diraf.miz
begin
reserve x,y for
set;
reserve X for non
empty
set;
reserve a,b,c,d for
Element of X;
definition
let X;
let R be
Relation of
[:X, X:];
::
DIRAF:def1
func
lambda (R) ->
Relation of
[:X, X:] means
:
Def1: for a,b,c,d be
Element of X holds
[
[a, b],
[c, d]]
in it iff (
[
[a, b],
[c, d]]
in R or
[
[a, b],
[d, c]]
in R);
existence
proof
defpred
P[
object,
object] means ex a,b,c,d be
Element of X st $1
=
[a, b] & $2
=
[c, d] & (
[
[a, b],
[c, d]]
in R or
[
[a, b],
[d, c]]
in R);
set XX =
[:X, X:];
consider P be
Relation of XX, XX such that
A1: for x,y be
object holds
[x, y]
in P iff x
in XX & y
in XX &
P[x, y] from
RELSET_1:sch 1;
take P;
let a,b,c,d be
Element of X;
[
[a, b],
[c, d]]
in P implies (
[
[a, b],
[c, d]]
in R or
[
[a, b],
[d, c]]
in R)
proof
assume
[
[a, b],
[c, d]]
in P;
then
consider a9,b9,c9,d9 be
Element of X such that
A2:
[a, b]
=
[a9, b9] and
A3:
[c, d]
=
[c9, d9] and
A4:
[
[a9, b9],
[c9, d9]]
in R or
[
[a9, b9],
[d9, c9]]
in R by
A1;
c
= c9 by
A3,
XTUPLE_0: 1;
hence thesis by
A2,
A3,
A4,
XTUPLE_0: 1;
end;
hence thesis by
A1;
end;
uniqueness
proof
set XX =
[:X, X:];
let P,Q be
Relation of
[:X, X:] such that
A5: for a,b,c,d be
Element of X holds
[
[a, b],
[c, d]]
in P iff (
[
[a, b],
[c, d]]
in R or
[
[a, b],
[d, c]]
in R) and
A6: for a,b,c,d be
Element of X holds
[
[a, b],
[c, d]]
in Q iff (
[
[a, b],
[c, d]]
in R or
[
[a, b],
[d, c]]
in R);
for x,y be
object holds
[x, y]
in P iff
[x, y]
in Q
proof
let x,y be
object;
A7:
now
assume
A8:
[x, y]
in Q;
then y
in XX by
ZFMISC_1: 87;
then
consider c, d such that
A9: y
=
[c, d] by
DOMAIN_1: 1;
x
in XX by
A8,
ZFMISC_1: 87;
then
A10: ex a, b st x
=
[a, b] by
DOMAIN_1: 1;
then
[x, y]
in Q iff
[x, y]
in R or
[x,
[d, c]]
in R by
A6,
A9;
hence
[x, y]
in P by
A5,
A8,
A10,
A9;
end;
now
assume
A11:
[x, y]
in P;
then y
in XX by
ZFMISC_1: 87;
then
consider c, d such that
A12: y
=
[c, d] by
DOMAIN_1: 1;
x
in XX by
A11,
ZFMISC_1: 87;
then
A13: ex a, b st x
=
[a, b] by
DOMAIN_1: 1;
then
[x, y]
in P iff
[x, y]
in R or
[x,
[d, c]]
in R by
A5,
A12;
hence
[x, y]
in Q by
A6,
A11,
A13,
A12;
end;
hence thesis by
A7;
end;
hence thesis by
RELAT_1:def 2;
end;
end
definition
let S be non
empty
AffinStruct;
::
DIRAF:def2
func
Lambda (S) ->
strict
AffinStruct equals
AffinStruct (# the
carrier of S, (
lambda the
CONGR of S) #);
correctness ;
end
registration
let S be non
empty
AffinStruct;
cluster (
Lambda S) -> non
empty;
coherence ;
end
reserve S for
OAffinSpace;
reserve a,b,c,d,p,q,r,x,y,z,t,u,w for
Element of S;
theorem ::
DIRAF:1
Th1: (x,y)
// (x,y)
proof
(x,y)
// (y,y) by
ANALOAF:def 5;
hence thesis by
ANALOAF:def 5;
end;
Lm1: (x,y)
// (z,t) implies (z,t)
// (x,y)
proof
assume
A1: (x,y)
// (z,t);
now
assume
A2: x
<> y;
(x,y)
// (x,y) by
Th1;
hence thesis by
A1,
A2,
ANALOAF:def 5;
end;
hence thesis by
ANALOAF:def 5;
end;
theorem ::
DIRAF:2
Th2: (x,y)
// (z,t) implies (y,x)
// (t,z) & (z,t)
// (x,y) & (t,z)
// (y,x)
proof
assume (x,y)
// (z,t);
hence (y,x)
// (t,z) & (z,t)
// (x,y) by
Lm1,
ANALOAF:def 5;
hence thesis by
ANALOAF:def 5;
end;
theorem ::
DIRAF:3
Th3: z
<> t & (x,y)
// (z,t) & (z,t)
// (u,w) implies (x,y)
