group_11.miz



    begin

    reserve G for Group;

    reserve A,B for non empty Subset of G;

    reserve N,H,H1,H2 for Subgroup of G;

    reserve x,a,b for Element of G;

    theorem :: GROUP_11:1

    

     Th1: for N be normal Subgroup of G, x1,x2 be Element of G holds ((x1 * N) * (x2 * N)) = ((x1 * x2) * N)

    proof

      let N be normal Subgroup of G, x1,x2 be Element of G;

      ((x1 * N) * (x2 * N)) = (((x1 * N) * x2) * N) by GROUP_2: 10

      .= ((x1 * (N * x2)) * N) by GROUP_2: 29

      .= ((x1 * (x2 * N)) * N) by GROUP_3: 117

      .= (((x1 * x2) * N) * N) by GROUP_2: 105

      .= ((x1 * x2) * (N * N)) by GROUP_2: 29;

      hence thesis by GROUP_2: 76;

    end;

    theorem :: GROUP_11:2

    

     Th2: for G be Group, N be Subgroup of G, x,y be Element of G st y in (x * N) holds (x * N) = (y * N)

    proof

      let G be Group, N be Subgroup of G, x,y be Element of G;

      assume

       A1: y in (x * N);

      y in (y * N) by GROUP_2: 108;

      then (x * N) meets (y * N) by A1, XBOOLE_0: 3;

      hence thesis by GROUP_2: 115;

    end;

    theorem :: GROUP_11:3

    

     Th3: for N be Subgroup of G, H be Subgroup of G, x be Element of G st (x * N) meets ( carr H) holds ex y be Element of G st y in (x * N) & y in H

    proof

      let N be Subgroup of G, H be Subgroup of G, x be Element of G;

      assume (x * N) meets ( carr H);

      then

      consider y be object such that

       A1: y in (x * N) & y in ( carr H) by XBOOLE_0: 3;

      reconsider y as Element of G by A1;

      y in H by A1, STRUCT_0:def 5;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:4

    

     Th4: for x,y be Element of G, N be normal Subgroup of G st y in N holds ((x * y) * (x " )) in N

    proof

      let x,y be Element of G, N be normal Subgroup of G;

      assume y in N;

      then (x * y) in (x * N) by GROUP_2: 103;

      then (x * y) in (N * x) by GROUP_3: 117;

      then

      consider y1 be Element of G such that

       A1: (x * y) = (y1 * x) & y1 in N by GROUP_2: 104;

      ((x * y) * (x " )) = (y1 * (x * (x " ))) by A1, GROUP_1:def 3

      .= (y1 * ( 1_ G)) by GROUP_1:def 5

      .= y1 by GROUP_1:def 4;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:5

    

     Th5: for N be Subgroup of G st for x,y be Element of G st y in N holds ((x * y) * (x " )) in N holds N is normal

    proof

      let N be Subgroup of G such that

       A1: for x,y be Element of G st y in N holds ((x * y) * (x " )) in N;

      for x be Element of G holds (x * N) c= (N * x)

      proof

        let x be Element of G;

        let z be object;

        assume

         A2: z in (x * N);

        then

        reconsider z as Element of G;

        consider z1 be Element of G such that

         A3: z = (x * z1) & z1 in N by A2, GROUP_2: 103;

        

         A4: ((x * z1) * (x " )) in N by A1, A3;

        (((x * z1) * (x " )) * x) = z by A3, GROUP_3: 1;

        hence thesis by A4, GROUP_2: 104;

      end;

      hence thesis by GROUP_3: 118;

    end;

    theorem :: GROUP_11:6

    

     Th6: x in (H1 * H2) iff ex a, b st x = (a * b) & a in H1 & b in H2

    proof

      thus x in (H1 * H2) implies ex a, b st x = (a * b) & a in H1 & b in H2

      proof

        assume x in (H1 * H2);

        then

        consider a, b such that

         A1: x = (a * b) & a in ( carr H1) & b in ( carr H2);

        a in H1 & b in H2 by A1, STRUCT_0:def 5;

        hence thesis by A1;

      end;

      given a, b such that

       A2: x = (a * b) & a in H1 & b in H2;

      a in ( carr H1) & b in ( carr H2) by A2, STRUCT_0:def 5;

      hence thesis by A2;

    end;

    theorem :: GROUP_11:7

    

     Th7: for G be Group, N1,N2 be strict normal Subgroup of G holds ex M be strict Subgroup of G st the carrier of M = (N1 * N2)

    proof

      let G be Group, N1,N2 be strict normal Subgroup of G;

      

       A1: ( 1_ G) in (N1 * N2)

      proof

        

         A2: ( 1_ G) in N1 & ( 1_ G) in N2 by GROUP_2: 46;

        (( 1_ G) * ( 1_ G)) = ( 1_ G) by GROUP_1:def 4;

        hence thesis by A2, Th6;

      end;

      

       A3: for x,y be Element of G holds x in (N1 * N2) & y in (N1 * N2) implies (x * y) in (N1 * N2)

      proof

        let x,y be Element of G;

        assume that

         A4: x in (N1 * N2) and

         A5: y in (N1 * N2);

        consider a,b be Element of G such that

         A6: x = (a * b) & a in N1 & b in N2 by A4, Th6;

        consider c,d be Element of G such that

         A7: y = (c * d) & c in N1 & d in N2 by A5, Th6;

        

         A8: (x * y) = (((a * b) * c) * d) by A6, A7, GROUP_1:def 3

        .= ((a * (b * c)) * d) by GROUP_1:def 3;

        (b * c) in (N2 * N1) by A6, A7, Th6;

        then (b * c) in (N1 * N2) by GROUP_3: 125;

        then

        consider b9,c9 be Element of G such that

         A9: (b * c) = (b9 * c9) & b9 in N1 & c9 in N2 by Th6;

        

         A10: (x * y) = (((a * b9) * c9) * d) by A8, A9, GROUP_1:def 3

        .= ((a * b9) * (c9 * d)) by GROUP_1:def 3;

        

         A11: (a * b9) in N1 by A6, A9, GROUP_2: 50;

        (c9 * d) in N2 by A7, A9, GROUP_2: 50;

        hence thesis by A10, A11, Th6;

      end;

      for x be Element of G holds x in (N1 * N2) implies (x " ) in (N1 * N2)

      proof

        let x be Element of G;

        assume x in (N1 * N2);

        then

        consider a,b be Element of G such that

         A12: x = (a * b) & a in N1 & b in N2 by Th6;

        

         A13: (x " ) = ((b " ) * (a " )) by A12, GROUP_1: 17;

        (b " ) in N2 & (a " ) in N1 by A12, GROUP_2: 51;

        then (x " ) in (N2 * N1) by A13, Th6;

        hence thesis by GROUP_3: 125;

      end;

      hence thesis by A1, A3, GROUP_2: 52;

    end;

    theorem :: GROUP_11:8

    

     Th8: for G be Group, N1,N2 be strict normal Subgroup of G holds ex M be strict normal Subgroup of G st the carrier of M = (N1 * N2)

    proof

      let G be Group, N1,N2 be strict normal Subgroup of G;

      consider M be strict Subgroup of G such that

       A1: the carrier of M = (N1 * N2) by Th7;

      for x,y be Element of G st y in M holds ((x * y) * (x " )) in M

      proof

        let x,y be Element of G;

        assume y in M;

        then y in the carrier of M by STRUCT_0:def 5;

        then

        consider a,b be Element of G such that

         A2: y = (a * b) & a in N1 & b in N2 by A1, Th6;

        

         A3: ((x * y) * (x " )) = (((x * a) * b) * (x " )) by A2, GROUP_1:def 3

        .= ((x * a) * (b * (x " ))) by GROUP_1:def 3

        .= (((x * a) * ( 1_ G)) * (b * (x " ))) by GROUP_1:def 4

        .= (((x * a) * ((x " ) * x)) * (b * (x " ))) by GROUP_1:def 5

        .= ((((x * a) * (x " )) * x) * (b * (x " ))) by GROUP_1:def 3

        .= (((x * a) * (x " )) * (x * (b * (x " )))) by GROUP_1:def 3

        .= (((x * a) * (x " )) * ((x * b) * (x " ))) by GROUP_1:def 3;

        ((x * a) * (x " )) in N1 & ((x * b) * (x " )) in N2 by A2, Th4;

        then ((x * y) * (x " )) in (N1 * N2) by A3, Th6;

        hence thesis by A1, STRUCT_0:def 5;

      end;

      then M is normal Subgroup of G by Th5;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:9

    

     Th9: for G be Group, N,N1,N2 be Subgroup of G st the carrier of N = (N1 * N2) holds N1 is Subgroup of N & N2 is Subgroup of N

    proof

      let G be Group, N,N1,N2 be Subgroup of G;

      assume

       A1: the carrier of N = (N1 * N2);

      for x be Element of G st x in N1 holds x in N

      proof

        let x be Element of G;

        assume

         A2: x in N1;

