_distinct and

       A2: ( angle (P,B,A)) = (( angle (C,B,A)) / 3) and

       A3: ( angle (B,A,P)) = (( angle (B,A,C)) / 3) and

       A4: ( angle (A,P,B)) < PI ;

      ((( angle (A,P,B)) + ( angle (P,B,A))) + ( angle (B,A,P))) = PI by A1, A4, EUCLID_3: 47;

      hence thesis by A1, A2, A3, EUCLID_6: 6;

    end;

    

     Lm11: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & ( angle (C,B,A)) < PI holds ((( angle (C,B,A)) + ( angle (B,A,C))) + ( angle (A,C,B))) = PI & ((( angle (C,A,B)) + ( angle (A,B,C))) + ( angle (B,C,A))) = (5 * PI )

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume that

       A1: (A,B,C) is_a_triangle and

       A2: ( angle (C,B,A)) < PI ;

      

       A3: (A,B,C) are_mutually_distinct by A1, EUCLID_6: 20;

      hence ((( angle (C,B,A)) + ( angle (B,A,C))) + ( angle (A,C,B))) = PI by A2, EUCLID_3: 47;

      ( angle (C,B,A)) = ((2 * PI ) - ( angle (A,B,C))) & ( angle (B,A,C)) = ((2 * PI ) - ( angle (C,A,B))) & ( angle (A,C,B)) = ((2 * PI ) - ( angle (B,C,A))) by A1, Thm20;

      

      then ((( angle (C,A,B)) + ( angle (A,B,C))) + ( angle (B,C,A))) = ((6 * PI ) - ((( angle (B,A,C)) + ( angle (C,B,A))) + ( angle (A,C,B))))

      .= ((6 * PI ) - PI ) by A2, A3, EUCLID_3: 47

      .= (5 * PI );

      hence thesis;

    end;

    

     Lm12: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & ( angle (C,B,A)) < PI holds (((( angle (C,B,A)) / 3) + (( angle (B,A,C)) / 3)) + (( angle (A,C,B)) / 3)) = ( PI / 3)

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume that

       A1: (A,B,C) is_a_triangle and

       A2: ( angle (C,B,A)) < PI ;

      ((( angle (C,B,A)) + ( angle (B,A,C))) + ( angle (A,C,B))) = PI by A1, A2, Lm11;

      hence thesis;

    end;

    theorem :: EUCLID10:53

    

     Thm35: for A,B,C,P be Point of ( TOP-REAL 2) st (A,B,P) are_mutually_distinct & ( angle (P,B,A)) = (( angle (C,B,A)) / 3) & ( angle (B,A,P)) = (( angle (B,A,C)) / 3) & ( angle (A,P,B)) < PI & (((( angle (C,B,A)) / 3) + (( angle (B,A,C)) / 3)) + (( angle (A,C,B)) / 3)) = ( PI / 3) holds ( |.(A - P).| * ( sin (((2 * PI ) / 3) + (( angle (A,C,B)) / 3)))) = ( |.(A - B).| * ( sin (( angle (C,B,A)) / 3)))

    proof

      let A,B,C,P be Point of ( TOP-REAL 2);

      assume that

       A1: (A,B,P) are_mutually_distinct and

       A2: ( angle (P,B,A)) = (( angle (C,B,A)) / 3) and

       A3: ( angle (B,A,P)) = (( angle (B,A,C)) / 3) and

       A4: ( angle (A,P,B)) < PI and

       A5: (((( angle (C,B,A)) / 3) + (( angle (B,A,C)) / 3)) + (( angle (A,C,B)) / 3)) = ( PI / 3);

