polyeq_3.miz



    begin

    reserve a,b,c,d,a9,b9,c9,d9,y,x1,u,v for Real,

s,t,h,z,z1,z2,z3,s1,s2,s3 for Complex;

    definition

      let z be Element of COMPLEX ;

      :: original: ^2

      redefine

      :: POLYEQ_3:def1

      func z ^2 -> Element of COMPLEX equals (((( Re z) ^2 ) - (( Im z) ^2 )) + ((2 * (( Re z) * ( Im z))) * <i> ));

      compatibility

      proof

        z = (( Re z) + (( Im z) * <i> )) by COMPLEX1: 13;

        hence thesis;

      end;

      correctness by XCMPLX_0:def 2;

    end

    definition

      ::$Canceled

      let a, b, c, z;

      :: original: Polynom

      redefine

      func Polynom (a,b,c,z) -> Element of COMPLEX ;

      coherence by XCMPLX_0:def 2;

    end

    theorem :: POLYEQ_3:1

    

     Th1: a <> 0 & ( delta (a,b,c)) >= 0 & ( Polynom (a,b,c,z)) = 0 implies z = ((( - b) + ( sqrt ( delta (a,b,c)))) / (2 * a)) or z = ((( - b) - ( sqrt ( delta (a,b,c)))) / (2 * a)) or z = ( - (b / (2 * a)))

    proof

      

       A1: a = (a + ( 0 * <i> ));

      set y = ( Im z);

      

       A2: z = (( Re z) + (( Im z) * <i> )) by COMPLEX1: 13;

      set x = ( Re z);

      assume that

       A3: a <> 0 and

       A4: ( delta (a,b,c)) >= 0 ;

      assume ( Polynom (a,b,c,z)) = 0 ;

      then ((((a + ( 0 * <i> )) * (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))) + (b * z)) + c) = 0 by A2;

      

      then 0 = (((((( Re a) * ( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) - (( Im a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))))) + (((( Re a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) by COMPLEX1: 82

      .= (((((a * ( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) - (( Im a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))))) + (((( Re a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) by A1, COMPLEX1: 12

      .= (((((a * ((x ^2 ) - (y ^2 ))) - (( Im a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))))) + (((( Re a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) by COMPLEX1: 12

      .= (((((a * ((x ^2 ) - (y ^2 ))) - ( 0 * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))))) + (((( Re a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) by A1, COMPLEX1: 12

      .= (((((a * ((x ^2 ) - (y ^2 ))) - 0 ) + (((( Re a) * ((2 * x) * y)) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) by COMPLEX1: 12

      .= (((((a * ((x ^2 ) - (y ^2 ))) - 0 ) + (((a * ((2 * x) * y)) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) by A1, COMPLEX1: 12

      .= (((((a * ((x ^2 ) - (y ^2 ))) - 0 ) + (((a * ((2 * x) * y)) + (((x ^2 ) - (y ^2 )) * ( Im a))) * <i> )) + (b * z)) + c) by COMPLEX1: 12

      .= (((((a * ((x ^2 ) - (y ^2 ))) - 0 ) + (((a * ((2 * x) * y)) + (((x ^2 ) - (y ^2 )) * 0 )) * <i> )) + (b * z)) + c) by A1, COMPLEX1: 12;

      then

       A5: (((((a * ((x ^2 ) - (y ^2 ))) - ( 0 * ((2 * x) * y))) + (( 0 + (a * ((2 * x) * y))) * <i> )) + ((b + ( 0 * <i> )) * (x + (y * <i> )))) + c) = 0 by COMPLEX1: 13;

      then

       A6: ((((a * ((x ^2 ) - (y ^2 ))) + (b * x)) + c) + (((a * ((2 * x) * y)) + (b * y)) * <i> )) = 0 ;

      then

       A7: ((((2 * a) * x) + b) * y) = 0 by COMPLEX1: 4, COMPLEX1: 12;

      per cases by A7;

        suppose

         A8: y = 0 ;

        then ( Polynom (a,b,c,x)) = 0 by A5;

        then ( Re z) = ((( - b) + ( sqrt ( delta (a,b,c)))) / (2 * a)) & ( Im z) = 0 or ( Re z) = ((( - b) - ( sqrt ( delta (a,b,c)))) / (2 * a)) & ( Im z) = 0 by A3, A4, A8, POLYEQ_1: 5;

        then z = (((( - b) + ( sqrt ( delta (a,b,c)))) / (2 * a)) + ( 0 * <i> )) or z = (((( - b) - ( sqrt ( delta (a,b,c)))) / (2 * a)) + ( 0 * <i> )) by COMPLEX1: 13;

        hence thesis;

      end;

        suppose (((2 * a) * x) + b) = 0 ;

        then

         A9: x = (( - b) / (2 * a)) by A3, XCMPLX_1: 89;

        then (((a * (((b / (2 * a)) ^2 ) - (y ^2 ))) + (b * ( - (b / (2 * a))))) + c) = 0 by A6, COMPLEX1: 4, COMPLEX1: 12;

        then (((b / (2 * a)) ^2 ) - (y ^2 )) = ((( - ((b * ( - (b / (2 * a)))) + c)) / a) - 0 ) by A3, XCMPLX_1: 89;

        then (((b / (2 * a)) ^2 ) - (( - ((b * ( - (b / (2 * a)))) + c)) / a)) = ((y ^2 ) - 0 );

        then (y ^2 ) = ((((b / (2 * a)) ^2 ) + (c * (a " ))) - (((b ^2 ) / (2 * a)) * (a " )));

        

        then ((y ^2 ) * ((2 * a) ^2 )) = (((((b ^2 ) / ((2 * a) ^2 )) + (c * (a " ))) - (((b ^2 ) / (2 * a)) * (a " ))) * ((2 * a) ^2 )) by XCMPLX_1: 76

        .= (((((b ^2 ) / ((2 * a) ^2 )) * ((2 * a) ^2 )) + ((c * (a " )) * ((2 * a) ^2 ))) - ((((b ^2 ) * ((2 * a) " )) * (a " )) * ((2 * a) ^2 )));

        

        then

         A10: ((y ^2 ) * ((2 * a) ^2 )) = (((b ^2 ) + ((c * (a " )) * ((2 * a) ^2 ))) - (((b ^2 ) * (((2 * a) " ) * (a " ))) * ((2 * a) ^2 ))) by A3, XCMPLX_1: 87

        .= (((b ^2 ) + ((c * (a " )) * ((2 * a) ^2 ))) - (((b ^2 ) * (((2 * a) * a) " )) * ((2 * a) ^2 ))) by XCMPLX_1: 204

        .= (((b ^2 ) + ((c * (a " )) * ((2 * a) ^2 ))) - (((b ^2 ) * ((2 * (a * a)) " )) * ((2 * a) ^2 )));

        set t = (((b ^2 ) * ((2 * (a * a)) " )) * ((2 * a) ^2 ));

        (t * (((2 * a) ^2 ) " )) = (((b ^2 ) * ((2 * (a * a)) " )) * (((2 * a) ^2 ) * (1 / ((2 * a) ^2 ))));

        then (t * (((2 * a) ^2 ) " )) = (((b ^2 ) * ((2 * (a * a)) " )) * 1) by A3, XCMPLX_1: 106;

        then ((t * (((2 * a) ^2 ) " )) * (2 " )) = (((b ^2 ) * ((2 * (a ^2 )) " )) * (2 " ));

        then ((t * (((2 * a) ^2 ) " )) * (2 " )) = ((b ^2 ) * (((2 * (a ^2 )) " ) * (2 " )));

        then ((t * (((2 * a) ^2 ) " )) * (2 " )) = ((b ^2 ) * ((2 * ((a ^2 ) * 2)) " )) by XCMPLX_1: 204;

        then (((t * (2 " )) / ((2 * a) ^2 )) * ((2 * a) ^2 )) = (((b ^2 ) / ((2 * a) ^2 )) * ((2 * a) ^2 ));

        then (t * (2 " )) = (((b ^2 ) / ((2 * a) ^2 )) * ((2 * a) ^2 )) by A3, XCMPLX_1: 87;

        then

         A11: (t / 2) = (b ^2 ) by A3, XCMPLX_1: 87;

        set t = ((c * (a " )) * ((2 * a) ^2 ));

        t = ((((c / a) * a) * 2) * (2 * a));

        then

         A12: t = ((c * 2) * (2 * a)) by A3, XCMPLX_1: 87;

        ( - ( delta (a,b,c))) <= 0 by A4;

        then ((y * (2 * a)) ^2 ) = 0 by A10, A11, A12, XREAL_1: 63;

        then ( Im z) = 0 by A3;

        then z = (( - (b / (2 * a))) + ( 0 * <i> )) by A9, COMPLEX1: 13;

        hence thesis;

      end;

    end;

    theorem :: POLYEQ_3:2

    

     Th2: a <> 0 & ( delta (a,b,c)) < 0 & ( Polynom (a,b,c,z)) = 0 implies z = (( - (b / (2 * a))) + ((( sqrt ( - ( delta (a,b,c)))) / (2 * a)) * <i> )) or z = (( - (b / (2 * a))) + (( - (( sqrt ( - ( delta (a,b,c)))) / (2 * a))) * <i> ))

    proof

      assume that

       A1: a <> 0 and

       A2: ( delta (a,b,c)) < 0 ;

      

       A3: a = (a + ( 0 * <i> ));

      now

        set t2 = ((( - (b ^2 )) + ((c * a) * 4)) / 4);

        let z;

        set x = ( Re z);

        set y = ( Im z);

        

         A4: z = (x + (y * <i> )) by COMPLEX1: 13;

        assume ( Polynom (a,b,c,z)) = 0 ;

        then ((((a + ( 0 * <i> )) * (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) + (b * z)) + c) = 0 by A4;

        then (((((( Re a) * ( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) - (( Im a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))))) + (((( Re a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) = 0 by COMPLEX1: 82;

        then (((((a * ( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) - (( Im a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))))) + (((( Re a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) = 0 by A3, COMPLEX1: 12;

        then (((((a * ((x ^2 ) - (y ^2 ))) - (( Im a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))))) + (((( Re a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) = 0 by COMPLEX1: 12;

        then (((((a * ((x ^2 ) - (y ^2 ))) - ( 0 * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))))) + (((( Re a) * ( Im (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) = 0 by A3, COMPLEX1: 12;

        then (((((a * ((x ^2 ) - (y ^2 ))) - 0 ) + (((( Re a) * ((2 * x) * y)) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) = 0 by COMPLEX1: 12;

        then (((((a * ((x ^2 ) - (y ^2 ))) - 0 ) + (((a * ((2 * x) * y)) + (( Re (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> ))) * ( Im a))) * <i> )) + (b * z)) + c) = 0 by A3, COMPLEX1: 12;

        then (((((a * ((x ^2 ) - (y ^2 ))) - 0 ) + (((a * ((2 * x) * y)) + (((x ^2 ) - (y ^2 )) * ( Im a))) * <i> )) + (b * z)) + c) = 0 by COMPLEX1: 12;

        then (((((a * ((x ^2 ) - (y ^2 ))) - 0 ) + (((a * ((2 * x) * y)) + (((x ^2 ) - (y ^2 )) * 0 )) * <i> )) + (b * z)) + c) = 0 by A3, COMPLEX1: 12;

        then (((((a * ((x ^2 ) - (y ^2 ))) - ( 0 * ((2 * x) * y))) + (((((x ^2 ) - (y ^2 )) * 0 ) + (a * ((2 * x) * y))) * <i> )) + ((b + ( 0 * <i> )) * (x + (y * <i> )))) + c) = 0 by COMPLEX1: 13;

        then

         A5: ((((a * ((x ^2 ) - (y ^2 ))) + (b * x)) + c) + (((a * ((2 * x) * y)) + (b * y)) * <i> )) = 0 ;

        then (((a * (2 * x)) * y) + (b * y)) = 0 by COMPLEX1: 4, COMPLEX1: 12;

        then

         A6: (((a * 2) * x) * y) = (( - b) * y);

        set t = (((b ^2 ) * ((2 * (a * a)) " )) * ((2 * a) ^2 ));

        set t1 = (((x * a) + (b / 2)) ^2 );