        

         A3: ( 1_ G) in N2 by GROUP_2: 46;

        x = (x * ( 1_ G)) by GROUP_1:def 4;

        then x in (N1 * N2) by A2, A3, Th6;

        hence thesis by A1, STRUCT_0:def 5;

      end;

      hence N1 is Subgroup of N by GROUP_2: 58;

      for y be Element of G st y in N2 holds y in N

      proof

        let y be Element of G;

        assume

         A4: y in N2;

        

         A5: ( 1_ G) in N1 by GROUP_2: 46;

        y = (( 1_ G) * y) by GROUP_1:def 4;

        then y in (N1 * N2) by A4, A5, Th6;

        hence thesis by A1, STRUCT_0:def 5;

      end;

      hence N2 is Subgroup of N by GROUP_2: 58;

    end;

    theorem :: GROUP_11:10

    

     Th10: for N,N1,N2 be normal Subgroup of G, a,b be Element of G st the carrier of N = (N1 * N2) holds ((a * N1) * (b * N2)) = ((a * b) * N)

    proof

      let N,N1,N2 be normal Subgroup of G;

      let a,b be Element of G;

      assume

       A1: the carrier of N = (N1 * N2);

      ((a * N1) * (b * N2)) = (((a * N1) * b) * N2) by GROUP_2: 10

      .= ((a * (N1 * b)) * N2) by GROUP_2: 29

      .= ((a * (b * N1)) * N2) by GROUP_3: 117

      .= (((a * b) * N1) * N2) by GROUP_2: 105

      .= ((a * b) * (N1 * N2)) by GROUP_4: 45;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:11

    for N be normal Subgroup of G holds for x holds ((x * N) * (x " )) c= ( carr N)

    proof

      let N be normal Subgroup of G;

      let x;

      (x * N) c= (N * x) by GROUP_3: 118;

      then

       A1: ((x * N) * (x " )) c= ((N * x) * (x " )) by GROUP_3: 5;

      ((N * x) * (x " )) = (N * (x * (x " ))) by GROUP_2: 107

      .= (N * ( 1_ G)) by GROUP_1:def 5;

      hence thesis by A1, GROUP_2: 109;

    end;

    definition

      let G be Group, A be Subset of G;

      let N be Subgroup of G;

      :: GROUP_11:def1

      func N ` A -> Subset of G equals { x where x be Element of G : (x * N) c= A };

      correctness

      proof

        { x where x be Element of G : (x * N) c= A } c= the carrier of G

        proof

          let y be object;

          assume y in { x where x be Element of G : (x * N) c= A };

          then ex x be Element of G st y = x & (x * N) c= A;

          hence thesis;

        end;

        hence thesis;

      end;

      :: GROUP_11:def2

      func N ~ A -> Subset of G equals { x where x be Element of G : (x * N) meets A };

      correctness

      proof

        { x where x be Element of G : (x * N) meets A } c= the carrier of G

        proof

          let y be object;

          assume y in { x where x be Element of G : (x * N) meets A };

          then ex x be Element of G st y = x & (x * N) meets A;

          hence thesis;

        end;

        hence thesis;

      end;

    end

    theorem :: GROUP_11:12

    

     Th12: for x be Element of G st x in (N ` A) holds (x * N) c= A

    proof

      let x be Element of G;

      assume x in (N ` A);

      then ex x1 be Element of G st x1 = x & (x1 * N) c= A;

      hence thesis;

    end;

    theorem :: GROUP_11:13

    for x be Element of G st (x * N) c= A holds x in (N ` A);

    theorem :: GROUP_11:14

    

     Th14: for x be Element of G st x in (N ~ A) holds (x * N) meets A

    proof

      let x be Element of G;

      assume x in (N ~ A);

      then ex x1 be Element of G st x = x1 & (x1 * N) meets A;

      hence thesis;

    end;

    theorem :: GROUP_11:15

    for x be Element of G st (x * N) meets A holds x in (N ~ A);

    theorem :: GROUP_11:16

    

     Th16: (N ` A) c= A

    proof

      let x be object;

      assume x in (N ` A);

      then

      consider y be Element of G such that

       A1: y = x & (y * N) c= A;

      y in (y * N) by GROUP_2: 108;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:17

    

     Th17: A c= (N ~ A)

    proof

      let x be object;

      assume

       A1: x in A;

      then

      reconsider x9 = x as Element of G;

      x9 in (x9 * N) by GROUP_2: 108;

      then (x9 * N) meets A by A1, XBOOLE_0: 3;

      hence thesis;

    end;

    theorem :: GROUP_11:18

    

     Th18: (N ` A) c= (N ~ A)

    proof

      

       A1: (N ` A) c= A by Th16;

      A c= (N ~ A) by Th17;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:19

    (N ~ (A \/ B)) = ((N ~ A) \/ (N ~ B))

    proof

      thus (N ~ (A \/ B)) c= ((N ~ A) \/ (N ~ B))

      proof

        let x be object;

        assume

         A1: x in (N ~ (A \/ B));

        then

        reconsider x as Element of G;

        (x * N) meets (A \/ B) by A1, Th14;

        then (x * N) meets A or (x * N) meets B by XBOOLE_1: 70;

        then x in (N ~ A) or x in (N ~ B);

        hence thesis by XBOOLE_0:def 3;

      end;

      let x be object;

      assume

       A2: x in ((N ~ A) \/ (N ~ B));

      then

      reconsider x as Element of G;

      x in (N ~ A) or x in (N ~ B) by A2, XBOOLE_0:def 3;

      then (x * N) meets A or (x * N) meets B by Th14;

      then (x * N) meets (A \/ B) by XBOOLE_1: 70;

      hence thesis;

    end;

    theorem :: GROUP_11:20

    (N ` (A /\ B)) = ((N ` A) /\ (N ` B))

    proof

      thus (N ` (A /\ B)) c= ((N ` A) /\ (N ` B))

      proof

        let x be object;

        assume

         A1: x in (N ` (A /\ B));

        then

        reconsider x as Element of G;

        consider x1 be Element of G such that

         A2: x1 = x & (x1 * N) c= (A /\ B) by A1;

        (x * N) c= A & (x * N) c= B by A2, XBOOLE_1: 18;

        then x in (N ` A) & x in (N ` B);

        hence thesis by XBOOLE_0:def 4;

      end;

      let x be object;

      assume

       A3: x in ((N ` A) /\ (N ` B));

      then

      reconsider x as Element of G;

      x in (N ` A) & x in (N ` B) by A3, XBOOLE_0:def 4;

      then (x * N) c= A & (x * N) c= B by Th12;

      then (x * N) c= (A /\ B) by XBOOLE_1: 19;

      hence thesis;

    end;

    theorem :: GROUP_11:21

    A c= B implies (N ` A) c= (N ` B)

    proof

      assume

       A1: A c= B;

      let x be object;

      assume

       A2: x in (N ` A);

      then

      reconsider x as Element of G;

      (x * N) c= A by A2, Th12;

      then (x * N) c= B by A1;

      hence thesis;

    end;

    theorem :: GROUP_11:22

    A c= B implies (N ~ A) c= (N ~ B)

    proof

      assume

       A1: A c= B;

      let x be object;

      assume

       A2: x in (N ~ A);

      then

      reconsider x as Element of G;

      (x * N) meets A by A2, Th14;

      then (x * N) meets B by A1, XBOOLE_1: 63;

      hence thesis;

    end;

    theorem :: GROUP_11:23

    ((N ` A) \/ (N ` B)) c= (N ` (A \/ B))

    proof

      let x be object;

      assume

       A1: x in ((N ` A) \/ (N ` B));

      then

      reconsider x as Element of G;

      per cases by A1, XBOOLE_0:def 3;

        suppose x in (N ` A);

        then (x * N) c= (A \/ B) by Th12, XBOOLE_1: 10;

        hence thesis;

      end;

        suppose x in (N ` B);

        then (x * N) c= (A \/ B) by Th12, XBOOLE_1: 10;

        hence thesis;

      end;

    end;

    theorem :: GROUP_11:24

    (N ~ (A \/ B)) = ((N ~ A) \/ (N ~ B))

    proof

      thus (N ~ (A \/ B)) c= ((N ~ A) \/ (N ~ B))

      proof

        let x be object;

        assume

         A1: x in (N ~ (A \/ B));

        then

        reconsider x as Element of G;

        (x * N) meets (A \/ B) by A1, Th14;

        then (x * N) meets A or (x * N) meets B by XBOOLE_1: 70;

        then x in (N ~ A) or x in (N ~ B);

        hence thesis by XBOOLE_0:def 3;

      end;

      let x be object;

      assume

       A2: x in ((N ~ A) \/ (N ~ B));

      then

      reconsider x as Element of G;

      x in (N ~ A) or x in (N ~ B) by A2, XBOOLE_0:def 3;

      then (x * N) meets A or (x * N) meets B by Th14;

      then (x * N) meets (A \/ B) by XBOOLE_1: 70;

      hence thesis;

    end;

    theorem :: GROUP_11:25

    

