dirort.miz
begin
reserve V for
RealLinearSpace;
reserve x,y for
VECTOR of V;
notation
let AS be non
empty
OrtStr;
let a,b,c,d be
Element of AS;
synonym a,b
'//' c,d for a,b
_|_ c,d;
end
theorem ::
DIRORT:1
Th1:
Gen (x,y) implies (for u,u1,v,v1,w be
Element of (
CESpace (V,x,y)) holds (((u,u)
'//' (v,w)) & ((u,v)
'//' (w,w)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1)) & ((u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w)) & ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u)))) & (for u,v,w be
Element of (
CESpace (V,x,y)) holds ex u1 be
Element of (
CESpace (V,x,y)) st w
<> u1 & (w,u1)
'//' (u,v)) & for u,v,w be
Element of (
CESpace (V,x,y)) holds ex u1 be
Element of (
CESpace (V,x,y)) st w
<> u1 & (u,v)
'//' (w,u1)
proof
assume
A1:
Gen (x,y);
set S = (
CESpace (V,x,y));
A2: S
=
OrtStr (# the
carrier of V, (
CORTE (V,x,y)) #) by
ANALORT:def 7;
thus for u,u1,v,v1,w be
Element of S holds (u,u)
'//' (v,w) & (u,v)
'//' (w,w) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1)) & ((u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w)) & ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u))
proof
let u,u1,v,v1,w be
Element of S;
reconsider u9 = u, v9 = v, w9 = w, u19 = u1, v19 = v1 as
Element of V by
A2;
(u9,u9,v9,w9)
are_COrte_wrt (x,y) by
ANALORT: 20;
hence (u,u)
'//' (v,w) by
ANALORT: 54;
(u9,v9,w9,w9)
are_COrte_wrt (x,y) by
ANALORT: 22;
hence (u,v)
'//' (w,w) by
ANALORT: 54;
(u9,v9,u19,v19)
are_COrte_wrt (x,y) & (u9,v9,v19,u19)
are_COrte_wrt (x,y) implies u9
= v9 or u19
= v19 by
A1,
ANALORT: 30;
hence (u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1 by
ANALORT: 54;
(u9,v9,u19,v19)
are_COrte_wrt (x,y) & (u9,v9,u19,w9)
are_COrte_wrt (x,y) implies (u9,v9,v19,w9)
are_COrte_wrt (x,y) or (u9,v9,w9,v19)
are_COrte_wrt (x,y) by
A1,
ANALORT: 32;
hence (u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1) by
ANALORT: 54;
(u9,v9,u19,v19)
are_COrte_wrt (x,y) implies (v9,u9,v19,u19)
are_COrte_wrt (x,y) by
ANALORT: 34;
hence (u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1) by
ANALORT: 54;
(u9,v9,u19,v19)
are_COrte_wrt (x,y) & (u9,v9,v19,w9)
are_COrte_wrt (x,y) implies (u9,v9,u19,w9)
are_COrte_wrt (x,y) by
A1,
ANALORT: 36;
hence (u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w) by
ANALORT: 54;
(u9,u19,v9,v19)
are_COrte_wrt (x,y) implies (v9,v19,u9,u19)
are_COrte_wrt (x,y) or (v9,v19,u19,u9)
are_COrte_wrt (x,y) by
A1,
ANALORT: 18;
hence (u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u) by
ANALORT: 54;
end;
thus for u,v,w be
Element of S holds ex u1 be
Element of S st w
<> u1 & (w,u1)
'//' (u,v)
proof
let u,v,w be
Element of S;
reconsider u9 = u, v9 = v, w9 = w as
Element of V by
A2;
consider u19 be
Element of V such that
A3: w9
<> u19 and
A4: (w9,u19,u9,v9)
are_COrte_wrt (x,y) by
A1,
ANALORT: 38;
reconsider u1 = u19 as
Element of S by
A2;
(w,u1)
'//' (u,v) by
A4,
ANALORT: 54;
hence thesis by
A3;
end;
let u,v,w be
Element of S;
reconsider u9 = u, v9 = v, w9 = w as
Element of V by
A2;
consider u19 be
Element of V such that
A5: w9
<> u19 and
A6: (u9,v9,w9,u19)
are_COrte_wrt (x,y) by
A1,
ANALORT: 40;
reconsider u1 = u19 as
Element of S by
A2;
(u,v)
'//' (w,u1) by
A6,
ANALORT: 54;
hence thesis by
A5;
end;
theorem ::
DIRORT:2
Th2:
Gen (x,y) implies (for u,u1,v,v1,w be
Element of (
CMSpace (V,x,y)) holds (((u,u)
'//' (v,w)) & ((u,v)
'//' (w,w)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1)) & ((u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w)) & ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u)))) & (for u,v,w be
Element of (
