rfunct_4.miz



    begin

    reserve a,b,p,r,r1,r2,s,s1,s2,x0,x for Real;

    reserve f,g for PartFunc of REAL , REAL ;

    reserve X,Y for set;

    theorem :: RFUNCT_4:1

    

     Th1: for a,b be Real holds ( max (a,b)) >= ( min (a,b))

    proof

      let a,b be Real;

      per cases by XXREAL_0: 15;

        suppose ( min (a,b)) = a;

        hence thesis by XXREAL_0: 25;

      end;

        suppose ( min (a,b)) = b;

        hence thesis by XXREAL_0: 25;

      end;

    end;

    theorem :: RFUNCT_4:2

    

     Th2: for n be Nat, R1,R2 be Element of (n -tuples_on REAL ), r1,r2 be Real holds ( mlt ((R1 ^ <*r1*>),(R2 ^ <*r2*>))) = (( mlt (R1,R2)) ^ <*(r1 * r2)*>)

    proof

      let n be Nat;

      let R1,R2 be Element of (n -tuples_on REAL );

      let r1,r2 be Real;

      reconsider r1, r2 as Element of REAL by XREAL_0:def 1;

      ( len (R1 ^ <*r1*>)) = (( len R1) + 1) by FINSEQ_2: 16

      .= (n + 1) by CARD_1:def 7

      .= (( len R2) + 1) by CARD_1:def 7

      .= ( len (R2 ^ <*r2*>)) by FINSEQ_2: 16;

      

      then

       A1: ( len ( mlt ((R1 ^ <*r1*>),(R2 ^ <*r2*>)))) = ( len (R1 ^ <*r1*>)) by FINSEQ_2: 72

      .= (( len R1) + 1) by FINSEQ_2: 16

      .= (n + 1) by CARD_1:def 7;

      

       A2: for k be Nat st k in ( Seg (n + 1)) holds (( mlt ((R1 ^ <*r1*>),(R2 ^ <*r2*>))) . k) = ((( mlt (R1,R2)) ^ <*(r1 * r2)*>) . k)

      proof

        let k be Nat such that

         A3: k in ( Seg (n + 1));

        

         A4: k <= (n + 1) by A3, FINSEQ_1: 1;

        now

          per cases by A4, XXREAL_0: 1;

            suppose k < (n + 1);

            then

             A5: k <= n by NAT_1: 13;

            1 <= k by A3, FINSEQ_1: 1;

            then

             A6: k in ( Seg n) by A5, FINSEQ_1: 1;

            then k in ( Seg ( len R1)) by CARD_1:def 7;

            then k in ( dom R1) by FINSEQ_1:def 3;

            then

             A7: ((R1 ^ <*r1*>) . k) = (R1 . k) by FINSEQ_1:def 7;

            k in ( Seg ( len R2)) by A6, CARD_1:def 7;

            then k in ( dom R2) by FINSEQ_1:def 3;

            then ((R2 ^ <*r2*>) . k) = (R2 . k) by FINSEQ_1:def 7;

            then

             A8: (( mlt ((R1 ^ <*r1*>),(R2 ^ <*r2*>))) . k) = ((R1 . k) * (R2 . k)) by A7, RVSUM_1: 59;

            ( len ( mlt (R1,R2))) = n by CARD_1:def 7;

            then k in ( dom ( mlt (R1,R2))) by A6, FINSEQ_1:def 3;

            then ((( mlt (R1,R2)) ^ <*(r1 * r2)*>) . k) = (( mlt (R1,R2)) . k) by FINSEQ_1:def 7;

            hence thesis by A8, RVSUM_1: 59;

          end;

            suppose

             A9: k = (n + 1);

            then k = (( len R1) + 1) by CARD_1:def 7;

            then

             A10: ((R1 ^ <*r1*>) . k) = r1 by FINSEQ_1: 42;

            

             A11: (n + 1) = (( len ( mlt (R1,R2))) + 1) by CARD_1:def 7;

            k = (( len R2) + 1) by A9, CARD_1:def 7;

            then ((R2 ^ <*r2*>) . k) = r2 by FINSEQ_1: 42;

            then (( mlt ((R1 ^ <*r1*>),(R2 ^ <*r2*>))) . k) = (r1 * r2) by A10, RVSUM_1: 59;

            hence thesis by A9, A11, FINSEQ_1: 42;

          end;

        end;

        hence thesis;

      end;

      reconsider rr = (r1 * r2) as Element of REAL ;

      ( mlt ((R1 ^ <*r1*>),(R2 ^ <*r2*>))) is Element of ((n + 1) -tuples_on REAL ) by A1, FINSEQ_2: 92;

      hence thesis by A2, FINSEQ_2: 119;

    end;

    theorem :: RFUNCT_4:3

    

     Th3: for n be Nat, R be Element of (n -tuples_on REAL ) st ( Sum R) = 0 & (for i be Element of NAT st i in ( dom R) holds 0 <= (R . i)) holds for i be Element of NAT st i in ( dom R) holds (R . i) = 0

    proof

      let n be Nat, R be Element of (n -tuples_on REAL ) such that

       A1: ( Sum R) = 0 and

       A2: for i be Element of NAT st i in ( dom R) holds 0 <= (R . i);

      

       A3: for i be Nat st i in ( dom R) holds 0 <= (R . i) by A2;

      given k be Element of NAT such that

       A4: k in ( dom R) and

       A5: (R . k) <> 0 ;

       0 <= (R . k) by A2, A4;

      hence contradiction by A1, A3, A4, A5, RVSUM_1: 85;

    end;

    theorem :: RFUNCT_4:4

    

     Th4: for n be Nat, R be Element of (n -tuples_on REAL ) st (for i be Element of NAT st i in ( dom R) holds 0 = (R . i)) holds R = (n |-> 0 qua Real)

    proof

      let n be Nat, R be Element of (n -tuples_on REAL ) such that

       A1: for i be Element of NAT st i in ( dom R) holds 0 = (R . i);

      

       A2: for k be Nat st 1 <= k & k <= ( len R) holds (R . k) = ((n |-> 0 ) . k)

      proof

        let k be Nat;

        assume 1 <= k & k <= ( len R);

        then k in ( Seg ( len R)) by FINSEQ_1: 1;

        then k in ( dom R) by FINSEQ_1:def 3;

        then

         A3: (R . k) = 0 by A1;

        thus thesis by A3;

      end;

      ( len R) = n by CARD_1:def 7

      .= ( len (n |-> 0 )) by CARD_1:def 7;

      hence thesis by A2, FINSEQ_1: 14;

    end;

    theorem :: RFUNCT_4:5

    

     Th5: for n be Nat, R be Element of (n -tuples_on REAL ) holds ( mlt ((n |-> 0 qua Real),R)) = (n |-> 0 qua Real)

    proof

      let n be Nat, R be Element of (n -tuples_on REAL );

      

       A1: ( len ( mlt ((n |-> ( In ( 0 , REAL ))),R))) = n by CARD_1:def 7;

      

       A2: for k be Nat st 1 <= k & k <= ( len ( mlt ((n |-> 0 qua Real),R))) holds (( mlt ((n |-> 0 qua Real),R)) . k) = ((n |-> 0 qua Real) . k)

      proof

        let k be Nat;

        assume 1 <= k & k <= ( len ( mlt ((n |-> 0 qua Real),R)));

        (( mlt ((n |-> 0 qua Real),R)) . k) = (((n |-> 0 qua Real) . k) * (R . k)) by RVSUM_1: 60

        .= ( 0 * (R . k));

        hence thesis;

      end;

      ( len (n |-> 0 qua Real)) = n by CARD_1:def 7;

      hence thesis by A1, A2, FINSEQ_1: 14;

    end;

    begin

    definition

      let f, X;

      :: RFUNCT_4:def1

      pred f is_strictly_convex_on X means X c= ( dom f) & for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s)));

    end

    theorem :: RFUNCT_4:6

    f is_strictly_convex_on X implies f is_convex_on X

    proof

      assume

       A1: f is_strictly_convex_on X;

      

       A2: for p be Real st 0 <= p & p <= 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X holds (f . ((p * r) + ((1 - p) * s))) <= ((p * (f . r)) + ((1 - p) * (f . s)))

      proof

        let p be Real;

        assume

         A3: 0 <= p & p <= 1;

        for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X holds (f . ((p * r) + ((1 - p) * s))) <= ((p * (f . r)) + ((1 - p) * (f . s)))

        proof

          let r,s be Real;

          assume

           A4: r in X & s in X & ((p * r) + ((1 - p) * s)) in X;

          now

            per cases by A3, XXREAL_0: 1;

              suppose p = 0 ;

              hence thesis;

            end;

              suppose p = 1;

              hence thesis;

            end;

              suppose

               A5: 0 < p & p < 1;

              now

                per cases ;

                  suppose r = s;

                  hence thesis;

                end;

                  suppose r <> s;

                  hence thesis by A1, A4, A5;

                end;

              end;

              hence thesis;

            end;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      X c= ( dom f) by A1;

      hence thesis by A2, RFUNCT_3:def 12;

    end;

    theorem :: RFUNCT_4:7

    for a,b be Real, f be PartFunc of REAL , REAL holds f is_strictly_convex_on [.a, b.] iff [.a, b.] c= ( dom f) & for p be Real st 0 < p & p < 1 holds for r,s be Real st r in [.a, b.] & s in [.a, b.] & r <> s holds (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s)))

    proof

      let a,b be Real, f be PartFunc of REAL , REAL ;

      set ab = { r : a <= r & r <= b };

      

       A1: [.a, b.] = ab by RCOMP_1:def 1;

      thus f is_strictly_convex_on [.a, b.] implies [.a, b.] c= ( dom f) & for p be Real st 0 < p & p < 1 holds for x,y be Real st x in [.a, b.] & y in [.a, b.] & x <> y holds (f . ((p * x) + ((1 - p) * y))) < ((p * (f . x)) + ((1 - p) * (f . y)))

      proof

        assume

         A2: f is_strictly_convex_on [.a, b.];

        hence [.a, b.] c= ( dom f);

        let p be Real;

        assume that

         A3: 0 < p and

         A4: p < 1;

        

         A5: 0 <= (1 - p) by A4, XREAL_1: 48;

        

         A6: ((p * b) + ((1 - p) * b)) = b;

        

         A7: ((p * a) + ((1 - p) * a)) = a;

        let x,y be Real;

        assume that

         A8: x in [.a, b.] and

         A9: y in [.a, b.] and

         A10: x <> y;

        

         A11: ex r2 st r2 = y & a <= r2 & r2 <= b by A1, A9;

        then

         A12: ((1 - p) * y) <= ((1 - p) * b) by A5, XREAL_1: 64;

        

         A13: ex r1 st r1 = x & a <= r1 & r1 <= b by A1, A8;

        then (p * x) <= (p * b) by A3, XREAL_1: 64;

        then

         A14: ((p * x) + ((1 - p) * y)) <= b by A12, A6, XREAL_1: 7;

        

         A15: ((1 - p) * a) <= ((1 - p) * y) by A5, A11, XREAL_1: 64;

        (p * a) <= (p * x) by A3, A13, XREAL_1: 64;

        then a <= ((p * x) + ((1 - p) * y)) by A15, A7, XREAL_1: 7;

        then ((p * x) + ((1 - p) * y)) in ab by A14;

        hence thesis by A1, A2, A3, A4, A8, A9, A10;

      end;

      assume that

       A16: [.a, b.] c= ( dom f) and

       A17: for p be Real st 0 < p & p < 1 holds for x,y be Real st x in [.a, b.] & y in [.a, b.] & x <> y holds (f . ((p * x) + ((1 - p) * y))) < ((p * (f . x)) + ((1 - p) * (f . y)));

      thus [.a, b.] c= ( dom f) by A16;

      let p be Real;

      assume

       A18: 0 < p & p < 1;

      let x,y be Real;

      assume that

       A19: x in [.a, b.] & y in [.a, b.] and ((p * x) + ((1 - p) * y)) in [.a, b.];

      thus thesis by A17, A18, A19;

    end;

    theorem :: RFUNCT_4:8

    for X be set, f be PartFunc of REAL , REAL holds f is_convex_on X iff X c= ( dom f) & for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) <= ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)))

    proof

      let X be set, f be PartFunc of REAL , REAL ;

      

       A1: (X c= ( dom f) & for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) <= ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)))) implies f is_convex_on X

      proof

        assume that

         A2: X c= ( dom f) and

         A3: for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) <= ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)));

        for p be Real st 0 <= p & p <= 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X holds (f . ((p * r) + ((1 - p) * s))) <= ((p * (f . r)) + ((1 - p) * (f . s)))

        proof

          let p be Real;

          assume

           A4: 0 <= p & p <= 1;

          for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X holds (f . ((p * r) + ((1 - p) * s))) <= ((p * (f . r)) + ((1 - p) * (f . s)))

          proof

            let r,s be Real;

            assume

             A5: r in X & s in X & ((p * r) + ((1 - p) * s)) in X;

