analort.miz
begin
reserve V for
RealLinearSpace,
u,u1,u2,v,v1,v2,w,w1,x,y for
VECTOR of V,
a,a1,a2,b,b1,b2,c1,c2,n,k1,k2 for
Real;
Lm1: v1
= ((b1
* x)
+ (b2
* y)) & v2
= ((c1
* x)
+ (c2
* y)) implies (v1
+ v2)
= (((b1
+ c1)
* x)
+ ((b2
+ c2)
* y)) & (v1
- v2)
= (((b1
- c1)
* x)
+ ((b2
- c2)
* y))
proof
assume that
A1: v1
= ((b1
* x)
+ (b2
* y)) and
A2: v2
= ((c1
* x)
+ (c2
* y));
thus (v1
+ v2)
= ((((b1
* x)
+ (b2
* y))
+ (c1
* x))
+ (c2
* y)) by
A1,
A2,
RLVECT_1:def 3
.= ((((b1
* x)
+ (c1
* x))
+ (b2
* y))
+ (c2
* y)) by
RLVECT_1:def 3
.= ((((b1
+ c1)
* x)
+ (b2
* y))
+ (c2
* y)) by
RLVECT_1:def 6
.= (((b1
+ c1)
* x)
+ ((b2
* y)
+ (c2
* y))) by
RLVECT_1:def 3
.= (((b1
+ c1)
* x)
+ ((b2
+ c2)
* y)) by
RLVECT_1:def 6;
thus (v1
- v2)
= (((b1
* x)
+ (b2
* y))
+ ((
- (c1
* x))
+ (
- (c2
* y)))) by
A1,
A2,
RLVECT_1: 31
.= (((b1
* x)
+ (b2
* y))
+ ((c1
* (
- x))
+ (
- (c2
* y)))) by
RLVECT_1: 25
.= (((b1
* x)
+ (b2
* y))
+ ((c1
* (
- x))
+ (c2
* (
- y)))) by
RLVECT_1: 25
.= (((b1
* x)
+ (b2
* y))
+ (((
- c1)
* x)
+ (c2
* (
- y)))) by
RLVECT_1: 24
.= (((b1
* x)
+ (b2
* y))
+ (((
- c1)
* x)
+ ((
- c2)
* y))) by
RLVECT_1: 24
.= ((((b1
* x)
+ (b2
* y))
+ ((
- c1)
* x))
+ ((
- c2)
* y)) by
RLVECT_1:def 3
.= ((((b1
* x)
+ ((
- c1)
* x))
+ (b2
* y))
+ ((
- c2)
* y)) by
RLVECT_1:def 3
.= ((((b1
+ (
- c1))
* x)
+ (b2
* y))
+ ((
- c2)
* y)) by
RLVECT_1:def 6
.= (((b1
+ (
- c1))
* x)
+ ((b2
* y)
+ ((
- c2)
* y))) by
RLVECT_1:def 3
.= (((b1
- c1)
* x)
+ ((b2
+ (
- c2))
* y)) by
RLVECT_1:def 6
.= (((b1
- c1)
* x)
+ ((b2
- c2)
* y));
end;
Lm2: v
= ((b1
* x)
+ (b2
* y)) implies (a
* v)
= (((a
* b1)
* x)
+ ((a
* b2)
* y))
proof
assume v
= ((b1
* x)
+ (b2
* y));
hence (a
* v)
= ((a
* (b1
* x))
+ (a
* (b2
* y))) by
RLVECT_1:def 5
.= (((a
* b1)
* x)
+ (a
* (b2
* y))) by
RLVECT_1:def 7
.= (((a
* b1)
* x)
+ ((a
* b2)
* y)) by
RLVECT_1:def 7;
end;
Lm3:
Gen (x,y) & ((a1
* x)
+ (a2
* y))
= ((b1
* x)
+ (b2
* y)) implies a1
= b1 & a2
= b2
proof
assume that
A1:
Gen (x,y) and
A2: ((a1
* x)
+ (a2
* y))
= ((b1
* x)
+ (b2
* y));
A3: (
0. V)
= (((a1
* x)
+ (a2
* y))
- ((b1
* x)
+ (b2
* y))) by
A2,
RLVECT_1: 15
.= (((a1
- b1)
* x)
+ ((a2
- b2)
* y)) by
Lm1;
then
A4: ((
- b1)
+ a1)
=
0 by
A1,
ANALMETR:def 1;
((
- b2)
+ a2)
=
0 by
A1,
A3,
ANALMETR:def 1;
hence thesis by
A4;
end;
Lm4:
Gen (x,y) implies x
<> (
0. V) & y
<> (
0. V)
proof
assume
A1:
Gen (x,y);
A2: x
<> (
0. V)
proof
assume
A3: x
= (
0. V);
consider a, b such that
A4: a
= 1 and
A5: b
=
0 ;
((a
* x)
+ (b
* y))
= ((
0. V)
+ (
0
* y)) by
A3,
A5,
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
hence contradiction by
A1,
A4,
ANALMETR:def 1;
end;
y
<> (
0. V)
proof
assume
A6: y
= (
0. V);
consider a, b such that
A7: a
=
0 and
A8: b
= 1;
((a
* x)
+ (b
* y))
= ((
0. V)
+ (1
* (
0. V))) by
A6,
A7,
A8,
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
hence thesis by
A1,
A8,
ANALMETR:def 1;
end;
hence thesis by
A2;
end;
Lm5:
Gen (x,y) implies u
= (((
pr1 (x,y,u))
* x)
+ ((
pr2 (x,y,u))
* y))
proof
assume
A1:
Gen (x,y);
then
consider b such that
A2: u
= (((
pr1 (x,y,u))
* x)
+ (b
* y)) by
GEOMTRAP:def 4;
thus thesis by
A1,
GEOMTRAP:def 5,
A2;
end;
Lm6:
Gen (x,y) & u
= ((k1
* x)
+ (k2
* y)) implies k1
= (
pr1 (x,y,u)) & k2
= (
pr2 (x,y,u))
proof
assume that
A1:
Gen (x,y) and
A2: u
= ((k1
* x)
+ (k2
* y));
u
= (((
pr1 (x,y,u))
* x)
+ ((
pr2 (x,y,u))
* y)) by
A1,
Lm5;
hence thesis by
A1,
A2,
Lm3;
end;
Lm7:
Gen (x,y) implies (
pr1 (x,y,(u
+ v)))
= ((
pr1 (x,y,u))
+ (
pr1 (x,y,v))) & (
pr2 (x,y,(u
+ v)))
= ((
pr2 (x,y,u))
+ (
pr2 (x,y,v))) & (
pr1 (x,y,(u
- v)))
= ((
pr1 (x,y,u))
- (
pr1 (x,y,v))) & (
pr2 (x,y,(u
- v)))
= ((
pr2 (x,y,u))
- (
pr2 (x,y,v))) & (
pr1 (x,y,(a
* u)))
= (a
* (
pr1 (x,y,u))) & (
pr2 (x,y,(a
* u)))
= (a
* (
pr2 (x,y,u)))
proof
assume
A1:
Gen (x,y);
set p1u = (
pr1 (x,y,u)), p2u = (
pr2 (x,y,u)), p1v = (
pr1 (x,y,v)), p2v = (
pr2 (x,y,v));
A2: u
= ((p1u
* x)
+ (p2u
* y)) by
A1,
Lm5;
A3: v
= ((p1v
* x)
+ (p2v
* y)) by
A1,
Lm5;
then (u
+ v)
= ((((p1u
* x)
+ (p2u
* y))
+ (p1v
* x))
+ (p2v
* y)) by
A2,
RLVECT_1:def 3
.= ((((p1u
* x)
+ (p1v
* x))
+ (p2u
* y))
+ (p2v
* y)) by
RLVECT_1:def 3
.= (((p1u
* x)
+ (p1v
* x))
+ ((p2u
* y)
+ (p2v
* y))) by
RLVECT_1:def 3
.= (((p1u
+ p1v)
* x)
+ ((p2u
* y)
+ (p2v
* y))) by
RLVECT_1:def 6
.= (((p1u
+ p1v)
* x)
+ ((p2u
+ p2v)
* y)) by
RLVECT_1:def 6;
hence (
pr1 (x,y,(u
+ v)))
= (p1u
+ p1v) & (
pr2 (x,y,(u
+ v)))
= (p2u
+ p2v) by
A1,
Lm6;
(u
- v)
= (((p1u
- p1v)
* x)
+ ((p2u
- p2v)
* y)) by
A2,
A3,
Lm1;
hence (
pr1 (x,y,(u
- v)))
= (p1u
- p1v) & (
pr2 (x,y,(u
- v)))
= (p2u
- p2v) by
A1,
Lm6;
(a
* u)
= (((a
* p1u)
* x)
+ ((a
* p2u)
* y)) by
A2,
Lm2;
hence thesis by
A1,
Lm6;
end;
definition
let V, x, y;
let u;
::
ANALORT:def1
func
Ortm (x,y,u) ->
VECTOR of V equals (((
pr1 (x,y,u))
* x)
+ ((
- (
pr2 (x,y,u)))
* y));
correctness ;
end
theorem ::
ANALORT:1
Th1:
Gen (x,y) implies (
Ortm (x,y,(u
+ v)))
= ((
Ortm (x,y,u))
+ (
Ortm (x,y,v)))
proof
assume
A1:
Gen (x,y);
hence (
Ortm (x,y,(u
+ v)))
= ((((
pr1 (x,y,u))
+ (
pr1 (x,y,v)))
* x)
+ ((
- (
pr2 (x,y,(u
+ v))))
* y)) by
Lm7
.= ((((
pr1 (x,y,u))
+ (
pr1 (x,y,v)))
* x)
+ ((
- ((
pr2 (x,y,u))
+ (
pr2 (x,y,v))))
* y)) by
A1,
Lm7
.= ((((
pr1 (x,y,u))
* x)
+ ((
pr1 (x,y,v))
* x))
+ ((
- ((
pr2 (x,y,u))
+ (
pr2 (x,y,v))))
* y)) by
RLVECT_1:def 6
.= ((((
pr1 (x,y,u))
* x)
+ ((
pr1 (x,y,v))
* x))
+ (((
pr2 (x,y,u))
+ (
pr2 (x,y,v)))
* (
- y))) by
RLVECT_1: 24
.= ((((
pr1 (x,y,u))
* x)
+ ((
pr1 (x,y,v))
* x))
+ (
- (((
pr2 (x,y,u))
+ (
pr2 (x,y,v)))
* y))) by
RLVECT_1: 25
.= ((((
pr1 (x,y,u))
* x)
+ ((
pr1 (x,y,v))