CMSpace (V,x,y)) holds ex u1 be
Element of (
CMSpace (V,x,y)) st w
<> u1 & (w,u1)
'//' (u,v)) & for u,v,w be
Element of (
CMSpace (V,x,y)) holds ex u1 be
Element of (
CMSpace (V,x,y)) st w
<> u1 & (u,v)
'//' (w,u1)
proof
assume
A1:
Gen (x,y);
set S = (
CMSpace (V,x,y));
A2: S
=
OrtStr (# the
carrier of V, (
CORTM (V,x,y)) #) by
ANALORT:def 8;
thus for u,u1,v,v1,w be
Element of S holds (u,u)
'//' (v,w) & (u,v)
'//' (w,w) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1)) & ((u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w)) & ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u))
proof
let u,u1,v,v1,w be
Element of S;
reconsider u9 = u, v9 = v, w9 = w, u19 = u1, v19 = v1 as
Element of V by
A2;
(u9,u9,v9,w9)
are_COrtm_wrt (x,y) by
ANALORT: 21;
hence (u,u)
'//' (v,w) by
ANALORT: 55;
(u9,v9,w9,w9)
are_COrtm_wrt (x,y) by
ANALORT: 23;
hence (u,v)
'//' (w,w) by
ANALORT: 55;
(u9,v9,u19,v19)
are_COrtm_wrt (x,y) & (u9,v9,v19,u19)
are_COrtm_wrt (x,y) implies u9
= v9 or u19
= v19 by
A1,
ANALORT: 31;
hence (u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1 by
ANALORT: 55;
(u9,v9,u19,v19)
are_COrtm_wrt (x,y) & (u9,v9,u19,w9)
are_COrtm_wrt (x,y) implies (u9,v9,v19,w9)
are_COrtm_wrt (x,y) or (u9,v9,w9,v19)
are_COrtm_wrt (x,y) by
A1,
ANALORT: 33;
hence (u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1) by
ANALORT: 55;
(u9,v9,u19,v19)
are_COrtm_wrt (x,y) implies (v9,u9,v19,u19)
are_COrtm_wrt (x,y) by
ANALORT: 35;
hence (u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1) by
ANALORT: 55;
(u9,v9,u19,v19)
are_COrtm_wrt (x,y) & (u9,v9,v19,w9)
are_COrtm_wrt (x,y) implies (u9,v9,u19,w9)
are_COrtm_wrt (x,y) by
A1,
ANALORT: 37;
hence (u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w) by
ANALORT: 55;
(u9,u19,v9,v19)
are_COrtm_wrt (x,y) implies (v9,v19,u9,u19)
are_COrtm_wrt (x,y) or (v9,v19,u19,u9)
are_COrtm_wrt (x,y) by
A1,
ANALORT: 19;
hence (u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u) by
ANALORT: 55;
end;
thus for u,v,w be
Element of S holds ex u1 be
Element of S st w
<> u1 & (w,u1)
'//' (u,v)
proof
let u,v,w be
Element of S;
reconsider u9 = u, v9 = v, w9 = w as
Element of V by
A2;
consider u19 be
Element of V such that
A3: w9
<> u19 and
A4: (w9,u19,u9,v9)
are_COrtm_wrt (x,y) by
A1,
ANALORT: 39;
reconsider u1 = u19 as
Element of S by
A2;
(w,u1)
'//' (u,v) by
A4,
ANALORT: 55;
hence thesis by
A3;
end;
let u,v,w be
Element of S;
reconsider u9 = u, v9 = v, w9 = w as
Element of V by
A2;
consider u19 be
Element of V such that
A5: w9
<> u19 and
A6: (u9,v9,w9,u19)
are_COrtm_wrt (x,y) by
A1,
ANALORT: 41;
reconsider u1 = u19 as
Element of S by
A2;
(u,v)
'//' (w,u1) by
A6,
ANALORT: 55;
hence thesis by
A5;
end;
definition
let IT be non
empty
OrtStr;
::
DIRORT:def1
attr IT is
Oriented_Orthogonality_Space-like means
:
Def1: (for u,u1,v,v1,w be
Element of IT holds (((u,u)
'//' (v,w)) & ((u,v)
'//' (w,w)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1)) & ((u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w)) & ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u)))) & (for u,v,w be
Element of IT holds ex u1 be
Element of IT st w
<> u1 & (w,u1)
'//' (u,v)) & for u,v,w be
Element of IT holds ex u1 be
Element of IT st w
<> u1 & (u,v)
'//' (w,u1);
end
registration
cluster
Oriented_Orthogonality_Space-like for non
empty
OrtStr;
existence
proof
consider V, x, y such that
A1:
Gen (x,y) by
ANALMETR: 3;
take C = (
CESpace (V,x,y));
thus (for u,u1,v,v1,w be
Element of C holds (((u,u)
'//' (v,w)) & ((u,v)