      ((( angle (A,P,B)) + ( angle (P,B,A))) + ( angle (B,A,P))) = PI by A1, A4, EUCLID_3: 47;

      hence thesis by A1, A2, A3, A5, EUCLID_6: 6;

    end;

    theorem :: EUCLID10:54

    for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & ( angle (C,A,B)) < PI holds ((( angle (C,B,A)) + ( angle (B,A,C))) + ( angle (A,C,B))) = (5 * PI ) & ((( angle (C,A,B)) + ( angle (A,B,C))) + ( angle (B,C,A))) = PI

    proof

      let A,B,C be Point of ( TOP-REAL 2);

      assume that

       A1: (A,B,C) is_a_triangle and

       A2: ( angle (C,A,B)) < PI ;

      (B,A,C) is_a_triangle by A1, MENELAUS: 15;

      hence thesis by A2, Lm11;

    end;

    theorem :: EUCLID10:55

    for A,B,C,P be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & ( angle (C,B,A)) < PI & (A,B,P) are_mutually_distinct & ( angle (P,B,A)) = (( angle (C,B,A)) / 3) & ( angle (B,A,P)) = (( angle (B,A,C)) / 3) & ( angle (A,P,B)) < PI holds ( |.(A - P).| * ( sin (( PI / 3) - (( angle (A,C,B)) / 3)))) = ( |.(A - B).| * ( sin (( angle (C,B,A)) / 3)))

    proof

      let A,B,C,P be Point of ( TOP-REAL 2);

      assume that

       A1: (A,B,C) is_a_triangle and

       A2: ( angle (C,B,A)) < PI and

       A3: (A,B,P) are_mutually_distinct and

       A4: ( angle (P,B,A)) = (( angle (C,B,A)) / 3) and

       A5: ( angle (B,A,P)) = (( angle (B,A,C)) / 3) and

       A6: ( angle (A,P,B)) < PI ;

      

       A7: (((( angle (C,B,A)) / 3) + (( angle (B,A,C)) / 3)) + (( angle (A,C,B)) / 3)) = ( PI / 3) by A1, A2, Lm12;

      

       A8: ((( angle (A,P,B)) + ( angle (P,B,A))) + ( angle (B,A,P))) = PI by A3, A6, EUCLID_3: 47;

      ( |.(A - P).| * ( sin ( PI - ((( angle (C,B,A)) / 3) + (( angle (B,A,C)) / 3))))) = ( |.(A - B).| * ( sin (( angle (C,B,A)) / 3))) by A3, A4, EUCLID_6: 6, A8, A5;

      hence thesis by A7, Thm1;

    end;

    theorem :: EUCLID10:56

    for A,B,C,P be Point of ( TOP-REAL 2) st (A,B,C) is_a_triangle & (A,B,P) is_a_triangle & ( angle (C,B,A)) < PI & ( angle (A,P,B)) < PI & ( angle (P,B,A)) = (( angle (C,B,A)) / 3) & ( angle (B,A,P)) = (( angle (B,A,C)) / 3) & ( sin (( PI / 3) - (( angle (A,C,B)) / 3))) <> 0 holds |.(A - P).| = ( - ((((( the_diameter_of_the_circumcircle (C,B,A)) * 4) * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( angle (C,B,A)) / 3))))

    proof

      let A,B,C,P be Point of ( TOP-REAL 2);

      assume that

       A1: (A,B,C) is_a_triangle and

       A2: (A,B,P) is_a_triangle and

       A3: ( angle (C,B,A)) < PI and

       A4: ( angle (A,P,B)) < PI and

       A5: ( angle (P,B,A)) = (( angle (C,B,A)) / 3) and

       A6: ( angle (B,A,P)) = (( angle (B,A,C)) / 3) and

       A7: ( sin (( PI / 3) - (( angle (A,C,B)) / 3))) <> 0 ;

      

       A8: (((( angle (C,B,A)) / 3) + (( angle (B,A,C)) / 3)) + (( angle (A,C,B)) / 3)) = ( PI / 3) by A1, A3, Lm12;

      (A,B,P) are_mutually_distinct by A2, EUCLID_6: 20;

      then

       A9: ( |.(A - P).| * ( sin (((2 * PI ) / 3) + (( angle (A,C,B)) / 3)))) = ( |.(A - B).| * ( sin (( angle (C,B,A)) / 3))) by A5, A6, A4, A8, Thm35;