     Th25: N is Subgroup of H implies (H ` A) c= (N ` A)

    proof

      assume

       A1: N is Subgroup of H;

      let x be object;

      assume

       A2: x in (H ` A);

      then

      reconsider x as Element of G;

      

       A3: (x * N) c= (x * H) by A1, GROUP_3: 6;

      (x * H) c= A by A2, Th12;

      then (x * N) c= A by A3;

      hence thesis;

    end;

    theorem :: GROUP_11:26

    

     Th26: N is Subgroup of H implies (N ~ A) c= (H ~ A)

    proof

      assume

       A1: N is Subgroup of H;

      let x be object;

      assume

       A2: x in (N ~ A);

      then

      reconsider x as Element of G;

      (x * N) meets A by A2, Th14;

      then (x * H) meets A by A1, GROUP_3: 6, XBOOLE_1: 63;

      hence thesis;

    end;

    theorem :: GROUP_11:27

    for G be Group, A,B be non empty Subset of G, N be normal Subgroup of G holds ((N ` A) * (N ` B)) c= (N ` (A * B))

    proof

      let G be Group, A,B be non empty Subset of G, N be normal Subgroup of G;

      let x be object;

      assume

       A1: x in ((N ` A) * (N ` B));

      then

      reconsider x as Element of G;

      consider x1,x2 be Element of G such that

       A2: x = (x1 * x2) & x1 in (N ` A) & x2 in (N ` B) by A1;

      (x1 * N) c= A & (x2 * N) c= B by A2, Th12;

      then ((x1 * N) * (x2 * N)) c= (A * B) by GROUP_3: 4;

      then ((x1 * x2) * N) c= (A * B) by Th1;

      hence thesis by A2;

    end;

    theorem :: GROUP_11:28

    

     Th28: for x be Element of G st x in (N ~ (A * B)) holds (x * N) meets (A * B)

    proof

      let x be Element of G;

      assume x in (N ~ (A * B));

      then

      consider x1 be Element of G such that

       A1: x = x1 & (x1 * N) meets (A * B);

      thus thesis by A1;

    end;

    theorem :: GROUP_11:29

    for G be Group, A,B be non empty Subset of G, N be normal Subgroup of G holds ((N ~ A) * (N ~ B)) = (N ~ (A * B))

    proof

      let G be Group, A,B be non empty Subset of G, N be normal Subgroup of G;

      thus ((N ~ A) * (N ~ B)) c= (N ~ (A * B))

      proof

        let x be object;

        assume

         A1: x in ((N ~ A) * (N ~ B));

        then

        reconsider x as Element of G;

        consider x1,x2 be Element of G such that

         A2: x = (x1 * x2) & x1 in (N ~ A) & x2 in (N ~ B) by A1;

        

         A3: (x1 * N) meets A by A2, Th14;

        

         A4: (x2 * N) meets B by A2, Th14;

        consider x19 be object such that

         A5: x19 in (x1 * N) & x19 in A by A3, XBOOLE_0: 3;

        consider x29 be object such that

         A6: x29 in (x2 * N) & x29 in B by A4, XBOOLE_0: 3;

        reconsider x19 as Element of G by A5;

        reconsider x29 as Element of G by A6;

        

         A7: (x19 * x29) in (A * B) by A5, A6;

        (x19 * x29) in ((x1 * N) * (x2 * N)) by A5, A6;

        then ((x1 * N) * (x2 * N)) meets (A * B) by A7, XBOOLE_0: 3;

        then ((x1 * x2) * N) meets (A * B) by Th1;

        hence thesis by A2;

      end;

      let x be object;

      assume

       A8: x in (N ~ (A * B));

      then

      reconsider x as Element of G;

      (x * N) meets (A * B) by A8, Th28;

      then

      consider x1 be object such that

       A9: x1 in (x * N) & x1 in (A * B) by XBOOLE_0: 3;

      reconsider x1 as Element of G by A9;

      consider y1,y2 be Element of G such that

       A10: x1 = (y1 * y2) & y1 in A & y2 in B by A9;

      (x * N) = ((y1 * y2) * N) by A9, A10, Th2

      .= ((y1 * N) * (y2 * N)) by Th1;

      then x in ((y1 * N) * (y2 * N)) by GROUP_2: 108;

      then

      consider g1,g2 be Element of G such that

       A11: x = (g1 * g2) & g1 in (y1 * N) & g2 in (y2 * N);

      (y1 * N) = (g1 * N) & (y2 * N) = (g2 * N) by A11, Th2;

      then y1 in (g1 * N) & y2 in (g2 * N) by GROUP_2: 108;

      then (g1 * N) meets A & (g2 * N) meets B by A10, XBOOLE_0: 3;

      then g1 in (N ~ A) & g2 in (N ~ B);

      hence thesis by A11;

    end;

    theorem :: GROUP_11:30

    

     Th30: for x be Element of G st x in (N ~ (N ` (N ~ A))) holds (x * N) meets (N ` (N ~ A))

    proof

      let x be Element of G;

      assume x in (N ~ (N ` (N ~ A)));

      then ex x1 be Element of G st x = x1 & (x1 * N) meets (N ` (N ~ A));

      hence thesis;

    end;

    theorem :: GROUP_11:31

    

     Th31: for x be Element of G st x in (N ` (N ~ A)) holds (x * N) c= (N ~ A)

    proof

      let x be Element of G;

      assume x in (N ` (N ~ A));

      then ex x1 be Element of G st x1 = x & (x1 * N) c= (N ~ A);

      hence thesis;

    end;

    theorem :: GROUP_11:32

    

     Th32: for x be Element of G st x in (N ~ (N ~ A)) holds (x * N) meets (N ~ A)

    proof

      let x be Element of G;

      assume x in (N ~ (N ~ A));

      then ex x1 be Element of G st x = x1 & (x1 * N) meets (N ~ A);

      hence thesis;

    end;

    theorem :: GROUP_11:33

    

     Th33: for x be Element of G st x in (N ~ (N ` A)) holds (x * N) meets (N ` A)

    proof

      let x be Element of G;

      assume x in (N ~ (N ` A));

      then ex x1 be Element of G st x = x1 & (x1 * N) meets (N ` A);

      hence thesis;

    end;

    theorem :: GROUP_11:34

    

     Th34: (N ` (N ` A)) = (N ` A)

    proof

      thus (N ` (N ` A)) c= (N ` A)

      proof

        let x be object;

        assume x in (N ` (N ` A));

        then

        consider y be Element of G such that

         A1: y = x & (y * N) c= (N ` A);

        y in (y * N) by GROUP_2: 108;

        hence thesis by A1;

      end;

      let x be object;

      assume

       A2: x in (N ` A);

      then

      reconsider x9 = x as Element of G;

      

       A3: (x9 * N) c= A by A2, Th12;

      (x9 * N) c= (N ` A)

      proof

        let y be object;

        assume

         A4: y in (x9 * N);

        then

        reconsider y9 = y as Element of G;

        (x9 * N) = (y9 * N) by A4, Th2;

        hence thesis by A3;

      end;

      hence thesis;

    end;

    theorem :: GROUP_11:35

    

     Th35: (N ~ A) = (N ~ (N ~ A))

    proof

      thus (N ~ A) c= (N ~ (N ~ A))

      proof

        let x be object;

        assume

         A1: x in (N ~ A);

        then

        reconsider x as Element of G;

        x in (x * N) by GROUP_2: 108;

        then (x * N) meets (N ~ A) by A1, XBOOLE_0: 3;

        hence thesis;

      end;

      let x be object;

      assume

       A2: x in (N ~ (N ~ A));

      then

      reconsider x9 = x as Element of G;

      (x9 * N) meets (N ~ A) by A2, Th32;

      then

      consider y be object such that

       A3: y in (x9 * N) & y in (N ~ A) by XBOOLE_0: 3;

      reconsider y9 = y as Element of G by A3;

      

       A4: (y9 * N) meets A by A3, Th14;

      (y9 * N) = (x9 * N) by A3, Th2;

      hence thesis by A4;

    end;

    theorem :: GROUP_11:36

    (N ` (N ` A)) c= (N ~ (N ~ A))

    proof

      (N ` A) c= (N ~ A) by Th18;

      then (N ` (N ` A)) c= (N ~ A) by Th34;

      hence thesis by Th35;

    end;

    theorem :: GROUP_11:37

    (N ~ (N ` A)) c= A

    proof

      let x be object;

      assume

       A1: x in (N ~ (N ` A));

      then

      reconsider x9 = x as Element of G;

      (x9 * N) meets (N ` A) by A1, Th33;

      then

      consider y be object such that

       A2: y in (x9 * N) & y in (N ` A) by XBOOLE_0: 3;

      reconsider y9 = y as Element of G by A2;