* x))
+ (
- (((
pr2 (x,y,u))
* y)
+ ((
pr2 (x,y,v))
* y)))) by
RLVECT_1:def 6
.= ((((
pr1 (x,y,u))
* x)
+ ((
pr1 (x,y,v))
* x))
+ ((
- ((
pr2 (x,y,u))
* y))
+ (
- ((
pr2 (x,y,v))
* y)))) by
RLVECT_1: 31
.= (((
pr1 (x,y,u))
* x)
+ (((
pr1 (x,y,v))
* x)
+ ((
- ((
pr2 (x,y,u))
* y))
+ (
- ((
pr2 (x,y,v))
* y))))) by
RLVECT_1:def 3
.= (((
pr1 (x,y,u))
* x)
+ ((
- ((
pr2 (x,y,u))
* y))
+ (((
pr1 (x,y,v))
* x)
+ (
- ((
pr2 (x,y,v))
* y))))) by
RLVECT_1:def 3
.= ((((
pr1 (x,y,u))
* x)
+ (
- ((
pr2 (x,y,u))
* y)))
+ (((
pr1 (x,y,v))
* x)
+ (
- ((
pr2 (x,y,v))
* y)))) by
RLVECT_1:def 3
.= ((((
pr1 (x,y,u))
* x)
+ ((
pr2 (x,y,u))
* (
- y)))
+ (((
pr1 (x,y,v))
* x)
+ (
- ((
pr2 (x,y,v))
* y)))) by
RLVECT_1: 25
.= ((((
pr1 (x,y,u))
* x)
+ ((
pr2 (x,y,u))
* (
- y)))
+ (((
pr1 (x,y,v))
* x)
+ ((
pr2 (x,y,v))
* (
- y)))) by
RLVECT_1: 25
.= ((((
pr1 (x,y,u))
* x)
+ ((
- (
pr2 (x,y,u)))
* y))
+ (((
pr1 (x,y,v))
* x)
+ ((
pr2 (x,y,v))
* (
- y)))) by
RLVECT_1: 24
.= ((
Ortm (x,y,u))
+ (
Ortm (x,y,v))) by
RLVECT_1: 24;
end;
theorem ::
ANALORT:2
Th2:
Gen (x,y) implies (
Ortm (x,y,(n
* u)))
= (n
* (
Ortm (x,y,u)))
proof
assume
A1:
Gen (x,y);
hence (
Ortm (x,y,(n
* u)))
= (((n
* (
pr1 (x,y,u)))
* x)
+ ((
- (
pr2 (x,y,(n
* u))))
* y)) by
Lm7
.= (((n
* (
pr1 (x,y,u)))
* x)
+ ((
- (n
* (
pr2 (x,y,u))))
* y)) by
A1,
Lm7
.= (((n
* (
pr1 (x,y,u)))
* x)
+ ((n
* (
pr2 (x,y,u)))
* (
- y))) by
RLVECT_1: 24
.= (((n
* (
pr1 (x,y,u)))
* x)
+ (
- ((n
* (
pr2 (x,y,u)))
* y))) by
RLVECT_1: 25
.= (((n
* (
pr1 (x,y,u)))
* x)
+ (
- (n
* ((
pr2 (x,y,u))
* y)))) by
RLVECT_1:def 7
.= (((n
* (
pr1 (x,y,u)))
* x)
+ (n
* (
- ((
pr2 (x,y,u))
* y)))) by
RLVECT_1: 25
.= ((n
* ((
pr1 (x,y,u))
* x))
+ (n
* (
- ((
pr2 (x,y,u))
* y)))) by
RLVECT_1:def 7
.= (n
* (((
pr1 (x,y,u))
* x)
+ (
- ((
pr2 (x,y,u))
* y)))) by
RLVECT_1:def 5
.= (n
* (((
pr1 (x,y,u))
* x)
+ ((
pr2 (x,y,u))
* (
- y)))) by
RLVECT_1: 25
.= (n
* (
Ortm (x,y,u))) by
RLVECT_1: 24;
end;
theorem ::
ANALORT:3
Gen (x,y) implies (
Ortm (x,y,(
0. V)))
= (
0. V)
proof
assume
A1:
Gen (x,y);
set u = the
VECTOR of V;
thus (
Ortm (x,y,(
0. V)))
= (
Ortm (x,y,(
0
* u))) by
RLVECT_1: 10
.= (
0
* (
Ortm (x,y,u))) by
A1,
Th2
.= (
0. V) by
RLVECT_1: 10;
end;
theorem ::
ANALORT:4
Th4:
Gen (x,y) implies (
Ortm (x,y,(
- u)))
= (
- (
Ortm (x,y,u)))
proof
assume
A1:
Gen (x,y);
then
A2: (
- u)
= (
- (((
pr1 (x,y,u))
* x)
+ ((
pr2 (x,y,u))
* y))) by
Lm5
.= ((
- ((
pr1 (x,y,u))
* x))
+ (
- ((
pr2 (x,y,u))
* y))) by
RLVECT_1: 31
.= (((
pr1 (x,y,u))
* (
- x))
+ (
- ((
pr2 (x,y,u))
* y))) by
RLVECT_1: 25
.= (((
- (
pr1 (x,y,u)))
* x)
+ (
- ((
pr2 (x,y,u))
* y))) by
RLVECT_1: 24
.= (((
- (
pr1 (x,y,u)))
* x)
+ ((
pr2 (x,y,u))
* (
- y))) by
RLVECT_1: 25
.= (((
- (
pr1 (x,y,u)))
* x)
+ ((
- (
pr2 (x,y,u)))
* y)) by
RLVECT_1: 24;
hence (
Ortm (x,y,(
- u)))
= (((
- (
pr1 (x,y,u)))
* x)
+ ((
- (
pr2 (x,y,(
- u))))
* y)) by
A1,
Lm6
.= (((
- (
pr1 (x,y,u)))
* x)
+ ((
- (
- (
pr2 (x,y,u))))
* y)) by
A1,
A2,
Lm6
.= (((
pr1 (x,y,u))
* (
- x))
+ ((
- (
- (
pr2 (x,y,u))))
* y)) by
RLVECT_1: 24
.= ((
- ((
pr1 (x,y,u))
* x))
+ ((
- (
- (
pr2 (x,y,u))))
* y)) by
RLVECT_1: 25
.= ((
- ((
pr1 (x,y,u))
* x))
+ ((
- (
pr2 (x,y,u)))
* (
- y))) by
RLVECT_1: 24
.= ((
- ((
pr1 (x,y,u))
* x))
+ (
- ((
- (
pr2 (x,y,u)))
* y))) by
RLVECT_1: 25
.= (
- (
Ortm (x,y,u))) by
RLVECT_1: 31;
end;
theorem ::
ANALORT:5
Th5:
Gen (x,y) implies (
Ortm (x,y,(u
- v)))
= ((
Ortm (x,y,u))
- (
Ortm (x,y,v)))
proof
assume
A1:
Gen (x,y);
hence (
Ortm (x,y,(u
- v)))
= ((
Ortm (x,y,u))
+ (
Ortm (x,y,(
- v)))) by
Th1
.= ((
Ortm (x,y,u))
- (
Ortm (x,y,v))) by
A1,
Th4;
end;
theorem ::
ANALORT:6
Th6:
Gen (x,y) & (
Ortm (x,y,u))
= (
Ortm (x,y,v)) implies u
= v
proof
assume that
A1:
Gen (x,y) and
A2: (
Ortm (x,y,u))
= (
Ortm (x,y,v));
((((
pr1 (x,y,u))
* x)
+ ((
- (
pr2 (x,y,u)))
* y))
- (((
pr1 (x,y,v))
* x)
+ ((
- (
pr2 (x,y,v)))
* y)))
= (
0. V) by
A2,
RLVECT_1: 15;
then (((((
pr1 (x,y,u))
* x)
+ ((
- (
pr2 (x,y,u)))
* y))
- ((
pr1 (x,y,v))
* x))
- ((
- (
pr2 (x,y,v)))
* y))
= (
0. V) by
RLVECT_1: 27;
then (((((
pr1 (x,y,u))
* x)
+ (
- ((
pr1 (x,y,v))
* x)))
+ ((
- (
pr2 (x,y,u)))
* y))
- ((
- (
pr2 (x,y,v)))
* y))
= (
0. V) by
RLVECT_1:def 3;
then ((((
pr1 (x,y,u))
* x)
- ((
pr1 (x,y,v))
* x))
+ (((
- (
pr2 (x,y,u)))
* y)
- ((
- (
pr2 (x,y,v)))
* y)))
= (
0. V) by
RLVECT_1:def 3;
then ((((
pr1 (x,y,u))
- (
pr1 (x,y,v)))
* x)
+ (((
- (
pr2 (x,y,u)))
* y)
- ((
- (
pr2 (x,y,v)))
* y)))
= (
0. V) by
RLVECT_1: 35;
then
A3: ((((
pr1 (x,y,u))
- (
pr1 (x,y,v)))
* x)
+ (((
- (
pr2 (x,y,u)))
- (
- (
pr2 (x,y,v))))
* y))
= (
0. V) by
RLVECT_1: 35;
then
A4: ((
pr1 (x,y,u))
- (
pr1 (x,y,v)))
=
0 by
A1,
ANALMETR:def 1;
((
- (
pr2 (x,y,u)))
- (
- (
pr2 (x,y,v))))
=
0 by
A1,
A3,
ANALMETR:def 1;
hence u
= (((
pr1 (x,y,v))
* x)
+ ((
pr2 (x,y,v))
* y)) by
A1,
A4,
Lm5
.= v by
A1,
Lm5;
end;
theorem ::
ANALORT:7
Th7:
Gen (x,y) implies (
Ortm (x,y,(
Ortm (x,y,u))))
= u
proof
assume
A1:
Gen (x,y);
hence (
Ortm (x,y,(
Ortm (x,y,u))))
= (((
pr1 (x,y,u))
* x)
+ ((
- (
pr2 (x,y,(((
pr1 (x,y,u))
* x)
+ ((
- (
pr2 (x,y,u)))
* y)))))
* y)) by
GEOMTRAP:def 4
.= (((
pr1 (x,y,u))
* x)
+ ((
- (
- (
pr2 (x,y,u))))
* y)) by
A1,
GEOMTRAP:def 5
.= u by
A1,
Lm5;
end;
theorem ::
ANALORT:8
Th8:
Gen (x,y) implies ex v st u
= (
Ortm (x,y,v))
proof
assume
A1:
Gen (x,y);
take (
Ortm (x,y,u));
thus thesis by
A1,
Th7;
end;
definition
let V, x, y;
let u;
::
ANALORT:def2
func
Orte (x,y,u) ->
VECTOR of V equals (((
pr2 (x,y,u))
* x)
+ ((
- (
pr1 (x,y,u)))
* y));
correctness ;
end
theorem ::
ANALORT:9
Th9:
Gen (x,y) implies (
Orte (x,y,(