        ( 0 - ( delta (a,b,c))) > 0 by A2;

        then

         A7: ( 0 + 0 ) < (t1 + t2) by XREAL_1: 8, XREAL_1: 63;

        ((( - (a * (y ^2 ))) + (((b * x) + (a * (x ^2 ))) + c)) + (a * (y ^2 ))) = ( 0 + (a * (y ^2 ))) by A5, COMPLEX1: 4, COMPLEX1: 12;

        then ((((a * (x ^2 )) * a) + ((b * x) * a)) + (c * a)) = ((a * (y ^2 )) * a) by XCMPLX_1: 9;

        then y <> 0 by A7;

        then (a * (2 * x)) = ( - b) by A6, XCMPLX_1: 5;

        then (2 * x) = (( - b) / a) by A1, XCMPLX_1: 89;

        then x = ((1 / a) * (( - b) / 2));

        then

         A8: x = (( - b) / (2 * a)) by XCMPLX_1: 103;

        then (((a * (((b / (2 * a)) ^2 ) - (y ^2 ))) + (b * ( - (b / (2 * a))))) + c) = 0 by A5, COMPLEX1: 4, COMPLEX1: 12;

        then (((b / (2 * a)) ^2 ) - (y ^2 )) = ((( - ((b * ( - (b / (2 * a)))) + c)) / a) - 0 ) by A1, XCMPLX_1: 89;

        then (((b / (2 * a)) ^2 ) - (( - ((b * ( - (b / (2 * a)))) + c)) / a)) = ((y ^2 ) - 0 );

        then (y ^2 ) = ((((b / (2 * a)) ^2 ) + (c * (a " ))) - (((b ^2 ) / (2 * a)) * (a " )));

        

        then ((y ^2 ) * ((2 * a) ^2 )) = (((((b ^2 ) / ((2 * a) ^2 )) + (c * (a " ))) - (((b ^2 ) / (2 * a)) * (a " ))) * ((2 * a) ^2 )) by XCMPLX_1: 76

        .= (((((b ^2 ) / ((2 * a) ^2 )) * ((2 * a) ^2 )) + ((c * (a " )) * ((2 * a) ^2 ))) - ((((b ^2 ) * ((2 * a) " )) * (a " )) * ((2 * a) ^2 )));

        

        then

         A9: ((y ^2 ) * ((2 * a) ^2 )) = (((b ^2 ) + ((c * (a " )) * ((2 * a) ^2 ))) - (((b ^2 ) * (((2 * a) " ) * (a " ))) * ((2 * a) ^2 ))) by A1, XCMPLX_1: 87

        .= (((b ^2 ) + ((c * (a " )) * ((2 * a) ^2 ))) - (((b ^2 ) * (((2 * a) * a) " )) * ((2 * a) ^2 ))) by XCMPLX_1: 204

        .= (((b ^2 ) + ((c * (a " )) * ((2 * a) ^2 ))) - (((b ^2 ) * ((2 * (a * a)) " )) * ((2 * a) ^2 )));

        (t * (((2 * a) ^2 ) " )) = (((b ^2 ) * ((2 * (a * a)) " )) * (((2 * a) ^2 ) * (1 / ((2 * a) ^2 ))));

        then (t * (((2 * a) ^2 ) " )) = (((b ^2 ) * ((2 * (a * a)) " )) * 1) by A1, XCMPLX_1: 106;

        then ((t * (((2 * a) ^2 ) " )) * (2 " )) = (((b ^2 ) * ((2 * (a ^2 )) " )) * (2 " ));

        then ((t * (((2 * a) ^2 ) " )) * (2 " )) = ((b ^2 ) * (((2 * (a ^2 )) " ) * (2 " )));

        then ((t * (((2 * a) ^2 ) " )) * (2 " )) = ((b ^2 ) * ((2 * ((a ^2 ) * 2)) " )) by XCMPLX_1: 204;

        then (((t * (2 " )) / ((2 * a) ^2 )) * ((2 * a) ^2 )) = (((b ^2 ) / ((2 * a) ^2 )) * ((2 * a) ^2 ));

        then (t * (2 " )) = (((b ^2 ) / ((2 * a) ^2 )) * ((2 * a) ^2 )) by A1, XCMPLX_1: 87;

        then

         A10: (t / 2) = (b ^2 ) by A1, XCMPLX_1: 87;

        set t = ((c * (a " )) * ((2 * a) ^2 ));

        t = ((((c / a) * a) * 2) * (2 * a));

        then t = ((c * 2) * (2 * a)) by A1, XCMPLX_1: 87;

        then ((y * (2 * a)) ^2 ) = (( sqrt ( - ( delta (a,b,c)))) ^2 ) by A2, A9, A10, SQUARE_1:def 2;

        then (((y * (2 * a)) + ( sqrt ( - ( delta (a,b,c))))) * ((y * (2 * a)) - ( sqrt ( - ( delta (a,b,c)))))) = 0 ;

        then ((y * (2 * a)) + ( sqrt ( - ( delta (a,b,c))))) = 0 or ((y * (2 * a)) - ( sqrt ( - ( delta (a,b,c))))) = 0 ;

        then y = (( - ( sqrt ( - ( delta (a,b,c))))) / (2 * a)) or ((y * (2 * a)) / (2 * a)) = (( sqrt ( - ( delta (a,b,c)))) / (2 * a)) by A1, XCMPLX_1: 89;

        then ( Re z) = ( - (b / (2 * a))) & ( Im z) = (( sqrt ( - ( delta (a,b,c)))) / (2 * a)) or ( Re z) = ( - (b / (2 * a))) & ( Im z) = ( - (( sqrt ( - ( delta (a,b,c)))) / (2 * a))) by A1, A8, XCMPLX_1: 89;

        hence z = (( - (b / (2 * a))) + ((( sqrt ( - ( delta (a,b,c)))) / (2 * a)) * <i> )) or z = (( - (b / (2 * a))) + (( - (( sqrt ( - ( delta (a,b,c)))) / (2 * a))) * <i> )) by COMPLEX1: 13;

      end;

      hence thesis;

    end;

    theorem :: POLYEQ_3:3

    b <> 0 & (for z holds ( Polynom ( 0 ,b,c,z)) = 0 ) implies z = ( - (c / b))

    proof

      

       A1: 0 = ( 0 + ( 0 * <i> ));

      assume

       A2: b <> 0 ;

      assume

       A3: for z holds ( Polynom ( 0 ,b,c,z)) = 0 ;

      now

        let z1;

        ( Polynom ( 0 ,b,c,z1)) = 0 by A3;

        then ((b * (( Re z1) + (( Im z1) * <i> ))) + c) = 0 by COMPLEX1: 13;

        then

         A4: ((((b * ( Re z1)) - 0 ) + c) + (((b * ( Im z1)) + 0 ) * <i> )) = ( 0 + ( 0 * <i> ));

        then (((b * ( Re z1)) - 0 ) + c) = ( Re 0 ) by COMPLEX1: 12;

        then (((b * ( Re z1)) - 0 ) + c) = 0 by A1, COMPLEX1: 12;

        then

         A5: ( Re z1) = (( - c) / b) by A2, XCMPLX_1: 89;

        (b * ( Im z1)) = ( Im 0 ) by A4, COMPLEX1: 12;

        then ( Im z1) = 0 by A1, A2, COMPLEX1: 12;

        then z1 = (( - (c / b)) + ( 0 * <i> )) by A5, COMPLEX1: 13;

        hence z1 = ( - (c / b));

      end;

      hence thesis;

    end;

    theorem :: POLYEQ_3:4

    for a,b,c be Real, z,z1,z2 be Complex st a <> 0 & for z be Complex holds ( Polynom (a,b,c,z)) = ( Quard (a,z1,z2,z)) holds (b / a) = ( - (z1 + z2)) & (c / a) = (z1 * z2)

    proof

      let a,b,c be Real, z,z1,z2 be Complex;

      assume

       A1: a <> 0 ;

      assume

       A2: for z be Complex holds ( Polynom (a,b,c,z)) = ( Quard (a,z1,z2,z));

      then

       A3: ( Polynom (a,b,c, 0 )) = ( Quard (a,z1,z2, 0 ));

      ( Quard (a,z1,z2,1)) = ( Polynom (a,b,c,1)) by A2

      .= ((a + b) + c);

      then ((a + b) + c) = ((a + (a * ( - (z1 + z2)))) + c) by A3;

      hence thesis by A1, A3, XCMPLX_1: 203;

    end;

    definition

      let z be Complex;

      :: POLYEQ_3:def3

      func z ^3 -> Element of COMPLEX equals ((z ^2 ) * z);

      correctness by XCMPLX_0:def 2;

    end

    

     Lm1: for z be Complex holds (z |^ 2) = (z * z)

    proof

      let z be Complex;

      (z |^ (1 + 1)) = ((z |^ 1) * z) by NEWTON: 6

      .= (z * z);

      hence thesis;

    end;

    definition

      let a,b,c,d,z be Complex;

      :: original: Polynom

      redefine

      :: POLYEQ_3:def4

      func Polynom (a,b,c,d,z) equals ((((a * (z ^3 )) + (b * (z ^2 ))) + (c * z)) + d);

      compatibility

      proof

        let x be set;

        ( Polynom (a,b,c,d,z)) = ((((a * (z |^ (2 + 1))) + (b * (z ^2 ))) + (c * z)) + d)

        .= ((((a * ((z |^ 2) * z)) + (b * (z ^2 ))) + (c * z)) + d) by NEWTON: 6;

        hence thesis by Lm1;

      end;

    end

    theorem :: POLYEQ_3:5

    

     Th5: ( Re (z ^3 )) = ((( Re z) |^ 3) - ((3 * ( Re z)) * (( Im z) ^2 ))) & ( Im (z ^3 )) = (( - (( Im z) |^ 3)) + ((3 * (( Re z) ^2 )) * ( Im z)))

    proof

      set x = ( Re z);

      set y = ( Im z);