      (y9 * N) c= A by A2, Th12;

      then

       A3: (x9 * N) c= A by A2, Th2;

      x9 in (x9 * N) by GROUP_2: 108;

      hence thesis by A3;

    end;

    theorem :: GROUP_11:38

    (N ` (N ~ (N ` A))) = (N ` A)

    proof

      thus (N ` (N ~ (N ` A))) c= (N ` A)

      proof

        let x be object;

        assume x in (N ` (N ~ (N ` A)));

        then

        consider x1 be Element of G such that

         A1: x1 = x & (x1 * N) c= (N ~ (N ` A));

        x1 in (x1 * N) by GROUP_2: 108;

        then (x1 * N) meets (N ` A) by A1, Th33;

        then

        consider y be object such that

         A2: y in (x1 * N) & y in (N ` A) by XBOOLE_0: 3;

        reconsider y as Element of G by A2;

        (y * N) c= A by A2, Th12;

        then (x1 * N) c= A by A2, Th2;

        hence thesis by A1;

      end;

      let x be object;

      assume

       A3: x in (N ` A);

      then

      reconsider x as Element of G;

      (x * N) c= (N ~ (N ` A))

      proof

        let y be object;

        assume

         A4: y in (x * N);

        then

        reconsider y as Element of G;

        (y * N) = (x * N) by A4, Th2;

        then x in (y * N) by GROUP_2: 108;

        then (y * N) meets (N ` A) by A3, XBOOLE_0: 3;

        hence thesis;

      end;

      hence thesis;

    end;

    theorem :: GROUP_11:39

    

     Th39: A c= (N ` (N ~ A)) implies (N ~ A) c= (N ~ (N ` (N ~ A)))

    proof

      assume

       A1: A c= (N ` (N ~ A));

      let x be object;

      assume

       A2: x in (N ~ A);

      then

      reconsider x as Element of G;

      (x * N) meets A by A2, Th14;

      then (x * N) meets (N ` (N ~ A)) by A1, XBOOLE_1: 63;

      hence thesis;

    end;

    theorem :: GROUP_11:40

    (N ~ (N ` (N ~ A))) = (N ~ A)

    proof

      thus (N ~ (N ` (N ~ A))) c= (N ~ A)

      proof

        let x be object;

        assume

         A1: x in (N ~ (N ` (N ~ A)));

        then

        reconsider x as Element of G;

        (x * N) meets (N ` (N ~ A)) by A1, Th30;

        then

        consider y be object such that

         A2: y in (x * N) & y in (N ` (N ~ A)) by XBOOLE_0: 3;

        reconsider y as Element of G by A2;

        (y * N) c= (N ~ A) by A2, Th31;

        then

         A3: (x * N) c= (N ~ A) by A2, Th2;

        x in (x * N) by GROUP_2: 108;

        hence thesis by A3;

      end;

      thus (N ~ A) c= (N ~ (N ` (N ~ A)))

      proof

        A c= (N ` (N ~ A))

        proof

          let x be object;

          assume

           A4: x in A;

          then

          reconsider x as Element of G;

          (x * N) c= (N ~ A)

          proof

            let y be object;

            assume

             A5: y in (x * N);

            then

            reconsider y as Element of G;

            (y * N) = (x * N) by A5, Th2;

            then x in (y * N) by GROUP_2: 108;

            then (y * N) meets A by A4, XBOOLE_0: 3;

            hence thesis;

          end;

          hence thesis;

        end;

        hence thesis by Th39;

      end;

    end;

    theorem :: GROUP_11:41

    

     Th41: for x be Element of G st x in (N ` (N ` A)) holds (x * N) c= (N ` A)

    proof

      let x be Element of G;

      assume x in (N ` (N ` A));

      then ex x1 be Element of G st x1 = x & (x1 * N) c= (N ` A);

      hence thesis;

    end;

    theorem :: GROUP_11:42

    (N ` (N ` A)) = (N ~ (N ` A))

    proof

      thus (N ` (N ` A)) c= (N ~ (N ` A))

      proof

        let x be object;

        assume

         A1: x in (N ` (N ` A));

        then

        reconsider x as Element of G;

        

         A2: (x * N) c= (N ` A) by A1, Th41;

        x in (x * N) by GROUP_2: 108;

        then (x * N) meets (N ` A) by A2, XBOOLE_0: 3;

        hence thesis;

      end;

      let x be object;

      assume

       A3: x in (N ~ (N ` A));

      then

      reconsider x as Element of G;

      (x * N) meets (N ` A) by A3, Th33;

      then

      consider z be object such that

       A4: z in (x * N) & z in (N ` A) by XBOOLE_0: 3;

      reconsider z as Element of G by A4;

      (z * N) c= A by A4, Th12;

      then

       A5: (x * N) c= A by A4, Th2;

      (x * N) c= (N ` A)

      proof

        let y be object;

        assume

         A6: y in (x * N);

        then

        reconsider y as Element of G;

        (x * N) = (y * N) by A6, Th2;

        hence thesis by A5;

      end;

      hence thesis;

    end;

    theorem :: GROUP_11:43

    (N ~ (N ~ A)) = (N ` (N ~ A))

    proof

      thus (N ~ (N ~ A)) c= (N ` (N ~ A))

      proof

        let x be object;

        assume

         A1: x in (N ~ (N ~ A));

        then

        reconsider x as Element of G;

        (x * N) meets (N ~ A) by A1, Th32;

        then

        consider z be object such that

         A2: z in (x * N) & z in (N ~ A) by XBOOLE_0: 3;

        reconsider z as Element of G by A2;

        (z * N) meets A by A2, Th14;

        then

         A3: (x * N) meets A by A2, Th2;

        (x * N) c= (N ~ A)

        proof

          let y be object;

          assume

           A4: y in (x * N);

          then

          reconsider y as Element of G;

          (x * N) = (y * N) by A4, Th2;

          hence thesis by A3;

        end;

        hence thesis;

      end;

      let x be object;

      assume

       A5: x in (N ` (N ~ A));

      then

      reconsider x as Element of G;

      

       A6: (x * N) c= (N ~ A) by A5, Th31;

      x in (x * N) by GROUP_2: 108;

      then (x * N) meets (N ~ A) by A6, XBOOLE_0: 3;

      hence thesis;

    end;

    theorem :: GROUP_11:44

    for N,N1,N2 be Subgroup of G st N = (N1 /\ N2) holds (N ~ A) c= ((N1 ~ A) /\ (N2 ~ A))

    proof

      let N,N1,N2 be Subgroup of G;

      assume N = (N1 /\ N2);

      then

       A1: N is Subgroup of N1 & N is Subgroup of N2 by GROUP_2: 88;

      let x be object;

      assume

       A2: x in (N ~ A);

      (N ~ A) c= (N1 ~ A) & (N ~ A) c= (N2 ~ A) by A1, Th26;

      hence thesis by A2, XBOOLE_0:def 4;

    end;

    theorem :: GROUP_11:45

    for N,N1,N2 be Subgroup of G st N = (N1 /\ N2) holds ((N1 ` A) /\ (N2 ` A)) c= (N ` A)

    proof

      let N,N1,N2 be Subgroup of G;

      assume N = (N1 /\ N2);

      then

       A1: N is Subgroup of N1 & N is Subgroup of N2 by GROUP_2: 88;

      let x be object;

      assume x in ((N1 ` A) /\ (N2 ` A));

      then

       A2: x in (N1 ` A) & x in (N2 ` A) by XBOOLE_0:def 4;

      (N1 ` A) c= (N ` A) & (N2 ` A) c= (N ` A) by A1, Th25;

      hence thesis by A2;

    end;

    theorem :: GROUP_11:46

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (N1 * N2) & (N ` A) c= ((N1 ` A) /\ (N2 ` A))

    proof

      let N1,N2 be strict normal Subgroup of G;

      consider N be strict normal Subgroup of G such that

       A1: the carrier of N = (N1 * N2) by Th8;

      N1 is Subgroup of N & N2 is Subgroup of N by A1, Th9;

      then

       A2: (N ` A) c= (N1 ` A) & (N ` A) c= (N2 ` A) by Th25;

      (N ` A) c= ((N1 ` A) /\ (N2 ` A)) by A2, XBOOLE_0:def 4;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:47

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (N1 * N2) & ((N1 ~ A) \/ (N2 ~ A)) c= (N ~ A)

    proof

      let N1,N2 be strict normal Subgroup of G;

      consider N be strict normal Subgroup of G such that

       A1: the carrier of N = (N1 * N2) by Th8;

      N1 is Subgroup of N & N2 is Subgroup of N by A1, Th9;

      then

       A2: (N1 ~ A) c= (N ~ A) & (N2 ~ A) c= (N ~ A) by Th26;