'//' (w,w)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1)) & ((u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w)) & ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u)))) & (for u,v,w be
Element of C holds ex u1 be
Element of C st w
<> u1 & (w,u1)
'//' (u,v)) & for u,v,w be
Element of C holds ex u1 be
Element of C st w
<> u1 & (u,v)
'//' (w,u1) by
A1,
Th1;
end;
end
definition
mode
Oriented_Orthogonality_Space is
Oriented_Orthogonality_Space-like non
empty
OrtStr;
end
theorem ::
DIRORT:3
Th3:
Gen (x,y) implies (
CMSpace (V,x,y)) is
Oriented_Orthogonality_Space
proof
assume
A1:
Gen (x,y);
then
A2: for u,v,w be
Element of (
CMSpace (V,x,y)) holds ex u1 be
Element of (
CMSpace (V,x,y)) st w
<> u1 & (w,u1)
'//' (u,v) by
Th2;
A3: for u,v,w be
Element of (
CMSpace (V,x,y)) holds ex u1 be
Element of (
CMSpace (V,x,y)) st w
<> u1 & (u,v)
'//' (w,u1) by
A1,
Th2;
for u,u1,v,v1,w,w1,w2 be
Element of (
CMSpace (V,x,y)) holds (u,u)
'//' (v,w) & (u,v)
'//' (w,w) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1)) & ((u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w)) & ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u)) by
A1,
Th2;
hence thesis by
A2,
A3,
Def1;
end;
theorem ::
DIRORT:4
Th4:
Gen (x,y) implies (
CESpace (V,x,y)) is
Oriented_Orthogonality_Space
proof
assume
A1:
Gen (x,y);
then
A2: for u,v,w be
Element of (
CESpace (V,x,y)) holds ex u1 be
Element of (
CESpace (V,x,y)) st w
<> u1 & (w,u1)
'//' (u,v) by
Th1;
A3: for u,v,w be
Element of (
CESpace (V,x,y)) holds ex u1 be
Element of (
CESpace (V,x,y)) st w
<> u1 & (u,v)
'//' (w,u1) by
A1,
Th1;
for u,u1,v,v1,w,w1,w2 be
Element of (
CESpace (V,x,y)) holds (u,u)
'//' (v,w) & (u,v)
'//' (w,w) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,u1) implies u
= v or u1
= v1) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (u1,w) implies (u,v)
'//' (v1,w) or (u,v)
'//' (w,v1)) & ((u,v)
'//' (u1,v1) implies (v,u)
'//' (v1,u1)) & ((u,v)
'//' (u1,v1) & (u,v)
'//' (v1,w) implies (u,v)
'//' (u1,w)) & ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1) or (v,v1)
'//' (u1,u)) by
A1,
Th1;
hence thesis by
A2,
A3,
Def1;
end;
reserve AS for
Oriented_Orthogonality_Space;
reserve u,u1,u2,u3,v,v1,v2,v3,w,w1 for
Element of AS;
theorem ::
DIRORT:5
for u,v,w be
Element of AS holds ex u1 be
Element of AS st (u1,w)
'//' (u,v) & u1
<> w
proof
let u, v, w;
consider u1 such that
A1: u1
<> w and
A2: (w,u1)
'//' (v,u) by
Def1;
(u1,w)
'//' (u,v) by
A2,
Def1;
hence thesis by
A1;
end;
theorem ::
DIRORT:6
for u,v,w be
Element of AS holds ex u1 be
Element of AS st u
<> u1 & ((v,w)
'//' (u,u1) or (v,w)
'//' (u1,u))
proof
let u, v, w;
consider u1 such that
A1: u
<> u1 and
A2: (u,u1)
'//' (v,w) by
Def1;
(v,w)
'//' (u,u1) or (v,w)
'//' (u1,u) by
A2,
Def1;
hence thesis by
A1;
end;
definition
let AS be
Oriented_Orthogonality_Space;
let a,b,c,d be
Element of AS;
::
DIRORT:def2
pred a,b
_|_ c,d means (a,b)
'//' (c,d) or (a,b)
'//' (d,c);
end
definition
let AS be
Oriented_Orthogonality_Space;
let a,b,c,d be
Element of AS;
::
DIRORT:def3
pred a,b
// c,d means ex e,f be
Element of AS st e
<> f & (e,f)
'//' (a,b) & (e,f)
'//' (c,d);
end
definition
let IT be
Oriented_Orthogonality_Space;
::
DIRORT:def4
attr IT is
bach_transitive means for u,u1,u2,v,v1,v2,w,w1 be
Element of IT holds ((u,u1)
'//' (v,v1) & (w,w1)
'//' (v,v1) & (w,w1)
'//' (u2,v2) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2)));
end
definition
let IT be
Oriented_Orthogonality_Space;
::
DIRORT:def5
attr IT is
right_transitive means for u,u1,u2,v,v1,v2,w,w1 be
Element of IT holds ((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u2,v2)