            (f . ((p * r) + ((1 - p) * s))) <= ((p * (f . r)) + ((1 - p) * (f . s)))

            proof

              per cases by A4, XXREAL_0: 1;

                suppose p = 0 ;

                hence thesis;

              end;

                suppose p = 1;

                hence thesis;

              end;

                suppose

                 A6: 0 < p & p < 1;

                then

                 A7: 0 < (1 - p) by XREAL_1: 50;

                per cases by XXREAL_0: 1;

                  suppose r = s;

                  hence thesis;

                end;

                  suppose

                   A8: r > s;

                  set t = ((p * r) + ((1 - p) * s));

                  

                   A9: (r - s) > 0 by A8, XREAL_1: 50;

                  

                   A10: (r - t) = ((1 - p) * (r - s));

                  then (r - t) > 0 by A7, A9, XREAL_1: 129;

                  then

                   A11: t < r by XREAL_1: 47;

                  

                   A12: (t - s) = (p * (r - s));

                  then

                   A13: ((t - s) / (r - s)) = p by A9, XCMPLX_1: 89;

                  (t - s) > 0 by A6, A9, A12, XREAL_1: 129;

                  then

                   A14: s < t by XREAL_1: 47;

                  ((r - t) / (r - s)) = (1 - p) by A9, A10, XCMPLX_1: 89;

                  hence thesis by A3, A5, A14, A11, A13;

                end;

                  suppose

                   A15: r < s;

                  set t = ((p * r) + ((1 - p) * s));

                  

                   A16: (s - r) > 0 by A15, XREAL_1: 50;

                  

                   A17: (s - t) = (p * (s - r));

                  then (s - t) > 0 by A6, A16, XREAL_1: 129;

                  then

                   A18: t < s by XREAL_1: 47;

                  

                   A19: (t - r) = ((1 - p) * (s - r));

                  then

                   A20: ((t - r) / (s - r)) = (1 - p) by A16, XCMPLX_1: 89;

                  (t - r) > 0 by A7, A16, A19, XREAL_1: 129;

                  then

                   A21: r < t by XREAL_1: 47;

                  ((s - t) / (s - r)) = p by A16, A17, XCMPLX_1: 89;

                  hence thesis by A3, A5, A21, A18, A20;

                end;

              end;

            end;

            hence thesis;

          end;

          hence thesis;

        end;

        hence thesis by A2, RFUNCT_3:def 12;

      end;

      f is_convex_on X implies X c= ( dom f) & for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) <= ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)))

      proof

        assume

         A22: f is_convex_on X;

        for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) <= ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)))

        proof

          let a,b,c be Real;

          assume that

           A23: a in X & b in X & c in X and

           A24: a < b & b < c;

          set p = ((c - b) / (c - a));

          

           A25: (c - b) < (c - a) & 0 < (c - b) by A24, XREAL_1: 10, XREAL_1: 50;

          then

           A26: ((c - b) / (c - a)) < 1 by XREAL_1: 189;

          

           A27: (p + ((b - a) / (c - a))) = (((c - b) + (b - a)) / (c - a)) by XCMPLX_1: 62

          .= 1 by A25, XCMPLX_1: 60;

          

          then ((p * a) + ((1 - p) * c)) = (((a * (c - b)) / (c - a)) + (c * ((b - a) / (c - a)))) by XCMPLX_1: 74

          .= (((a * (c - b)) / (c - a)) + ((c * (b - a)) / (c - a))) by XCMPLX_1: 74

          .= ((((c * a) - (b * a)) + ((b - a) * c)) / (c - a)) by XCMPLX_1: 62

          .= ((b * (c - a)) / (c - a));

          then ((p * a) + ((1 - p) * c)) = b by A25, XCMPLX_1: 89;

          hence thesis by A22, A23, A25, A26, A27, RFUNCT_3:def 12;

        end;

        hence thesis by A22, RFUNCT_3:def 12;

      end;

      hence thesis by A1;

    end;

    theorem :: RFUNCT_4:9

    for X be set, f be PartFunc of REAL , REAL holds f is_strictly_convex_on X iff X c= ( dom f) & for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) < ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)))

    proof

      let X be set;

      let f be PartFunc of REAL , REAL ;

      

       A1: (X c= ( dom f) & for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) < ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)))) implies f is_strictly_convex_on X

      proof

        assume that

         A2: X c= ( dom f) and

         A3: for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) < ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)));

        for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s)))

        proof

          let p be Real;

          assume

           A4: 0 < p & p < 1;

          for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s)))

          proof

            let r,s be Real;

            assume that

             A5: r in X & s in X & ((p * r) + ((1 - p) * s)) in X and

             A6: r <> s;

            (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s)))

            proof

              now

                per cases by A4;

                  suppose

                   A7: 0 < p & p < 1;

                  then

                   A8: 0 < (1 - p) by XREAL_1: 50;

                  now

                    per cases by A6, XXREAL_0: 1;

                      suppose

                       A9: r > s;

                      set t = ((p * r) + ((1 - p) * s));

                      

                       A10: (r - s) > 0 by A9, XREAL_1: 50;

                      

                       A11: (r - t) = ((1 - p) * (r - s));

                      then (r - t) > 0 by A8, A10, XREAL_1: 129;

                      then

                       A12: t < r by XREAL_1: 47;

                      

                       A13: (t - s) = (p * (r - s));

                      then

                       A14: ((t - s) / (r - s)) = p by A10, XCMPLX_1: 89;

                      (t - s) > 0 by A7, A10, A13, XREAL_1: 129;

                      then

                       A15: s < t by XREAL_1: 47;

                      ((r - t) / (r - s)) = (1 - p) by A10, A11, XCMPLX_1: 89;

                      hence thesis by A3, A5, A15, A12, A14;

                    end;

                      suppose

                       A16: r < s;

                      set t = ((p * r) + ((1 - p) * s));

                      

                       A17: (s - r) > 0 by A16, XREAL_1: 50;

                      

                       A18: (s - t) = (p * (s - r));

                      then (s - t) > 0 by A7, A17, XREAL_1: 129;

                      then

                       A19: t < s by XREAL_1: 47;

                      

                       A20: (t - r) = ((1 - p) * (s - r));

                      then

                       A21: ((t - r) / (s - r)) = (1 - p) by A17, XCMPLX_1: 89;

                      (t - r) > 0 by A8, A17, A20, XREAL_1: 129;

                      then

                       A22: r < t by XREAL_1: 47;

                      ((s - t) / (s - r)) = p by A17, A18, XCMPLX_1: 89;

                      hence thesis by A3, A5, A22, A19, A21;

                    end;

                  end;

                  hence thesis;

                end;

              end;

              hence thesis;

            end;

            hence thesis;

          end;

          hence thesis;

        end;

        hence thesis by A2;

      end;

      f is_strictly_convex_on X implies X c= ( dom f) & for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) < ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)))

      proof

        assume

         A23: f is_strictly_convex_on X;

        for a,b,c be Real st a in X & b in X & c in X & a < b & b < c holds (f . b) < ((((c - b) / (c - a)) * (f . a)) + (((b - a) / (c - a)) * (f . c)))

        proof

          let a,b,c be Real;

          assume that

           A24: a in X & b in X & c in X and

           A25: a < b & b < c;

          set p = ((c - b) / (c - a));

          

           A26: (c - b) < (c - a) & 0 < (c - b) by A25, XREAL_1: 10, XREAL_1: 50;

          then

           A27: 0 < ((c - b) / (c - a)) & ((c - b) / (c - a)) < 1 by XREAL_1: 139, XREAL_1: 189;

          

           A28: (p + ((b - a) / (c - a))) = (((c - b) + (b - a)) / (c - a)) by XCMPLX_1: 62

          .= 1 by A26, XCMPLX_1: 60;

          

          then ((p * a) + ((1 - p) * c)) = (((a * (c - b)) / (c - a)) + (c * ((b - a) / (c - a)))) by XCMPLX_1: 74

          .= (((a * (c - b)) / (c - a)) + ((c * (b - a)) / (c - a))) by XCMPLX_1: 74

          .= ((((c * a) - (b * a)) + ((b - a) * c)) / (c - a)) by XCMPLX_1: 62

          .= ((b * (c - a)) / (c - a));

          then ((p * a) + ((1 - p) * c)) = b by A26, XCMPLX_1: 89;

          hence thesis by A23, A24, A25, A27, A28;

        end;

        hence thesis by A23;

      end;

      hence thesis by A1;

    end;

    theorem :: RFUNCT_4:10

    f is_strictly_convex_on X & Y c= X implies f is_strictly_convex_on Y by XBOOLE_1: 1;

    

     Lm1: f is_strictly_convex_on X implies (f - r) is_strictly_convex_on X

    proof

      assume

       A1: f is_strictly_convex_on X;

      then

       A2: X c= ( dom f);

      

       A3: for p be Real st 0 < p & p < 1 holds for t,s be Real st t in X & s in X & ((p * t) + ((1 - p) * s)) in X & t <> s holds ((f - r) . ((p * t) + ((1 - p) * s))) < ((p * ((f - r) . t)) + ((1 - p) * ((f - r) . s)))

      proof

        let p be Real;

        assume

         A4: 0 < p & p < 1;

        for t,s be Real st t in X & s in X & ((p * t) + ((1 - p) * s)) in X & t <> s holds ((f - r) . ((p * t) + ((1 - p) * s))) < ((p * ((f - r) . t)) + ((1 - p) * ((f - r) . s)))

        proof

          let t,s be Real;

          assume that

           A5: t in X & s in X and

           A6: ((p * t) + ((1 - p) * s)) in X and

           A7: t <> s;

          (f . ((p * t) + ((1 - p) * s))) < ((p * (f . t)) + ((1 - p) * (f . s))) by A1, A4, A5, A6, A7;

          then

           A8: ((f . ((p * t) + ((1 - p) * s))) - r) < (((p * (f . t)) + ((1 - p) * (f . s))) - r) by XREAL_1: 9;

          ((f - r) . t) = ((f . t) - r) & ((f - r) . s) = ((f . s) - r) by A2, A5, VALUED_1: 3;

          hence thesis by A2, A6, A8, VALUED_1: 3;

        end;

        hence thesis;

      end;

      ( dom f) = ( dom (f - r)) by VALUED_1: 3;

      hence thesis by A2, A3;

    end;

    theorem :: RFUNCT_4:11

    f is_strictly_convex_on X iff (f - r) is_strictly_convex_on X

    proof

      

       A1: ( dom (f - r)) = ( dom f) by VALUED_1: 3;

      

       A2: for x be Element of REAL st x in ( dom (f - r)) holds (((f - r) - ( - r)) . x) = (f . x)

      proof

        let x be Element of REAL ;

        assume

         A3: x in ( dom (f - r));

        

        then (((f - r) - ( - r)) . x) = (((f - r) . x) - ( - r)) by VALUED_1: 3

        .= (((f - r) . x) + r)

        .= (((f . x) - r) + r) by A1, A3, VALUED_1: 3

        .= ((f . x) - (r - r));

        hence thesis;

      end;

      ( dom ((f - r) - ( - r))) = ( dom (f - r)) by VALUED_1: 3;

      then ((f - r) - ( - r)) = f by A1, A2, PARTFUN1: 5;

      hence thesis by Lm1;

    end;

    

     Lm2: 0 < r implies (f is_strictly_convex_on X implies (r (#) f) is_strictly_convex_on X)

    proof

      assume

       A1: 0 < r;

      assume

       A2: f is_strictly_convex_on X;

      then X c= ( dom f);

      then

       A3: X c= ( dom (r (#) f)) by VALUED_1:def 5;

      for p be Real st 0 < p & p < 1 holds for t,s be Real st t in X & s in X & ((p * t) + ((1 - p) * s)) in X & t <> s holds ((r (#) f) . ((p * t) + ((1 - p) * s))) < ((p * ((r (#) f) . t)) + ((1 - p) * ((r (#) f) . s)))

      proof

        let p be Real;

        assume

         A4: 0 < p & p < 1;

        for t,s be Real st t in X & s in X & ((p * t) + ((1 - p) * s)) in X & t <> s holds ((r (#) f) . ((p * t) + ((1 - p) * s))) < ((p * ((r (#) f) . t)) + ((1 - p) * ((r (#) f) . s)))

        proof

          let t,s be Real;

          assume that

           A5: t in X & s in X and

           A6: ((p * t) + ((1 - p) * s)) in X and

           A7: t <> s;