// (u,w)
proof
assume
A1: z
<> t;
assume that
A2: (x,y)
// (z,t) and
A3: (z,t)
// (u,w);
(z,t)
// (x,y) by
A2,
Th2;
hence thesis by
A1,
A3,
ANALOAF:def 5;
end;
theorem ::
DIRAF:4
Th4: (x,x)
// (y,z) & (y,z)
// (x,x)
proof
(y,z)
// (x,x) by
ANALOAF:def 5;
hence thesis by
Th2;
end;
theorem ::
DIRAF:5
Th5: (x,y)
// (z,t) & (x,y)
// (t,z) implies x
= y or z
= t
proof
assume that
A1: (x,y)
// (z,t) & (x,y)
// (t,z) & x
<> y and
A2: z
<> t;
(z,t)
// (t,z) by
A1,
ANALOAF:def 5;
hence contradiction by
A2,
ANALOAF:def 5;
end;
theorem ::
DIRAF:6
Th6: (x,y)
// (x,z) iff (x,y)
// (y,z) or (x,z)
// (z,y)
proof
now
assume (x,y)
// (y,z) or (x,z)
// (z,y);
then (x,y)
// (x,z) or (x,z)
// (x,y) by
ANALOAF:def 5;
hence (x,y)
// (x,z) by
Th2;
end;
hence thesis by
ANALOAF:def 5;
end;
definition
let S be non
empty
AffinStruct;
let a,b,c be
Element of S;
::
DIRAF:def3
pred
Mid a,b,c means (a,b)
// (b,c);
end
theorem ::
DIRAF:7
Th7: (x,y)
// (x,z) iff
Mid (x,y,z) or
Mid (x,z,y) by
Th6;
theorem ::
DIRAF:8
Th8:
Mid (a,b,a) implies a
= b by
ANALOAF:def 5;
theorem ::
DIRAF:9
Mid (a,b,c) implies
Mid (c,b,a) by
Th2;
theorem ::
DIRAF:10
Mid (x,x,y) &
Mid (x,y,y) by
Th4;
theorem ::
DIRAF:11
Mid (a,b,c) &
Mid (a,c,d) implies
Mid (b,c,d)
proof
assume that
A1:
Mid (a,b,c) and
A2:
Mid (a,c,d);
now
A3: (a,b)
// (b,c) by
A1;
then (a,b)
// (a,c) by
ANALOAF:def 5;
then
A4: (b,c)
// (a,c) or a
= b by
A3,
ANALOAF:def 5;
assume
A5: a
<> c;
(a,c)
// (c,d) by
A2;
then (b,c)
// (c,d) by
A5,
A4,
Th3;
hence thesis;
end;
hence thesis by
A1,
A2,
Th8;
end;
theorem ::
DIRAF:12
b
<> c &
Mid (a,b,c) &
Mid (b,c,d) implies
Mid (a,c,d)
proof
assume that
A1: b
<> c and
A2:
Mid (a,b,c) and
A3:
Mid (b,c,d);
now
assume
A4: a
<> b;
A5: (a,b)
// (b,c) by
A2;
(b,c)
// (c,d) by
A3;
then
A6: (a,b)
// (c,d) by
A1,
A5,
Th3;
(a,b)
// (a,c) by
A5,
ANALOAF:def 5;
then (a,c)
// (c,d) by
A4,
A6,
ANALOAF:def 5;
hence thesis;
end;
hence thesis by
A3;
end;
theorem ::
DIRAF:13
Th13: ex z st
Mid (x,y,z) & y
<> z
proof
consider z such that
A1: (x,y)
// (y,z) and (x,y)
// (y,z) and
A2: y
<> z by
ANALOAF:def 5;
Mid (x,y,z) by
A1;
hence thesis by
A2;
end;
theorem ::
DIRAF:14
Mid (x,y,z) &
Mid (y,x,z) implies x
= y
proof
assume that
A1:
Mid (x,y,z) and
A2:
Mid (y,x,z);
(x,y)
// (y,z) by
A1;
then
A3: (x,y)
// (x,z) by
ANALOAF:def 5;
(y,x)
// (x,z) by
A2;
then
A4: (x,y)
// (z,x) by
ANALOAF:def 5;
x
= z implies x
= y by
A1,
Th8;
hence thesis by
A3,
A4,
Th5;
end;
theorem ::
DIRAF:15
x
<> y &
Mid (x,y,z) &
Mid (x,y,t) implies
Mid (y,z,t) or
Mid (y,t,z)
proof
assume
A1: x
<> y;
assume
Mid (x,y,z) &
Mid (x,y,t);
then (x,y)
// (y,z) & (x,y)
// (y,t);
then (y,z)
// (y,t) by
A1,
ANALOAF:def 5;
hence thesis by
Th7;
end;
theorem ::
DIRAF:16
x
<> y &
Mid (x,y,z) &
Mid (x,y,t) implies
Mid (x,z,t) or
Mid (x,t,z)
proof
assume
A1: x
<> y;
assume that
A2:
Mid (x,y,z) and
A3:
Mid (x,y,t);
(x,y)
// (y,t) by
A3;
then
A4: (x,y)
// (x,t) by
ANALOAF:def 5;
(x,y)
// (y,z) by
A2;
then (x,y)
// (x,z) by
ANALOAF:def 5;
then (x,z)
// (x,t) by
A1,
A4,
ANALOAF:def 5;
hence thesis by
Th7;
end;
theorem ::
DIRAF:17
Mid (x,y,t) &
Mid (x,z,t) implies
Mid (x,y,z) or
Mid (x,z,y)
proof