      (( Re z) + (( Im z) * <i> )) = z by COMPLEX1: 13;

      

      then (z ^3 ) = (((( Re (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))) * ( Re (x + (y * <i> )))) - (( Im (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))) * ( Im (x + (y * <i> ))))) + (((( Re (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))) * ( Im (x + (y * <i> )))) + (( Re (x + (y * <i> ))) * ( Im (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))))) * <i> )) by COMPLEX1: 82

      .= (((((x ^2 ) - (y ^2 )) * ( Re (x + (y * <i> )))) - (( Im (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))) * ( Im (x + (y * <i> ))))) + (((( Re (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))) * ( Im (x + (y * <i> )))) + (( Re (x + (y * <i> ))) * ( Im (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))))) * <i> )) by COMPLEX1: 12

      .= (((((x ^2 ) - (y ^2 )) * ( Re (x + (y * <i> )))) - ((2 * (x * y)) * ( Im (x + (y * <i> ))))) + (((( Re (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))) * ( Im (x + (y * <i> )))) + (( Re (x + (y * <i> ))) * ( Im (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))))) * <i> )) by COMPLEX1: 12

      .= (((((x ^2 ) - (y ^2 )) * ( Re (x + (y * <i> )))) - ((2 * (x * y)) * ( Im (x + (y * <i> ))))) + (((((x ^2 ) - (y ^2 )) * ( Im (x + (y * <i> )))) + (( Re (x + (y * <i> ))) * ( Im (((x ^2 ) - (y ^2 )) + ((2 * (x * y)) * <i> ))))) * <i> )) by COMPLEX1: 12

      .= (((((x ^2 ) - (y ^2 )) * ( Re (x + (y * <i> )))) - ((2 * (x * y)) * ( Im (x + (y * <i> ))))) + (((((x ^2 ) - (y ^2 )) * ( Im (x + (y * <i> )))) + (( Re (x + (y * <i> ))) * (2 * (x * y)))) * <i> )) by COMPLEX1: 12

      .= (((((x ^2 ) - (y ^2 )) * x) - ((2 * (x * y)) * ( Im (x + (y * <i> ))))) + (((((x ^2 ) - (y ^2 )) * ( Im (x + (y * <i> )))) + (( Re (x + (y * <i> ))) * (2 * (x * y)))) * <i> )) by COMPLEX1: 12

      .= (((((x ^2 ) - (y ^2 )) * x) - ((2 * (x * y)) * y)) + (((((x ^2 ) - (y ^2 )) * ( Im (x + (y * <i> )))) + (( Re (x + (y * <i> ))) * (2 * (x * y)))) * <i> )) by COMPLEX1: 12

      .= (((((x ^2 ) - (y ^2 )) * x) - ((2 * (x * y)) * y)) + (((((x ^2 ) - (y ^2 )) * y) + (( Re (x + (y * <i> ))) * (2 * (x * y)))) * <i> )) by COMPLEX1: 12

      .= ((((((x ^2 ) * x) - ((y ^2 ) * x)) + ( 0 * x)) - ((2 * (x * y)) * y)) + ((((((x ^2 ) - (y ^2 )) + 0 ) * y) + (x * (2 * (x * y)))) * <i> )) by COMPLEX1: 12

      .= ((((((x |^ 1) * x) * x) - ((y ^2 ) * x)) - ((2 * (x * y)) * y)) + (((((x ^2 ) * y) - ((y ^2 ) * y)) + (x * (2 * (x * y)))) * <i> ))

      .= (((((x |^ (1 + 1)) * x) - ((y ^2 ) * x)) - ((2 * (x * y)) * y)) + (((((x ^2 ) * y) - ((y ^2 ) * y)) + (x * (2 * (x * y)))) * <i> )) by NEWTON: 6

      .= ((((x |^ (2 + 1)) - ((y ^2 ) * x)) - ((2 * (x * y)) * y)) + (((((x ^2 ) * y) - ((y ^2 ) * y)) + (x * (2 * (x * y)))) * <i> )) by NEWTON: 6

      .= ((((x |^ 3) - ((y ^2 ) * x)) - ((2 * (x * y)) * y)) + (((((x ^2 ) * y) - (((y |^ 1) * y) * y)) + (x * (2 * (x * y)))) * <i> ))

      .= ((((x |^ 3) - ((y ^2 ) * x)) - ((2 * (x * y)) * y)) + (((((x ^2 ) * y) - ((y |^ (1 + 1)) * y)) + (x * (2 * (x * y)))) * <i> )) by NEWTON: 6

      .= ((((x |^ 3) - ((y ^2 ) * x)) - (2 * (x * (y * y)))) + (((((x ^2 ) * y) - (y |^ (2 + 1))) + (x * (2 * (x * y)))) * <i> )) by NEWTON: 6

      .= (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ));

      hence thesis by COMPLEX1: 12;

    end;

    theorem :: POLYEQ_3:6

    (for z be Complex holds ( Polynom (a,b,c,d,z)) = ( Polynom (a9,b9,c9,d9,z))) implies a = a9 & b = b9 & c = c9 & d = d9

    proof

      assume

       A1: for z be Complex holds ( Polynom (a,b,c,d,z)) = ( Polynom (a9,b9,c9,d9,z));

      then

       A2: ( Polynom (a,b,c,d, 0 )) = ( Polynom (a9,b9,c9,d9, 0 ));

      

       A3: ( Polynom (a,b,c,d,1)) = ( Polynom (a9,b9,c9,d9,1)) & ( Polynom (a,b,c,d,( - 1))) = ( Polynom (a9,b9,c9,d9,( - 1))) by A1;

      

       A4: ( Polynom (a,b,c,d,2)) = ( Polynom (a9,b9,c9,d9,2)) by A1;

      hence a = a9 by A2, A3;

      thus b = b9 by A2, A3;

      thus c = c9 by A2, A3, A4;

      thus thesis by A2;

    end;

    theorem :: POLYEQ_3:7

    b <> 0 & ( delta (b,c,d)) >= 0 & ( Polynom ( 0 ,b,c,d,z)) = 0 implies z = ((( - c) + ( sqrt ( delta (b,c,d)))) / (2 * b)) or z = ((( - c) - ( sqrt ( delta (b,c,d)))) / (2 * b)) or z = ( - (c / (2 * b)))

    proof

      assume that

       A1: b <> 0 & ( delta (b,c,d)) >= 0 and

       A2: ( Polynom ( 0 ,b,c,d,z)) = 0 ;

      ( Polynom (b,c,d,z)) = 0 by A2;

      hence thesis by A1, Th1;

    end;

    theorem :: POLYEQ_3:8

    b <> 0 & ( delta (b,c,d)) < 0 & ( Polynom ( 0 ,b,c,d,z)) = 0 implies z = (( - (c / (2 * b))) + ((( sqrt ( - ( delta (b,c,d)))) / (2 * b)) * <i> )) or z = (( - (c / (2 * b))) + (( - (( sqrt ( - ( delta (b,c,d)))) / (2 * b))) * <i> ))

    proof

      assume that

       A1: b <> 0 & ( delta (b,c,d)) < 0 and

       A2: ( Polynom ( 0 ,b,c,d,z)) = 0 ;

      ( Polynom (b,c,d,z)) = 0 by A2;

      hence thesis by A1, Th2;

    end;

    theorem :: POLYEQ_3:9

    a <> 0 & ((4 * a) * c) <= 0 & ( Polynom (a, 0 ,c, 0 ,z)) = 0 implies z = (( sqrt ( - ((4 * a) * c))) / (2 * a)) or z = (( - ( sqrt ( - ((4 * a) * c)))) / (2 * a)) or z = 0

    proof

      assume that

       A1: a <> 0 & ((4 * a) * c) <= 0 and

       A2: ( Polynom (a, 0 ,c, 0 ,z)) = 0 ;

      (((a * (z ^2 )) + c) * z) = 0 by A2;

      then ( Polynom (a, 0 ,c,z)) = 0 or z = 0 ;

      then z = ((( - 0 ) + ( sqrt ( delta (a, 0 ,c)))) / (2 * a)) or z = ((( - 0 ) - ( sqrt ( delta (a, 0 ,c)))) / (2 * a)) or z = 0 or z = ( 0 / (2 * a)) by A1, Th1;

      hence thesis;

    end;

    theorem :: POLYEQ_3:10

    a <> 0 & ( delta (a,b,c)) >= 0 & ( Polynom (a,b,c, 0 ,z)) = 0 implies z = ((( - b) + ( sqrt ( delta (a,b,c)))) / (2 * a)) or z = ((( - b) - ( sqrt ( delta (a,b,c)))) / (2 * a)) or z = ( - (b / (2 * a))) or z = 0

    proof

      assume that

       A1: a <> 0 & ( delta (a,b,c)) >= 0 and

       A2: ( Polynom (a,b,c, 0 ,z)) = 0 ;

      ((((a * (z ^2 )) + (b * z)) + c) * z) = 0 by A2;

      then ( Polynom (a,b,c,z)) = 0 or z = 0 ;

      hence thesis by A1, Th1;

    end;

    theorem :: POLYEQ_3:11

    a <> 0 & ( delta (a,b,c)) < 0 & ( Polynom (a,b,c, 0 ,z)) = 0 implies z = (( - (b / (2 * a))) + ((( sqrt ( - ( delta (a,b,c)))) / (2 * a)) * <i> )) or z = (( - (b / (2 * a))) + (( - (( sqrt ( - ( delta (a,b,c)))) / (2 * a))) * <i> )) or z = 0

    proof

      assume that

       A1: a <> 0 & ( delta (a,b,c)) < 0 and

       A2: ( Polynom (a,b,c, 0 ,z)) = 0 ;

      ((((a * (z ^2 )) + (b * z)) + c) * z) = 0 by A2;

      then ( Polynom (a,b,c,z)) = 0 or z = 0 ;

      hence thesis by A1, Th2;

    end;

    theorem :: POLYEQ_3:12

    

     Th12: (y ^2 ) = a implies y = ( sqrt a) or y = ( - ( sqrt a))

    proof

      assume

       A1: (y ^2 ) = a;

      then

       A2: a >= 0 by XREAL_1: 63;