- v)))
= (
- (
Orte (x,y,v)))
proof
assume
A1:
Gen (x,y);
then
A2: (
- v)
= (
- (((
pr1 (x,y,v))
* x)
+ ((
pr2 (x,y,v))
* y))) by
Lm5
.= ((
- ((
pr1 (x,y,v))
* x))
+ (
- ((
pr2 (x,y,v))
* y))) by
RLVECT_1: 31
.= (((
pr1 (x,y,v))
* (
- x))
+ (
- ((
pr2 (x,y,v))
* y))) by
RLVECT_1: 25
.= (((
- (
pr1 (x,y,v)))
* x)
+ (
- ((
pr2 (x,y,v))
* y))) by
RLVECT_1: 24
.= (((
- (
pr1 (x,y,v)))
* x)
+ ((
pr2 (x,y,v))
* (
- y))) by
RLVECT_1: 25
.= (((
- (
pr1 (x,y,v)))
* x)
+ ((
- (
pr2 (x,y,v)))
* y)) by
RLVECT_1: 24;
hence (
Orte (x,y,(
- v)))
= (((
- (
pr2 (x,y,v)))
* x)
+ ((
- (
pr1 (x,y,(
- v))))
* y)) by
A1,
Lm6
.= (((
- (
pr2 (x,y,v)))
* x)
+ ((
- (
- (
pr1 (x,y,v))))
* y)) by
A1,
A2,
Lm6
.= (((
pr2 (x,y,v))
* (
- x))
+ ((
- (
- (
pr1 (x,y,v))))
* y)) by
RLVECT_1: 24
.= ((
- ((
pr2 (x,y,v))
* x))
+ ((
- (
- (
pr1 (x,y,v))))
* y)) by
RLVECT_1: 25
.= ((
- ((
pr2 (x,y,v))
* x))
+ ((
- (
pr1 (x,y,v)))
* (
- y))) by
RLVECT_1: 24
.= ((
- ((
pr2 (x,y,v))
* x))
+ (
- ((
- (
pr1 (x,y,v)))
* y))) by
RLVECT_1: 25
.= (
- (
Orte (x,y,v))) by
RLVECT_1: 31;
end;
theorem ::
ANALORT:10
Th10:
Gen (x,y) implies (
Orte (x,y,(u
+ v)))
= ((
Orte (x,y,u))
+ (
Orte (x,y,v)))
proof
assume
A1:
Gen (x,y);
hence (
Orte (x,y,(u
+ v)))
= (((
pr2 (x,y,(u
+ v)))
* x)
+ ((
- ((
pr1 (x,y,u))
+ (
pr1 (x,y,v))))
* y)) by
Lm7
.= ((((
pr2 (x,y,u))
+ (
pr2 (x,y,v)))
* x)
+ ((
- ((
pr1 (x,y,u))
+ (
pr1 (x,y,v))))
* y)) by
A1,
Lm7
.= ((((
pr2 (x,y,u))
* x)
+ ((
pr2 (x,y,v))
* x))
+ ((
- ((
pr1 (x,y,u))
+ (
pr1 (x,y,v))))
* y)) by
RLVECT_1:def 6
.= ((((
pr2 (x,y,u))
* x)
+ ((
pr2 (x,y,v))
* x))
+ (((
pr1 (x,y,u))
+ (
pr1 (x,y,v)))
* (
- y))) by
RLVECT_1: 24
.= ((((
pr2 (x,y,u))
* x)
+ ((
pr2 (x,y,v))
* x))
+ (
- (((
pr1 (x,y,u))
+ (
pr1 (x,y,v)))
* y))) by
RLVECT_1: 25
.= ((((
pr2 (x,y,u))
* x)
+ ((
pr2 (x,y,v))
* x))
+ (
- (((
pr1 (x,y,u))
* y)
+ ((
pr1 (x,y,v))
* y)))) by
RLVECT_1:def 6
.= ((((
pr2 (x,y,u))
* x)
+ ((
pr2 (x,y,v))
* x))
+ ((
- ((
pr1 (x,y,u))
* y))
+ (
- ((
pr1 (x,y,v))
* y)))) by
RLVECT_1: 31
.= (((
pr2 (x,y,u))
* x)
+ (((
pr2 (x,y,v))
* x)
+ ((
- ((
pr1 (x,y,u))
* y))
+ (
- ((
pr1 (x,y,v))
* y))))) by
RLVECT_1:def 3
.= (((
pr2 (x,y,u))
* x)
+ ((
- ((
pr1 (x,y,u))
* y))
+ (((
pr2 (x,y,v))
* x)
+ (
- ((
pr1 (x,y,v))
* y))))) by
RLVECT_1:def 3
.= ((((
pr2 (x,y,u))
* x)
+ (
- ((
pr1 (x,y,u))
* y)))
+ (((
pr2 (x,y,v))
* x)
+ (
- ((
pr1 (x,y,v))
* y)))) by
RLVECT_1:def 3
.= ((((
pr2 (x,y,u))
* x)
+ ((
pr1 (x,y,u))
* (
- y)))
+ (((
pr2 (x,y,v))
* x)
+ (
- ((
pr1 (x,y,v))
* y)))) by
RLVECT_1: 25
.= ((((
pr2 (x,y,u))
* x)
+ ((
pr1 (x,y,u))
* (
- y)))
+ (((
pr2 (x,y,v))
* x)
+ ((
pr1 (x,y,v))
* (
- y)))) by
RLVECT_1: 25
.= ((((
pr2 (x,y,u))
* x)
+ ((
- (
pr1 (x,y,u)))
* y))
+ (((
pr2 (x,y,v))
* x)
+ ((
pr1 (x,y,v))
* (
- y)))) by
RLVECT_1: 24
.= ((
Orte (x,y,u))
+ (
Orte (x,y,v))) by
RLVECT_1: 24;
end;
theorem ::
ANALORT:11
Th11:
Gen (x,y) implies (
Orte (x,y,(u
- v)))
= ((
Orte (x,y,u))
- (
Orte (x,y,v)))
proof
assume
A1:
Gen (x,y);
hence (
Orte (x,y,(u
- v)))
= ((
Orte (x,y,u))
+ (
Orte (x,y,(
- v)))) by
Th10
.= ((
Orte (x,y,u))
- (
Orte (x,y,v))) by
A1,
Th9;
end;
theorem ::
ANALORT:12
Th12:
Gen (x,y) implies (
Orte (x,y,(n
* u)))
= (n
* (
Orte (x,y,u)))
proof
assume
A1:
Gen (x,y);
hence (
Orte (x,y,(n
* u)))
= (((n
* (
pr2 (x,y,u)))
* x)
+ ((
- (
pr1 (x,y,(n
* u))))
* y)) by
Lm7
.= (((n
* (
pr2 (x,y,u)))
* x)
+ ((
- (n
* (
pr1 (x,y,u))))
* y)) by
A1,
Lm7
.= (((n
* (
pr2 (x,y,u)))
* x)
+ ((n
* (
pr1 (x,y,u)))
* (
- y))) by
RLVECT_1: 24
.= (((n
* (
pr2 (x,y,u)))
* x)
+ (
- ((n
* (
pr1 (x,y,u)))
* y))) by
RLVECT_1: 25
.= (((n
* (
pr2 (x,y,u)))
* x)
+ (
- (n
* ((
pr1 (x,y,u))
* y)))) by
RLVECT_1:def 7
.= (((n
* (
pr2 (x,y,u)))
* x)
+ (n
* (
- ((
pr1 (x,y,u))
* y)))) by
RLVECT_1: 25
.= ((n
* ((
pr2 (x,y,u))
* x))
+ (n
* (
- ((
pr1 (x,y,u))
* y)))) by
RLVECT_1:def 7
.= (n
* (((
pr2 (x,y,u))
* x)
+ (
- ((
pr1 (x,y,u))
* y)))) by
RLVECT_1:def 5
.= (n
* (((
pr2 (x,y,u))
* x)
+ ((
pr1 (x,y,u))
* (
- y)))) by
RLVECT_1: 25
.= (n
* (
Orte (x,y,u))) by
RLVECT_1: 24;
end;
theorem ::
ANALORT:13
Th13:
Gen (x,y) & (
Orte (x,y,u))
= (
Orte (x,y,v)) implies u
= v
proof
assume that
A1:
Gen (x,y) and
A2: (
Orte (x,y,u))
= (
Orte (x,y,v));
((((
pr2 (x,y,u))
* x)
+ ((
- (
pr1 (x,y,u)))
* y))
- (((
pr2 (x,y,v))
* x)
+ ((
- (
pr1 (x,y,v)))
* y)))
= (
0. V) by
A2,
RLVECT_1: 15;
then (((((
pr2 (x,y,u))
* x)
+ ((
- (
pr1 (x,y,u)))
* y))
- ((
pr2 (x,y,v))
* x))
- ((
- (
pr1 (x,y,v)))
* y))
= (
0. V) by
RLVECT_1: 27;
then (((((
pr2 (x,y,u))
* x)
+ (
- ((
pr2 (x,y,v))
* x)))
+ ((
- (
pr1 (x,y,u)))
* y))
- ((
- (
pr1 (x,y,v)))
* y))
= (
0. V) by
RLVECT_1:def 3;
then ((((
pr2 (x,y,u))
* x)
- ((
pr2 (x,y,v))
* x))
+ (((
- (
pr1 (x,y,u)))
* y)
- ((
- (
pr1 (x,y,v)))
* y)))
= (
0. V) by
RLVECT_1:def 3;
then ((((
pr2 (x,y,u))
- (
pr2 (x,y,v)))
* x)
+ (((
- (
pr1 (x,y,u)))
* y)
- ((
- (
pr1 (x,y,v)))
* y)))
= (
0. V) by
RLVECT_1: 35;
then
A3: ((((
pr2 (x,y,u))
- (
pr2 (x,y,v)))
* x)
+ (((
- (
pr1 (x,y,u)))
- (
- (
pr1 (x,y,v))))
* y))
= (
0. V) by
RLVECT_1: 35;
then
A4: ((
pr2 (x,y,u))
- (
pr2 (x,y,v)))
=
0 by
A1,
ANALMETR:def 1;
((
- (
pr1 (x,y,u)))
- (
- (
pr1 (x,y,v))))
=
0 by
A1,
A3,
ANALMETR:def 1;
hence u
= (((
pr1 (x,y,v))
* x)
+ ((
pr2 (x,y,v))
* y)) by
A1,
A4,
Lm5
.= v by
A1,
Lm5;
end;
theorem ::
ANALORT:14
Th14:
Gen (x,y) implies (
Orte (x,y,(
Orte (x,y,u))))
= (
- u)
proof
assume
A1:
Gen (x,y);
hence (
Orte (x,y,(
Orte (x,y,u))))
= (((
- (
pr1 (x,y,u)))
* x)
+ ((
- (
pr1 (x,y,(((
pr2 (x,y,u))
* x)
+ ((
- (
pr1 (x,y,u)))
* y)))))
* y)) by
GEOMTRAP:def 5
.= (((
- (
pr1 (x,y,u)))
* x)