assume that
A1:
Mid (x,y,t) and
A2:
Mid (x,z,t);
A3: (x,z)
// (z,t) by
A2;
A4: (x,y)
// (y,t) by
A1;
now
(x,z)
// (x,t) by
A3,
ANALOAF:def 5;
then
A5: (x,t)
// (x,z) by
Th2;
assume
A6: x
<> t;
(x,y)
// (x,t) by
A4,
ANALOAF:def 5;
then (x,y)
// (x,z) by
A6,
A5,
Th3;
hence thesis by
Th7;
end;
hence thesis by
A1,
A2,
Th8;
end;
definition
let S be non
empty
AffinStruct;
let a,b,c,d be
Element of S;
::
DIRAF:def4
pred a,b
'||' c,d means (a,b)
// (c,d) or (a,b)
// (d,c);
end
theorem ::
DIRAF:18
(a,b)
'||' (c,d) iff
[
[a, b],
[c, d]]
in (
lambda the
CONGR of S)
proof
thus (a,b)
'||' (c,d) implies
[
[a, b],
[c, d]]
in (
lambda the
CONGR of S)
proof
assume (a,b)
// (c,d) or (a,b)
// (d,c);
then
[
[a, b],
[c, d]]
in the
CONGR of S or
[
[a, b],
[d, c]]
in the
CONGR of S;
hence thesis by
Def1;
end;
assume
[
[a, b],
[c, d]]
in (
lambda the
CONGR of S);
then
[
[a, b],
[c, d]]
in the
CONGR of S or
[
[a, b],
[d, c]]
in the
CONGR of S by
Def1;
hence (a,b)
// (c,d) or (a,b)
// (d,c);
end;
theorem ::
DIRAF:19
Th19: (x,y)
'||' (y,x) & (x,y)
'||' (x,y) by
Th1;
theorem ::
DIRAF:20
Th20: (x,y)
'||' (z,z) & (z,z)
'||' (x,y) by
Th4;
Lm2: x
<> y & (x,y)
'||' (z,t) & (x,y)
'||' (u,w) implies (z,t)
'||' (u,w)
proof
assume that
A1: x
<> y and
A2: (x,y)
'||' (z,t) and
A3: (x,y)
'||' (u,w);
A4: (x,y)
// (u,w) or (x,y)
// (w,u) by
A3;
A5:
now
assume (x,y)
// (t,z);
then (t,z)
// (u,w) or (t,z)
// (w,u) by
A1,
A4,
ANALOAF:def 5;
then (z,t)
// (w,u) or (z,t)
// (u,w) by
ANALOAF:def 5;
hence thesis;
end;
(x,y)
// (z,t) implies thesis by
A1,
A4,
ANALOAF:def 5;
hence thesis by
A2,
A5;
end;
theorem ::
DIRAF:21
Th21: (x,y)
'||' (x,z) implies (y,x)
'||' (y,z)
proof
A1:
now
assume (x,y)
// (z,x);
then (y,x)
// (x,z) by
ANALOAF:def 5;
then (y,x)
// (y,z) by
ANALOAF:def 5;
hence thesis;
end;
A2:
now
A3:
now
assume (x,z)
// (z,y);
then (y,z)
// (z,x) by
Th2;
then (y,z)
// (y,x) by
ANALOAF:def 5;
then (y,x)
// (y,z) by
Th2;
hence thesis;
end;
A4: (x,y)
// (y,z) implies thesis by
ANALOAF:def 5;
assume (x,y)
// (x,z);
hence thesis by
A4,
A3,
ANALOAF:def 5;
end;
assume (x,y)
'||' (x,z);
hence thesis by
A2,
A1;
end;
theorem ::
DIRAF:22
Th22: (x,y)
'||' (z,t) implies (x,y)
'||' (t,z) & (y,x)
'||' (z,t) & (y,x)
'||' (t,z) & (z,t)
'||' (x,y) & (z,t)
'||' (y,x) & (t,z)
'||' (x,y) & (t,z)
'||' (y,x) by
Th2;
theorem ::
DIRAF:23
Th23: a
<> b & ((a,b)
'||' (x,y) & (a,b)
'||' (z,t) or (a,b)
'||' (x,y) & (z,t)
'||' (a,b) or (x,y)
'||' (a,b) & (z,t)
'||' (a,b) or (x,y)
'||' (a,b) & (a,b)
'||' (z,t)) implies (x,y)
'||' (z,t)
proof
assume that
A1: a
<> b and
A2: (a,b)
'||' (x,y) & (a,b)
'||' (z,t) or (a,b)
'||' (x,y) & (z,t)
'||' (a,b) or (x,y)
'||' (a,b) & (z,t)
'||' (a,b) or (x,y)
'||' (a,b) & (a,b)
'||' (z,t);
(a,b)
'||' (x,y) & (a,b)
'||' (z,t) by
A2,
Th22;
hence thesis by
A1,
Lm2;
end;
theorem ::
DIRAF:24
Th24: ex x, y, z st not (x,y)
'||' (x,z)
proof
consider x, y, z, t such that
A1: not (x,y)
// (z,t) and
A2: not (x,y)
// (t,z) by
ANALOAF:def 5;
A3: x
<> y by
A1,
Th4;
now
assume
A4: (x,y)
'||' (x,z);
thus not (x,y)
'||' (x,t)
proof
assume
A5: (x,y)
'||' (x,t);
then (x,z)
'||' (x,t) by
A3,
A4,
Th23;
then (z,x)
'||' (z,t) by
