tarski.miz



    begin

    reserve x,y,z,u for object;

    reserve N,M,X,Y,Z for set;

    theorem :: TARSKI:1

    for x be object holds x is set by TARSKI_0: 1;

    theorem :: TARSKI:2

    (for x be object holds x in X iff x in Y) implies X = Y by TARSKI_0: 2;

    definition

      let y be object;

      :: TARSKI:def1

      func {y} -> set means for x be object holds x in it iff x = y;

      existence

      proof

        consider X be set such that

         A1: for x be object holds x in X iff x = y or x = y by TARSKI_0: 3;

        take X;

        thus thesis by A1;

      end;

      uniqueness

      proof

        let X1,X2 be set such that

         A1: for z be object holds z in X1 iff z = y and

         A2: for z be object holds z in X2 iff z = y;

        for z be object holds z in X1 iff z in X2 by A1, A2;

        hence thesis by TARSKI_0: 2;

      end;

      let z be object;

      :: TARSKI:def2

      func {y,z} -> set means

      : Def2: x in it iff x = y or x = z;

      existence by TARSKI_0: 3;

      uniqueness

      proof

        let X1,X2 be set such that

         A1: for x be object holds x in X1 iff x = y or x = z and

         A2: for x be object holds x in X2 iff x = y or x = z;

        now

          let x be object;

          x in X1 iff x = y or x = z by A1;

          hence x in X1 iff x in X2 by A2;

        end;

        hence thesis by TARSKI_0: 2;

      end;

      commutativity ;

    end

    definition

      let X, Y;

      :: TARSKI:def3

      pred X c= Y means for x be object holds x in X implies x in Y;

      reflexivity ;

    end

    definition

      let X;

      :: TARSKI:def4

      func union X -> set means x in it iff ex Y st x in Y & Y in X;

      existence by TARSKI_0: 4;

      uniqueness

      proof

        let X1,X2 be set such that

         A1: for x be object holds x in X1 iff ex Y be set st x in Y & Y in X and

         A2: for x be object holds x in X2 iff ex Y be set st x in Y & Y in X;

        now

          let x be object;

          x in X1 iff ex Y be set st x in Y & Y in X by A1;

          hence x in X1 iff x in X2 by A2;

        end;

        hence thesis by TARSKI_0: 2;

      end;

    end

    theorem :: TARSKI:3

    x in X implies ex Y st Y in X & not ex x st x in X & x in Y by TARSKI_0: 5;

    definition

      let x,X be set;

      :: original: in

      redefine

      pred x in X;

      asymmetry

      proof

        let a,b be set;

        assume

         A1: a in b & b in a;

        set X = {a, b};

        

         A3: a in X & b in X by Def2;

        consider Y be set such that

         A4: Y in X & not ex x be object st x in X & x in Y by A3, TARSKI_0: 5;

        Y = a or Y = b by A4, Def2;

        hence thesis by A1, A3, A4;

      end;

    end

    scheme :: TARSKI:sch1

    Replacement { A() -> set , P[ object, object] } :

ex X st for x be object holds x in X iff ex y be object st y in A() & P[y, x]

      provided

       A1: for x,y,z be object st P[x, y] & P[x, z] holds y = z;

      thus thesis from TARSKI_0:sch 1( A1);

    end;

    definition

      let x,y be object;

      :: TARSKI:def5

      func [x,y] -> object equals { {x, y}, {x}};

      coherence ;

    end

    definition

      let X, Y;

      :: TARSKI:def6

      pred X,Y are_equipotent means ex Z st (for x st x in X holds ex y st y in Y & [x, y] in Z) & (for y st y in Y holds ex x st x in X & [x, y] in Z) & for x, y, z, u st [x, y] in Z & [z, u] in Z holds x = z iff y = u;

    end