'//' (w,w1) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2)));
end
definition
let IT be
Oriented_Orthogonality_Space;
::
DIRORT:def6
attr IT is
left_transitive means for u,u1,u2,v,v1,v2,w,w1 be
Element of IT holds ((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1)));
end
definition
let IT be
Oriented_Orthogonality_Space;
::
DIRORT:def7
attr IT is
Euclidean_like means for u,u1,v,v1 be
Element of IT holds ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u1,u));
end
definition
let IT be
Oriented_Orthogonality_Space;
::
DIRORT:def8
attr IT is
Minkowskian_like means for u,u1,v,v1 be
Element of IT holds ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1));
end
theorem ::
DIRORT:7
(u,u1)
// (w,w) & (w,w)
// (u,u1)
proof
set v = the
Element of AS;
consider v1 such that
A1: v1
<> v and
A2: (v,v1)
'//' (u,u1) by
Def1;
(v,v1)
'//' (w,w) by
Def1;
hence thesis by
A1,
A2;
end;
theorem ::
DIRORT:8
(u,u1)
// (v,v1) implies (v,v1)
// (u,u1);
theorem ::
DIRORT:9
(u,u1)
// (v,v1) implies (u1,u)
// (v1,v)
proof
assume (u,u1)
// (v,v1);
then
consider w, w1 such that
A1: w
<> w1 and
A2: (w,w1)
'//' (u,u1) and
A3: (w,w1)
'//' (v,v1);
A4: (w1,w)
'//' (v1,v) by
A3,
Def1;
(w1,w)
'//' (u1,u) by
A2,
Def1;
hence thesis by
A1,
A4;
end;
theorem ::
DIRORT:10
AS is
left_transitive iff for v, v1, w, w1, u2, v2 holds ((v,v1)
// (u2,v2) & (v,v1)
'//' (w,w1) & v
<> v1 implies (u2,v2)
'//' (w,w1))
proof
A1: (for v, v1, w, w1, u2, v2 holds ((v,v1)
// (u2,v2) & (v,v1)
'//' (w,w1) & v
<> v1 implies (u2,v2)
'//' (w,w1))) implies for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds ((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1)))
proof
assume
A2: for v, v1, w, w1, u2, v2 holds ((v,v1)
// (u2,v2) & (v,v1)
'//' (w,w1) & v
<> v1 implies (u2,v2)
'//' (w,w1));
let u, u1, u2, v, v1, v2, w, w1;
assume that
A3: (u,u1)
'//' (v,v1) and
A4: (v,v1)
'//' (w,w1) and
A5: (u,u1)
'//' (u2,v2);
now
assume that
A6: u
<> u1 and v
<> v1;
(v,v1)
// (u2,v2) by
A3,
A5,
A6;
hence thesis by
A2,
A4;
end;
hence thesis;
end;
thus thesis by
A1;
end;
theorem ::
DIRORT:11
AS is
bach_transitive iff for u, u1, u2, v, v1, v2 holds ((u,u1)
'//' (v,v1) & (v,v1)
// (u2,v2) & v
<> v1 implies (u,u1)
'//' (u2,v2))
proof
A1: (for u, u1, u2, v, v1, v2 holds ((u,u1)
'//' (v,v1) & (v,v1)
// (u2,v2) & v
<> v1 implies (u,u1)
'//' (u2,v2))) implies for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds ((u,u1)
'//' (v,v1) & (w,w1)
'//' (v,v1) & (w,w1)
'//' (u2,v2) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2)))
proof
assume
A2: for u, u1, u2, v, v1, v2 holds ((u,u1)
'//' (v,v1) & (v,v1)
// (u2,v2) & v
<> v1 implies (u,u1)
'//' (u2,v2));
let u, u1, u2, v, v1, v2, w, w1;
assume that
A3: (u,u1)
'//' (v,v1) and
A4: (w,w1)
'//' (v,v1) and
A5: (w,w1)
'//' (u2,v2);
now
assume that
A6: w
<> w1 and v
<> v1;
(v,v1)
// (u2,v2) by
A4,
A5,
A6;
hence thesis by
A2,
A3;
end;
hence thesis;
end;
thus thesis by
A1;
end;
theorem ::
DIRORT:12
AS is
bach_transitive implies for u, u1, v, v1, w, w1 holds ((u,u1)
// (v,v1) & (v,v1)
// (w,w1) & v
<> v1 implies (u,u1)
// (w,w1))
proof
assume
A1: AS is
bach_transitive;
let u, u1, v, v1, w, w1;
assume that
A2: (u,u1)
// (v,v1) and
A3: (v,v1)
// (w,w1) and
A4: v
<> v1;
consider v2, v3 such that
A5: v2
<> v3 and
A6: (v2,v3)
'//' (u,u1) and
A7: (v2,v3)
'//' (v,v1) by
A2;
(v2,v3)
'//' (w,w1) by
A1,
A3,
A4,
A7;
hence thesis by
A5,
A6;
end;
theorem ::
DIRORT:13
Th13:
Gen (x,y) & AS
= (
CESpace (V,x,y)) implies AS is
Euclidean_like
left_transitive
right_transitive
bach_transitive
proof
assume that
A1:
Gen (x,y) and
A2: AS
= (