Th21;
then (x,z)
'||' (z,t) by
Th22;
then (x,y)
'||' (z,t) or x
= z by
A4,
Th23;
hence contradiction by
A1,
A2,
A5;
end;
end;
hence thesis;
end;
theorem ::
DIRAF:25
Th25: ex t st (x,z)
'||' (y,t) & y
<> t
proof
consider t such that (x,y)
// (z,t) and
A1: (x,z)
// (y,t) and
A2: y
<> t by
ANALOAF:def 5;
(x,z)
'||' (y,t) by
A1;
hence thesis by
A2;
end;
theorem ::
DIRAF:26
Th26: ex t st (x,y)
'||' (z,t) & (x,z)
'||' (y,t)
proof
consider t such that
A1: (x,y)
// (z,t) & (x,z)
// (y,t) and y
<> t by
ANALOAF:def 5;
(x,y)
'||' (z,t) & (x,z)
'||' (y,t) by
A1;
hence thesis;
end;
theorem ::
DIRAF:27
Th27: (z,x)
'||' (x,t) & x
<> z implies ex u st (y,x)
'||' (x,u) & (y,z)
'||' (t,u)
proof
assume that
A1: (z,x)
'||' (x,t) and
A2: x
<> z;
A3:
now
consider p such that
A4:
Mid (z,x,p) and
A5: x
<> p by
Th13;
A6: (z,x)
// (x,p) by
A4;
then
consider q such that
A7: (y,x)
// (x,q) and
A8: (y,z)
// (p,q) by
A2,
ANALOAF:def 5;
assume
A9: (z,x)
// (t,x);
then (x,p)
// (t,x) by
A2,
A6,
ANALOAF:def 5;
then (p,x)
// (x,t) by
Th2;
then
consider r such that
A10: (q,x)
// (x,r) and
A11: (q,p)
// (t,r) by
A5,
ANALOAF:def 5;
A12:
now
assume q
= p;
then
A13: (x,p)
// (y,x) by
A7,
Th2;
(x,p)
// (z,x) by
A6,
Th2;
then (z,x)
// (y,x) by
A5,
A13,
ANALOAF:def 5;
then (y,x)
// (t,x) by
A2,
A9,
ANALOAF:def 5;
then
A14: (y,x)
'||' (x,t);
(y,z)
// (t,t) by
ANALOAF:def 5;
then (y,z)
'||' (t,t);
hence thesis by
A14;
end;
A15:
now
A16: (x,z)
// (x,t) by
A9,
Th2;
assume
A17: q
= x;
(p,x)
// (x,z) by
A6,
Th2;
then (y,z)
// (x,z) by
A5,
A8,
A17,
Th3;
then (y,z)
// (x,t) by
A2,
A16,
Th3;
then
A18: (y,z)
'||' (t,x);
(y,x)
// (x,x) by
Th4;
then (y,x)
'||' (x,x);
hence thesis by
A18;
end;
now
assume that
A19: q
<> p and
A20: q
<> x;
(x,q)
// (r,x) by
A10,
Th2;
then (y,x)
// (r,x) by
A7,
A20,
Th3;
then
A21: (y,x)
'||' (x,r);
(p,q)
// (r,t) by
A11,
Th2;
then (y,z)
// (r,t) by
A8,
A19,
Th3;
then (y,z)
'||' (t,r);
hence thesis by
A21;
end;
hence thesis by
A12,
A15;
end;
now
assume (z,x)
// (x,t);
then
consider u such that
A22: (y,x)
// (x,u) & (y,z)
// (t,u) by
A2,
ANALOAF:def 5;
(y,x)
'||' (x,u) & (y,z)
'||' (t,u) by
A22;
hence thesis;
end;
hence thesis by
A1,
A3;
end;
definition
let S be non
empty
AffinStruct;
let a,b,c be
Element of S;
::
DIRAF:def5
pred a,b,c
are_collinear means (a,b)
'||' (a,c);
end
theorem ::
DIRAF:28
Mid (a,b,c) implies (a,b,c)
are_collinear
proof
assume
Mid (a,b,c);
then (a,b)
// (b,c);
then (a,b)
// (a,c) by
ANALOAF:def 5;
then (a,b)
'||' (a,c);
hence thesis;
end;
theorem ::
DIRAF:29
(a,b,c)
are_collinear implies
Mid (a,b,c) or
Mid (b,a,c) or
Mid (a,c,b)
proof
A1: (a,b)
// (c,a) implies
Mid (b,a,c) by
ANALOAF:def 5;
assume (a,b,c)
are_collinear ;
then
A2: (a,b)
'||' (a,c);
(a,b)
// (a,c) implies (
Mid (a,b,c) or
Mid (a,c,b)) by
Th7;
hence thesis by
A2,
A1;
end;
Lm3: (x,y,z)
are_collinear implies (x,z,y)
are_collinear & (y,x,z)
are_collinear by
Th21,
Th22;
theorem ::
DIRAF:30
Th30: (x,y,z)
are_collinear implies (x,z,y)
are_collinear & (y,x,z)
are_collinear & (y,z,x)
are_collinear & (z,x,y)
are_collinear & (z,y,x)
are_collinear
proof
assume (x,y,z)
are_collinear ;
hence (x,z,y)
are_collinear & (y,x,z)