      ( Polynom (1, 0 ,( - a),y)) = 0 by A1;

      then y = ((( - 0 ) + ( sqrt ( delta (1, 0 ,( - a))))) / (2 * 1)) or y = ((( - 0 ) - ( sqrt ( delta (1, 0 ,( - a))))) / (2 * 1)) by A2, POLYEQ_1: 5;

      then y = (( sqrt (4 * a)) / 2) or y = (( 0 - ( sqrt (4 * a))) / 2);

      then y = ((( sqrt a) * 2) / 2) or y = (( - (2 * ( sqrt a))) / 2) by A2, SQUARE_1: 20, SQUARE_1: 29;

      hence thesis;

    end;

    theorem :: POLYEQ_3:13

    a <> 0 & ( Im z) = 0 & ( Polynom (a, 0 ,c,d,z)) = 0 implies for u, v st ( Re z) = (u + v) & (((3 * v) * u) + (c / a)) = 0 holds z = ((3 -root (( - (d / (2 * a))) + ( sqrt (((d ^2 ) / (4 * (a ^2 ))) + ((c / (3 * a)) |^ 3))))) + (3 -root (( - (d / (2 * a))) - ( sqrt (((d ^2 ) / (4 * (a ^2 ))) + ((c / (3 * a)) |^ 3)))))) or z = ((3 -root (( - (d / (2 * a))) + ( sqrt (((d ^2 ) / (4 * (a ^2 ))) + ((c / (3 * a)) |^ 3))))) + (3 -root (( - (d / (2 * a))) + ( sqrt (((d ^2 ) / (4 * (a ^2 ))) + ((c / (3 * a)) |^ 3)))))) or z = ((3 -root (( - (d / (2 * a))) - ( sqrt (((d ^2 ) / (4 * (a ^2 ))) + ((c / (3 * a)) |^ 3))))) + (3 -root (( - (d / (2 * a))) - ( sqrt (((d ^2 ) / (4 * (a ^2 ))) + ((c / (3 * a)) |^ 3))))))

    proof

      assume

       A1: a <> 0 ;

      set y = ( Im z);

      set x = ( Re z);

      assume that

       A2: ( Im z) = 0 and

       A3: ( Polynom (a, 0 ,c,d,z)) = 0 ;

      

       A4: a = (a + ( 0 * <i> ));

       0 = ((((a * (( Re (z ^3 )) + (( Im (z ^3 )) * <i> ))) + ( 0 * (z ^2 ))) + (c * z)) + d) by A3, COMPLEX1: 13

      .= ((((a * (((( Re z) |^ 3) - ((3 * ( Re z)) * (( Im z) ^2 ))) + (( Im (z ^3 )) * <i> ))) + ( 0 * (z ^2 ))) + (c * z)) + d) by Th5

      .= (((a * (((( Re z) |^ 3) - ((3 * ( Re z)) * (( Im z) ^2 ))) + ((( - (( Im z) |^ 3)) + ((3 * (( Re z) ^2 )) * ( Im z))) * <i> ))) + (c * z)) + d) by Th5

      .= ((((a + ( 0 * <i> )) * (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 13

      .= (((((( Re a) * ( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) - (( Im a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 82

      .= (((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= (((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= (((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= (((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A4, COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - ( 0 * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A4, COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - 0 ) + (((a * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A4, COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - 0 ) + (((a * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * 0 )) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A4, COMPLEX1: 12

      .= ((((a * ((x |^ 3) - 0 )) + (c * x)) + d) + ((a * ( - 0 )) * <i> )) by A2, NEWTON: 11

      .= (((a * (x |^ 3)) + (c * x)) + d);

      then ((a " ) * (((a * (x |^ 3)) + (c * x)) + d)) = ((a " ) * 0 );

      then ((((x |^ 3) * (a / a)) + (((a " ) * c) * x)) + ((a " ) * d)) = 0 ;

      then

       A5: ( Polynom (1, 0 ,(c / a),(d / a),x)) = 0 by A1, XCMPLX_1: 88;

      

       A6: (((d / a) ^2 ) / 4) = ((1 / 4) * ((d ^2 ) / (a ^2 ))) by XCMPLX_1: 76

      .= ((d ^2 ) / ((a ^2 ) * 4)) by XCMPLX_1: 103;

      let u, v;

      assume

       A7: ( Re z) = (u + v) & (((3 * v) * u) + (c / a)) = 0 ;

      

       A8: ( - ((d / a) / 2)) = ( - ((1 / 2) * (d / a)))

      .= ( - (d / (a * 2))) by XCMPLX_1: 103;

      

       A9: ((c / a) / 3) = ((1 / 3) * (c / a))

      .= (c / (a * 3)) by XCMPLX_1: 103;

      z = (( Re z) + (( Im z) * <i> )) by COMPLEX1: 13

      .= x by A2;

      hence thesis by A7, A5, A8, A6, A9, POLYEQ_1: 19;

    end;

    theorem :: POLYEQ_3:14

    a <> 0 & ( Im z) <> 0 & ( Polynom (a, 0 ,c,d,z)) = 0 implies for u, v st ( Re z) = (u + v) & (((3 * v) * u) + (c / (4 * a))) = 0 holds z = (((3 -root ((d / (16 * a)) + ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3))))) + (3 -root ((d / (16 * a)) - ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) + (( sqrt ((3 * (((3 -root ((d / (16 * a)) + ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3))))) + (3 -root ((d / (16 * a)) - ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) ^2 )) + (c / a))) * <i> )) or z = (((3 -root ((d / (16 * a)) + ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3))))) + (3 -root ((d / (16 * a)) - ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) - (( sqrt ((3 * (((3 -root ((d / (16 * a)) + ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3))))) + (3 -root ((d / (16 * a)) - ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) ^2 )) + (c / a))) * <i> )) or z = ((2 * (3 -root ((d / (16 * a)) + ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) + (( sqrt ((3 * ((2 * (3 -root ((d / (16 * a)) + ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) ^2 )) + (c / a))) * <i> )) or z = ((2 * (3 -root ((d / (16 * a)) + ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) - (( sqrt ((3 * ((2 * (3 -root ((d / (16 * a)) + ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) ^2 )) + (c / a))) * <i> )) or z = ((2 * (3 -root ((d / (16 * a)) - ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) + (( sqrt ((3 * ((2 * (3 -root ((d / (16 * a)) - ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) ^2 )) + (c / a))) * <i> )) or z = ((2 * (3 -root ((d / (16 * a)) - ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) - (( sqrt ((3 * ((2 * (3 -root ((d / (16 * a)) - ( sqrt (((d / (16 * a)) ^2 ) + ((c / (12 * a)) |^ 3)))))) ^2 )) + (c / a))) * <i> ))

    proof

      assume

       A1: a <> 0 ;

      set y = ( Im z);

      set x = ( Re z);

      assume that

       A2: ( Im z) <> 0 and

       A3: ( Polynom (a, 0 ,c,d,z)) = 0 ;

      

       A4: a = (a + ( 0 * <i> ));

      

       A5: 0 = ((((a * (( Re (z ^3 )) + (( Im (z ^3 )) * <i> ))) + ( 0 * (z ^2 ))) + (c * z)) + d) by A3, COMPLEX1: 13

      .= (((a * (((( Re z) |^ 3) - ((3 * ( Re z)) * (( Im z) ^2 ))) + (( Im (z ^3 )) * <i> ))) + (c * z)) + d) by Th5

      .= (((a * (((( Re z) |^ 3) - ((3 * ( Re z)) * (( Im z) ^2 ))) + ((( - (( Im z) |^ 3)) + ((3 * (( Re z) ^2 )) * ( Im z))) * <i> ))) + (c * z)) + d) by Th5

      .= ((((a + ( 0 * <i> )) * (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 13

      .= (((((( Re a) * ( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) - (( Im a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 82

      .= (((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= (((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= (((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= (((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - (( Im a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A4, COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - ( 0 * (( - (y |^ 3)) + ((3 * (x ^2 )) * y)))) + (((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A4, COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - 0 ) + (((a * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * ( Im a))) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A4, COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - 0 ) + (((a * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (((x |^ 3) - ((3 * x) * (y ^2 ))) * 0 )) * <i> )) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A4, COMPLEX1: 12

      .= ((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) + (c * x)) + d) + ((((a * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (c * y)) + 0 ) * <i> ));

      then ((a * (( - (y |^ (2 + 1))) + ((3 * (x ^2 )) * y))) + (c * y)) = 0 by COMPLEX1: 4, COMPLEX1: 12;

      then ((a * (( - ((y |^ 2) * y)) + ((3 * (x ^2 )) * y))) + (c * y)) = 0 by NEWTON: 6;

      then ((((a * (( - (y |^ 2)) + (3 * (x ^2 )))) + c) + 0 ) * y) = 0 ;

      then ((a * (y |^ 2)) + (( - (a * (y |^ 2))) + ((a * (3 * (x ^2 ))) + c))) = ((a * (y |^ 2)) + 0 ) by A2, XCMPLX_1: 6;

      then (y |^ (1 + 1)) = (((a * (3 * (x ^2 ))) + c) / a) by A1, XCMPLX_1: 89;

      then ((y |^ 1) * y) = (((a * (3 * (x ^2 ))) + c) / a) by NEWTON: 6;

      then

       A6: (y ^2 ) = (((((3 * (x ^2 )) * a) / a) + (c / a)) + ( 0 / a));

      then

       A7: z = (x + (y * <i> )) & (y ^2 ) = (((3 * (x ^2 )) + (c / a)) + ( 0 * (a " ))) by A1, COMPLEX1: 13, XCMPLX_1: 89;

      set q = ( - (d / (8 * a)));

      set pp = (c / (4 * a));

      let u, v;

      set m = (3 -root (( - (q / 2)) + ( sqrt (((q ^2 ) / 4) + ((pp / 3) |^ 3)))));

      set n = (3 -root (( - (q / 2)) - ( sqrt (((q ^2 ) / 4) + ((pp / 3) |^ 3)))));

      

       A8: ((c / (4 * a)) / 3) = ((1 / 3) * (c / (4 * a)))

      .= (c / ((a * 4) * 3)) by XCMPLX_1: 103

      .= (c / (a * (4 * 3)));

      ( - (q / 2)) = ((1 / 2) * (d / (8 * a)));

      then

       A9: ( - (q / 2)) = (d / ((a * 8) * 2)) by XCMPLX_1: 103;

      (((a * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + (c * y)) + 0 ) = 0 by A5, COMPLEX1: 4, COMPLEX1: 12;

      then (((a * (((x |^ 3) - ((3 * x) * ((3 * (x ^2 )) + (c / a)))) + 0 )) + (c * x)) + d) = 0 by A1, A5, A6, XCMPLX_1: 89;

      

      then 0 = ((((a * (x |^ 3)) - (a * ((9 * (x * (x ^2 ))) + ((3 * x) * (c / a))))) + (c * x)) + d)

      .= ((((a * (x |^ 3)) - (a * ((9 * (((x |^ 1) * x) * x)) + ((3 * x) * (c / a))))) + (c * x)) + d)

      .= ((((a * (x |^ 3)) - (a * ((9 * ((x |^ (1 + 1)) * x)) + ((3 * x) * (c / a))))) + (c * x)) + d) by NEWTON: 6

      .= ((((a * (x |^ 3)) - (a * (((9 * (x |^ (2 + 1))) + ((3 * x) * (c / a))) + 0 ))) + (c * x)) + d) by NEWTON: 6

      .= ((((a * (x |^ 3)) - ((a * (9 * (x |^ 3))) + ((3 * x) * (c * (a / a))))) + (c * x)) + d)

