group_10.miz



    begin

    notation

      let S be non empty 1-sorted;

      let E be set;

      let A be Action of the carrier of S, E;

      let s be Element of S;

      synonym A ^ s for A . s;

    end

    definition

      let S be non empty 1-sorted;

      let E be set;

      let A be Action of the carrier of S, E;

      let s be Element of S;

      :: original: ^

      redefine

      func A ^ s -> Function of E, E ;

      correctness

      proof

        (A . s) in ( Funcs (E,E));

        hence thesis by FUNCT_2: 66;

      end;

    end

    definition

      let S be unital non empty multMagma;

      let E be set;

      let A be Action of the carrier of S, E;

      :: GROUP_10:def1

      attr A is being_left_operation means

      : Def1: (A ^ ( 1_ S)) = ( id E) & for s1,s2 be Element of S holds (A ^ (s1 * s2)) = ((A ^ s1) * (A ^ s2));

    end

    registration

      let S be unital non empty multMagma;

      let E be set;

      cluster being_left_operation for Action of the carrier of S, E;

      correctness

      proof

        reconsider IT = [:the carrier of S, {( id E)}:] as Action of the carrier of S, E by GROUP_9: 62;

        take IT;

         A1:

        now

          let s be Element of S;

          IT c= [:the carrier of S, {( id E)}:];

          then

          reconsider IT9 = IT as Relation of the carrier of S, {( id E)};

          now

            let x be object;

            assume

             A2: x in the carrier of S;

            reconsider y = ( id E) as object;

            take y;

            y in {( id E)} by TARSKI:def 1;

            hence [x, y] in [:the carrier of S, {( id E)}:] by A2, ZFMISC_1:def 2;

          end;

          then ( dom IT9) = the carrier of S by RELSET_1: 9;

          then

           A3: (IT . s) in ( rng IT) by FUNCT_1: 3;

          ( rng IT9) c= {( id E)};

          hence (IT . s) = ( id E) by A3, TARSKI:def 1;

        end;

        hence (IT ^ ( 1_ S)) = ( id E);

        let s1,s2 be Element of S;

        (IT ^ s1) = ( id E) & (IT ^ s2) = ( id E) by A1;

        then ((IT ^ s1) * (IT ^ s2)) = ( id E) by PARTFUN1: 6;

        hence thesis by A1;

      end;

    end

    definition

      let S be unital non empty multMagma;

      let E be set;

      mode LeftOperation of S,E is being_left_operation Action of the carrier of S, E;

    end

    scheme :: GROUP_10:sch1

    ExLeftOperation { E() -> set , S() -> Group-like non empty multMagma , f( Element of S()) -> Function of E(), E() } :

ex T be LeftOperation of S(), E() st for s be Element of S() holds (T . s) = f(s)

      provided

       A1: f(1_) = ( id E())

       and

       A2: for s1,s2 be Element of S() holds f(*) = (f(s1) * f(s2));

      set T = the set of all [s, f(s)] where s be Element of S();

       A3:

      now

        let x be object;

        assume x in T;

        then

        consider s be Element of S() such that

         A4: x = [s, f(s)];

        f(s) in ( Funcs (E(),E())) by FUNCT_2: 9;

        hence x in [:the carrier of S(), ( Funcs (E(),E())):] by A4, ZFMISC_1:def 2;

      end;

      now

        let x,y1,y2 be object;

        assume [x, y1] in T;

        then

        consider s1 be Element of S() such that

         A5: [x, y1] = [s1, f(s1)];

        

         A6: x = s1 by A5, XTUPLE_0: 1;

        assume [x, y2] in T;

        then

        consider s2 be Element of S() such that

         A7: [x, y2] = [s2, f(s2)];

        x = s2 by A7, XTUPLE_0: 1;

        hence y1 = y2 by A5, A7, A6, XTUPLE_0: 1;

      end;

      then

      reconsider T as Function-like Relation of the carrier of S(), ( Funcs (E(),E())) by A3, FUNCT_1:def 1, TARSKI:def 3;

      now

        let x be object;

        hereby

          assume x in the carrier of S();

          then

          reconsider s = x as Element of S();

          reconsider y = f(s) as object;

          take y;

          thus [x, y] in T;

        end;

        given y be object such that

         A8: [x, y] in T;

        consider s be Element of S() such that

         A9: [x, y] = [s, f(s)] by A8;

        x = s by A9, XTUPLE_0: 1;

        hence x in the carrier of S();

      end;

      then the carrier of S() = ( dom T) by XTUPLE_0:def 12;

      then

      reconsider T as Action of the carrier of S(), E() by FUNCT_2:def 1;

       A10:

      now

        let s1,s2 be Element of S();

        s1 in the carrier of S();

        then s1 in ( dom T) by FUNCT_2:def 1;

        then [s1, (T . s1)] in T by FUNCT_1: 1;

        then

        consider s19 be Element of S() such that

         A11: [s1, (T . s1)] = [s19, f(s19)];

        

         A12: s1 = s19 & f(s19) = (T . s1) by A11, XTUPLE_0: 1;

        s2 in the carrier of S();

        then s2 in ( dom T) by FUNCT_2:def 1;

        then [s2, (T . s2)] in T by FUNCT_1: 1;

        then

        consider s29 be Element of S() such that

         A13: [s2, (T . s2)] = [s29, f(s29)];

        (s1 * s2) in the carrier of S();

        then (s1 * s2) in ( dom T) by FUNCT_2:def 1;

        then [(s1 * s2), (T . (s1 * s2))] in T by FUNCT_1: 1;

        then

        consider s129 be Element of S() such that

         A14: [(s1 * s2), (T . (s1 * s2))] = [s129, f(s129)];

        

         A15: s2 = s29 & f(s29) = (T . s2) by A13, XTUPLE_0: 1;

        

        thus (T ^ (s1 * s2)) = f(s129) by A14, XTUPLE_0: 1

        .= f(*) by A14, XTUPLE_0: 1

        .= ((T ^ s1) * (T ^ s2)) by A2, A12, A15;

      end;

      

       A16: ( dom T) = the carrier of S() by FUNCT_2:def 1;

      then [( 1_ S()), (T . ( 1_ S()))] in T by FUNCT_1: 1;

      then

      consider s9 be Element of S() such that

       A17: [( 1_ S()), (T . ( 1_ S()))] = [s9, f(s9)];

      ( 1_ S()) = s9 & (T . ( 1_ S())) = f(s9) by A17, XTUPLE_0: 1;

      then

      reconsider T as LeftOperation of S(), E() by A1, A10, Def1;

      take T;

      thus for s be Element of S() holds (T . s) = f(s)

      proof

        let s be Element of S();

         [s, (T . s)] in T by A16, FUNCT_1: 1;

        then

        consider s9 be Element of S() such that

         A18: [s, (T . s)] = [s9, f(s9)];

        s = s9 by A18, XTUPLE_0: 1;

        hence thesis by A18, XTUPLE_0: 1;

      end;

    end;

    registration

      let E be non empty set, S be Group-like non empty multMagma, s be Element of S, LO be LeftOperation of S, E;

      cluster (LO ^ s) -> one-to-one;

      coherence

      proof

        consider e be Element of S such that

         A1: for h be Element of S holds (h * e) = h & (e * h) = h & ex g be Element of S st (h * g) = e & (g * h) = e by GROUP_1:def 2;

        consider s9 be Element of S such that (s * s9) = e and

         A2: (s9 * s) = e by A1;

        (LO ^ s9) in ( Funcs (E,E)) by FUNCT_2: 9;

        then

         A3: ex f be Function st (LO ^ s9) = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

        (LO ^ s) in ( Funcs (E,E)) by FUNCT_2: 9;

        then

         A4: ex f be Function st (LO ^ s) = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

        ( id E) = (LO ^ ( 1_ S)) by Def1

        .= (LO ^ (s9 * s)) by A1, A2, GROUP_1: 4

        .= ((LO ^ s9) * (LO ^ s)) by Def1;

        hence thesis by A4, A3, FUNCT_1: 25;

      end;

    end

    notation

      let S be non empty multMagma;

      let s be Element of S;

      synonym the_left_translation_of s for s * ;

    end

    definition

      let S be Group-like associative non empty multMagma;

      :: GROUP_10:def2

      func the_left_operation_of S -> LeftOperation of S, the carrier of S means

      : Def2: for s be Element of S holds (it . s) = ( the_left_translation_of s);

      existence

      proof

        deffunc f( Element of S) = ( the_left_translation_of $1);

        set E = the carrier of S;

        

         A1: for s1,s2 be Element of S holds f(*) = ( f(s1) * f(s2))

        proof

          let s1,s2 be Element of S;

          set f12 = ( the_left_translation_of (s1 * s2));

          set f1 = ( the_left_translation_of s1);

          set f2 = ( the_left_translation_of s2);

          f1 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A2: ex f be Function st f1 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

          f2 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A3: ex f be Function st f2 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

          f12 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A4: ex f be Function st f12 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

           A5:

          now

            let x be object;

            hereby

              assume

               A6: x in ( dom f12);

              hence x in ( dom f2) by A3;

              (f2 . x) in ( rng f2) by A3, A6, FUNCT_1: 3;

              hence (f2 . x) in ( dom f1) by A2;

            end;

            assume that

             A7: x in ( dom f2) and (f2 . x) in ( dom f1);

            thus x in ( dom f12) by A4, A7;

          end;

          now

            let x be object;

            assume

             A8: x in ( dom f12);

            then

            reconsider s19 = x as Element of S;

            (f2 . x) in ( rng f2) by A3, A8, FUNCT_1: 3;

            then

            reconsider s199 = (f2 . x) as Element of S;

            

            thus (f12 . x) = ((s1 * s2) * s19) by TOPGRP_1:def 1

            .= (s1 * (s2 * s19)) by GROUP_1:def 3

            .= (s1 * s199) by TOPGRP_1:def 1

            .= (f1 . (f2 . x)) by TOPGRP_1:def 1;

          end;

          hence thesis by A5, FUNCT_1: 10;

        end;

        

         A9: f(1_) = ( id E)

        proof

          set f = ( the_left_translation_of ( 1_ S));

           A10:

          now

            let x be object;

            assume x in E;

            then

            reconsider s1 = x as Element of S;

            (f . s1) = (( 1_ S) * s1) by TOPGRP_1:def 1;

            hence (f . x) = x by GROUP_1:def 4;

          end;

          thus thesis by A10;

        end;

        ex T be LeftOperation of S, E st for s be Element of S holds (T . s) = f(s) from ExLeftOperation( A9, A1);

        hence thesis;

      end;

      uniqueness

      proof

        let T1,T2 be LeftOperation of S, the carrier of S such that

         A11: for s be Element of S holds (T1 . s) = ( the_left_translation_of s) and

         A12: for s be Element of S holds (T2 . s) = ( the_left_translation_of s);

        let x be Element of S;

        

        thus (T1 . x) = ( the_left_translation_of x) by A11

        .= (T2 . x) by A12;

      end;

    end

    definition

      let E be set;

      let n be set;

      :: GROUP_10:def3

      func the_subsets_of_card (n,E) -> Subset-Family of E equals { X where X be Subset of E : ( card X) = n };

      correctness

      proof

        set SF = { X where X be Subset of E : ( card X) = n };

        now

          let x be object;

          assume x in SF;

          then ex X be Subset of E st X = x & ( card X) = n;

          hence x in ( bool E);

        end;

        hence thesis by TARSKI:def 3;

      end;

    end

    registration

      let E be finite set;

      let n be set;

      cluster ( the_subsets_of_card (n,E)) -> finite;

      correctness ;

    end

    theorem :: GROUP_10:1

    

     Th1: for n be Nat, E be non empty set st ( card n) c= ( card E) holds ( the_subsets_of_card (n,E)) is non empty

    proof

      let n be Nat;

      let E be non empty set;

      reconsider n9 = n as Element of NAT by ORDINAL1:def 12;

      assume ( card n) c= ( card E);

      then

      consider f be Function such that

       A1: f is one-to-one and

       A2: ( dom f) = n and

       A3: ( rng f) c= E by CARD_1: 10;

      set X = (f .: n);

      

       A4: ( rng f) = X by A2, RELAT_1: 113;

      then (n,X) are_equipotent by A1, A2;

      then ( card X) = n9 by CARD_1:def 2;

      then X in { X9 where X9 be Subset of E : ( card X9) = n } by A3, A4;

      hence thesis;

    end;

    theorem :: GROUP_10:2

    

     Th2: for E be non empty finite set, k be Element of NAT , x1,x2 be set st x1 <> x2 holds ( card ( Choose (E,k,x1,x2))) = ( card ( the_subsets_of_card (k,E)))

    proof

      let E be non empty finite set;

      let k be Element of NAT ;

      let x1,x2 be set;

      set f = { [fX, X] where fX be Function of E, {x1, x2}, X be Subset of E : ( card (fX " {x1})) = k & (fX " {x1}) = X };

      now

        let x be object;

        assume x in f;

        then

        consider y be Function of E, {x1, x2}, z be Subset of E such that

         A1: x = [y, z] and ( card (y " {x1})) = k and (y " {x1}) = z;

        reconsider y, z as object;

        take y, z;

        thus x = [y, z] by A1;

      end;

      then

      reconsider f as Relation-like set by RELAT_1:def 1;

      now

        let x,y1,y2 be object;

        assume [x, y1] in f;

        then

        consider fX1 be Function of E, {x1, x2}, X1 be Subset of E such that

         A2: [x, y1] = [fX1, X1] and ( card (fX1 " {x1})) = k and

         A3: (fX1 " {x1}) = X1;

        

         A4: x = fX1 by A2, XTUPLE_0: 1;

        assume [x, y2] in f;

        then

        consider fX2 be Function of E, {x1, x2}, X2 be Subset of E such that

         A5: [x, y2] = [fX2, X2] and ( card (fX2 " {x1})) = k and

         A6: (fX2 " {x1}) = X2;

        x = fX2 by A5, XTUPLE_0: 1;

        hence y1 = y2 by A2, A3, A5, A6, A4, XTUPLE_0: 1;

      end;

      then

      reconsider f as Function by FUNCT_1:def 1;

      assume

       A7: x1 <> x2;

      now

        let y1,y2 be object;

        assume that

         A8: y1 in ( dom f) and

         A9: y2 in ( dom f);

        assume

         A10: (f . y1) = (f . y2);

         [y2, (f . y2)] in f by A9, FUNCT_1: 1;

        then

        consider fX2 be Function of E, {x1, x2}, X2 be Subset of E such that

         A11: [y2, (f . y2)] = [fX2, X2] and ( card (fX2 " {x1})) = k and

         A12: (fX2 " {x1}) = X2;

        

         A13: y2 = fX2 by A11, XTUPLE_0: 1;

         [y1, (f . y1)] in f by A8, FUNCT_1: 1;

        then

        consider fX1 be Function of E, {x1, x2}, X1 be Subset of E such that

         A14: [y1, (f . y1)] = [fX1, X1] and ( card (fX1 " {x1})) = k and

         A15: (fX1 " {x1}) = X1;

        ( dom fX1) = E by FUNCT_2:def 1;

        then

         A16: ( dom fX1) = ( dom fX2) by FUNCT_2:def 1;

        (f . y1) = X1 by A14, XTUPLE_0: 1;

        then

         A17: (fX1 " {x1}) = (fX2 " {x1}) by A10, A15, A11, A12, XTUPLE_0: 1;

        

         A18: for z be object st z in ( dom fX1) holds (fX1 . z) = (fX2 . z)

        proof

          given z be object such that

           A19: z in ( dom fX1) and

           A20: (fX1 . z) <> (fX2 . z);

          

           A21: (fX1 . z) in {x1, x2} by A19, FUNCT_2: 5;

          (fX2 . z) in {x1, x2} by A19, FUNCT_2: 5;

          then

           A22: (fX2 . z) = x1 or (fX2 . z) = x2 by TARSKI:def 2;

          per cases by A20, A21, A22, TARSKI:def 2;

            suppose

             A23: (fX1 . z) = x1 & (fX2 . z) = x2;

            then

             A24: (fX1 . z) in {x1} by TARSKI:def 1;

             [z, (fX1 . z)] in fX1 by A19, FUNCT_1: 1;

            then z in (fX2 " {x1}) by A17, A24, RELAT_1:def 14;

            then

            consider z9 be object such that

             A25: [z, z9] in fX2 and

             A26: z9 in {x1} by RELAT_1:def 14;

            z9 = (fX2 . z) by A25, FUNCT_1: 1;

            hence contradiction by A7, A23, A26, TARSKI:def 1;

          end;

            suppose

             A27: (fX1 . z) = x2 & (fX2 . z) = x1;

            then

             A28: (fX2 . z) in {x1} by TARSKI:def 1;

             [z, (fX2 . z)] in fX2 by A16, A19, FUNCT_1: 1;

            then z in (fX1 " {x1}) by A17, A28, RELAT_1:def 14;

            then

            consider z9 be object such that

             A29: [z, z9] in fX1 and

             A30: z9 in {x1} by RELAT_1:def 14;

            z9 = (fX1 . z) by A29, FUNCT_1: 1;

            hence contradiction by A7, A27, A30, TARSKI:def 1;

          end;

        end;

        y1 = fX1 by A14, XTUPLE_0: 1;

        hence y1 = y2 by A13, A16, A18, FUNCT_1: 2;

      end;

      then

       A31: f is one-to-one by FUNCT_1:def 4;

      for y be object holds y in ( the_subsets_of_card (k,E)) iff ex x be object st [x, y] in f

      proof

        let y be object;

        hereby

          assume y in ( the_subsets_of_card (k,E));

          then

          consider X be Subset of E such that

           A32: y = X & ( card X) = k;

          defpred P[ set, set] means ($1 in X & $2 = x1) or ( not $1 in X & $2 = x2);

          

           A33: for z1 be Element of E holds ex z2 be Element of {x1, x2} st P[z1, z2]

          proof

            let z1 be Element of E;

            per cases ;

              suppose

               A34: z1 in X;

              reconsider z2 = x1 as Element of {x1, x2} by TARSKI:def 2;

              take z2;

              thus thesis by A34;

            end;

              suppose

               A35: not z1 in X;

              reconsider z2 = x2 as Element of {x1, x2} by TARSKI:def 2;

              take z2;

              thus thesis by A35;

            end;

          end;

          ex f be Function of E, {x1, x2} st for z be Element of E holds P[z, (f . z)] from FUNCT_2:sch 3( A33);

          then

          consider f9 be Function of E, {x1, x2} such that

           A36: for z be Element of E holds P[z, (f9 . z)];

          reconsider x = f9 as object;

          take x;

          now

            let z be object;

            hereby

              assume

               A37: z in X;

              then

              reconsider z9 = z as Element of E;

              set z99 = (f9 . z9);

              z in E by A37;

              then z in ( dom f9) by FUNCT_2:def 1;

              then

               A38: [z, (f9 . z)] in f9 by FUNCT_1: 1;

              (f9 . z9) = x1 by A36, A37;

              then z99 in {x1} by TARSKI:def 1;

              hence z in (f9 " {x1}) by A38, RELAT_1:def 14;

            end;

            assume z in (f9 " {x1});

            then

            consider z9 be object such that

             A39: [z, z9] in f9 and

             A40: z9 in {x1} by RELAT_1:def 14;

            z in ( dom f9) by A39, XTUPLE_0:def 12;

            then

            reconsider z99 = z as Element of E;

            z9 = x1 by A40, TARSKI:def 1;

            then (f9 . z99) = x1 by A39, FUNCT_1: 1;

            hence z in X by A7, A36;

          end;

          then X = (f9 " {x1}) by TARSKI: 2;

          hence [x, y] in f by A32;

        end;

        given x be object such that

         A41: [x, y] in f;

        consider fX be Function of E, {x1, x2}, X be Subset of E such that

         A42: [x, y] = [fX, X] and

         A43: ( card (fX " {x1})) = k & (fX " {x1}) = X by A41;

        y = X by A42, XTUPLE_0: 1;

        hence thesis by A43;

      end;

      then

       A44: ( rng f) = ( the_subsets_of_card (k,E)) by XTUPLE_0:def 13;

      for x be object holds x in ( Choose (E,k,x1,x2)) iff ex y be object st [x, y] in f

      proof

        let x be object;

        thus x in ( Choose (E,k,x1,x2)) implies ex y be object st [x, y] in f

        proof

          assume x in ( Choose (E,k,x1,x2));

          then

          consider fX be Function of E, {x1, x2} such that

           A45: fX = x & ( card (fX " {x1})) = k by CARD_FIN:def 1;

          set y = (fX " {x1});

          take y;

          thus thesis by A45;

        end;

        thus (ex y be object st [x, y] in f) implies x in ( Choose (E,k,x1,x2))

        proof

          given y be object such that

           A46: [x, y] in f;

          consider fX be Function of E, {x1, x2}, X be Subset of E such that

           A47: [x, y] = [fX, X] and

           A48: ( card (fX " {x1})) = k and (fX " {x1}) = X by A46;

          x = fX by A47, XTUPLE_0: 1;

          hence thesis by A48, CARD_FIN:def 1;

        end;

      end;

      then ( dom f) = ( Choose (E,k,x1,x2)) by XTUPLE_0:def 12;

      then (( Choose (E,k,x1,x2)),( the_subsets_of_card (k,E))) are_equipotent by A31, A44;

      hence thesis by CARD_1: 5;

    end;

    definition

      let E be non empty set;

      let n be Nat;

      let S be Group-like non empty multMagma;

      let s be Element of S;

      let LO be LeftOperation of S, E;

      assume

       A1: ( card n) c= ( card E);