      ( sin ( angle (A,C,B))) = ( sin (3 * (( angle (A,C,B)) / 3)))

      .= (((4 * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( PI / 3) - (( angle (A,C,B)) / 3)))) by Thm18;

      then

       A10: ( |.(A - P).| * ( sin (((2 * PI ) / 3) + (( angle (A,C,B)) / 3)))) = ((( the_diameter_of_the_circumcircle (A,B,C)) * (((4 * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( PI / 3) - (( angle (A,C,B)) / 3))))) * ( sin (( angle (C,B,A)) / 3))) by A9, A1, Thm34;

      ( |.(A - P).| * ( sin (( PI / 3) - (( angle (A,C,B)) / 3)))) = ((( the_diameter_of_the_circumcircle (A,B,C)) * (((4 * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( PI / 3) - (( angle (A,C,B)) / 3))))) * ( sin (( angle (C,B,A)) / 3))) by A10, Thm7;

      then |.(A - P).| = ((((((( the_diameter_of_the_circumcircle (A,B,C)) * 4) * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( angle (C,B,A)) / 3))) * ( sin (( PI / 3) - (( angle (A,C,B)) / 3)))) / ( sin (( PI / 3) - (( angle (A,C,B)) / 3)))) by A7, XCMPLX_1: 89;

      then

       A11: |.(A - P).| = (((((( the_diameter_of_the_circumcircle (A,B,C)) * 4) * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( angle (C,B,A)) / 3))) * (( sin (( PI / 3) - (( angle (A,C,B)) / 3))) / ( sin (( PI / 3) - (( angle (A,C,B)) / 3))))) by XCMPLX_1: 74;

      (( sin (( PI / 3) - (( angle (A,C,B)) / 3))) / ( sin (( PI / 3) - (( angle (A,C,B)) / 3)))) = 1 by A7, XCMPLX_1: 60;

      then |.(A - P).| = ((((( - ( the_diameter_of_the_circumcircle (C,B,A))) * 4) * ( sin (( angle (A,C,B)) / 3))) * ( sin (( PI / 3) + (( angle (A,C,B)) / 3)))) * ( sin (( angle (C,B,A)) / 3))) by A11, A1, Thm33;

      hence thesis;

    end;

    begin

    theorem :: EUCLID10:57

    

     Thm37: for A,B,C be Point of ( TOP-REAL 2) st (A,B,C) are_mutually_distinct & C in ( LSeg (A,B)) holds |.(A - B).| = ( |.(A - C).| + |.(C - B).|)

    proof

      let A,B,C be Point of ( TOP-REAL 2) such that

       A1: (A,B,C) are_mutually_distinct and

       A2: C in ( LSeg (A,B));

      ( |.(B - A).| ^2 ) = ((( |.(A - C).| ^2 ) + ( |.(B - C).| ^2 )) - (((2 * |.(A - C).|) * |.(B - C).|) * ( cos ( angle (A,C,B))))) by EUCLID_6: 7

      .= ((( |.(A - C).| ^2 ) + ( |.(B - C).| ^2 )) - (((2 * |.(A - C).|) * |.(B - C).|) * ( - 1))) by A1, A2, SIN_COS: 77, EUCLID_6: 8

      .= ((( |.(A - C).| ^2 ) + ((2 * |.(A - C).|) * |.(B - C).|)) + ( |.(B - C).| ^2 ))

      .= (( |.(A - C).| + |.(B - C).|) ^2 ) by SQUARE_1: 4;

      then

       A3: |.(B - A).| = ( |.(A - C).| + |.(B - C).|) or |.(B - A).| = ( - ( |.(A - C).| + |.(B - C).|)) by SQUARE_1: 40;

       |.(B - A).| >= 0 & |.(A - C).| >= 0 & |.(B - C).| >= 0 & not |.(B - A).| = 0 & not |.(A - C).| = 0 & not |.(B - C).| = 0 by A1, EUCLID_6: 42;

      then |.(A - B).| = ( |.(A - C).| + |.(B - C).|) by A3, EUCLID_6: 43;

      hence thesis by EUCLID_6: 43;

    end;

    theorem :: EUCLID10:58

    