          (f . ((p * t) + ((1 - p) * s))) < ((p * (f . t)) + ((1 - p) * (f . s))) by A2, A4, A5, A6, A7;

          then

           A8: (r * (f . ((p * t) + ((1 - p) * s)))) < (r * ((p * (f . t)) + ((1 - p) * (f . s)))) by A1, XREAL_1: 68;

          (p * ((r (#) f) . t)) = (p * (r * (f . t))) & ((1 - p) * ((r (#) f) . s)) = ((1 - p) * (r * (f . s))) by A3, A5, VALUED_1:def 5;

          hence thesis by A3, A6, A8, VALUED_1:def 5;

        end;

        hence thesis;

      end;

      hence thesis by A3;

    end;

    theorem :: RFUNCT_4:12

    

     Th12: 0 < r implies (f is_strictly_convex_on X iff (r (#) f) is_strictly_convex_on X)

    proof

      

       A1: ( dom ((1 / r) (#) (r (#) f))) = ( dom (r (#) f)) by VALUED_1:def 5;

      assume

       A2: 0 < r;

      

       A3: for x be Element of REAL st x in ( dom (r (#) f)) holds (((1 / r) (#) (r (#) f)) . x) = (f . x)

      proof

        let x be Element of REAL ;

        assume

         A4: x in ( dom (r (#) f));

        

        then (((1 / r) (#) (r (#) f)) . x) = ((1 / r) * ((r (#) f) . x)) by A1, VALUED_1:def 5

        .= ((1 / r) * (r * (f . x))) by A4, VALUED_1:def 5

        .= (((1 / r) * r) * (f . x))

        .= (1 * (f . x)) by A2, XCMPLX_1: 106;

        hence thesis;

      end;

      ( dom (r (#) f)) = ( dom f) by VALUED_1:def 5;

      then ((1 / r) (#) (r (#) f)) = f by A1, A3, PARTFUN1: 5;

      hence thesis by A2, Lm2, XREAL_1: 139;

    end;

    theorem :: RFUNCT_4:13

    

     Th13: f is_strictly_convex_on X & g is_strictly_convex_on X implies (f + g) is_strictly_convex_on X

    proof

      assume

       A1: f is_strictly_convex_on X & g is_strictly_convex_on X;

      then X c= ( dom f) & X c= ( dom g);

      then X c= (( dom f) /\ ( dom g)) by XBOOLE_1: 19;

      then

       A2: X c= ( dom (f + g)) by VALUED_1:def 1;

      for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds ((f + g) . ((p * r) + ((1 - p) * s))) < ((p * ((f + g) . r)) + ((1 - p) * ((f + g) . s)))

      proof

        let p be Real;

        assume

         A3: 0 < p & p < 1;

        for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds ((f + g) . ((p * r) + ((1 - p) * s))) < ((p * ((f + g) . r)) + ((1 - p) * ((f + g) . s)))

        proof

          let r,s be Real;

          assume that

           A4: r in X and

           A5: s in X and

           A6: ((p * r) + ((1 - p) * s)) in X and

           A7: r <> s;

          

           A8: ((f + g) . ((p * r) + ((1 - p) * s))) = ((f . ((p * r) + ((1 - p) * s))) + (g . ((p * r) + ((1 - p) * s)))) & ((f + g) . r) = ((f . r) + (g . r)) by A2, A4, A6, VALUED_1:def 1;

          

           A9: (((p * (f . r)) + ((1 - p) * (f . s))) + ((p * (g . r)) + ((1 - p) * (g . s)))) = ((p * ((f . r) + (g . r))) + ((1 - p) * ((f . s) + (g . s)))) & ((f + g) . s) = ((f . s) + (g . s)) by A2, A5, VALUED_1:def 1;

          (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s))) & (g . ((p * r) + ((1 - p) * s))) < ((p * (g . r)) + ((1 - p) * (g . s))) by A1, A3, A4, A5, A6, A7;

          hence thesis by A8, A9, XREAL_1: 8;

        end;

        hence thesis;

      end;

      hence thesis by A2;

    end;

    theorem :: RFUNCT_4:14

    

     Th14: f is_strictly_convex_on X & g is_convex_on X implies (f + g) is_strictly_convex_on X

    proof

      assume

       A1: f is_strictly_convex_on X & g is_convex_on X;

      then X c= ( dom f) & X c= ( dom g) by RFUNCT_3:def 12;

      then X c= (( dom f) /\ ( dom g)) by XBOOLE_1: 19;

      then

       A2: X c= ( dom (f + g)) by VALUED_1:def 1;

      for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds ((f + g) . ((p * r) + ((1 - p) * s))) < ((p * ((f + g) . r)) + ((1 - p) * ((f + g) . s)))

      proof

        let p be Real;

        assume

         A3: 0 < p & p < 1;

        for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds ((f + g) . ((p * r) + ((1 - p) * s))) < ((p * ((f + g) . r)) + ((1 - p) * ((f + g) . s)))

        proof

          let r,s be Real;

          assume that

           A4: r in X and

           A5: s in X and

           A6: ((p * r) + ((1 - p) * s)) in X and

           A7: r <> s;

          

           A8: ((f + g) . ((p * r) + ((1 - p) * s))) = ((f . ((p * r) + ((1 - p) * s))) + (g . ((p * r) + ((1 - p) * s)))) & ((f + g) . r) = ((f . r) + (g . r)) by A2, A4, A6, VALUED_1:def 1;

          

           A9: (((p * (f . r)) + ((1 - p) * (f . s))) + ((p * (g . r)) + ((1 - p) * (g . s)))) = ((p * ((f . r) + (g . r))) + ((1 - p) * ((f . s) + (g . s)))) & ((f + g) . s) = ((f . s) + (g . s)) by A2, A5, VALUED_1:def 1;

          (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s))) & (g . ((p * r) + ((1 - p) * s))) <= ((p * (g . r)) + ((1 - p) * (g . s))) by A1, A3, A4, A5, A6, A7, RFUNCT_3:def 12;

          hence thesis by A8, A9, XREAL_1: 8;

        end;

        hence thesis;

      end;

      hence thesis by A2;

    end;

    theorem :: RFUNCT_4:15

    f is_strictly_convex_on X & g is_strictly_convex_on X & (a > 0 & b >= 0 or a >= 0 & b > 0 ) implies ((a (#) f) + (b (#) g)) is_strictly_convex_on X

    proof

      assume that

       A1: f is_strictly_convex_on X and

       A2: g is_strictly_convex_on X and

       A3: a > 0 & b >= 0 or a >= 0 & b > 0 ;

      now

        per cases by A3;

          suppose a > 0 & b > 0 ;

          then (a (#) f) is_strictly_convex_on X & (b (#) g) is_strictly_convex_on X by A1, A2, Th12;

          hence thesis by Th13;

        end;

          suppose

           A4: a > 0 & b = 0 ;

          

           A5: X c= ( dom g) by A2;

          (a (#) f) is_strictly_convex_on X by A1, A4, Th12;

          hence thesis by A4, A5, Th14, RFUNCT_3: 57;

        end;

          suppose

           A6: a = 0 & b > 0 ;

          

           A7: X c= ( dom f) by A1;

          (b (#) g) is_strictly_convex_on X by A2, A6, Th12;

          hence thesis by A6, A7, Th14, RFUNCT_3: 57;

        end;

      end;

      hence thesis;

    end;

    theorem :: RFUNCT_4:16

    

     Th16: f is_convex_on X iff X c= ( dom f) & for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) <= (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) <= (((f . b) - (f . r)) / (b - r))

    proof

      

       A1: X c= ( dom f) & (for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) <= (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) <= (((f . b) - (f . r)) / (b - r))) implies f is_convex_on X

      proof

        assume that

         A2: X c= ( dom f) and

         A3: for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) <= (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) <= (((f . b) - (f . r)) / (b - r));

        for p be Real st 0 <= p & p <= 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X holds (f . ((p * r) + ((1 - p) * s))) <= ((p * (f . r)) + ((1 - p) * (f . s)))

        proof

          let p be Real;

          assume

           A4: 0 <= p & p <= 1;

          for s,t be Real st s in X & t in X & ((p * s) + ((1 - p) * t)) in X holds (f . ((p * s) + ((1 - p) * t))) <= ((p * (f . s)) + ((1 - p) * (f . t)))

          proof

            let s,t be Real;

            assume

             A5: s in X & t in X & ((p * s) + ((1 - p) * t)) in X;

            now

              per cases by A4, XXREAL_0: 1;

                suppose p = 0 ;

                hence thesis;

              end;

                suppose p = 1;

                hence thesis;

              end;

                suppose

                 A6: 0 < p & p < 1;

                then

                 A7: (1 - p) > 0 by XREAL_1: 50;

                now

                  per cases by XXREAL_0: 1;

                    suppose s = t;

                    hence thesis;

                  end;

                    suppose s < t;

                    then

                     A8: (t - s) > 0 by XREAL_1: 50;

                    (((p * s) + ((1 - p) * t)) - s) = ((1 - p) * (t - s));

                    then

                     A9: (((p * s) + ((1 - p) * t)) - s) > 0 by A7, A8, XREAL_1: 129;

                    then

                     A10: ((p * s) + ((1 - p) * t)) > s by XREAL_1: 47;

                    

                     A11: ((((f . ((p * s) + ((1 - p) * t))) - (f . s)) * (t - s)) * p) = ((p * ((t - s) * (f . ((p * s) + ((1 - p) * t))))) - (p * ((t - s) * (f . s)))) & ((((f . t) - (f . ((p * s) + ((1 - p) * t)))) * (t - s)) * (1 - p)) = (((1 - p) * ((t - s) * (f . t))) - ((1 - p) * ((t - s) * (f . ((p * s) + ((1 - p) * t))))));

                    (t - ((p * s) + ((1 - p) * t))) = (p * (t - s));

                    then

                     A12: (t - ((p * s) + ((1 - p) * t))) > 0 by A6, A8, XREAL_1: 129;

                    then ((p * s) + ((1 - p) * t)) < t by XREAL_1: 47;

                    then (((f . ((p * s) + ((1 - p) * t))) - (f . s)) / (((p * s) + ((1 - p) * t)) - s)) <= (((f . t) - (f . s)) / (t - s)) & (((f . t) - (f . s)) / (t - s)) <= (((f . t) - (f . ((p * s) + ((1 - p) * t)))) / (t - ((p * s) + ((1 - p) * t)))) by A3, A5, A10;

                    then (((f . ((p * s) + ((1 - p) * t))) - (f . s)) / (((p * s) + ((1 - p) * t)) - s)) <= (((f . t) - (f . ((p * s) + ((1 - p) * t)))) / (t - ((p * s) + ((1 - p) * t)))) by XXREAL_0: 2;

                    then (((f . ((p * s) + ((1 - p) * t))) - (f . s)) * (t - ((p * s) + ((1 - p) * t)))) <= (((f . t) - (f . ((p * s) + ((1 - p) * t)))) * (((p * s) + ((1 - p) * t)) - s)) by A12, A9, XREAL_1: 106;

                    then ((p * ((t - s) * (f . ((p * s) + ((1 - p) * t))))) + ((1 - p) * ((t - s) * (f . ((p * s) + ((1 - p) * t)))))) <= (((1 - p) * ((t - s) * (f . t))) + (p * ((t - s) * (f . s)))) by A11, XREAL_1: 21;

                    then (f . ((p * s) + ((1 - p) * t))) <= (((((1 - p) * (f . t)) * (t - s)) + ((p * (f . s)) * (t - s))) / (t - s)) by A8, XREAL_1: 77;

                    then (f . ((p * s) + ((1 - p) * t))) <= (((((1 - p) * (f . t)) * (t - s)) / (t - s)) + (((p * (f . s)) * (t - s)) / (t - s))) by XCMPLX_1: 62;

                    then (f . ((p * s) + ((1 - p) * t))) <= (((1 - p) * (f . t)) + (((p * (f . s)) * (t - s)) / (t - s))) by A8, XCMPLX_1: 89;

                    hence thesis by A8, XCMPLX_1: 89;

                  end;

                    suppose s > t;

                    then

                     A13: (s - t) > 0 by XREAL_1: 50;

                    (((p * s) + ((1 - p) * t)) - t) = (p * (s - t));

                    then

                     A14: (((p * s) + ((1 - p) * t)) - t) > 0 by A6, A13, XREAL_1: 129;

                    then

                     A15: ((p * s) + ((1 - p) * t)) > t by XREAL_1: 47;

                    

                     A16: ((((f . ((p * s) + ((1 - p) * t))) - (f . t)) * (s - t)) * (1 - p)) = (((1 - p) * ((s - t) * (f . ((p * s) + ((1 - p) * t))))) - ((1 - p) * ((s - t) * (f . t)))) & ((((f . s) - (f . ((p * s) + ((1 - p) * t)))) * (s - t)) * p) = ((p * ((s - t) * (f . s))) - (p * ((s - t) * (f . ((p * s) + ((1 - p) * t))))));