      .= ((((a * (x |^ 3)) - ((a * (9 * (x |^ 3))) + ((3 * x) * c))) + (c * x)) + d) by A1, XCMPLX_1: 88

      .= (((( - (8 * a)) * (x |^ 3)) + (( - (2 * c)) * x)) + d);

      then (( - 1) * 0 ) = ((((8 * a) * (x |^ 3)) + ((2 * c) * x)) + ( - d));

      then 0 = ((((x |^ 3) * ((8 * a) / (8 * a))) + (((8 * a) " ) * ((2 * c) * x))) + (((8 * a) " ) * ( - d)));

      then 0 = ((((1 * (x |^ 3)) + ( 0 * (x ^2 ))) + (((2 * c) / (8 * a)) * x)) + (((8 * a) " ) * ( - d))) by A1, XCMPLX_1: 88;

      then 0 = ((((1 * (x |^ 3)) + ( 0 * (x ^2 ))) + ((((2 / 8) * c) / a) * x)) + (( - d) / (8 * a))) by XCMPLX_1: 83;

      then 0 = ((((1 * (x |^ 3)) + ( 0 * (x ^2 ))) + (((1 / a) * (c / 4)) * x)) + (( - d) / (8 * a)));

      then

       A10: ( Polynom (1, 0 ,(c / (4 * a)),( - (d / (8 * a))),x)) = 0 by XCMPLX_1: 103;

      assume ( Re z) = (u + v) & (((3 * v) * u) + (c / (4 * a))) = 0 ;

      then

       A11: x = ((3 -root (( - (q / 2)) + ( sqrt (((q ^2 ) / 4) + ((pp / 3) |^ 3))))) + (3 -root (( - (q / 2)) - ( sqrt (((q ^2 ) / 4) + ((pp / 3) |^ 3)))))) or x = ((3 -root (( - (q / 2)) + ( sqrt (((q ^2 ) / 4) + ((pp / 3) |^ 3))))) + (3 -root (( - (q / 2)) + ( sqrt (((q ^2 ) / 4) + ((pp / 3) |^ 3)))))) or x = ((3 -root (( - (q / 2)) - ( sqrt (((q ^2 ) / 4) + ((pp / 3) |^ 3))))) + (3 -root (( - (q / 2)) - ( sqrt (((q ^2 ) / 4) + ((pp / 3) |^ 3)))))) by A10, POLYEQ_1: 19;

       A12:

      now

        per cases by A11;

          case x = (m + n);

          hence z = ((m + n) + (( sqrt ((3 * ((m + n) ^2 )) + (c / a))) * <i> )) or z = ((m + n) + (( - ( sqrt ((3 * ((m + n) ^2 )) + (c / a)))) * <i> )) by A7, Th12;

        end;

          case x = (2 * m);

          hence z = ((2 * m) + (( sqrt ((3 * ((2 * m) ^2 )) + (c / a))) * <i> )) or z = ((2 * m) + (( - ( sqrt ((3 * ((2 * m) ^2 )) + (c / a)))) * <i> )) by A7, Th12;

        end;

          case x = (2 * n);

          hence z = ((2 * n) + (( sqrt ((3 * ((2 * n) ^2 )) + (c / a))) * <i> )) or z = ((2 * n) + (( - ( sqrt ((3 * ((2 * n) ^2 )) + (c / a)))) * <i> )) by A7, Th12;

        end;

      end;

      ((q ^2 ) / 4) = (((1 / 2) * (d / (8 * a))) ^2 );

      hence thesis by A9, A12, A8;

    end;

    theorem :: POLYEQ_3:15

    a <> 0 & ( Polynom (a,b,c,d,z)) = 0 & ( Im z) = 0 implies for u, v, x1 st x1 = (( Re z) + (b / (3 * a))) & ( Re z) = ((u + v) - (b / (3 * a))) & (((3 * u) * v) + ((((3 * a) * c) - (b ^2 )) / (3 * (a ^2 )))) = 0 holds z = ((((3 -root ((( - ((b / (3 * a)) |^ 3)) - ((((3 * a) * d) - (b * c)) / (6 * (a ^2 )))) + ( sqrt (((((2 * ((b / (3 * a)) |^ 3)) + ((((3 * a) * d) - (b * c)) / (3 * (a ^2 )))) ^2 ) / 4) + (((((3 * a) * c) - (b ^2 )) / (9 * (a ^2 ))) |^ 3))))) + (3 -root ((( - ((b / (3 * a)) |^ 3)) - ((((3 * a) * d) - (b * c)) / (6 * (a ^2 )))) - ( sqrt (((((2 * ((b / (3 * a)) |^ 3)) + ((((3 * a) * d) - (b * c)) / (3 * (a ^2 )))) ^2 ) / 4) + (((((3 * a) * c) - (b ^2 )) / (9 * (a ^2 ))) |^ 3)))))) - (b / (3 * a))) + ( 0 * <i> )) or z = ((((3 -root ((( - ((b / (3 * a)) |^ 3)) - ((((3 * a) * d) - (b * c)) / (6 * (a ^2 )))) + ( sqrt (((((2 * ((b / (3 * a)) |^ 3)) + ((((3 * a) * d) - (b * c)) / (3 * (a ^2 )))) ^2 ) / 4) + (((((3 * a) * c) - (b ^2 )) / (9 * (a ^2 ))) |^ 3))))) + (3 -root ((( - ((b / (3 * a)) |^ 3)) - ((((3 * a) * d) - (b * c)) / (6 * (a ^2 )))) + ( sqrt (((((2 * ((b / (3 * a)) |^ 3)) + ((((3 * a) * d) - (b * c)) / (3 * (a ^2 )))) ^2 ) / 4) + (((((3 * a) * c) - (b ^2 )) / (9 * (a ^2 ))) |^ 3)))))) - (b / (3 * a))) + ( 0 * <i> )) or z = ((((3 -root ((( - ((b / (3 * a)) |^ 3)) - ((((3 * a) * d) - (b * c)) / (6 * (a ^2 )))) - ( sqrt (((((2 * ((b / (3 * a)) |^ 3)) + ((((3 * a) * d) - (b * c)) / (3 * (a ^2 )))) ^2 ) / 4) + (((((3 * a) * c) - (b ^2 )) / (9 * (a ^2 ))) |^ 3))))) + (3 -root ((( - ((b / (3 * a)) |^ 3)) - ((((3 * a) * d) - (b * c)) / (6 * (a ^2 )))) - ( sqrt (((((2 * ((b / (3 * a)) |^ 3)) + ((((3 * a) * d) - (b * c)) / (3 * (a ^2 )))) ^2 ) / 4) + (((((3 * a) * c) - (b ^2 )) / (9 * (a ^2 ))) |^ 3)))))) - (b / (3 * a))) + ( 0 * <i> ))

    proof

      assume

       A1: a <> 0 ;

      set p = ((((3 * a) * c) - (b ^2 )) / (3 * (a ^2 )));

      set b9 = (c / a);

      

       A2: a = (a + ( 0 * <i> ));

      set q = ((2 * ((b / (3 * a)) |^ 3)) + ((((3 * a) * d) - (b * c)) / (3 * (a ^2 ))));

      set c9 = (d / a);

      set a9 = (b / a);

      set y = ( Im z);

      set x = ( Re z);

      assume that

       A3: ( Polynom (a,b,c,d,z)) = 0 and

       A4: ( Im z) = 0 ;

      

       A5: z = (x + (y * <i> )) by COMPLEX1: 13;

       0 = ((((a * (( Re (z ^3 )) + (( Im (z ^3 )) * <i> ))) + (b * (z ^2 ))) + (c * z)) + d) by A3, COMPLEX1: 13

      .= ((((a * (((( Re z) |^ 3) - ((3 * ( Re z)) * (( Im z) ^2 ))) + (( Im (z ^3 )) * <i> ))) + (b * (z ^2 ))) + (c * z)) + d) by Th5

      .= ((((a * (((( Re z) |^ 3) - ((3 * ( Re z)) * (( Im z) ^2 ))) + ((( - (( Im z) |^ 3)) + ((3 * (( Re z) ^2 )) * ( Im z))) * <i> ))) + (b * (z ^2 ))) + (c * z)) + d) by Th5

      .= (((((a + ( 0 * <i> )) * (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) + (b * (z ^2 ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 13

      .= ((((((( Re a) * ( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) - (( Im a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * ( Im a))) * <i> )) + (b * (z ^2 ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 82

      .= ((((((( Re a) * ( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) - ( 0 * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))))) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * ( Im a))) * <i> )) + (b * (z ^2 ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A2, COMPLEX1: 12

      .= ((((((( Re a) * ( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) - 0 ) + (((( Re a) * ( Im (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) + (( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> ))) * 0 )) * <i> )) + (b * (z ^2 ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A2, COMPLEX1: 12

      .= ((((((( Re a) * ( Re (((x |^ 3) - ((3 * x) * (y ^2 ))) + ((( - (y |^ 3)) + ((3 * (x ^2 )) * y)) * <i> )))) - 0 ) + (((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) + 0 ) * <i> )) + (b * (z ^2 ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= ((((((( Re a) * ((x |^ 3) - ((3 * x) * (y ^2 )))) - 0 ) + ((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) * <i> )) + (b * (z ^2 ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by COMPLEX1: 12

      .= ((((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) - 0 ) + ((( Re a) * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) * <i> )) + (b * (z ^2 ))) + (c * (( Re z) + (( Im z) * <i> )))) + d) by A2, COMPLEX1: 12

      .= (((((a * ((x |^ 3) - ((3 * x) * (y ^2 )))) + ((a * (( - (y |^ 3)) + ((3 * (x ^2 )) * y))) * <i> )) + (b * (((x ^2 ) - (y ^2 )) + (((2 * x) * y) * <i> )))) + ((c * x) + ((c * y) * <i> ))) + d) by A2, A5, COMPLEX1: 12;

      

      then 0 = (((((a * ((x |^ 3) - ((3 * x) * 0 ))) + (b * ((x ^2 ) - 0 ))) + (c * x)) + d) + ((((a * (( - ( 0 |^ 3)) + 0 )) + (b * 0 )) + 0 ) * <i> )) by A4

      .= (((((a * (x |^ 3)) + (b * (x ^2 ))) + (c * x)) + d) + (((a * 0 ) + 0 ) * <i> )) by NEWTON: 11;

      then

       A6: ( Polynom (a,b,c,d,x)) = 0 ;

      

       A7: c9 = (d / a);

      (p / 3) = ((1 / 3) * ((((3 * a) * c) - (b ^2 )) / (3 * (a ^2 ))));

      then

       A8: (p / 3) = ((((3 * a) * c) - (b ^2 )) / (((a ^2 ) * 3) * 3)) by XCMPLX_1: 103;

      

       A9: ( - (q / 2)) = ( - (((b / (3 * a)) |^ 3) + ((1 / 2) * ((((3 * a) * d) - (b * c)) / (3 * (a ^2 ))))))