     Thm38: for A,B be Point of ( TOP-REAL 2), a,b be Real, r be positive Real st (A,B, |[a, b]|) are_mutually_distinct & A in ( circle (a,b,r)) & B in ( circle (a,b,r)) & |[a, b]| in ( LSeg (A,B)) holds |.(A - B).| = (2 * r)

    proof

      let A,B be Point of ( TOP-REAL 2), a,b be Real, r be positive Real such that

       A1: (A,B, |[a, b]|) are_mutually_distinct and

       A2: A in ( circle (a,b,r)) & B in ( circle (a,b,r)) and

       A3: |[a, b]| in ( LSeg (A,B));

      

       A4: ( circle (a,b,r)) = { p where p be Point of ( TOP-REAL 2) : |.(p - |[a, b]|).| = r } by JGRAPH_6:def 5;

      consider JA be Point of ( TOP-REAL 2) such that

       A5: A = JA and

       A6: |.(JA - |[a, b]|).| = r by A2, A4;

      consider JB be Point of ( TOP-REAL 2) such that

       A7: B = JB and

       A8: |.(JB - |[a, b]|).| = r by A2, A4;

       |.(A - B).| = ( |.(A - |[a, b]|).| + |.( |[a, b]| - B).|) by A1, A3, Thm37

      .= (r + r) by A5, A6, A7, A8, EUCLID_6: 43;

      hence thesis;

    end;

    theorem :: EUCLID10:59

    for a,b be Real, r be positive Real, C be Subset of ( Euclid 2) st C = ( circle (a,b,r)) holds ( diameter C) = (2 * r)

    proof

      let a,b be Real, r be positive Real, C be Subset of ( Euclid 2) such that

       A1: C = ( circle (a,b,r));

      

       A2: ( circle (a,b,r)) = { p where p be Point of ( TOP-REAL 2) : |.(p - |[a, b]|).| = r } by JGRAPH_6:def 5;

      

       A3: for x,y be Point of ( Euclid 2) st x in C & y in C holds ( dist (x,y)) <= (2 * r)

      proof

        let x,y be Point of ( Euclid 2) such that

         A4: x in C and

         A5: y in C;

        consider JA be Point of ( TOP-REAL 2) such that

         A6: x = JA and

         A7: |.(JA - |[a, b]|).| = r by A1, A4, A2;

        consider JB be Point of ( TOP-REAL 2) such that

         A8: y = JB and

         A9: |.(JB - |[a, b]|).| = r by A1, A5, A2;

        reconsider KA = JA, KB = JB as Element of ( REAL 2) by EUCLID: 22;

        reconsider O = |[a, b]| as Element of ( REAL 2) by EUCLID: 22;

        reconsider O2 = |[a, b]| as Point of ( Euclid 2) by EUCLID: 67;

        

         A10: ( dist (x,y)) <= (( dist (x,O2)) + ( dist (y,O2))) by METRIC_1: 4;

        ( dist (y,O2)) = |.(KB - O).| by A8, SPPOL_1: 5;

        then ( dist (x,y)) <= ( |.(KA - O).| + |.(KB - O).|) by A10, A6, SPPOL_1: 5;

        hence thesis by A7, A9;

      end;

      

       A12: C is bounded by A1, JORDAN2C: 11;

      for s be Real st (for x,y be Point of ( Euclid 2) st x in C & y in C holds ( dist (x,y)) <= s) holds (2 * r) <= s

      proof

        let s be Real;

        assume

         A13: for x,y be Point of ( Euclid 2) st x in C & y in C holds ( dist (x,y)) <= s;

        assume

         A14: s < (2 * r);

        set A1 = |[(a + r), b]|;

        set B1 = |[(a - r), b]|;

        

