conaffm.miz
begin
reserve X for
OrtAfPl;
reserve o,a,a1,a2,b,b1,b2,c,c1,c2,d,e1,e2 for
Element of X;
reserve b29,c29,d19 for
Element of the AffinStruct of X;
definition
let X;
::
CONAFFM:def1
attr X is
satisfying_DES means for o, a, a1, b, b1, c, c1 st o
<> a & o
<> a1 & o
<> b & o
<> b1 & o
<> c & o
<> c1 & not
LIN (b,b1,a) & not
LIN (a,a1,c) &
LIN (o,a,a1) &
LIN (o,b,b1) &
LIN (o,c,c1) & (a,b)
// (a1,b1) & (a,c)
// (a1,c1) holds (b,c)
// (b1,c1);
::
CONAFFM:def2
attr X is
satisfying_AH means for o, a, a1, b, b1, c, c1 st (o,a)
_|_ (o,a1) & (o,b)
_|_ (o,b1) & (o,c)
_|_ (o,c1) & (a,b)
_|_ (a1,b1) & (o,a)
// (b,c) & (a,c)
_|_ (a1,c1) & not (o,c)
// (o,a) & not (o,a)
// (o,b) holds (b,c)
_|_ (b1,c1);
::
CONAFFM:def3
attr X is
satisfying_3H means for a, b, c st not
LIN (a,b,c) holds ex d st (d,a)
_|_ (b,c) & (d,b)
_|_ (a,c) & (d,c)
_|_ (a,b);
::
CONAFFM:def4
attr X is
satisfying_ODES means for o, a, a1, b, b1, c, c1 st (o,a)
_|_ (o,a1) & (o,b)
_|_ (o,b1) & (o,c)
_|_ (o,c1) & (a,b)
_|_ (a1,b1) & (a,c)
_|_ (a1,c1) & not (o,c)
// (o,a) & not (o,a)
// (o,b) holds (b,c)
_|_ (b1,c1);
::
CONAFFM:def5
attr X is
satisfying_LIN means for o, a, a1, b, b1, c, c1 st o
<> a & o
<> a1 & o
<> b & o
<> b1 & o
<> c & o
<> c1 & a
<> b & (o,c)
_|_ (o,c1) & (o,a)
_|_ (o,a1) & (o,b)
_|_ (o,b1) & not
LIN (o,c,a) &
LIN (o,a,b) &
LIN (o,a1,b1) & (a,c)
_|_ (a1,c1) & (b,c)
_|_ (b1,c1) holds (a,a1)
// (b,b1);
::
CONAFFM:def6
attr X is
satisfying_LIN1 means for o, a, a1, b, b1, c, c1 st o
<> a & o
<> a1 & o
<> b & o
<> b1 & o
<> c & o
<> c1 & a
<> b & (o,c)
_|_ (o,c1) & (o,a)
_|_ (o,a1) & (o,b)
_|_ (o,b1) & not
LIN (o,c,a) &
LIN (o,a,b) &
LIN (o,a1,b1) & (a,c)
_|_ (a1,c1) & (a,a1)
// (b,b1) holds (b,c)
_|_ (b1,c1);
::
CONAFFM:def7
attr X is
satisfying_LIN2 means for o, a, a1, b, b1, c, c1 st o
<> a & o
<> a1 & o
<> b & o
<> b1 & o
<> c & o
<> c1 & a
<> b & (a,a1)
// (b,b1) & (o,a)
_|_ (o,a1) & (o,b)
_|_ (o,b1) & not
LIN (o,c,a) &
LIN (o,a,b) &
LIN (o,a1,b1) & (a,c)
_|_ (a1,c1) & (b,c)
_|_ (b1,c1) holds (o,c)
_|_ (o,c1);
end
theorem ::
CONAFFM:1
X is
satisfying_ODES implies X is
satisfying_DES
proof
assume
A1: X is
satisfying_ODES;
let o, a, a1, b, b1, c, c1;
assume that
A2: o
<> a and
A3: o
<> a1 and
A4: o
<> b and
A5: o
<> b1 and
A6: o
<> c and o
<> c1 and
A7: not
LIN (b,b1,a) and
A8: not
LIN (a,a1,c) and
A9:
LIN (o,a,a1) and
A10:
LIN (o,b,b1) and
A11:
LIN (o,c,c1) and
A12: (a,b)
// (a1,b1) and
A13: (a,c)
// (a1,c1);
consider a2 such that
A14: (o,a)
_|_ (o,a2) and
A15: o
<> a2 by
ANALMETR:def 9;
consider e1 such that
A16: (o,b)
_|_ (o,e1) and
A17: o
<> e1 by
ANALMETR:def 9;
consider e2 such that
A18: (a,b)
_|_ (a2,e2) and
A19: a2
<> e2 by
ANALMETR:def 9;
reconsider o9 = o, a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1, a29 = a2, e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (o9,e19)
// (a29,e29)
proof
assume (o9,e19)
// (a29,e29);
then (o,e1)
// (a2,e2) by
ANALMETR: 36;
then (a2,e2)
_|_ (o,b) by
A16,
A17,
ANALMETR: 62;
then (a,b)
// (o,b) by
A18,
A19,
ANALMETR: 63;
then
A20: (a9,b9)
// (o9,b9) by
ANALMETR: 36;
then (b9,a9)
// (b9,o9) by
AFF_1: 4;
then
A21:
LIN (b9,a9,o9) by
AFF_1:def 1;
(o9,b9)
// (b9,a9) by
A20,
AFF_1: 4;
then
A22: (o,b)
// (b,a) by
ANALMETR: 36;
A23: b9
<> a9
proof
assume b9
= a9;
then
LIN (b9,b19,a9) by
AFF_1: 7;
hence contradiction by
A7,
ANALMETR: 40;
end;
(o,b)
// (o,b1) by
A10,
ANALMETR:def 10;
then (b,a)
// (o,b1) by
A4,
A22,
ANALMETR: 60;
then (b9,a9)
// (o9,b19) by
ANALMETR: 36;
then
LIN (b9,a9,b19) by
A21,
A23,
AFF_1: 9;
then
LIN (b9,b19,a9) by
AFF_1: 6;
hence contradiction by
A7,
ANALMETR: 40;
end;
then
consider b29 such that
A24:
LIN (o9,e19,b29) and
A25:
LIN (a29,e29,b29) by
AFF_1: 60;
reconsider b2 = b29 as
Element of X;
LIN (o,e1,b2) by
A24,
ANALMETR: 40;
then (o,e1)
// (o,b2) by
ANALMETR:def 10;
then
A26: (o,b)
_|_ (o,b2) by
A16,
A17,
ANALMETR: 62;
LIN (a2,e2,b2) by
A25,
ANALMETR: 40;
then (a2,e2)
// (a2,b2) by
ANALMETR:def 10;
then
A27: (a,b)
_|_ (a2,b2) by
A18,
A19,
ANALMETR: 62;
consider e1 such that
A28: (o,c)
_|_ (o,e1) and
A29: o
<> e1 by
ANALMETR:def 9;
consider e2 such that
A30: (a,c)
_|_ (a2,e2) and
A31: a2
<> e2 by
ANALMETR:def 9;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (o9,e19)
// (a29,e29)
proof
assume (o9,e19)
// (a29,e29);
then (o,e1)
// (a2,e2) by
ANALMETR: 36;
then (o,c)
_|_ (a2,e2) by
A28,
A29,
ANALMETR: 62;
then (o,c)
// (a,c) by
A30,
A31,
ANALMETR: 63;
then (c,o)
// (c,a) by
ANALMETR: 59;
then
LIN (c,o,a) by
ANALMETR:def 10;
then
LIN (c9,o9,a9) by
ANALMETR: 40;
then
LIN (a9,c9,o9) by
AFF_1: 6;
then
LIN (a,c,o) by
ANALMETR: 40;
then (a,c)
// (a,o) by
ANALMETR:def 10;
then
A32: (o,a)
// (a,c) by
ANALMETR: 59;
LIN (o9,a9,a19) by
A9,
ANALMETR: 40;
then
LIN (a9,o9,a19) by
AFF_1: 6;
then
LIN (a,o,a1) by
ANALMETR: 40;
then (a,o)
// (a,a1) by
ANALMETR:def 10;
then (o,a)
// (a,a1) by
ANALMETR: 59;
then (a,a1)
// (a,c) by
A2,
A32,
ANALMETR: 60;
hence contradiction by
A8,
ANALMETR:def 10;
end;
then
consider c29 such that
A33:
LIN (o9,e19,c29) and
A34:
LIN (a29,e29,c29) by
AFF_1: 60;
reconsider c2 = c29 as
Element of X;
LIN (o,e1,c2) by
A33,
ANALMETR: 40;
then (o,e1)
// (o,c2) by
ANALMETR:def 10;
then
A35: (o,c)
_|_ (o,c2) by
A28,
A29,
ANALMETR: 62;
LIN (a2,e2,c2) by
A34,
ANALMETR: 40;
then (a2,e2)
// (a2,c2) by
ANALMETR:def 10;
then
A36: (a,c)
_|_ (a2,c2) by
A30,
A31,
ANALMETR: 62;
A37: not (o,c)
// (o,a)
proof
assume (o,c)
// (o,a);
then
LIN (o,c,a) by
ANALMETR:def 10;
then
LIN (o9,c9,a9) by
ANALMETR: 40;
then
LIN (a9,o9,c9) by
AFF_1: 6;
then
LIN (a,o,c) by
ANALMETR: 40;
then
A38: (a,o)
// (a,c) by
ANALMETR:def 10;
LIN (o9,a9,a19) by
A9,
ANALMETR: 40;
then
LIN (a9,o9,a19) by
AFF_1: 6;
then
LIN (a,o,a1) by
ANALMETR: 40;
then (a,o)
// (a,a1) by
ANALMETR:def 10;
then (a,a1)
// (a,c) by
A2,
A38,
ANALMETR: 60;
hence contradiction by
A8,
ANALMETR:def 10;
end;
not (o,a)
// (o,b)
proof
assume (o,a)
// (o,b);
then
LIN (o,a,b) by
ANALMETR:def 10;
then
LIN (o9,a9,b9) by
ANALMETR: 40;
then
LIN (b9,o9,a9) by
AFF_1: 6;
then
LIN (b,o,a) by
ANALMETR: 40;
then
A39: (b,o)
// (b,a) by
ANALMETR:def 10;
LIN (o9,b9,b19) by
A10,
ANALMETR: 40;
then
LIN (b9,o9,b19) by
AFF_1: 6;
then
LIN (b,o,b1) by
ANALMETR: 40;
then (b,o)
// (b,b1) by
ANALMETR:def 10;
then (b,b1)
// (b,a) by
A4,
A39,
ANALMETR: 60;
hence contradiction by
A7,
ANALMETR:def 10;
end;
then
A40: (b,c)
_|_ (b2,c2) by
A1,
A14,
A26,
A27,
A35,
A36,
A37;
(o,a)
// (o,a1) by
A9,
ANALMETR:def 10;
then
A41: (o,a1)
_|_ (o,a2) by
A2,
A14,
ANALMETR: 62;
(o,b)
// (o,b1) by
A10,
ANALMETR:def 10;
then
A42: (o,b1)
_|_ (o,b2) by
A4,
A26,
ANALMETR: 62;
(o,c)
// (o,c1) by
A11,
ANALMETR:def 10;
then
A43: (o,c1)
_|_ (o,c2) by
A6,
A35,
ANALMETR: 62;
a
<> b
proof
assume a
= b;
then
LIN (b9,b19,a9) by
AFF_1: 7;
hence contradiction by
A7,
ANALMETR: 40;
end;
then
A44: (a1,b1)
_|_ (a2,b2) by
A12,
A27,
ANALMETR: 62;
a
<> c
proof
assume a
= c;
then
LIN (a9,a19,c9) by
AFF_1: 7;
hence contradiction by
A8,
ANALMETR: 40;
end;
then
A45: (a1,c1)
_|_ (a2,c2) by
A13,
A36,
ANALMETR: 62;
A46: not (o,c1)
// (o,a1)
proof
assume (o,c1)
// (o,a1);
then
LIN (o,c1,a1) by
ANALMETR:def 10;
then
LIN (o9,c19,a19) by
ANALMETR: 40;
then
LIN (a19,o9,c19) by
AFF_1: 6;
then
LIN (a1,o,c1) by
ANALMETR: 40;
then
A47: (a1,o)
// (a1,c1) by
ANALMETR:def 10;
A48: a1
<> c1
proof
assume a1
= c1;
then
LIN (o9,c9,a19) by
A11,
ANALMETR: 40;
then
LIN (a19,c9,o9) by
AFF_1: 6;
then
LIN (a1,c,o) by
ANALMETR: 40;
then
A49: (a1,c)
// (a1,o) by
ANALMETR:def 10;
LIN (o9,a9,a19) by
A9,
ANALMETR: 40;
then
LIN (a19,o9,a9) by
AFF_1: 6;
then
LIN (a1,o,a) by
ANALMETR: 40;
then (a1,o)
// (a1,a) by
ANALMETR:def 10;