                    (s - ((p * s) + ((1 - p) * t))) = ((1 - p) * (s - t));

                    then

                     A17: (s - ((p * s) + ((1 - p) * t))) > 0 by A7, A13, XREAL_1: 129;

                    then ((p * s) + ((1 - p) * t)) < s by XREAL_1: 47;

                    then (((f . ((p * s) + ((1 - p) * t))) - (f . t)) / (((p * s) + ((1 - p) * t)) - t)) <= (((f . s) - (f . t)) / (s - t)) & (((f . s) - (f . t)) / (s - t)) <= (((f . s) - (f . ((p * s) + ((1 - p) * t)))) / (s - ((p * s) + ((1 - p) * t)))) by A3, A5, A15;

                    then (((f . ((p * s) + ((1 - p) * t))) - (f . t)) / (((p * s) + ((1 - p) * t)) - t)) <= (((f . s) - (f . ((p * s) + ((1 - p) * t)))) / (s - ((p * s) + ((1 - p) * t)))) by XXREAL_0: 2;

                    then (((f . ((p * s) + ((1 - p) * t))) - (f . t)) * (s - ((p * s) + ((1 - p) * t)))) <= (((f . s) - (f . ((p * s) + ((1 - p) * t)))) * (((p * s) + ((1 - p) * t)) - t)) by A17, A14, XREAL_1: 106;

                    then (((1 - p) * ((s - t) * (f . ((p * s) + ((1 - p) * t))))) + (p * ((s - t) * (f . ((p * s) + ((1 - p) * t)))))) <= ((p * ((s - t) * (f . s))) + ((1 - p) * ((s - t) * (f . t)))) by A16, XREAL_1: 21;

                    then (f . ((p * s) + ((1 - p) * t))) <= ((((p * (f . s)) * (s - t)) + (((1 - p) * (f . t)) * (s - t))) / (s - t)) by A13, XREAL_1: 77;

                    then (f . ((p * s) + ((1 - p) * t))) <= ((((p * (f . s)) * (s - t)) / (s - t)) + ((((1 - p) * (f . t)) * (s - t)) / (s - t))) by XCMPLX_1: 62;

                    then (f . ((p * s) + ((1 - p) * t))) <= ((p * (f . s)) + ((((1 - p) * (f . t)) * (s - t)) / (s - t))) by A13, XCMPLX_1: 89;

                    hence thesis by A13, XCMPLX_1: 89;

                  end;

                end;

                hence thesis;

              end;

            end;

            hence thesis;

          end;

          hence thesis;

        end;

        hence thesis by A2, RFUNCT_3:def 12;

      end;

      f is_convex_on X implies X c= ( dom f) & for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) <= (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) <= (((f . b) - (f . r)) / (b - r))

      proof

        assume

         A18: f is_convex_on X;

        for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) <= (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) <= (((f . b) - (f . r)) / (b - r))

        proof

          let a, b, r;

          assume that

           A19: a in X & b in X & r in X and

           A20: a < r and

           A21: r < b;

          reconsider aa = a, bb = b as Real;

          

           A22: (b - r) < (b - a) & 0 < (b - r) by A20, A21, XREAL_1: 10, XREAL_1: 50;

          reconsider p = ((b - r) / (b - a)) as Real;

          

           A23: 0 < (r - a) by A20, XREAL_1: 50;

          

           A24: (p + ((r - a) / (b - a))) = (((b - r) + (r - a)) / (b - a)) by XCMPLX_1: 62

          .= 1 by A22, XCMPLX_1: 60;

          

          then ((p * a) + ((1 - p) * b)) = (((a * (b - r)) / (b - a)) + (b * ((r - a) / (b - a)))) by XCMPLX_1: 74

          .= (((a * (b - r)) / (b - a)) + ((b * (r - a)) / (b - a))) by XCMPLX_1: 74

          .= ((((b * a) - (r * a)) + ((r - a) * b)) / (b - a)) by XCMPLX_1: 62

          .= ((r * (b - a)) / (b - a));

          then

           A25: ((p * a) + ((1 - p) * b)) = r by A22, XCMPLX_1: 89;

          

           A26: ((b - a) * ((((b - r) / (b - a)) * (f . a)) + (((r - a) / (b - a)) * (f . b)))) = ((((b - a) * ((b - r) / (b - a))) * (f . a)) + ((b - a) * (((r - a) / (b - a)) * (f . b))))

          .= (((b - r) * (f . a)) + (((b - a) * ((r - a) / (b - a))) * (f . b))) by A22, XCMPLX_1: 87

          .= (((b - r) * (f . a)) + ((r - a) * (f . b))) by A22, XCMPLX_1: 87;

          ((bb - r) / (bb - aa)) < 1 by A22, XREAL_1: 189;

          then

           A27: (f . ((p * a) + ((1 - p) * b))) <= ((p * (f . a)) + ((1 - p) * (f . b))) by A18, A19, A22, A25, RFUNCT_3:def 12;

          then ((b - a) * (f . r)) <= (((b - a) * (f . a)) + (((r - a) * (f . b)) - ((r - a) * (f . a)))) by A22, A24, A25, A26, XREAL_1: 64;

          then (((b - a) * (f . r)) - ((b - a) * (f . a))) <= (((r - a) * (f . b)) - ((r - a) * (f . a))) by XREAL_1: 20;

          then ((b - a) * ((f . r) - (f . a))) <= ((r - a) * ((f . b) - (f . a)));

          hence (((f . r) - (f . a)) / (r - a)) <= (((f . b) - (f . a)) / (b - a)) by A22, A23, XREAL_1: 102;

          ((b - a) * (f . r)) <= (((b - a) * (f . b)) - (((b - r) * (f . b)) - ((b - r) * (f . a)))) by A22, A24, A25, A27, A26, XREAL_1: 64;

          then ((((b - r) * (f . b)) - ((b - r) * (f . a))) + ((b - a) * (f . r))) <= ((b - a) * (f . b)) by XREAL_1: 19;

          then (((b - r) * (f . b)) - ((b - r) * (f . a))) <= (((b - a) * (f . b)) - ((b - a) * (f . r))) by XREAL_1: 19;

          then ((b - r) * ((f . b) - (f . a))) <= ((b - a) * ((f . b) - (f . r)));

          hence thesis by A22, XREAL_1: 102;

        end;

        hence thesis by A18, RFUNCT_3:def 12;

      end;

      hence thesis by A1;

    end;

    theorem :: RFUNCT_4:17

    f is_strictly_convex_on X iff X c= ( dom f) & for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) < (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) < (((f . b) - (f . r)) / (b - r))

    proof

      

       A1: X c= ( dom f) & (for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) < (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) < (((f . b) - (f . r)) / (b - r))) implies f is_strictly_convex_on X

      proof

        assume that

         A2: X c= ( dom f) and

         A3: for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) < (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) < (((f . b) - (f . r)) / (b - r));

        for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s)))

        proof

          let p be Real;

          assume that

           A4: 0 < p and

           A5: p < 1;

          

           A6: (1 - p) > 0 by A5, XREAL_1: 50;

          for s,t be Real st s in X & t in X & ((p * s) + ((1 - p) * t)) in X & s <> t holds (f . ((p * s) + ((1 - p) * t))) < ((p * (f . s)) + ((1 - p) * (f . t)))

          proof

            let s,t be Real;

            assume that

             A7: s in X & t in X & ((p * s) + ((1 - p) * t)) in X and

             A8: s <> t;

            now

              per cases by A8, XXREAL_0: 1;

                suppose s < t;

                then

                 A9: (t - s) > 0 by XREAL_1: 50;

                (((p * s) + ((1 - p) * t)) - s) = ((1 - p) * (t - s));

                then

                 A10: (((p * s) + ((1 - p) * t)) - s) > 0 by A6, A9, XREAL_1: 129;

                then

                 A11: ((p * s) + ((1 - p) * t)) > s by XREAL_1: 47;

                

                 A12: ((((f . ((p * s) + ((1 - p) * t))) - (f . s)) * (t - s)) * p) = ((p * ((t - s) * (f . ((p * s) + ((1 - p) * t))))) - (p * ((t - s) * (f . s)))) & ((((f . t) - (f . ((p * s) + ((1 - p) * t)))) * (t - s)) * (1 - p)) = (((1 - p) * ((t - s) * (f . t))) - ((1 - p) * ((t - s) * (f . ((p * s) + ((1 - p) * t))))));

                (t - ((p * s) + ((1 - p) * t))) = (p * (t - s));

                then

                 A13: (t - ((p * s) + ((1 - p) * t))) > 0 by A4, A9, XREAL_1: 129;

                then ((p * s) + ((1 - p) * t)) < t by XREAL_1: 47;

                then (((f . ((p * s) + ((1 - p) * t))) - (f . s)) / (((p * s) + ((1 - p) * t)) - s)) < (((f . t) - (f . s)) / (t - s)) & (((f . t) - (f . s)) / (t - s)) < (((f . t) - (f . ((p * s) + ((1 - p) * t)))) / (t - ((p * s) + ((1 - p) * t)))) by A3, A7, A11;

                then (((f . ((p * s) + ((1 - p) * t))) - (f . s)) / (((p * s) + ((1 - p) * t)) - s)) < (((f . t) - (f . ((p * s) + ((1 - p) * t)))) / (t - ((p * s) + ((1 - p) * t)))) by XXREAL_0: 2;

                then (((f . ((p * s) + ((1 - p) * t))) - (f . s)) * (t - ((p * s) + ((1 - p) * t)))) < (((f . t) - (f . ((p * s) + ((1 - p) * t)))) * (((p * s) + ((1 - p) * t)) - s)) by A13, A10, XREAL_1: 102;

                then ((p * ((t - s) * (f . ((p * s) + ((1 - p) * t))))) + ((1 - p) * ((t - s) * (f . ((p * s) + ((1 - p) * t)))))) < (((1 - p) * ((t - s) * (f . t))) + (p * ((t - s) * (f . s)))) by A12, XREAL_1: 21;

                then (f . ((p * s) + ((1 - p) * t))) < (((((1 - p) * (f . t)) * (t - s)) + ((p * (f . s)) * (t - s))) / (t - s)) by A9, XREAL_1: 81;

                then (f . ((p * s) + ((1 - p) * t))) < (((((1 - p) * (f . t)) * (t - s)) / (t - s)) + (((p * (f . s)) * (t - s)) / (t - s))) by XCMPLX_1: 62;

                then (f . ((p * s) + ((1 - p) * t))) < (((1 - p) * (f . t)) + (((p * (f . s)) * (t - s)) / (t - s))) by A9, XCMPLX_1: 89;

                hence thesis by A9, XCMPLX_1: 89;

              end;

                suppose s > t;

                then

                 A14: (s - t) > 0 by XREAL_1: 50;

                (((p * s) + ((1 - p) * t)) - t) = (p * (s - t));

                then

                 A15: (((p * s) + ((1 - p) * t)) - t) > 0 by A4, A14, XREAL_1: 129;

                then

                 A16: ((p * s) + ((1 - p) * t)) > t by XREAL_1: 47;

                

                 A17: ((((f . ((p * s) + ((1 - p) * t))) - (f . t)) * (s - t)) * (1 - p)) = (((1 - p) * ((s - t) * (f . ((p * s) + ((1 - p) * t))))) - ((1 - p) * ((s - t) * (f . t)))) & ((((f . s) - (f . ((p * s) + ((1 - p) * t)))) * (s - t)) * p) = ((p * ((s - t) * (f . s))) - (p * ((s - t) * (f . ((p * s) + ((1 - p) * t))))));