are_collinear by
Lm3;
hence (y,z,x)
are_collinear & (z,x,y)
are_collinear by
Lm3;
hence thesis by
Lm3;
end;
theorem ::
DIRAF:31
Th31: (x,x,y)
are_collinear & (x,y,y)
are_collinear & (x,y,x)
are_collinear by
Th19,
Th20;
theorem ::
DIRAF:32
Th32: x
<> y & (x,y,z)
are_collinear & (x,y,t)
are_collinear & (x,y,u)
are_collinear implies (z,t,u)
are_collinear
proof
assume that
A1: x
<> y and
A2: (x,y,z)
are_collinear and
A3: (x,y,t)
are_collinear and
A4: (x,y,u)
are_collinear ;
A5:
now
A6: (x,y)
'||' (x,z) by
A2;
(x,y)
'||' (x,u) by
A4;
then (x,z)
'||' (x,u) by
A1,
A6,
Th23;
then
A7: (z,x)
'||' (z,u) by
Th21;
(x,y)
'||' (x,t) by
A3;
then (x,z)
'||' (x,t) by
A1,
A6,
Th23;
then
A8: (z,x)
'||' (z,t) by
Th21;
assume x
<> z;
then (z,t)
'||' (z,u) by
A8,
A7,
Th23;
hence thesis;
end;
x
= z implies thesis by
A3,
A4,
A1,
Th23;
hence thesis by
A5;
end;
theorem ::
DIRAF:33
x
<> y & (x,y,z)
are_collinear & (x,y)
'||' (z,t) implies (x,y,t)
are_collinear
proof
assume that
A1: x
<> y and
A2: (x,y,z)
are_collinear and
A3: (x,y)
'||' (z,t);
now
(x,y)
'||' (x,z) by
A2;
then (x,z)
'||' (z,t) by
A1,
A3,
Th23;
then (z,x)
'||' (z,t) by
Th22;
then (z,x,t)
are_collinear ;
then
A4: (x,z,t)
are_collinear by
Th30;
assume
A5: z
<> x;
(x,z,y)
are_collinear & (x,z,x)
are_collinear by
A2,
Th30,
Th31;
hence thesis by
A5,
A4,
Th32;
end;
hence thesis by
A3;
end;
theorem ::
DIRAF:34
(x,y,z)
are_collinear & (x,y,t)
are_collinear implies (x,y)
'||' (z,t)
proof
assume
A1: (x,y,z)
are_collinear & (x,y,t)
are_collinear ;
now
A2: (x,y)
'||' (x,z) & (x,y)
'||' (x,t) by
A1;
assume x
<> y;
then (x,z)
'||' (x,t) by
A2,
Th23;
then (z,x)
'||' (z,t) by
Th21;
then (x,z)
'||' (z,t) by
Th22;
hence thesis by
A2,
Th23;
end;
hence thesis by
Th20;
end;
theorem ::
DIRAF:35
u
<> z & (x,y,u)
are_collinear & (x,y,z)
are_collinear & (u,z,w)
are_collinear implies (x,y,w)
are_collinear
proof
assume that
A1: u
<> z and
A2: (x,y,u)
are_collinear & (x,y,z)
are_collinear and
A3: (u,z,w)
are_collinear ;
now
assume
A4: x
<> y;
(x,y,x)
are_collinear by
Th31;
then
A5: (z,u,x)
are_collinear by
A2,
A4,
Th32;
(x,y,y)
are_collinear by
Th31;
then
A6: (z,u,y)
are_collinear by
A2,
A4,
Th32;
(z,u,w)
are_collinear by
A3,
Th30;
hence thesis by
A1,
A6,
A5,
Th32;
end;
hence thesis by
Th31;
end;
theorem ::
DIRAF:36
Th36: ex x, y, z st not (x,y,z)
are_collinear
proof
consider x, y, z such that
A1: not (x,y)
'||' (x,z) by
Th24;
not (x,y,z)
are_collinear by
A1;
hence thesis;
end;
theorem ::
DIRAF:37
x
<> y implies ex z st not (x,y,z)
are_collinear
proof
assume
A1: x
<> y;
consider a, b, c such that
A2: not (a,b,c)
are_collinear by
Th36;
assume
A3: not thesis;
then
A4: (x,y,c)
are_collinear ;
(x,y,a)
are_collinear & (x,y,b)
are_collinear by
A3;
hence contradiction by
A1,
A2,
A4,
Th32;
end;
reserve AS for non
empty
AffinStruct;
theorem ::
DIRAF:38
Th38: AS
= (
Lambda S) implies for a,b,c,d be
Element of S, a9,b9,c9,d9 be
Element of AS st a
= a9 & b
= b9 & c
= c9 & d
= d9 holds (a9,b9)
// (c9,d9) iff (a,b)
'||' (c,d)
proof
assume
A1: AS
= (
Lambda S);
let a,b,c,d be
Element of S;
let a9,b9,c9,d9 be
Element of AS;
assume
A2: a
= a9 & b
= b9 & c
= c9 & d
= d9;