then (a1,c)
// (a1,a) by
A3,
A49,
ANALMETR: 60;
then
LIN (a1,c,a) by
ANALMETR:def 10;
then
LIN (a19,c9,a9) by
ANALMETR: 40;
then
LIN (a9,a19,c9) by
AFF_1: 6;
hence contradiction by
A8,
ANALMETR: 40;
end;
LIN (o9,a9,a19) by
A9,
ANALMETR: 40;
then
LIN (a19,o9,a9) by
AFF_1: 6;
then
LIN (a1,o,a) by
ANALMETR: 40;
then (a1,o)
// (a1,a) by
ANALMETR:def 10;
then (a1,c1)
// (a1,a) by
A3,
A47,
ANALMETR: 60;
then (a1,a)
// (a,c) by
A13,
A48,
ANALMETR: 60;
then (a,a1)
// (a,c) by
ANALMETR: 59;
hence contradiction by
A8,
ANALMETR:def 10;
end;
not (o,a1)
// (o,b1)
proof
assume (o,a1)
// (o,b1);
then
LIN (o,a1,b1) by
ANALMETR:def 10;
then
LIN (o9,a19,b19) by
ANALMETR: 40;
then
LIN (b19,a19,o9) by
AFF_1: 6;
then
LIN (b1,a1,o) by
ANALMETR: 40;
then
A50: (b1,a1)
// (b1,o) by
ANALMETR:def 10;
A51: a1
<> b1
proof
assume a1
= b1;
then
LIN (o9,a9,b19) by
A9,
ANALMETR: 40;
then
LIN (b19,o9,a9) by
AFF_1: 6;
then
LIN (b1,o,a) by
ANALMETR: 40;
then
A52: (b1,o)
// (b1,a) by
ANALMETR:def 10;
LIN (o9,b9,b19) by
A10,
ANALMETR: 40;
then
LIN (b19,b9,o9) by
AFF_1: 6;
then
LIN (b1,b,o) by
ANALMETR: 40;
then (b1,b)
// (b1,o) by
ANALMETR:def 10;
then (b1,a)
// (b1,b) by
A5,
A52,
ANALMETR: 60;
then
LIN (b1,a,b) by
ANALMETR:def 10;
then
LIN (b19,a9,b9) by
ANALMETR: 40;
then
LIN (b9,b19,a9) by
AFF_1: 6;
hence contradiction by
A7,
ANALMETR: 40;
end;
A53: (b1,a1)
// (a,b) by
A12,
ANALMETR: 59;
LIN (o9,b9,b19) by
A10,
ANALMETR: 40;
then
LIN (b19,b9,o9) by
AFF_1: 6;
then
LIN (b1,b,o) by
ANALMETR: 40;
then (b1,b)
// (b1,o) by
ANALMETR:def 10;
then (b1,a1)
// (b1,b) by
A5,
A50,
ANALMETR: 60;
then (b1,b)
// (a,b) by
A51,
A53,
ANALMETR: 60;
then (b,b1)
// (b,a) by
ANALMETR: 59;
hence contradiction by
A7,
ANALMETR:def 10;
end;
then
A54: (b1,c1)
_|_ (b2,c2) by
A1,
A41,
A42,
A43,
A44,
A45,
A46;
A55:
now
assume
A56: not
LIN (o,b,c);
b2
<> c2
proof
assume
A57: b2
= c2;
o
<> b2
proof
assume
A58: o
= b2;
(a2,o)
_|_ (a,o) by
A14,
ANALMETR: 61;
then (a,o)
// (a,b) by
A15,
A27,
A58,
ANALMETR: 63;
then
LIN (a,o,b) by
ANALMETR:def 10;
then
LIN (a9,o9,b9) by
ANALMETR: 40;
then
LIN (b9,o9,a9) by
AFF_1: 6;
then
LIN (b,o,a) by
ANALMETR: 40;
then
A59: (b,o)
// (b,a) by
ANALMETR:def 10;
LIN (o9,b9,b19) by
A10,
ANALMETR: 40;
then
LIN (b9,o9,b19) by
AFF_1: 6;
then
LIN (b,o,b1) by
ANALMETR: 40;
then (b,o)
// (b,b1) by
ANALMETR:def 10;
then (b,b1)
// (b,a) by
A4,
A59,
ANALMETR: 60;
hence contradiction by
A7,
ANALMETR:def 10;
end;
then (o,b)
// (o,c) by
A26,
A35,
A57,
ANALMETR: 63;
hence contradiction by
A56,
ANALMETR:def 10;
end;
hence thesis by
A40,
A54,
ANALMETR: 63;
end;
now
assume
A60:
LIN (o,b,c);
then
LIN (o9,b9,c9) by
ANALMETR: 40;
then
LIN (b9,o9,c9) by
AFF_1: 6;
then
A61: (b9,o9)
// (b9,c9) by
AFF_1:def 1;
LIN (o9,b9,b19) by
A10,
ANALMETR: 40;
then
LIN (b9,o9,b19) by
AFF_1: 6;
then (b9,o9)
// (b9,b19) by
AFF_1:def 1;
then (b9,c9)
// (b9,b19) by
A4,
A61,
AFF_1: 5;
then
A62:
LIN (b9,c9,b19) by
AFF_1:def 1;
LIN (o9,b9,c9) by
A60,
ANALMETR: 40;
then
LIN (c9,o9,b9) by
AFF_1: 6;
then
A63: (c9,o9)
// (c9,b9) by
AFF_1:def 1;
LIN (o9,c9,c19) by
A11,
ANALMETR: 40;
then
LIN (c9,o9,c19) by
AFF_1: 6;
then (c9,o9)
// (c9,c19) by
AFF_1:def 1;
then (c9,b9)
// (c9,c19) by
A6,
A63,
AFF_1: 5;
then
LIN (c9,b9,c19) by
AFF_1:def 1;
then
LIN (b9,c9,c19) by
AFF_1: 6;
then (b9,c9)
// (b19,c19) by
A62,
AFF_1: 10;
hence thesis by
ANALMETR: 36;
end;
hence thesis by
A55;
end;
theorem ::
CONAFFM:2
X is
satisfying_ODES implies X is
satisfying_AH;
theorem ::
CONAFFM:3
Th3: X is
satisfying_LIN implies X is
satisfying_LIN1
proof
assume
A1: X is
satisfying_LIN;
let o, a, a1, b, b1, c, c1;
assume that
A2: o
<> a and
A3: o
<> a1 and
A4: o
<> b and o
<> b1 and
A5: o
<> c and
A6: o
<> c1 and
A7: a
<> b and
A8: (o,c)
_|_ (o,c1) and
A9: (o,a)
_|_ (o,a1) and (o,b)
_|_ (o,b1) and
A10: not
LIN (o,c,a) and
A11:
LIN (o,a,b) and
A12:
LIN (o,a1,b1) and
A13: (a,c)
_|_ (a1,c1) and
A14: (a,a1)
// (b,b1);
reconsider a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1, o9 = o as
Element of the AffinStruct of X;
now
ex b2 st
LIN (o,a1,b2) & (c1,b2)
_|_ (b,c) & c1
<> b2
proof
consider y be
Element of X such that
A15: (o,a1)
// (o,y) and
A16: o
<> y by
ANALMETR: 39;
consider x be
Element of X such that
A17: (b,c)
_|_ (c1,x) and
A18: c1
<> x by
ANALMETR: 39;
A19: not (o,y)
// (c1,x)
proof
assume
A20: (o,y)
// (c1,x);
reconsider y9 = y, x9 = x as
Element of the AffinStruct of X;
A21: (o9,y9)
// (c19,x9) by
A20,
ANALMETR: 36;
(o9,a19)
// (o9,y9) by
A15,
ANALMETR: 36;
then (o9,y9)
// (o9,a19) by
AFF_1: 4;
then (c19,x9)
// (o9,a19) by
A16,
A21,
DIRAF: 40;
then (c1,x)
// (o,a1) by
ANALMETR: 36;
then (o,a1)
_|_ (b,c) by
A17,
A18,
ANALMETR: 62;
then
A22: (o,a)
// (b,c) by
A3,
A9,
ANALMETR: 63;
(o,a)
// (o,b) by
A11,
ANALMETR:def 10;
then (b,c)
// (o,b) by
A2,
A22,
ANALMETR: 60;
then (b9,c9)
// (o9,b9) by
ANALMETR: 36;
then (b9,c9)
// (b9,o9) by
AFF_1: 4;
then
LIN (b9,c9,o9) by
AFF_1:def 1;
then
LIN (o9,b9,c9) by
AFF_1: 6;
then
A23: (o9,b9)
// (o9,c9) by
AFF_1:def 1;
LIN (o9,a9,b9) by
A11,
ANALMETR: 40;
then
LIN (o9,b9,a9) by
AFF_1: 6;
then (o9,b9)
// (o9,a9) by
AFF_1:def 1;
then (o9,c9)
// (o9,a9) by
A4,
A23,
DIRAF: 40;
then
LIN (o9,c9,a9) by
AFF_1:def 1;
hence contradiction by
A10,
ANALMETR: 40;
end;
reconsider y9 = y, x9 = x as
Element of the AffinStruct of X;
not (o9,y9)
// (c19,x9) by
A19,
ANALMETR: 36;
then
consider b29 be
Element of the AffinStruct of X such that
A24:
LIN (o9,y9,b29) and
A25:
LIN (c19,x9,b29) by
AFF_1: 60;
reconsider b2 = b29 as
Element of X;
LIN (c1,x,b2) by
A25,
ANALMETR: 40;
then (c1,x)
// (c1,b2) by
ANALMETR:def 10;
then
A26: (c1,b2)
_|_ (b,c) by
A17,
A18,
ANALMETR: 62;
(o9,a19)
// (o9,y9) by
A15,
ANALMETR: 36;
then
A27: (o9,y9)
// (o9,a19) by
AFF_1: 4;
(o9,y9)
// (o9,b29) by
A24,
AFF_1:def 1;
then (o9,a19)
// (o9,b29) by
A16,
A27,
DIRAF: 40;
then
LIN (o9,a19,b29) by
AFF_1:def 1;
then
A28:
LIN (o,a1,b2) by
ANALMETR: 40;
c1
<> b2
proof
assume c1
= b2;
then (o,a1)
// (o,c1) by
A28,
ANALMETR:def 10;
then (o,c1)
_|_ (o,a) by
A3,
A9,
ANALMETR: 62;
then (o,c)
// (o,a) by
A6,
A8,
ANALMETR: 63;
hence contradiction by
A10,
ANALMETR:def 10;
end;
hence thesis by
A26,
A28;
end;
then
consider b2 such that
A29:
LIN (o,a1,b2) and
A30: (c1,b2)
_|_ (b,c) and c1
<> b2;
reconsider b29 = b2 as
Element of the AffinStruct of X;
(o,a1)
// (o,b2) by
A29,
ANALMETR:def 10;
then
A31: (o,a)
_|_ (o,b2) by
A3,
A9,
ANALMETR: 62;
A32: (o,a)
// (o,b) by
A11,
ANALMETR:def 10;
A33: o
<> b2
proof
assume o
= b2;
then (o,c1)
_|_ (b,c) by
A30,
ANALMETR: 61;
then (o,c)
// (b,c) by
A6,
A8,
ANALMETR: 63;
then (o9,c9)
// (b9,c9) by
ANALMETR: 36;
then (c9,o9)
// (c9,b9) by
AFF_1: 4;
then
LIN (c9,o9,b9) by
AFF_1:def 1;
then
LIN (o9,b9,c9) by
AFF_1: 6;
then
A34: (o9,b9)
// (o9,c9) by
AFF_1:def 1;
LIN (o9,a9,b9) by
A11,
ANALMETR: 40;
then
LIN (o9,b9,a9) by
AFF_1: 6;
then (o9,b9)
// (o9,a9) by
AFF_1:def 1;
then (o9,c9)
// (o9,a9) by
A4,
A34,
DIRAF: 40;
then
LIN (o9,c9,a9) by
AFF_1:def 1;
hence contradiction by
A10,
ANALMETR: 40;
end;
A35: (o,b)
_|_ (o,b2) by
A2,
A31,
A32,
ANALMETR: 62;
(b,c)
_|_ (b2,c1) by
A30,
ANALMETR: 61;
then
A36: (a,a1)
// (b,b2) by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A13,
A29,
A33,
A35;
not
LIN (o,a,a1)
proof
assume
LIN (o,a,a1);
then (o,a)
// (o,a1) by
ANALMETR:def 10;
then (o,a1)
_|_ (o,a1) by
A2,
A9,
ANALMETR: 62;
hence contradiction by
A3,
ANALMETR: 39;
end;
then
A37: not
LIN (o9,a9,a19) by
ANALMETR: 40;
A38:
LIN (o9,a9,b9) by
A11,
ANALMETR: 40;
A39:
LIN (o9,a19,b19) by
A12,
ANALMETR: 40;
A40:
LIN (o9,a19,b29) by
A29,
ANALMETR: 40;
A41: (a9,a19)
// (b9,b19) by
A14,
ANALMETR: 36;
(a9,a19)
// (b9,b29) by