      :: GROUP_10:def4

      func the_extension_of_left_translation_of (n,s,LO) -> Function of ( the_subsets_of_card (n,E)), ( the_subsets_of_card (n,E)) means

      : Def4: for X be Element of ( the_subsets_of_card (n,E)) holds (it . X) = ((LO ^ s) .: X);

      existence

      proof

        set EE = ( the_subsets_of_card (n,E));

        set f = the set of all [X, ((LO ^ s) .: X)] where X be Element of EE;

         A2:

        now

          let x,y1,y2 be object;

          assume [x, y1] in f;

          then

          consider X1 be Element of EE such that

           A3: [x, y1] = [X1, ((LO ^ s) .: X1)];

          

           A4: x = X1 by A3, XTUPLE_0: 1;

          assume [x, y2] in f;

          then

          consider X2 be Element of EE such that

           A5: [x, y2] = [X2, ((LO ^ s) .: X2)];

          x = X2 by A5, XTUPLE_0: 1;

          hence y1 = y2 by A3, A5, A4, XTUPLE_0: 1;

        end;

        now

          let x be object;

          assume x in f;

          then

          consider X be Element of EE such that

           A6: x = [X, ((LO ^ s) .: X)];

          reconsider y = X, z = ((LO ^ s) .: X) as object;

          take y, z;

          thus x = [y, z] by A6;

        end;

        then

        reconsider f as Function by A2, FUNCT_1:def 1, RELAT_1:def 1;

        now

          let x be object;

          hereby

            assume x in EE;

            then

            reconsider X = x as Element of EE;

            reconsider y = ((LO ^ s) .: X) as object;

            take y;

            thus [x, y] in f;

          end;

          given y be object such that

           A7: [x, y] in f;

          consider X be Element of EE such that

           A8: [x, y] = [X, ((LO ^ s) .: X)] by A7;

          

           A9: x = X by A8, XTUPLE_0: 1;

           not EE is empty by A1, Th1;

          hence x in EE by A9;

        end;

        then

         A10: ( dom f) = EE by XTUPLE_0:def 12;

        now

          let Y be object;

          reconsider YY = Y as set by TARSKI: 1;

          assume Y in ( rng f);

          then

          consider X1 be object such that

           A11: [X1, Y] in f by XTUPLE_0:def 13;

          consider X2 be Element of EE such that

           A12: [X1, Y] = [X2, ((LO ^ s) .: X2)] by A11;

          set fe = ((LO ^ s) | X2);

          

           A13: fe is one-to-one by FUNCT_1: 52;

           not EE is empty by A1, Th1;

          then

           A14: X2 in EE;

          then

           A15: ex X be Subset of E st X = X2 & ( card X) = n;

          (LO ^ s) in ( Funcs (E,E)) by FUNCT_2: 9;

          then ex f be Function st (LO ^ s) = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

          then

           A16: ( dom fe) = X2 by A14, RELAT_1: 62;

          

           A17: Y = ((LO ^ s) .: X2) by A12, XTUPLE_0: 1;

          then ( rng fe) = Y by RELAT_1: 115;

          then (X2,YY) are_equipotent by A13, A16;

          then ( card YY) = n by A15, CARD_1: 5;

          hence Y in EE by A17;

        end;

        then ( rng f) c= EE;

        then

        reconsider f as Function of EE, EE by A10, FUNCT_2: 2;

        take f;

        thus for X be Element of EE holds (f . X) = ((LO ^ s) .: X)

        proof

          let X be Element of EE;

          EE is non empty by A1, Th1;

          then [X, (f . X)] in f by A10, FUNCT_1: 1;

          then

          consider X9 be Element of EE such that

           A18: [X, (f . X)] = [X9, ((LO ^ s) .: X9)];

          X = X9 by A18, XTUPLE_0: 1;

          hence thesis by A18, XTUPLE_0: 1;

        end;

      end;

      uniqueness

      proof

        set EE = ( the_subsets_of_card (n,E));

        let IT1,IT2 be Function of EE, EE such that

         A19: for X be Element of EE holds (IT1 . X) = ((LO ^ s) .: X) and

         A20: for X be Element of EE holds (IT2 . X) = ((LO ^ s) .: X);

        let x be Element of EE;

        

        thus (IT1 . x) = ((LO ^ s) .: x) by A19

        .= (IT2 . x) by A20;

      end;

    end

    definition

      let E be non empty set;

      let n be Nat;

      let S be Group-like non empty multMagma;

      let LO be LeftOperation of S, E;

      assume

       A1: ( card n) c= ( card E);

      :: GROUP_10:def5

      func the_extension_of_left_operation_of (n,LO) -> LeftOperation of S, ( the_subsets_of_card (n,E)) means

      : Def5: for s be Element of S holds (it . s) = ( the_extension_of_left_translation_of (n,s,LO));

      existence

      proof

        deffunc f( Element of S) = ( the_extension_of_left_translation_of (n,$1,LO));

        set EE = ( the_subsets_of_card (n,E));

        

         A2: for s1,s2 be Element of S holds f(*) = ( f(s1) * f(s2))

        proof

          let s1,s2 be Element of S;

          set f12 = ( the_extension_of_left_translation_of (n,(s1 * s2),LO));

          set f1 = ( the_extension_of_left_translation_of (n,s1,LO));

          set f2 = ( the_extension_of_left_translation_of (n,s2,LO));

          f1 in ( Funcs (EE,EE)) by FUNCT_2: 9;

          then

           A3: ex f be Function st f1 = f & ( dom f) = EE & ( rng f) c= EE by FUNCT_2:def 2;

          f2 in ( Funcs (EE,EE)) by FUNCT_2: 9;

          then

           A4: ex f be Function st f2 = f & ( dom f) = EE & ( rng f) c= EE by FUNCT_2:def 2;

          f12 in ( Funcs (EE,EE)) by FUNCT_2: 9;

          then

           A5: ex f be Function st f12 = f & ( dom f) = EE & ( rng f) c= EE by FUNCT_2:def 2;

           A6:

          now

            let x be object;

            hereby

              assume

               A7: x in ( dom f12);

              hence x in ( dom f2) by A4;

              (f2 . x) in ( rng f2) by A4, A7, FUNCT_1: 3;

              hence (f2 . x) in ( dom f1) by A3;

            end;

            assume that

             A8: x in ( dom f2) and (f2 . x) in ( dom f1);

            thus x in ( dom f12) by A5, A8;

          end;

          now

            let x be object;

            assume

             A9: x in ( dom f12);

            then

            reconsider X1 = x as Element of EE;

            (f2 . x) in ( rng f2) by A4, A9, FUNCT_1: 3;

            then

            reconsider X2 = (f2 . x) as Element of EE;

            

            thus (f12 . x) = ((LO ^ (s1 * s2)) .: X1) by A1, Def4

            .= (((LO ^ s1) * (LO ^ s2)) .: X1) by Def1

            .= ((LO ^ s1) .: ((LO ^ s2) .: X1)) by RELAT_1: 126

            .= ((LO ^ s1) .: X2) by A1, Def4

            .= (f1 . (f2 . x)) by A1, Def4;

          end;

          hence thesis by A6, FUNCT_1: 10;

        end;

        

         A10: f(1_) = ( id EE)

        proof

          set f = ( the_extension_of_left_translation_of (n,( 1_ S),LO));

           A11:

          now

            let x be object;

            assume x in EE;

            then

            reconsider X = x as Element of EE;

            EE is non empty by A1, Th1;

            then X in EE;

            then

            consider X9 be Subset of E such that

             A12: X9 = X and ( card X9) = n;

            (f . X) = ((LO ^ ( 1_ S)) .: X) by A1, Def4;

            

            then (f . x) = (( id E) .: X9) by A12, Def1

            .= X9 by FUNCT_1: 92;

            hence (f . x) = x by A12;

          end;

          f in ( Funcs (EE,EE)) by FUNCT_2: 9;

          then ex f9 be Function st f = f9 & ( dom f9) = EE & ( rng f9) c= EE by FUNCT_2:def 2;

          hence thesis by A11, FUNCT_1: 17;

        end;

        ex T be LeftOperation of S, EE st for s be Element of S holds (T . s) = f(s) from ExLeftOperation( A10, A2);

        hence thesis;

      end;

      uniqueness

      proof

        let T1,T2 be LeftOperation of S, ( the_subsets_of_card (n,E)) such that

         A13: for s be Element of S holds (T1 . s) = ( the_extension_of_left_translation_of (n,s,LO)) and

         A14: for s be Element of S holds (T2 . s) = ( the_extension_of_left_translation_of (n,s,LO));

        let x be Element of S;

        

        thus (T1 . x) = ( the_extension_of_left_translation_of (n,x,LO)) by A13

        .= (T2 . x) by A14;

      end;

    end

    definition

      let S be non empty multMagma;

      let s be Element of S;

      let Z be non empty set;

      :: GROUP_10:def6

      func the_left_translation_of (s,Z) -> Function of [:the carrier of S, Z:], [:the carrier of S, Z:] means

      : Def6: for z1 be Element of [:the carrier of S, Z:] holds ex z2 be Element of [:the carrier of S, Z:], s1,s2 be Element of S, z be Element of Z st z2 = (it . z1) & s2 = (s * s1) & z1 = [s1, z] & z2 = [s2, z];

      existence

      proof

        set E = [:the carrier of S, Z:];

        set f = { [z1, z2] where z1,z2 be Element of [:the carrier of S, Z:] : ex s1,s2 be Element of S, z be Element of Z st s2 = (s * s1) & z1 = [s1, z] & z2 = [s2, z] };

         A1:

        now

          let x,y1,y2 be object;

          assume [x, y1] in f;

          then

          consider z19,z29 be Element of E such that

           A2: [x, y1] = [z19, z29] and

           A3: ex s1,s2 be Element of S, z be Element of Z st s2 = (s * s1) & z19 = [s1, z] & z29 = [s2, z];

          consider s19,s29 be Element of S, z9 be Element of Z such that

           A4: s29 = (s * s19) and

           A5: z19 = [s19, z9] and

           A6: z29 = [s29, z9] by A3;

          assume [x, y2] in f;

          then

          consider z199,z299 be Element of E such that

           A7: [x, y2] = [z199, z299] and

           A8: ex s1,s2 be Element of S, z be Element of Z st s2 = (s * s1) & z199 = [s1, z] & z299 = [s2, z];

          consider s199,s299 be Element of S, z99 be Element of Z such that

           A9: s299 = (s * s199) and

           A10: z199 = [s199, z99] and

           A11: z299 = [s299, z99] by A8;

          x = z199 by A7, XTUPLE_0: 1;

          then [s19, z9] = [s199, z99] by A2, A5, A10, XTUPLE_0: 1;

          then s19 = s199 & z9 = z99 by XTUPLE_0: 1;

          hence y1 = y2 by A2, A4, A5, A6, A7, A9, A10, A11, XTUPLE_0: 1;

        end;

        now

          let x be object;

          assume x in f;

          then

          consider z1,z2 be Element of E such that

           A12: x = [z1, z2] and ex s1,s2 be Element of S, z be Element of Z st s2 = (s * s1) & z1 = [s1, z] & z2 = [s2, z];

          reconsider y = z1, z = z2 as object;

          take y, z;

          thus x = [y, z] by A12;

        end;

        then

        reconsider f as Function by A1, FUNCT_1:def 1, RELAT_1:def 1;

        now

          let x be object;

          hereby

            assume x in E;

            then

            consider s1,z be object such that

             A13: s1 in the carrier of S and

             A14: z in Z and

             A15: x = [s1, z] by ZFMISC_1:def 2;

            reconsider z as Element of Z by A14;

            reconsider s1 as Element of S by A13;

            set s2 = (s * s1);

            reconsider y = [s2, z] as object;

            take y;

            x = [s1, z] by A15;

            hence [x, y] in f;

          end;

          given y be object such that

           A16: [x, y] in f;

          consider z1,z2 be Element of E such that

           A17: [x, y] = [z1, z2] and ex s1,s2 be Element of S, z be Element of Z st s2 = (s * s1) & z1 = [s1, z] & z2 = [s2, z] by A16;

          x = z1 by A17, XTUPLE_0: 1;

          hence x in E;

        end;

        then

         A18: ( dom f) = E by XTUPLE_0:def 12;

        now

          let y be object;

          assume y in ( rng f);

          then

          consider x be object such that

           A19: [x, y] in f by XTUPLE_0:def 13;

          consider z1,z2 be Element of E such that

           A20: [x, y] = [z1, z2] and ex s1,s2 be Element of S, z be Element of Z st s2 = (s * s1) & z1 = [s1, z] & z2 = [s2, z] by A19;

          y = z2 by A20, XTUPLE_0: 1;

          hence y in E;

        end;

        then ( rng f) c= E;

        then

        reconsider f as Function of E, E by A18, FUNCT_2: 2;

        take f;

        thus for z1 be Element of [:the carrier of S, Z:] holds ex z2 be Element of [:the carrier of S, Z:], s1,s2 be Element of S, z be Element of Z st z2 = (f . z1) & s2 = (s * s1) & z1 = [s1, z] & z2 = [s2, z]

        proof

          let z1 be Element of [:the carrier of S, Z:];

          set z2 = (f . z1);

           [z1, z2] in f by A18, FUNCT_1: 1;

          then

          consider z19,z29 be Element of [:the carrier of S, Z:] such that

           A21: [z1, z2] = [z19, z29] and

           A22: ex s1,s2 be Element of S, z be Element of Z st s2 = (s * s1) & z19 = [s1, z] & z29 = [s2, z];

          consider s1,s2 be Element of S, z be Element of Z such that

           A23: s2 = (s * s1) & z19 = [s1, z] & z29 = [s2, z] by A22;

          take z2, s1, s2, z;

          thus z2 = (f . z1);

          thus thesis by A21, A23, XTUPLE_0: 1;

        end;

      end;

      uniqueness

      proof

        let IT1,IT2 be Function of [:the carrier of S, Z:], [:the carrier of S, Z:] such that

         A24: for z1 be Element of [:the carrier of S, Z:] holds ex z2 be Element of [:the carrier of S, Z:], s1,s2 be Element of S, z be Element of Z st z2 = (IT1 . z1) & s2 = (s * s1) & z1 = [s1, z] & z2 = [s2, z] and

         A25: for z1 be Element of [:the carrier of S, Z:] holds ex z2 be Element of [:the carrier of S, Z:], s1,s2 be Element of S, z be Element of Z st z2 = (IT2 . z1) & s2 = (s * s1) & z1 = [s1, z] & z2 = [s2, z];

        let x be Element of [:the carrier of S, Z:];

        consider z12 be Element of [:the carrier of S, Z:], s11,s12 be Element of S, z9 be Element of Z such that

         A26: z12 = (IT1 . x) & s12 = (s * s11) and

         A27: x = [s11, z9] and

         A28: z12 = [s12, z9] by A24;

        consider z22 be Element of [:the carrier of S, Z:], s21,s22 be Element of S, z99 be Element of Z such that

         A29: z22 = (IT2 . x) & s22 = (s * s21) and

         A30: x = [s21, z99] and

         A31: z22 = [s22, z99] by A25;

        s11 = s21 by A27, A30, XTUPLE_0: 1;

        hence (IT1 . x) = (IT2 . x) by A26, A27, A28, A29, A30, A31, XTUPLE_0: 1;

      end;

    end

    definition

      let S be Group-like associative non empty multMagma;

      let Z be non empty set;

      :: GROUP_10:def7

      func the_left_operation_of (S,Z) -> LeftOperation of S, [:the carrier of S, Z:] means

      : Def7: for s be Element of S holds (it . s) = ( the_left_translation_of (s,Z));

      existence

      proof

        deffunc f( Element of S) = ( the_left_translation_of ($1,Z));

        set E = [:the carrier of S, Z:];

        

         A1: for s1,s2 be Element of S holds f(*) = ( f(s1) * f(s2))

        proof

          let s1,s2 be Element of S;

          set f12 = ( the_left_translation_of ((s1 * s2),Z));

          set f1 = ( the_left_translation_of (s1,Z));

          set f2 = ( the_left_translation_of (s2,Z));

          f1 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A2: ex f be Function st f1 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

          f2 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A3: ex f be Function st f2 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

           A4:

          now

            let x be object;

            assume

             A5: x in ( dom f12);

            then

            reconsider z19 = x as Element of E;

            reconsider z1999 = x as Element of E by A5;

            consider z29 be Element of E, s19,s29 be Element of S, z9 be Element of Z such that

             A6: z29 = (f2 . z19) and

             A7: s29 = (s2 * s19) and

             A8: z19 = [s19, z9] and

             A9: z29 = [s29, z9] by Def6;

            (f2 . x) in ( rng f2) by A3, A5, FUNCT_1: 3;

            then

            reconsider z199 = (f2 . x) as Element of E;

            consider z299 be Element of E, s199,s299 be Element of S, z99 be Element of Z such that

             A10: z299 = (f1 . z199) and

             A11: s299 = (s1 * s199) and

             A12: z199 = [s199, z99] and

             A13: z299 = [s299, z99] by Def6;

            

             A14: z99 = z9 by A6, A9, A12, XTUPLE_0: 1;

            consider z2999 be Element of E, s1999,s2999 be Element of S, z999 be Element of Z such that

             A15: z2999 = (f12 . z1999) and

             A16: s2999 = ((s1 * s2) * s1999) and

             A17: z1999 = [s1999, z999] and

             A18: z2999 = [s2999, z999] by Def6;

            s2999 = ((s1 * s2) * s19) by A8, A16, A17, XTUPLE_0: 1

            .= (s1 * (s2 * s19)) by GROUP_1:def 3

            .= s299 by A6, A7, A9, A11, A12, XTUPLE_0: 1;

            hence (f12 . x) = (f1 . (f2 . x)) by A8, A10, A13, A15, A17, A18, A14, XTUPLE_0: 1;

          end;

          f12 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A19: ex f be Function st f12 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

          now

            let x be object;

            hereby

              assume

               A20: x in ( dom f12);

              hence x in ( dom f2) by A3;

              (f2 . x) in ( rng f2) by A3, A20, FUNCT_1: 3;

              hence (f2 . x) in ( dom f1) by A2;

            end;

            assume that

             A21: x in ( dom f2) and (f2 . x) in ( dom f1);

            thus x in ( dom f12) by A19, A21;

          end;

          hence thesis by A4, FUNCT_1: 10;

        end;

        

         A22: f(1_) = ( id E)

        proof

          set f = ( the_left_translation_of (( 1_ S),Z));

           A23:

          now

            let x be object;

            assume x in E;

            then

            reconsider z1 = x as Element of E;

            ex z2 be Element of E, s1,s2 be Element of S, z be Element of Z st z2 = (f . z1) & s2 = (( 1_ S) * s1) & z1 = [s1, z] & z2 = [s2, z] by Def6;

            hence (f . x) = x by GROUP_1:def 4;

          end;

          thus thesis by A23;

        end;

        ex T be LeftOperation of S, E st for s be Element of S holds (T . s) = f(s) from ExLeftOperation( A22, A1);

        hence thesis;

      end;

      uniqueness

      proof

        let T1,T2 be LeftOperation of S, [:the carrier of S, Z:] such that

         A24: for s be Element of S holds (T1 . s) = ( the_left_translation_of (s,Z)) and

         A25: for s be Element of S holds (T2 . s) = ( the_left_translation_of (s,Z));

        let x be Element of S;