                (s - ((p * s) + ((1 - p) * t))) = ((1 - p) * (s - t));

                then

                 A18: (s - ((p * s) + ((1 - p) * t))) > 0 by A6, A14, XREAL_1: 129;

                then ((p * s) + ((1 - p) * t)) < s by XREAL_1: 47;

                then (((f . ((p * s) + ((1 - p) * t))) - (f . t)) / (((p * s) + ((1 - p) * t)) - t)) < (((f . s) - (f . t)) / (s - t)) & (((f . s) - (f . t)) / (s - t)) < (((f . s) - (f . ((p * s) + ((1 - p) * t)))) / (s - ((p * s) + ((1 - p) * t)))) by A3, A7, A16;

                then (((f . ((p * s) + ((1 - p) * t))) - (f . t)) / (((p * s) + ((1 - p) * t)) - t)) < (((f . s) - (f . ((p * s) + ((1 - p) * t)))) / (s - ((p * s) + ((1 - p) * t)))) by XXREAL_0: 2;

                then (((f . ((p * s) + ((1 - p) * t))) - (f . t)) * (s - ((p * s) + ((1 - p) * t)))) < (((f . s) - (f . ((p * s) + ((1 - p) * t)))) * (((p * s) + ((1 - p) * t)) - t)) by A18, A15, XREAL_1: 102;

                then (((1 - p) * ((s - t) * (f . ((p * s) + ((1 - p) * t))))) + (p * ((s - t) * (f . ((p * s) + ((1 - p) * t)))))) < ((p * ((s - t) * (f . s))) + ((1 - p) * ((s - t) * (f . t)))) by A17, XREAL_1: 21;

                then (f . ((p * s) + ((1 - p) * t))) < ((((p * (f . s)) * (s - t)) + (((1 - p) * (f . t)) * (s - t))) / (s - t)) by A14, XREAL_1: 81;

                then (f . ((p * s) + ((1 - p) * t))) < ((((p * (f . s)) * (s - t)) / (s - t)) + ((((1 - p) * (f . t)) * (s - t)) / (s - t))) by XCMPLX_1: 62;

                then (f . ((p * s) + ((1 - p) * t))) < ((p * (f . s)) + ((((1 - p) * (f . t)) * (s - t)) / (s - t))) by A14, XCMPLX_1: 89;

                hence thesis by A14, XCMPLX_1: 89;

              end;

            end;

            hence thesis;

          end;

          hence thesis;

        end;

        hence thesis by A2;

      end;

      f is_strictly_convex_on X implies X c= ( dom f) & for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) < (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) < (((f . b) - (f . r)) / (b - r))

      proof

        assume

         A19: f is_strictly_convex_on X;

        for a, b, r st a in X & b in X & r in X & a < r & r < b holds (((f . r) - (f . a)) / (r - a)) < (((f . b) - (f . a)) / (b - a)) & (((f . b) - (f . a)) / (b - a)) < (((f . b) - (f . r)) / (b - r))

        proof

          let a, b, r;

          assume that

           A20: a in X & b in X & r in X and

           A21: a < r and

           A22: r < b;

          reconsider p = ((b - r) / (b - a)) as Real;

          reconsider aa = a, bb = b as Real;

          

           A23: (b - r) < (b - a) & 0 < (b - r) by A21, A22, XREAL_1: 10, XREAL_1: 50;

          

           A24: (p + ((r - a) / (b - a))) = (((b - r) + (r - a)) / (b - a)) by XCMPLX_1: 62

          .= 1 by A23, XCMPLX_1: 60;

          

          then ((p * a) + ((1 - p) * b)) = (((a * (b - r)) / (b - a)) + (b * ((r - a) / (b - a)))) by XCMPLX_1: 74

          .= (((a * (b - r)) / (b - a)) + ((b * (r - a)) / (b - a))) by XCMPLX_1: 74

          .= ((((b * a) - (r * a)) + ((r - a) * b)) / (b - a)) by XCMPLX_1: 62

          .= ((r * (b - a)) / (b - a));

          then

           A25: ((p * a) + ((1 - p) * b)) = r by A23, XCMPLX_1: 89;

           0 < ((b - r) / (b - a)) & ((bb - r) / (bb - aa)) < 1 by A23, XREAL_1: 139, XREAL_1: 189;

          then

           A26: (f . r) < ((p * (f . a)) + ((1 - p) * (f . b))) by A19, A20, A21, A22, A25;

          

           A27: 0 < (r - a) by A21, XREAL_1: 50;

          

           A28: (((p * (f . a)) + ((1 - p) * (f . b))) * (b - a)) = ((((b - a) * p) * (f . a)) + ((b - a) * ((1 - p) * (f . b))))

          .= (((((b - a) * (b - r)) / (b - a)) * (f . a)) + (((b - a) * ((r - a) / (b - a))) * (f . b))) by A24, XCMPLX_1: 74

          .= (((((b - r) * (b - a)) / (b - a)) * (f . a)) + ((((b - a) * (r - a)) / (b - a)) * (f . b))) by XCMPLX_1: 74

          .= ((((b - r) * ((b - a) / (b - a))) * (f . a)) + ((((b - a) * (r - a)) / (b - a)) * (f . b))) by XCMPLX_1: 74

          .= ((((b - r) * 1) * (f . a)) + ((((r - a) * (b - a)) / (b - a)) * (f . b))) by A23, XCMPLX_1: 60

          .= (((b - r) * (f . a)) + (((r - a) * ((b - a) / (b - a))) * (f . b))) by XCMPLX_1: 74

          .= (((b - r) * (f . a)) + (((r - a) * 1) * (f . b))) by A23, XCMPLX_1: 60;

          then ((f . r) * (b - a)) < (((b - a) * (f . a)) + (((r - a) * (f . b)) - ((r - a) * (f . a)))) by A23, A26, XREAL_1: 68;

          then (((f . r) * (b - a)) - ((b - a) * (f . a))) < (((r - a) * (f . b)) - ((r - a) * (f . a))) by XREAL_1: 19;

          then ((b - a) * ((f . r) - (f . a))) < ((r - a) * ((f . b) - (f . a)));

          hence (((f . r) - (f . a)) / (r - a)) < (((f . b) - (f . a)) / (b - a)) by A23, A27, XREAL_1: 106;

          ((f . r) * (b - a)) < ((((r - b) * (f . b)) + ((b - r) * (f . a))) + ((b - a) * (f . b))) by A23, A26, A28, XREAL_1: 68;

          then (((f . r) * (b - a)) - (((r - b) * (f . b)) + ((b - r) * (f . a)))) < ((b - a) * (f . b)) by XREAL_1: 19;

          then (((f . r) * (b - a)) + ( - (((r - b) * (f . b)) + ((b - r) * (f . a))))) < ((b - a) * (f . b));

          then (( - ((r - b) * (f . b))) - ((b - r) * (f . a))) < (((b - a) * (f . b)) - ((b - a) * (f . r))) by XREAL_1: 20;

          then ((b - r) * ((f . b) - (f . a))) < ((b - a) * ((f . b) - (f . r)));

          hence thesis by A23, XREAL_1: 106;

        end;

        hence thesis by A19;

      end;

      hence thesis by A1;

    end;

    theorem :: RFUNCT_4:18

    for f be PartFunc of REAL , REAL st f is total holds (for n be Element of NAT , P,E,F be Element of (n -tuples_on REAL ) st ( Sum P) = 1 & (for i be Element of NAT st i in ( dom P) holds (P . i) >= 0 & (F . i) = (f . (E . i))) holds (f . ( Sum ( mlt (P,E)))) <= ( Sum ( mlt (P,F)))) implies f is_convex_on REAL

    proof

      let f be PartFunc of REAL , REAL ;

      assume f is total;

      then

       A1: REAL c= ( dom f) by PARTFUN1:def 2;

      (for n be Element of NAT , P,E,F be Element of (n -tuples_on REAL ) st ( Sum P) = 1 & (for i be Element of NAT st i in ( dom P) holds (P . i) >= 0 & (F . i) = (f . (E . i))) holds (f . ( Sum ( mlt (P,E)))) <= ( Sum ( mlt (P,F)))) implies f is_convex_on REAL

      proof

        assume

         A2: for n be Element of NAT , P,E,F be Element of (n -tuples_on REAL ) st ( Sum P) = 1 & (for i be Element of NAT st i in ( dom P) holds (P . i) >= 0 & (F . i) = (f . (E . i))) holds (f . ( Sum ( mlt (P,E)))) <= ( Sum ( mlt (P,F)));

        for p be Real st 0 <= p & p <= 1 holds for r,s be Real st r in REAL & s in REAL & ((p * r) + ((1 - p) * s)) in REAL holds (f . ((p * r) + ((1 - p) * s))) <= ((p * (f . r)) + ((1 - p) * (f . s)))

        proof

          let p be Real such that

           A3: 0 <= p and

           A4: p <= 1;

          let r,s be Real such that r in REAL and s in REAL and ((p * r) + ((1 - p) * s)) in REAL ;

          reconsider rr = r, ss = s, pp = p, mp = (1 - p) as Element of REAL by XREAL_0:def 1;

          (f . rr) in REAL & (f . ss) in REAL by XREAL_0:def 1;

          then

          reconsider P = <*pp, mp*>, E = <*rr, ss*>, F = <*(f . rr), (f . ss)*> as Element of (2 -tuples_on REAL ) by FINSEQ_2: 101;

          

           A5: for i be Element of NAT st i in ( dom P) holds (P . i) >= 0 & (F . i) = (f . (E . i))

          proof

            

             A6: ( dom P) = ( Seg ( len P)) by FINSEQ_1:def 3

            .= ( Seg 2) by CARD_1:def 7;

            let i be Element of NAT such that

             A7: i in ( dom P);

            now

              per cases by A7, A6, FINSEQ_1: 2, TARSKI:def 2;

                suppose

                 A8: i = 1;

                then (E . i) = r by FINSEQ_1: 44;

                hence thesis by A3, A8, FINSEQ_1: 44;

              end;

                suppose

                 A9: i = 2;

                then (E . i) = s & (P . i) = (1 - p) by FINSEQ_1: 44;

                hence thesis by A4, A9, FINSEQ_1: 44, XREAL_1: 48;

              end;

            end;

            hence thesis;

          end;

          ( Sum P) = (p + (1 - p)) by RVSUM_1: 77

          .= 1;

          then

           A10: (f . ( Sum ( mlt (P,E)))) <= ( Sum ( mlt (P,F))) by A2, A5;

          

           A11: (P . 1) = p & (P . 2) = (1 - p) by FINSEQ_1: 44;

          ( len P) = 2 by FINSEQ_1: 44

          .= ( len E) by FINSEQ_1: 44;

          then ( len ( multreal .: (P,E))) = ( len P) by FINSEQ_2: 72;

          then

           A12: ( len ( mlt (P,E))) = 2 by FINSEQ_1: 44;

          

           A13: (( mlt (P,E)) . 1) = ((P . 1) * (E . 1)) & (( mlt (P,E)) . 2) = ((P . 2) * (E . 2)) by RVSUM_1: 60;

          (E . 1) = r & (E . 2) = s by FINSEQ_1: 44;

          then ( mlt (P,E)) = <*(p * r), ((1 - p) * s)*> by A11, A12, A13, FINSEQ_1: 44;

          then

           A14: ( Sum ( mlt (P,E))) = ((p * r) + ((1 - p) * s)) by RVSUM_1: 77;

          

           A15: (( mlt (P,F)) . 1) = ((P . 1) * (F . 1)) & (( mlt (P,F)) . 2) = ((P . 2) * (F . 2)) by RVSUM_1: 60;

          ( len P) = 2 by FINSEQ_1: 44

          .= ( len F) by FINSEQ_1: 44;

          then ( len ( multreal .: (P,F))) = ( len P) by FINSEQ_2: 72;

          then

           A16: ( len ( mlt (P,F))) = 2 by FINSEQ_1: 44;

          (F . 1) = (f . r) & (F . 2) = (f . s) by FINSEQ_1: 44;

          then ( mlt (P,F)) = <*(p * (f . r)), ((1 - p) * (f . s))*> by A11, A16, A15, FINSEQ_1: 44;

          hence thesis by A10, A14, RVSUM_1: 77;

        end;

        hence thesis by A1, RFUNCT_3:def 12;

      end;

      hence thesis;

    end;

    theorem :: RFUNCT_4:19

    for f be PartFunc of REAL , REAL st f is_convex_on REAL holds (for n be Element of NAT , P,E,F be Element of (n -tuples_on REAL ) st ( Sum P) = 1 & (for i be Element of NAT st i in ( dom P) holds (P . i) >= 0 & (F . i) = (f . (E . i))) holds (f . ( Sum ( mlt (P,E)))) <= ( Sum ( mlt (P,F))))

    proof

      let f be PartFunc of REAL , REAL ;

      assume

       A1: f is_convex_on REAL ;

      defpred S[ Nat] means for P,E,F be Element of ($1 -tuples_on REAL ) st ( Sum P) = 1 & (for i be Element of NAT st i in ( dom P) holds (P . i) >= 0 & (F . i) = (f . (E . i))) holds (f . ( Sum ( mlt (P,E)))) <= ( Sum ( mlt (P,F)));

      

       A2: for k be Nat st S[k] holds S[(k + 1)]

      proof

        let k be Nat such that

         A3: S[k];

        let P,E,F be Element of ((k + 1) -tuples_on REAL ) such that

         A4: ( Sum P) = 1 and

         A5: for i be Element of NAT st i in ( dom P) holds (P . i) >= 0 & (F . i) = (f . (E . i));

        consider E1 be Element of (k -tuples_on REAL ), e1 be Element of REAL such that

         A6: E = (E1 ^ <*e1*>) by FINSEQ_2: 117;

        consider F1 be Element of (k -tuples_on REAL ), f1 be Element of REAL such that

         A7: F = (F1 ^ <*f1*>) by FINSEQ_2: 117;