+ ((
- (
pr2 (x,y,u)))
* y)) by
A1,
GEOMTRAP:def 4
.= (((
pr1 (x,y,u))
* (
- x))
+ ((
- (
pr2 (x,y,u)))
* y)) by
RLVECT_1: 24
.= ((
- ((
pr1 (x,y,u))
* x))
+ ((
- (
pr2 (x,y,u)))
* y)) by
RLVECT_1: 25
.= ((
- ((
pr1 (x,y,u))
* x))
+ ((
pr2 (x,y,u))
* (
- y))) by
RLVECT_1: 24
.= ((
- ((
pr1 (x,y,u))
* x))
+ (
- ((
pr2 (x,y,u))
* y))) by
RLVECT_1: 25
.= (
- (((
pr1 (x,y,u))
* x)
+ ((
pr2 (x,y,u))
* y))) by
RLVECT_1: 31
.= (
- u) by
A1,
Lm5;
end;
theorem ::
ANALORT:15
Th15:
Gen (x,y) implies ex v st (
Orte (x,y,v))
= u
proof
assume
A1:
Gen (x,y);
take v = (
- (
Orte (x,y,u)));
thus (
Orte (x,y,v))
= (
- (
Orte (x,y,(
Orte (x,y,u))))) by
A1,
Th9
.= (
- (
- u)) by
A1,
Th14
.= u by
RLVECT_1: 17;
end;
definition
let V;
let x, y, u, v, u1, v1;
::
ANALORT:def3
pred u,v,u1,v1
are_COrte_wrt x,y means ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (u1,v1);
::
ANALORT:def4
pred u,v,u1,v1
are_COrtm_wrt x,y means ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (u1,v1);
end
theorem ::
ANALORT:16
Th16:
Gen (x,y) implies ((u,v)
// (u1,v1) implies ((
Orte (x,y,u)),(
Orte (x,y,v)))
// ((
Orte (x,y,u1)),(
Orte (x,y,v1))))
proof
assume
A1:
Gen (x,y);
assume
A2: (u,v)
// (u1,v1);
now
assume that
A3: u
<> v and
A4: u1
<> v1;
consider a, b such that
A5:
0
< a and
A6:
0
< b and
A7: (a
* (v
- u))
= (b
* (v1
- u1)) by
A2,
A3,
A4,
ANALOAF:def 1;
(a
* ((
Orte (x,y,v))
- (
Orte (x,y,u))))
= (a
* (
Orte (x,y,(v
- u)))) by
A1,
Th11
.= (
Orte (x,y,(b
* (v1
- u1)))) by
A1,
A7,
Th12
.= (b
* (
Orte (x,y,(v1
- u1)))) by
A1,
Th12
.= (b
* ((
Orte (x,y,v1))
- (
Orte (x,y,u1)))) by
A1,
Th11;
hence thesis by
A5,
A6,
ANALOAF:def 1;
end;
hence thesis by
ANALOAF: 9;
end;
theorem ::
ANALORT:17
Th17:
Gen (x,y) implies ((u,v)
// (u1,v1) implies ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// ((
Ortm (x,y,u1)),(
Ortm (x,y,v1))))
proof
assume
A1:
Gen (x,y);
assume
A2: (u,v)
// (u1,v1);
now
assume
A3: u
<> v;
now
assume u1
<> v1;
then
consider a, b such that
A4:
0
< a and
A5:
0
< b and
A6: (a
* (v
- u))
= (b
* (v1
- u1)) by
A2,
A3,
ANALOAF:def 1;
(a
* ((
Ortm (x,y,v))
- (
Ortm (x,y,u))))
= (a
* (
Ortm (x,y,(v
- u)))) by
A1,
Th5
.= (
Ortm (x,y,(b
* (v1
- u1)))) by
A1,
A6,
Th2
.= (b
* (
Ortm (x,y,(v1
- u1)))) by
A1,
Th2
.= (b
* ((
Ortm (x,y,v1))
- (
Ortm (x,y,u1)))) by
A1,
Th5;
hence thesis by
A4,
A5,
ANALOAF:def 1;
end;
hence thesis by
ANALOAF: 9;
end;
hence thesis by
ANALOAF: 9;
end;
theorem ::
ANALORT:18
Th18:
Gen (x,y) implies ((u,u1,v,v1)
are_COrte_wrt (x,y) implies (v,v1,u1,u)
are_COrte_wrt (x,y))
proof
assume
A1:
Gen (x,y);
assume (u,u1,v,v1)
are_COrte_wrt (x,y);
then ((
Orte (x,y,u)),(
Orte (x,y,u1)))
// (v,v1);
then (v,v1)
// ((
Orte (x,y,u)),(
Orte (x,y,u1))) by
ANALOAF: 12;
then ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// ((
Orte (x,y,(
Orte (x,y,u)))),(
Orte (x,y,(
Orte (x,y,u1))))) by
A1,
Th16;
then ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// ((
- u),(
Orte (x,y,(
Orte (x,y,u1))))) by
A1,
Th14;
then ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// ((
- u),(
- u1)) by
A1,
Th14;
then
A2: ((
- u),(
- u1))
// ((
Orte (x,y,v)),(
Orte (x,y,v1))) by
ANALOAF: 12;
((
- u1)
- (
- u))
= (u
+ (
- u1)) by
RLVECT_1: 17
.= (u
- u1);
then
A3: ((
- u),(
- u1))
// (u1,u) by
ANALOAF: 15;
A4: (
- u)
<> (
- u1) implies thesis by
A2,
A3,
ANALOAF: 11;
now
assume (
- u)
= (
- u1);
then u
= (
- (
- u1)) by
RLVECT_1: 17
.= u1 by
RLVECT_1: 17;
then ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (u1,u) by
ANALOAF: 9;
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
ANALORT:19
Th19:
Gen (x,y) implies ((u,u1,v,v1)
are_COrtm_wrt (x,y) implies (v,v1,u,u1)
are_COrtm_wrt (x,y))
proof
assume
A1:
Gen (x,y);
assume (u,u1,v,v1)
are_COrtm_wrt (x,y);
then ((
Ortm (x,y,u)),(
Ortm (x,y,u1)))
// (v,v1);
then (v,v1)
// ((
Ortm (x,y,u)),(
Ortm (x,y,u1))) by
ANALOAF: 12;
then ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// ((
Ortm (x,y,(
Ortm (x,y,u)))),(
Ortm (x,y,(
Ortm (x,y,u1))))) by
A1,
Th17;
then ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// (u,(
Ortm (x,y,(
Ortm (x,y,u1))))) by
A1,
Th7;
then ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// (u,u1) by
A1,
Th7;
hence thesis;
end;
theorem ::
ANALORT:20
Th20: (u,u,v,w)
are_COrte_wrt (x,y) by
ANALOAF: 9;
theorem ::
ANALORT:21
(u,u,v,w)
are_COrtm_wrt (x,y) by
ANALOAF: 9;
theorem ::
ANALORT:22
(u,v,w,w)
are_COrte_wrt (x,y) by
ANALOAF: 9;
theorem ::
ANALORT:23
(u,v,w,w)
are_COrtm_wrt (x,y) by
ANALOAF: 9;
theorem ::
ANALORT:24
Th24:
Gen (x,y) implies (u,v,(
Orte (x,y,u)),(
Orte (x,y,v)))
are_Ort_wrt (x,y)
proof
assume
A1:
Gen (x,y);
set w = ((
Orte (x,y,v))
- (
Orte (x,y,u)));
A2: w
= (
Orte (x,y,(v
- u))) by
A1,
Th11
.= (((
pr2 (x,y,(v
- u)))
* x)
+ ((
- (
pr1 (x,y,(v
- u))))
* y));
(
PProJ (x,y,(v
- u),w))
= (((
pr1 (x,y,(v
- u)))
* (
pr1 (x,y,w)))
+ ((
pr2 (x,y,(v
- u)))
* (
pr2 (x,y,w)))) by
GEOMTRAP:def 6
.= (((
pr1 (x,y,(v
- u)))
* (
pr2 (x,y,(v
- u))))
+ ((
pr2 (x,y,(v
- u)))
* (
pr2 (x,y,w)))) by
A1,
A2,
Lm6
.= (((
pr1 (x,y,(v
- u)))
* (
pr2 (x,y,(v
- u))))
+ ((
- (
pr1 (x,y,(v
- u))))
* (
pr2 (x,y,(v
- u))))) by
A1,
A2,
Lm6
.=
0 ;
then ((v
- u),w)
are_Ort_wrt (x,y) by
A1,
GEOMTRAP: 32;
hence thesis by
ANALMETR:def 3;
end;
theorem ::
ANALORT:25
(u,v,(
Orte (x,y,u)),(
Orte (x,y,v)))
are_COrte_wrt (x,y) by
ANALOAF: 8;
theorem ::
ANALORT:26
(u,v,(
Ortm (x,y,u)),(
Ortm (x,y,v)))
are_COrtm_wrt (x,y) by
ANALOAF: 8;
theorem ::
ANALORT:27
Gen (x,y) implies ((u,v)
// (u1,v1) iff ex u2, v2 st u2
<> v2 & (u2,v2,u,v)
are_COrte_wrt (x,y) & (u2,v2,u1,v1)
are_COrte_wrt (x,y))