      .= ( - (((b / (3 * a)) |^ 3) + ((((3 * a) * d) - (b * c)) / (((a ^2 ) * 3) * 2)))) by XCMPLX_1: 103

      .= (( - ((b / (3 * a)) |^ 3)) - ((((3 * a) * d) - (b * c)) / (6 * (a ^2 ))));

      let u, v, x1;

      assume that

       A10: x1 = (( Re z) + (b / (3 * a))) & ( Re z) = ((u + v) - (b / (3 * a))) and

       A11: (((3 * u) * v) + ((((3 * a) * c) - (b ^2 )) / (3 * (a ^2 )))) = 0 ;

      a9 = (b / a) & b9 = (c / a);

      then ( Polynom (1, 0 ,p,q,x1)) = 0 by A1, A10, A6, A7, POLYEQ_1: 16;

      then x1 = ((3 -root (( - (q / 2)) + ( sqrt (((q ^2 ) / 4) + ((p / 3) |^ 3))))) + (3 -root (( - (q / 2)) - ( sqrt (((q ^2 ) / 4) + ((p / 3) |^ 3)))))) or x1 = ((3 -root (( - (q / 2)) + ( sqrt (((q ^2 ) / 4) + ((p / 3) |^ 3))))) + (3 -root (( - (q / 2)) + ( sqrt (((q ^2 ) / 4) + ((p / 3) |^ 3)))))) or x1 = ((3 -root (( - (q / 2)) - ( sqrt (((q ^2 ) / 4) + ((p / 3) |^ 3))))) + (3 -root (( - (q / 2)) - ( sqrt (((q ^2 ) / 4) + ((p / 3) |^ 3)))))) by A10, A11, POLYEQ_1: 19;

      hence thesis by A4, A10, A8, A9, COMPLEX1: 13;

    end;

    theorem :: POLYEQ_3:16

    

     Th16: z1 <> 0 & ( Polynom (z1,z2,z)) = 0 implies z = ( - (z2 / z1))

    proof

      assume z1 <> 0 & ( Polynom (z1,z2,z)) = 0 ;

      then z = (( - z2) * (z1 " )) by XCMPLX_1: 203;

      hence thesis;

    end;

    begin

    theorem :: POLYEQ_3:17

    (for z holds ( Polynom (z1,z2,z3,z)) = ( Polynom (s1,s2,s3,z))) implies z1 = s1 & z2 = s2 & z3 = s3

    proof

      assume

       A1: for z holds ( Polynom (z1,z2,z3,z)) = ( Polynom (s1,s2,s3,z));

      then

       A2: ( Polynom (z1,z2,z3,( - 1r ))) = ( Polynom (s1,s2,s3,( - 1r )));

      ( Polynom (z1,z2,z3, 0c )) = ( Polynom (s1,s2,s3, 0c )) & ( Polynom (z1,z2,z3, 1r )) = ( Polynom (s1,s2,s3, 1r )) by A1;

      hence thesis by A2, COMPLEX1:def 4;

    end;

    theorem :: POLYEQ_3:18

    ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2) >= 0 & ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2) >= 0

    proof

      

       A1: (b ^2 ) >= 0 by XREAL_1: 63;

      

       A2: (a ^2 ) >= 0 by XREAL_1: 63;

      then

       A3: ( sqrt ((a ^2 ) + (b ^2 ))) >= 0 by A1, SQUARE_1:def 2;

      ((a ^2 ) + (b ^2 )) >= ( 0 + (a ^2 )) by A1, XREAL_1: 7;

      then

       A4: ( sqrt ((a ^2 ) + (b ^2 ))) >= ( sqrt (a ^2 )) by A2, SQUARE_1: 26;

      per cases ;

        suppose

         A5: a >= 0 ;

        then ( sqrt ((a ^2 ) + (b ^2 ))) >= a by A4, SQUARE_1: 22;

        then (( sqrt ((a ^2 ) + (b ^2 ))) - a) >= (a - a) by XREAL_1: 9;

        hence thesis by A3, A5;

      end;

        suppose

         A6: a < 0 ;

        then ( sqrt ((a ^2 ) + (b ^2 ))) >= ( - a) by A4, SQUARE_1: 23;

        then (( sqrt ((a ^2 ) + (b ^2 ))) - ( - a)) >= (( - a) - ( - a)) by XREAL_1: 9;

        hence thesis by A3, A6;

      end;

    end;

    theorem :: POLYEQ_3:19

    

     Th19: (z ^2 ) = s & ( Im s) >= 0 implies z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) * <i> ))

    proof

      set a = ( Re s);

      set b = ( Im s);

      set u = ( Re z);

      set v = ( Im z);

      

       A1: z = (u + (v * <i> )) by COMPLEX1: 13;

      assume (z ^2 ) = s;

      then

       A2: (((u ^2 ) - (v ^2 )) + (((2 * u) * v) * <i> )) = (a + (b * <i> )) by A1, COMPLEX1: 13;

      assume ( Im s) >= 0 ;

      then

       A3: u <= 0 & v <= 0 or u >= 0 & v >= 0 by A2, COMPLEX1: 77;

      

       A4: (u ^2 ) >= 0 & (v ^2 ) >= 0 by XREAL_1: 63;

      

       A5: ((u ^2 ) - (v ^2 )) = a by A2, COMPLEX1: 77;

      then (((u ^2 ) + (v ^2 )) ^2 ) = ((a ^2 ) + (b ^2 )) by A2;

      then ((u ^2 ) + (v ^2 )) = ( sqrt ((a ^2 ) + (b ^2 ))) by A4, SQUARE_1: 22;

      then ( - u) = ( sqrt ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) & ( - v) = ( sqrt ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) or u = ( sqrt ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) & v = ( sqrt ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) by A5, A3, SQUARE_1: 22, SQUARE_1: 23;

      hence thesis by COMPLEX1: 13;

    end;

    theorem :: POLYEQ_3:20

    (z ^2 ) = s & ( Im s) = 0 & ( Re s) > 0 implies z = ( sqrt ( Re s)) or z = ( - ( sqrt ( Re s)))

    proof

      assume

       A1: (z ^2 ) = s;

      assume that

       A2: ( Im s) = 0 and

       A3: ( Re s) > 0 ;

      z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2)) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + ( 0 ^2 )))) / 2))) * <i> )) by A1, A2, Th19;

      then z = (( sqrt ((( Re s) + ( Re s)) / 2)) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2))) + ( - (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2)) * <i> ))) by A3, SQUARE_1: 22;

      then z = (( sqrt ((( Re s) + ( Re s)) / 2)) + (( sqrt ((( - ( Re s)) + ( Re s)) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( Re s)) / 2))) + ( - (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2)) * <i> ))) by A3, SQUARE_1: 22;

      then z = (( sqrt ( Re s)) + (( sqrt (( 0 + (( Re s) - ( Re s))) / 2)) * <i> )) or z = (( - ( sqrt ( Re s))) + ( - (( sqrt (( 0 + (( Re s) - ( Re s))) / 2)) * <i> ))) by A3, SQUARE_1: 22;

      hence thesis by SQUARE_1: 17;

    end;

    theorem :: POLYEQ_3:21

    (z ^2 ) = s & ( Im s) = 0 & ( Re s) < 0 implies z = (( sqrt ( - ( Re s))) * <i> ) or z = ( - (( sqrt ( - ( Re s))) * <i> ))

    proof

      assume

       A1: (z ^2 ) = s;

      assume that

       A2: ( Im s) = 0 and

       A3: ( Re s) < 0 ;

      z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2)) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + ( 0 ^2 )))) / 2))) * <i> )) by A1, A2, Th19;

      then z = (( sqrt ((( Re s) + ( - ( Re s))) / 2)) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2))) * <i> )) by A3, SQUARE_1: 23;

      then z = (( sqrt ((( Re s) + ( - ( Re s))) / 2)) + (( sqrt ((( - ( Re s)) + ( - ( Re s))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( - ( Re s))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + 0 ))) / 2))) * <i> )) by A3, SQUARE_1: 23;

      then z = (( sqrt ((( Re s) + ( - ( Re s))) / 2)) + (( sqrt ((( - ( Re s)) + ( - ( Re s))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( - ( Re s))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( - ( Re s))) / 2))) * <i> )) by A3, SQUARE_1: 23;

      hence thesis by SQUARE_1: 17;

    end;

    theorem :: POLYEQ_3:22

    (z ^2 ) = s & ( Im s) < 0 implies z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) * <i> ))

    proof

      assume

       A1: (z ^2 ) = s;

      set v = ( Im z);

      set u = ( Re z);

      set b = ( Im s);

      set a = ( Re s);

      z = (u + (v * <i> )) by COMPLEX1: 13;

      then

       A2: s = (a + (b * <i> )) & (z ^2 ) = (((u ^2 ) - (v ^2 )) + (((2 * u) * v) * <i> )) by COMPLEX1: 13;

      assume ( Im s) < 0 ;

      then (2 * (u * v)) < 0 by A1, A2, COMPLEX1: 77;

      then (u * v) < 0 ;

      then

       A3: u < 0 & v > 0 or u > 0 & v < 0 by XREAL_1: 133;

      

       A4: (u ^2 ) >= 0 & (v ^2 ) >= 0 by XREAL_1: 63;

      

       A5: ((u ^2 ) - (v ^2 )) = a by A1, A2, COMPLEX1: 77;

      then ( sqrt (((u ^2 ) + (v ^2 )) ^2 )) = ( sqrt ((a ^2 ) + (b ^2 ))) by A1, A2;

      then ((u ^2 ) + (v ^2 )) = ( sqrt ((a ^2 ) + (b ^2 ))) by A4, SQUARE_1: 22;

      then ( - u) = ( sqrt ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) & v = ( sqrt ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) or u = ( sqrt ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) & ( - v) = ( sqrt ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) by A5, A3, SQUARE_1: 22, SQUARE_1: 23;

      hence thesis by COMPLEX1: 13;

    end;

    theorem :: POLYEQ_3:23

    

     Th23: (z ^2 ) = s implies z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) * <i> )) or z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) * <i> ))

    proof

      set a = ( Re s);

      set b = ( Im s);

      set u = ( Re z);

      set v = ( Im z);

      