        

        thus (T1 . x) = ( the_left_translation_of (x,Z)) by A24

        .= (T2 . x) by A25;

      end;

    end

    definition

      let G be Group;

      let H,P be Subgroup of G;

      let h be Element of H;

      :: GROUP_10:def8

      func the_left_translation_of (h,P) -> Function of ( Left_Cosets P), ( Left_Cosets P) means

      : Def8: for P1 be Element of ( Left_Cosets P) holds ex P2 be Element of ( Left_Cosets P), A1,A2 be Subset of G, g be Element of G st P2 = (it . P1) & A2 = (g * A1) & A1 = P1 & A2 = P2 & g = h;

      existence

      proof

        set f = { [P1, P2] where P1,P2 be Element of ( Left_Cosets P) : ex A1,A2 be Subset of G, g be Element of G st A2 = (g * A1) & A1 = P1 & A2 = P2 & g = h };

         A1:

        now

          let x,y1,y2 be object;

          assume [x, y1] in f;

          then

          consider P19,P29 be Element of ( Left_Cosets P) such that

           A2: [x, y1] = [P19, P29] and

           A3: ex A1,A2 be Subset of G, g be Element of G st A2 = (g * A1) & A1 = P19 & A2 = P29 & g = h;

          

           A4: x = P19 by A2, XTUPLE_0: 1;

          assume [x, y2] in f;

          then

          consider P199,P299 be Element of ( Left_Cosets P) such that

           A5: [x, y2] = [P199, P299] and

           A6: ex A1,A2 be Subset of G, g be Element of G st A2 = (g * A1) & A1 = P199 & A2 = P299 & g = h;

          x = P199 by A5, XTUPLE_0: 1;

          hence y1 = y2 by A2, A3, A5, A6, A4, XTUPLE_0: 1;

        end;

        now

          let x be object;

          assume x in f;

          then

          consider P1,P2 be Element of ( Left_Cosets P) such that

           A7: x = [P1, P2] and ex A1,A2 be Subset of G, g be Element of G st A2 = (g * A1) & A1 = P1 & A2 = P2 & g = h;

          reconsider y = P1, z = P2 as object;

          take y, z;

          thus x = [y, z] by A7;

        end;

        then

        reconsider f as Function by A1, FUNCT_1:def 1, RELAT_1:def 1;

        now

          let x be object;

          hereby

            reconsider g = h as Element of G by GROUP_2: 42;

            assume x in ( Left_Cosets P);

            then

            consider a be Element of G such that

             A8: x = (a * P) by GROUP_2:def 15;

            reconsider P1 = x as Element of ( Left_Cosets P) by A8, GROUP_2:def 15;

            reconsider y = (g * (a * P)) as object;

            take y;

            (g * (a * P)) = ((g * a) * P) by GROUP_2: 105;

            then

            reconsider P2 = y as Element of ( Left_Cosets P) by GROUP_2:def 15;

            ex A1,A2 be Subset of G st A2 = (g * A1) & A1 = P1 & A2 = P2 by A8;

            hence [x, y] in f;

          end;

          given y be object such that

           A9: [x, y] in f;

          consider P1,P2 be Element of ( Left_Cosets P) such that

           A10: [x, y] = [P1, P2] and ex A1,A2 be Subset of G, g be Element of G st A2 = (g * A1) & A1 = P1 & A2 = P2 & g = h by A9;

          

           A11: not ( Left_Cosets P) is empty by GROUP_2: 135;

          x = P1 by A10, XTUPLE_0: 1;

          hence x in ( Left_Cosets P) by A11;

        end;

        then

         A12: ( dom f) = ( Left_Cosets P) by XTUPLE_0:def 12;

        now

          let y be object;

          

           A13: not ( Left_Cosets P) is empty by GROUP_2: 135;

          assume y in ( rng f);

          then

          consider x be object such that

           A14: x in ( dom f) & y = (f . x) by FUNCT_1:def 3;

           [x, y] in f by A14, FUNCT_1: 1;

          then

          consider P1,P2 be Element of ( Left_Cosets P) such that

           A15: [x, y] = [P1, P2] and ex A1,A2 be Subset of G, g be Element of G st A2 = (g * A1) & A1 = P1 & A2 = P2 & h = g;

          y = P2 by A15, XTUPLE_0: 1;

          hence y in ( Left_Cosets P) by A13;

        end;

        then ( rng f) c= ( Left_Cosets P);

        then

        reconsider f as Function of ( Left_Cosets P), ( Left_Cosets P) by A12, FUNCT_2: 2;

        take f;

        thus for P1 be Element of ( Left_Cosets P) holds ex P2 be Element of ( Left_Cosets P), A1,A2 be Subset of G, g be Element of G st P2 = (f . P1) & A2 = (g * A1) & A1 = P1 & A2 = P2 & g = h

        proof

          let P1 be Element of ( Left_Cosets P);

          set P2 = (f . P1);

          ( Left_Cosets P) is non empty by GROUP_2: 135;

          then [P1, P2] in f by A12, FUNCT_1: 1;

          then

          consider P19,P29 be Element of ( Left_Cosets P) such that

           A16: [P1, P2] = [P19, P29] and

           A17: ex A1,A2 be Subset of G, g be Element of G st A2 = (g * A1) & A1 = P19 & A2 = P29 & h = g;

          reconsider P2 as Element of ( Left_Cosets P) by A16, XTUPLE_0: 1;

          consider A1,A2 be Subset of G, g be Element of G such that

           A18: A2 = (g * A1) & A1 = P19 and A2 = P29 and

           A19: h = g by A17;

          take P2, A1, A2, g;

          thus P2 = (f . P1);

          thus thesis by A16, A17, A18, A19, XTUPLE_0: 1;

        end;

      end;

      uniqueness

      proof

        let IT1,IT2 be Function of ( Left_Cosets P), ( Left_Cosets P) such that

         A20: (for P1 be Element of ( Left_Cosets P) holds ex P2 be Element of ( Left_Cosets P), A1,A2 be Subset of G, g be Element of G st P2 = (IT1 . P1) & A2 = (g * A1) & A1 = P1 & A2 = P2 & g = h) & for P1 be Element of ( Left_Cosets P) holds ex P2 be Element of ( Left_Cosets P), A1,A2 be Subset of G, g be Element of G st P2 = (IT2 . P1) & A2 = (g * A1) & A1 = P1 & A2 = P2 & g = h;

        let x be Element of ( Left_Cosets P);

        (ex P12 be Element of ( Left_Cosets P), A11,A12 be Subset of G, g1 be Element of G st P12 = (IT1 . x) & A12 = (g1 * A11) & A11 = x & A12 = P12 & g1 = h) & ex P22 be Element of ( Left_Cosets P), A21,A22 be Subset of G, g2 be Element of G st P22 = (IT2 . x) & A22 = (g2 * A21) & A21 = x & A22 = P22 & g2 = h by A20;

        hence thesis;

      end;

    end

    definition

      let G be Group;

      let H,P be Subgroup of G;

      :: GROUP_10:def9

      func the_left_operation_of (H,P) -> LeftOperation of H, ( Left_Cosets P) means

      : Def9: for h be Element of H holds (it . h) = ( the_left_translation_of (h,P));

      existence

      proof

        deffunc f( Element of H) = ( the_left_translation_of ($1,P));

        

         A1: for h1,h2 be Element of H holds f(*) = ( f(h1) * f(h2))

        proof

          let h1,h2 be Element of H;

          set f12 = ( the_left_translation_of ((h1 * h2),P));

          set f1 = ( the_left_translation_of (h1,P));

          set f2 = ( the_left_translation_of (h2,P));

          f1 in ( Funcs (( Left_Cosets P),( Left_Cosets P))) by FUNCT_2: 9;

          then

           A2: ex f be Function st f1 = f & ( dom f) = ( Left_Cosets P) & ( rng f) c= ( Left_Cosets P) by FUNCT_2:def 2;

          f2 in ( Funcs (( Left_Cosets P),( Left_Cosets P))) by FUNCT_2: 9;

          then

           A3: ex f be Function st f2 = f & ( dom f) = ( Left_Cosets P) & ( rng f) c= ( Left_Cosets P) by FUNCT_2:def 2;

           A4:

          now

            let x be object;

            assume

             A5: x in ( dom f12);

            then

            reconsider P19 = x as Element of ( Left_Cosets P);

            (f2 . x) in ( rng f2) by A3, A5, FUNCT_1: 3;

            then

            reconsider P199 = (f2 . x) as Element of ( Left_Cosets P);

            consider P299 be Element of ( Left_Cosets P), A199,A299 be Subset of G, g99 be Element of G such that

             A6: P299 = (f1 . P199) & A299 = (g99 * A199) & A199 = P199 & A299 = P299 and

             A7: g99 = h1 by Def8;

            reconsider P1999 = x as Element of ( Left_Cosets P) by A5;

            consider P29 be Element of ( Left_Cosets P), A19,A29 be Subset of G, g9 be Element of G such that

             A8: P29 = (f2 . P19) & A29 = (g9 * A19) & A19 = P19 & A29 = P29 and

             A9: g9 = h2 by Def8;

            consider P2999 be Element of ( Left_Cosets P), A1999,A2999 be Subset of G, g999 be Element of G such that

             A10: P2999 = (f12 . P1999) & A2999 = (g999 * A1999) & A1999 = P1999 & A2999 = P2999 and

             A11: g999 = (h1 * h2) by Def8;

            g999 = (g99 * g9) by A9, A7, A11, GROUP_2: 43;

            hence (f12 . x) = (f1 . (f2 . x)) by A8, A6, A10, GROUP_2: 32;

          end;

          f12 in ( Funcs (( Left_Cosets P),( Left_Cosets P))) by FUNCT_2: 9;

          then

           A12: ex f be Function st f12 = f & ( dom f) = ( Left_Cosets P) & ( rng f) c= ( Left_Cosets P) by FUNCT_2:def 2;

          now

            let x be object;

            hereby

              assume

               A13: x in ( dom f12);

              hence x in ( dom f2) by A3;

              (f2 . x) in ( rng f2) by A3, A13, FUNCT_1: 3;

              hence (f2 . x) in ( dom f1) by A2;

            end;

            assume that

             A14: x in ( dom f2) and (f2 . x) in ( dom f1);

            thus x in ( dom f12) by A12, A14;

          end;

          hence thesis by A4, FUNCT_1: 10;

        end;

        

         A15: f(1_) = ( id ( Left_Cosets P))

        proof

          set f = ( the_left_translation_of (( 1_ H),P));

           A16:

          now

            let x be object;

            assume x in ( Left_Cosets P);

            then

            reconsider P1 = x as Element of ( Left_Cosets P);

            (ex P2 be Element of ( Left_Cosets P), A1,A2 be Subset of G, g be Element of G st P2 = (f . P1) & A2 = (g * A1) & A1 = P1 & A2 = P2 & g = ( 1_ H)) & ( 1_ H) = ( 1_ G) by Def8, GROUP_2: 44;

            hence (f . x) = x by GROUP_2: 37;

          end;

          f in ( Funcs (( Left_Cosets P),( Left_Cosets P))) by FUNCT_2: 9;

          then ex f9 be Function st f = f9 & ( dom f9) = ( Left_Cosets P) & ( rng f9) c= ( Left_Cosets P) by FUNCT_2:def 2;

          hence thesis by A16, FUNCT_1: 17;

        end;

        ex T be LeftOperation of H, ( Left_Cosets P) st for h be Element of H holds (T . h) = f(h) from ExLeftOperation( A15, A1);

        hence thesis;

      end;

      uniqueness

      proof

        let T1,T2 be LeftOperation of H, ( Left_Cosets P) such that

         A17: for h be Element of H holds (T1 . h) = ( the_left_translation_of (h,P)) and

         A18: for h be Element of H holds (T2 . h) = ( the_left_translation_of (h,P));

        let x be Element of H;

        

        thus (T1 . x) = ( the_left_translation_of (x,P)) by A17

        .= (T2 . x) by A18;

      end;

    end

    begin

    definition

      let G be Group;

      let E be non empty set;

      let T be LeftOperation of G, E;

      let A be Subset of E;

      :: GROUP_10:def10

      func the_strict_stabilizer_of (A,T) -> strict Subgroup of G means

      : Def10: the carrier of it = { g where g be Element of G : ((T ^ g) .: A) = A };

      existence

      proof

        set X = { g where g be Element of G : ((T ^ g) .: A) = A };

        now

          let x be object;

          assume x in X;

          then ex g be Element of G st x = g & ((T ^ g) .: A) = A;

          hence x in the carrier of G;

        end;

        then

        reconsider X as Subset of G by TARSKI:def 3;

        

         A1: for g1,g2 be Element of G st g1 in X & g2 in X holds (g1 * g2) in X

        proof

          let g1,g2 be Element of G;

          assume g1 in X;

          then

           A2: ex g be Element of G st g = g1 & ((T ^ g) .: A) = A;

          assume g2 in X;

          then

           A3: ex g be Element of G st g = g2 & ((T ^ g) .: A) = A;

          ((T ^ (g1 * g2)) .: A) = (((T ^ g1) * (T ^ g2)) .: A) by Def1

          .= A by A2, A3, RELAT_1: 126;

          hence thesis;

        end;

        

         A4: (( id E) .: A) = A by FUNCT_1: 92;

        

         A5: for g be Element of G st g in X holds (g " ) in X

        proof

          let g be Element of G;

          assume g in X;

          then ex g9 be Element of G st g9 = g & ((T ^ g9) .: A) = A;

          

          then ((T ^ (g " )) .: A) = (((T ^ (g " )) * (T ^ g)) .: A) by RELAT_1: 126

          .= ((T ^ ((g " ) * g)) .: A) by Def1

          .= ((T ^ ( 1_ G)) .: A) by GROUP_1:def 5

          .= A by A4, Def1;

          hence thesis;

        end;

        ((T ^ ( 1_ G)) .: A) = A by A4, Def1;

        then ( 1_ G) in X;

        hence thesis by A1, A5, GROUP_2: 52;

      end;

      uniqueness by GROUP_2: 59;

    end

    definition

      let G be Group;

      let E be non empty set;

      let T be LeftOperation of G, E;

      let x be Element of E;

      :: GROUP_10:def11

      func the_strict_stabilizer_of (x,T) -> strict Subgroup of G equals ( the_strict_stabilizer_of ( {x},T));

      correctness ;

    end

    definition

      let S be unital non empty multMagma;

      let E be set;

      let T be LeftOperation of S, E;

      let x be Element of E;

      :: GROUP_10:def12

      pred x is_fixed_under T means for s be Element of S holds x = ((T ^ s) . x);

    end

    definition

      let S be unital non empty multMagma;

      let E be set;

      let T be LeftOperation of S, E;

      :: GROUP_10:def13

      func the_fixed_points_of T -> Subset of E equals

      : Def13: { x where x be Element of E : x is_fixed_under T } if E is non empty

      otherwise ( {} E);

      correctness

      proof

         not E is empty implies { x where x be Element of E : x is_fixed_under T } is Subset of E

        proof

          set Y = { x where x be Element of E : x is_fixed_under T };

          defpred P[ object] means for x be Element of E st x = $1 holds x is_fixed_under T;

          consider X be Subset of E such that

           A1: for x be set holds x in X iff x in E & P[x] from SUBSET_1:sch 1;

          assume

           A2: not E is empty;

          now

            let y be object;

            hereby

              assume

               A3: y in X;

              then

              reconsider y9 = y as Element of E;

              y9 is_fixed_under T by A1, A3;

              hence y in Y;

            end;

            assume y in Y;

            then

             A4: ex y9 be Element of E st y = y9 & y9 is_fixed_under T;

            then P[y];

            hence y in X by A2, A1, A4;

          end;

          hence thesis by TARSKI: 2;

        end;

        hence thesis;

      end;

    end

    definition

      let S be unital non empty multMagma;

      let E be set;

      let T be LeftOperation of S, E;

      let x,y be Element of E;

      :: GROUP_10:def14

      pred x,y are_conjugated_under T means ex s be Element of S st y = ((T ^ s) . x);

    end

    theorem :: GROUP_10:3

    

     Th3: for S be unital non empty multMagma, E be non empty set, x be Element of E, T be LeftOperation of S, E holds (x,x) are_conjugated_under T

    proof

      let S be unital non empty multMagma;

      let E be non empty set;

      let x be Element of E;

      let T be LeftOperation of S, E;

      x = (( id E) . x)

      .= ((T ^ ( 1_ S)) . x) by Def1;

      hence thesis;

    end;

    theorem :: GROUP_10:4

    

     Th4: for G be Group, E be non empty set, x,y be Element of E, T be LeftOperation of G, E st (x,y) are_conjugated_under T holds (y,x) are_conjugated_under T

    proof

      let G be Group;

      let E be non empty set;

      let x,y be Element of E;

      let T be LeftOperation of G, E;

      assume (x,y) are_conjugated_under T;

      then

      consider g be Element of G such that

       A1: y = ((T ^ g) . x);

      x in E;

      then x in ( dom (T ^ g)) by FUNCT_2:def 1;

      

      then ((T ^ (g " )) . y) = (((T ^ (g " )) * (T ^ g)) . x) by A1, FUNCT_1: 13

      .= ((T ^ ((g " ) * g)) . x) by Def1

      .= ((T ^ ( 1_ G)) . x) by GROUP_1:def 5

      .= (( id E) . x) by Def1

      .= x;

      hence thesis;

    end;

    theorem :: GROUP_10:5

    

     Th5: for S be unital non empty multMagma, E be non empty set, x,y,z be Element of E, T be LeftOperation of S, E st (x,y) are_conjugated_under T & (y,z) are_conjugated_under T holds (x,z) are_conjugated_under T

    proof

      let S be unital non empty multMagma;

      let E be non empty set;

      let x,y,z be Element of E;

      let T be LeftOperation of S, E;

      assume (x,y) are_conjugated_under T;

      then

      consider s1 be Element of S such that

       A1: y = ((T ^ s1) . x);

      assume (y,z) are_conjugated_under T;

      then

      consider s2 be Element of S such that

       A2: z = ((T ^ s2) . y);

      x in E;

      then x in ( dom (T ^ s1)) by FUNCT_2:def 1;

      

      then z = (((T ^ s2) * (T ^ s1)) . x) by A1, A2, FUNCT_1: 13

      .= ((T ^ (s2 * s1)) . x) by Def1;

      hence thesis;

    end;

    definition

      let S be unital non empty multMagma;

      let E be non empty set;

      let T be LeftOperation of S, E;

      let x be Element of E;

      :: GROUP_10:def15

      func the_orbit_of (x,T) -> Subset of E equals { y where y be Element of E : (x,y) are_conjugated_under T };

      correctness

      proof

        defpred P[ object] means for y be Element of E st y = $1 holds (x,y) are_conjugated_under T;

        set Y = { y where y be Element of E : (x,y) are_conjugated_under T };

        consider X be Subset of E such that

         A1: for y be Element of E holds y in X iff P[y] from SUBSET_1:sch 3;

        now

          let y be object;

          hereby

            assume

             A2: y in X;

            then

            reconsider y9 = y as Element of E;

            (x,y9) are_conjugated_under T by A1, A2;

            hence y in Y;

          end;

          assume y in Y;

          then

           A3: ex y9 be Element of E st y9 = y & (x,y9) are_conjugated_under T;

          then P[y];

          hence y in X by A1, A3;

        end;

        hence thesis by TARSKI: 2;

      end;

    end

    registration

      let S be unital non empty multMagma, E be non empty set, x be Element of E, T be LeftOperation of S, E;

      cluster ( the_orbit_of (x,T)) -> non empty;

      coherence

      proof

        (x,x) are_conjugated_under T by Th3;

        then x in { y where y be Element of E : (x,y) are_conjugated_under T };

        hence thesis;

      end;

    end

    theorem :: GROUP_10:6

    