thus (a9,b9)
// (c9,d9) implies (a,b)
'||' (c,d)
proof
assume
A3:
[
[a9, b9],
[c9, d9]]
in the
CONGR of AS;
assume not
[
[a, b],
[c, d]]
in the
CONGR of S;
hence
[
[a, b],
[d, c]]
in the
CONGR of S by
A1,
A2,
A3,
Def1;
end;
assume (a,b)
'||' (c,d);
then (a,b)
// (c,d) or (a,b)
// (d,c);
then
[
[a, b],
[c, d]]
in the
CONGR of S or
[
[a, b],
[d, c]]
in the
CONGR of S;
hence
[
[a9, b9],
[c9, d9]]
in the
CONGR of AS by
A1,
A2,
Def1;
end;
theorem ::
DIRAF:39
Th39: AS
= (
Lambda S) implies (ex x,y be
Element of AS st x
<> y) & (for x,y,z,t,u,w be
Element of AS holds (x,y)
// (y,x) & (x,y)
// (z,z) & (x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w)) & ((x,y)
// (x,z) implies (y,x)
// (y,z))) & (ex x,y,z be
Element of AS st not (x,y)
// (x,z)) & (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,z)
// (y,t) & y
<> t) & (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,y)
// (z,t) & (x,z)
// (y,t)) & for x,y,z,t be
Element of AS st (z,x)
// (x,t) & x
<> z holds ex u be
Element of AS st (y,x)
// (x,u) & (y,z)
// (t,u)
proof
assume
A1: AS
= (
Lambda S);
hence ex x,y be
Element of AS st x
<> y by
STRUCT_0:def 10;
thus for x,y,z,t,u,w be
Element of AS holds (x,y)
// (y,x) & (x,y)
// (z,z) & (x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w)) & ((x,y)
// (x,z) implies (y,x)
// (y,z))
proof
let x,y,z,t,u,w be
Element of AS;
reconsider x9 = x, y9 = y, z9 = z, t9 = t, u9 = u, w9 = w as
Element of S by
A1;
(x9,y9)
'||' (y9,x9) & (x9,y9)
'||' (z9,z9) by
Th19,
Th20;
hence (x,y)
// (y,x) & (x,y)
// (z,z) by
A1,
Th38;
x9
<> y9 & (x9,y9)
'||' (z9,t9) & (x9,y9)
'||' (u9,w9) implies (z9,t9)
'||' (u9,w9) by
Lm2;
hence x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w) by
A1,
Th38;
(x9,y9)
'||' (x9,z9) implies (y9,x9)
'||' (y9,z9) by
Th21;
hence thesis by
A1,
Th38;
end;
thus ex x,y,z be
Element of AS st not (x,y)
// (x,z)
proof
consider x9,y9,z9 be
Element of S such that
A2: not (x9,y9)
'||' (x9,z9) by
Th24;
reconsider x = x9, y = y9, z = z9 as
Element of AS by
A1;
not (x,y)
// (x,z) by
A1,
A2,
Th38;
hence thesis;
end;
thus for x,y,z be
Element of AS holds ex t be
Element of AS st (x,z)
// (y,t) & y
<> t
proof
let x,y,z be
Element of AS;
reconsider x9 = x, y9 = y, z9 = z as
Element of S by
A1;
consider t9 be
Element of S such that
A3: (x9,z9)
'||' (y9,t9) and
A4: y9
<> t9 by
Th25;
reconsider t = t9 as
Element of AS by
A1;
(x,z)
// (y,t) by
A1,
A3,
Th38;
hence thesis by
A4;
end;
thus for x,y,z be
Element of AS holds ex t be
Element of AS st (x,y)
// (z,t) & (x,z)
// (y,t)
proof
let x,y,z be
Element of AS;
reconsider x9 = x, y9 = y, z9 = z as
Element of S by
A1;
consider t9 be
Element of S such that
A5: (x9,y9)
'||' (z9,t9) & (x9,z9)
'||' (y9,t9) by
Th26;
reconsider t = t9 as
Element of AS by
A1;
(x,y)
// (z,t) & (x,z)
// (y,t) by
A1,
A5,
Th38;
hence thesis;
end;
thus for x,y,z,t be
Element of AS st (z,x)
// (x,t) & x
<> z holds ex u be
Element of AS st (y,x)
// (x,u) & (y,z)
// (t,u)
proof
let x,y,z,t be
Element of AS such that
A6: (z,x)
// (x,t) and
A7: x
<> z;
reconsider x9 = x, y9 = y, z9 = z, t9 = t as
Element of S by
A1;
(z9,x9)
'||' (x9,t9) by
A1,
A6,
Th38;
then