CESpace (V,x,y));
A3: (
CESpace (V,x,y))
=
OrtStr (# the
carrier of V, (
CORTE (V,x,y)) #) by
ANALORT:def 7;
A4:
now
let u,u1,u2,v,v1,v2,w,w1 be
Element of AS;
thus (u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u2,v2)
'//' (w,w1) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2))
proof
reconsider u9 = u, v9 = v, w9 = w, u19 = u1, v19 = v1, w19 = w1, u29 = u2, v29 = v2 as
Element of V by
A2,
A3;
(u9,u19,v9,v19)
are_COrte_wrt (x,y) & (v9,v19,w9,w19)
are_COrte_wrt (x,y) & (u29,v29,w9,w19)
are_COrte_wrt (x,y) implies (w9
= w19 or v9
= v19 or (u9,u19,u29,v29)
are_COrte_wrt (x,y)) by
A1,
ANALORT: 44;
hence thesis by
A2,
ANALORT: 54;
end;
end;
A5:
now
let u,u1,v,v1 be
Element of AS;
thus (u,u1)
'//' (v,v1) implies (v,v1)
'//' (u1,u)
proof
reconsider u9 = u, v9 = v, u19 = u1, v19 = v1 as
Element of V by
A2,
A3;
(u9,u19,v9,v19)
are_COrte_wrt (x,y) implies (v9,v19,u19,u9)
are_COrte_wrt (x,y) by
A1,
ANALORT: 18;
hence thesis by
A2,
ANALORT: 54;
end;
end;
A6:
now
let u,u1,u2,v,v1,v2,w,w1 be
Element of AS;
thus (u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1))
proof
reconsider u9 = u, v9 = v, w9 = w, u19 = u1, v19 = v1, w19 = w1, u29 = u2, v29 = v2 as
Element of V by
A2,
A3;
(u9,u19,v9,v19)
are_COrte_wrt (x,y) & (v9,v19,w9,w19)
are_COrte_wrt (x,y) & (u9,u19,u29,v29)
are_COrte_wrt (x,y) implies (u9
= u19 or v9
= v19 or (u29,v29,w9,w19)
are_COrte_wrt (x,y)) by
A1,
ANALORT: 46;
hence thesis by
A2,
ANALORT: 54;
end;
end;
now
let u,u1,u2,v,v1,v2,w,w1 be
Element of AS;
thus (u,u1)
'//' (v,v1) & (w,w1)
'//' (v,v1) & (w,w1)
'//' (u2,v2) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2))
proof
reconsider u9 = u, v9 = v, w9 = w, u19 = u1, v19 = v1, w19 = w1, u29 = u2, v29 = v2 as
Element of V by
A2,
A3;
(u9,u19,v9,v19)
are_COrte_wrt (x,y) & (w9,w19,v9,v19)
are_COrte_wrt (x,y) & (w9,w19,u29,v29)
are_COrte_wrt (x,y) implies (w9
= w19 or v9
= v19 or (u9,u19,u29,v29)
are_COrte_wrt (x,y)) by
A1,
ANALORT: 42;
hence thesis by
A2,
ANALORT: 54;
end;
end;
hence thesis by
A4,
A6,
A5;
end;
registration
cluster
Euclidean_like
left_transitive
right_transitive
bach_transitive for
Oriented_Orthogonality_Space;
existence
proof
consider V, x, y such that
A1:
Gen (x,y) by
ANALMETR: 3;
reconsider AS = (
CESpace (V,x,y)) as
Oriented_Orthogonality_Space by
A1,
Th4;
take AS;
thus thesis by
A1,
Th13;
end;
end
theorem ::
DIRORT:14
Th14:
Gen (x,y) & AS
= (
CMSpace (V,x,y)) implies AS is
Minkowskian_like
left_transitive
right_transitive
bach_transitive
proof
assume that
A1:
Gen (x,y) and
A2: AS
= (
CMSpace (V,x,y));
A3: (
CMSpace (V,x,y))
=
OrtStr (# the
carrier of V, (
CORTM (V,x,y)) #) by
ANALORT:def 8;
A4:
now
let u,u1,u2,v,v1,v2,w,w1 be
Element of AS;
thus (u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u2,v2)
'//' (w,w1) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2))
proof
reconsider u9 = u, v9 = v, w9 = w, u19 = u1, v19 = v1, w19 = w1, u29 = u2, v29 = v2 as
Element of V by
A2,
A3;
(u9,u19,v9,v19)
are_COrtm_wrt (x,y) & (v9,v19,w9,w19)
are_COrtm_wrt (x,y) & (u29,v29,w9,w19)
are_COrtm_wrt (x,y) implies (w9
= w19 or v9
= v19 or (u9,u19,u29,v29)
are_COrtm_wrt (x,y)) by
A1,
ANALORT: 45;
hence thesis by
A2,
ANALORT: 55;
end;
end;
A5:
now
let u,u1,v,v1 be
Element of AS;
thus (u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1)
proof
reconsider u9 = u, v9 = v, u19 = u1, v19 = v1 as
Element of V by
A2,
A3;
(u9,u19,v9,v19)
are_COrtm_wrt (x,y) implies (v9,v19,u9,u19)
are_COrtm_wrt (x,y) by
A1,
ANALORT: 19;
hence thesis by
A2,
ANALORT: 55;
end;
end;
A6:
now
let u,u1,u2,v,v1,v2,w,w1 be
Element of AS;