      ((N1 ~ A) \/ (N2 ~ A)) c= (N ~ A)

      proof

        let x be object;

        assume x in ((N1 ~ A) \/ (N2 ~ A));

        then x in (N1 ~ A) or x in (N2 ~ A) by XBOOLE_0:def 3;

        hence thesis by A2;

      end;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:48

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (N1 * N2) & (N ~ A) c= (((N1 ~ A) * N2) /\ ((N2 ~ A) * N1))

    proof

      let N1,N2 be strict normal Subgroup of G;

      consider N be strict normal Subgroup of G such that

       A1: the carrier of N = (N1 * N2) by Th8;

      (N ~ A) c= (((N1 ~ A) * N2) /\ ((N2 ~ A) * N1))

      proof

        let x be object;

        assume

         A2: x in (N ~ A);

        then

        reconsider x as Element of G;

        (x * N) meets A by A2, Th14;

        then

        consider x1 be object such that

         A3: x1 in (x * N) & x1 in A by XBOOLE_0: 3;

        reconsider x1 as Element of G by A3;

        consider y be Element of G such that

         A4: x1 = (x * y) & y in N by A3, GROUP_2: 103;

        

         A5: y in (N1 * N2) by A1, A4, STRUCT_0:def 5;

        then

        consider a,b be Element of G such that

         A6: y = (a * b) & a in N1 & b in N2 by Th6;

        

         A7: x1 = ((x * a) * b) by A4, A6, GROUP_1:def 3;

        a in ( carr N1) by A6, STRUCT_0:def 5;

        then

         A8: ((x * a) * b) in ((x * N1) * b) by GROUP_8: 15;

        ((x * N1) * b) = (x * (N1 * b)) by GROUP_2: 106

        .= (x * (b * N1)) by GROUP_3: 117

        .= ((x * b) * N1) by GROUP_2: 105;

        then ((x * b) * N1) meets A by A3, A7, A8, XBOOLE_0: 3;

        then

         A9: (x * b) in (N1 ~ A);

        

         A10: ((x * b) * (b " )) = (x * (b * (b " ))) by GROUP_1:def 3

        .= (x * ( 1_ G)) by GROUP_1:def 5

        .= x by GROUP_1:def 4;

        (b " ) in N2 by A6, GROUP_2: 51;

        then

         A11: x in ((N1 ~ A) * N2) by A9, A10, GROUP_2: 94;

        y in (N2 * N1) by A5, GROUP_3: 125;

        then

        consider a,b be Element of G such that

         A12: y = (a * b) & a in N2 & b in N1 by Th6;

        

         A13: x1 = ((x * a) * b) by A4, A12, GROUP_1:def 3;

        a in ( carr N2) by A12, STRUCT_0:def 5;

        then

         A14: ((x * a) * b) in ((x * N2) * b) by GROUP_8: 15;

        ((x * N2) * b) = (x * (N2 * b)) by GROUP_2: 106

        .= (x * (b * N2)) by GROUP_3: 117

        .= ((x * b) * N2) by GROUP_2: 105;

        then ((x * b) * N2) meets A by A3, A13, A14, XBOOLE_0: 3;

        then

         A15: (x * b) in (N2 ~ A);

        

         A16: ((x * b) * (b " )) = (x * (b * (b " ))) by GROUP_1:def 3

        .= (x * ( 1_ G)) by GROUP_1:def 5

        .= x by GROUP_1:def 4;

        (b " ) in N1 by A12, GROUP_2: 51;

        then x in ((N2 ~ A) * N1) by A15, A16, GROUP_2: 94;

        hence thesis by A11, XBOOLE_0:def 4;

      end;

      hence thesis by A1;

    end;

    reserve N1,N2 for Subgroup of G;

    definition

      let G be Group, H,N be Subgroup of G;

      :: GROUP_11:def3

      func N ` H -> Subset of G equals { x where x be Element of G : (x * N) c= ( carr H) };

      coherence

      proof

        { x where x be Element of G : (x * N) c= ( carr H) } c= the carrier of G

        proof

          let y be object;

          assume y in { x where x be Element of G : (x * N) c= ( carr H) };

          then ex x be Element of G st y = x & (x * N) c= ( carr H);

          hence thesis;

        end;

        hence thesis;

      end;

      :: GROUP_11:def4

      func N ~ H -> Subset of G equals { x where x be Element of G : (x * N) meets ( carr H) };

      coherence

      proof

        { x where x be Element of G : (x * N) meets ( carr H) } c= the carrier of G

        proof

          let y be object;

          assume y in { x where x be Element of G : (x * N) meets ( carr H) };

          then ex x be Element of G st y = x & (x * N) meets ( carr H);

          hence thesis;

        end;

        hence thesis;

      end;

    end

    theorem :: GROUP_11:49

    

     Th49: for x be Element of G st x in (N ` H) holds (x * N) c= ( carr H)

    proof

      let x be Element of G;

      assume x in (N ` H);

      then ex x1 be Element of G st x1 = x & (x1 * N) c= ( carr H);

      hence thesis;

    end;

    theorem :: GROUP_11:50

    for x be Element of G st (x * N) c= ( carr H) holds x in (N ` H);

    theorem :: GROUP_11:51

    

     Th51: for x be Element of G st x in (N ~ H) holds (x * N) meets ( carr H)

    proof

      let x be Element of G;

      assume x in (N ~ H);

      then ex x1 be Element of G st x = x1 & (x1 * N) meets ( carr H);

      hence thesis;

    end;

    theorem :: GROUP_11:52

    for x be Element of G st (x * N) meets ( carr H) holds x in (N ~ H);

    theorem :: GROUP_11:53

    

     Th53: (N ` H) c= ( carr H)

    proof

      let x be object;

      assume x in (N ` H);

      then

      consider y1 be Element of G such that

       A1: y1 = x & (y1 * N) c= ( carr H);

      y1 in (y1 * N) by GROUP_2: 108;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:54

    

     Th54: ( carr H) c= (N ~ H)

    proof

      let x be object;

      assume x in ( carr H);

      then

      reconsider x as Element of H;

      reconsider x as Element of G by GROUP_2: 42;

      x in (x * N) by GROUP_2: 108;

      then (x * N) meets ( carr H) by XBOOLE_0: 3;

      hence thesis;

    end;

    theorem :: GROUP_11:55

    

     Th55: (N ` H) c= (N ~ H)

    proof

      

       A1: (N ` H) c= ( carr H) by Th53;

      ( carr H) c= (N ~ H) by Th54;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:56

    

     Th56: H1 is Subgroup of H2 implies (N ~ H1) c= (N ~ H2)

    proof

      assume H1 is Subgroup of H2;

      then

       A1: ( carr H1) c= ( carr H2) by GROUP_2:def 5;

      let x be object;

      assume

       A2: x in (N ~ H1);

      then

      reconsider x as Element of G;

      (x * N) meets ( carr H1) by A2, Th51;

      then (x * N) meets ( carr H2) by A1, XBOOLE_1: 63;

      hence thesis;

    end;

    theorem :: GROUP_11:57

    

     Th57: N1 is Subgroup of N2 implies (N1 ~ H) c= (N2 ~ H)

    proof

      assume

       A1: N1 is Subgroup of N2;

      let x be object;

      assume

       A2: x in (N1 ~ H);

      then

      reconsider x as Element of G;

      (x * N1) meets ( carr H) by A2, Th51;

      then (x * N2) meets ( carr H) by A1, GROUP_3: 6, XBOOLE_1: 63;

      hence thesis;

    end;

    theorem :: GROUP_11:58

    N1 is Subgroup of N2 implies (N1 ~ N1) c= (N2 ~ N2)

    proof

      assume

       A1: N1 is Subgroup of N2;

      then

       A2: (N2 ~ N1) c= (N2 ~ N2) by Th56;

      (N1 ~ N1) c= (N2 ~ N1) by A1, Th57;

      hence thesis by A2;

    end;

    theorem :: GROUP_11:59

    

     Th59: H1 is Subgroup of H2 implies (N ` H1) c= (N ` H2)

    proof

      assume H1 is Subgroup of H2;

      then

       A1: ( carr H1) c= ( carr H2) by GROUP_2:def 5;

      let x be object;

      assume

       A2: x in (N ` H1);

      then

      reconsider x as Element of G;

      (x * N) c= ( carr H1) by A2, Th49;

      then (x * N) c= ( carr H2) by A1;

      hence thesis;

    end;

    theorem :: GROUP_11:60

    

     Th60: N1 is Subgroup of N2 implies (N2 ` H) c= (N1 ` H)

    proof

      assume

       A1: N1 is Subgroup of N2;

      let x be object;

      assume

       A2: x in (N2 ` H);

      then

      reconsider x as Element of G;

      

       A3: (x * N1) c= (x * N2) by A1, GROUP_3: 6;