        (( len F1) + 1) = (k + 1) by CARD_1:def 7

        .= ( len P) by CARD_1:def 7;

        then (( len F1) + 1) in ( Seg ( len P)) by FINSEQ_1: 4;

        then

         A8: (( len F1) + 1) in ( dom P) by FINSEQ_1:def 3;

        

         A9: f1 = (F . (( len F1) + 1)) by A7, FINSEQ_1: 42

        .= (f . (E . (( len F1) + 1))) by A5, A8

        .= (f . (E . (k + 1))) by CARD_1:def 7

        .= (f . (E . (( len E1) + 1))) by CARD_1:def 7

        .= (f . e1) by A6, FINSEQ_1: 42;

        consider P1 be Element of (k -tuples_on REAL ), p1 be Element of REAL such that

         A10: P = (P1 ^ <*p1*>) by FINSEQ_2: 117;

        reconsider SP = (( Sum P1) " ) as Element of REAL by XREAL_0:def 1;

        ( mlt (P,F)) = (( mlt (P1,F1)) ^ <*(p1 * f1)*>) by A10, A7, Th2;

        then

         A11: ( Sum ( mlt (P,F))) = ((1 * ( Sum ( mlt (P1,F1)))) + (p1 * f1)) by RVSUM_1: 74;

        ( mlt (P,E)) = (( mlt (P1,E1)) ^ <*(p1 * e1)*>) by A10, A6, Th2;

        then

         A12: ( Sum ( mlt (P,E))) = ((1 * ( Sum ( mlt (P1,E1)))) + (p1 * e1)) by RVSUM_1: 74;

        

         A13: for i be Nat st i in ( dom P1) holds (P1 . i) >= 0

        proof

          let i be Nat such that

           A14: i in ( dom P1);

          

           A15: i in ( Seg ( len P1)) by A14, FINSEQ_1:def 3;

          then

           A16: 1 <= i by FINSEQ_1: 1;

          i <= ( len P1) by A15, FINSEQ_1: 1;

          then

           A17: i <= k by CARD_1:def 7;

          k <= (k + 1) by NAT_1: 11;

          then i <= (k + 1) by A17, XXREAL_0: 2;

          then i in ( Seg (k + 1)) by A16, FINSEQ_1: 1;

          then i in ( Seg ( len P)) by CARD_1:def 7;

          then

           A18: i in ( dom P) by FINSEQ_1:def 3;

          (P1 . i) = (P . i) by A10, A14, FINSEQ_1:def 7;

          hence thesis by A5, A18;

        end;

        then

         A19: for i be Element of NAT st i in ( dom P1) holds (P1 . i) >= 0 ;

        now

          per cases ;

            suppose

             A20: ( Sum P1) = 0 ;

            then for i be Element of NAT st i in ( dom P1) holds (P1 . i) = 0 by A19, Th3;

            then

             A21: P1 = (k |-> 0 qua Real) by Th4;

            then ( mlt (P1,E1)) = (k |-> 0 ) by Th5;

            then

             A22: ( Sum ( mlt (P1,E1))) = (k * 0 ) by RVSUM_1: 80;

            ( mlt (P1,F1)) = (k |-> 0 ) by A21, Th5;

            then

             A23: ( Sum ( mlt (P1,F1))) = (k * 0 ) by RVSUM_1: 80;

            ( Sum P) = ( 0 + p1) by A10, A20, RVSUM_1: 74;

            hence thesis by A4, A12, A11, A9, A22, A23;

          end;

            suppose

             A24: ( Sum P1) <> 0 ;

            

             A25: 0 <= ( Sum P1) by A13, RVSUM_1: 84;

            

             A26: for i be Element of NAT st i in ( dom ((( Sum P1) " ) * P1)) holds (((( Sum P1) " ) * P1) . i) >= 0 & (F1 . i) = (f . (E1 . i))

            proof

              let i be Element of NAT ;

              assume i in ( dom ((( Sum P1) " ) * P1));

              then

               A27: i in ( Seg ( len ((( Sum P1) " ) * P1))) by FINSEQ_1:def 3;

              then

               A28: i in ( Seg k) by CARD_1:def 7;

              then

               A29: i in ( Seg ( len P1)) by CARD_1:def 7;

              then i <= ( len P1) by FINSEQ_1: 1;

              then

               A30: i <= k by CARD_1:def 7;

              

               A31: 1 <= i by A27, FINSEQ_1: 1;

              k <= (k + 1) by NAT_1: 11;

              then i <= (k + 1) by A30, XXREAL_0: 2;

              then i in ( Seg (k + 1)) by A31, FINSEQ_1: 1;

              then i in ( Seg ( len P)) by CARD_1:def 7;

              then

               A32: i in ( dom P) by FINSEQ_1:def 3;

              i in ( dom P1) by A29, FINSEQ_1:def 3;

              then (((( Sum P1) " ) * P1) . i) = ((( Sum P1) " ) * (P1 . i)) & (P1 . i) >= 0 by A13, RVSUM_1: 45;

              hence (((( Sum P1) " ) * P1) . i) >= 0 by A25;

              i in ( Seg ( len E1)) by A28, CARD_1:def 7;

              then i in ( dom E1) by FINSEQ_1:def 3;

              then

               A33: (E . i) = (E1 . i) by A6, FINSEQ_1:def 7;

              i in ( Seg ( len F1)) by A28, CARD_1:def 7;

              then i in ( dom F1) by FINSEQ_1:def 3;

              then (F . i) = (F1 . i) by A7, FINSEQ_1:def 7;

              hence thesis by A5, A32, A33;

            end;

            

             A34: ( Sum ( mlt (P,E))) = (((( Sum P1) * (( Sum P1) " )) * ( Sum ( mlt (P1,E1)))) + (p1 * e1)) by A12, A24, XCMPLX_0:def 7

            .= ((( Sum P1) * ((( Sum P1) " ) * ( Sum ( mlt (P1,E1))))) + (p1 * e1))

            .= ((( Sum P1) * ( Sum (SP * ( mlt (P1,E1))))) + (p1 * e1)) by RVSUM_1: 87

            .= ((( Sum P1) * ( Sum ( mlt ((SP * P1),E1)))) + (p1 * e1)) by FINSEQOP: 26;

            

             A35: ((( Sum P1) " ) * ( Sum ( mlt (P1,F1)))) = ( Sum (SP * ( mlt (P1,F1)))) by RVSUM_1: 87

            .= ( Sum ( mlt ((SP * P1),F1))) by FINSEQOP: 26;

            (( len P1) + 1) = ( len P) by A10, FINSEQ_2: 16;

            then (( len P1) + 1) in ( Seg ( len P)) by FINSEQ_1: 4;

            then

             A36: (( len P1) + 1) in ( dom P) by FINSEQ_1:def 3;

            (( Sum P1) + p1) = 1 by A4, A10, RVSUM_1: 74;

            then

             A37: p1 = (1 - ( Sum P1));

            ( Sum ((( Sum P1) " ) * P1)) = ((( Sum P1) " ) * ( Sum P1)) by RVSUM_1: 87

            .= 1 by A24, XCMPLX_0:def 7;

            then (( Sum P1) * (f . ( Sum ( mlt (((( Sum P1) " ) * P1),E1))))) <= (( Sum P1) * ((( Sum P1) " ) * ( Sum ( mlt (P1,F1))))) by A3, A25, A35, A26, XREAL_1: 64;

            then

             A38: ((( Sum P1) * (f . ( Sum ( mlt (((( Sum P1) " ) * P1),E1))))) + (p1 * (f . e1))) <= ((( Sum P1) * ((( Sum P1) " ) * ( Sum ( mlt (P1,F1))))) + (p1 * (f . e1))) by XREAL_1: 6;

            

             A39: ( Sum ( mlt ((SP * P1),E1))) in REAL by XREAL_0:def 1;

            

             A40: ((( Sum P1) * ( Sum ( mlt ((SP * P1),E1)))) + (p1 * e1)) in REAL by XREAL_0:def 1;

            (P . (( len P1) + 1)) = p1 by A10, FINSEQ_1: 42;

            then ( Sum P1) <= 1 by A5, A37, A36, XREAL_1: 49;

            then (f . ( Sum ( mlt (P,E)))) <= ((( Sum P1) * (f . ( Sum ( mlt (((( Sum P1) " ) * P1),E1))))) + (p1 * (f . e1))) by A1, A34, A37, A25, RFUNCT_3:def 12, A39, A40;

            then (f . ( Sum ( mlt (P,E)))) <= (((( Sum P1) * (( Sum P1) " )) * ( Sum ( mlt (P1,F1)))) + (p1 * (f . e1))) by A38, XXREAL_0: 2;

            hence thesis by A11, A9, A24, XCMPLX_0:def 7;

          end;

        end;

        hence thesis;

      end;

      

       A41: S[ 0 ] by RVSUM_1: 79;

      for k be Nat holds S[k] from NAT_1:sch 2( A41, A2);

      hence thesis;

    end;

    theorem :: RFUNCT_4:20

    for f be PartFunc of REAL , REAL , I be Interval, a be Real st (ex x1,x2 be Real st x1 in I & x2 in I & x1 < a & a < x2) & f is_convex_on I holds f is_continuous_in a

    proof

      let f be PartFunc of REAL , REAL , I be Interval, a be Real such that

       A1: ex x1,x2 be Real st x1 in I & x2 in I & x1 < a & a < x2 and

       A2: f is_convex_on I;

      consider x1,x2 be Real such that

       A3: x1 in I and

       A4: x2 in I and

       A5: x1 < a and

       A6: a < x2 by A1;

      set M = ( max ( |.(((f . x1) - (f . a)) / (x1 - a)).|, |.(((f . x2) - (f . a)) / (x2 - a)).|));

      

       A7: a in I by A3, A4, A5, A6, XXREAL_2: 80;

      

       A8: for x be Real st x1 <= x & x <= x2 & x <> a holds (((f . x1) - (f . a)) / (x1 - a)) <= (((f . x) - (f . a)) / (x - a)) & (((f . x) - (f . a)) / (x - a)) <= (((f . x2) - (f . a)) / (x2 - a))

      proof

        let x be Real such that

         A9: x1 <= x and

         A10: x <= x2 and

         A11: x <> a;

        

         A12: x in I by A3, A4, A9, A10, XXREAL_2: 80;

        (((f . x1) - (f . a)) / (x1 - a)) <= (((f . x) - (f . a)) / (x - a)) & (((f . x) - (f . a)) / (x - a)) <= (((f . x2) - (f . a)) / (x2 - a))

        proof

          now

            per cases by A11, XXREAL_0: 1;

              suppose

               A13: x < a;

               A14:

              now

                per cases by A9, XXREAL_0: 1;

                  suppose x1 = x;

                  hence (((f . x1) - (f . a)) / (x1 - a)) <= (((f . x) - (f . a)) / (x - a));

                end;

                  suppose

                   A15: x1 < x;

                  

                   A16: (((f . a) - (f . x1)) / (a - x1)) = (( - ((f . a) - (f . x1))) / ( - (a - x1))) by XCMPLX_1: 191

                  .= (((f . x1) - (f . a)) / (x1 - a));

                  (((f . a) - (f . x)) / (a - x)) = (( - ((f . a) - (f . x))) / ( - (a - x))) by XCMPLX_1: 191

                  .= (((f . x) - (f . a)) / (x - a));

                  hence (((f . x1) - (f . a)) / (x1 - a)) <= (((f . x) - (f . a)) / (x - a)) by A2, A3, A7, A12, A13, A15, A16, Th16;

                end;

              end;

              (((f . a) - (f . x)) / (a - x)) <= (((f . x2) - (f . x)) / (x2 - x)) & (((f . x2) - (f . x)) / (x2 - x)) <= (((f . x2) - (f . a)) / (x2 - a)) by A2, A4, A6, A7, A12, A13, Th16;

              then (((f . a) - (f . x)) / (a - x)) <= (((f . x2) - (f . a)) / (x2 - a)) by XXREAL_0: 2;

              then (( - ((f . a) - (f . x))) / ( - (a - x))) <= (((f . x2) - (f . a)) / (x2 - a)) by XCMPLX_1: 191;

              hence thesis by A14;

            end;

              suppose

               A17: x > a;

              

               A18: (((f . a) - (f . x1)) / (a - x1)) = (( - ((f . a) - (f . x1))) / ( - (a - x1))) by XCMPLX_1: 191

              .= (((f . x1) - (f . a)) / (x1 - a));