     Th6: for G be Group, E be non empty set, x,y be Element of E, T be LeftOperation of G, E holds ( the_orbit_of (x,T)) misses ( the_orbit_of (y,T)) or ( the_orbit_of (x,T)) = ( the_orbit_of (y,T))

    proof

      let G be Group;

      let E be non empty set;

      let x,y be Element of E;

      let T be LeftOperation of G, E;

      assume not ( the_orbit_of (x,T)) misses ( the_orbit_of (y,T));

      then (( the_orbit_of (x,T)) /\ ( the_orbit_of (y,T))) <> {} by XBOOLE_0:def 7;

      then

      consider z1 be object such that

       A1: z1 in (( the_orbit_of (x,T)) /\ ( the_orbit_of (y,T))) by XBOOLE_0:def 1;

      z1 in ( the_orbit_of (y,T)) by A1, XBOOLE_0:def 4;

      then

      consider z199 be Element of E such that

       A2: z1 = z199 and

       A3: (y,z199) are_conjugated_under T;

      z1 in ( the_orbit_of (x,T)) by A1, XBOOLE_0:def 4;

      then

      consider z19 be Element of E such that

       A4: z1 = z19 and

       A5: (x,z19) are_conjugated_under T;

      now

        let z2 be object;

        hereby

          assume z2 in ( the_orbit_of (x,T));

          then

          consider z29 be Element of E such that

           A6: z2 = z29 and

           A7: (x,z29) are_conjugated_under T;

          (z29,x) are_conjugated_under T by A7, Th4;

          then (z29,z199) are_conjugated_under T by A4, A5, A2, Th5;

          then (z199,z29) are_conjugated_under T by Th4;

          then (y,z29) are_conjugated_under T by A3, Th5;

          hence z2 in ( the_orbit_of (y,T)) by A6;

        end;

        assume z2 in ( the_orbit_of (y,T));

        then

        consider z29 be Element of E such that

         A8: z2 = z29 and

         A9: (y,z29) are_conjugated_under T;

        (z29,y) are_conjugated_under T by A9, Th4;

        then (z29,z19) are_conjugated_under T by A4, A2, A3, Th5;

        then (z19,z29) are_conjugated_under T by Th4;

        then (x,z29) are_conjugated_under T by A5, Th5;

        hence z2 in ( the_orbit_of (x,T)) by A8;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: GROUP_10:7

    

     Th7: for S be unital non empty multMagma, E be non empty finite set, x be Element of E, T be LeftOperation of S, E st x is_fixed_under T holds ( the_orbit_of (x,T)) = {x}

    proof

      let S be unital non empty multMagma;

      let E be non empty finite set;

      let x be Element of E;

      let T be LeftOperation of S, E;

      set X = ( the_orbit_of (x,T));

      assume

       A1: x is_fixed_under T;

      now

        assume X <> {x};

        then

         A2: not (for x9 be object holds x9 in X iff x9 = x) by TARSKI:def 1;

        ex x9 be object st x9 in X by XBOOLE_0:def 1;

        then

        consider x99 be set such that

         A3: x99 <> x and

         A4: x99 in X by A2;

        consider y9 be Element of E such that

         A5: x99 = y9 and

         A6: (x,y9) are_conjugated_under T by A4;

        ex s be Element of S st y9 = ((T ^ s) . x) by A6;

        hence contradiction by A1, A3, A5;

      end;

      hence thesis;

    end;

    theorem :: GROUP_10:8

    

     Th8: for G be Group, E be non empty set, a be Element of E, T be LeftOperation of G, E holds ( card ( the_orbit_of (a,T))) = ( Index ( the_strict_stabilizer_of (a,T)))

    proof

      let G be Group;

      let E be non empty set;

      let a be Element of E;

      let T be LeftOperation of G, E;

      set H = ( the_strict_stabilizer_of (a,T));

      set f = { [b, A] where b be Element of E, A be Subset of G : ex g be Element of G st b = ((T ^ g) . a) & A = (g * H) };

      reconsider A9 = {a} as Subset of E;

       A1:

      now

        let x be object;

        assume x in f;

        then

        consider b be Element of E, A be Subset of G such that

         A2: [b, A] = x and ex g be Element of G st b = ((T ^ g) . a) & A = (g * H);

        reconsider b, A as object;

        take b, A;

        thus x = [b, A] by A2;

      end;

      now

        let x,y1,y2 be object;

        assume [x, y1] in f;

        then

        consider b1 be Element of E, A1 be Subset of G such that

         A3: [b1, A1] = [x, y1] and

         A4: ex g be Element of G st b1 = ((T ^ g) . a) & A1 = (g * H);

        assume [x, y2] in f;

        then

        consider b2 be Element of E, A2 be Subset of G such that

         A5: [b2, A2] = [x, y2] and

         A6: ex g be Element of G st b2 = ((T ^ g) . a) & A2 = (g * H);

        

         A7: y2 = A2 by A5, XTUPLE_0: 1;

        consider g1 be Element of G such that

         A8: b1 = ((T ^ g1) . a) and

         A9: A1 = (g1 * H) by A4;

        consider g2 be Element of G such that

         A10: b2 = ((T ^ g2) . a) and

         A11: A2 = (g2 * H) by A6;

        x = b2 by A5, XTUPLE_0: 1;

        then ( dom (T ^ g1)) = E & ((T ^ g1) . a) = ((T ^ g2) . a) by A3, A8, A10, FUNCT_2:def 1, XTUPLE_0: 1;

        then ( dom (T ^ g2)) = E & ( Im ((T ^ g1),a)) = {((T ^ g2) . a)} by FUNCT_1: 59, FUNCT_2:def 1;

        then

         A12: ( Im ((T ^ g1),a)) = ( Im ((T ^ g2),a)) by FUNCT_1: 59;

        set g = ((g2 " ) * g1);

        reconsider g as Element of G;

        

         A13: the carrier of ( the_strict_stabilizer_of (A9,T)) = { g9 where g9 be Element of G : ((T ^ g9) .: A9) = A9 } by Def10;

        ((T ^ g) .: A9) = (((T ^ (g2 " )) * (T ^ g1)) .: A9) by Def1

        .= ((T ^ (g2 " )) .: ((T ^ g1) .: A9)) by RELAT_1: 126

        .= (((T ^ (g2 " )) * (T ^ g2)) .: A9) by A12, RELAT_1: 126

        .= ((T ^ ((g2 " ) * g2)) .: A9) by Def1

        .= ((T ^ ( 1_ G)) .: A9) by GROUP_1:def 5

        .= (( id E) .: A9) by Def1

        .= A9 by FUNCT_1: 92;

        then g in { g9 where g9 be Element of G : ((T ^ g9) .: A9) = A9 };

        then

         A14: g in ( the_strict_stabilizer_of (A9,T)) by A13;

        y1 = A1 by A3, XTUPLE_0: 1;

        hence y1 = y2 by A7, A9, A11, A14, GROUP_2: 114;

      end;

      then

      reconsider f as Function by A1, FUNCT_1:def 1, RELAT_1:def 1;

      for y be object holds y in ( Left_Cosets H) iff ex x be object st [x, y] in f

      proof

        let y be object;

        hereby

          assume

           A15: y in ( Left_Cosets H);

          then

          reconsider A = y as Subset of G;

          consider g be Element of G such that

           A16: A = (g * H) by A15, GROUP_2:def 15;

          reconsider x = ((T ^ g) . a) as object;

          take x;

          thus [x, y] in f by A16;

        end;

        given x be object such that

         A17: [x, y] in f;

        consider b be Element of E, A be Subset of G such that

         A18: [b, A] = [x, y] and

         A19: ex g be Element of G st b = ((T ^ g) . a) & A = (g * H) by A17;

        A = y by A18, XTUPLE_0: 1;

        hence thesis by A19, GROUP_2:def 15;

      end;

      then

       A20: ( rng f) = ( Left_Cosets H) by XTUPLE_0:def 13;

      now

        let x1,x2 be object;

        

         A21: the carrier of ( the_strict_stabilizer_of (A9,T)) = { g9 where g9 be Element of G : ((T ^ g9) .: A9) = A9 } by Def10;

        assume x1 in ( dom f);

        then [x1, (f . x1)] in f by FUNCT_1: 1;

        then

        consider b1 be Element of E, A1 be Subset of G such that

         A22: [b1, A1] = [x1, (f . x1)] and

         A23: ex g be Element of G st b1 = ((T ^ g) . a) & A1 = (g * H);

        assume x2 in ( dom f);

        then [x2, (f . x2)] in f by FUNCT_1: 1;

        then

        consider b2 be Element of E, A2 be Subset of G such that

         A24: [b2, A2] = [x2, (f . x2)] and

         A25: ex g be Element of G st b2 = ((T ^ g) . a) & A2 = (g * H);

        consider g2 be Element of G such that

         A26: b2 = ((T ^ g2) . a) and

         A27: A2 = (g2 * H) by A25;

        assume

         A28: (f . x1) = (f . x2);

        consider g1 be Element of G such that

         A29: b1 = ((T ^ g1) . a) and

         A30: A1 = (g1 * H) by A23;

        set g = ((g2 " ) * g1);

        (f . x2) = A2 by A24, XTUPLE_0: 1;

        then (g1 * H) = (g2 * H) by A22, A30, A27, A28, XTUPLE_0: 1;

        then g in H by GROUP_2: 114;

        then g in the carrier of ( the_strict_stabilizer_of (A9,T));

        then

         A31: ex g9 be Element of G st g = g9 & ((T ^ g9) .: A9) = A9 by A21;

        ((T ^ g1) .: A9) = (( id E) .: ((T ^ g1) .: A9)) by FUNCT_1: 92

        .= ((T ^ ( 1_ G)) .: ((T ^ g1) .: A9)) by Def1

        .= ((T ^ (g2 * (g2 " ))) .: ((T ^ g1) .: A9)) by GROUP_1:def 5

        .= (((T ^ (g2 * (g2 " ))) * (T ^ g1)) .: A9) by RELAT_1: 126

        .= ((T ^ ((g2 * (g2 " )) * g1)) .: A9) by Def1

        .= ((T ^ (g2 * g)) .: A9) by GROUP_1:def 3

        .= (((T ^ g2) * (T ^ g)) .: A9) by Def1

        .= ((T ^ g2) .: A9) by A31, RELAT_1: 126;

        then ( dom (T ^ g2)) = E & ( Im ((T ^ g1),a)) = ( Im ((T ^ g2),a)) by FUNCT_2:def 1;

        then ( dom (T ^ g1)) = E & ( Im ((T ^ g1),a)) = {((T ^ g2) . a)} by FUNCT_1: 59, FUNCT_2:def 1;

        then

         A32: {((T ^ g1) . a)} = {((T ^ g2) . a)} by FUNCT_1: 59;

        

         A33: x2 = b2 by A24, XTUPLE_0: 1;

        x1 = b1 by A22, XTUPLE_0: 1;

        hence x1 = x2 by A33, A29, A26, A32, ZFMISC_1: 18;

      end;

      then

       A34: f is one-to-one by FUNCT_1:def 4;

      for x be object holds x in ( the_orbit_of (a,T)) iff ex y be object st [x, y] in f

      proof

        let x be object;

        hereby

          assume x in ( the_orbit_of (a,T));

          then

          consider b be Element of E such that

           A35: b = x and

           A36: (a,b) are_conjugated_under T;

          consider g be Element of G such that

           A37: b = ((T ^ g) . a) by A36;

          reconsider y = (g * H) as object;

          take y;

          thus [x, y] in f by A35, A37;

        end;

        given y be object such that

         A38: [x, y] in f;

        consider b be Element of E, A be Subset of G such that

         A39: [b, A] = [x, y] & ex g be Element of G st b = ((T ^ g) . a) & A = (g * H) by A38;

        b = x & (a,b) are_conjugated_under T by A39, XTUPLE_0: 1;

        hence thesis;

      end;

      then ( dom f) = ( the_orbit_of (a,T)) by XTUPLE_0:def 12;

      then (( the_orbit_of (a,T)),( Left_Cosets H)) are_equipotent by A34, A20;

      hence thesis by CARD_1: 5;

    end;

    definition

      let G be Group;

      let E be non empty set;

      let T be LeftOperation of G, E;

      :: GROUP_10:def16

      func the_orbits_of T -> a_partition of E equals { X where X be Subset of E : ex x be Element of E st X = ( the_orbit_of (x,T)) };

      correctness

      proof

        set P = { X where X be Subset of E : ex x be Element of E st X = ( the_orbit_of (x,T)) };

        now

          let x be object;

          assume x in P;

          then ex X be Subset of E st x = X & ex x be Element of E st X = ( the_orbit_of (x,T));

          hence x in ( bool E);

        end;

        then

        reconsider P as Subset-Family of E by TARSKI:def 3;

        for x be object holds x in E iff ex Y be set st x in Y & Y in P

        proof

          let x be object;

          hereby

            assume x in E;

            then

            reconsider x9 = x as Element of E;

            reconsider Y = ( the_orbit_of (x9,T)) as set;

            take Y;

            (x9,x9) are_conjugated_under T by Th3;

            hence x in Y;

            thus Y in P;

          end;

          thus thesis;

        end;

        then

         A1: ( union P) = E by TARSKI:def 4;

        for A be Subset of E st A in P holds A <> {} & for B be Subset of E st B in P holds A = B or A misses B

        proof

          let A be Subset of E;

          assume A in P;

          then

           A2: ex X be Subset of E st A = X & ex x9 be Element of E st X = ( the_orbit_of (x9,T));

          hence A <> {} ;

          let B be Subset of E;

          assume B in P;

          then ex X be Subset of E st B = X & ex x9 be Element of E st X = ( the_orbit_of (x9,T));

          hence thesis by A2, Th6;

        end;

        hence thesis by A1, EQREL_1:def 4;

      end;

    end

    begin

    definition

      let p be Nat;

      let G be Group;

      :: GROUP_10:def17

      attr G is p -group means ex r be Nat st ( card G) = (p |^ r);

    end

    

     Lm1: for n be non zero Nat holds ( card ( INT.Group n)) = n

    proof

      let n be non zero Nat;

       multMagma (# ( Segm n), ( addint n) #) = ( INT.Group n) by GR_CY_1:def 5;

      hence thesis;

    end;

    registration

      let p be non zero Nat;

      cluster ( INT.Group p) -> p -group;

      coherence

      proof

        take 1;

        

        thus ( card ( INT.Group p)) = p by Lm1

        .= (p |^ 1);

      end;

    end

    registration

      let p be non zero Nat;

      cluster p -group finite cyclic commutative strict for Group;

      existence

      proof

        take ( INT.Group p);

        thus thesis;

      end;

    end

    theorem :: GROUP_10:9

    

     Th9: for E be non empty finite set, G be finite Group, p be prime Nat, T be LeftOperation of G, E st G is p -group holds (( card ( the_fixed_points_of T)) mod p) = (( card E) mod p)

    proof

      let E be non empty finite set;

      let G be finite Group;

      let p be prime Nat;

      let T be LeftOperation of G, E;

      set O1 = { X where X be Subset of E : ( card X) = 1 & ex x be Element of E st X = ( the_orbit_of (x,T)) };

      set O2 = { X where X be Subset of E : ( card X) > 1 & ex x be Element of E st X = ( the_orbit_of (x,T)) };

      set O = (O1 \/ O2);

      defpred P[ object, object] means ex x be Element of E, X be Subset of E st $1 = x & $2 = X & X = ( the_orbit_of (x,T)) & x is_fixed_under T;

      reconsider p9 = p as Element of NAT by ORDINAL1:def 12;

      

       A1: for x be object st x in ( the_fixed_points_of T) holds ex y be object st P[x, y]

      proof

        let x be object;

        assume

         A2: x in ( the_fixed_points_of T);

        then

        reconsider x9 = x as Element of E;

        reconsider y = ( the_orbit_of (x9,T)) as set;

        take y;

        now

          set X = y;

          set x = x9;

          take x, X;

          thus x9 = x & y = X & X = ( the_orbit_of (x,T));

          ( the_fixed_points_of T) = { x99 where x99 be Element of E : x99 is_fixed_under T } by Def13;

          then ex e be Element of E st x = e & e is_fixed_under T by A2;

          hence x is_fixed_under T;

        end;

        hence thesis;

      end;

      consider FX be Function such that

       A3: ( dom FX) = ( the_fixed_points_of T) & for x be object st x in ( the_fixed_points_of T) holds P[x, (FX . x)] from CLASSES1:sch 1( A1);

      now

        let y be object;

        hereby

          assume y in O1;

          then

          consider X be Subset of E such that

           A4: y = X and

           A5: ( card X) = 1 and

           A6: ex x be Element of E st X = ( the_orbit_of (x,T));

          consider x9 be Element of E such that

           A7: X = ( the_orbit_of (x9,T)) by A6;

          reconsider x = x9 as object;

          ( card X) = ( card {x}) by A5, CARD_1: 30;

          then

          consider x99 be object such that

           A8: X = {x99} by CARD_1: 29;

          take x;

          now

            (x9,x9) are_conjugated_under T by Th3;

            then

             A9: x9 in { y99 where y99 be Element of E : (x9,y99) are_conjugated_under T };

            given g be Element of G such that

             A10: x9 <> ((T ^ g) . x9);

            set y9 = ((T ^ g) . x9);

            (x9,y9) are_conjugated_under T;

            then y9 in { y99 where y99 be Element of E : (x9,y99) are_conjugated_under T };

            then y9 = x99 by A7, A8, TARSKI:def 1;

            hence contradiction by A7, A8, A10, A9, TARSKI:def 1;

          end;

          then x9 is_fixed_under T;

          then x in { x999 where x999 be Element of E : x999 is_fixed_under T };

          then

           A11: x in ( the_fixed_points_of T) by Def13;

          then ex x99 be Element of E, X9 be Subset of E st x99 = x & X9 = (FX . x) & X9 = ( the_orbit_of (x99,T)) & x99 is_fixed_under T by A3;

          hence [x, y] in FX by A3, A4, A7, A11, FUNCT_1: 1;

        end;

        given x be object such that

         A12: [x, y] in FX;

        x in ( dom FX) & y = (FX . x) by A12, FUNCT_1: 1;

        then

        consider x9 be Element of E, X9 be Subset of E such that x9 = x and

         A13: X9 = y and

         A14: X9 = ( the_orbit_of (x9,T)) and

         A15: x9 is_fixed_under T by A3;

        X9 = {x9} by A14, A15, Th7;

        then ( card X9) = 1 by CARD_1: 30;

        hence y in O1 by A13, A14;

      end;

      then

       A16: ( rng FX) = O1 by XTUPLE_0:def 13;

      now

        let x1,x2 be object;

        assume x1 in ( dom FX);

        then

        consider x19 be Element of E, X1 be Subset of E such that

         A17: x19 = x1 and

         A18: X1 = (FX . x1) & X1 = ( the_orbit_of (x19,T)) & x19 is_fixed_under T by A3;

        assume x2 in ( dom FX);

        then

        consider x29 be Element of E, X2 be Subset of E such that

         A19: x29 = x2 and

         A20: X2 = (FX . x2) & X2 = ( the_orbit_of (x29,T)) and

         A21: x29 is_fixed_under T by A3;

        assume (FX . x1) = (FX . x2);

        

        then {x19} = ( the_orbit_of (x29,T)) by A18, A20, Th7

        .= {x29} by A21, Th7;

        hence x1 = x2 by A17, A19, ZFMISC_1: 3;

      end;

      then FX is one-to-one by FUNCT_1:def 4;

      then

       A22: (( the_fixed_points_of T),O1) are_equipotent by A3, A16;

       A23:

      now

        let y be object;

        hereby

          assume y in ( the_orbits_of T);

          then

          consider X be Subset of E such that

           A24: y = X and

           A25: ex x be Element of E st X = ( the_orbit_of (x,T));

          X is non empty by A25;

          then ( 0 + 1) < (( card X) + 1) by XREAL_1: 6;

          then

           A26: 1 <= ( card X) by NAT_1: 13;

          per cases by A26, XXREAL_0: 1;

            suppose 1 = ( card X);

            then y in O1 by A24, A25;

            hence y in (O1 \/ O2) by XBOOLE_0:def 3;

          end;

            suppose 1 < ( card X);

            then y in O2 by A24, A25;

            hence y in (O1 \/ O2) by XBOOLE_0:def 3;

          end;

        end;

        assume

         A27: y in (O1 \/ O2);

        per cases by A27, XBOOLE_0:def 3;

          suppose y in O1;

          then ex X be Subset of E st y = X & ( card X) = 1 & ex x be Element of E st X = ( the_orbit_of (x,T));

          hence y in ( the_orbits_of T);

        end;

          suppose y in O2;

          then ex X be Subset of E st y = X & ( card X) > 1 & ex x be Element of E st X = ( the_orbit_of (x,T));

          hence y in ( the_orbits_of T);

        end;

      end;

      then

       A28: O = ( the_orbits_of T) by TARSKI: 2;

      then O1 is finite by FINSET_1: 1, XBOOLE_1: 7;

      then

      consider f1 be FinSequence such that

       A29: ( rng f1) = O1 and

       A30: f1 is one-to-one by FINSEQ_4: 58;