A36,
ANALMETR: 36;
then b1
= b2 by
A37,
A38,
A39,
A40,
A41,
AFF_1: 56;
hence thesis by
A30,
ANALMETR: 61;
end;
hence thesis;
end;
theorem ::
CONAFFM:4
X is
satisfying_LIN1 implies X is
satisfying_LIN2
proof
assume
A1: X is
satisfying_LIN1;
let o, a, a1, b, b1, c, c1;
assume that
A2: o
<> a and
A3: o
<> a1 and
A4: o
<> b and
A5: o
<> b1 and
A6: o
<> c and o
<> c1 and
A7: a
<> b and
A8: (a,a1)
// (b,b1) and
A9: (o,a)
_|_ (o,a1) and
A10: (o,b)
_|_ (o,b1) and
A11: not
LIN (o,c,a) and
A12:
LIN (o,a,b) and
A13:
LIN (o,a1,b1) and
A14: (a,c)
_|_ (a1,c1) and
A15: (b,c)
_|_ (b1,c1);
reconsider a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1, o9 = o as
Element of the AffinStruct of X;
ex c2 st
LIN (a1,c1,c2) & (o,c)
_|_ (o,c2) & o
<> c2
proof
consider e1 such that
A16: (a1,c1)
// (a1,e1) and
A17: a1
<> e1 by
ANALMETR: 39;
consider e2 such that
A18: (o,c)
_|_ (o,e2) and
A19: o
<> e2 by
ANALMETR: 39;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (a19,e19)
// (o9,e29)
proof
assume (a19,e19)
// (o9,e29);
then (a1,e1)
// (o,e2) by
ANALMETR: 36;
then (a1,c1)
// (o,e2) by
A16,
A17,
ANALMETR: 60;
then
A20: (a1,c1)
_|_ (o,c) by
A18,
A19,
ANALMETR: 62;
a1
<> c1
proof
assume
A21: a1
= c1;
A22: b1
<> a1
proof
assume b1
= a1;
then (a1,a)
// (a1,b) by
A8,
ANALMETR: 59;
then
LIN (a1,a,b) by
ANALMETR:def 10;
then
LIN (a19,a9,b9) by
ANALMETR: 40;
then
LIN (a9,b9,a19) by
AFF_1: 6;
then
LIN (a,b,a1) by
ANALMETR: 40;
then
A23: (a,b)
// (a,a1) by
ANALMETR:def 10;
LIN (o9,a9,b9) by
A12,
ANALMETR: 40;
then
LIN (a9,b9,o9) by
AFF_1: 6;
then
LIN (a,b,o) by
ANALMETR: 40;
then (a,b)
// (a,o) by
ANALMETR:def 10;
then (o,a)
// (a,b) by
ANALMETR: 59;
then (a,a1)
// (o,a) by
A7,
A23,
ANALMETR: 60;
then (a,a1)
// (a,o) by
ANALMETR: 59;
then
LIN (a,a1,o) by
ANALMETR:def 10;
then
LIN (a9,a19,o9) by
ANALMETR: 40;
then
LIN (o9,a9,a19) by
AFF_1: 6;
then
LIN (o,a,a1) by
ANALMETR: 40;
then (o,a)
// (o,a1) by
ANALMETR:def 10;
then (o,a)
_|_ (o,a) by
A3,
A9,
ANALMETR: 62;
hence contradiction by
A2,
ANALMETR: 39;
end;
A24:
LIN (o9,a9,b9) by
A12,
ANALMETR: 40;
A25:
LIN (o9,a19,b19) by
A13,
ANALMETR: 40;
A26:
LIN (b9,o9,a9) by
A24,
AFF_1: 6;
A27:
LIN (b19,o9,a19) by
A25,
AFF_1: 6;
A28:
LIN (b,o,a) by
A26,
ANALMETR: 40;
A29:
LIN (b1,o,a1) by
A27,
ANALMETR: 40;
A30: (b,o)
// (b,a) by
A28,
ANALMETR:def 10;
A31: (b1,o)
// (b1,a1) by
A29,
ANALMETR:def 10;
(b,o)
_|_ (b1,o) by
A10,
ANALMETR: 61;
then (b,a)
_|_ (b1,o) by
A4,
A30,
ANALMETR: 62;
then (b1,a1)
_|_ (b,a) by
A5,
A31,
ANALMETR: 62;
then (b,c)
// (b,a) by
A15,
A21,
A22,
ANALMETR: 63;
then
LIN (b,c,a) by
ANALMETR:def 10;
then
LIN (b9,c9,a9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
then
LIN (a,b,c) by
ANALMETR: 40;
then
A32: (a,b)
// (a,c) by
ANALMETR:def 10;
LIN (o9,a9,b9) by
A12,
ANALMETR: 40;
then
LIN (a9,b9,o9) by
AFF_1: 6;
then
LIN (a,b,o) by
ANALMETR: 40;
then (a,b)
// (a,o) by
ANALMETR:def 10;
then (a,c)
// (a,o) by
A7,
A32,
ANALMETR: 60;
then
LIN (a,c,o) by
ANALMETR:def 10;
then
LIN (a9,c9,o9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A11,
ANALMETR: 40;
end;
then (a,c)
// (o,c) by
A14,
A20,
ANALMETR: 63;
then (c,a)
// (c,o) by
ANALMETR: 59;
then (c9,a9)
// (c9,o9) by
ANALMETR: 36;
then
LIN (c9,a9,o9) by
AFF_1:def 1;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A11,
ANALMETR: 40;
end;
then
consider c29 such that
A33:
LIN (a19,e19,c29) and
A34:
LIN (o9,e29,c29) by
AFF_1: 60;
reconsider c2 = c29 as
Element of X;
take c2;
(a19,e19)
// (a19,c29) by
A33,
AFF_1:def 1;
then (a1,e1)
// (a1,c2) by
ANALMETR: 36;
then
A35: (a1,c1)
// (a1,c2) by
A16,
A17,
ANALMETR: 60;
LIN (o,e2,c2) by
A34,
ANALMETR: 40;
then
A36: (o,e2)
// (o,c2) by
ANALMETR:def 10;
o
<> c2
proof
assume o
= c2;
then (a1,c1)
// (o,a1) by
A35,
ANALMETR: 59;
then
A37: (o,a)
_|_ (a1,c1) by
A3,
A9,
ANALMETR: 62;
a1
<> c1
proof
assume
A38: a1
= c1;
A39: a1
<> b1
proof
assume a1
= b1;
then (a1,a)
// (a1,b) by
A8,
ANALMETR: 59;
then
LIN (a1,a,b) by
ANALMETR:def 10;
then
LIN (a19,a9,b9) by
ANALMETR: 40;
then
LIN (a9,b9,a19) by
AFF_1: 6;
then
LIN (a,b,a1) by
ANALMETR: 40;
then
A40: (a,b)
// (a,a1) by
ANALMETR:def 10;
LIN (o9,a9,b9) by
A12,
ANALMETR: 40;
then
LIN (a9,b9,o9) by
AFF_1: 6;
then
LIN (a,b,o) by
ANALMETR: 40;
then (a,b)
// (a,o) by
ANALMETR:def 10;
then (o,a)
// (a,b) by
ANALMETR: 59;
then (a,a1)
// (o,a) by
A7,
A40,
ANALMETR: 60;
then (a,a1)
// (a,o) by
ANALMETR: 59;
then
LIN (a,a1,o) by
ANALMETR:def 10;
then
LIN (a9,a19,o9) by
ANALMETR: 40;
then
LIN (o9,a9,a19) by
AFF_1: 6;
then
LIN (o,a,a1) by
ANALMETR: 40;
then (o,a)
// (o,a1) by
ANALMETR:def 10;
then (o,a)
_|_ (o,a) by
A3,
A9,
ANALMETR: 62;
hence contradiction by
A2,
ANALMETR: 39;
end;
LIN (o9,a19,b19) by
A13,
ANALMETR: 40;
then
LIN (b19,a19,o9) by
AFF_1: 6;
then
LIN (b1,a1,o) by
ANALMETR: 40;
then (b1,a1)
// (b1,o) by
ANALMETR:def 10;
then (b1,a1)
// (o,b1) by
ANALMETR: 59;
then (b,c)
_|_ (o,b1) by
A15,
A38,
A39,
ANALMETR: 62;
then
A41: (b,c)
// (o,b) by
A5,
A10,
ANALMETR: 63;
A42:
LIN (o9,a9,b9) by
A12,
ANALMETR: 40;
then
A43:
LIN (b9,a9,o9) by
AFF_1: 6;
A44:
LIN (a9,b9,o9) by
A42,
AFF_1: 6;
A45:
LIN (b,a,o) by
A43,
ANALMETR: 40;
A46:
LIN (a,b,o) by
A44,
ANALMETR: 40;
A47: (b,a)
// (b,o) by
A45,
ANALMETR:def 10;
A48: (a,b)
// (a,o) by
A46,
ANALMETR:def 10;
(o,b)
// (b,a) by
A47,
ANALMETR: 59;
then (b,a)
// (b,c) by
A4,
A41,
ANALMETR: 60;
then
LIN (b,a,c) by
ANALMETR:def 10;
then
LIN (b9,a9,c9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
then
LIN (a,b,c) by
ANALMETR: 40;
then (a,b)
// (a,c) by
ANALMETR:def 10;
then (a,o)
// (a,c) by
A7,
A48,
ANALMETR: 60;
then
LIN (a,o,c) by
ANALMETR:def 10;
then
LIN (a9,o9,c9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A11,
ANALMETR: 40;
end;
then (o,a)
// (a,c) by
A14,
A37,
ANALMETR: 63;
then (a,c)
// (a,o) by
ANALMETR: 59;
then
LIN (a,c,o) by
ANALMETR:def 10;
then
LIN (a9,c9,o9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A11,
ANALMETR: 40;
end;
hence thesis by
A18,
A19,
A35,
A36,
ANALMETR: 62,
ANALMETR:def 10;
end;
then
consider c2 such that
A49:
LIN (a1,c1,c2) and
A50: (o,c)
_|_ (o,c2) and
A51: o
<> c2;
reconsider c29 = c2 as
Element of the AffinStruct of X;
A52: b
<> c & a1
<> b1 & a1
<> c1
proof
assume
A53: b
= c or a1
= b1 or a1
= c1;
A54:
now
assume b
= c;
then
LIN (o9,a9,c9) by
A12,
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A11,
ANALMETR: 40;
end;
A55:
now
assume a1
= b1;
then (a1,a)
// (a1,b) by
A8,
ANALMETR: 59;
then
LIN (a1,a,b) by
ANALMETR:def 10;
then
LIN (a19,a9,b9) by
ANALMETR: 40;
then
LIN (a9,b9,a19) by
AFF_1: 6;
then
LIN (a,b,a1) by
ANALMETR: 40;
then
A56: (a,b)
// (a,a1) by
ANALMETR:def 10;
LIN (o9,a9,b9) by
A12,
ANALMETR: 40;
then
LIN (a9,b9,o9) by
AFF_1: 6;
then
LIN (a,b,o) by
ANALMETR: 40;
then (a,b)
// (a,o) by
ANALMETR:def 10;
then (o,a)
// (a,b) by
ANALMETR: 59;
then (a,a1)
// (o,a) by
A7,
A56,
ANALMETR: 60;
then (a,a1)
// (a,o) by
ANALMETR: 59;
then
LIN (a,a1,o) by
ANALMETR:def 10;
then
LIN (a9,a19,o9) by
ANALMETR: 40;
then
LIN (o9,a9,a19) by
AFF_1: 6;
then
LIN (o,a,a1) by
ANALMETR: 40;
then (o,a)
// (o,a1) by
ANALMETR:def 10;
then (o,a)
_|_ (o,a) by
A3,
A9,
ANALMETR: 62;
hence contradiction by
A2,
ANALMETR: 39;
end;
now
assume
A57: a1
= c1;
LIN (o9,a19,b19) by
A13,
ANALMETR: 40;
then
LIN (b19,a19,o9) by
AFF_1: 6;
then
LIN (b1,a1,o) by
ANALMETR: 40;
then (b1,a1)
// (b1,o) by
ANALMETR:def 10;
then (b1,a1)
// (o,b1) by
ANALMETR: 59;
then (b,c)
_|_ (o,b1) by
A15,
A55,
A57,
ANALMETR: 62;
then
A58: (b,c)
// (o,b) by
A5,
A10,
ANALMETR: 63;
A59:
LIN (o9,a9,b9) by
A12,
ANALMETR: 40;
then
A60:
LIN (b9,a9,o9) by
AFF_1: 6;
A61:
LIN (a9,b9,o9) by
A59,
AFF_1: 6;
A62:
LIN (b,a,o) by
A60,
ANALMETR: 40;
A63:
LIN (a,b,o) by
A61,
ANALMETR: 40;
A64: (b,a)
// (b,o) by
A62,
ANALMETR:def 10;
A65: (a,b)
// (a,o) by
A63,
ANALMETR:def 10;
(o,b)
// (b,a) by
A64,
ANALMETR: 59;
then (b,a)
// (b,c) by
A4,
A58,
ANALMETR: 60;
then
LIN (b,a,c) by
ANALMETR:def 10;
then
LIN (b9,a9,c9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
then
LIN (a,b,c) by
ANALMETR: 40;
then (a,b)
// (a,c) by
ANALMETR:def 10;
then (a,o)
// (a,c) by
A7,
A65,
ANALMETR: 60;
then
LIN (a,o,c) by
ANALMETR:def 10;
then
LIN (a9,o9,c9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A11,
ANALMETR: 40;
end;
hence contradiction by
A53,
A54,
A55;
end;
(a1,c1)
// (a1,c2) by
A49,
ANALMETR:def 10;
then (a,c)
_|_ (a1,c2) by
A14,
A52,
ANALMETR: 62;
then (b,c)
_|_ (b1,c2) by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A50,
A51;
then (b1,c1)
// (b1,c2) by
A15,
A52,
ANALMETR: 63;
then
A66:
LIN (b1,c1,c2) by
ANALMETR:def 10;
not
LIN (b1,a1,c1)
proof
assume
LIN (b1,a1,c1);
then
LIN (b19,a19,c19) by
ANALMETR: 40;
then
LIN (a19,b19,c19) by
AFF_1: 6;
then (a19,b19)
// (a19,c19) by
AFF_1:def 1;
then
A67: (a1,b1)
// (a1,c1) by
ANALMETR: 36;
LIN (o9,a19,b19) by
A13,
ANALMETR: 40;
then
LIN (a19,b19,o9) by
AFF_1: 6;
then
LIN (a1,b1,o) by
ANALMETR: 40;
then (a1,b1)
// (a1,o) by
ANALMETR:def 10;
then (a1,c1)
// (a1,o) by
A52,
A67,
ANALMETR: 60;
then (a,c)
_|_ (a1,o) by
A14,
A52,
ANALMETR: 62;
then
A68: (o,a1)
_|_ (a,c) by
ANALMETR: 61;
(o,a1)
_|_ (a,o) by
A9,
ANALMETR: 61;
then (a,o)
// (a,c) by
A3,
A68,
ANALMETR: 63;
then
LIN (a,o,c) by
ANALMETR:def 10;
then
LIN (a9,o9,c9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
hence contradiction by
A11,
ANALMETR: 40;
end;
then
A69: not
LIN (b19,a19,c19) by
ANALMETR: 40;
A70:
LIN (b19,c19,c29) by
A66,
ANALMETR: 40;
(a1,c1)
// (a1,c2) by
A49,
ANALMETR:def 10;
then (a19,c19)
// (a19,c29) by
ANALMETR: 36;
hence thesis by
A50,
A69,
A70,
AFF_1: 14;
end;
theorem ::
CONAFFM:5
X is
satisfying_LIN implies X is
satisfying_ODES
proof
assume
A1: X is
satisfying_LIN;
let o, a, a1, b, b1, c, c1;
assume that
A2: (o,a)
_|_ (o,a1) and
A3: (o,b)
_|_ (o,b1) and
A4: (o,c)
_|_ (o,c1) and
A5: (a,b)
_|_ (a1,b1) and
A6: (a,c)
_|_ (a1,c1) and
A7: not (o,c)
// (o,a) and
A8: not (o,a)
// (o,b);
A9: X is
satisfying_LIN1 by
A1,
Th3;
now
let o, a, a1, b, b1, c, c1;
assume
A10: X is
satisfying_LIN;
assume that
A11: (o,a)
_|_ (o,a1) and
A12: (o,b)
_|_ (o,b1) and
A13: (o,c)
_|_ (o,c1) and
A14: (a,b)
_|_ (a1,b1) and
A15: (a,c)
_|_ (a1,c1) and
A16: not (o,c)
// (o,a) and
A17: not (o,a)
// (o,b);
assume
A18: not (o,b)
// (a,c);
reconsider a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1, o9 = o as
Element of the AffinStruct of X;
A19:
now
assume
A20: o
= a1;
then
A21: (a1,b1)
_|_ (b,a1) by
A12,
ANALMETR: 61;
A22: (a1,b1)
_|_ (b,a) by
A14,
ANALMETR: 61;
not (b,a1)
// (b,a)
proof
assume (b,a1)
// (b,a);
then
LIN (b,o,a) by
A20,
ANALMETR:def 10;
then
LIN (b9,o9,a9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A17,
ANALMETR:def 10;
end;
then
A23: a1
= b1 by
A21,
A22,
ANALMETR: 63;
A24: (a1,c1)
_|_ (c,a1) by
A13,
A20,
ANALMETR: 61;
(a1,c1)
_|_ (c,a) by
A15,
ANALMETR: 61;
then
A25: (c,a1)
// (c,a) or a1
= c1 by
A24,
ANALMETR: 63;
not (c,a1)
// (c,a)
proof
assume (c,a1)
// (c,a);
then
LIN (c,o,a) by
A20,
ANALMETR:def 10;
then
LIN (c9,o9,a9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A16,
ANALMETR:def 10;
end;
hence (b,c)
_|_ (b1,c1) by
A23,
A25,
ANALMETR: 39;
end;
A26:
now
assume that
A27:
LIN (o,b,c) and
A28: o
<> a1;
A29: o
<> b by
A17,
ANALMETR: 39;
A30: o
<> c
proof
assume o
= c;
then (o,a)
// (o,c) by
ANALMETR: 39;
then (o9,a9)
// (o9,c9) by
ANALMETR: 36;
then (o9,c9)
// (o9,a9) by
AFF_1: 4;
hence contradiction by
A16,
ANALMETR: 36;
end;
A31: o
<> b1
proof
assume
A32: o
= b1;
(a1,o)
_|_ (a,o) by
A11,
ANALMETR: 61;
then (a,o)
// (a,b) by
A14,
A28,
A32,
ANALMETR: 63;
then
LIN (a,o,b) by
ANALMETR:def 10;
then
LIN (a9,o9,b9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A17,
ANALMETR:def 10;
end;
(o,b)
// (o,c) by
A27,
ANALMETR:def 10;
then (o,c)
_|_ (o,b1) by
A12,
A29,
ANALMETR: 62;
then (o,b1)
// (o,c1) by
A13,
A30,
ANALMETR: 63;
then
LIN (o,b1,c1) by
ANALMETR:def 10;
then
LIN (o9,b19,c19) by
ANALMETR: 40;
then
LIN (b19,o9,c19) by
AFF_1: 6;
then
LIN (b1,o,c1) by
ANALMETR: 40;
then
A33: (b1,o)
// (b1,c1) by
ANALMETR:def 10;
(b1,o)
_|_ (b,o) by
A12,
ANALMETR: 61;
then
A34: (b,o)
_|_ (b1,c1) by
A31,
A33,
ANALMETR: 62;
LIN (o9,b9,c9) by
A27,
ANALMETR: 40;
then
LIN (b9,o9,c9) by
AFF_1: 6;
then
LIN (b,o,c) by
ANALMETR: 40;
then (b,o)
// (b,c) by
ANALMETR:def 10;
hence (b,c)
_|_ (b1,c1) by
A29,
A34,
ANALMETR: 62;
end;
A35:
now
assume that
A36:
LIN (a,b,c) and not
LIN (o,b,c) and
A37: o
<> a1;
A38: a
<> c
proof
assume a
= c;
then (a,o)
// (a,c) by
ANALMETR: 39;
then
LIN (a,o,c) by
ANALMETR:def 10;
then
LIN (a9,o9,c9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A16,
ANALMETR:def 10;
end;
A39: a
<> b
proof
assume a
= b;
then (a,o)
// (a,b) by
ANALMETR: 39;
then
LIN (a,o,b) by
ANALMETR:def 10;
then
LIN (a9,o9,b9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A17,
ANALMETR:def 10;
end;
A40: a1
<> b1 by
A11,
A12,
A17,
A37,
ANALMETR: 63;
(a,b)
// (a,c) by
A36,
ANALMETR:def 10;
then (a,c)
_|_ (a1,b1) by
A14,
A39,
ANALMETR: 62;
then (a1,b1)
// (a1,c1) by
A15,
A38,
ANALMETR: 63;
then
LIN (a1,b1,c1) by
ANALMETR:def 10;
then
LIN (a19,b19,c19) by
ANALMETR: 40;
then
LIN (b19,a19,c19) by
AFF_1: 6;
then
LIN (b1,a1,c1) by
ANALMETR: 40;
then
A41: (b1,a1)
// (b1,c1) by
ANALMETR:def 10;
(b1,a1)
_|_ (b,a) by
A14,
ANALMETR: 61;
then
A42: (b,a)
_|_ (b1,c1) by
A40,
A41,
ANALMETR: 62;
LIN (a9,b9,c9) by
A36,
ANALMETR: 40;
then
LIN (b9,a9,c9) by
AFF_1: 6;
then
LIN (b,a,c) by
ANALMETR: 40;
then (b,a)
// (b,c) by
ANALMETR:def 10;
hence (b,c)
_|_ (b1,c1) by
A39,
A42,
ANALMETR: 62;
end;
now
assume that
A43: not
LIN (a,b,c) and
A44: not
LIN (o,b,c) and
A45: o
<> a1;
A46: o
<> c
proof
assume o
= c;
then (o,a)
// (o,c) by
ANALMETR: 39;
then (o9,a9)
// (o9,c9) by
ANALMETR: 36;
then (o9,c9)
// (o9,a9) by
AFF_1: 4;
hence contradiction by
A16,
ANALMETR: 36;
end;
A47: o
<> b1
proof
assume
A48: o
= b1;
(a1,o)
_|_ (a,o) by
A11,
ANALMETR: 61;
then (a,o)
// (a,b) by
A14,
A45,
A48,
ANALMETR: 63;
then
LIN (a,o,b) by
ANALMETR:def 10;
then
LIN (a9,o9,b9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A17,
ANALMETR:def 10;
end;
A49: o
<> c1
proof
assume
A50: o
= c1;
(a1,o)
_|_ (a,o) by
A11,
ANALMETR: 61;
then (a,o)
// (a,c) by
A15,
A45,
A50,
ANALMETR: 63;
then
LIN (a,o,c) by
ANALMETR:def 10;
then
LIN (a9,o9,c9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A16,
ANALMETR:def 10;
end;
A51: o
<> a by
A16,
ANALMETR: 39;
A52: o
<> b by
A17,
ANALMETR: 39;
A53: a
<> c by
A13,
A16,
A49,
ANALMETR: 63;
A54: a1
<> c1 by
A11,
A13,
A16,
A49,
ANALMETR: 63;
ex e be
Element of X st
LIN (o,e,b) &
LIN (a,c,e) & e
<> c & e
<> b
proof
consider p be
Element of X such that
A55: (o,b)
// (o,p) and
A56: o
<> p by
ANALMETR: 39;
reconsider p9 = p as
Element of the AffinStruct of X;
consider p1 be
Element of X such that
A57: (a,c)
// (a,p1) and
A58: a
<> p1 by
ANALMETR: 39;
reconsider p19 = p1 as
Element of the AffinStruct of X;
not (o,p)
// (a,p1)
proof
assume (o,p)
// (a,p1);
then (a,p1)
// (o,b) by
A55,
A56,
ANALMETR: 60;
hence contradiction by
A18,
A57,
A58,
ANALMETR: 60;
end;
then not (o9,p9)
// (a9,p19) by
ANALMETR: 36;
then
consider e9 be
Element of the AffinStruct of X such that
A59:
LIN (o9,p9,e9) and
A60:
LIN (a9,p19,e9) by
AFF_1: 60;
reconsider e = e9 as
Element of X;
LIN (o,p,e) by
A59,
ANALMETR: 40;
then (o,p)
// (o,e) by
ANALMETR:def 10;
then (o,e)