      (x * N2) c= ( carr H) by A2, Th49;

      then (x * N1) c= ( carr H) by A3;

      hence thesis;

    end;

    theorem :: GROUP_11:61

    N1 is Subgroup of N2 implies (N2 ` N1) c= (N1 ` N2)

    proof

      assume

       A1: N1 is Subgroup of N2;

      then

       A2: (N2 ` N1) c= (N2 ` N2) by Th59;

      (N2 ` N2) c= (N1 ` N2) by A1, Th60;

      hence thesis by A2;

    end;

    theorem :: GROUP_11:62

    for N be normal Subgroup of G holds ((N ` H1) * (N ` H2)) c= (N ` (H1 * H2))

    proof

      let N be normal Subgroup of G;

      let x be object;

      assume

       A1: x in ((N ` H1) * (N ` H2));

      then

      reconsider x as Element of G;

      consider x1,x2 be Element of G such that

       A2: x = (x1 * x2) & x1 in (N ` H1) & x2 in (N ` H2) by A1;

      (x1 * N) c= ( carr H1) & (x2 * N) c= ( carr H2) by A2, Th49;

      then ((x1 * N) * (x2 * N)) c= (( carr H1) * ( carr H2)) by GROUP_3: 4;

      then ((x1 * x2) * N) c= (( carr H1) * ( carr H2)) by Th1;

      hence thesis by A2;

    end;

    theorem :: GROUP_11:63

    for N be normal Subgroup of G holds ((N ~ H1) * (N ~ H2)) = (N ~ (H1 * H2))

    proof

      let N be normal Subgroup of G;

      thus ((N ~ H1) * (N ~ H2)) c= (N ~ (H1 * H2))

      proof

        let x be object;

        assume

         A1: x in ((N ~ H1) * (N ~ H2));

        then

        reconsider x as Element of G;

        consider x1,x2 be Element of G such that

         A2: x = (x1 * x2) & x1 in (N ~ H1) & x2 in (N ~ H2) by A1;

        

         A3: (x1 * N) meets ( carr H1) by A2, Th51;

        

         A4: (x2 * N) meets ( carr H2) by A2, Th51;

        consider x19 be object such that

         A5: x19 in (x1 * N) & x19 in ( carr H1) by A3, XBOOLE_0: 3;

        consider x29 be object such that

         A6: x29 in (x2 * N) & x29 in ( carr H2) by A4, XBOOLE_0: 3;

        reconsider x19 as Element of G by A5;

        reconsider x29 as Element of G by A6;

        

         A7: (x19 * x29) in (( carr H1) * ( carr H2)) by A5, A6;

        (x19 * x29) in ((x1 * N) * (x2 * N)) by A5, A6;

        then ((x1 * N) * (x2 * N)) meets (( carr H1) * ( carr H2)) by A7, XBOOLE_0: 3;

        then ((x1 * x2) * N) meets (( carr H1) * ( carr H2)) by Th1;

        hence thesis by A2;

      end;

      let x be object;

      assume

       A8: x in (N ~ (H1 * H2));

      then

      reconsider x as Element of G;

      (x * N) meets (( carr H1) * ( carr H2)) by A8, Th28;

      then

      consider x1 be object such that

       A9: x1 in (x * N) & x1 in (( carr H1) * ( carr H2)) by XBOOLE_0: 3;

      reconsider x1 as Element of G by A9;

      consider y1,y2 be Element of G such that

       A10: x1 = (y1 * y2) & y1 in ( carr H1) & y2 in ( carr H2) by A9;

      (x * N) = ((y1 * y2) * N) by A9, A10, Th2

      .= ((y1 * N) * (y2 * N)) by Th1;

      then x in ((y1 * N) * (y2 * N)) by GROUP_2: 108;

      then

      consider g1,g2 be Element of G such that

       A11: x = (g1 * g2) & g1 in (y1 * N) & g2 in (y2 * N);

      (y1 * N) = (g1 * N) & (y2 * N) = (g2 * N) by A11, Th2;

      then y1 in (g1 * N) & y2 in (g2 * N) by GROUP_2: 108;

      then (g1 * N) meets ( carr H1) & (g2 * N) meets ( carr H2) by A10, XBOOLE_0: 3;

      then g1 in (N ~ H1) & g2 in (N ~ H2);

      hence thesis by A11;

    end;

    theorem :: GROUP_11:64

    for N,N1,N2 be Subgroup of G st N = (N1 /\ N2) holds (N ~ H) c= ((N1 ~ H) /\ (N2 ~ H))

    proof

      let N,N1,N2 be Subgroup of G;

      assume N = (N1 /\ N2);

      then

       A1: N is Subgroup of N1 & N is Subgroup of N2 by GROUP_2: 88;

      let x be object;

      assume

       A2: x in (N ~ H);

      (N ~ H) c= (N1 ~ H) & (N ~ H) c= (N2 ~ H) by A1, Th57;

      hence thesis by A2, XBOOLE_0:def 4;

    end;

    theorem :: GROUP_11:65

    for N,N1,N2 be Subgroup of G st N = (N1 /\ N2) holds ((N1 ` H) /\ (N2 ` H)) c= (N ` H)

    proof

      let N,N1,N2 be Subgroup of G;

      assume N = (N1 /\ N2);

      then

       A1: N is Subgroup of N1 & N is Subgroup of N2 by GROUP_2: 88;

      let x be object;

      assume x in ((N1 ` H) /\ (N2 ` H));

      then

       A2: x in (N1 ` H) & x in (N2 ` H) by XBOOLE_0:def 4;

      (N1 ` H) c= (N ` H) & (N2 ` H) c= (N ` H) by A1, Th60;

      hence thesis by A2;

    end;

    theorem :: GROUP_11:66

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (N1 * N2) & (N ` H) c= ((N1 ` H) /\ (N2 ` H))

    proof

      let N1,N2 be strict normal Subgroup of G;

      consider N be strict normal Subgroup of G such that

       A1: the carrier of N = (N1 * N2) by Th8;

      N1 is Subgroup of N & N2 is Subgroup of N by A1, Th9;

      then

       A2: (N ` H) c= (N1 ` H) & (N ` H) c= (N2 ` H) by Th60;

      (N ` H) c= ((N1 ` H) /\ (N2 ` H)) by A2, XBOOLE_0:def 4;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:67

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (N1 * N2) & ((N1 ~ H) \/ (N2 ~ H)) c= (N ~ H)

    proof

      let N1,N2 be strict normal Subgroup of G;

      consider N be strict normal Subgroup of G such that

       A1: the carrier of N = (N1 * N2) by Th8;

      N1 is Subgroup of N & N2 is Subgroup of N by A1, Th9;

      then

       A2: (N1 ~ H) c= (N ~ H) & (N2 ~ H) c= (N ~ H) by Th57;

      ((N1 ~ H) \/ (N2 ~ H)) c= (N ~ H)

      proof

        let x be object;

        assume x in ((N1 ~ H) \/ (N2 ~ H));

        then x in (N1 ~ H) or x in (N2 ~ H) by XBOOLE_0:def 3;

        hence thesis by A2;

      end;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:68

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (N1 * N2) & ((N1 ` H) * (N2 ` H)) c= (N ` H)

    proof

      let N1,N2 be strict normal Subgroup of G;

      consider N be strict normal Subgroup of G such that

       A1: the carrier of N = (N1 * N2) by Th8;

      ((N1 ` H) * (N2 ` H)) c= (N ` H)

      proof

        let x be object;

        assume

         A2: x in ((N1 ` H) * (N2 ` H));

        then

        reconsider x as Element of G;

        consider a,b be Element of G such that

         A3: x = (a * b) & a in (N1 ` H) & b in (N2 ` H) by A2;

        (a * N1) c= ( carr H) & (b * N2) c= ( carr H) by A3, Th49;

        then ((a * N1) * (b * N2)) c= (( carr H) * ( carr H)) by GROUP_3: 4;

        then

         A4: ((a * N1) * (b * N2)) c= ( carr H) by GROUP_2: 76;

        ((a * N1) * (b * N2)) = ((a * b) * N) by A1, Th10;

        hence thesis by A3, A4;

      end;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:69

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (N1 * N2) & ((N1 ~ H) * (N2 ~ H)) c= (N ~ H)

    proof

      let N1,N2 be strict normal Subgroup of G;

      consider N be strict normal Subgroup of G such that

       A1: the carrier of N = (N1 * N2) by Th8;

      ((N1 ~ H) * (N2 ~ H)) c= (N ~ H)

      proof

        let x be object;

        assume

         A2: x in ((N1 ~ H) * (N2 ~ H));

        then

        reconsider x as Element of G;

        consider a,b be Element of G such that

         A3: x = (a * b) & a in (N1 ~ H) & b in (N2 ~ H) by A2;

        

         A4: (a * N1) meets ( carr H) by A3, Th51;

        