thus (u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1))
proof
reconsider u9 = u, v9 = v, w9 = w, u19 = u1, v19 = v1, w19 = w1, u29 = u2, v29 = v2 as
Element of V by
A2,
A3;
(u9,u19,v9,v19)
are_COrtm_wrt (x,y) & (v9,v19,w9,w19)
are_COrtm_wrt (x,y) & (u9,u19,u29,v29)
are_COrtm_wrt (x,y) implies (u9
= u19 or v9
= v19 or (u29,v29,w9,w19)
are_COrtm_wrt (x,y)) by
A1,
ANALORT: 47;
hence thesis by
A2,
ANALORT: 55;
end;
end;
now
let u,u1,u2,v,v1,v2,w,w1 be
Element of AS;
thus (u,u1)
'//' (v,v1) & (w,w1)
'//' (v,v1) & (w,w1)
'//' (u2,v2) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2))
proof
reconsider u9 = u, v9 = v, w9 = w, u19 = u1, v19 = v1, w19 = w1, u29 = u2, v29 = v2 as
Element of V by
A2,
A3;
(u9,u19,v9,v19)
are_COrtm_wrt (x,y) & (w9,w19,v9,v19)
are_COrtm_wrt (x,y) & (w9,w19,u29,v29)
are_COrtm_wrt (x,y) implies (w9
= w19 or v9
= v19 or (u9,u19,u29,v29)
are_COrtm_wrt (x,y)) by
A1,
ANALORT: 43;
hence thesis by
A2,
ANALORT: 55;
end;
end;
hence thesis by
A4,
A6,
A5;
end;
registration
cluster
Minkowskian_like
left_transitive
right_transitive
bach_transitive for
Oriented_Orthogonality_Space;
existence
proof
consider V, x, y such that
A1:
Gen (x,y) by
ANALMETR: 3;
reconsider AS = (
CMSpace (V,x,y)) as
Oriented_Orthogonality_Space by
A1,
Th3;
take AS;
thus thesis by
A1,
Th14;
end;
end
theorem ::
DIRORT:15
Th15: AS is
left_transitive implies AS is
right_transitive
proof
(for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds (((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2)) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1)))) implies for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds ((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u2,v2)
'//' (w,w1) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2)))
proof
assume
A1: for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds ((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1)));
let u, u1, u2, v, v1, v2, w, w1;
assume that
A2: (u,u1)
'//' (v,v1) and
A3: (v,v1)
'//' (w,w1) and
A4: (u2,v2)
'//' (w,w1);
A5: (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2) or (u,u1)
'//' (v2,u2)) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2))
proof
now
A6:
now
assume (v2,u2)
'//' (w,w1);
then (u2,v2)
'//' (w1,w) by
Def1;
then u2
= v2 or w
= w1 by
A4,
Def1;
hence thesis;
end;
u
= u1 implies thesis by
Def1;
hence thesis by
A1,
A2,
A3,
A6;
end;
hence thesis;
end;
A7:
now
assume that
A8: (w,w1)
'//' (v,v1) and
A9: (v,v1)
'//' (u,u1) and
A10: (w,w1)
'//' (v2,u2);
w
= w1 or v
= v1 or (v2,u2)
'//' (u,u1) by
A1,
A8,
A9,
A10;
hence thesis by
A5,
Def1;
end;
A11:
now
assume that
A12: (w,w1)
'//' (v1,v) and
A13: (v,v1)
'//' (u,u1) and
A14: (w,w1)
'//' (v2,u2);
(v1,v)
'//' (u1,u) by
A13,
Def1;
then w
= w1 or v
= v1 or (v2,u2)
'//' (u1,u) by
A1,
A12,
A14;
then w
= w1 or v
= v1 or (u2,v2)
'//' (u,u1) by
Def1;
hence thesis by
A5,
Def1;
end;
A15:
now
assume that
A16: (w,w1)
'//' (v1,v) and
A17: (v,v1)
'//' (u,u1) and
A18: (w,w1)
'//' (u2,v2);
(v1,v)
'//' (u1,u) by
A17,
Def1;
then w
= w1 or v
= v1 or (u2,v2)
'//' (u1,u) by
A1,
A16,
A18;
then w
= w1 or v
= v1 or (v2,u2)
'//' (u,u1) by
Def1;
hence thesis by
A5,
Def1;
end;
A19:
now
assume that
A20: (w,w1)
'//' (v1,v) and
A21: (v,v1)
'//' (u1,u) and
A22: (w,w1)
'//' (v2,u2);
(v1,v)
'//' (u,u1) by
A21,
Def1;
then w
= w1 or v
= v1 or (v2,u2)
'//' (u,u1) by
A1,
A20,
A22;
hence thesis by
A5,
Def1;
end;
A23:
now
assume that
A24: (w,w1)
'//' (v1,v) and
A25: (v,v1)
'//' (u1,u) and
A26: (w,w1)
'//' (u2,v2);
(v1,v)
'//' (u,u1) by
A25,
Def1;
then w
= w1 or v1
= v or (u2,v2)