// (o,b) by
A55,
A56,
ANALMETR: 60;
then
A61:
LIN (o,e,b) by
ANALMETR:def 10;
LIN (a,p1,e) by
A60,
ANALMETR: 40;
then (a,p1)
// (a,e) by
ANALMETR:def 10;
then (a,c)
// (a,e) by
A57,
A58,
ANALMETR: 60;
then
A62:
LIN (a,c,e) by
ANALMETR:def 10;
A63: c
<> e
proof
assume c
= e;
then
LIN (o9,c9,b9) by
A61,
ANALMETR: 40;
then
LIN (o9,b9,c9) by
AFF_1: 6;
hence contradiction by
A44,
ANALMETR: 40;
end;
b
<> e
proof
assume b
= e;
then
LIN (a9,c9,b9) by
A62,
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A43,
ANALMETR: 40;
end;
hence thesis by
A61,
A62,
A63;
end;
then
consider e be
Element of X such that
A64:
LIN (o,e,b) and
A65:
LIN (a,c,e) and
A66: e
<> c and
A67: e
<> b;
reconsider e9 = e as
Element of the AffinStruct of X;
ex e1 be
Element of X st
LIN (o,e1,b1) &
LIN (a1,c1,e1)
proof
consider p be
Element of X such that
A68: (o,b1)
// (o,p) and
A69: o
<> p by
ANALMETR: 39;
reconsider p9 = p as
Element of the AffinStruct of X;
consider p1 be
Element of X such that
A70: (a1,c1)
// (a1,p1) and
A71: a1
<> p1 by
ANALMETR: 39;
reconsider p19 = p1 as
Element of the AffinStruct of X;
A72: not (o,b1)
// (a1,c1)
proof
assume (o,b1)
// (a1,c1);
then (a1,c1)
_|_ (o,b) by
A12,
A47,
ANALMETR: 62;
hence contradiction by
A15,
A18,
A54,
ANALMETR: 63;
end;
not (o,p)
// (a1,p1)
proof
assume (o,p)
// (a1,p1);
then (a1,p1)
// (o,b1) by
A68,
A69,
ANALMETR: 60;
hence contradiction by
A70,
A71,
A72,
ANALMETR: 60;
end;
then not (o9,p9)
// (a19,p19) by
ANALMETR: 36;
then
consider e19 be
Element of the AffinStruct of X such that
A73:
LIN (o9,p9,e19) and
A74:
LIN (a19,p19,e19) by
AFF_1: 60;
reconsider e1 = e19 as
Element of X;
LIN (o,p,e1) by
A73,
ANALMETR: 40;
then (o,p)
// (o,e1) by
ANALMETR:def 10;
then (o,e1)
// (o,b1) by
A68,
A69,
ANALMETR: 60;
then
A75:
LIN (o,e1,b1) by
ANALMETR:def 10;
LIN (a1,p1,e1) by
A74,
ANALMETR: 40;
then (a1,p1)
// (a1,e1) by
ANALMETR:def 10;
then (a1,c1)
// (a1,e1) by
A70,
A71,
ANALMETR: 60;
then
LIN (a1,c1,e1) by
ANALMETR:def 10;
hence thesis by
A75;
end;
then
consider e1 be
Element of X such that
A76:
LIN (o,e1,b1) and
A77:
LIN (a1,c1,e1);
reconsider e19 = e1 as
Element of the AffinStruct of X;
(o,e)
// (o,b) by
A64,
ANALMETR:def 10;
then (o9,e9)
// (o9,b9) by
ANALMETR: 36;
then (o9,b9)
// (o9,e9) by
AFF_1: 4;
then (o,b)
// (o,e) by
ANALMETR: 36;
then
A78: (o,b1)
_|_ (o,e) by
A12,
A52,
ANALMETR: 62;
(o,e1)
// (o,b1) by
A76,
ANALMETR:def 10;
then (o9,e19)
// (o9,b19) by
ANALMETR: 36;
then (o9,b19)
// (o9,e19) by
AFF_1: 4;
then
A79: (o,b1)
// (o,e1) by
ANALMETR: 36;
A80: o
<> e
proof
assume o
= e;
then
LIN (a9,c9,o9) by
A65,
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A16,
ANALMETR:def 10;
end;
A81: o
<> e1
proof
assume o
= e1;
then
LIN (a19,c19,o9) by
A77,
ANALMETR: 40;
then
LIN (o9,a19,c19) by
AFF_1: 6;
then
LIN (o,a1,c1) by
ANALMETR: 40;
then (o,a1)
// (o,c1) by
ANALMETR:def 10;
then (o,c1)
_|_ (o,a) by
A11,
A45,
ANALMETR: 62;
hence contradiction by
A13,
A16,
A49,
ANALMETR: 63;
end;
A82: (o,e)
_|_ (o,e1) by
A47,
A78,
A79,
ANALMETR: 62;
A83: not
LIN (o,a,e)
proof
assume
LIN (o,a,e);
then (o,a)
// (o,e) by
ANALMETR:def 10;
then (o9,a9)
// (o9,e9) by
ANALMETR: 36;
then (o9,e9)
// (o9,a9) by
AFF_1: 4;
then
A84: (o,e)
// (o,a) by
ANALMETR: 36;
(o,e)
// (o,b) by
A64,
ANALMETR:def 10;
hence contradiction by
A17,
A80,
A84,
ANALMETR: 60;
end;
(a,c)
// (a,e) by
A65,
ANALMETR:def 10;
then (a9,c9)
// (a9,e9) by
ANALMETR: 36;
then (a9,c9)
// (e9,a9) by
AFF_1: 4;
then (a,c)
// (e,a) by
ANALMETR: 36;
then
A85: (a1,c1)
_|_ (e,a) by
A15,
A53,
ANALMETR: 62;
(a1,c1)
// (a1,e1) by
A77,
ANALMETR:def 10;
then (e,a)
_|_ (a1,e1) by
A54,
A85,
ANALMETR: 62;
then
A86: (e,a)
_|_ (e1,a1) by
ANALMETR: 61;
(b,a)
_|_ (b1,a1) by
A14,
ANALMETR: 61;
then
A87: (e,e1)
// (b,b1) by
A10,
A11,
A12,
A45,
A47,
A51,
A52,
A64,
A67,
A76,
A80,
A81,
A82,
A83,
A86;
A88: not
LIN (o,c,e)
proof
assume
LIN (o,c,e);
then
LIN (o9,c9,e9) by
ANALMETR: 40;
then
LIN (c9,e9,o9) by
AFF_1: 6;
then (c9,e9)
// (c9,o9) by
AFF_1:def 1;
then
A89: (c,e)
// (c,o) by
ANALMETR: 36;
LIN (a9,c9,e9) by
A65,
ANALMETR: 40;
then
LIN (c9,e9,a9) by
AFF_1: 6;
then (c9,e9)
// (c9,a9) by
AFF_1:def 1;
then (c,e)
// (c,a) by
ANALMETR: 36;
then (c,o)
// (c,a) by
A66,
A89,
ANALMETR: 60;
then
LIN (c,o,a) by
ANALMETR:def 10;
then
LIN (c9,o9,a9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A16,
ANALMETR:def 10;
end;
LIN (a9,c9,e9) by
A65,
ANALMETR: 40;
then
LIN (c9,a9,e9) by
AFF_1: 6;
then (c9,a9)
// (c9,e9) by
AFF_1:def 1;
then (a9,c9)
// (e9,c9) by
AFF_1: 4;
then (a,c)
// (e,c) by
ANALMETR: 36;
then
A90: (a1,c1)
_|_ (e,c) by
A15,
A53,
ANALMETR: 62;
LIN (a19,c19,e19) by
A77,
ANALMETR: 40;
then
LIN (c19,a19,e19) by
AFF_1: 6;
then (c19,a19)
// (c19,e19) by
AFF_1:def 1;
then (a19,c19)
// (e19,c19) by
AFF_1: 4;
then (a1,c1)
// (e1,c1) by
ANALMETR: 36;
then (e,c)
_|_ (e1,c1) by
A54,
A90,
ANALMETR: 62;
hence (b,c)
_|_ (b1,c1) by
A9,
A12,
A13,
A46,
A47,
A49,
A52,
A64,
A67,
A76,
A80,
A81,
A82,
A87,
A88;
end;
hence (b,c)
_|_ (b1,c1) by
A19,
A26,
A35;
end;
then
A91: not (o,b)
// (a,c) implies (b,c)
_|_ (b1,c1) by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8;
A92:
now
let o, a, a1, b, b1, c, c1;
assume that
A93: (o,a)
_|_ (o,a1) and
A94: (o,b)
_|_ (o,b1) and
A95: (o,c)
_|_ (o,c1) and
A96: (a,b)
_|_ (a1,b1) and
A97: (a,c)
_|_ (a1,c1) and
A98: not (o,c)
// (o,a) and
A99: not (o,a)
// (o,b);
assume
A100: not (o,a)
// (c,b);
reconsider a9 = a, a19 = a1, b9 = b, b19 = b1, c9 = c, c19 = c1, o9 = o as
Element of the AffinStruct of X;
A101:
now
assume
A102: o
= a1;
then
A103: (a1,b1)
_|_ (b,a1) by
A94,
ANALMETR: 61;
A104: (a1,b1)
_|_ (b,a) by
A96,
ANALMETR: 61;
not (b,a1)
// (b,a)
proof
assume (b,a1)
// (b,a);
then
LIN (b,o,a) by
A102,
ANALMETR:def 10;
then
LIN (b9,o9,a9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A99,
ANALMETR:def 10;
end;
then
A105: a1
= b1 by
A103,
A104,
ANALMETR: 63;
A106: (a1,c1)
_|_ (c,a1) by
A95,
A102,
ANALMETR: 61;
(a1,c1)
_|_ (c,a) by
A97,
ANALMETR: 61;
then
A107: (c,a1)
// (c,a) or a1
= c1 by
A106,
ANALMETR: 63;
not (c,a1)
// (c,a)
proof
assume (c,a1)
// (c,a);
then
LIN (c,o,a) by
A102,
ANALMETR:def 10;
then
LIN (c9,o9,a9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A98,
ANALMETR:def 10;
end;
hence (b,c)
_|_ (b1,c1) by
A105,
A107,
ANALMETR: 39;
end;
A108:
now
assume that
A109:
LIN (o,b,c) and
A110: o
<> a1;
A111: o
<> b by
A99,
ANALMETR: 39;
A112: o
<> c
proof
assume o
= c;
then (o,a)
// (o,c) by
ANALMETR: 39;
then (o9,a9)
// (o9,c9) by
ANALMETR: 36;
then (o9,c9)
// (o9,a9) by
AFF_1: 4;
hence contradiction by
A98,
ANALMETR: 36;
end;
A113: o
<> b1
proof
assume
A114: o
= b1;
(a1,o)
_|_ (a,o) by
A93,
ANALMETR: 61;
then (a,o)
// (a,b) by
A96,
A110,
A114,
ANALMETR: 63;
then
LIN (a,o,b) by
ANALMETR:def 10;
then
LIN (a9,o9,b9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A99,
ANALMETR:def 10;
end;
(o,b)
// (o,c) by
A109,
ANALMETR:def 10;
then (o,c)
_|_ (o,b1) by
A94,
A111,
ANALMETR: 62;
then (o,b1)
// (o,c1) by
A95,
A112,
ANALMETR: 63;
then
LIN (o,b1,c1) by
ANALMETR:def 10;
then
LIN (o9,b19,c19) by
ANALMETR: 40;
then
LIN (b19,o9,c19) by
AFF_1: 6;
then
LIN (b1,o,c1) by
ANALMETR: 40;
then
A115: (b1,o)
// (b1,c1) by
ANALMETR:def 10;
(b1,o)
_|_ (b,o) by
A94,
ANALMETR: 61;
then
A116: (b,o)
_|_ (b1,c1) by
A113,
A115,
ANALMETR: 62;
LIN (o9,b9,c9) by
A109,
ANALMETR: 40;
then
LIN (b9,o9,c9) by
AFF_1: 6;
then
LIN (b,o,c) by
ANALMETR: 40;
then (b,o)
// (b,c) by
ANALMETR:def 10;
hence (b,c)
_|_ (b1,c1) by
A111,
A116,
ANALMETR: 62;
end;
A117:
now
assume that
A118:
LIN (a,b,c) and not
LIN (o,b,c) and
A119: o
<> a1;
A120: a
<> c
proof
assume a
= c;
then (a,o)