      O2 is finite by A28, FINSET_1: 1, XBOOLE_1: 7;

      then

      consider f2 be FinSequence such that

       A31: ( rng f2) = O2 and

       A32: f2 is one-to-one by FINSEQ_4: 58;

      set f = (f1 ^ f2);

      reconsider O as a_partition of E by A23, TARSKI: 2;

      

       A33: ( rng f) = O by A29, A31, FINSEQ_1: 31;

      now

        given x be object such that

         A34: x in (O1 /\ O2);

        x in O2 by A34, XBOOLE_0:def 4;

        then

         A35: ex X be Subset of E st x = X & ( card X) > 1 & ex x9 be Element of E st X = ( the_orbit_of (x9,T));

        x in O1 by A34, XBOOLE_0:def 4;

        then ex X be Subset of E st x = X & ( card X) = 1 & ex x9 be Element of E st X = ( the_orbit_of (x9,T));

        hence contradiction by A35;

      end;

      then (O1 /\ O2) = {} by XBOOLE_0:def 1;

      then ( rng f1) misses ( rng f2) by A29, A31, XBOOLE_0:def 7;

      then

       A36: f is one-to-one by A30, A32, FINSEQ_3: 91;

      reconsider f as FinSequence of O by A33, FINSEQ_1:def 4;

      deffunc F( set) = ( card (f1 . $1));

      consider p1 be FinSequence such that

       A37: ( len p1) = ( len f1) & for i be Nat st i in ( dom p1) holds (p1 . i) = F(i) from FINSEQ_1:sch 2;

      for x be object st x in ( rng p1) holds x in NAT

      proof

        let x be object;

        assume x in ( rng p1);

        then

        consider i be Nat such that

         A38: i in ( dom p1) and

         A39: (p1 . i) = x by FINSEQ_2: 10;

        i in ( dom f1) by A37, A38, FINSEQ_3: 29;

        then (f1 . i) in O1 by A29, FUNCT_1: 3;

        then

         A40: ex X be Subset of E st (f1 . i) = X & ( card X) = 1 & ex x be Element of E st X = ( the_orbit_of (x,T));

        x = ( card (f1 . i)) by A37, A38, A39;

        hence thesis by A40;

      end;

      then ( rng p1) c= NAT ;

      then

      reconsider c1 = p1 as FinSequence of NAT by FINSEQ_1:def 4;

      deffunc P2( set) = ( card (f2 . $1));

      consider p2 be FinSequence such that

       A41: ( len p2) = ( len f2) & for i be Nat st i in ( dom p2) holds (p2 . i) = P2(i) from FINSEQ_1:sch 2;

      for x be object st x in ( rng p2) holds x in NAT

      proof

        let x be object;

        assume x in ( rng p2);

        then

        consider i be Nat such that

         A42: i in ( dom p2) and

         A43: (p2 . i) = x by FINSEQ_2: 10;

        i in ( dom f2) by A41, A42, FINSEQ_3: 29;

        then (f2 . i) in O2 by A31, FUNCT_1: 3;

        then

         A44: ex X be Subset of E st (f2 . i) = X & ( card X) > 1 & ex x be Element of E st X = ( the_orbit_of (x,T));

        x = ( card (f2 . i)) by A41, A42, A43;

        hence thesis by A44;

      end;

      then ( rng p2) c= NAT ;

      then

      reconsider c2 = p2 as FinSequence of NAT by FINSEQ_1:def 4;

      set c = (c1 ^ c2);

      reconsider c as FinSequence of NAT ;

      

       A45: for i be Element of NAT st i in ( dom c) holds (c . i) = ( card (f . i))

      proof

        let i be Element of NAT such that

         A46: i in ( dom c);

        now

          per cases by A46, FINSEQ_1: 25;

            suppose

             A47: i in ( dom c1);

            then

             A48: i in ( dom f1) by A37, FINSEQ_3: 29;

            (c . i) = (c1 . i) by A47, FINSEQ_1:def 7

            .= ( card (f1 . i)) by A37, A47

            .= ( card (f . i)) by A48, FINSEQ_1:def 7;

            hence thesis;

          end;

            suppose ex j be Nat st j in ( dom c2) & i = (( len c1) + j);

            then

            consider j be Nat such that

             A49: j in ( dom c2) and

             A50: i = (( len c1) + j);

            

             A51: j in ( dom f2) by A41, A49, FINSEQ_3: 29;

            (c . i) = (c2 . j) by A49, A50, FINSEQ_1:def 7

            .= ( card (f2 . j)) by A41, A49

            .= ( card (f . i)) by A37, A50, A51, FINSEQ_1:def 7;

            hence thesis;

          end;

        end;

        hence thesis;

      end;

      assume

       A52: G is p -group;

      for i be Element of NAT st i in ( dom c2) holds p9 divides (c2 /. i)

      proof

        let i be Element of NAT ;

        set i9 = (c2 /. i);

        consider r be Nat such that

         A53: ( card G) = (p |^ r) by A52;

        reconsider r9 = r as Element of NAT by ORDINAL1:def 12;

        assume

         A54: i in ( dom c2);

        then i in ( dom f2) by A41, FINSEQ_3: 29;

        then (f2 . i) in O2 by A31, FUNCT_1: 3;

        then

        consider X be Subset of E such that

         A55: (f2 . i) = X and

         A56: ( card X) > 1 and

         A57: ex x be Element of E st X = ( the_orbit_of (x,T));

        consider x be Element of E such that

         A58: X = ( the_orbit_of (x,T)) by A57;

        set H = ( the_strict_stabilizer_of (x,T));

        (c2 . i) = ( card (f2 . i)) by A41, A54;

        then (c2 /. i) = ( card (f2 . i)) by A54, PARTFUN1:def 6;

        then (c2 /. i) = ( Index H) by A55, A58, Th8;

        then (c2 /. i) = ( index H) by GROUP_2:def 18;

        then

         A59: ( card G) = (( card H) * (c2 /. i)) by GROUP_2: 147;

        then

         A60: i9 divides (p9 |^ r9) by A53, NAT_D:def 3;

        

         A61: ( card ( the_orbit_of (x,T))) = ( Index H) by Th8;

         A62:

        now

          assume ( card H) = ( card G);

          then ( card G) = (( card G) * ( index H)) by GROUP_2: 147;

          then 1 = ((( card G) * ( index H)) / ( card G)) by XCMPLX_1: 60;

          then 1 = ((( card G) / ( card G)) * ( index H)) by XCMPLX_1: 74;

          then (1 * ( index H)) = 1 by XCMPLX_1: 60;

          hence contradiction by A56, A58, A61, GROUP_2:def 18;

        end;

        per cases by A60, PEPIN: 32;

          suppose i9 = 1;

          hence thesis by A59, A62;

        end;

          suppose ex k be Element of NAT st i9 = (p * k);

          hence thesis by NAT_D:def 3;

        end;

      end;

      then p divides ( Sum c2) by WEDDWITT: 5;

      then ex t be Nat st ( Sum c2) = (p * t) by NAT_D:def 3;

      then

       A63: (( Sum c2) mod p) = 0 by NAT_D: 13;

      ( len c) = (( len f1) + ( len f2)) by A37, A41, FINSEQ_1: 22;

      then ( len c) = ( len f) by FINSEQ_1: 22;

      

      then ( card E) = ( Sum c) by A36, A33, A45, WEDDWITT: 6

      .= (( Sum c1) + ( Sum c2)) by RVSUM_1: 75;

      

      then

       A64: (( card E) mod p) = ((( Sum c1) + (( Sum c2) mod p)) mod p) by NAT_D: 23

      .= (( Sum c1) mod p) by A63;

      

       A65: for i be Element of NAT st i in ( dom c1) holds (c1 . i) = 1

      proof

        let i be Element of NAT ;

        assume

         A66: i in ( dom c1);

        then i in ( dom f1) by A37, FINSEQ_3: 29;

        then (f1 . i) in O1 by A29, FUNCT_1: 3;

        then ex X be Subset of E st (f1 . i) = X & ( card X) = 1 & ex x be Element of E st X = ( the_orbit_of (x,T));

        hence thesis by A37, A66;

      end;

      for x be object st x in ( rng c1) holds x in {1}

      proof

        let x be object;

        assume x in ( rng c1);

        then ex i be Nat st i in ( dom c1) & x = (c1 . i) by FINSEQ_2: 10;

        then x = 1 by A65;

        hence thesis by TARSKI:def 1;

      end;

      then

       A67: ( rng c1) c= {1};

      

       A68: ( Sum c1) = ( len c1)

      proof

        per cases ;

          suppose ( len c1) = 0 ;

          then c1 = {} ;

          hence thesis by RVSUM_1: 72;

        end;

          suppose

           A69: ( len c1) <> 0 ;

          for x be object st x in {1} holds x in ( rng c1)

          proof

            let x be object such that

             A70: x in {1};

            

             A71: ( Seg ( len c1)) = ( dom c1) by FINSEQ_1:def 3;

            then (c1 . ( len c1)) = 1 by A65, A69, FINSEQ_1: 3;

            then (c1 . ( len c1)) = x by A70, TARSKI:def 1;

            hence thesis by A69, A71, FINSEQ_1: 3, FUNCT_1: 3;

          end;

          then {1} c= ( rng c1);

          then ( rng c1) = {1} by A67, XBOOLE_0:def 10;

          then c1 = (( dom c1) --> 1) by FUNCOP_1: 9;

          then c1 = (( Seg ( len c1)) --> 1) by FINSEQ_1:def 3;

          then c1 = (( len c1) |-> 1) by FINSEQ_2:def 2;

          then ( Sum c1) = (( len c1) * 1) by RVSUM_1: 80;

          hence thesis;

        end;

      end;

      ( len c1) = ( card ( rng f1)) by A30, A37, FINSEQ_4: 62;

      hence thesis by A29, A68, A22, A64, CARD_1: 5;

    end;

    begin

    definition

      let p be Nat;

      let G be Group;

      let P be Subgroup of G;

      :: GROUP_10:def18

      pred P is_Sylow_p-subgroup_of_prime p means P is p -group & not p divides ( index P);

    end

    

     Lm2: for n be Nat, p be prime Nat st n <> 0 holds ex m,r be Nat st n = ((p |^ r) * m) & not p divides m

    proof

      let n be Nat;

      let p be prime Nat;

      set r = (p |-count n);

      

       A1: p <> 1 by NAT_4: 12;

      assume

       A2: n <> 0 ;

      then (p |^ r) divides n by A1, NAT_3:def 7;

      then

      consider m be Nat such that

       A3: n = ((p |^ r) * m) by NAT_D:def 3;

      take m, r;

      thus n = ((p |^ r) * m) by A3;

      

       A4: not (p |^ (r + 1)) divides n by A2, A1, NAT_3:def 7;

      thus not p divides m

      proof

        assume p divides m;

        then

        consider t be Nat such that

         A5: m = (p * t) by NAT_D:def 3;

        n = (((p |^ r) * p) * t) by A3, A5

        .= ((p |^ (r + 1)) * t) by NEWTON: 6;

        hence contradiction by A4, NAT_D:def 3;

      end;

    end;

    

     Lm3: for X,Y be non empty set holds ( card the set of all [:X, {y}:] where y be Element of Y) = ( card Y)

    proof

      let X,Y be non empty set;

      set Z = the set of all [:X, {y}:] where y be Element of Y;

      deffunc F( object) = [:X, {$1}:];

      ex f be Function st ( dom f) = Y & for x be object st x in Y holds (f . x) = F(x) from FUNCT_1:sch 3;

      then

      consider f be Function such that

       A1: ( dom f) = Y and

       A2: for x be object st x in Y holds (f . x) = F(x);

      for y be object holds y in Z iff ex x be object st x in ( dom f) & y = (f . x)

      proof

        let y be object;

        hereby

          assume y in Z;

          then

          consider y9 be Element of Y such that

           A3: y = [:X, {y9}:];

          reconsider x = y9 as object;

          take x;

          thus x in ( dom f) by A1;

          thus y = (f . x) by A2, A3;

        end;

        given x be object such that

         A4: x in ( dom f) and

         A5: y = (f . x);

        (f . x) = [:X, {x}:] by A1, A2, A4;

        hence thesis by A1, A4, A5;

      end;

      then

       A6: ( rng f) = Z by FUNCT_1:def 3;

      for x1,x2 be object st x1 in ( dom f) & x2 in ( dom f) & (f . x1) = (f . x2) holds x1 = x2

      proof

        let x1,x2 be object;

        assume x1 in ( dom f) & x2 in ( dom f);

        then

         A7: (f . x1) = F(x1) & (f . x2) = F(x2) by A1, A2;

        assume (f . x1) = (f . x2);

        then {x1} = {x2} by A7, ZFMISC_1: 110;

        hence thesis by ZFMISC_1: 3;

      end;

      then f is one-to-one by FUNCT_1:def 4;

      then (Z,Y) are_equipotent by A1, A6, WELLORD2:def 4;

      hence thesis by CARD_1: 5;

    end;

    

     Lm4: for G be finite Group, E,T be non empty set, LO be LeftOperation of G, E, n be Nat st LO = ( the_left_operation_of (G,T)) & n = ( card G) & E = [:the carrier of G, T:] & ( card n) c= ( card E) holds ( the_fixed_points_of ( the_extension_of_left_operation_of (n,LO))) = the set of all [:the carrier of G, {t}:] where t be Element of T

    proof

      let G be finite Group;

      let E,T be non empty set;

      let LO be LeftOperation of G, E;

      let n be Nat;

      assume

       A1: LO = ( the_left_operation_of (G,T));

      set EE = ( the_subsets_of_card (n,E));

      set LO9 = ( the_extension_of_left_operation_of (n,LO));

      assume

       A2: n = ( card G);

      assume

       A3: E = [:the carrier of G, T:];

      assume

       A4: ( card n) c= ( card E);

      now

        let z be object;

        reconsider zz = z as set by TARSKI: 1;

        hereby

          assume z in ( the_fixed_points_of LO9);

          then z in { x where x be Element of EE : x is_fixed_under LO9 } by Def13;

          then

          consider e be Element of EE such that

           A5: z = e and

           A6: e is_fixed_under LO9;

          EE is non empty by A4, Th1;

          then z in EE by A5;

          then

          consider X be Subset of E such that

           A7: z = X and

           A8: ( card X) = n;

          

           A9: for g be Element of G holds e = (( the_left_translation_of (g,T)) .: e)

          proof

            let g be Element of G;

            (LO9 . g) = ( the_extension_of_left_translation_of (n,g,LO)) by A4, Def5;

            then

             A10: ((LO9 ^ g) . e) = ((LO ^ g) .: e) by A4, Def4;

            e = ((LO9 ^ g) . e) by A6;

            hence thesis by A1, A10, Def7;

          end;

          ex t be Element of T st [:the carrier of G, {t}:] c= zz

          proof

             not X is empty by A2, A8;

            then

            consider x1 be object such that

             A11: x1 in X by XBOOLE_0:def 1;

            consider g1,t be object such that

             A12: g1 in the carrier of G and

             A13: t in T and

             A14: x1 = [g1, t] by A3, A11, ZFMISC_1:def 2;

            reconsider t as Element of T by A13;

            reconsider g1 as Element of G by A12;

            take t;

            now

              reconsider z19 = x1 as Element of [:the carrier of G, T:] by A3, A11;

              let x2 be object;

              assume x2 in [:the carrier of G, {t}:];

              then

              consider g2,t9 be object such that

               A15: g2 in the carrier of G and

               A16: t9 in {t} & x2 = [g2, t9] by ZFMISC_1:def 2;

              reconsider g2 as Element of G by A15;

              set g = (g2 * (g1 " ));

              consider z29 be Element of [:the carrier of G, T:], g19,g29 be Element of G, t99 be Element of T such that

               A17: z29 = (( the_left_translation_of (g,T)) . z19) and

               A18: g29 = (g * g19) and

               A19: z19 = [g19, t99] and

               A20: z29 = [g29, t99] by Def6;

              

               A21: t = t99 by A14, A19, XTUPLE_0: 1;

              ( dom ( the_left_translation_of (g,T))) = E by A3, FUNCT_2:def 1;

              then

               A22: (( the_left_translation_of (g,T)) . x1) in (( the_left_translation_of (g,T)) .: e) by A5, A7, A11, FUNCT_1:def 6;

              g29 = ((g2 * (g1 " )) * g1) by A14, A18, A19, XTUPLE_0: 1

              .= (g2 * ((g1 " ) * g1)) by GROUP_1:def 3

              .= (g2 * ( 1_ G)) by GROUP_1:def 5

              .= g2 by GROUP_1:def 4;

              then z29 = x2 by A16, A20, A21, TARSKI:def 1;

              hence x2 in zz by A5, A9, A17, A22;

            end;

            hence thesis;

          end;

          then

          consider t be Element of T such that

           A23: [:the carrier of G, {t}:] c= zz;

          (n,X) are_equipotent by A8, CARD_1:def 2;

          then

          consider f be Function such that f is one-to-one and

           A24: ( dom f) = n and

           A25: ( rng f) = X;

          ( dom f) in omega by A24, ORDINAL1:def 12;

          then

          reconsider X as finite set by A25, FINSET_1:def 1;

          ( card [:the carrier of G, {t}:]) = n by A2, CARD_1: 69;

          then [:the carrier of G, {t}:] = X by A7, A8, A23, CARD_2: 102;

          hence z in the set of all [:the carrier of G, {t9}:] where t9 be Element of T by A7;

        end;

        assume z in the set of all [:the carrier of G, {t}:] where t be Element of T;

        then

        consider t be Element of T such that

         A26: z = [:the carrier of G, {t}:];

         A27:

        now

          let z9 be object;

          assume z9 in zz;

          then ex x,y be object st x in the carrier of G & y in {t} & z9 = [x, y] by A26, ZFMISC_1:def 2;

          hence z9 in [:the carrier of G, T:] by ZFMISC_1:def 2;

        end;

        then

        reconsider X = z as Subset of E by A3, TARSKI:def 3;

        ( card X) = ( card the carrier of G) by A26, CARD_1: 69;

        then z in EE by A2;

        then

        reconsider e = z as Element of EE;

        

         A28: zz c= [:the carrier of G, T:] by A27;

        

         A29: for g be Element of G holds e = ((LO ^ g) .: e)

        proof

          let g be Element of G;

          

           A30: (LO ^ g) = ( the_left_translation_of (g,T)) by A1, Def7;

          now

            let e2 be object;

            hereby

              assume e2 in e;

              then

              consider g2,t2 be object such that

               A31: g2 in the carrier of G and

               A32: t2 in {t} and

               A33: e2 = [g2, t2] by A26, ZFMISC_1:def 2;

              reconsider g2 as Element of G by A31;

              reconsider e1 = [((g " ) * g2), t2] as object;

              take e1;

              

               A34: zz c= ( dom (LO ^ g)) by A3, A28, FUNCT_2:def 1;

              e1 in e by A26, A32, ZFMISC_1:def 2;

              hence e1 in ( dom (LO ^ g)) & e1 in e by A34;

              then

              reconsider z1 = e1 as Element of [:the carrier of G, T:] by A3;

              consider z2 be Element of [:the carrier of G, T:], g19,g29 be Element of G, t9 be Element of T such that

               A35: z2 = ((LO ^ g) . z1) and

               A36: g29 = (g * g19) and

               A37: z1 = [g19, t9] and

               A38: z2 = [g29, t9] by A30, Def6;

              g29 = (g * ((g " ) * g2)) by A36, A37, XTUPLE_0: 1

              .= ((g * (g " )) * g2) by GROUP_1:def 3

              .= (( 1_ G) * g2) by GROUP_1:def 5

              .= g2 by GROUP_1:def 4;

              hence e2 = ((LO ^ g) . e1) by A33, A35, A37, A38, XTUPLE_0: 1;

            end;

            given e1 be object such that

             A39: e1 in ( dom (LO ^ g)) and

             A40: e1 in e and

             A41: e2 = ((LO ^ g) . e1);

            reconsider z1 = e1 as Element of [:the carrier of G, T:] by A3, A39;

            consider z2 be Element of [:the carrier of G, T:], g19,g29 be Element of G, t9 be Element of T such that