       A1: (u ^2 ) >= 0 & (v ^2 ) >= 0 by XREAL_1: 63;

      z = (u + (v * <i> )) by COMPLEX1: 13;

      then

       A2: s = (a + (b * <i> )) & (z ^2 ) = (((u ^2 ) - (v ^2 )) + (((2 * u) * v) * <i> )) by COMPLEX1: 13;

      assume

       A3: (z ^2 ) = s;

      then

       A4: ((u ^2 ) - (v ^2 )) = a by A2, COMPLEX1: 77;

      then ( sqrt (((u ^2 ) + (v ^2 )) ^2 )) = ( sqrt ((a ^2 ) + (b ^2 ))) by A3, A2;

      then

       A5: ((u ^2 ) + (v ^2 )) = ( sqrt ((a ^2 ) + (b ^2 ))) by A1, SQUARE_1: 22;

      per cases ;

        suppose b >= 0 ;

        then u <= 0 & v <= 0 or u >= 0 & v >= 0 by A3, A2, COMPLEX1: 77;

        then ( - u) = ( sqrt ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) & ( - v) = ( sqrt ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) or u = ( sqrt ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) & v = ( sqrt ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) by A4, A5, SQUARE_1: 22, SQUARE_1: 23;

        hence thesis by COMPLEX1: 13;

      end;

        suppose b < 0 ;

        then (2 * (u * v)) < 0 by A3, A2, COMPLEX1: 77;

        then (u * v) < 0 ;

        then u < 0 & v > 0 or u > 0 & v < 0 by XREAL_1: 133;

        then ( - u) = ( sqrt ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) & v = ( sqrt ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) or u = ( sqrt ((a + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) & ( - v) = ( sqrt ((( - a) + ( sqrt ((a ^2 ) + (b ^2 )))) / 2)) by A4, A5, SQUARE_1: 22, SQUARE_1: 23;

        hence thesis by COMPLEX1: 13;

      end;

    end;

    theorem :: POLYEQ_3:24

    z1 <> 0 & ( Polynom (z1,z2, 0 ,z)) = 0 implies z = ( - (z2 / z1)) or z = 0

    proof

      assume that

       A1: z1 <> 0 and

       A2: ( Polynom (z1,z2, 0 ,z)) = 0 ;

       0 = (((z1 * z) + z2) * z) by A2;

      then ( Polynom (z1,z2,z)) = 0 or z = 0 ;

      hence thesis by A1, Th16;

    end;

    theorem :: POLYEQ_3:25

    

     Th25: z1 <> 0 & ( Polynom (z1, 0 ,z3,z)) = 0 implies for s st s = ( - (z3 / z1)) holds z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) * <i> )) or z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) * <i> ))

    proof

      assume z1 <> 0 & ( Polynom (z1, 0 ,z3,z)) = 0 ;

      then

       A1: (z ^2 ) = (( - z3) / z1) by XCMPLX_1: 89;

      let s;

      assume s = ( - (z3 / z1));

      hence thesis by A1, Th23;

    end;

    theorem :: POLYEQ_3:26

    

     Th26: z1 <> 0 & ( Polynom (z1,z2,z3,z)) = 0 implies for h, t st h = (((z2 / (2 * z1)) ^2 ) - (z3 / z1)) & t = (z2 / (2 * z1)) holds z = ((( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) + (( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) * <i> )) - t) or z = ((( - ( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) + (( - ( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) * <i> )) - t) or z = ((( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) + (( - ( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) * <i> )) - t) or z = ((( - ( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) + (( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) * <i> )) - t)

    proof

      assume that

       A1: z1 <> 0 and

       A2: ( Polynom (z1,z2,z3,z)) = 0 ;

      ((((z1 * (z ^2 )) + (z2 * z)) + z3) / z1) = 0 by A2;

      then (((((z ^2 ) * z1) / z1) + ((z2 * z) / z1)) + (z3 / z1)) = 0 ;

      then (((z ^2 ) + ((z2 / z1) * z)) + (z3 / z1)) = 0 by A1, XCMPLX_1: 89;

      then (((z ^2 ) + (((2 * z2) / (2 * z1)) * z)) + (z3 / z1)) = 0 by XCMPLX_1: 91;

      then

       A3: (((z + (z2 / (2 * z1))) ^2 ) - (((z2 / (2 * z1)) ^2 ) - (z3 / z1))) = 0 ;

      let h, t;

      assume h = (((z2 / (2 * z1)) ^2 ) - (z3 / z1)) & t = (z2 / (2 * z1));

      then ((z + t) - t) = ((( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) + (( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) * <i> )) - t) or ((z + t) - t) = ((( - ( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) + (( - ( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) * <i> )) - t) or ((z + t) - t) = ((( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) + (( - ( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) * <i> )) - t) or ((z + t) - t) = ((( - ( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) + (( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) * <i> )) - t) by A3, Th23;

      hence thesis;

    end;

    theorem :: POLYEQ_3:27

    (z |^ 3) = ((z * z) * z) & (z |^ 3) = ((z ^2 ) * z) & (z |^ 3) = (z ^3 )

    proof

      (z |^ 3) = (z |^ (2 + 1))

      .= ((z |^ (1 + 1)) * z) by NEWTON: 6

      .= (((z |^ 1) * z) * z) by NEWTON: 6

      .= ((z * z) * z);

      hence thesis;

    end;

    theorem :: POLYEQ_3:28

    z1 <> 0 & ( Polynom (z1,z2, 0 , 0 ,z)) = 0 implies z = ( - (z2 / z1)) or z = 0

    proof

      assume that

       A1: z1 <> 0 and

       A2: ( Polynom (z1,z2, 0 , 0 ,z)) = 0 ;

       0 = (((z1 * z) + z2) * (z ^2 )) by A2;

      then ( Polynom (z1,z2,z)) = 0 or (((1 * (z ^2 )) + ( 0 * z)) + 0 ) = 0 ;

      hence thesis by A1, Th16;

    end;

    theorem :: POLYEQ_3:29

    z1 <> 0 & ( Polynom (z1, 0 ,z3, 0 ,z)) = 0 implies for s st s = ( - (z3 / z1)) holds z = 0 or z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) * <i> )) or z = (( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) + (( - ( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) * <i> )) or z = (( - ( sqrt ((( Re s) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2))) + (( sqrt ((( - ( Re s)) + ( sqrt ((( Re s) ^2 ) + (( Im s) ^2 )))) / 2)) * <i> ))

    proof

      assume that

       A1: z1 <> 0 and

       A2: ( Polynom (z1, 0 ,z3, 0 ,z)) = 0 ;

      let s;

       0 = (((z1 * (z ^2 )) + z3) * z) by A2;

      then

       A3: ( Polynom (z1, 0 ,z3,z)) = 0 or z = 0 ;

      assume s = ( - (z3 / z1));

      hence thesis by A1, A3, Th25;

    end;

    theorem :: POLYEQ_3:30

    z1 <> 0 & ( Polynom (z1,z2,z3, 0 ,z)) = 0 implies for s, h, t st h = (((z2 / (2 * z1)) ^2 ) - (z3 / z1)) & t = (z2 / (2 * z1)) holds z = 0 or z = ((( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) + (( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) * <i> )) - t) or z = ((( - ( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) + (( - ( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) * <i> )) - t) or z = ((( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) + (( - ( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) * <i> )) - t) or z = ((( - ( sqrt ((( Re h) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2))) + (( sqrt ((( - ( Re h)) + ( sqrt ((( Re h) ^2 ) + (( Im h) ^2 )))) / 2)) * <i> )) - t)

    proof

      assume that

       A1: z1 <> 0 and

       A2: ( Polynom (z1,z2,z3, 0 ,z)) = 0 ;

      let s, h, t;

       0 = (( Polynom (z1,z2,z3,z)) * z) by A2;

      then

       A3: z = 0 or ( Polynom (z1,z2,z3,z)) = 0 ;

      assume h = (((z2 / (2 * z1)) ^2 ) - (z3 / z1)) & t = (z2 / (2 * z1));

      hence thesis by A1, A3, Th26;

    end;

    

     Lm2: for n be Nat st n > 0 holds ( 0 |^ n) = 0

    proof

      let n be Nat;

      assume n > 0 ;

      then n >= ( 0 + 1) by NAT_1: 13;

      hence thesis by NEWTON: 11;

    end;

    theorem :: POLYEQ_3:31

    

     Th31: for x be Real, n be Nat holds ((( cos x) + (( sin x) * <i> )) |^ n) = (( cos (n * x)) + (( sin (n * x)) * <i> ))

    proof

      let x be Real;

      defpred P[ Nat] means ((( cos x) + (( sin x) * <i> )) |^ $1) = (( cos ($1 * x)) + (( sin ($1 * x)) * <i> ));

       A1:

      now

        let n be Nat;

        assume P[n];

        

        then ((( cos x) + (( sin x) * <i> )) |^ (n + 1)) = ((( cos (n * x)) + (( sin (n * x)) * <i> )) * (( cos x) + (( sin x) * <i> ))) by NEWTON: 6

        .= (((( cos (n * x)) * ( cos x)) - (( sin (n * x)) * ( sin x))) + (((( cos (n * x)) * ( sin x)) + (( cos x) * ( sin (n * x)))) * <i> ))

        .= (( cos ((n * x) + x)) + (((( cos (n * x)) * ( sin x)) + (( cos x) * ( sin (n * x)))) * <i> )) by SIN_COS: 75

        .= (( cos ((n + 1) * x)) + (( sin ((n + 1) * x)) * <i> )) by SIN_COS: 75;

        hence P[(n + 1)];

      end;

      

       A2: P[ 0 ] by NEWTON: 4, SIN_COS: 31;

      thus for n be Nat holds P[n] from NAT_1:sch 2( A2, A1);

    end;

    theorem :: POLYEQ_3:32

    for z be Element of COMPLEX holds for n be Element of NAT holds (z |^ n) = ((( |.z.| to_power n) * ( cos (n * ( Arg z)))) + ((( |.z.| to_power n) * ( sin (n * ( Arg z)))) * <i> ))

    proof

      let z be Element of COMPLEX ;

      let n be Element of NAT ;

      (z |^ n) = (((( |.z.| * ( cos ( Arg z))) - ( 0 * ( sin ( Arg z)))) + ((( |.z.| * ( sin ( Arg z))) + (( cos ( Arg z)) * 0 )) * <i> )) |^ n) by COMPTRIG: 62

      .= (( |.z.| * (( cos ( Arg z)) + (( sin ( Arg z)) * <i> ))) |^ n)

      .= (( |.z.| |^ n) * ((( cos ( Arg z)) + (( sin ( Arg z)) * <i> )) |^ n)) by NEWTON: 7;

      

      hence (z |^ n) = (( |.z.| to_power n) * (( cos (n * ( Arg z))) + (( sin (n * ( Arg z))) * <i> ))) by Th31

      .= ((( |.z.| to_power n) * ( cos (n * ( Arg z)))) + ((( |.z.| to_power n) * ( sin (n * ( Arg z)))) * <i> ));

    end;

    theorem :: POLYEQ_3:33

    

     Th33: for n,k be Element of NAT , x be Real st n <> 0 holds ((( cos ((x + ((2 * PI ) * k)) / n)) + (( sin ((x + ((2 * PI ) * k)) / n)) * <i> )) |^ n) = (( cos x) + (( sin x) * <i> ))

    proof

      let n,k be Element of NAT , x be Real;

      assume

       A1: n <> 0 ;

      

      thus ((( cos ((x + ((2 * PI ) * k)) / n)) + (( sin ((x + ((2 * PI ) * k)) / n)) * <i> )) |^ n) = (( cos (n * ((x + ((2 * PI ) * k)) / n))) + (( sin (n * ((x + ((2 * PI ) * k)) / n))) * <i> )) by Th31