// (a,c) by
ANALMETR: 39;
then
LIN (a,o,c) by
ANALMETR:def 10;
then
LIN (a9,o9,c9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A98,
ANALMETR:def 10;
end;
A121: a
<> b
proof
assume a
= b;
then (a,o)
// (a,b) by
ANALMETR: 39;
then
LIN (a,o,b) by
ANALMETR:def 10;
then
LIN (a9,o9,b9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A99,
ANALMETR:def 10;
end;
A122: a1
<> b1 by
A93,
A94,
A99,
A119,
ANALMETR: 63;
(a,b)
// (a,c) by
A118,
ANALMETR:def 10;
then (a,c)
_|_ (a1,b1) by
A96,
A121,
ANALMETR: 62;
then (a1,b1)
// (a1,c1) by
A97,
A120,
ANALMETR: 63;
then
LIN (a1,b1,c1) by
ANALMETR:def 10;
then
LIN (a19,b19,c19) by
ANALMETR: 40;
then
LIN (b19,a19,c19) by
AFF_1: 6;
then
LIN (b1,a1,c1) by
ANALMETR: 40;
then
A123: (b1,a1)
// (b1,c1) by
ANALMETR:def 10;
(b1,a1)
_|_ (b,a) by
A96,
ANALMETR: 61;
then
A124: (b,a)
_|_ (b1,c1) by
A122,
A123,
ANALMETR: 62;
LIN (a9,b9,c9) by
A118,
ANALMETR: 40;
then
LIN (b9,a9,c9) by
AFF_1: 6;
then
LIN (b,a,c) by
ANALMETR: 40;
then (b,a)
// (b,c) by
ANALMETR:def 10;
hence (b,c)
_|_ (b1,c1) by
A121,
A124,
ANALMETR: 62;
end;
now
assume that
A125: not
LIN (a,b,c) and
A126: not
LIN (o,b,c) and
A127: o
<> a1;
A128: o
<> a by
A98,
ANALMETR: 39;
A129: o
<> c
proof
assume o
= c;
then (o,a)
// (o,c) by
ANALMETR: 39;
then (o9,a9)
// (o9,c9) by
ANALMETR: 36;
then (o9,c9)
// (o9,a9) by
AFF_1: 4;
hence contradiction by
A98,
ANALMETR: 36;
end;
A130: o
<> b1
proof
assume
A131: o
= b1;
(a1,o)
_|_ (a,o) by
A93,
ANALMETR: 61;
then (a,o)
// (a,b) by
A96,
A127,
A131,
ANALMETR: 63;
then
LIN (a,o,b) by
ANALMETR:def 10;
then
LIN (a9,o9,b9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A99,
ANALMETR:def 10;
end;
A132: o
<> c1
proof
assume
A133: o
= c1;
(a1,o)
_|_ (a,o) by
A93,
ANALMETR: 61;
then (a,o)
// (a,c) by
A97,
A127,
A133,
ANALMETR: 63;
then
LIN (a,o,c) by
ANALMETR:def 10;
then
LIN (a9,o9,c9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A98,
ANALMETR:def 10;
end;
A134: o
<> a by
A98,
ANALMETR: 39;
A135: o
<> b by
A99,
ANALMETR: 39;
A136: a
<> a1 by
A93,
A128,
ANALMETR: 39;
ex e be
Element of X st
LIN (b,c,e) &
LIN (o,e,a) & c
<> e & e
<> b & a
<> e
proof
consider p be
Element of X such that
A137: (o,a)
// (o,p) and
A138: o
<> p by
ANALMETR: 39;
reconsider p9 = p as
Element of the AffinStruct of X;
consider p1 be
Element of X such that
A139: (b,c)
// (b,p1) and
A140: b
<> p1 by
ANALMETR: 39;
reconsider p19 = p1 as
Element of the AffinStruct of X;
not (o,p)
// (b,p1)
proof
assume (o,p)
// (b,p1);
then (b,p1)
// (o,a) by
A137,
A138,
ANALMETR: 60;
then (o,a)
// (b,c) by
A139,
A140,
ANALMETR: 60;
then (o9,a9)
// (b9,c9) by
ANALMETR: 36;
then (o9,a9)
// (c9,b9) by
AFF_1: 4;
hence contradiction by
A100,
ANALMETR: 36;
end;
then not (o9,p9)
// (b9,p19) by
ANALMETR: 36;
then
consider e9 be
Element of the AffinStruct of X such that
A141:
LIN (o9,p9,e9) and
A142:
LIN (b9,p19,e9) by
AFF_1: 60;
reconsider e = e9 as
Element of X;
LIN (o,p,e) by
A141,
ANALMETR: 40;
then
A143: (o,p)
// (o,e) by
ANALMETR:def 10;
then (o,e)
// (o,a) by
A137,
A138,
ANALMETR: 60;
then
A144:
LIN (o,e,a) by
ANALMETR:def 10;
LIN (b,p1,e) by
A142,
ANALMETR: 40;
then (b,p1)
// (b,e) by
ANALMETR:def 10;
then (b,c)
// (b,e) by
A139,
A140,
ANALMETR: 60;
then
A145:
LIN (b,c,e) by
ANALMETR:def 10;
A146: c
<> e by
A98,
A137,
A138,
A143,
ANALMETR: 60;
A147: b
<> e
proof
assume b
= e;
then
LIN (o9,b9,a9) by
A144,
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A99,
ANALMETR:def 10;
end;
a
<> e
proof
assume a
= e;
then
LIN (b9,c9,a9) by
A145,
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A125,
ANALMETR: 40;
end;
hence thesis by
A144,
A145,
A146,
A147;
end;
then
consider e be
Element of X such that
A148:
LIN (b,c,e) and
A149:
LIN (o,e,a) and
A150: e
<> b and
A151: c
<> e and
A152: a
<> e;
reconsider e9 = e as
Element of the AffinStruct of X;
ex e1 be
Element of X st
LIN (o,e1,a1) & (e,e1)
// (a,a1)
proof
consider p be
Element of X such that
A153: (o,a1)
// (o,p) and
A154: o
<> p by
ANALMETR: 39;
reconsider p9 = p as
Element of the AffinStruct of X;
consider p1 be
Element of X such that
A155: (a,a1)
// (e,p1) and
A156: e
<> p1 by
ANALMETR: 39;
reconsider p19 = p1 as
Element of the AffinStruct of X;
not (o,p)
// (e,p1)
proof
assume (o,p)
// (e,p1);
then (e,p1)
// (o,a1) by
A153,
A154,
ANALMETR: 60;
then (e9,p19)
// (o9,a19) by
ANALMETR: 36;
then (o9,a19)
// (e9,p19) by
AFF_1: 4;
then (o,a1)
// (e,p1) by
ANALMETR: 36;
then (e,p1)
_|_ (o,a) by
A93,
A127,
ANALMETR: 62;
then (o,a)
_|_ (a,a1) by
A155,
A156,
ANALMETR: 62;
then
A157: (o,a)
_|_ (a1,a) by
ANALMETR: 61;
(o,a)
_|_ (a1,o) by
A93,
ANALMETR: 61;
then (a1,o)
// (a1,a) by
A134,
A157,
ANALMETR: 63;
then
LIN (a1,o,a) by
ANALMETR:def 10;
then
LIN (a19,o9,a9) by
ANALMETR: 40;
then
LIN (a9,o9,a19) by
AFF_1: 6;
then (a9,o9)
// (a9,a19) by
AFF_1:def 1;
then (o9,a9)
// (a19,a9) by
AFF_1: 4;
then (o,a)
// (a1,a) by
ANALMETR: 36;
then (a1,a)
_|_ (a1,a) by
A134,
A157,
ANALMETR: 62;
hence contradiction by
A136,
ANALMETR: 39;
end;
then not (o9,p9)
// (e9,p19) by
ANALMETR: 36;
then
consider e19 be
Element of the AffinStruct of X such that
A158:
LIN (o9,p9,e19) and
A159:
LIN (e9,p19,e19) by
AFF_1: 60;
reconsider e1 = e19 as
Element of X;
LIN (o,p,e1) by
A158,
ANALMETR: 40;
then (o,p)
// (o,e1) by
ANALMETR:def 10;
then (o,e1)
// (o,a1) by
A153,
A154,
ANALMETR: 60;
then
A160:
LIN (o,e1,a1) by
ANALMETR:def 10;
LIN (e,p1,e1) by
A159,
ANALMETR: 40;
then (e,p1)
// (e,e1) by
ANALMETR:def 10;
then (e,e1)
// (a,a1) by
A155,
A156,
ANALMETR: 60;
hence thesis by
A160;
end;
then
consider e1 be
Element of X such that
A161:
LIN (o,e1,a1) and
A162: (e,e1)
// (a,a1);
reconsider e19 = e1 as
Element of the AffinStruct of X;
(o,e)
// (o,a) by
A149,
ANALMETR:def 10;
then (o9,e9)
// (o9,a9) by
ANALMETR: 36;
then (o9,a9)
// (o9,e9) by
AFF_1: 4;
then (o,a)
// (o,e) by
ANALMETR: 36;
then
A163: (o,a1)
_|_ (o,e) by
A93,
A134,
ANALMETR: 62;
(o,e1)
// (o,a1) by
A161,
ANALMETR:def 10;
then (o9,e19)
// (o9,a19) by
ANALMETR: 36;
then (o9,a19)
// (o9,e19) by
AFF_1: 4;
then
A164: (o,a1)
// (o,e1) by
ANALMETR: 36;
A165: o
<> e
proof
assume o
= e;
then
LIN (b9,c9,o9) by
A148,
ANALMETR: 40;
then
LIN (o9,b9,c9) by
AFF_1: 6;
hence contradiction by
A126,
ANALMETR: 40;
end;
A166: o
<> e1
proof
assume o
= e1;
then (e9,o9)
// (a9,a19) by
A162,
ANALMETR: 36;
then (o9,e9)
// (a9,a19) by
AFF_1: 4;
then
A167: (o,e)
// (a,a1) by
ANALMETR: 36;
(o,e)
// (o,a) by
A149,
ANALMETR:def 10;
then
A168: (o,a)
// (a,a1) by
A165,
A167,
ANALMETR: 60;
then
A169: (o,a1)
_|_ (a,a1) by
A93,
A134,
ANALMETR: 62;
(o9,a9)
// (a9,a19) by
A168,
ANALMETR: 36;
then (a9,o9)
// (a9,a19) by
AFF_1: 4;
then
LIN (a9,o9,a19) by
AFF_1:def 1;
then
LIN (a19,o9,a9) by
AFF_1: 6;
then (a19,o9)
// (a19,a9) by
AFF_1:def 1;
then (o9,a19)
// (a9,a19) by
AFF_1: 4;
then (o,a1)
// (a,a1) by
ANALMETR: 36;
then (a,a1)
_|_ (a,a1) by
A127,
A169,
ANALMETR: 62;
hence contradiction by
A136,
ANALMETR: 39;
end;
A170: (o,e)
_|_ (o,e1) by
A127,
A163,
A164,
ANALMETR: 62;
A171: not
LIN (o,b,a)
proof
assume
LIN (o,b,a);
then (o,b)
// (o,a) by
ANALMETR:def 10;
then (o9,b9)
// (o9,a9) by
ANALMETR: 36;
then (o9,a9)
// (o9,b9) by
AFF_1: 4;
hence contradiction by
A99,
ANALMETR: 36;
end;
(o,e)
// (o,a) by
A149,
ANALMETR:def 10;
then (o9,e9)
// (o9,a9) by
ANALMETR: 36;
then (o9,a9)
// (o9,e9) by
AFF_1: 4;
then (o,a)
// (o,e) by
ANALMETR: 36;
then
A172:
LIN (o,a,e) by
ANALMETR:def 10;
(o,e1)
// (o,a1) by
A161,
ANALMETR:def 10;
then (o9,e19)
// (o9,a19) by
ANALMETR: 36;
then (o9,a19)
// (o9,e19) by
AFF_1: 4;
then (o,a1)
// (o,e1) by
ANALMETR: 36;
then
A173:
LIN (o,a1,e1) by
ANALMETR:def 10;
(e9,e19)