         A5: (b * N2) meets ( carr H) by A3, Th51;

        consider x1 be object such that

         A6: x1 in (a * N1) & x1 in ( carr H) by A4, XBOOLE_0: 3;

        consider x2 be object such that

         A7: x2 in (b * N2) & x2 in ( carr H) by A5, XBOOLE_0: 3;

        reconsider x1 as Element of G by A6;

        reconsider x2 as Element of G by A7;

        

         A8: (x1 * x2) in (( carr H) * ( carr H)) by A6, A7;

        

         A9: (x1 * x2) in ((a * N1) * (b * N2)) by A6, A7;

        (( carr H) * ( carr H)) = ( carr H) by GROUP_2: 76;

        then

         A10: ((a * N1) * (b * N2)) meets ( carr H) by A8, A9, XBOOLE_0: 3;

        ((a * N1) * (b * N2)) = ((a * b) * N) by A1, Th10;

        hence thesis by A3, A10;

      end;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:70

    for N1,N2 be strict normal Subgroup of G holds ex N be strict normal Subgroup of G st the carrier of N = (N1 * N2) & (N ~ H) c= (((N1 ~ H) * N2) /\ ((N2 ~ H) * N1))

    proof

      let N1,N2 be strict normal Subgroup of G;

      consider N be strict normal Subgroup of G such that

       A1: the carrier of N = (N1 * N2) by Th8;

      (N ~ H) c= (((N1 ~ H) * N2) /\ ((N2 ~ H) * N1))

      proof

        let x be object;

        assume

         A2: x in (N ~ H);

        then

        reconsider x as Element of G;

        (x * N) meets ( carr H) by A2, Th51;

        then

        consider x1 be object such that

         A3: x1 in (x * N) & x1 in ( carr H) by XBOOLE_0: 3;

        reconsider x1 as Element of G by A3;

        consider y be Element of G such that

         A4: x1 = (x * y) & y in N by A3, GROUP_2: 103;

        

         A5: y in (N1 * N2) by A1, A4, STRUCT_0:def 5;

        then

        consider a,b be Element of G such that

         A6: y = (a * b) & a in N1 & b in N2 by Th6;

        

         A7: x1 = ((x * a) * b) by A4, A6, GROUP_1:def 3;

        a in ( carr N1) by A6, STRUCT_0:def 5;

        then

         A8: ((x * a) * b) in ((x * N1) * b) by GROUP_8: 15;

        ((x * N1) * b) = (x * (N1 * b)) by GROUP_2: 106

        .= (x * (b * N1)) by GROUP_3: 117

        .= ((x * b) * N1) by GROUP_2: 105;

        then ((x * b) * N1) meets ( carr H) by A3, A7, A8, XBOOLE_0: 3;

        then

         A9: (x * b) in (N1 ~ H);

        

         A10: ((x * b) * (b " )) = (x * (b * (b " ))) by GROUP_1:def 3

        .= (x * ( 1_ G)) by GROUP_1:def 5

        .= x by GROUP_1:def 4;

        (b " ) in N2 by A6, GROUP_2: 51;

        then

         A11: x in ((N1 ~ H) * N2) by A9, A10, GROUP_2: 94;

        y in (N2 * N1) by A5, GROUP_3: 125;

        then

        consider a,b be Element of G such that

         A12: y = (a * b) & a in N2 & b in N1 by Th6;

        

         A13: x1 = ((x * a) * b) by A4, A12, GROUP_1:def 3;

        a in ( carr N2) by A12, STRUCT_0:def 5;

        then

         A14: ((x * a) * b) in ((x * N2) * b) by GROUP_8: 15;

        ((x * N2) * b) = (x * (N2 * b)) by GROUP_2: 106

        .= (x * (b * N2)) by GROUP_3: 117

        .= ((x * b) * N2) by GROUP_2: 105;

        then ((x * b) * N2) meets ( carr H) by A3, A13, A14, XBOOLE_0: 3;

        then

         A15: (x * b) in (N2 ~ H);

        

         A16: ((x * b) * (b " )) = (x * (b * (b " ))) by GROUP_1:def 3

        .= (x * ( 1_ G)) by GROUP_1:def 5

        .= x by GROUP_1:def 4;

        (b " ) in N1 by A12, GROUP_2: 51;

        then x in ((N2 ~ H) * N1) by A15, A16, GROUP_2: 94;

        hence thesis by A11, XBOOLE_0:def 4;

      end;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:71

    

     Th71: for H be Subgroup of G, N be normal Subgroup of G holds ex M be strict Subgroup of G st the carrier of M = (N ~ H)

    proof

      let H be Subgroup of G, N be normal Subgroup of G;

      

       A1: ( 1_ G) in (N ~ H)

      proof

        ( 1_ G) in H by GROUP_2: 46;

        then

         A2: ( 1_ G) in ( carr H) by STRUCT_0:def 5;

        ( 1_ G) in (( 1_ G) * N) by GROUP_2: 108;

        then (( 1_ G) * N) meets ( carr H) by A2, XBOOLE_0: 3;

        hence thesis;

      end;

      

       A3: for x,y be Element of G holds x in (N ~ H) & y in (N ~ H) implies (x * y) in (N ~ H)

      proof

        let x,y be Element of G;

        assume that

         A4: x in (N ~ H) and

         A5: y in (N ~ H);

        consider a be Element of G such that

         A6: a in (x * N) & a in H by A4, Th51, Th3;

        consider b be Element of G such that

         A7: b in (y * N) & b in H by A5, Th51, Th3;

        ((x * N) * (y * N)) = ((x * y) * N) & ((a * N) * (b * N)) = ((a * b) * N) by Th1;

        then

         A8: (a * b) in ((x * y) * N) by A6, A7;

        (a * b) in H by A6, A7, GROUP_2: 50;

        then (a * b) in ( carr H) by STRUCT_0:def 5;

        then ((x * y) * N) meets ( carr H) by A8, XBOOLE_0: 3;

        hence thesis;

      end;

      for x be Element of G holds x in (N ~ H) implies (x " ) in (N ~ H)

      proof

        let x be Element of G;

        assume x in (N ~ H);

        then

        consider a be Element of G such that

         A9: a in (x * N) & a in H by Th3, Th51;

        consider a1 be Element of G such that

         A10: a = (x * a1) & a1 in N by A9, GROUP_2: 103;

        

         A11: (a1 " ) in N by A10, GROUP_2: 51;

        (a " ) = ((a1 " ) * (x " )) by A10, GROUP_1: 17;

        then (a " ) in (N * (x " )) by A11, GROUP_2: 104;

        then

         A12: (a " ) in ((x " ) * N) by GROUP_3: 117;

        (a " ) in H by A9, GROUP_2: 51;

        then (a " ) in ( carr H) by STRUCT_0:def 5;

        then ((x " ) * N) meets ( carr H) by A12, XBOOLE_0: 3;

        hence thesis;

      end;

      hence thesis by A1, A3, GROUP_2: 52;

    end;

    theorem :: GROUP_11:72

    

     Th72: for H be Subgroup of G, N be normal Subgroup of G st N is Subgroup of H holds ex M be strict Subgroup of G st the carrier of M = (N ` H)

    proof

      let H be Subgroup of G, N be normal Subgroup of G;

      assume

       A1: N is Subgroup of H;

      

       A2: ( 1_ G) in (N ` H)

      proof

        ( 1_ G) in N by GROUP_2: 46;

        then

         A3: (( 1_ G) * N) = ( carr N) by GROUP_2: 113;

        ( carr N) c= ( carr H) by A1, GROUP_2:def 5;

        hence thesis by A3;

      end;

      

       A4: for x,y be Element of G holds x in (N ` H) & y in (N ` H) implies (x * y) in (N ` H)

      proof

        let x,y be Element of G;

        assume x in (N ` H) & y in (N ` H);

        then (x * N) c= ( carr H) & (y * N) c= ( carr H) by Th49;

        then

         A5: ((x * N) * (y * N)) c= (( carr H) * ( carr H)) by GROUP_3: 4;

        

         A6: ((x * N) * (y * N)) = ((x * y) * N) by Th1;

        (( carr H) * ( carr H)) = ( carr H) by GROUP_2: 76;

        hence thesis by A5, A6;

      end;

      for x be Element of G holds x in (N ` H) implies (x " ) in (N ` H)

      proof

        let x be Element of G;

        assume x in (N ` H);

        then

         A7: (x * N) c= ( carr H) by Th49;

        x in (x * N) by GROUP_2: 108;

        then x in H by A7, STRUCT_0:def 5;

        then (x " ) in H by GROUP_2: 51;

        then

         A8: ((x " ) * H) = ( carr H) by GROUP_2: 113;

        ((x " ) * N) c= ((x " ) * H) by A1, GROUP_3: 6;

        hence thesis by A8;

      end;

      hence thesis by A2, A4, GROUP_2: 52;

    end;

    theorem :: GROUP_11:73

    