         A15: (A1 - |[a, b]|) = |[((a + r) - a), (b - b)]| by EUCLID: 62

        .= |[r, 0 ]|;

        

         A16: (B1 - |[a, b]|) = |[((a - r) - a), (b - b)]| by EUCLID: 62

        .= |[( - r), 0 ]|;

        

         A17: ((r ^2 ) + ( 0 ^2 )) = ((r ^2 ) + ( 0 * 0 )) by SQUARE_1:def 1

        .= (r ^2 );

        ( Re (r + ( 0 * <i> ))) = r & ( Im (r + ( 0 * <i> ))) = 0 by COMPLEX1: 12;

        

        then |.( cpx2euc (r + ( 0 * <i> ))).| = ( sqrt (r ^2 )) by A17, EUCLID_3: 24

        .= r by SQUARE_1: 22;

        then

         A18: |.(A1 - |[a, b]|).| = r by A15, EUCLID_3: 5;

        then

         A19: A1 in ( circle (a,b,r)) by A2;

        

         A20: A1 in C by A18, A1, A2;

        

         A21: ((( - r) ^2 ) + ( 0 ^2 )) = ((( - r) ^2 ) + ( 0 * 0 )) by SQUARE_1:def 1

        .= (r ^2 ) by SQUARE_1: 3;

        ( Re (( - r) + ( 0 * <i> ))) = ( - r) & ( Im (( - r) + ( 0 * <i> ))) = 0 by COMPLEX1: 12;

        

        then |.( cpx2euc (( - r) + ( 0 * <i> ))).| = ( sqrt (r ^2 )) by A21, EUCLID_3: 24

        .= r by SQUARE_1: 22;

        then

         A22: |. |[( - r), 0 ]|.| = r by EUCLID_3: 5;

        then

         A23: B1 in ( circle (a,b,r)) by A2, A16;

        

         A24: B1 in C by A1, A2, A22, A16;

        

         A25: |[a, b]| in ( LSeg (A1,B1))

        proof

          ( |[(a + r), b]| + |[(a - r), b]|) = |[((a + r) + (a - r)), (b + b)]| by EUCLID: 56;

          

          then ((1 / 2) * (A1 + B1)) = |[((1 / 2) * (2 * a)), ((1 / 2) * (2 * b))]| by EUCLID: 58

          .= |[a, b]|;

          hence thesis by RLTOPSP1: 69;

        end;

        

         A26: A1 <> B1

        proof

          assume A1 = B1;

          then (a + r) = (a - r) & b = b by SPPOL_2: 1;

          then r = 0 ;

          hence contradiction;

        end;

        

         A27: A1 <> |[a, b]|

        proof

          assume A1 = |[a, b]|;

          then (a + r) = a & b = b by SPPOL_2: 1;

          then r = 0 ;

          hence contradiction;

        end;

        (A1,B1, |[a, b]|) are_mutually_distinct

        proof

          B1 <> |[a, b]|

          proof

            assume B1 = |[a, b]|;

            then (a - r) = a & b = b by SPPOL_2: 1;

            then ( - r) = 0 ;

            hence contradiction;

          end;

          hence thesis by A26, A27;

        end;

        then

         A28: |.(A1 - B1).| = (2 * r) by A19, A23, A25, Thm38;

        reconsider a1 = A1, b1 = B1 as Point of ( Euclid 2) by EUCLID: 67;

        reconsider A2 = A1, B2 = B1 as Element of ( REAL 2) by EUCLID: 22;

        ( Euclid 2) = MetrStruct (# ( REAL 2), ( Pitag_dist 2) #) by EUCLID:def 7;

        

        then ( dist (a1,b1)) = (( Pitag_dist 2) . (A1,B1)) by METRIC_1:def 1

        .= |.(A2 - B2).| by EUCLID:def 6

        .= (2 * r) by A28;

        hence contradiction by A14, A20, A24, A13;

      end;

      hence thesis by A3, A12, A1, TBSP_1:def 8;

    end;