consider u9 be
Element of S such that
A8: (y9,x9)
'||' (x9,u9) & (y9,z9)
'||' (t9,u9) by
A7,
Th27;
reconsider u = u9 as
Element of AS by
A1;
(y,x)
// (x,u) & (y,z)
// (t,u) by
A1,
A8,
Th38;
hence thesis;
end;
end;
definition
let IT be non
empty
AffinStruct;
::
DIRAF:def6
attr IT is
AffinSpace-like means
:
Def6: (for x,y,z,t,u,w be
Element of IT holds (x,y)
// (y,x) & (x,y)
// (z,z) & (x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w)) & ((x,y)
// (x,z) implies (y,x)
// (y,z))) & (ex x,y,z be
Element of IT st not (x,y)
// (x,z)) & (for x,y,z be
Element of IT holds ex t be
Element of IT st (x,z)
// (y,t) & y
<> t) & (for x,y,z be
Element of IT holds ex t be
Element of IT st (x,y)
// (z,t) & (x,z)
// (y,t)) & for x,y,z,t be
Element of IT st (z,x)
// (x,t) & x
<> z holds ex u be
Element of IT st (y,x)
// (x,u) & (y,z)
// (t,u);
end
registration
cluster
strict
AffinSpace-like for non
trivial
AffinStruct;
existence
proof
set S = the
OAffinSpace;
A1: (for x,y,z be
Element of (
Lambda S) holds ex t be
Element of (
Lambda S) st (x,z)
// (y,t) & y
<> t) & for x,y,z be
Element of (
Lambda S) holds ex t be
Element of (
Lambda S) st (x,y)
// (z,t) & (x,z)
// (y,t) by
Th39;
A2: for x,y,z,t be
Element of (
Lambda S) st (z,x)
// (x,t) & x
<> z holds ex u be
Element of (
Lambda S) st (y,x)
// (x,u) & (y,z)
// (t,u) by
Th39;
(for x,y,z,t,u,w be
Element of (
Lambda S) holds (x,y)
// (y,x) & (x,y)
// (z,z) & (x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w)) & ((x,y)
// (x,z) implies (y,x)
// (y,z))) & ex x,y,z be
Element of (
Lambda S) st not (x,y)
// (x,z) by
Th39;
then (
Lambda S) is non
trivial
AffinSpace-like by
A1,
A2;
hence thesis;
end;
end
definition
mode
AffinSpace is
AffinSpace-like non
trivial
AffinStruct;
end
theorem ::
DIRAF:40
for AS be
AffinSpace holds (ex x,y be
Element of AS st x
<> y) & (for x,y,z,t,u,w be
Element of AS holds ((x,y)
// (y,x) & (x,y)
// (z,z)) & (x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w)) & ((x,y)
// (x,z) implies (y,x)
// (y,z))) & (ex x,y,z be
Element of AS st not (x,y)
// (x,z)) & (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,z)
// (y,t) & y
<> t) & (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,y)
// (z,t) & (x,z)
// (y,t)) & for x,y,z,t be
Element of AS st (z,x)
// (x,t) & x
<> z holds ex u be
Element of AS st (y,x)
// (x,u) & (y,z)
// (t,u) by
Def6,
STRUCT_0:def 10;
theorem ::
DIRAF:41
Th41: (
Lambda S) is
AffinSpace
proof
set AS = (
Lambda S);
A1: (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,z)
// (y,t) & y
<> t) & for x,y,z be
Element of AS holds ex t be
Element of AS st (x,y)
// (z,t) & (x,z)
// (y,t) by
Th39;
A2: for x,y,z,t be
Element of AS st (z,x)
// (x,t) & x
<> z holds ex u be
Element of AS st (y,x)
// (x,u) & (y,z)
// (t,u) by
Th39;
(for x,y,z,t,u,w be
Element of AS holds (x,y)
// (y,x) & (x,y)
// (z,z) & (x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w)) & ((x,y)
// (x,z) implies (y,x)
// (y,z))) & ex x,y,z be
Element of AS st not (x,y)
// (x,z) by
Th39;
hence thesis by
A1,
A2,
Def6;
end;
theorem ::
DIRAF:42
(ex x,y be
Element of AS st x
<> y) & (for x,y,z,t,u,w be