             A42: z2 = ((LO ^ g) . z1) and g29 = (g * g19) and

             A43: z1 = [g19, t9] and

             A44: z2 = [g29, t9] by A30, Def6;

            

             A45: t9 in {t9} by TARSKI:def 1;

            consider g1,t1 be object such that g1 in the carrier of G and

             A46: t1 in {t} and

             A47: e1 = [g1, t1] by A26, A40, ZFMISC_1:def 2;

            t1 = t by A46, TARSKI:def 1;

            then t9 = t by A47, A43, XTUPLE_0: 1;

            hence e2 in e by A26, A41, A42, A44, A45, ZFMISC_1:def 2;

          end;

          hence thesis by FUNCT_1:def 6;

        end;

        for g be Element of G holds e = ((LO9 ^ g) . e)

        proof

          let g be Element of G;

          (LO9 . g) = ( the_extension_of_left_translation_of (n,g,LO)) by A4, Def5;

          then ((LO9 ^ g) . e) = ((LO ^ g) .: e) by A4, Def4;

          then

          consider Y be Element of EE such that

           A48: [Y, ((LO ^ g) .: Y)] = [e, ((LO9 ^ g) . e)];

          Y = e & ((LO ^ g) .: Y) = ((LO9 ^ g) . e) by A48, XTUPLE_0: 1;

          hence thesis by A29;

        end;

        then e is_fixed_under LO9;

        then

         A49: z in { x where x be Element of EE : x is_fixed_under LO9 };

        EE is non empty by A4, Th1;

        hence z in ( the_fixed_points_of LO9) by A49, Def13;

      end;

      hence thesis by TARSKI: 2;

    end;

    

     Lm5: for n,m,r be Nat, p be prime Nat st n = ((p |^ r) * m) & not p divides m holds ((n choose (p |^ r)) mod p) <> 0

    proof

      reconsider x1 = 1, x2 = 0 as set;

      let n,m,r be Nat;

      let p be prime Nat;

      assume

       A1: n = ((p |^ r) * m);

      reconsider n9 = n as Real;

      reconsider k2 = m as Element of NAT by ORDINAL1:def 12;

      reconsider p9 = p as prime Element of NAT by ORDINAL1:def 12;

      reconsider k1 = (p9 |^ r) as non zero Element of NAT by ORDINAL1:def 12;

      set S = ( INT.Group k1);

      set CS = the carrier of S;

      set T = ( Segm k2);

      

       A2: ( card T) = m;

      assume

       A3: not p divides m;

      then

       A4: k2 <> 0 by NAT_D: 6;

      then

      reconsider T as non empty finite set;

      set X = [:CS, T:];

      reconsider X9 = X as non empty finite set;

      set E = ( the_subsets_of_card (k1,X9));

       multMagma (# ( Segm k1), ( addint k1) #) = S by GR_CY_1:def 5;

      then ( card CS) = (p |^ r);

      then

       A5: ( card X) = n by A1, A2, CARD_2: 46;

      now

        assume (p |^ r) > n;

        then ((p |^ r) * m) > (n * m) by A4, XREAL_1: 68;

        then (n9 / n9) > ((n9 * m) / n9) by A1, XREAL_1: 74;

        then 1 > ((n9 * m) / n9) by A5, XCMPLX_1: 60;

        then 1 > ((n9 / n9) * m) by XCMPLX_1: 74;

        then 1 > (1 * m) by A5, XCMPLX_1: 60;

        then m < ( 0 + 1);

        hence contradiction by A4, NAT_1: 13;

      end;

      then

       A6: ( card ( Segm k1)) c= ( card ( Segm ( card X))) by A5, NAT_1: 40;

      then

      reconsider E9 = E as non empty finite set by Th1;

      ( card ( Choose (X,k1,x1,x2))) = ( card E9) by Th2;

      then

       A7: ( card E9) = (n choose k1) by A5, CARD_FIN: 16;

      set LO = ( the_left_operation_of (S,T));

      set LO9 = ( the_extension_of_left_operation_of (k1,LO));

       A8:

      now

        assume (m mod p9) = 0 ;

        then m = ((p * (m div p)) + 0 ) by NAT_D: 2;

        hence contradiction by A3, NAT_D:def 3;

      end;

      

       A9: ( card S) = k1 by Lm1;

      

      then ( card ( the_fixed_points_of LO9)) = ( card the set of all [:CS, {t}:] where t be Element of T) by A6, Lm4

      .= ( card k2) by Lm3;

      then

       A10: ( card ( the_fixed_points_of LO9)) = m;

      S is p -group by A9;

      hence thesis by A7, A10, A8, Th9;

    end;

    

     Lm6: for r,n,m1,m2 be Nat, p be prime Nat st ((p |^ r) * n) = (m1 * m2) & not p divides n & not p divides m2 holds (p |^ r) divides m1

    proof

      defpred P[ Nat] means for n,m1,m2 be Nat, p be prime Nat st ((p |^ $1) * n) = (m1 * m2) & not p divides n & not p divides m2 holds (p |^ $1) divides m1;

      

       A1: for k be Nat st P[k] holds P[(k + 1)]

      proof

        let k be Nat;

        assume

         A2: P[k];

        for n,m1,m2 be Nat, p be prime Nat st ((p |^ (k + 1)) * n) = (m1 * m2) & not p divides n & not p divides m2 holds (p |^ (k + 1)) divides m1

        proof

          let n,m1,m2 be Nat;

          let p be prime Nat;

          assume

           A3: ((p |^ (k + 1)) * n) = (m1 * m2);

          reconsider p9 = p as prime Element of NAT by ORDINAL1:def 12;

          assume

           A4: not p divides n;

          assume

           A5: not p divides m2;

          

           A6: ((p |^ (k + 1)) * n) = (((p |^ k) * p) * n) by NEWTON: 6

          .= (((p |^ k) * n) * p);

          then p divides (m1 * m2) by A3, NAT_D:def 3;

          then p divides m1 by A5, NEWTON: 80;

          then

          consider m19 be Nat such that

           A7: m1 = (p * m19) by NAT_D:def 3;

          (((p |^ k) * n) * p9) = ((m19 * m2) * p9) by A3, A6, A7;

          then (p |^ k) divides m19 by A2, A4, A5, XCMPLX_1: 5;

          then

          consider m199 be Nat such that

           A8: m19 = ((p |^ k) * m199) by NAT_D:def 3;

          m1 = (((p |^ k) * p) * m199) by A7, A8

          .= ((p |^ (k + 1)) * m199) by NEWTON: 6;

          hence thesis by NAT_D:def 3;

        end;

        hence thesis;

      end;

      

       A9: P[ 0 ]

      proof

        let n,m1,m2 be Nat;

        let p be prime Nat;

        assume that ((p |^ 0 ) * n) = (m1 * m2) and not p divides n and not p divides m2;

        (p |^ 0 ) = 1 by NEWTON: 4;

        hence thesis by NAT_D: 6;

      end;

      for k be Nat holds P[k] from NAT_1:sch 2( A9, A1);

      hence thesis;

    end;

    

     Lm7: for G be Group, A be non empty Subset of G, x be Element of G holds ( card A) = ( card (A * x))

    proof

      let G be Group;

      let A be non empty Subset of G;

      let x be Element of G;

      set B = (A * x);

      A is non empty & B is non empty

      proof

        set a = the Element of A;

        (a * x) in B by GROUP_2: 28;

        hence thesis;

      end;

      then

      reconsider B as non empty Subset of G;

      deffunc F( Element of G) = ($1 * x);

      consider f be Function of A, the carrier of G such that

       A1: for a be Element of A holds (f . a) = F(a) from FUNCT_2:sch 4;

      

       A2: B c= ( rng f)

      proof

        let s be object;

        assume s in B;

        then

        consider a be Element of G such that

         A3: s = (a * x) & a in A by GROUP_2: 28;

        ex x be set st x in ( dom f) & s = (f . x)

        proof

          take a;

          thus thesis by A1, A3, FUNCT_2:def 1;

        end;

        hence thesis by FUNCT_1:def 3;

      end;

      

       A4: ( dom f) = A by FUNCT_2:def 1;

      

       A5: ( rng f) c= B

      proof

        let s be object;

        assume s in ( rng f);

        then

        consider a be object such that

         A6: a in A and

         A7: s = (f . a) by A4, FUNCT_1:def 3;

        reconsider a as Element of A by A6;

        s = F(a) by A1, A7;

        hence thesis by GROUP_2: 28;

      end;

      then

      reconsider f as Function of A, B by A4, FUNCT_2: 2;

      

       A8: for a,b be Element of A st (f . a) = (f . b) holds a = b

      proof

        let a,b be Element of A;

        assume (f . a) = (f . b);

        then F(a) = (f . b) by A1;

        then (a * x) = (b * x) by A1;

        hence thesis by GROUP_1: 6;

      end;

      (A,B) are_equipotent

      proof

        take f;

        thus thesis by A5, A2, A8, FUNCT_2:def 1, GROUP_6: 1, XBOOLE_0:def 10;

      end;

      hence thesis by CARD_1: 5;

    end;

    ::$Notion-Name

    theorem :: GROUP_10:10

    

     Th10: for G be finite Group, p be prime Nat holds ex P be strict Subgroup of G st P is_Sylow_p-subgroup_of_prime p

    proof

      reconsider x1 = 1, x2 = 0 as set;

      let G be finite Group;

      let p be prime Nat;

      reconsider p9 = p as prime Element of NAT by ORDINAL1:def 12;

      set n = ( card G);

      set LO = ( the_left_operation_of G);

      consider m,r be Nat such that

       A1: ( card G) = ((p |^ r) * m) and

       A2: not p divides m by Lm2;

      reconsider k1 = (p9 |^ r) as Element of NAT by ORDINAL1:def 12;

      set SF = ( the_subsets_of_card (k1,the carrier of G));

      ( card SF) = ( card ( Choose (the carrier of G,k1,x1,x2))) by Th2;

      then

       A3: ( card SF) = (n choose k1) by CARD_FIN: 16;

      then (( card SF) mod p) <> 0 by A1, A2, Lm5;

      then

      reconsider E = SF as non empty finite set by NAT_D: 26;

      set LO9 = ( the_extension_of_left_operation_of (k1,LO));

      reconsider T = LO9 as LeftOperation of G, E;

      ex X be Element of E st (( card ( the_orbit_of (X,T))) mod p) <> 0

      proof

        consider f be FinSequence such that

         A4: ( rng f) = ( the_orbits_of T) and

         A5: f is one-to-one by FINSEQ_4: 58;

        reconsider f as FinSequence of ( the_orbits_of T) by A4, FINSEQ_1:def 4;

        deffunc F( set) = ( card (f . $1));

        consider pf be FinSequence such that

         A6: ( len pf) = ( len f) & for i be Nat st i in ( dom pf) holds (pf . i) = F(i) from FINSEQ_1:sch 2;

        for x be object st x in ( rng pf) holds x in NAT

        proof

          let x be object;

          assume x in ( rng pf);

          then

          consider i be Nat such that

           A7: i in ( dom pf) and

           A8: (pf . i) = x by FINSEQ_2: 10;

          i in ( dom f) by A6, A7, FINSEQ_3: 29;

          then (f . i) in ( the_orbits_of T) by A4, FUNCT_1: 3;

          then

          consider X be Subset of E such that

           A9: (f . i) = X and ex x9 be Element of E st X = ( the_orbit_of (x9,T));

          x = ( card X) by A6, A7, A8, A9;

          hence thesis;

        end;

        then ( rng pf) c= NAT ;

        then

        reconsider c = pf as FinSequence of NAT by FINSEQ_1:def 4;

        deffunc F9( set) = ((c . $1) / p);

        consider c9 be FinSequence such that

         A10: ( len c9) = ( len c) & for i be Nat st i in ( dom c9) holds (c9 . i) = F9(i) from FINSEQ_1:sch 2;

        assume

         A11: for X be Element of E holds (( card ( the_orbit_of (X,T))) mod p) = 0 ;

        for x be object st x in ( rng c9) holds x in NAT

        proof

          reconsider p99 = p9 as Real;

          let x be object;

          assume x in ( rng c9);

          then

          consider i be Nat such that

           A12: i in ( dom c9) and

           A13: (c9 . i) = x by FINSEQ_2: 10;

          reconsider i as Element of NAT by ORDINAL1:def 12;

          i in ( dom f) by A6, A10, A12, FINSEQ_3: 29;

          then (f . i) in ( the_orbits_of T) by A4, FUNCT_1: 3;

          then

          consider X be Subset of E such that

           A14: (f . i) = X and

           A15: ex x9 be Element of E st X = ( the_orbit_of (x9,T));

          ( dom pf) = ( dom c9) by A10, FINSEQ_3: 29;

          then (c . i) = ( card X) by A6, A12, A14;

          then

           A16: ((c . i) mod p) = 0 by A11, A15;

          set q = ((c . i) div p9);

          (c . i) = ((p9 * q) + ((c . i) mod p9)) by NAT_D: 2

          .= (p9 * q) by A16;

          then

          consider q be Nat such that

           A17: (c . i) = (p * q);

          x = ((p99 * q) / p99) by A10, A12, A13, A17

          .= ((p99 / p99) * q) by XCMPLX_1: 74

          .= (1 * q) by XCMPLX_1: 60;

          hence thesis by ORDINAL1:def 12;

        end;

        then ( rng c9) c= NAT ;

        then

        reconsider c9 as FinSequence of NAT by FINSEQ_1:def 4;

        

         A18: ( dom c) = ( Seg ( len c9)) by A10, FINSEQ_1:def 3

        .= ( dom c9) by FINSEQ_1:def 3

        .= ( dom (p9 * c9)) by VALUED_1:def 5;

        for k be Nat st k in ( dom c) holds (c . k) = ((p9 * c9) . k)

        proof

          reconsider p99 = p9 as Real;

          let k be Nat;

          assume

           A19: k in ( dom c);

          then k in ( dom c9) by A10, FINSEQ_3: 29;

          

          then (p * (c9 . k)) = (p * ((c . k) / p9)) by A10

          .= ((p99 * (c . k)) / p99) by XCMPLX_1: 74

          .= ((p99 / p99) * (c . k)) by XCMPLX_1: 74

          .= (1 * (c . k)) by XCMPLX_1: 60;

          hence thesis by A18, A19, VALUED_1:def 5;

        end;

        then

         A20: c = (p9 * c9) by A18, FINSEQ_1: 13;

        for i be Element of NAT st i in ( dom pf) holds (pf . i) = F(i) by A6;

        then ( card E) = ( Sum c) by A4, A5, A6, WEDDWITT: 6;

        

        then (( card E) mod p) = ((p9 * ( Sum c9)) mod p9) by A20, RVSUM_1: 87

        .= 0 by NAT_D: 13;

        hence contradiction by A1, A2, A3, Lm5;

      end;

      then

      consider X be Element of E such that

       A21: (( card ( the_orbit_of (X,T))) mod p) <> 0 ;

      set HX = ( the_strict_stabilizer_of (X,T));

      ( card ( the_orbit_of (X,T))) = ( Index HX) by Th8;

      then

       A22: (( index HX) mod p) <> 0 by A21, GROUP_2:def 18;

       A23:

      now

        assume p divides ( index HX);

        then ex t be Nat st ( index HX) = (p * t) by NAT_D:def 3;

        hence contradiction by A22, NAT_D: 13;

      end;

      take HX;

      X in { X9 where X9 be Subset of the carrier of G : ( card X9) = k1 };

      then

       A24: ex X9 be Subset of the carrier of G st X9 = X & ( card X9) = k1;

      reconsider H = HX as finite Group;

      

       A25: the carrier of HX = { g where g be Element of G : ((T ^ g) .: {X}) = {X} } by Def10;

      reconsider X as non empty Subset of G by A24;

      set x = the Element of X;

      reconsider x as Element of G;

      k1 divides n by A1, NAT_D:def 3;

      then k1 <= n by NAT_D: 7;

      then ( card k1) <= ( card the carrier of G);

      then

       A26: ( Segm ( card k1)) c= ( Segm ( card the carrier of G)) by NAT_1: 39;

      now

        reconsider X1 = X as Element of E;

        let z be object;

        assume z in the carrier of H;

        then

        consider g be Element of G such that

         A27: z = g and

         A28: ((T ^ g) .: {X}) = {X} by A25;

        ( dom (T ^ g)) = E by FUNCT_2:def 1;

        then ( Im ((T ^ g),X)) = {((T ^ g) . X)} by FUNCT_1: 59;

        then

         A29: ((T ^ g) . X) = X by A28, ZFMISC_1: 3;

        set h = (g * x);

        (T . g) = ( the_extension_of_left_translation_of (k1,g,LO)) by A26, Def5;

        then

         A30: ((T ^ g) . X1) = ((LO ^ g) .: X1) by A26, Def4;

        reconsider LO as LeftOperation of G, the carrier of G;

        

         A31: (LO ^ g) = ( the_left_translation_of g) by Def2;

        ex x9 be set st x9 in ( dom (LO ^ g)) & x9 in X & (g * x) = ((LO ^ g) . x9)

        proof

          reconsider x9 = x as set;

          take x9;

          ( dom (LO ^ g)) = the carrier of G by FUNCT_2:def 1;

          hence x9 in ( dom (LO ^ g)) & x9 in X;

          thus thesis by A31, TOPGRP_1:def 1;

        end;

        then

         A32: (g * x) in ((LO ^ g) .: X) by FUNCT_1:def 6;

        (h * (x " )) = (g * (x * (x " ))) by GROUP_1:def 3

        .= (g * ( 1_ G)) by GROUP_1:def 5

        .= z by A27, GROUP_1:def 4;

        hence z in (X * (x " )) by A29, A30, A32, GROUP_2: 28;

      end;

      then the carrier of H c= (X * (x " ));

      then ( card the carrier of H) <= ( card (X * (x " ))) by NAT_1: 43;

      then

       A33: ( card H) <= (p |^ r) by A24, Lm7;

      ((p |^ r) * m) = (( card HX) * ( index HX)) by A1, GROUP_2: 147;

      then (p |^ r) divides ( card H) by A2, A23, Lm6;

      then

       A34: (p |^ r) <= ( card H) by NAT_D: 7;

      then ( card H) = (p |^ r) by A33, XXREAL_0: 1;

      then

       A35: H is p -group;

      ( index HX) = ((( index HX) * ( card HX)) * (1 / ( card HX))) by XCMPLX_1: 107

      .= (((p |^ r) * m) * (1 / ( card HX))) by A1, GROUP_2: 147

      .= (((p9 |^ r) * m) * (1 / (p9 |^ r))) by A34, A33, XXREAL_0: 1

      .= (m * ((p9 |^ r) * (1 / (p9 |^ r))))

      .= (m * ((p9 |^ r) / (p9 |^ r))) by XCMPLX_1: 99

      .= m by XCMPLX_1: 88;

      hence thesis by A2, A35;

    end;

    

     Lm8: for n,r be Nat, p be prime Nat st n divides (p |^ r) & n > 1 holds p divides n

    proof

      let n,r be Nat;

      let p be prime Nat;

      assume

       A1: n divides (p |^ r);

      reconsider n9 = n as Element of NAT by ORDINAL1:def 12;

      assume

       A2: n > 1;

      per cases by A1, PEPIN: 32;

        suppose n9 = 1;

        hence thesis by A2;

      end;

        suppose ex k be Element of NAT st n9 = (p * k);

        hence thesis by NAT_D:def 3;

      end;

    end;

    theorem :: GROUP_10:11

    for G be finite Group, p be prime Nat st p divides ( card G) holds ex g be Element of G st ( ord g) = p

    proof

      let G be finite Group;

      let p be prime Nat;

      reconsider p9 = p as prime Element of NAT by ORDINAL1:def 12;

      

       A1: 1 < p9 by NAT_4: 12;

      consider P be strict Subgroup of G such that

       A2: P is_Sylow_p-subgroup_of_prime p by Th10;