'//' (u,u1) by
A1,
A24,
A26;
hence thesis by
A5,
Def1;
end;
A27:
now
assume that
A28: (w,w1)
'//' (v,v1) and
A29: (v,v1)
'//' (u1,u) and
A30: (w,w1)
'//' (v2,u2);
w
= w1 or v
= v1 or (v2,u2)
'//' (u1,u) by
A1,
A28,
A29,
A30;
then w
= w1 or v
= v1 or (u1,u)
'//' (u2,v2) or (u1,u)
'//' (v2,u2) by
Def1;
hence thesis by
A5,
Def1;
end;
A31:
now
assume that
A32: (w,w1)
'//' (v,v1) and
A33: (v,v1)
'//' (u1,u) and
A34: (w,w1)
'//' (u2,v2);
w
= w1 or v
= v1 or (u2,v2)
'//' (u1,u) by
A1,
A32,
A33,
A34;
then w
= w1 or v
= v1 or (u1,u)
'//' (u2,v2) or (u1,u)
'//' (v2,u2) by
Def1;
hence thesis by
A5,
Def1;
end;
now
assume that
A35: (w,w1)
'//' (v,v1) and
A36: (v,v1)
'//' (u,u1) and
A37: (w,w1)
'//' (u2,v2);
w
= w1 or v
= v1 or (u2,v2)
'//' (u,u1) by
A1,
A35,
A36,
A37;
hence thesis by
A5,
Def1;
end;
hence thesis by
A2,
A3,
A4,
A7,
A31,
A27,
A15,
A11,
A23,
A19,
Def1;
end;
hence thesis;
end;
theorem ::
DIRORT:16
AS is
left_transitive implies AS is
bach_transitive
proof
(for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds (((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2)) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1)))) implies for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds ((u,u1)
'//' (v,v1) & (w,w1)
'//' (v,v1) & (w,w1)
'//' (u2,v2) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2)))
proof
assume
A1: for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds ((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1)));
let u, u1, u2, v, v1, v2, w, w1;
A2: AS is
left_transitive implies AS is
right_transitive by
Th15;
then
A3: (u,u1)
'//' (v,v1) & (v,v1)
'//' (w1,w) & (u2,v2)
'//' (w1,w) implies thesis by
A1;
assume that
A4: (u,u1)
'//' (v,v1) and
A5: (w,w1)
'//' (v,v1) and
A6: (w,w1)
'//' (u2,v2);
A7: (v
= v1 or w
= w1 or (u,u1)
'//' (u2,v2) or (u,u1)
'//' (v2,u2)) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2))
proof
A8:
now
assume that
A9: (u,u1)
'//' (v2,u2) and
A10: u
<> u1 and
A11: v
<> v1 and w
<> w1;
A12:
now
assume
A13: (u2,v2)
'//' (u,u1);
then
A14: (u2,v2)
'//' (w,w1) by
A2,
A1,
A4,
A5,
A10,
A11;
A15:
now
assume (u2,v2)
'//' (w1,w);
then w
= w1 or u2
= v2 by
A14,
Def1;
hence thesis;
end;
(w1,w)
'//' (v2,u2) by
A6,
Def1;
then (u2,v2)
'//' (w1,w) or u2
= v2 by
A2,
A1,
A9,
A10,
A13;
hence thesis by
A15;
end;
A16:
now
A17: (w1,w)
'//' (v1,v) by
A5,
Def1;
assume
A18: (u2,v2)
'//' (u1,u);
(u1,u)
'//' (v1,v) by
A4,
Def1;
then
A19: (u2,v2)
'//' (w1,w) by
A2,
A1,
A10,
A11,
A18,
A17;
A20:
now
assume (u2,v2)
'//' (w,w1);
then w
= w1 or u2
= v2 by
A19,
Def1;
hence thesis;
end;
(u1,u)
'//' (u2,v2) by
A9,
Def1;
then (u2,v2)
'//' (w,w1) or u2
= v2 by
A2,
A1,
A6,
A10,
A18;
hence thesis by
A20;
end;
(v2,u2)
'//' (u,u1) or (v2,u2)
'//' (u1,u) by
A9,
Def1;
hence thesis by
A16,
A12,
Def1;
end;
assume v
= v1 or w
= w1 or (u,u1)
'//' (u2,v2) or (u,u1)
'//' (v2,u2);
hence thesis by
A8,
Def1;
end;
A21:
now
assume that
A22: (u,u1)
'//' (v,v1) and
A23: (v,v1)
'//' (w,w1) and
A24: (u2,v2)
'//' (w1,w);
(v2,u2)
'//' (w,w1) by
A24,
Def1;
hence thesis by
A2,
A1,
A7,
A22,
A23;
end;
A25:
now
assume that
A26: (u,u1)
'//' (v,v1) and
A27: (v,v1)
'//' (w1,w) and
A28: (u2,v2)
'//' (w,w1);
(v2,u2)
'//' (w1,w) by
A28,
Def1;
hence thesis by
A2,
A1,
A7,
A26,
A27;
end;
(u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u2,v2)
'//' (w,w1) implies thesis by
A2,
A1;
hence thesis by
A4,
A5,
A6,
A21,
A3,
A25,
Def1;
end;
hence thesis;
end;
theorem ::
DIRORT:17
AS is
bach_transitive implies (AS is
right_transitive iff for u, u1, v, v1, u2, v2 holds ((u,u1)
'//' (u2,v2) & (v,v1)
'//' (u2,v2) & u2