Element of AS holds (x,y)
// (y,x) & (x,y)
// (z,z) & (x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w)) & ((x,y)
// (x,z) implies (y,x)
// (y,z))) & (ex x,y,z be
Element of AS st not (x,y)
// (x,z)) & (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,z)
// (y,t) & y
<> t) & (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,y)
// (z,t) & (x,z)
// (y,t)) & (for x,y,z,t be
Element of AS st (z,x)
// (x,t) & x
<> z holds ex u be
Element of AS st (y,x)
// (x,u) & (y,z)
// (t,u)) iff AS is
AffinSpace by
Def6,
STRUCT_0:def 10;
reserve S for
OAffinPlane;
reserve x,y,z,t,u for
Element of S;
theorem ::
DIRAF:43
Th43: not (x,y)
'||' (z,t) implies ex u st (x,y)
'||' (x,u) & (z,t)
'||' (z,u)
proof
assume not (x,y)
'||' (z,t);
then ( not (x,y)
// (z,t)) & not (x,y)
// (t,z);
then
consider u such that
A1: ((x,y)
// (x,u) or (x,y)
// (u,x)) & ((z,t)
// (z,u) or (z,t)
// (u,z)) by
ANALOAF:def 6;
(x,y)
'||' (x,u) & (z,t)
'||' (z,u) by
A1;
hence thesis;
end;
theorem ::
DIRAF:44
Th44: AS
= (
Lambda S) implies for x,y,z,t be
Element of AS st not (x,y)
// (z,t) holds ex u be
Element of AS st (x,y)
// (x,u) & (z,t)
// (z,u)
proof
assume
A1: AS
= (
Lambda S);
let x,y,z,t be
Element of AS;
reconsider x9 = x, y9 = y, z9 = z, t9 = t as
Element of S by
A1;
assume not (x,y)
// (z,t);
then not (x9,y9)
'||' (z9,t9) by
A1,
Th38;
then
consider u9 be
Element of S such that
A2: (x9,y9)
'||' (x9,u9) & (z9,t9)
'||' (z9,u9) by
Th43;
reconsider u = u9 as
Element of AS by
A1;
(x,y)
// (x,u) & (z,t)
// (z,u) by
A1,
A2,
Th38;
hence thesis;
end;
definition
let IT be non
empty
AffinStruct;
::
DIRAF:def7
attr IT is
2-dimensional means
:
Def7: for x,y,z,t be
Element of IT st not (x,y)
// (z,t) holds ex u be
Element of IT st (x,y)
// (x,u) & (z,t)
// (z,u);
end
registration
cluster
strict
2-dimensional for
AffinSpace;
existence
proof
set S = the
OAffinPlane;
reconsider AS = (
Lambda S) as
AffinSpace by
Th41;
for x,y,z,t be
Element of AS st not (x,y)
// (z,t) holds ex u be
Element of AS st (x,y)
// (x,u) & (z,t)
// (z,u) by
Th44;
then AS is
2-dimensional;
hence thesis;
end;
end
definition
mode
AffinPlane is
2-dimensional
AffinSpace;
end
theorem ::
DIRAF:45
(
Lambda S) is
AffinPlane
proof
set AS = (
Lambda S);
for x,y,z,t be
Element of AS st not (x,y)
// (z,t) holds ex u be
Element of AS st (x,y)
// (x,u) & (z,t)
// (z,u) by
Th44;
hence thesis by
Def7,
Th41;
end;
theorem ::
DIRAF:46
AS is
AffinPlane iff (ex x,y be
Element of AS st x
<> y) & (for x,y,z,t,u,w be
Element of AS holds (x,y)
// (y,x) & (x,y)
// (z,z) & (x
<> y & (x,y)
// (z,t) & (x,y)
// (u,w) implies (z,t)
// (u,w)) & ((x,y)
// (x,z) implies (y,x)
// (y,z))) & (ex x,y,z be
Element of AS st not (x,y)
// (x,z)) & (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,z)
// (y,t) & y
<> t) & (for x,y,z be
Element of AS holds ex t be
Element of AS st (x,y)
// (z,t) & (x,z)
// (y,t)) & (for x,y,z,t be
Element of AS st (z,x)
// (x,t) & x
<> z holds ex u be
Element of AS st (y,x)
// (x,u) & (y,z)
// (t,u)) & for x,y,z,t be
Element of AS st not (x,y)
// (z,t) holds ex u be
Element of AS st (x,y)
// (x,u) & (z,t)
// (z,u) by
Def6,
Def7,
STRUCT_0:def 10;