              (((f . a) - (f . x1)) / (a - x1)) <= (((f . x) - (f . x1)) / (x - x1)) & (((f . x) - (f . x1)) / (x - x1)) <= (((f . x) - (f . a)) / (x - a)) by A2, A3, A5, A7, A12, A17, Th16;

              hence (((f . x1) - (f . a)) / (x1 - a)) <= (((f . x) - (f . a)) / (x - a)) by A18, XXREAL_0: 2;

              now

                per cases by A10, XXREAL_0: 1;

                  suppose x = x2;

                  hence (((f . x) - (f . a)) / (x - a)) <= (((f . x2) - (f . a)) / (x2 - a));

                end;

                  suppose x < x2;

                  hence (((f . x) - (f . a)) / (x - a)) <= (((f . x2) - (f . a)) / (x2 - a)) by A2, A4, A7, A12, A17, Th16;

                end;

              end;

              hence (((f . x) - (f . a)) / (x - a)) <= (((f . x2) - (f . a)) / (x2 - a));

            end;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      

       A19: for x be Real st x1 <= x & x <= x2 & x <> a holds |.((f . x) - (f . a)).| <= (M * |.(x - a).|)

      proof

        

         A20: ( - |.(((f . x1) - (f . a)) / (x1 - a)).|) <= (((f . x1) - (f . a)) / (x1 - a)) by ABSVALUE: 4;

        

         A21: (((f . x2) - (f . a)) / (x2 - a)) <= |.(((f . x2) - (f . a)) / (x2 - a)).| by ABSVALUE: 4;

        let x be Real such that

         A22: x1 <= x & x <= x2 and

         A23: x <> a;

        reconsider x as Real;

        (((f . x) - (f . a)) / (x - a)) <= (((f . x2) - (f . a)) / (x2 - a)) by A8, A22, A23;

        then

         A24: (((f . x) - (f . a)) / (x - a)) <= |.(((f . x2) - (f . a)) / (x2 - a)).| by A21, XXREAL_0: 2;

        (x - a) <> 0 by A23;

        then

         A25: |.(x - a).| > 0 by COMPLEX1: 47;

        (((f . x1) - (f . a)) / (x1 - a)) <= (((f . x) - (f . a)) / (x - a)) by A8, A22, A23;

        then

         A26: ( - |.(((f . x1) - (f . a)) / (x1 - a)).|) <= (((f . x) - (f . a)) / (x - a)) by A20, XXREAL_0: 2;

        now

          per cases ;

            suppose |.(((f . x1) - (f . a)) / (x1 - a)).| <= |.(((f . x2) - (f . a)) / (x2 - a)).|;

            then ( - |.(((f . x1) - (f . a)) / (x1 - a)).|) >= ( - |.(((f . x2) - (f . a)) / (x2 - a)).|) by XREAL_1: 24;

            then ( - |.(((f . x2) - (f . a)) / (x2 - a)).|) <= (((f . x) - (f . a)) / (x - a)) by A26, XXREAL_0: 2;

            then |.(((f . x) - (f . a)) / (x - a)).| <= |.(((f . x2) - (f . a)) / (x2 - a)).| by A24, ABSVALUE: 5;

            then

             A27: ( |.((f . x) - (f . a)).| / |.(x - a).|) <= |.(((f . x2) - (f . a)) / (x2 - a)).| by COMPLEX1: 67;

             |.(((f . x2) - (f . a)) / (x2 - a)).| <= M by XXREAL_0: 25;

            then ( |.((f . x) - (f . a)).| / |.(x - a).|) <= M by A27, XXREAL_0: 2;

            hence thesis by A25, XREAL_1: 81;

          end;

            suppose |.(((f . x1) - (f . a)) / (x1 - a)).| >= |.(((f . x2) - (f . a)) / (x2 - a)).|;

            then (((f . x) - (f . a)) / (x - a)) <= |.(((f . x1) - (f . a)) / (x1 - a)).| by A24, XXREAL_0: 2;

            then |.(((f . x) - (f . a)) / (x - a)).| <= |.(((f . x1) - (f . a)) / (x1 - a)).| by A26, ABSVALUE: 5;

            then

             A28: ( |.((f . x) - (f . a)).| / |.(x - a).|) <= |.(((f . x1) - (f . a)) / (x1 - a)).| by COMPLEX1: 67;

             |.(((f . x1) - (f . a)) / (x1 - a)).| <= M by XXREAL_0: 25;

            then ( |.((f . x) - (f . a)).| / |.(x - a).|) <= M by A28, XXREAL_0: 2;

            hence thesis by A25, XREAL_1: 81;

          end;

        end;

        hence thesis;

      end;

      

       A29: ( max ( |.(((f . x1) - (f . a)) / (x1 - a)).|, |.(((f . x2) - (f . a)) / (x2 - a)).|)) >= ( min ( |.(((f . x1) - (f . a)) / (x1 - a)).|, |.(((f . x2) - (f . a)) / (x2 - a)).|)) by Th1;

      

       A30: |.(((f . x1) - (f . a)) / (x1 - a)).| >= 0 & |.(((f . x2) - (f . a)) / (x2 - a)).| >= 0 by COMPLEX1: 46;

      then

       A31: ( min ( |.(((f . x1) - (f . a)) / (x1 - a)).|, |.(((f . x2) - (f . a)) / (x2 - a)).|)) >= 0 by XXREAL_0: 20;

      then

       A32: M >= 0 by Th1;

      for r be Real st 0 < r holds ex s be Real st 0 < s & for x be Real st x in ( dom f) & |.(x - a).| < s holds |.((f . x) - (f . a)).| < r

      proof

        let r be Real such that

         A33: 0 < r;

        reconsider r as Real;

        ex s be Real st 0 < s & for x be Real st x in ( dom f) & |.(x - a).| < s holds |.((f . x) - (f . a)).| < r

        proof

          now

            per cases by A30, A29, XXREAL_0: 20;

              suppose

               A34: M > 0 ;

              set s = ( min ((r / M),( min ((a - x1),(x2 - a)))));

              

               A35: for x be Real st x in ( dom f) & |.(x - a).| < s holds |.((f . x) - (f . a)).| < r

              proof

                

                 A36: s <= ( min ((a - x1),(x2 - a))) by XXREAL_0: 17;

                let x be Real such that x in ( dom f) and

                 A37: |.(x - a).| < s;

                ( min ((a - x1),(x2 - a))) <= (a - x1) by XXREAL_0: 17;

                then s <= (a - x1) by A36, XXREAL_0: 2;

                then |.(x - a).| < (a - x1) by A37, XXREAL_0: 2;

                then ( - (a - x1)) <= (x - a) by ABSVALUE: 5;

                then (x1 - a) <= (x - a);

                then

                 A38: x1 <= x by XREAL_1: 9;

                ( min ((a - x1),(x2 - a))) <= (x2 - a) by XXREAL_0: 17;

                then s <= (x2 - a) by A36, XXREAL_0: 2;

                then |.(x - a).| < (x2 - a) by A37, XXREAL_0: 2;

                then (x - a) <= (x2 - a) by ABSVALUE: 5;

                then

                 A39: x <= x2 by XREAL_1: 9;

                now

                  per cases ;

                    suppose x <> a;

                    then

                     A40: |.((f . x) - (f . a)).| <= (M * |.(x - a).|) by A19, A38, A39;

                    now

                      per cases ;

                        suppose

                         A41: M <> 0 ;

                        

                         A42: (M * s) <= (M * (r / M)) by A31, A29, XREAL_1: 64, XXREAL_0: 17;

                        (M * |.(x - a).|) < (M * s) by A32, A37, A41, XREAL_1: 68;

                        then (M * |.(x - a).|) < (M * (r / M)) by A42, XXREAL_0: 2;

                        then (M * |.(x - a).|) < ((r * M) / M) by XCMPLX_1: 74;

                        then (M * |.(x - a).|) < (r * (M / M)) by XCMPLX_1: 74;

                        then (M * |.(x - a).|) < (r * 1) by A41, XCMPLX_1: 60;

                        hence thesis by A40, XXREAL_0: 2;

                      end;

                        suppose M = 0 ;

                        hence thesis by A33, A40;

                      end;

                    end;

                    hence thesis;

                  end;

                    suppose x = a;

                    hence thesis by A33, ABSVALUE: 2;

                  end;

                end;

                hence thesis;

              end;

              s > 0

              proof

                

                 A43: ( min ((a - x1),(x2 - a))) > 0

                proof

                  now

                    per cases by XXREAL_0: 15;

                      suppose ( min ((a - x1),(x2 - a))) = (a - x1);

                      hence thesis by A5, XREAL_1: 50;

                    end;

                      suppose ( min ((a - x1),(x2 - a))) = (x2 - a);

                      hence thesis by A6, XREAL_1: 50;

                    end;

                  end;

                  hence thesis;

                end;

                now

                  per cases by XXREAL_0: 15;

                    suppose s = (r / M);

                    hence thesis by A33, A34, XREAL_1: 139;

                  end;

                    suppose s = ( min ((a - x1),(x2 - a)));

                    hence thesis by A43;

                  end;

                end;

                hence thesis;

              end;

              hence thesis by A35;

            end;

              suppose

               A44: M = 0 ;

              set s = ( min ((a - x1),(x2 - a)));

              

               A45: for x be Real st x1 <= x & x <= x2 & x <> a holds |.((f . x) - (f . a)).| = 0

              proof

                let x be Real;

                assume x1 <= x & x <= x2 & x <> a;

                then |.((f . x) - (f . a)).| <= (M * |.(x - a).|) by A19;

                hence thesis by A44, COMPLEX1: 46;

              end;

              

               A46: for x be Real st x in ( dom f) & |.(x - a).| < s holds |.((f . x) - (f . a)).| < r

              proof

                let x be Real such that x in ( dom f) and

                 A47: |.(x - a).| < s;

                s <= (a - x1) by XXREAL_0: 17;

                then |.(x - a).| < (a - x1) by A47, XXREAL_0: 2;

                then ( - (a - x1)) <= (x - a) by ABSVALUE: 5;

                then (x1 - a) <= (x - a);

                then

                 A48: x1 <= x by XREAL_1: 9;

                s <= (x2 - a) by XXREAL_0: 17;

                then |.(x - a).| < (x2 - a) by A47, XXREAL_0: 2;

                then (x - a) <= (x2 - a) by ABSVALUE: 5;

                then

                 A49: x <= x2 by XREAL_1: 9;

                now

                  per cases ;

                    suppose x <> a;

                    hence thesis by A33, A45, A48, A49;

                  end;

                    suppose x = a;

                    hence thesis by A33, ABSVALUE: 2;

                  end;

                end;

                hence thesis;

              end;

              s > 0

              proof

                now

                  per cases by XXREAL_0: 15;

                    suppose s = (a - x1);

                    hence thesis by A5, XREAL_1: 50;

                  end;

                    suppose s = (x2 - a);

                    hence thesis by A6, XREAL_1: 50;

                  end;

                end;

                hence thesis;

              end;

              hence thesis by A46;

            end;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      hence thesis by FCONT_1: 3;

    end;

    begin

    definition

      let f, X;

      :: RFUNCT_4:def2

      pred f is_quasiconvex_on X means X c= ( dom f) & for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X holds (f . ((p * r) + ((1 - p) * s))) <= ( max ((f . r),(f . s)));

    end

    definition

      let f, X;

      :: RFUNCT_4:def3

      pred f is_strictly_quasiconvex_on X means X c= ( dom f) & for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & (f . r) <> (f . s) holds (f . ((p * r) + ((1 - p) * s))) < ( max ((f . r),(f . s)));

    end

    definition

      let f, X;

      :: RFUNCT_4:def4

      pred f is_strongly_quasiconvex_on X means X c= ( dom f) & for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds (f . ((p * r) + ((1 - p) * s))) < ( max ((f . r),(f . s)));

    end

    definition

      let f;

      let x0 be Real;

      :: RFUNCT_4:def5

      pred f is_upper_semicontinuous_in x0 means x0 in ( dom f) & for r st 0 < r holds ex s st 0 < s & for x st x in ( dom f) & |.(x - x0).| < s holds ((f . x0) - (f . x)) < r;

    end

    definition

      let f, X;

      :: RFUNCT_4:def6

      pred f is_upper_semicontinuous_on X means X c= ( dom f) & for x0 st x0 in X holds (f | X) is_upper_semicontinuous_in x0;

    end

    definition

      let f;

      let x0 be Real;

      :: RFUNCT_4:def7

      pred f is_lower_semicontinuous_in x0 means x0 in ( dom f) & for r st 0 < r holds ex s st 0 < s & for x st x in ( dom f) & |.(x - x0).| < s holds ((f . x) - (f . x0)) < r;

    end

    definition

      let f, X;