      P is p -group by A2;

      then

      consider H be finite Group such that

       A3: P = H and

       A4: H is p -group;

      consider r be Nat such that

       A5: ( card H) = (p |^ r) by A4;

      assume

       A6: p divides ( card G);

      now

        assume r = 0 ;

        then ( card H) = 1 by A5, NEWTON: 4;

        then ( card G) = (1 * ( index P)) by A3, GROUP_2: 147;

        hence contradiction by A6, A2;

      end;

      then ( 0 + 1) < (r + 1) by XREAL_1: 6;

      then 1 <= r by NAT_1: 13;

      then (1 - 1) <= (r - 1) by XREAL_1: 9;

      then

      reconsider r9 = (r - 1) as Element of NAT by INT_1: 3;

      ( 0 + 1) < ((p9 |^ r9) + 1) by XREAL_1: 6;

      then 1 <= (p |^ r9) by NAT_1: 13;

      then

       A7: (1 * p) <= ((p |^ r9) * p) by XREAL_1: 64;

      set H9 = ( (Omega). H);

      

       A8: ( card H) = (( card ( (Omega). H)) * 1);

      (p |^ r) = (p |^ (r9 + 1))

      .= ((p |^ r9) * p) by NEWTON: 6;

      then ( card H9) > 1 by A5, A7, A1, XXREAL_0: 2;

      then

      consider g be Element of H9 such that

       A9: g <> ( 1_ H9) by GR_CY_1: 11;

      reconsider H99 = ( gr {g}) as strict Group;

      

       A10: H99 is cyclic Group by GR_CY_2: 4;

      reconsider H99 as finite strict Group;

      set n = ( card H99);

       A11:

      now

        assume n = 1;

        then ( ord g) = 1 by GR_CY_1: 7;

        hence contradiction by A9, GROUP_1: 43;

      end;

      n >= 1 by GROUP_1: 45;

      then n > 1 by A11, XXREAL_0: 1;

      then p divides n by A5, A8, Lm8, GROUP_2: 148;

      then

      consider H999 be strict Subgroup of H99 such that

       A12: ( card H999) = p9 and for G2 be strict Subgroup of H99 st ( card G2) = p9 holds G2 = H999 by A10, GR_CY_2: 22;

      consider h9 be Element of H999 such that

       A13: ( ord h9) = p by A12, GROUP_8: 1;

      H99 is Subgroup of G by A3, GROUP_2: 56;

      then

      reconsider H999 as strict Subgroup of G by GROUP_2: 56;

      reconsider h9 as Element of H999;

      reconsider h = h9 as Element of G by GROUP_2: 42;

      take h;

      thus thesis by A13, GROUP_8: 5;

    end;

    ::$Notion-Name

    theorem :: GROUP_10:12

    

     Th12: for G be finite Group, p be prime Nat holds (for H be Subgroup of G st H is p -group holds ex P be Subgroup of G st P is_Sylow_p-subgroup_of_prime p & H is Subgroup of P) & (for P1,P2 be Subgroup of G st P1 is_Sylow_p-subgroup_of_prime p & P2 is_Sylow_p-subgroup_of_prime p holds (P1,P2) are_conjugated )

    proof

      let G be finite Group;

      let p be prime Nat;

      reconsider p9 = p as prime Element of NAT by ORDINAL1:def 12;

      

       A1: for H,P be Subgroup of G st H is p -group & P is_Sylow_p-subgroup_of_prime p holds ex g be Element of G st ( carr H) c= ( carr (P |^ g))

      proof

        let H,P be Subgroup of G;

        set H9 = H;

        set E = ( Left_Cosets P);

        set T = ( the_left_operation_of (H9,P));

        reconsider E as non empty finite set by GROUP_2: 135;

        reconsider T as LeftOperation of H9, E;

        assume H is p -group;

        then

         A2: (( card ( the_fixed_points_of T)) mod p) = (( card E) mod p) by Th9;

        assume P is_Sylow_p-subgroup_of_prime p;

        then

         A3: not p divides ( index P);

        now

          assume (( card E) mod p) = 0 ;

          then (ex t be Nat st ( card E) = ((p * t) + 0 ) & 0 < p) or 0 = 0 & p = 0 by NAT_D:def 2;

          then p9 divides ( card E) by NAT_D:def 3;

          hence contradiction by A3, GROUP_2:def 18;

        end;

        then ( card ( the_fixed_points_of T)) <> 0 by A2, NAT_D: 26;

        then

        consider x be object such that

         A4: x in ( the_fixed_points_of T) by CARD_1: 27, XBOOLE_0:def 1;

        x in { x9 where x9 be Element of E : x9 is_fixed_under T } by A4, Def13;

        then

        consider x9 be Element of E such that x = x9 and

         A5: x9 is_fixed_under T;

        x9 in ( Left_Cosets P);

        then

        consider g9 be Element of G such that

         A6: x9 = (g9 * P) by GROUP_2:def 15;

        set g = (g9 " );

        take g;

        now

          reconsider P1 = x9 as Element of ( Left_Cosets P);

          let y be object;

          assume y in ( carr H);

          then

          reconsider h = y as Element of H9;

          reconsider h9 = h as Element of H;

          consider P2 be Element of ( Left_Cosets P), A1,A2 be Subset of G, g99 be Element of G such that

           A7: P2 = (( the_left_translation_of (h9,P)) . P1) & A2 = (g99 * A1) & A1 = P1 & A2 = P2 and

           A8: g99 = h9 by Def8;

          (( the_left_operation_of (H,P)) . h9) = ( the_left_translation_of (h9,P)) by Def9;

          

          then

           A9: ((g9 * P) * (g9 " )) = ((g99 * (g9 * P)) * (g9 " )) by A5, A6, A7

          .= (g99 * ((g9 * P) * (g9 " ))) by GROUP_2: 33;

          g99 in ((g9 * P) * (g9 " ))

          proof

            ( 1_ G) in P by GROUP_2: 46;

            then

             A10: ( 1_ G) in ( carr P);

            g9 = (g9 * ( 1_ G)) by GROUP_1:def 4;

            then (g9 * (g9 " )) = ( 1_ G) & g9 in (g9 * P) by A10, GROUP_1:def 5, GROUP_2: 27;

            then

             A11: g99 = (g99 * ( 1_ G)) & ( 1_ G) in ((g9 * P) * (g9 " )) by GROUP_1:def 4, GROUP_2: 28;

            assume not g99 in ((g9 * P) * (g9 " ));

            hence contradiction by A9, A11, GROUP_2: 27;

          end;

          hence y in ((g9 * P) * (g9 " )) by A8;

        end;

        then ( carr H) c= (((g " ) * P) * g);

        hence thesis by GROUP_3: 59;

      end;

      thus for H be Subgroup of G st H is p -group holds ex P be Subgroup of G st P is_Sylow_p-subgroup_of_prime p & H is Subgroup of P

      proof

        let H be Subgroup of G;

        consider P9 be strict Subgroup of G such that

         A12: P9 is_Sylow_p-subgroup_of_prime p by Th10;

        assume H is p -group;

        then

        consider g be Element of G such that

         A13: ( carr H) c= ( carr (P9 |^ g)) by A1, A12;

        set P = (P9 |^ g);

        take P;

        set H2 = P;

        reconsider H2 as finite Group;

        

         A14: ( card P9) = ( card P) by GROUP_3: 66;

        P9 is p -group by A12;

        then

        consider H1 be finite Group such that

         A15: P9 = H1 and

         A16: H1 is p -group;

        ex r be Nat st ( card H1) = (p |^ r) by A16;

        then

         A17: H2 is p -group by A15, A14;

        

         A18: not p divides ( index P9) by A12;

        (( card P) * ( index P)) = ( card G) by GROUP_2: 147

        .= (( card P) * ( index P9)) by A14, GROUP_2: 147;

        then not p divides ( index P) by A18, XCMPLX_1: 5;

        hence P is_Sylow_p-subgroup_of_prime p by A17;

        thus thesis by A13, GROUP_2: 57;

      end;

      let P1,P2 be Subgroup of G;

      assume

       A19: P1 is_Sylow_p-subgroup_of_prime p;

      then

       A20: P1 is p -group;

      then

      consider H1 be finite Group such that

       A21: P1 = H1 and

       A22: H1 is p -group;

      

       A23: not p divides ( index P1) by A19;

      consider r1 be Nat such that

       A24: ( card H1) = (p |^ r1) by A22;

      assume

       A25: P2 is_Sylow_p-subgroup_of_prime p;

      then

       A26: not p divides ( index P2);

      P2 is p -group by A25;

      then

      consider H2 be finite Group such that

       A27: P2 = H2 and

       A28: H2 is p -group;

      consider r2 be Nat such that

       A29: ( card H2) = (p |^ r2) by A28;

      

       A30: ( card G) = (( card P2) * ( index P2)) by GROUP_2: 147;

      then

       A31: ((p |^ r1) * ( index P1)) = ((p |^ r2) * ( index P2)) by A21, A24, A27, A29, GROUP_2: 147;

      now

        assume

         A32: r1 <> r2;

        per cases by A32, XXREAL_0: 1;

          suppose

           A33: r1 > r2;

          set r = (r1 -' r2);

          

           A34: (r1 - r2) > (r2 - r2) by A33, XREAL_1: 9;

          then

           A35: r = (r1 - r2) by XREAL_0:def 2;

          then

          consider k be Nat such that

           A36: r = (k + 1) by A34, NAT_1: 6;

          r1 = (r2 + r) by A35;

          then (p9 |^ r1) = ((p9 |^ r2) * (p9 |^ r)) by NEWTON: 8;

          then ((p9 |^ r2) * ((p9 |^ r) * ( index P1))) = ((p9 |^ r2) * ( index P2)) by A31;

          then ((p9 |^ r) * ( index P1)) = ( index P2) by XCMPLX_1: 5;

          then (((p |^ k) * p) * ( index P1)) = ( index P2) by A36, NEWTON: 6;

          then (p * ((p |^ k) * ( index P1))) = ( index P2);

          hence contradiction by A26, NAT_D:def 3;

        end;

          suppose

           A37: r1 < r2;

          set r = (r2 -' r1);

          

           A38: (r2 - r1) > (r1 - r1) by A37, XREAL_1: 9;

          then

           A39: r = (r2 - r1) by XREAL_0:def 2;

          then

          consider k be Nat such that

           A40: r = (k + 1) by A38, NAT_1: 6;

          r2 = (r1 + r) by A39;

          then (p9 |^ r2) = ((p9 |^ r1) * (p9 |^ r)) by NEWTON: 8;

          then ((p9 |^ r1) * ((p9 |^ r) * ( index P2))) = ((p9 |^ r1) * ( index P1)) by A21, A24, A27, A29, A30, GROUP_2: 147;

          then ((p9 |^ r) * ( index P2)) = ( index P1) by XCMPLX_1: 5;

          then (((p |^ k) * p) * ( index P2)) = ( index P1) by A40, NEWTON: 6;

          then (p * ((p |^ k) * ( index P2))) = ( index P1);

          hence contradiction by A23, NAT_D:def 3;

        end;

      end;

      then

       A41: ( card ( carr P1)) = ( card ( carr P2)) by A21, A24, A27, A29;

      consider g be Element of G such that

       A42: ( carr P1) c= ( carr (P2 |^ g)) by A1, A20, A25;

      ( card ( carr P2)) = ( card P2)

      .= ( card (P2 |^ g)) by GROUP_3: 66

      .= ( card ( carr (P2 |^ g)));

      then the multMagma of P1 = the multMagma of (P2 |^ g) by A42, A41, CARD_2: 102, GROUP_2: 59;

      hence thesis by GROUP_3:def 11;

    end;

    definition

      let G be Group;

      let p be Nat;

      :: GROUP_10:def19

      func the_sylow_p-subgroups_of_prime (p,G) -> Subset of ( Subgroups G) equals { H where H be Element of ( Subgroups G) : ex P be strict Subgroup of G st P = H & P is_Sylow_p-subgroup_of_prime p };

      correctness

      proof

        set X = { H where H be Element of ( Subgroups G) : ex P be strict Subgroup of G st P = H & P is_Sylow_p-subgroup_of_prime p };

        now

          let x be object;

          assume x in X;

          then ex H be Element of ( Subgroups G) st x = H & ex P be strict Subgroup of G st P = H & P is_Sylow_p-subgroup_of_prime p;

          hence x in ( Subgroups G);

        end;

        hence thesis by TARSKI:def 3;

      end;

    end

    registration

      let G be finite Group;

      let p be prime Nat;

      cluster ( the_sylow_p-subgroups_of_prime (p,G)) -> non empty finite;

      correctness

      proof

        consider P be strict Subgroup of G such that

         A1: P is_Sylow_p-subgroup_of_prime p by Th10;

        reconsider H9 = ( (Omega). P) as Element of ( Subgroups G) by GROUP_3:def 1;

        H9 in ( the_sylow_p-subgroups_of_prime (p,G)) by A1;

        hence thesis by FINSET_1: 1, GROUP_3: 15;

      end;

    end

    definition

      let G be finite Group;

      let p be prime Nat;

      let H be Subgroup of G;

      let h be Element of H;

      :: GROUP_10:def20

      func the_left_translation_of (h,p) -> Function of ( the_sylow_p-subgroups_of_prime (p,G)), ( the_sylow_p-subgroups_of_prime (p,G)) means

      : Def20: for P1 be Element of ( the_sylow_p-subgroups_of_prime (p,G)) holds ex P2 be Element of ( the_sylow_p-subgroups_of_prime (p,G)), H1,H2 be strict Subgroup of G, g be Element of G st P2 = (it . P1) & P1 = H1 & P2 = H2 & (h " ) = g & H2 = (H1 |^ g);

      existence

      proof

        set E = ( the_sylow_p-subgroups_of_prime (p,G));

        set f = { [P1, P2] where P1,P2 be Element of ( the_sylow_p-subgroups_of_prime (p,G)) : ex H1,H2 be strict Subgroup of G, g be Element of G st P1 = H1 & P2 = H2 & (h " ) = g & H2 = (H1 |^ g) };

         A1:

        now

          let x,y1,y2 be object;

          assume [x, y1] in f;

          then

          consider P19,P29 be Element of E such that

           A2: [x, y1] = [P19, P29] and

           A3: ex H1,H2 be strict Subgroup of G, g be Element of G st P19 = H1 & P29 = H2 & (h " ) = g & H2 = (H1 |^ g);

          

           A4: x = P19 by A2, XTUPLE_0: 1;

          assume [x, y2] in f;

          then

          consider P199,P299 be Element of E such that

           A5: [x, y2] = [P199, P299] and

           A6: ex H1,H2 be strict Subgroup of G, g be Element of G st P199 = H1 & P299 = H2 & (h " ) = g & H2 = (H1 |^ g);

          x = P199 by A5, XTUPLE_0: 1;

          hence y1 = y2 by A2, A3, A5, A6, A4, XTUPLE_0: 1;

        end;

        now

          let x be object;

          assume x in f;

          then

          consider P1,P2 be Element of E such that

           A7: x = [P1, P2] and ex H1,H2 be strict Subgroup of G, g be Element of G st P1 = H1 & P2 = H2 & (h " ) = g & H2 = (H1 |^ g);

          reconsider y = P1, z = P2 as object;

          take y, z;

          thus x = [y, z] by A7;

        end;

        then

        reconsider f as Function by A1, FUNCT_1:def 1, RELAT_1:def 1;

        now

          let y be object;

          assume y in ( rng f);

          then

          consider x be object such that

           A8: [x, y] in f by XTUPLE_0:def 13;

          consider P1,P2 be Element of E such that

           A9: [x, y] = [P1, P2] and ex H1,H2 be strict Subgroup of G, g be Element of G st P1 = H1 & P2 = H2 & (h " ) = g & H2 = (H1 |^ g) by A8;

          y = P2 by A9, XTUPLE_0: 1;

          hence y in E;

        end;

        then

         A10: ( rng f) c= E;

        now

          let x be object;

          hereby

            reconsider g = (h " ) as Element of G by GROUP_2: 42;

            assume x in E;

            then

            reconsider P1 = x as Element of E;

            P1 in E;

            then

            consider H1 be Element of ( Subgroups G) such that

             A11: P1 = H1 and

             A12: ex P be strict Subgroup of G st P = H1 & P is_Sylow_p-subgroup_of_prime p;

            reconsider H1 as strict Subgroup of G by A12;

            H1 is p -group by A12;

            then

            consider H9 be finite Group such that

             A13: H1 = H9 & H9 is p -group;

            set H2 = (H1 |^ g);

            reconsider H2 as strict Subgroup of G;

            reconsider H99 = H2 as finite Group;

            (ex r be Nat st ( card H9) = (p |^ r)) & ( card H9) = ( card H99) by A13, GROUP_3: 66;

            then

             A14: H99 is p -group;

            reconsider H29 = H2 as Element of ( Subgroups G) by GROUP_3:def 1;

            

             A15: ( card H1) = ( card H2) by GROUP_3: 66;

            

             A16: (( card H1) * ( index H1)) = ( card G) by GROUP_2: 147

            .= (( card H1) * ( index H2)) by A15, GROUP_2: 147;

             not p divides ( index H1) by A12;

            then not p divides ( index H2) by A16, XCMPLX_1: 5;

            then H2 is_Sylow_p-subgroup_of_prime p by A14;

            then H29 in E;

            then

            reconsider P2 = H2 as Element of E;

            reconsider y = P2 as object;

            take y;

            thus [x, y] in f by A11;

          end;

          given y be object such that

           A17: [x, y] in f;

          consider P1,P2 be Element of E such that

           A18: [x, y] = [P1, P2] and ex H1,H2 be strict Subgroup of G, g be Element of G st P1 = H1 & P2 = H2 & (h " ) = g & H2 = (H1 |^ g) by A17;

          x = P1 by A18, XTUPLE_0: 1;

          hence x in E;

        end;

        then

         A19: ( dom f) = E by XTUPLE_0:def 12;

        then

        reconsider f as Function of E, E by A10, FUNCT_2: 2;

        take f;

        thus for P1 be Element of E holds ex P2 be Element of E, H1,H2 be strict Subgroup of G, g be Element of G st P2 = (f . P1) & P1 = H1 & P2 = H2 & (h " ) = g & H2 = (H1 |^ g)

        proof

          let P1 be Element of E;

          set P2 = (f . P1);

           [P1, P2] in f by A19, FUNCT_1: 1;

          then

          consider P19,P29 be Element of E such that

           A20: [P1, P2] = [P19, P29] and

           A21: ex H1,H2 be strict Subgroup of G, g be Element of G st P19 = H1 & P29 = H2 & (h " ) = g & H2 = (H1 |^ g);

          reconsider P2 as Element of E;

          consider H1,H2 be strict Subgroup of G, g be Element of G such that

           A22: P19 = H1 & P29 = H2 & (h " ) = g and H2 = (H1 |^ g) by A21;

          take P2, H1, H2, g;

          thus P2 = (f . P1);

          thus thesis by A20, A21, A22, XTUPLE_0: 1;

        end;

      end;

      uniqueness

      proof

        let IT1,IT2 be Function of ( the_sylow_p-subgroups_of_prime (p,G)), ( the_sylow_p-subgroups_of_prime (p,G)) such that

         A23: (for P1 be Element of ( the_sylow_p-subgroups_of_prime (p,G)) holds ex P2 be Element of ( the_sylow_p-subgroups_of_prime (p,G)), H1,H2 be strict Subgroup of G, g be Element of G st P2 = (IT1 . P1) & P1 = H1 & P2 = H2 & (h " ) = g & H2 = (H1 |^ g)) & for P1 be Element of ( the_sylow_p-subgroups_of_prime (p,G)) holds ex P2 be Element of ( the_sylow_p-subgroups_of_prime (p,G)), H1,H2 be strict Subgroup of G, g be Element of G st P2 = (IT2 . P1) & P1 = H1 & P2 = H2 & (h " ) = g & H2 = (H1 |^ g);

        let x be Element of ( the_sylow_p-subgroups_of_prime (p,G));

        (ex P12 be Element of ( the_sylow_p-subgroups_of_prime (p,G)), H11,H12 be strict Subgroup of G, g1 be Element of G st P12 = (IT1 . x) & x = H11 & P12 = H12 & (h " ) = g1 & H12 = (H11 |^ g1)) & ex P22 be Element of ( the_sylow_p-subgroups_of_prime (p,G)), H21,H22 be strict Subgroup of G, g2 be Element of G st P22 = (IT2 . x) & x = H21 & P22 = H22 & (h " ) = g2 & H22 = (H21 |^ g2) by A23;

        hence (IT1 . x) = (IT2 . x);

      end;

    end

    definition

      let G be finite Group;

      let p be prime Nat;

      let H be Subgroup of G;