proof
assume
A1:
Gen (x,y);
A2: (u,v)
// (u1,v1) implies ex u2, v2 st u2
<> v2 & (u2,v2,u,v)
are_COrte_wrt (x,y) & (u2,v2,u1,v1)
are_COrte_wrt (x,y)
proof
assume
A3: (u,v)
// (u1,v1);
A4:
now
assume that
A5: u
= v and
A6: u1
= v1;
take u2 = (
0. V), v2 = x;
A7: ((
Orte (x,y,u2)),(
Orte (x,y,v2)))
// (u,v) by
A5,
ANALOAF: 9;
((
Orte (x,y,u2)),(
Orte (x,y,v2)))
// (u1,v1) by
A6,
ANALOAF: 9;
then
A8: (u2,v2,u1,v1)
are_COrte_wrt (x,y);
A9: (u2,v2,u,v)
are_COrte_wrt (x,y) by
A7;
u2
<> v2 by
A1,
Lm4;
hence thesis by
A8,
A9;
end;
A10:
now
assume
A11: u
<> v;
consider u2 such that
A12: (
Orte (x,y,u2))
= u by
A1,
Th15;
consider v2 such that
A13: (
Orte (x,y,v2))
= v by
A1,
Th15;
((
Orte (x,y,u2)),(
Orte (x,y,v2)))
// (u,v) by
A12,
A13,
ANALOAF: 8;
then
A14: (u2,v2,u,v)
are_COrte_wrt (x,y);
(u2,v2,u1,v1)
are_COrte_wrt (x,y) by
A3,
A12,
A13;
hence thesis by
A11,
A12,
A13,
A14;
end;
now
assume
A15: u1
<> v1;
consider u2 such that
A16: (
Orte (x,y,u2))
= u1 by
A1,
Th15;
consider v2 such that
A17: (
Orte (x,y,v2))
= v1 by
A1,
Th15;
((
Orte (x,y,u2)),(
Orte (x,y,v2)))
// (u1,v1) by
A16,
A17,
ANALOAF: 8;
then
A18: (u2,v2,u1,v1)
are_COrte_wrt (x,y);
((
Orte (x,y,u2)),(
Orte (x,y,v2)))
// (u,v) by
A3,
A16,
A17,
ANALOAF: 12;
then (u2,v2,u,v)
are_COrte_wrt (x,y);
hence thesis by
A15,
A16,
A17,
A18;
end;
hence thesis by
A4,
A10;
end;
(ex u2, v2 st u2
<> v2 & (u2,v2,u,v)
are_COrte_wrt (x,y) & (u2,v2,u1,v1)
are_COrte_wrt (x,y)) implies (u,v)
// (u1,v1) by
A1,
Th13,
ANALOAF: 11;
hence thesis by
A2;
end;
theorem ::
ANALORT:28
Gen (x,y) implies ((u,v)
// (u1,v1) iff ex u2, v2 st u2
<> v2 & (u2,v2,u,v)
are_COrtm_wrt (x,y) & (u2,v2,u1,v1)
are_COrtm_wrt (x,y))
proof
assume
A1:
Gen (x,y);
A2: (u,v)
// (u1,v1) implies ex u2, v2 st u2
<> v2 & (u2,v2,u,v)
are_COrtm_wrt (x,y) & (u2,v2,u1,v1)
are_COrtm_wrt (x,y)
proof
assume
A3: (u,v)
// (u1,v1);
A4:
now
assume that
A5: u
= v and
A6: u1
= v1;
take u2 = (
0. V), v2 = x;
A7: ((
Ortm (x,y,u2)),(
Ortm (x,y,v2)))
// (u,v) by
A5,
ANALOAF: 9;
((
Ortm (x,y,u2)),(
Ortm (x,y,v2)))
// (u1,v1) by
A6,
ANALOAF: 9;
then
A8: (u2,v2,u1,v1)
are_COrtm_wrt (x,y);
A9: (u2,v2,u,v)
are_COrtm_wrt (x,y) by
A7;
u2
<> v2 by
A1,
Lm4;
hence thesis by
A8,
A9;
end;
A10:
now
assume
A11: u
<> v;
consider u2 such that
A12: (
Ortm (x,y,u2))
= u by
A1,
Th8;
consider v2 such that
A13: (
Ortm (x,y,v2))
= v by
A1,
Th8;
((
Ortm (x,y,u2)),(
Ortm (x,y,v2)))
// (u,v) by
A12,
A13,
ANALOAF: 8;
then
A14: (u2,v2,u,v)
are_COrtm_wrt (x,y);
(u2,v2,u1,v1)
are_COrtm_wrt (x,y) by
A3,
A12,
A13;
hence thesis by
A11,
A12,
A13,
A14;
end;
now
assume
A15: u1
<> v1;
consider u2 such that
A16: (
Ortm (x,y,u2))
= u1 by
A1,
Th8;
consider v2 such that
A17: (
Ortm (x,y,v2))
= v1 by
A1,
Th8;
((
Ortm (x,y,u2)),(
Ortm (x,y,v2)))
// (u1,v1) by
A16,
A17,
ANALOAF: 8;
then
A18: (u2,v2,u1,v1)
are_COrtm_wrt (x,y);
((
Ortm (x,y,u2)),(
Ortm (x,y,v2)))
// (u,v) by
A3,
A16,
A17,
ANALOAF: 12;
then (u2,v2,u,v)
are_COrtm_wrt (x,y);
hence thesis by
A15,
A16,
A17,
A18;
end;
hence thesis by
A4,
A10;
end;
(ex u2, v2 st u2
<> v2 & (u2,v2,u,v)
are_COrtm_wrt (x,y) & (u2,v2,u1,v1)
are_COrtm_wrt (x,y)) implies (u,v)
// (u1,v1) by
A1,
Th6,
ANALOAF: 11;
hence thesis by
A2;
end;
theorem ::
ANALORT:29
Gen (x,y) implies ((u,v,u1,v1)
are_Ort_wrt (x,y) iff (u,v,u1,v1)
are_COrte_wrt (x,y) or (u,v,v1,u1)
are_COrte_wrt (x,y))
proof
assume
A1:
Gen (x,y);
A2:
now
assume u
= v;
then (v
- u)
= (
0. V) by
RLVECT_1: 15;
then ((v
- u),(v1
- u1))
are_Ort_wrt (x,y) by
A1,
ANALMETR: 5;
hence (u,v,u1,v1)
are_Ort_wrt (x,y) by
ANALMETR:def 3;
end;
now
assume
A3: u
<> v;
set u2 = (
Orte (x,y,u)), v2 = (
Orte (x,y,v));
A4: (v
- u)
<> (
0. V) by
A3,
RLVECT_1: 21;
(u,v,u2,v2)
are_Ort_wrt (x,y) by
A1,
Th24;
then
A5: ((v
- u),(v2
- u2))
are_Ort_wrt (x,y) by
ANALMETR:def 3;
A6:
now
assume (u,v,u1,v1)
are_Ort_wrt (x,y);
then ((v
- u),(v1
- u1))
are_Ort_wrt (x,y) by
ANALMETR:def 3;
then ex a, b st (a
* (v2
- u2))
= (b
* (v1
- u1)) & (a
<>
0 or b
<>
0 ) by
A1,
A4,
A5,
ANALMETR: 9;
then (u2,v2)
// (u1,v1) or (u2,v2)
// (v1,u1) by
ANALMETR: 14;
hence (u,v,u1,v1)
are_COrte_wrt (x,y) or (u,v,v1,u1)
are_COrte_wrt (x,y);
end;
now
assume (u,v,u1,v1)
are_COrte_wrt (x,y) or (u,v,v1,u1)
are_COrte_wrt (x,y);
then (u2,v2)
// (u1,v1) or (u2,v2)
// (v1,u1);
then
consider a, b such that
A7: (a
* (v2
- u2))
= (b
* (v1
- u1)) and
A8: a
<>
0 or b
<>
0 by
ANALMETR: 14;
A9:
now
assume
A10: b
=
0 ;
then (
0. V)
= (a
* (v2
- u2)) by
A7,
RLVECT_1: 10;
then (v2
- u2)
= (
0. V) by
A8,
A10,
RLVECT_1: 11;
then v2
= u2 by
RLVECT_1: 21;
then u
= v by
A1,
Th13;
then (v
- u)
= (
0. V) by
RLVECT_1: 15;
then ((v
- u),(v1
- u1))
are_Ort_wrt (x,y) by
A1,
ANALMETR: 5;
hence (u,v,u1,v1)
are_Ort_wrt (x,y) by
ANALMETR:def 3;
end;
now
assume
A11: b
<>
0 ;
(((b
" )
* a)
* (v2
- u2))
= ((b
" )
* (b
* (v1
- u1))) by
A7,
RLVECT_1:def 7;
then (((b
" )
* a)
* (v2
- u2))
= (((b
" )
* b)
* (v1
- u1)) by
RLVECT_1:def 7;
then (((b
" )
* a)
* (v2
- u2))
= (1
* (v1
- u1)) by
A11,
XCMPLX_0:def 7;
then (v1
- u1)
= (((b
" )
* a)
* (v2
- u2)) by
RLVECT_1:def 8;
then ((v
- u),(v1
- u1))
are_Ort_wrt (x,y) by
A5,
ANALMETR: 7;
hence (u,v,u1,v1)
are_Ort_wrt (x,y) by
ANALMETR:def 3;
end;
hence (u,v,u1,v1)
are_Ort_wrt (x,y) by
A9;
end;
hence thesis by
A6;
end;
hence thesis by
A2,
Th20;
end;
theorem ::
ANALORT:30
Gen (x,y) & (u,v,u1,v1)
are_COrte_wrt (x,y) & (u,v,v1,u1)
are_COrte_wrt (x,y) implies u
= v or u1
= v1
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,v,u1,v1)
are_COrte_wrt (x,y) and
A3: (u,v,v1,u1)
are_COrte_wrt (x,y);
assume that
A4: u
<> v and
A5: u1
<> v1;