      :: RFUNCT_4:def8

      pred f is_lower_semicontinuous_on X means X c= ( dom f) & for x0 st x0 in X holds (f | X) is_lower_semicontinuous_in x0;

    end

    theorem :: RFUNCT_4:21

    

     Th21: for x0 be Real, f st x0 in ( dom f) holds f is_upper_semicontinuous_in x0 & f is_lower_semicontinuous_in x0 iff f is_continuous_in x0

    proof

      let x0 be Real, f such that

       A1: x0 in ( dom f);

      

       A2: f is_continuous_in x0 implies f is_upper_semicontinuous_in x0 & f is_lower_semicontinuous_in x0

      proof

        assume

         A3: f is_continuous_in x0;

        

         A4: for r st 0 < r holds ex s st 0 < s & for x st x in ( dom f) & |.(x - x0).| < s holds ((f . x0) - (f . x)) < r

        proof

          let r;

          assume 0 < r;

          then

          consider s be Real such that

           A5: 0 < s and

           A6: for x be Real st x in ( dom f) & |.(x - x0).| < s holds |.((f . x) - (f . x0)).| < r by A3, FCONT_1: 3;

          take s;

          for x st x in ( dom f) & |.(x - x0).| < s holds ((f . x0) - (f . x)) < r

          proof

            let x;

            assume x in ( dom f) & |.(x - x0).| < s;

            then

             A7: |.((f . x) - (f . x0)).| < r by A6;

            ((f . x) - (f . x0)) >= ( - |.((f . x) - (f . x0)).|) by ABSVALUE: 4;

            then ( - ((f . x) - (f . x0))) <= |.((f . x) - (f . x0)).| by XREAL_1: 26;

            hence thesis by A7, XXREAL_0: 2;

          end;

          hence thesis by A5;

        end;

        for r st 0 < r holds ex s st 0 < s & for x st x in ( dom f) & |.(x - x0).| < s holds ((f . x) - (f . x0)) < r

        proof

          let r;

          assume 0 < r;

          then

          consider s be Real such that

           A8: 0 < s and

           A9: for x be Real st x in ( dom f) & |.(x - x0).| < s holds |.((f . x) - (f . x0)).| < r by A3, FCONT_1: 3;

          take s;

          for x st x in ( dom f) & |.(x - x0).| < s holds ((f . x) - (f . x0)) < r

          proof

            let x;

            assume x in ( dom f) & |.(x - x0).| < s;

            then

             A10: |.((f . x) - (f . x0)).| < r by A9;

            ((f . x) - (f . x0)) <= |.((f . x) - (f . x0)).| by ABSVALUE: 4;

            hence thesis by A10, XXREAL_0: 2;

          end;

          hence thesis by A8;

        end;

        hence thesis by A1, A4;

      end;

      f is_upper_semicontinuous_in x0 & f is_lower_semicontinuous_in x0 implies f is_continuous_in x0

      proof

        assume that

         A11: f is_upper_semicontinuous_in x0 and

         A12: f is_lower_semicontinuous_in x0;

        for r be Real st 0 < r holds ex s be Real st 0 < s & for x be Real st x in ( dom f) & |.(x - x0).| < s holds |.((f . x) - (f . x0)).| < r

        proof

          let r be Real such that

           A13: 0 < r;

          consider s1 such that

           A14: 0 < s1 and

           A15: for x st x in ( dom f) & |.(x - x0).| < s1 holds ((f . x) - (f . x0)) < r by A12, A13;

          consider s2 such that

           A16: 0 < s2 and

           A17: for x st x in ( dom f) & |.(x - x0).| < s2 holds ((f . x0) - (f . x)) < r by A11, A13;

          set s = ( min (s1,s2));

          

           A18: for x be Real st x in ( dom f) & |.(x - x0).| < s holds |.((f . x) - (f . x0)).| < r

          proof

            let x be Real such that

             A19: x in ( dom f) and

             A20: |.(x - x0).| < s;

            s <= s2 by XXREAL_0: 17;

            then |.(x - x0).| < s2 by A20, XXREAL_0: 2;

            then

             A21: ((f . x0) - (f . x)) < r by A17, A19;

            s <= s1 by XXREAL_0: 17;

            then |.(x - x0).| < s1 by A20, XXREAL_0: 2;

            then

             A22: ((f . x) - (f . x0)) < r by A15, A19;

            

             A23: |.((f . x) - (f . x0)).| <> r

            proof

              assume

               A24: |.((f . x) - (f . x0)).| = r;

              now

                per cases ;

                  suppose ((f . x) - (f . x0)) >= 0 ;

                  hence contradiction by A22, A24, ABSVALUE:def 1;

                end;

                  suppose not ((f . x) - (f . x0)) >= 0 ;

                  then |.((f . x) - (f . x0)).| = ( - ((f . x) - (f . x0))) by ABSVALUE:def 1;

                  hence contradiction by A21, A24;

                end;

              end;

              hence thesis;

            end;

            ( - ((f . x0) - (f . x))) > ( - r) by A21, XREAL_1: 24;

            then |.((f . x) - (f . x0)).| <= r by A22, ABSVALUE: 5;

            hence thesis by A23, XXREAL_0: 1;

          end;

          take s;

          s > 0

          proof

            now

              per cases ;

                suppose s1 <= s2;

                hence thesis by A14, XXREAL_0:def 9;

              end;

                suppose not s1 <= s2;

                hence thesis by A16, XXREAL_0:def 9;

              end;

            end;

            hence thesis;

          end;

          hence thesis by A18;

        end;

        hence thesis by FCONT_1: 3;

      end;

      hence thesis by A2;

    end;

    theorem :: RFUNCT_4:22

    for X, f st X c= ( dom f) holds f is_upper_semicontinuous_on X & f is_lower_semicontinuous_on X iff (f | X) is continuous

    proof

      let X, f such that

       A1: X c= ( dom f);

      

       A2: (f | X) is continuous implies f is_upper_semicontinuous_on X & f is_lower_semicontinuous_on X

      proof

        assume

         A3: (f | X) is continuous;

        

         A4: for x0 st x0 in X holds (f | X) is_lower_semicontinuous_in x0

        proof

          let x0;

          assume x0 in X;

          then

           A5: x0 in ( dom (f | X)) by A1, RELAT_1: 57;

          then (f | X) is_continuous_in x0 by A3, FCONT_1:def 2;

          hence thesis by A5, Th21;

        end;

        for x0 st x0 in X holds (f | X) is_upper_semicontinuous_in x0

        proof

          let x0;

          assume x0 in X;

          then

           A6: x0 in ( dom (f | X)) by A1, RELAT_1: 57;

          then (f | X) is_continuous_in x0 by A3, FCONT_1:def 2;

          hence thesis by A6, Th21;

        end;

        hence thesis by A1, A4;

      end;

      f is_upper_semicontinuous_on X & f is_lower_semicontinuous_on X implies (f | X) is continuous

      proof

        assume that

         A7: f is_upper_semicontinuous_on X and

         A8: f is_lower_semicontinuous_on X;

        X c= ( dom f) & for x0 be Real st x0 in ( dom (f | X)) holds (f | X) is_continuous_in x0

        proof

          thus X c= ( dom f) by A7;

          let x0 be Real such that

           A9: x0 in ( dom (f | X));

          x0 in X by A9, RELAT_1: 57;

          then (f | X) is_upper_semicontinuous_in x0 & (f | X) is_lower_semicontinuous_in x0 by A7, A8;

          hence thesis by Th21;

        end;

        hence thesis by FCONT_1:def 2;

      end;

      hence thesis by A2;

    end;

    theorem :: RFUNCT_4:23

    for X, f st f is_strictly_convex_on X holds f is_strongly_quasiconvex_on X

    proof

      let X, f such that

       A1: f is_strictly_convex_on X;

      

       A2: for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds (f . ((p * r) + ((1 - p) * s))) < ( max ((f . r),(f . s)))

      proof

        let p be Real;

        assume that

         A3: 0 < p and

         A4: p < 1;

        for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s holds (f . ((p * r) + ((1 - p) * s))) < ( max ((f . r),(f . s)))

        proof

          let r,s be Real;

          (1 - p) > 0 by A4, XREAL_1: 50;

          then

           A5: ((1 - p) * (f . s)) <= ((1 - p) * ( max ((f . r),(f . s)))) by XREAL_1: 64, XXREAL_0: 25;

          assume r in X & s in X & ((p * r) + ((1 - p) * s)) in X & r <> s;

          then

           A6: (f . ((p * r) + ((1 - p) * s))) < ((p * (f . r)) + ((1 - p) * (f . s))) by A1, A3, A4;

          (p * (f . r)) <= (p * ( max ((f . r),(f . s)))) by A3, XREAL_1: 64, XXREAL_0: 25;

          then ((p * (f . r)) + ((1 - p) * (f . s))) <= ((p * ( max ((f . r),(f . s)))) + ((1 - p) * ( max ((f . r),(f . s))))) by A5, XREAL_1: 7;

          hence thesis by A6, XXREAL_0: 2;

        end;

        hence thesis;

      end;

      X c= ( dom f) by A1;

      hence thesis by A2;

    end;

    theorem :: RFUNCT_4:24

    for X, f st f is_strongly_quasiconvex_on X holds f is_quasiconvex_on X

    proof

      let X, f such that

       A1: f is_strongly_quasiconvex_on X;

      

       A2: for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X holds (f . ((p * r) + ((1 - p) * s))) <= ( max ((f . r),(f . s)))

      proof

        let p be Real such that

         A3: 0 < p & p < 1;

        for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X holds (f . ((p * r) + ((1 - p) * s))) <= ( max ((f . r),(f . s)))

        proof

          let r,s be Real such that

           A4: r in X & s in X & ((p * r) + ((1 - p) * s)) in X;

          now

            per cases ;

              suppose r <> s;

              hence thesis by A1, A3, A4;

            end;

              suppose r = s;

              hence thesis;

            end;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      X c= ( dom f) by A1;

      hence thesis by A2;

    end;

    theorem :: RFUNCT_4:25

    for X, f st f is_convex_on X holds f is_strictly_quasiconvex_on X

    proof

      let X, f such that

       A1: f is_convex_on X;

      

       A2: for p be Real st 0 < p & p < 1 holds for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & (f . r) <> (f . s) holds (f . ((p * r) + ((1 - p) * s))) < ( max ((f . r),(f . s)))

      proof

        let p be Real such that

         A3: 0 < p and

         A4: p < 1;

        for r,s be Real st r in X & s in X & ((p * r) + ((1 - p) * s)) in X & (f . r) <> (f . s) holds (f . ((p * r) + ((1 - p) * s))) < ( max ((f . r),(f . s)))

        proof

          let r,s be Real such that

           A5: r in X & s in X & ((p * r) + ((1 - p) * s)) in X and

           A6: (f . r) <> (f . s);

          

           A7: (f . ((p * r) + ((1 - p) * s))) <= ((p * (f . r)) + ((1 - p) * (f . s))) by A1, A3, A4, A5, RFUNCT_3:def 12;

          

           A8: (1 - p) > 0 by A4, XREAL_1: 50;

          now

            per cases by A6, XXREAL_0: 1;

              suppose (f . r) < (f . s);

              then (p * (f . r)) < (p * (f . s)) by A3, XREAL_1: 68;

              then ((p * (f . r)) + ((1 - p) * (f . s))) < ((p * (f . s)) + ((1 - p) * (f . s))) by XREAL_1: 6;

              then

               A9: (f . ((p * r) + ((1 - p) * s))) < (f . s) by A7, XXREAL_0: 2;

              (f . s) <= ( max ((f . r),(f . s))) by XXREAL_0: 25;

              hence thesis by A9, XXREAL_0: 2;

            end;

              suppose (f . r) > (f . s);

              then ((1 - p) * (f . r)) > ((1 - p) * (f . s)) by A8, XREAL_1: 68;

              then ((p * (f . r)) + ((1 - p) * (f . s))) < ((p * (f . r)) + ((1 - p) * (f . r))) by XREAL_1: 6;

              then

               A10: (f . ((p * r) + ((1 - p) * s))) < (f . r) by A7, XXREAL_0: 2;

              (f . r) <= ( max ((f . r),(f . s))) by XXREAL_0: 25;

              hence thesis by A10, XXREAL_0: 2;

            end;

          end;

          hence thesis;

        end;

        hence thesis;

      end;

      X c= ( dom f) by A1, RFUNCT_3:def 12;

      hence thesis by A2;

    end;

    theorem :: RFUNCT_4:26

    for X, f st f is_strongly_quasiconvex_on X holds f is_strictly_quasiconvex_on X;

    theorem :: RFUNCT_4:27

    for X, f st f is_strictly_quasiconvex_on X & f is one-to-one holds f is_strongly_quasiconvex_on X by FUNCT_1:def 4;