      .= (( cos (x + ((2 * PI ) * k))) + (( sin (n * ((x + ((2 * PI ) * k)) / n))) * <i> )) by A1, XCMPLX_1: 87

      .= (( cos (x + ((2 * PI ) * k))) + (( sin (x + ((2 * PI ) * k))) * <i> )) by A1, XCMPLX_1: 87

      .= (( cos . (x + ((2 * PI ) * k))) + (( sin (x + ((2 * PI ) * k))) * <i> )) by SIN_COS:def 19

      .= (( cos . (x + ((2 * PI ) * k))) + (( sin . (x + ((2 * PI ) * k))) * <i> )) by SIN_COS:def 17

      .= (( cos . (x + ((2 * PI ) * k))) + (( sin . x) * <i> )) by SIN_COS2: 10

      .= (( cos . x) + (( sin . x) * <i> )) by SIN_COS2: 11

      .= (( cos . x) + (( sin x) * <i> )) by SIN_COS:def 17

      .= (( cos x) + (( sin x) * <i> )) by SIN_COS:def 19;

    end;

    theorem :: POLYEQ_3:34

    

     Th34: for z be Complex holds for n,k be Element of NAT st n <> 0 holds z = ((((n -root |.z.|) * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root |.z.|) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n)

    proof

      let z be Complex;

      let n,k be Element of NAT ;

      assume

       A1: n <> 0 ;

      then

       A2: n >= ( 0 + 1) by NAT_1: 13;

      per cases ;

        suppose z <> 0 ;

        then

         A3: |.z.| > 0 by COMPLEX1: 47;

        

        thus ((((n -root |.z.|) * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root |.z.|) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n) = (((n -root |.z.|) * (( cos ((( Arg z) + ((2 * PI ) * k)) / n)) + (( sin ((( Arg z) + ((2 * PI ) * k)) / n)) * <i> ))) |^ n)

        .= (((n -root |.z.|) |^ n) * ((( cos ((( Arg z) + ((2 * PI ) * k)) / n)) + (( sin ((( Arg z) + ((2 * PI ) * k)) / n)) * <i> )) |^ n)) by NEWTON: 7

        .= (((n -root |.z.|) |^ n) * (( cos ( Arg z)) + (( sin ( Arg z)) * <i> ))) by A1, Th33

        .= ( |.z.| * (( cos ( Arg z)) + (( sin ( Arg z)) * <i> ))) by A1, A3, COMPTRIG: 4

        .= ((( |.z.| * ( cos ( Arg z))) - ( 0 * ( sin ( Arg z)))) + ((( |.z.| * ( sin ( Arg z))) + ( 0 * ( cos ( Arg z)))) * <i> ))

        .= z by COMPTRIG: 62;

      end;

        suppose

         A4: z = 0 ;

        

        hence ((((n -root |.z.|) * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root |.z.|) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n) = ((( 0 * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root 0 ) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n) by A2, COMPLEX1: 44, POWER: 5

        .= ((( 0 * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> ) |^ n) by A2, POWER: 5

        .= z by A1, A4, Lm2;

      end;

    end;

    theorem :: POLYEQ_3:35

    for z be Element of COMPLEX , n be non zero Element of NAT , k be Element of NAT holds (((n -root |.z.|) * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root |.z.|) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) is CRoot of n, z

    proof

      let z be Element of COMPLEX , n be non zero Element of NAT , k be Element of NAT ;

      ((((n -root |.z.|) * ( cos ((( Arg z) + ((2 * PI ) * k)) / n))) + (((n -root |.z.|) * ( sin ((( Arg z) + ((2 * PI ) * k)) / n))) * <i> )) |^ n) = z by Th34;

      hence thesis by COMPTRIG:def 2;

    end;

    theorem :: POLYEQ_3:36

    for z be Complex, v be CRoot of 1, z holds v = z

    proof

      let z be Complex, v be CRoot of 1, z;

      (v |^ 1) = z by COMPTRIG:def 2;

      hence thesis;

    end;

    theorem :: POLYEQ_3:37

    for n be non zero Nat, v be CRoot of n, 0 holds v = 0

    proof

      let n be non zero Nat, v be CRoot of n, 0 ;

      defpred P[ Nat] means (v |^ $1) = 0 ;

       A1:

      now

        let k be non zero Nat;

        assume that

         A2: k <> 1 and

         A3: P[k];

        consider t be Nat such that

         A4: k = (t + 1) by NAT_1: 6;

        t <> 0 by A2, A4;

        then

        reconsider t as non zero Nat;

        take t;

        thus t < k by A4, NAT_1: 13;

        (v |^ k) = ((v |^ t) * v) by A4, NEWTON: 6;

        then (v |^ t) = 0 or v = 0 by A3;

        hence P[t] by Lm2;

      end;

      

       A5: ex n be non zero Nat st P[n]

      proof

        take n;

        thus thesis by COMPTRIG:def 2;

      end;

       P[1] from COMPTRIG:sch 1( A5, A1);

      hence thesis;

    end;

    theorem :: POLYEQ_3:38

    for n be non zero Element of NAT , z be Complex holds for v be CRoot of n, z st v = 0 holds z = 0

    proof

      let n be non zero Element of NAT , z be Complex;

      let v be CRoot of n, z;

      assume v = 0 ;

      then ( 0 |^ n) = z by COMPTRIG:def 2;

      hence thesis by Lm2;

    end;

    theorem :: POLYEQ_3:39

    for n be non zero Element of NAT , k be Element of NAT holds (( cos (((2 * PI ) * k) / n)) + (( sin (((2 * PI ) * k) / n)) * <i> )) is CRoot of n, 1

    proof

      let n be non zero Element of NAT , k be Element of NAT ;

      ((( cos (((2 * PI ) * k) / n)) + (( sin (((2 * PI ) * k) / n)) * <i> )) |^ n) = (( cos (n * (((2 * PI ) * k) / n))) + (( sin (n * (((2 * PI ) * k) / n))) * <i> )) by Th31

      .= (( cos ((2 * PI ) * k)) + (( sin (n * (((2 * PI ) * k) / n))) * <i> )) by XCMPLX_1: 87

      .= (( cos (((2 * PI ) * k) + 0 )) + (( sin (((2 * PI ) * k) + 0 )) * <i> )) by XCMPLX_1: 87

      .= (( cos . (((2 * PI ) * k) + 0 )) + (( sin (((2 * PI ) * k) + 0 )) * <i> )) by SIN_COS:def 19

      .= (( cos . (((2 * PI ) * k) + 0 )) + (( sin . (((2 * PI ) * k) + 0 )) * <i> )) by SIN_COS:def 17

      .= (( cos . (((2 * PI ) * k) + 0 )) + (( sin . 0 ) * <i> )) by SIN_COS2: 10

      .= 1 by SIN_COS: 30, SIN_COS2: 11;

      hence thesis by COMPTRIG:def 2;

    end;

    theorem :: POLYEQ_3:40

    for z,s be Element of COMPLEX , n be Element of NAT st s <> 0 & z <> 0 & n >= 1 & (s |^ n) = (z |^ n) holds |.s.| = |.z.|

    proof

      let z,s be Element of COMPLEX , n be Element of NAT ;

      assume that

       A1: s <> 0 and

       A2: z <> 0 and

       A3: n >= 1 and

       A4: (s |^ n) = (z |^ n);

      (z |^ n) = ((( |.s.| * ( cos ( Arg s))) + (( |.s.| * ( sin ( Arg s))) * <i> )) |^ n) by A4, COMPTRIG: 62

      .= (( |.s.| * (( cos ( Arg s)) + (( sin ( Arg s)) * <i> ))) |^ n)

      .= (( |.s.| |^ n) * ((( cos ( Arg s)) + (( sin ( Arg s)) * <i> )) |^ n)) by NEWTON: 7

      .= (( |.s.| to_power n) * (( cos (n * ( Arg s))) + (( sin (n * ( Arg s))) * <i> ))) by Th31

      .= ((( |.s.| to_power n) * ( cos (n * ( Arg s)))) + ((( |.s.| to_power n) * ( sin (n * ( Arg s)))) * <i> ));

      

      then

       A5: ((( |.s.| to_power n) * ( cos (n * ( Arg s)))) + ((( |.s.| to_power n) * ( sin (n * ( Arg s)))) * <i> )) = ((( |.z.| * ( cos ( Arg z))) + (( |.z.| * ( sin ( Arg z))) * <i> )) |^ n) by COMPTRIG: 62

      .= (( |.z.| * (( cos ( Arg z)) + (( sin ( Arg z)) * <i> ))) |^ n)

      .= (( |.z.| |^ n) * ((( cos ( Arg z)) + (( sin ( Arg z)) * <i> )) |^ n)) by NEWTON: 7

      .= (( |.z.| to_power n) * (( cos (n * ( Arg z))) + (( sin (n * ( Arg z))) * <i> ))) by Th31

      .= ((( |.z.| to_power n) * ( cos (n * ( Arg z)))) + ((( |.z.| to_power n) * ( sin (n * ( Arg z)))) * <i> ));

      then (( |.s.| to_power n) * ( cos (n * ( Arg s)))) = (( |.z.| to_power n) * ( cos (n * ( Arg z)))) by COMPLEX1: 77;

      then (((( |.s.| to_power n) ^2 ) * (( cos (n * ( Arg s))) ^2 )) + ((( |.s.| to_power n) * ( sin (n * ( Arg s)))) ^2 )) = (((( |.z.| to_power n) * ( cos (n * ( Arg z)))) ^2 ) + ((( |.z.| to_power n) * ( sin (n * ( Arg z)))) ^2 )) by A5, SQUARE_1: 9;

      then ((( |.s.| to_power n) ^2 ) * ((( cos (n * ( Arg s))) ^2 ) + (( sin (n * ( Arg s))) ^2 ))) = ((( |.z.| to_power n) ^2 ) * ((( cos (n * ( Arg z))) ^2 ) + (( sin (n * ( Arg z))) ^2 )));

      then ((( |.s.| to_power n) ^2 ) * ((( cos (n * ( Arg s))) ^2 ) + (( sin (n * ( Arg s))) ^2 ))) = ((( |.z.| to_power n) ^2 ) * 1) by SIN_COS: 29;

      then

       A6: ((( |.s.| to_power n) ^2 ) * 1) = (( |.z.| to_power n) ^2 ) by SIN_COS: 29;

      

       A7: |.s.| > 0 by A1, COMPLEX1: 47;

      then ( |.s.| to_power n) > 0 by POWER: 34;

      then

       A8: ( |.s.| to_power n) = ( sqrt (( |.z.| to_power n) ^2 )) by A6, SQUARE_1: 22;

      

       A9: |.z.| > 0 by A2, COMPLEX1: 47;

      then ( |.z.| to_power n) > 0 by POWER: 34;

      then ( |.s.| |^ n) = ( |.z.| |^ n) by A8, SQUARE_1: 22;

      then |.s.| = (n -root ( |.z.| |^ n)) by A3, A7, POWER: 4;

      hence thesis by A3, A9, POWER: 4;

    end;