A6: ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (u1,v1) by
A2;
A7: ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (v1,u1) by
A3;
(
Orte (x,y,u))
<> (
Orte (x,y,v)) by
A1,
A4,
Th13;
hence contradiction by
A5,
A6,
A7,
ANALOAF: 10,
ANALOAF: 11;
end;
theorem ::
ANALORT:31
Gen (x,y) & (u,v,u1,v1)
are_COrtm_wrt (x,y) & (u,v,v1,u1)
are_COrtm_wrt (x,y) implies u
= v or u1
= v1
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,v,u1,v1)
are_COrtm_wrt (x,y) and
A3: (u,v,v1,u1)
are_COrtm_wrt (x,y);
assume that
A4: u
<> v and
A5: u1
<> v1;
A6: ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (u1,v1) by
A2;
A7: ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (v1,u1) by
A3;
(
Ortm (x,y,u))
<> (
Ortm (x,y,v)) by
A1,
A4,
Th6;
hence contradiction by
A5,
A6,
A7,
ANALOAF: 10,
ANALOAF: 11;
end;
theorem ::
ANALORT:32
Gen (x,y) & (u,v,u1,v1)
are_COrte_wrt (x,y) & (u,v,u1,w)
are_COrte_wrt (x,y) implies (u,v,v1,w)
are_COrte_wrt (x,y) or (u,v,w,v1)
are_COrte_wrt (x,y)
proof
assume that
A1:
Gen (x,y) and
A2: (u,v,u1,v1)
are_COrte_wrt (x,y) and
A3: (u,v,u1,w)
are_COrte_wrt (x,y);
A4: ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (u1,v1) by
A2;
A5: ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (u1,w) by
A3;
now
assume
A6: u
<> v;
now
assume that
A7: u1
<> v1 and
A8: u1
<> w;
A9: (u1,v1)
// (u1,w) by
A1,
A4,
A5,
A6,
Th13,
ANALOAF: 11;
A10:
now
assume
A11: (u1,v1)
// (v1,w);
(u1,v1)
// ((
Orte (x,y,u)),(
Orte (x,y,v))) by
A4,
ANALOAF: 12;
then ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (v1,w) by
A7,
A11,
ANALOAF: 11;
hence thesis;
end;
now
assume
A12: (u1,w)
// (w,v1);
(u1,w)
// ((
Orte (x,y,u)),(
Orte (x,y,v))) by
A5,
ANALOAF: 12;
then ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (w,v1) by
A8,
A12,
ANALOAF: 11;
hence thesis;
end;
hence thesis by
A9,
A10,
ANALOAF: 14;
end;
hence thesis by
A2,
A3;
end;
hence thesis by
Th20;
end;
theorem ::
ANALORT:33
Gen (x,y) & (u,v,u1,v1)
are_COrtm_wrt (x,y) & (u,v,u1,w)
are_COrtm_wrt (x,y) implies (u,v,v1,w)
are_COrtm_wrt (x,y) or (u,v,w,v1)
are_COrtm_wrt (x,y)
proof
assume that
A1:
Gen (x,y) and
A2: (u,v,u1,v1)
are_COrtm_wrt (x,y) and
A3: (u,v,u1,w)
are_COrtm_wrt (x,y);
A4: ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (u1,v1) by
A2;
A5: ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (u1,w) by
A3;
A6:
now
assume that
A7: u
<> v and
A8: u1
<> v1;
(u1,v1)
// (u1,w) by
A1,
A4,
A5,
A7,
Th6,
ANALOAF: 11;
then
A9: (u1,v1)
// (v1,w) or (u1,w)
// (w,v1) by
ANALOAF: 14;
now
assume
A10: u1
<> w;
A11: (u1,v1)
// ((
Ortm (x,y,u)),(
Ortm (x,y,v))) by
A4,
ANALOAF: 12;
(u1,w)
// ((
Ortm (x,y,u)),(
Ortm (x,y,v))) by
A5,
ANALOAF: 12;
then ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (v1,w) or ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (w,v1) by
A8,
A9,
A10,
A11,
ANALOAF: 11;
hence thesis;
end;
hence thesis by
A2;
end;
u
= v implies thesis by
ANALOAF: 9;
hence thesis by
A3,
A6;
end;
theorem ::
ANALORT:34
(u,v,u1,v1)
are_COrte_wrt (x,y) implies (v,u,v1,u1)
are_COrte_wrt (x,y) by
ANALOAF: 12;
theorem ::
ANALORT:35
(u,v,u1,v1)
are_COrtm_wrt (x,y) implies (v,u,v1,u1)
are_COrtm_wrt (x,y) by
ANALOAF: 12;
theorem ::
ANALORT:36
Gen (x,y) & (u,v,u1,v1)
are_COrte_wrt (x,y) & (u,v,v1,w)
are_COrte_wrt (x,y) implies (u,v,u1,w)
are_COrte_wrt (x,y)
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,v,u1,v1)
are_COrte_wrt (x,y) and
A3: (u,v,v1,w)
are_COrte_wrt (x,y);
A4: ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (u1,v1) by
A2;
A5: ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (v1,w) by
A3;
A6: (u1,v1)
// ((
Orte (x,y,u)),(
Orte (x,y,v))) by
A4,
ANALOAF: 12;
A7:
now
assume u
<> v;
then (u1,v1)
// (v1,w) by
A1,
A4,
A5,
Th13,
ANALOAF: 11;
then
A8: (u1,v1)
// (u1,w) by
ANALOAF: 13;
u1
<> v1 implies thesis by
A6,
A8,
ANALOAF: 11;
hence thesis by
A3;
end;
u
= v implies thesis by
ANALOAF: 9;
hence thesis by
A7;
end;
theorem ::
ANALORT:37
Gen (x,y) & (u,v,u1,v1)
are_COrtm_wrt (x,y) & (u,v,v1,w)
are_COrtm_wrt (x,y) implies (u,v,u1,w)
are_COrtm_wrt (x,y)
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,v,u1,v1)
are_COrtm_wrt (x,y) and
A3: (u,v,v1,w)
are_COrtm_wrt (x,y);
A4: ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (u1,v1) by
A2;
A5: ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (v1,w) by
A3;
A6: (u1,v1)
// ((
Ortm (x,y,u)),(
Ortm (x,y,v))) by
A4,
ANALOAF: 12;
A7:
now
assume u
<> v;
then (u1,v1)
// (v1,w) by
A1,
A4,
A5,
Th6,
ANALOAF: 11;
then
A8: (u1,v1)
// (u1,w) by
ANALOAF: 13;
u1
<> v1 implies thesis by
A6,
A8,
ANALOAF: 11;
hence thesis by
A3;
end;
u
= v implies thesis by
ANALOAF: 9;
hence thesis by
A7;
end;
theorem ::
ANALORT:38
Gen (x,y) implies for u, v, w holds ex u1 st w
<> u1 & (w,u1,u,v)
are_COrte_wrt (x,y)
proof
assume
A1:
Gen (x,y);
let u, v, w;
A2:
now
assume
A3: u
= v;
take u1 = (w
+ x);
((
Orte (x,y,w)),(
Orte (x,y,u1)))
// (u,v) by
A3,
ANALOAF: 9;
then
A4: (w,u1,u,v)
are_COrte_wrt (x,y);
now
assume w
= u1;
then x
= (
0. V) by
RLVECT_1: 9;
hence contradiction by
A1,
Lm4;
end;
hence thesis by
A4;
end;
now
assume
A5: u
<> v;
consider u2 such that
A6: (
Orte (x,y,u2))
= u by
A1,
Th15;
consider v2 such that
A7: (
Orte (x,y,v2))
= v by
A1,
Th15;
take u1 = ((v2
+ w)
- u2);
(u2,v2)
// (w,u1) by
ANALOAF: 16;
then (w,u1)
// (u2,v2) by
ANALOAF: 12;
then ((
Orte (x,y,w)),(
Orte (x,y,u1)))
// ((
Orte (x,y,u2)),(
Orte (x,y,v2))) by
A1,
Th16;
then
A8: (w,u1,u,v)
are_COrte_wrt (x,y) by
A6,
A7;
now
assume w
= u1;
then w
= (w
+ (v2
- u2)) by
RLVECT_1:def 3;
then (v2
- u2)
= (
0. V) by
RLVECT_1: 9;
hence contradiction by
A5,
A6,
A7,
RLVECT_1: 21;