     Th73: for H,N be normal Subgroup of G holds ex M be strict normal Subgroup of G st the carrier of M = (N ~ H)

    proof

      let H,N be normal Subgroup of G;

      consider M be strict Subgroup of G such that

       A1: the carrier of M = (N ~ H) by Th71;

      for x be Element of G holds (x * M) c= (M * x)

      proof

        let x be Element of G;

        let y be object;

        assume

         A2: y in (x * M);

        then

        reconsider y as Element of G;

        consider z be Element of G such that

         A3: y = (x * z) & z in M by A2, GROUP_2: 103;

        z in the carrier of M by A3, STRUCT_0:def 5;

        then

        consider z9 be Element of G such that

         A4: z9 in (z * N) & z9 in H by Th3, A1, Th51;

        ((x * z9) * (x " )) in H by A4, Th4;

        then

         A5: ((x * z9) * (x " )) in ( carr H) by STRUCT_0:def 5;

        

         A6: ((x * z9) * (x " )) in ((x * (z * N)) * (x " )) by A4, GROUP_8: 15;

        ((x * (z * N)) * (x " )) = (x * ((z * N) * (x " ))) by GROUP_2: 33

        .= (x * (z * (N * (x " )))) by GROUP_2: 33

        .= (x * (z * ((x " ) * N))) by GROUP_3: 117

        .= (x * ((z * (x " )) * N)) by GROUP_2: 32

        .= ((x * (z * (x " ))) * N) by GROUP_2: 32

        .= (((x * z) * (x " )) * N) by GROUP_1:def 3;

        then (((x * z) * (x " )) * N) meets ( carr H) by A5, A6, XBOOLE_0: 3;

        then ((x * z) * (x " )) in (N ~ H);

        then

         A7: ((x * z) * (x " )) in M by A1, STRUCT_0:def 5;

        (((x * z) * (x " )) * x) = y by A3, GROUP_3: 1;

        hence thesis by A7, GROUP_2: 104;

      end;

      then M is normal Subgroup of G by GROUP_3: 118;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:74

    

     Th74: for H,N be normal Subgroup of G st N is Subgroup of H holds ex M be strict normal Subgroup of G st the carrier of M = (N ` H)

    proof

      let H,N be normal Subgroup of G;

      assume

       A1: N is Subgroup of H;

      then

      consider M be strict Subgroup of G such that

       A2: the carrier of M = (N ` H) by Th72;

      for x be Element of G holds (x * M) c= (M * x)

      proof

        let x be Element of G;

        let y be object;

        assume

         A3: y in (x * M);

        then

        reconsider y as Element of G;

        consider z be Element of G such that

         A4: y = (x * z) & z in M by A3, GROUP_2: 103;

        z in the carrier of M by A4, STRUCT_0:def 5;

        then

         A5: (z * N) c= ( carr H) by A2, Th49;

        z in (z * N) by GROUP_2: 108;

        then z in H by A5, STRUCT_0:def 5;

        then ((x * z) * (x " )) in H by Th4;

        then

         A6: (((x * z) * (x " )) * H) = ( carr H) by GROUP_2: 113;

        (((x * z) * (x " )) * N) c= (((x * z) * (x " )) * H) by A1, GROUP_3: 6;

        then ((x * z) * (x " )) in (N ` H) by A6;

        then

         A7: ((x * z) * (x " )) in M by A2, STRUCT_0:def 5;

        (((x * z) * (x " )) * x) = y by A4, GROUP_3: 1;

        hence thesis by A7, GROUP_2: 104;

      end;

      then M is normal Subgroup of G by GROUP_3: 118;

      hence thesis by A2;

    end;

    theorem :: GROUP_11:75

    

     Th75: for N,N1 be normal Subgroup of G st N1 is Subgroup of N holds ex N2,N3 be strict normal Subgroup of G st the carrier of N2 = (N1 ~ N) & the carrier of N3 = (N1 ` N) & (N2 ` N) c= (N3 ` N)

    proof

      let N,N1 be normal Subgroup of G;

      assume

       A1: N1 is Subgroup of N;

      consider N2 be strict normal Subgroup of G such that

       A2: the carrier of N2 = (N1 ~ N) by Th73;

      consider N3 be strict normal Subgroup of G such that

       A3: the carrier of N3 = (N1 ` N) by A1, Th74;

      N3 is Subgroup of N2 by A2, A3, Th55, GROUP_2: 57;

      then (N2 ` N) c= (N3 ` N) by Th60;

      hence thesis by A2, A3;

    end;

    theorem :: GROUP_11:76

    

     Th76: for N,N1 be normal Subgroup of G st N1 is Subgroup of N holds ex N2,N3 be strict normal Subgroup of G st the carrier of N2 = (N1 ~ N) & the carrier of N3 = (N1 ` N) & (N3 ~ N) c= (N2 ~ N)

    proof

      let N,N1 be normal Subgroup of G;

      assume

       A1: N1 is Subgroup of N;

      consider N2 be strict normal Subgroup of G such that

       A2: the carrier of N2 = (N1 ~ N) by Th73;

      consider N3 be strict normal Subgroup of G such that

       A3: the carrier of N3 = (N1 ` N) by A1, Th74;

      N3 is Subgroup of N2 by A2, A3, Th55, GROUP_2: 57;

      then (N3 ~ N) c= (N2 ~ N) by Th57;

      hence thesis by A2, A3;

    end;

    theorem :: GROUP_11:77

    for N,N1 be normal Subgroup of G st N1 is Subgroup of N holds ex N2,N3 be strict normal Subgroup of G st the carrier of N2 = (N1 ~ N) & the carrier of N3 = (N1 ` N) & (N2 ` N) c= (N3 ~ N)

    proof

      let N,N1 be normal Subgroup of G;

      assume N1 is Subgroup of N;

      then

      consider N2,N3 be strict normal Subgroup of G such that

       A1: the carrier of N2 = (N1 ~ N) and

       A2: the carrier of N3 = (N1 ` N) and

       A3: (N2 ` N) c= (N3 ` N) by Th75;

      (N3 ` N) c= (N3 ~ N) by Th55;

      hence thesis by A1, A2, A3, XBOOLE_1: 1;

    end;

    theorem :: GROUP_11:78

    for N,N1 be normal Subgroup of G st N1 is Subgroup of N holds ex N2,N3 be strict normal Subgroup of G st the carrier of N2 = (N1 ~ N) & the carrier of N3 = (N1 ` N) & (N3 ` N) c= (N2 ~ N)

    proof

      let N,N1 be normal Subgroup of G;

      assume N1 is Subgroup of N;

      then

      consider N2,N3 be strict normal Subgroup of G such that

       A1: the carrier of N2 = (N1 ~ N) and

       A2: the carrier of N3 = (N1 ` N) and

       A3: (N3 ~ N) c= (N2 ~ N) by Th76;

      (N3 ` N) c= (N3 ~ N) by Th55;

      hence thesis by A1, A2, A3, XBOOLE_1: 1;

    end;

    theorem :: GROUP_11:79

    for N,N1,N2 be normal Subgroup of G st N1 is Subgroup of N2 holds ex N3,N4 be strict normal Subgroup of G st the carrier of N3 = (N ~ N1) & the carrier of N4 = (N ~ N2) & (N3 ~ N1) c= (N4 ~ N1)

    proof

      let N,N1,N2 be normal Subgroup of G;

      assume

       A1: N1 is Subgroup of N2;

      consider N3 be strict normal Subgroup of G such that

       A2: the carrier of N3 = (N ~ N1) by Th73;

      consider N4 be strict normal Subgroup of G such that

       A3: the carrier of N4 = (N ~ N2) by Th73;

      N3 is Subgroup of N4 by A1, A2, A3, Th56, GROUP_2: 57;

      then (N3 ~ N1) c= (N4 ~ N1) by Th57;

      hence thesis by A2, A3;

    end;

    theorem :: GROUP_11:80

    for N,N1 be normal Subgroup of G holds ex N2 be strict normal Subgroup of G st the carrier of N2 = (N ` N) & (N ` N1) c= (N2 ` N1)

    proof

      let N,N1 be normal Subgroup of G;

      N is Subgroup of N by GROUP_2: 54;

      then

      consider N2 be strict normal Subgroup of G such that

       A1: the carrier of N2 = (N ` N) by Th74;

      N2 is Subgroup of N by A1, Th53, GROUP_2: 57;

      then (N ` N1) c= (N2 ` N1) by Th60;

      hence thesis by A1;

    end;

    theorem :: GROUP_11:81

    for N,N1 be normal Subgroup of G holds ex N2 be strict normal Subgroup of G st the carrier of N2 = (N ~ N) & (N ~ N1) c= (N2 ~ N1)

    proof

      let N,N1 be normal Subgroup of G;

      consider N2 be strict normal Subgroup of G such that

       A1: the carrier of N2 = (N ~ N) by Th73;

      N is Subgroup of N2 by A1, Th54, GROUP_2: 57;

      then (N ~ N1) c= (N2 ~ N1) by Th57;

      hence thesis by A1;

    end;