// (a9,a19) by
A162,
ANALMETR: 36;
then (a9,a19)
// (e9,e19) by
AFF_1: 4;
then
A174: (a,a1)
// (e,e1) by
ANALMETR: 36;
then
A175: (e,b)
_|_ (e1,b1) by
A9,
A93,
A94,
A96,
A127,
A130,
A134,
A135,
A152,
A165,
A166,
A170,
A171,
A172,
A173;
not
LIN (o,c,a) by
A98,
ANALMETR:def 10;
then
A176: (e,c)
_|_ (e1,c1) by
A9,
A93,
A95,
A97,
A127,
A129,
A132,
A134,
A152,
A165,
A166,
A170,
A172,
A173,
A174;
A177: e1
<> b1
proof
assume e1
= b1;
then (o,b1)
// (o,a1) by
A161,
ANALMETR:def 10;
then (o,a1)
_|_ (o,b) by
A94,
A130,
ANALMETR: 62;
hence contradiction by
A93,
A99,
A127,
ANALMETR: 63;
end;
A178: (c,e)
_|_ (c1,e1) by
A176,
ANALMETR: 61;
A179:
LIN (b9,c9,e9) by
A148,
ANALMETR: 40;
then
LIN (c9,e9,b9) by
AFF_1: 6;
then
LIN (c,e,b) by
ANALMETR: 40;
then (c,e)
// (c,b) by
ANALMETR:def 10;
then
A180: (c,b)
_|_ (c1,e1) by
A151,
A178,
ANALMETR: 62;
A181: c
<> b
proof
assume c
= b;
then
LIN (o9,b9,c9) by
AFF_1: 7;
hence contradiction by
A126,
ANALMETR: 40;
end;
(b9,c9)
// (b9,e9) by
A179,
AFF_1:def 1;
then (c9,b9)
// (e9,b9) by
AFF_1: 4;
then (c,b)
// (e,b) by
ANALMETR: 36;
then (e,b)
_|_ (c1,e1) by
A180,
A181,
ANALMETR: 62;
then (e1,b1)
// (c1,e1) by
A150,
A175,
ANALMETR: 63;
then (e19,b19)
// (c19,e19) by
ANALMETR: 36;
then (e19,b19)
// (e19,c19) by
AFF_1: 4;
then
LIN (e19,b19,c19) by
AFF_1:def 1;
then
LIN (b19,e19,c19) by
AFF_1: 6;
then (b19,e19)
// (b19,c19) by
AFF_1:def 1;
then (e19,b19)
// (b19,c19) by
AFF_1: 4;
then
A182: (e1,b1)
// (b1,c1) by
ANALMETR: 36;
LIN (b9,e9,c9) by
A179,
AFF_1: 6;
then (b9,e9)
// (b9,c9) by
AFF_1:def 1;
then (e9,b9)
// (b9,c9) by
AFF_1: 4;
then (e,b)
// (b,c) by
ANALMETR: 36;
then (e1,b1)
_|_ (b,c) by
A150,
A175,
ANALMETR: 62;
hence (b,c)
_|_ (b1,c1) by
A177,
A182,
ANALMETR: 62;
end;
hence (b,c)
_|_ (b1,c1) by
A101,
A108,
A117;
end;
then
A183: not (o,a)
// (c,b) implies (b,c)
_|_ (b1,c1) by
A2,
A3,
A4,
A5,
A6,
A7,
A8;
now
let o, a, a1, b, b1, c, c1;
assume X is
satisfying_LIN;
assume that
A184: (o,a)
_|_ (o,a1) and
A185: (o,b)
_|_ (o,b1) and
A186: (o,c)
_|_ (o,c1) and
A187: (a,b)
_|_ (a1,b1) and
A188: (a,c)
_|_ (a1,c1) and
A189: not (o,c)
// (o,a) and
A190: not (o,a)
// (o,b);
assume that
A191: (o,a)
// (c,b) and (o,b)
// (a,c);
reconsider a9 = a, b9 = b, c9 = c, o9 = o as
Element of the AffinStruct of X;
A192:
now
assume
A193: o
= a1;
then
A194: (a1,b1)
_|_ (b,a1) by
A185,
ANALMETR: 61;
A195: (a1,b1)
_|_ (b,a) by
A187,
ANALMETR: 61;
not (b,a1)
// (b,a)
proof
assume (b,a1)
// (b,a);
then
LIN (b,o,a) by
A193,
ANALMETR:def 10;
then
LIN (b9,o9,a9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A190,
ANALMETR:def 10;
end;
then
A196: a1
= b1 by
A194,
A195,
ANALMETR: 63;
A197: (a1,c1)
_|_ (c,a1) by
A186,
A193,
ANALMETR: 61;
(a1,c1)
_|_ (c,a) by
A188,
ANALMETR: 61;
then
A198: (c,a1)
// (c,a) or a1
= c1 by
A197,
ANALMETR: 63;
not (c,a1)
// (c,a)
proof
assume (c,a1)
// (c,a);
then
LIN (c,o,a) by
A193,
ANALMETR:def 10;
then
LIN (c9,o9,a9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A189,
ANALMETR:def 10;
end;
hence (b,c)
_|_ (b1,c1) by
A196,
A198,
ANALMETR: 39;
end;
A199:
now
assume that
A200: (o,a1)
// (c1,b1) and
A201: o
<> a1;
o
<> a
proof
assume o
= a;
then
LIN (o9,c9,a9) by
AFF_1: 7;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A189,
ANALMETR:def 10;
end;
then (c,b)
_|_ (o,a1) by
A184,
A191,
ANALMETR: 62;
then (c,b)
_|_ (c1,b1) by
A200,
A201,
ANALMETR: 62;
hence (b,c)
_|_ (b1,c1) by
ANALMETR: 61;
end;
now
assume that
A202: not (o,a1)
// (c1,b1) and
A203: o
<> a1;
A204: (o,a1)
_|_ (o,a) by
A184,
ANALMETR: 61;
A205: (o,b1)
_|_ (o,b) by
A185,
ANALMETR: 61;
A206: (o,c1)
_|_ (o,c) by
A186,
ANALMETR: 61;
A207: (a1,b1)
_|_ (a,b) by
A187,
ANALMETR: 61;
A208: (a1,c1)
_|_ (a,c) by
A188,
ANALMETR: 61;
A209: not (o,c1)
// (o,a1)
proof
assume
A210: (o,c1)
// (o,a1);
o
<> c1
proof
assume o
= c1;
then (a,c)
_|_ (o,a1) by
A188,
ANALMETR: 61;
then (a,c)
// (o,a) by
A184,
A203,
ANALMETR: 63;
then (a,c)
// (a,o) by
ANALMETR: 59;
then
LIN (a,c,o) by
ANALMETR:def 10;
then
LIN (a9,c9,o9) by
ANALMETR: 40;
then
LIN (o9,c9,a9) by
AFF_1: 6;
then
LIN (o,c,a) by
ANALMETR: 40;
hence contradiction by
A189,
ANALMETR:def 10;
end;
then (o,c)
_|_ (o,a1) by
A186,
A210,
ANALMETR: 62;
hence contradiction by
A184,
A189,
A203,
ANALMETR: 63;
end;
not (o,a1)
// (o,b1)
proof
assume
A211: (o,a1)
// (o,b1);
A212: o
<> b1
proof
assume o
= b1;
then (a,b)
_|_ (o,a1) by
A187,
ANALMETR: 61;
then (a,b)
// (o,a) by
A184,
A203,
ANALMETR: 63;
then (a,b)
// (a,o) by
ANALMETR: 59;
then
LIN (a,b,o) by
ANALMETR:def 10;
then
LIN (a9,b9,o9) by
ANALMETR: 40;
then
LIN (o9,a9,b9) by
AFF_1: 6;
then
LIN (o,a,b) by
ANALMETR: 40;
hence contradiction by
A190,
ANALMETR:def 10;
end;
(o,a)
_|_ (o,b1) by
A184,
A203,
A211,
ANALMETR: 62;
hence contradiction by
A185,
A190,
A212,
ANALMETR: 63;
end;
then (b1,c1)
_|_ (b,c) by
A92,
A202,
A204,
A205,
A206,
A207,
A208,
A209;
hence (b,c)
_|_ (b1,c1) by
ANALMETR: 61;
end;
hence (b,c)
_|_ (b1,c1) by
A192,
A199;
end;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A91,
A183;
end;
theorem ::
CONAFFM:6
X is
satisfying_LIN implies X is
satisfying_3H
proof
assume
A1: X is
satisfying_LIN;
let a, b, c;
assume
A2: not
LIN (a,b,c);
consider e1 such that
A3: (b,c)
_|_ (a,e1) and
A4: a
<> e1 by
ANALMETR:def 9;
consider e2 such that
A5: (a,c)
_|_ (b,e2) and
A6: b
<> e2 by
ANALMETR:def 9;
reconsider a9 = a, b9 = b, c9 = c, e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (a9,e19)
// (b9,e29)
proof
assume (a9,e19)
// (b9,e29);
then (a,e1)
// (b,e2) by
ANALMETR: 36;
then (b,e2)
_|_ (b,c) by
A3,
A4,
ANALMETR: 62;
then (a,c)
// (b,c) by
A5,
A6,
ANALMETR: 63;
then (a9,c9)
// (b9,c9) by
ANALMETR: 36;
then (c9,a9)
// (c9,b9) by
AFF_1: 4;
then
LIN (c9,a9,b9) by
AFF_1:def 1;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
then
consider d9 be
Element of the AffinStruct of X such that
A7:
LIN (a9,e19,d9) and
A8:
LIN (b9,e29,d9) by
AFF_1: 60;
reconsider d = d9 as
Element of X;
take d;
LIN (b,e2,d) by
A8,
ANALMETR: 40;
then
A9: (b,e2)
// (b,d) by
ANALMETR:def 10;
then
A10: (a,c)
_|_ (b,d) by
A5,
A6,
ANALMETR: 62;
then
A11: (d,b)
_|_ (a,c) by
ANALMETR: 61;
LIN (a,e1,d) by
A7,
ANALMETR: 40;
then
A12: (a,e1)
// (a,d) by
ANALMETR:def 10;
then
A13: (b,c)
_|_ (a,d) by
A3,
A4,
ANALMETR: 62;
then
A14: (d,a)
_|_ (b,c) by
ANALMETR: 61;
A15: X is
satisfying_LIN1 by
A1,
Th3;
A16:
now
assume
A17: d
<> c;
now
assume
A18: b
<> d;
not (b9,d9)
// (a9,c9)
proof
assume (b9,d9)
// (a9,c9);
then (a9,c9)
// (b9,d9) by
AFF_1: 4;
then
A19: (a,c)
// (b,d) by
ANALMETR: 36;
a
<> c
proof
assume a
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then (b,d)
_|_ (b,d) by
A10,
A19,
ANALMETR: 62;
hence contradiction by
A18,
ANALMETR: 39;
end;
then
consider o9 be
Element of the AffinStruct of X such that
A20:
LIN (b9,d9,o9) and
A21:
LIN (a9,c9,o9) by
AFF_1: 60;
reconsider o = o9 as
Element of X;
now
assume
A22: d
<> a;
A23: o
<> a
proof
assume
A24: o
= a;
then
LIN (b,d,a) by
A20,
ANALMETR: 40;
then (b,d)
// (b,a) by
ANALMETR:def 10;
then (b,a)
_|_ (a,c) by
A10,
A18,
ANALMETR: 62;
then
A25: (a,b)
_|_ (a,c) by
ANALMETR: 61;
LIN (a9,b9,d9) by
A20,
A24,
AFF_1: 6;
then
LIN (a,b,d) by
ANALMETR: 40;
then
A26: (a,b)
// (a,d) by
ANALMETR:def 10;
a
<> b
proof
assume a
= b;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then (a,d)
_|_ (a,c) by
A25,
A26,
ANALMETR: 62;
then (d,a)
_|_ (a,c) by
ANALMETR: 61;
then (a,c)
// (b,c) by
A14,
A22,
ANALMETR: 63;
then (c,a)
// (c,b) by
ANALMETR: 59;
then
LIN (c,a,b) by
ANALMETR:def 10;
then
LIN (c9,a9,b9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
A27: c
<> o
proof
assume
A28: c
= o;
then
LIN (b,d,c) by
A20,
ANALMETR: 40;