end;
hence thesis by
A8;
end;
hence thesis by
A2;
end;
theorem ::
ANALORT:39
Gen (x,y) implies for u, v, w holds ex u1 st w
<> u1 & (w,u1,u,v)
are_COrtm_wrt (x,y)
proof
assume
A1:
Gen (x,y);
let u, v, w;
A2:
now
assume
A3: u
= v;
take u1 = (w
+ x);
((
Ortm (x,y,w)),(
Ortm (x,y,u1)))
// (u,v) by
A3,
ANALOAF: 9;
then
A4: (w,u1,u,v)
are_COrtm_wrt (x,y);
now
assume w
= u1;
then x
= (
0. V) by
RLVECT_1: 9;
hence contradiction by
A1,
Lm4;
end;
hence thesis by
A4;
end;
now
assume
A5: u
<> v;
consider u2 such that
A6: (
Ortm (x,y,u2))
= u by
A1,
Th8;
consider v2 such that
A7: (
Ortm (x,y,v2))
= v by
A1,
Th8;
take u1 = ((v2
+ w)
- u2);
(u2,v2)
// (w,u1) by
ANALOAF: 16;
then (w,u1)
// (u2,v2) by
ANALOAF: 12;
then ((
Ortm (x,y,w)),(
Ortm (x,y,u1)))
// ((
Ortm (x,y,u2)),(
Ortm (x,y,v2))) by
A1,
Th17;
then
A8: (w,u1,u,v)
are_COrtm_wrt (x,y) by
A6,
A7;
now
assume w
= u1;
then w
= (w
+ (v2
- u2)) by
RLVECT_1:def 3;
then (v2
- u2)
= (
0. V) by
RLVECT_1: 9;
hence contradiction by
A5,
A6,
A7,
RLVECT_1: 21;
end;
hence thesis by
A8;
end;
hence thesis by
A2;
end;
theorem ::
ANALORT:40
Th40:
Gen (x,y) implies for u, v, w holds ex u1 st w
<> u1 & (u,v,w,u1)
are_COrte_wrt (x,y)
proof
assume
A1:
Gen (x,y);
let u, v, w;
A2:
now
assume
A3: u
= v;
take u1 = (w
+ x);
((
Orte (x,y,u)),(
Orte (x,y,v)))
// (w,u1) by
A3,
ANALOAF: 9;
then
A4: (u,v,w,u1)
are_COrte_wrt (x,y);
now
assume w
= u1;
then x
= (
0. V) by
RLVECT_1: 9;
hence contradiction by
A1,
Lm4;
end;
hence thesis by
A4;
end;
now
assume
A5: u
<> v;
consider u2 such that
A6: (
Orte (x,y,u2))
= u by
A1,
Th15;
consider v2 such that
A7: (
Orte (x,y,v2))
= v by
A1,
Th15;
take u1 = ((u2
+ w)
- v2);
(v2,u2)
// (w,u1) by
ANALOAF: 16;
then ((
Orte (x,y,v2)),(
Orte (x,y,u2)))
// ((
Orte (x,y,w)),(
Orte (x,y,u1))) by
A1,
Th16;
then ((
Orte (x,y,w)),(
Orte (x,y,u1)))
// (v,u) by
A6,
A7,
ANALOAF: 12;
then ((
Orte (x,y,u1)),(
Orte (x,y,w)))
// (u,v) by
ANALOAF: 12;
then
A8: (u1,w,u,v)
are_COrte_wrt (x,y);
now
assume w
= u1;
then w
= (w
+ (u2
- v2)) by
RLVECT_1:def 3;
then (u2
- v2)
= (
0. V) by
RLVECT_1: 9;
hence contradiction by
A5,
A6,
A7,
RLVECT_1: 21;
end;
hence thesis by
A1,
A8,
Th18;
end;
hence thesis by
A2;
end;
theorem ::
ANALORT:41
Th41:
Gen (x,y) implies for u, v, w holds ex u1 st w
<> u1 & (u,v,w,u1)
are_COrtm_wrt (x,y)
proof
assume
A1:
Gen (x,y);
let u, v, w;
A2:
now
assume
A3: u
= v;
take u1 = (w
+ x);
((
Ortm (x,y,w)),(
Ortm (x,y,u1)))
// (u,v) by
A3,
ANALOAF: 9;
then
A4: (w,u1,u,v)
are_COrtm_wrt (x,y);
w
<> u1
proof
assume w
= u1;
then x
= (
0. V) by
RLVECT_1: 9;
hence contradiction by
A1,
Lm4;
end;
hence thesis by
A1,
A4,
Th19;
end;
now
assume
A5: u
<> v;
consider u2 such that
A6: (
Ortm (x,y,u2))
= u by
A1,
Th8;
consider v2 such that
A7: (
Ortm (x,y,v2))
= v by
A1,
Th8;
take u1 = ((v2
+ w)
- u2);
(u2,v2)
// (w,u1) by
ANALOAF: 16;
then (w,u1)
// (u2,v2) by
ANALOAF: 12;
then ((
Ortm (x,y,w)),(
Ortm (x,y,u1)))
// ((
Ortm (x,y,u2)),(
Ortm (x,y,v2))) by
A1,
Th17;
then
A8: (w,u1,u,v)
are_COrtm_wrt (x,y) by
A6,
A7;
w
<> u1
proof
assume w
= u1;
then w
= (w
+ (v2
- u2)) by
RLVECT_1:def 3;
then (v2
- u2)
= (
0. V) by
RLVECT_1: 9;
hence contradiction by
A5,
A6,
A7,
RLVECT_1: 21;
end;
hence thesis by
A1,
A8,
Th19;
end;
hence thesis by
A2;
end;
theorem ::
ANALORT:42
Gen (x,y) & (u,u1,v,v1)
are_COrte_wrt (x,y) & (w,w1,v,v1)
are_COrte_wrt (x,y) & (w,w1,u2,v2)
are_COrte_wrt (x,y) implies w
= w1 or v
= v1 or (u,u1,u2,v2)
are_COrte_wrt (x,y)
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,u1,v,v1)
are_COrte_wrt (x,y) and
A3: (w,w1,v,v1)
are_COrte_wrt (x,y) and
A4: (w,w1,u2,v2)
are_COrte_wrt (x,y);
((
Orte (x,y,u)),(
Orte (x,y,u1)))
// (v,v1) by
A2;
then
A5: (v,v1)
// ((
Orte (x,y,u)),(
Orte (x,y,u1))) by
ANALOAF: 12;
((
Orte (x,y,w)),(
Orte (x,y,w1)))
// (v,v1) by
A3;
then
A6: (v,v1)
// ((
Orte (x,y,w)),(
Orte (x,y,w1))) by
ANALOAF: 12;
A7: ((
Orte (x,y,w)),(
Orte (x,y,w1)))
// (u2,v2) by
A4;
now
assume that
A8: w
<> w1 and
A9: v
<> v1;
((
Orte (x,y,w)),(
Orte (x,y,w1)))
// ((
Orte (x,y,u)),(
Orte (x,y,u1))) by
A5,
A6,
A9,
ANALOAF: 11;
then ((
Orte (x,y,u)),(
Orte (x,y,u1)))
// (u2,v2) by
A1,
A7,
A8,
Th13,
ANALOAF: 11;
hence (u,u1,u2,v2)
are_COrte_wrt (x,y);
end;
hence thesis;
end;
theorem ::
ANALORT:43
Gen (x,y) & (u,u1,v,v1)
are_COrtm_wrt (x,y) & (w,w1,v,v1)
are_COrtm_wrt (x,y) & (w,w1,u2,v2)
are_COrtm_wrt (x,y) implies w
= w1 or v
= v1 or (u,u1,u2,v2)
are_COrtm_wrt (x,y)
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,u1,v,v1)
are_COrtm_wrt (x,y) and
A3: (w,w1,v,v1)
are_COrtm_wrt (x,y) and
A4: (w,w1,u2,v2)
are_COrtm_wrt (x,y);
((
Ortm (x,y,u)),(
Ortm (x,y,u1)))
// (v,v1) by
A2;
then
A5: (v,v1)
// ((
Ortm (x,y,u)),(
Ortm (x,y,u1))) by
ANALOAF: 12;
((
Ortm (x,y,w)),(
Ortm (x,y,w1)))
// (v,v1) by
A3;
then
A6: (v,v1)
// ((
Ortm (x,y,w)),(
Ortm (x,y,w1))) by
ANALOAF: 12;
A7: ((
Ortm (x,y,w)),(
Ortm (x,y,w1)))
// (u2,v2) by
A4;
now
assume that
A8: w
<> w1 and
A9: v
<> v1;
((
Ortm (x,y,w)),(
Ortm (x,y,w1)))
// ((
Ortm (x,y,u)),(
Ortm (x,y,u1))) by
A5,
A6,
A9,
ANALOAF: 11;
then ((
Ortm (x,y,u)),(
Ortm (x,y,u1)))
// (u2,v2) by
A1,
A7,
A8,
Th6,
ANALOAF: 11;
hence (u,u1,u2,v2)
are_COrtm_wrt (x,y);
end;
hence thesis;
end;
theorem ::
ANALORT:44
Gen (x,y) & (u,u1,v,v1)
are_COrte_wrt (x,y) & (v,v1,w,w1)
are_COrte_wrt (x,y) & (u2,v2,w,w1)
are_COrte_wrt (x,y) implies (u,u1,u2,v2)
are_COrte_wrt (x,y) or v
= v1 or w
= w1
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,u1,v,v1)
are_COrte_wrt (x,y) and
A3: (v,v1,w,w1)
are_COrte_wrt (x,y) and
A4: (u2,v2,w,w1)
are_COrte_wrt (x,y);
(v,v1,u1,u)
are_COrte_wrt (x,y) by