<> v2 implies (u,u1)
// (v,v1)))
proof
A1: (for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds (((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u2,v2)
'//' (w,w1)) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2)))) implies for u, u1, v, v1, u2, v2 holds ((u,u1)
'//' (u2,v2) & (v,v1)
'//' (u2,v2) & u2
<> v2 implies (u,u1)
// (v,v1))
proof
set w = the
Element of AS;
assume
A2: for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds (u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u2,v2)
'//' (w,w1) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2));
let u, u1, v, v1, u2, v2;
assume that
A3: (u,u1)
'//' (u2,v2) and
A4: (v,v1)
'//' (u2,v2) and
A5: u2
<> v2;
consider w1 such that
A6: w
<> w1 and
A7: (w,w1)
'//' (u,u1) by
Def1;
A8:
now
set w = the
Element of AS;
assume
A9: u
= u1;
consider w1 such that
A10: w
<> w1 and
A11: (w,w1)
'//' (v,v1) by
Def1;
(w,w1)
'//' (u,u) by
Def1;
hence thesis by
A9,
A10,
A11;
end;
now
assume u
<> u1;
then (w,w1)
'//' (v,v1) by
A2,
A3,
A4,
A5,
A7;
hence thesis by
A6,
A7;
end;
hence thesis by
A8;
end;
assume
A12: AS is
bach_transitive;
(for u, u1, v, v1, u2, v2 holds (((u,u1)
'//' (u2,v2) & (v,v1)
'//' (u2,v2) & u2
<> v2) implies (u,u1)
// (v,v1))) implies for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds ((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u2,v2)
'//' (w,w1) implies (w
= w1 or v
= v1 or (u,u1)
'//' (u2,v2)))
proof
assume
A13: for u, u1, v, v1, u2, v2 holds (u,u1)
'//' (u2,v2) & (v,v1)
'//' (u2,v2) & u2
<> v2 implies (u,u1)
// (v,v1);
let u, u1, u2, v, v1, v2, w, w1;
assume that
A14: (u,u1)
'//' (v,v1) and
A15: (v,v1)
'//' (w,w1) and
A16: (u2,v2)
'//' (w,w1);
now
assume that
A17: w
<> w1 and v
<> v1;
(v,v1)
// (u2,v2) by
A13,
A15,
A16,
A17;
then ex u3, v3 st u3
<> v3 & (u3,v3)
'//' (v,v1) & (u3,v3)
'//' (u2,v2);
hence thesis by
A12,
A14;
end;
hence thesis;
end;
hence thesis by
A1;
end;
theorem ::
DIRORT:18
AS is
right_transitive & (AS is
Euclidean_like or AS is
Minkowskian_like) implies AS is
left_transitive
proof
assume
A1: AS is
right_transitive;
(for u,u1,v,v1 be
Element of AS holds ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1)) or for u,u1,v,v1 be
Element of AS holds ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u1,u))) implies for u,u1,u2,v,v1,v2,w,w1 be
Element of AS holds ((u,u1)
'//' (v,v1) & (v,v1)
'//' (w,w1) & (u,u1)
'//' (u2,v2) implies (u
= u1 or v
= v1 or (u2,v2)
'//' (w,w1)))
proof
assume
A2: for u,u1,v,v1 be
Element of AS holds ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1)) or for u,u1,v,v1 be
Element of AS holds ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u1,u));
let u, u1, u2, v, v1, v2, w, w1;
assume that
A3: (u,u1)
'//' (v,v1) and
A4: (v,v1)
'//' (w,w1) and
A5: (u,u1)
'//' (u2,v2);
A6:
now
assume
A7: for u,u1,v,v1 be
Element of AS holds ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u1,u));
now
(w,w1)
'//' (v1,v) by
A4,
A7;
then
A8: (w1,w)
'//' (v,v1) by
Def1;
A9: (u2,v2)
'//' (u1,u) by
A5,
A7;
assume that
A10: u
<> u1 and
A11: v
<> v1;
(v,v1)
'//' (u1,u) by
A3,
A7;
then (w1,w)
'//' (u2,v2) by
A1,
A10,
A11,
A8,
A9;
hence thesis by
A7;
end;
hence thesis;
end;
now
assume
A12: for u,u1,v,v1 be
Element of AS holds ((u,u1)
'//' (v,v1) implies (v,v1)
'//' (u,u1));
now
A13: (u2,v2)
'//' (u,u1) by
A5,
A12;
A14: (w,w1)
'//' (v,v1) by
A4,
A12;
assume that
A15: u
<> u1 and
A16: v
<> v1;
(v,v1)
'//' (u,u1) by
A3,
A12;
then (w,w1)
'//' (u2,v2) by
A1,
A15,
A16,
A14,
A13;
hence thesis by
A12;
end;
hence thesis;
end;
hence thesis by
A2,
A6;
end;
hence thesis;
end;