      :: GROUP_10:def21

      func the_left_operation_of (H,p) -> LeftOperation of H, ( the_sylow_p-subgroups_of_prime (p,G)) means

      : Def21: for h be Element of H holds (it . h) = ( the_left_translation_of (h,p));

      existence

      proof

        deffunc f( Element of H) = ( the_left_translation_of ($1,p));

        set E = ( the_sylow_p-subgroups_of_prime (p,G));

        

         A1: for h1,h2 be Element of H holds f(*) = ( f(h1) * f(h2))

        proof

          let h1,h2 be Element of H;

          set f12 = ( the_left_translation_of ((h1 * h2),p));

          set f1 = ( the_left_translation_of (h1,p));

          set f2 = ( the_left_translation_of (h2,p));

          f1 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A2: ex f be Function st f1 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

          f2 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A3: ex f be Function st f2 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

           A4:

          now

            let x be object;

            assume

             A5: x in ( dom f12);

            then

            reconsider P19 = x as Element of E;

            reconsider P1999 = x as Element of E by A5;

            consider P29 be Element of E, H19,H29 be strict Subgroup of G, g2 be Element of G such that

             A6: P29 = (f2 . P19) & P19 = H19 & P29 = H29 and

             A7: (h2 " ) = g2 and

             A8: H29 = (H19 |^ g2) by Def20;

            (f2 . x) in ( rng f2) by A3, A5, FUNCT_1: 3;

            then

            reconsider P199 = (f2 . x) as Element of E;

            consider P299 be Element of E, H199,H299 be strict Subgroup of G, g1 be Element of G such that

             A9: P299 = (f1 . P199) and

             A10: P199 = H199 & P299 = H299 and

             A11: (h1 " ) = g1 and

             A12: H299 = (H199 |^ g1) by Def20;

            consider P2999 be Element of E, H1999,H2999 be strict Subgroup of G, g3 be Element of G such that

             A13: P2999 = (f12 . P1999) and

             A14: P1999 = H1999 and

             A15: P2999 = H2999 and

             A16: ((h1 * h2) " ) = g3 and

             A17: H2999 = (H1999 |^ g3) by Def20;

            g3 = ((h2 " ) * (h1 " )) by A16, GROUP_1: 17;

            

            then P2999 = (H1999 |^ (g2 * g1)) by A7, A11, A15, A17, GROUP_2: 43

            .= P299 by A6, A8, A10, A12, A14, GROUP_3: 60;

            hence (f12 . x) = (f1 . (f2 . x)) by A9, A13;

          end;

          f12 in ( Funcs (E,E)) by FUNCT_2: 9;

          then

           A18: ex f be Function st f12 = f & ( dom f) = E & ( rng f) c= E by FUNCT_2:def 2;

          now

            let x be object;

            hereby

              assume

               A19: x in ( dom f12);

              hence x in ( dom f2) by A3;

              (f2 . x) in ( rng f2) by A3, A19, FUNCT_1: 3;

              hence (f2 . x) in ( dom f1) by A2;

            end;

            assume that

             A20: x in ( dom f2) and (f2 . x) in ( dom f1);

            thus x in ( dom f12) by A18, A20;

          end;

          hence thesis by A4, FUNCT_1: 10;

        end;

        

         A21: f(1_) = ( id E)

        proof

          set f = ( the_left_translation_of (( 1_ H),p));

           A22:

          now

            let x be object;

            assume x in E;

            then

            reconsider P1 = x as Element of E;

            consider P2 be Element of E, H1,H2 be strict Subgroup of G, g be Element of G such that

             A23: P2 = (f . P1) & P1 = H1 & P2 = H2 and

             A24: (( 1_ H) " ) = g and

             A25: H2 = (H1 |^ g) by Def20;

            (( 1_ H) " ) = ( 1_ H) by GROUP_1: 8;

            then g = ( 1_ G) by A24, GROUP_2: 44;

            hence (f . x) = x by A23, A25, GROUP_3: 61;

          end;

          thus thesis by A22;

        end;

        ex T be LeftOperation of H, E st for h be Element of H holds (T . h) = f(h) from ExLeftOperation( A21, A1);

        hence thesis;

      end;

      uniqueness

      proof

        let T1,T2 be LeftOperation of H, ( the_sylow_p-subgroups_of_prime (p,G)) such that

         A26: for h be Element of H holds (T1 . h) = ( the_left_translation_of (h,p)) and

         A27: for h be Element of H holds (T2 . h) = ( the_left_translation_of (h,p));

        let x be Element of H;

        

        thus (T1 . x) = ( the_left_translation_of (x,p)) by A26

        .= (T2 . x) by A27;

      end;

    end

    

     Lm9: for G,H be finite Group, p be prime Nat, I be Subgroup of G, P be Subgroup of H st I = P & I is_Sylow_p-subgroup_of_prime p & H is Subgroup of G holds P is_Sylow_p-subgroup_of_prime p

    proof

      let G,H be finite Group;

      let p be prime Nat;

      let I be Subgroup of G;

      let P be Subgroup of H;

      assume

       A1: I = P;

      assume

       A2: I is_Sylow_p-subgroup_of_prime p;

      then

       A3: I is p -group;

      assume H is Subgroup of G;

      then

      reconsider H9 = H as Subgroup of G;

      

       A4: ( index I) = (( index P) * ( index H9)) by A1, GROUP_2: 149;

       not p divides ( index I) by A2;

      then not p divides ( index P) by A4, NAT_D: 9;

      hence thesis by A1, A3;

    end;

    ::$Notion-Name

    theorem :: GROUP_10:13

    for G be finite Group, p be prime Nat holds (( card ( the_sylow_p-subgroups_of_prime (p,G))) mod p) = 1 & ( card ( the_sylow_p-subgroups_of_prime (p,G))) divides ( card G)

    proof

      let G be finite Group;

      let p be prime Nat;

      set E = ( the_sylow_p-subgroups_of_prime (p,G));

      

       A1: p > 1 by NAT_4: 12;

      consider P be strict Subgroup of G such that

       A2: P is_Sylow_p-subgroup_of_prime p by Th10;

      set P9 = ( (Omega). P);

      reconsider P9 as strict Subgroup of G;

      reconsider H9 = P9 as Element of ( Subgroups G) by GROUP_3:def 1;

      reconsider P9 as strict finite Subgroup of G;

      H9 = P9;

      then P9 in E by A2;

      then

      reconsider P9 as Element of E;

      set T = ( the_left_operation_of (P,p));

      

       A3: P is p -group by A2;

      set G9 = ( (Omega). G);

      set T9 = ( the_left_operation_of (G9,p));

      set K = ( the_strict_stabilizer_of (P9,T9));

       A4:

      now

        reconsider P1 = P9 as Element of E;

        reconsider P99 = P9 as strict Subgroup of G;

        let y be object;

        thus y in ( the_orbit_of (P9,T9)) implies y in E;

        assume y in E;

        then

        consider Q be Element of ( Subgroups G) such that

         A5: y = Q and

         A6: ex P be strict Subgroup of G st P = Q & P is_Sylow_p-subgroup_of_prime p;

        consider Q9 be strict Subgroup of G such that

         A7: Q9 = Q and

         A8: Q9 is_Sylow_p-subgroup_of_prime p by A6;

        (P99,Q9) are_conjugated by A2, A8, Th12;

        then

        consider g be Element of G such that

         A9: Q9 = (P99 |^ g) by GROUP_3:def 11;

        Q9 in E by A7, A8;

        then

        reconsider Q99 = Q9 as Element of E;

        reconsider g9 = (g " ) as Element of G9;

        

         A10: (g9 " ) = ((g " ) " ) by GROUP_2: 48

        .= g;

        ex P2 be Element of E, H1,H2 be strict Subgroup of G, g999 be Element of G st P2 = (( the_left_translation_of (g9,p)) . P1) & P1 = H1 & P2 = H2 & (g9 " ) = g999 & H2 = (H1 |^ g999) by Def20;

        then Q9 = ((T9 ^ g9) . P9) by A9, A10, Def21;

        then (P9,Q99) are_conjugated_under T9;

        hence y in ( the_orbit_of (P9,T9)) by A5, A7;

      end;

      reconsider P as finite Subgroup of G;

      reconsider T as LeftOperation of P, E;

      for x be object holds x in ( the_fixed_points_of T) iff x = P9

      proof

        let x be object;

        for h be Element of P holds P9 = ((T ^ h) . P9)

        proof

          reconsider P1 = P9 as Element of E;

          let h be Element of P;

          consider P2 be Element of E, H1,H2 be strict Subgroup of G, g be Element of G such that

           A11: P2 = (( the_left_translation_of (h,p)) . P1) and

           A12: P1 = H1 and

           A13: P2 = H2 and

           A14: (h " ) = g and

           A15: H2 = (H1 |^ g) by Def20;

          

           A16: g in H1 by A12, A14;

          now

            let y be object;

            assume

             A17: y in ( carr H1);

            then

            reconsider h9 = y as Element of G;

            

             A18: h9 in H1 by A17;

            ex h be Element of G st y = (h * g) & h in ((g " ) * H1)

            proof

              set h99 = (h9 * (g " ));

              take h99;

              

              thus (h99 * g) = (h9 * ((g " ) * g)) by GROUP_1:def 3

              .= (h9 * ( 1_ G)) by GROUP_1:def 5

              .= y by GROUP_1:def 4;

              (g " ) in H1 by A16, GROUP_2: 51;

              then

               A19: h99 in H1 by A18, GROUP_2: 50;

              ex h be Element of G st h99 = ((g " ) * h) & h in H1

              proof

                set h999 = (g * h99);

                take h999;

                

                thus ((g " ) * h999) = (((g " ) * g) * h99) by GROUP_1:def 3

                .= (( 1_ G) * h99) by GROUP_1:def 5

                .= h99 by GROUP_1:def 4;

                thus thesis by A16, A19, GROUP_2: 50;

              end;

              hence thesis by GROUP_2: 103;

            end;

            hence y in (((g " ) * H1) * g) by GROUP_2: 28;

          end;

          then ( carr H1) c= (((g " ) * H1) * g);

          then

           A20: ( carr H1) c= ( carr (H1 |^ g)) by GROUP_3: 59;

          

           A21: ( card ( carr H1)) = ( card H1)

          .= ( card (H1 |^ g)) by GROUP_3: 66

          .= ( card ( carr (H1 |^ g)));

          ((T ^ h) . P9) = P2 by A11, Def21;

          hence thesis by A12, A13, A15, A20, A21, CARD_2: 102, GROUP_2: 59;

        end;

        then

         A22: P9 is_fixed_under T;

        hereby

          assume x in ( the_fixed_points_of T);

          then x in { x9 where x9 be Element of E : x9 is_fixed_under T } by Def13;

          then

          consider Q be Element of E such that

           A23: x = Q and

           A24: Q is_fixed_under T;

          Q in { H99 where H99 be Element of ( Subgroups G) : ex P be strict Subgroup of G st P = H99 & P is_Sylow_p-subgroup_of_prime p };

          then

          consider H99 be Element of ( Subgroups G) such that

           A25: Q = H99 and

           A26: ex P be strict Subgroup of G st P = H99 & P is_Sylow_p-subgroup_of_prime p;

          consider Q9 be strict Subgroup of G such that

           A27: Q9 = H99 and

           A28: Q9 is_Sylow_p-subgroup_of_prime p by A26;

          set N = ( Normalizer Q9);

          now

            let y be object;

            assume

             A29: y in the carrier of P;

            ex h be Element of G st y = h & (Q9 |^ h) = Q9

            proof

              set h = y;

              the carrier of P c= the carrier of G by GROUP_2:def 5;

              then

              reconsider h as Element of G by A29;

              reconsider h9 = h as Element of P by A29;

              take h;

              thus y = h;

              ( dom (T ^ h9)) = E by FUNCT_2:def 1;

              then Q9 in ( dom (T ^ h9)) by A27, A28;

              then

              reconsider Q1 = Q9 as Element of E;

              

               A30: ex Q2 be Element of E, H1,H2 be strict Subgroup of G, g be Element of G st Q2 = (( the_left_translation_of (h9,p)) . Q1) & Q1 = H1 & Q2 = H2 & (h9 " ) = g & H2 = (H1 |^ g) by Def20;

              Q9 = ((T ^ h9) . Q9) & (T . h9) = ( the_left_translation_of (h9,p)) by A24, A25, A27, Def21;

              then (Q9 |^ (h " )) = Q9 by A30, GROUP_2: 48;

              then ((h " ) * h) = ( 1_ G) & (Q9 |^ ((h " ) * h)) = (Q9 |^ h) by GROUP_1:def 5, GROUP_3: 60;

              hence thesis by GROUP_3: 61;

            end;

            then y in N by GROUP_3: 134;

            hence y in the carrier of N;

          end;

          then

           A31: the carrier of P c= the carrier of N;

           A32:

          now

            let y be object;

            assume

             A33: y in the carrier of Q9;

            ex h be Element of G st y = h & (Q9 |^ h) = Q9

            proof

              set h = y;

              the carrier of Q9 c= the carrier of G by GROUP_2:def 5;

              then

              reconsider h as Element of G by A33;

              take h;

              thus y = h;

              for g be Element of G holds g in Q9 iff g in (Q9 |^ h)

              proof

                let g be Element of G;

                hereby

                  assume

                   A34: g in Q9;

                  ex g9 be Element of G st g = (g9 |^ h) & g9 in Q9

                  proof

                    set g9 = ((h * g) * (h " ));

                    take g9;

                    

                    thus (g9 |^ h) = (((h " ) * g9) * h) by GROUP_3:def 2

                    .= (((h " ) * (h * (g * (h " )))) * h) by GROUP_1:def 3

                    .= ((((h " ) * h) * (g * (h " ))) * h) by GROUP_1:def 3

                    .= ((( 1_ G) * (g * (h " ))) * h) by GROUP_1:def 5

                    .= ((g * (h " )) * h) by GROUP_1:def 4

                    .= (g * ((h " ) * h)) by GROUP_1:def 3

                    .= (g * ( 1_ G)) by GROUP_1:def 5

                    .= g by GROUP_1:def 4;

                    h in Q9 by A33;

                    then (h " ) in Q9 & (h * g) in Q9 by A34, GROUP_2: 50, GROUP_2: 51;

                    hence thesis by GROUP_2: 50;

                  end;

                  hence g in (Q9 |^ h) by GROUP_3: 58;

                end;

                assume g in (Q9 |^ h);

                then

                consider g9 be Element of G such that

                 A35: g = (g9 |^ h) and

                 A36: g9 in Q9 by GROUP_3: 58;

                

                 A37: h in Q9 by A33;

                then (h " ) in Q9 by GROUP_2: 51;

                then ((h " ) * g9) in Q9 by A36, GROUP_2: 50;

                then (((h " ) * g9) * h) in Q9 by A37, GROUP_2: 50;

                hence thesis by A35, GROUP_3:def 2;

              end;

              hence thesis;

            end;

            then y in N by GROUP_3: 134;

            hence y in the carrier of N;

          end;

          then

           A38: the carrier of Q9 c= the carrier of N;

          reconsider N as finite Group;

          reconsider Q99 = Q9 as strict Subgroup of N by A38, GROUP_2: 57;

          

           A39: Q99 is_Sylow_p-subgroup_of_prime p by A28, Lm9;

          reconsider P99 = P9 as strict Subgroup of N by A31, GROUP_2: 57;

          P99 is_Sylow_p-subgroup_of_prime p by A2, Lm9;

          then (P99,Q99) are_conjugated by A39, Th12;

          then

          consider n be Element of N such that

           A40: P99 = (Q99 |^ n) by GROUP_3:def 11;

          the carrier of (Q99 |^ n) c= the carrier of N by GROUP_2:def 5;

          

          then

           A41: (the multF of G || the carrier of (Q99 |^ n)) = ((the multF of G || the carrier of N) || the carrier of (Q99 |^ n)) by RELAT_1: 74, ZFMISC_1: 96

          .= (the multF of N || the carrier of (Q99 |^ n)) by GROUP_2:def 5;

          n in ( Normalizer Q9);

          then

          consider n9 be Element of G such that

           A42: n = n9 and

           A43: (Q9 |^ n9) = Q9 by GROUP_3: 134;

           A44:

          now

            let y be object;

            hereby

              assume y in the carrier of (Q9 |^ n9);

              then y in (( carr Q9) |^ n9) by GROUP_3:def 6;

              then

              consider q9 be Element of G such that

               A45: y = (q9 |^ n9) and

               A46: q9 in ( carr Q9) by GROUP_3: 41;

              reconsider q99 = q9 as Element of N by A32, A46;

              (n9 " ) = (n " ) by A42, GROUP_2: 48;

              then ((n9 " ) * q9) = ((n " ) * q99) by GROUP_2: 43;

              then

               A47: (((n9 " ) * q9) * n9) = (((n " ) * q99) * n) by A42, GROUP_2: 43;

              (q9 |^ n9) = (((n9 " ) * q9) * n9) by GROUP_3:def 2

              .= (q99 |^ n) by A47, GROUP_3:def 2;

              then y in (( carr Q99) |^ n) by A45, A46, GROUP_3: 41;

              hence y in the carrier of (Q99 |^ n) by GROUP_3:def 6;

            end;

            assume y in the carrier of (Q99 |^ n);

            then y in (( carr Q99) |^ n) by GROUP_3:def 6;

            then

            consider q99 be Element of N such that

             A48: y = (q99 |^ n) and

             A49: q99 in ( carr Q99) by GROUP_3: 41;

            the carrier of Q99 c= the carrier of G by GROUP_2:def 5;

            then

            reconsider q9 = q99 as Element of G by A49;

            (n9 " ) = (n " ) by A42, GROUP_2: 48;

            then ((n9 " ) * q9) = ((n " ) * q99) by GROUP_2: 43;

            then

             A50: (((n9 " ) * q9) * n9) = (((n " ) * q99) * n) by A42, GROUP_2: 43;

            (q9 |^ n9) = (((n9 " ) * q9) * n9) by GROUP_3:def 2

            .= (q99 |^ n) by A50, GROUP_3:def 2;

            then y in (( carr Q9) |^ n9) by A48, A49, GROUP_3: 41;

            hence y in the carrier of (Q9 |^ n9) by GROUP_3:def 6;

          end;

          then the carrier of (Q9 |^ n9) = the carrier of (Q99 |^ n) by TARSKI: 2;

          

          then the multF of (Q9 |^ n9) = (the multF of G || the carrier of (Q99 |^ n)) by GROUP_2:def 5

          .= the multF of (Q99 |^ n) by A41, GROUP_2:def 5;

          hence x = P9 by A23, A25, A27, A40, A43, A44, TARSKI: 2;

        end;

        assume x = P9;

        then x in { x9 where x9 be Element of E : x9 is_fixed_under T } by A22;

        hence thesis by Def13;

      end;

      then

       A51: ( the_fixed_points_of T) = {P9} by TARSKI:def 1;

      (( card E) mod p) = (( card ( the_fixed_points_of T)) mod p) by A3, Th9

      .= (1 mod p) by A51, CARD_1: 30;

      hence (( card ( the_sylow_p-subgroups_of_prime (p,G))) mod p) = 1 by A1, NAT_D: 14;

      

       A52: ( card ( the_orbit_of (P9,T9))) = ( Index K) by Th8;

      reconsider K as Subgroup of G9;

      ( card G) = (( card G9) * 1);

      then

       A53: ( card G) = (( card K) * ( index K)) by GROUP_2: 147;

      ex B be finite set st B = ( Left_Cosets K) & ( index K) = ( card B) by GROUP_2: 146;

      then ( card E) = ( index K) by A52, A4, TARSKI: 2;

      hence thesis by A53, NAT_D:def 3;

    end;

    begin

    theorem :: GROUP_10:14

    for X,Y be non empty set holds ( card the set of all [:X, {y}:] where y be Element of Y) = ( card Y) by Lm3;

    theorem :: GROUP_10:15

    for n,m,r be Nat, p be prime Nat st n = ((p |^ r) * m) & not p divides m holds ((n choose (p |^ r)) mod p) <> 0 by Lm5;

    theorem :: GROUP_10:16

    for n be non zero Nat holds ( card ( INT.Group n)) = n by Lm1;

    theorem :: GROUP_10:17

    for G be Group, A be non empty Subset of G, g be Element of G holds ( card A) = ( card (A * g)) by Lm7;