then (b,d)
// (b,c) by
ANALMETR:def 10;
then
A29: (b,c)
_|_ (a,c) by
A10,
A18,
ANALMETR: 62;
b
<> c
proof
assume b
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then (a,d)
// (a,c) by
A13,
A29,
ANALMETR: 63;
then
LIN (a,d,c) by
ANALMETR:def 10;
then
LIN (a9,d9,c9) by
ANALMETR: 40;
then
LIN (c9,d9,a9) by
AFF_1: 6;
then
LIN (c,d,a) by
ANALMETR: 40;
then
A30: (c,d)
// (c,a) by
ANALMETR:def 10;
LIN (c9,d9,b9) by
A20,
A28,
AFF_1: 6;
then
LIN (c,d,b) by
ANALMETR: 40;
then (c,d)
// (c,b) by
ANALMETR:def 10;
then (c,a)
// (c,b) by
A17,
A30,
ANALMETR: 60;
then
LIN (c,a,b) by
ANALMETR:def 10;
then
LIN (c9,a9,b9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
consider e1 such that
A31: (a,c)
// (a,e1) and
A32: a
<> e1 by
ANALMETR: 39;
consider e2 such that
A33: (b,c)
// (d,e2) and
A34: d
<> e2 by
ANALMETR: 39;
reconsider e19 = e1, e29 = e2 as
Element of the AffinStruct of X;
not (a9,e19)
// (d9,e29)
proof
assume (a9,e19)
// (d9,e29);
then (a,e1)
// (d,e2) by
ANALMETR: 36;
then (d,e2)
// (a,c) by
A31,
A32,
ANALMETR: 60;
then (a,c)
// (b,c) by
A33,
A34,
ANALMETR: 60;
then (c,a)
// (c,b) by
ANALMETR: 59;
then
LIN (c,a,b) by
ANALMETR:def 10;
then
LIN (c9,a9,b9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
then
consider d19 such that
A35:
LIN (a9,e19,d19) and
A36:
LIN (d9,e29,d19) by
AFF_1: 60;
reconsider d1 = d19 as
Element of X;
LIN (a,e1,d1) by
A35,
ANALMETR: 40;
then (a,e1)
// (a,d1) by
ANALMETR:def 10;
then
A37: (a,c)
// (a,d1) by
A31,
A32,
ANALMETR: 60;
then
A38:
LIN (a,c,d1) by
ANALMETR:def 10;
LIN (d,e2,d1) by
A36,
ANALMETR: 40;
then (d,e2)
// (d,d1) by
ANALMETR:def 10;
then
A39: (b,c)
// (d,d1) by
A33,
A34,
ANALMETR: 60;
A40: o
<> d
proof
assume
A41: o
= d;
then
A42: (a,o)
_|_ (b,c) by
A3,
A4,
A12,
ANALMETR: 62;
LIN (a,c,o) by
A21,
ANALMETR: 40;
then (a,c)
// (a,o) by
ANALMETR:def 10;
then
A43: (a,c)
_|_ (b,c) by
A23,
A42,
ANALMETR: 62;
a
<> c
proof
assume a
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then (b,o)
// (b,c) by
A10,
A41,
A43,
ANALMETR: 63;
then
LIN (b,o,c) by
ANALMETR:def 10;
then
LIN (b9,o9,c9) by
ANALMETR: 40;
then
LIN (c9,o9,b9) by
AFF_1: 6;
then
LIN (c,o,b) by
ANALMETR: 40;
then
A44: (c,o)
// (c,b) by
ANALMETR:def 10;
LIN (c9,o9,a9) by
A21,
AFF_1: 6;
then
LIN (c,o,a) by
ANALMETR: 40;
then (c,o)
// (c,a) by
ANALMETR:def 10;
then (c,b)
// (c,a) by
A27,
A44,
ANALMETR: 60;
then
LIN (c,b,a) by
ANALMETR:def 10;
then
LIN (c9,b9,a9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
A45: o
<> d1
proof
assume
A46: o
= d1;
LIN (o9,d9,b9) by
A20,
AFF_1: 6;
then
LIN (o,d,b) by
ANALMETR: 40;
then (o,d)
// (o,b) by
ANALMETR:def 10;
then (d,o)
// (b,o) by
ANALMETR: 59;
then (b,c)
// (b,o) by
A39,
A40,
A46,
ANALMETR: 60;
then
LIN (b,c,o) by
ANALMETR:def 10;
then
LIN (b9,c9,o9) by
ANALMETR: 40;
then
LIN (c9,o9,b9) by
AFF_1: 6;
then
LIN (c,o,b) by
ANALMETR: 40;
then
A47: (c,o)
// (c,b) by
ANALMETR:def 10;
LIN (c9,o9,a9) by
A21,
AFF_1: 6;
then
LIN (c,o,a) by
ANALMETR: 40;
then (c,o)
// (c,a) by
ANALMETR:def 10;
then (c,a)
// (c,b) by
A27,
A47,
ANALMETR: 60;
then
LIN (c,a,b) by
ANALMETR:def 10;
then
LIN (c9,a9,b9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
A48: o
<> b
proof
assume o
= b;
then
LIN (a9,b9,c9) by
A21,
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
A49: d1
<> c
proof
assume
A50: d1
= c;
A51: b
<> c
proof
assume b
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
(c,b)
// (c,d) by
A39,
A50,
ANALMETR: 59;
then
LIN (c,b,d) by
ANALMETR:def 10;
then
A52:
LIN (c9,b9,d9) by
ANALMETR: 40;
(b,c)
// (c,d) by
A39,
A50,
ANALMETR: 59;
then (d,a)
_|_ (c,d) by
A14,
A51,
ANALMETR: 62;
then
A53: (d,c)
_|_ (d,a) by
ANALMETR: 61;
LIN (d9,c9,b9) by
A52,
AFF_1: 6;
then
LIN (d,c,b) by
ANALMETR: 40;
then (d,c)
// (d,b) by
ANALMETR:def 10;
then (d,b)
_|_ (d,a) by
A17,
A53,
ANALMETR: 62;
then (a,c)
// (d,a) by
A11,
A18,
ANALMETR: 63;
then (a,c)
// (a,d) by
ANALMETR: 59;
then
LIN (a,c,d) by
ANALMETR:def 10;
then
LIN (a9,c9,d9) by
ANALMETR: 40;
then
LIN (c9,a9,d9) by
AFF_1: 6;
then
LIN (c,a,d) by
ANALMETR: 40;
then
A54: (c,a)
// (c,d) by
ANALMETR:def 10;
(c,d)
// (b,c) by
A39,
A50,
ANALMETR: 59;
then (c,a)
// (b,c) by
A17,
A54,
ANALMETR: 60;
then (c,a)
// (c,b) by
ANALMETR: 59;
then
LIN (c,a,b) by
ANALMETR:def 10;
then
LIN (c9,a9,b9) by
ANALMETR: 40;
then
LIN (a9,b9,c9) by
AFF_1: 6;
hence contradiction by
A2,
ANALMETR: 40;
end;
LIN (d9,o9,b9) by
A20,
AFF_1: 6;
then (d9,o9)
// (d9,b9) by
AFF_1:def 1;
then (b9,d9)
// (o9,d9) by
AFF_1: 4;
then (b,d)
// (o,d) by
ANALMETR: 36;
then
A55: (a,c)
_|_ (o,d) by
A10,
A18,
ANALMETR: 62;
LIN (a,c,o) by
A21,
ANALMETR: 40;
then (a,c)
// (a,o) by
ANALMETR:def 10;
then
A56: (a,c)
// (o,a) by
ANALMETR: 59;
a
<> c
proof
assume a
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then
A57: (o,d)
_|_ (o,a) by
A55,
A56,
ANALMETR: 62;
LIN (a,c,o) by
A21,
ANALMETR: 40;
then
A58: (a,c)
// (a,o) by
ANALMETR:def 10;
A59: a
<> c
proof
assume a
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then (a,o)
// (a,d1) by
A37,
A58,
ANALMETR: 60;
then
LIN (a,o,d1) by
ANALMETR:def 10;
then
LIN (a9,o9,d19) by
ANALMETR: 40;
then
LIN (o9,a9,d19) by
AFF_1: 6;
then
LIN (o,a,d1) by
ANALMETR: 40;
then
A60: (o,a)
// (o,d1) by
ANALMETR:def 10;
LIN (a,c,o) by
A21,
ANALMETR: 40;
then (a,c)
// (a,o) by
ANALMETR:def 10;
then (o,a)
// (a,c) by
ANALMETR: 59;
then (a,c)
// (o,d1) by
A23,
A60,
ANALMETR: 60;
then
A61: (b,d)
_|_ (o,d1) by
A10,
A59,
ANALMETR: 62;
LIN (d9,o9,b9) by
A20,
AFF_1: 6;
then
LIN (d,o,b) by
ANALMETR: 40;
then (d,o)
// (d,b) by
ANALMETR:def 10;
then (b,d)
// (o,d) by
ANALMETR: 59;
then
A62: (o,d1)
_|_ (o,d) by
A18,
A61,
ANALMETR: 62;
LIN (c9,o9,a9) by
A21,
AFF_1: 6;
then (c9,o9)
// (c9,a9) by
AFF_1:def 1;
then (a9,c9)
// (o9,c9) by
AFF_1: 4;
then
A63: (a,c)
// (o,c) by
ANALMETR: 36;
a
<> c
proof
assume a
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then
A64: (b,d)
_|_ (o,c) by
A10,
A63,
ANALMETR: 62;
(b9,d9)
// (b9,o9) by
A20,
AFF_1:def 1;
then (b9,d9)
// (o9,b9) by
AFF_1: 4;
then (b,d)
// (o,b) by
ANALMETR: 36;
then
A65: (o,c)
_|_ (o,b) by
A18,
A64,
ANALMETR: 62;
A66: not
LIN (o,d,d1)
proof
assume
LIN (o,d,d1);
then (o,d)
// (o,d1) by
ANALMETR:def 10;
then (o,d)
_|_ (o,d) by
A45,
A62,
ANALMETR: 62;
hence contradiction by
A40,
ANALMETR: 39;
end;
LIN (a9,c9,d19) by
A38,
ANALMETR: 40;
then
LIN (c9,d19,a9) by
AFF_1: 6;
then (c9,d19)
// (c9,a9) by
AFF_1:def 1;
then (a9,c9)
// (c9,d19) by
AFF_1: 4;
then
A67: (a,c)
// (c,d1) by
ANALMETR: 36;
A68: a
<> c
proof
assume a
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
LIN (c9,a9,o9) by
A21,
AFF_1: 6;
then (c9,a9)
// (c9,o9) by
AFF_1:def 1;
then (a9,c9)
// (c9,o9) by
AFF_1: 4;
then (a,c)
// (c,o) by
ANALMETR: 36;
then (c,d1)
// (c,o) by
A67,
A68,
ANALMETR: 60;
then
LIN (c,d1,o) by
ANALMETR:def 10;
then
LIN (c9,d19,o9) by
ANALMETR: 40;
then
LIN (o9,d19,c9) by
AFF_1: 6;
then
A69:
LIN (o,d1,c) by
ANALMETR: 40;
LIN (o9,d9,b9) by
A20,
AFF_1: 6;
then
A70:
LIN (o,d,b) by
ANALMETR: 40;
A71: (d1,d)
// (c,b) by
A39,
ANALMETR: 59;
b
<> c
proof
assume b
= c;
then
LIN (a9,b9,c9) by
AFF_1: 7;
hence contradiction by
A2,
ANALMETR: 40;
end;
then (d,d1)
_|_ (a,d) by
A13,
A39,
ANALMETR: 62;
then (d1,d)
_|_ (d,a) by
ANALMETR: 61;
then (c,d)
_|_ (b,a) by
A15,
A23,
A27,
A40,
A45,
A48,
A49,
A57,
A62,
A65,
A66,
A69,
A70,
A71;
hence thesis by
A10,
A13,
ANALMETR: 61;
end;
hence thesis by
A3,
A4,
A10,
A12,
ANALMETR: 61,
ANALMETR: 62;
end;
hence thesis by
A5,
A6,
A9,
A13,
ANALMETR: 61,
ANALMETR: 62;
end;
now
assume d
= c;
then (a,b)
_|_ (d,c) by
ANALMETR: 39;
hence thesis by
A10,
A13,
ANALMETR: 61;
end;
hence thesis by
A16;
end;