A1,
A2,
Th18;
then
A5: ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (u1,u);
((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (w,w1) by
A3;
then
A6: (w,w1)
// ((
Orte (x,y,v)),(
Orte (x,y,v1))) by
ANALOAF: 12;
((
Orte (x,y,u2)),(
Orte (x,y,v2)))
// (w,w1) by
A4;
then
A7: (w,w1)
// ((
Orte (x,y,u2)),(
Orte (x,y,v2))) by
ANALOAF: 12;
now
assume that
A8: w
<> w1 and
A9: v
<> v1;
((
Orte (x,y,v)),(
Orte (x,y,v1)))
// ((
Orte (x,y,u2)),(
Orte (x,y,v2))) by
A6,
A7,
A8,
ANALOAF: 11;
then ((
Orte (x,y,u2)),(
Orte (x,y,v2)))
// (u1,u) by
A1,
A5,
A9,
Th13,
ANALOAF: 11;
then ((
Orte (x,y,v2)),(
Orte (x,y,u2)))
// (u,u1) by
ANALOAF: 12;
then (v2,u2,u,u1)
are_COrte_wrt (x,y);
hence thesis by
A1,
Th18;
end;
hence thesis;
end;
theorem ::
ANALORT:45
Gen (x,y) & (u,u1,v,v1)
are_COrtm_wrt (x,y) & (v,v1,w,w1)
are_COrtm_wrt (x,y) & (u2,v2,w,w1)
are_COrtm_wrt (x,y) implies (u,u1,u2,v2)
are_COrtm_wrt (x,y) or v
= v1 or w
= w1
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,u1,v,v1)
are_COrtm_wrt (x,y) and
A3: (v,v1,w,w1)
are_COrtm_wrt (x,y) and
A4: (u2,v2,w,w1)
are_COrtm_wrt (x,y);
((
Ortm (x,y,u)),(
Ortm (x,y,u1)))
// (v,v1) by
A2;
then
A5: (v,v1)
// ((
Ortm (x,y,u)),(
Ortm (x,y,u1))) by
ANALOAF: 12;
(w,w1,v,v1)
are_COrtm_wrt (x,y) by
A1,
A3,
Th19;
then ((
Ortm (x,y,w)),(
Ortm (x,y,w1)))
// (v,v1);
then
A6: (v,v1)
// ((
Ortm (x,y,w)),(
Ortm (x,y,w1))) by
ANALOAF: 12;
(w,w1,u2,v2)
are_COrtm_wrt (x,y) by
A1,
A4,
Th19;
then
A7: ((
Ortm (x,y,w)),(
Ortm (x,y,w1)))
// (u2,v2);
now
assume that
A8: w
<> w1 and
A9: v
<> v1;
((
Ortm (x,y,w)),(
Ortm (x,y,w1)))
// ((
Ortm (x,y,u)),(
Ortm (x,y,u1))) by
A5,
A6,
A9,
ANALOAF: 11;
then ((
Ortm (x,y,u)),(
Ortm (x,y,u1)))
// (u2,v2) by
A1,
A7,
A8,
Th6,
ANALOAF: 11;
hence thesis;
end;
hence thesis;
end;
theorem ::
ANALORT:46
Gen (x,y) & (u,u1,v,v1)
are_COrte_wrt (x,y) & (v,v1,w,w1)
are_COrte_wrt (x,y) & (u,u1,u2,v2)
are_COrte_wrt (x,y) implies (u2,v2,w,w1)
are_COrte_wrt (x,y) or v
= v1 or u
= u1
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,u1,v,v1)
are_COrte_wrt (x,y) and
A3: (v,v1,w,w1)
are_COrte_wrt (x,y) and
A4: (u,u1,u2,v2)
are_COrte_wrt (x,y);
A5: ((
Orte (x,y,u)),(
Orte (x,y,u1)))
// (v,v1) by
A2;
A6: ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (w,w1) by
A3;
A7: ((
Orte (x,y,u)),(
Orte (x,y,u1)))
// (u2,v2) by
A4;
now
assume that
A8: u
<> u1 and
A9: v
<> v1;
(v,v1)
// (u2,v2) by
A1,
A5,
A7,
A8,
Th13,
ANALOAF: 11;
then ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// ((
Orte (x,y,u2)),(
Orte (x,y,v2))) by
A1,
Th16;
then ((
Orte (x,y,u2)),(
Orte (x,y,v2)))
// (w,w1) by
A1,
A6,
A9,
Th13,
ANALOAF: 11;
hence thesis;
end;
hence thesis;
end;
theorem ::
ANALORT:47
Gen (x,y) & (u,u1,v,v1)
are_COrtm_wrt (x,y) & (v,v1,w,w1)
are_COrtm_wrt (x,y) & (u,u1,u2,v2)
are_COrtm_wrt (x,y) implies (u2,v2,w,w1)
are_COrtm_wrt (x,y) or v
= v1 or u
= u1
proof
assume
A1:
Gen (x,y);
assume that
A2: (u,u1,v,v1)
are_COrtm_wrt (x,y) and
A3: (v,v1,w,w1)
are_COrtm_wrt (x,y) and
A4: (u,u1,u2,v2)
are_COrtm_wrt (x,y);
A5: ((
Ortm (x,y,u)),(
Ortm (x,y,u1)))
// (v,v1) by
A2;
A6: ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// (w,w1) by
A3;
A7: ((
Ortm (x,y,u)),(
Ortm (x,y,u1)))
// (u2,v2) by
A4;
now
assume that
A8: u
<> u1 and
A9: v
<> v1;
(v,v1)
// (u2,v2) by
A1,
A5,
A7,
A8,
Th6,
ANALOAF: 11;
then ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// ((
Ortm (x,y,u2)),(
Ortm (x,y,v2))) by
A1,
Th17;
then ((
Ortm (x,y,u2)),(
Ortm (x,y,v2)))
// (w,w1) by
A1,
A6,
A9,
Th6,
ANALOAF: 11;
hence thesis;
end;
hence thesis;
end;
theorem ::
ANALORT:48
Gen (x,y) implies for v, w, u1, v1, w1 holds not (v,v1,w,u1)
are_COrte_wrt (x,y) & not (v,v1,u1,w)
are_COrte_wrt (x,y) & (u1,w1,u1,w)
are_COrte_wrt (x,y) implies ex u2 st ((v,v1,v,u2)
are_COrte_wrt (x,y) or (v,v1,u2,v)
are_COrte_wrt (x,y)) & ((u1,w1,u1,u2)
are_COrte_wrt (x,y) or (u1,w1,u2,u1)
are_COrte_wrt (x,y))
proof
assume
A1:
Gen (x,y);
let v, w, u1, v1, w1;
consider u such that
A2: v
<> u and
A3: (v,v1,v,u)
are_COrte_wrt (x,y) by
A1,
Th40;
assume that
A4: not (v,v1,w,u1)
are_COrte_wrt (x,y) and
A5: not (v,v1,u1,w)
are_COrte_wrt (x,y) and
A6: (u1,w1,u1,w)
are_COrte_wrt (x,y);
A7: not ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (w,u1) by
A4;
A8: ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (v,u) by
A3;
A9: ((
Orte (x,y,u1)),(
Orte (x,y,w1)))
// (u1,w) by
A6;
A10: not ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (u1,w) by
A5;
A11: (v,u)
// ((
Orte (x,y,v)),(
Orte (x,y,v1))) by
A8,
ANALOAF: 12;
A12: (u1,w)
// ((
Orte (x,y,u1)),(
Orte (x,y,w1))) by
A9,
ANALOAF: 12;
A13: u1
<> w by
A7,
ANALOAF: 9;
A14: not (v,u)
// (u1,w) by
A2,
A10,
A11,
ANALOAF: 11;
A15: not (v,u)
// (w,u1) by
A2,
A7,
A11,
ANALOAF: 11;
Gen (x,y) implies ex u, v st for w holds ex a, b st ((a
* u)
+ (b
* v))
= w
proof
assume
A16:
Gen (x,y);
take x, y;
thus thesis by
A16,
ANALMETR:def 1;
end;
then
consider u2 such that
A17: (v,u)
// (v,u2) or (v,u)
// (u2,v) and
A18: (u1,w)
// (u1,u2) or (u1,w)
// (u2,u1) by
A1,
A14,
A15,
ANALOAF: 21;
((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (v,u2) or ((
Orte (x,y,v)),(
Orte (x,y,v1)))
// (u2,v) by
A2,
A11,
A17,
ANALOAF: 11;
then
A19: (v,v1,v,u2)
are_COrte_wrt (x,y) or (v,v1,u2,v)
are_COrte_wrt (x,y);
((
Orte (x,y,u1)),(
Orte (x,y,w1)))
// (u1,u2) or ((
Orte (x,y,u1)),(
Orte (x,y,w1)))
// (u2,u1) by
A12,
A13,
A18,
ANALOAF: 11;
then (u1,w1,u1,u2)
are_COrte_wrt (x,y) or (u1,w1,u2,u1)
are_COrte_wrt (x,y);
hence thesis by
A19;
end;
theorem ::
ANALORT:49
Gen (x,y) implies ex u, v, w st ((u,v,u,w)
are_COrte_wrt (x,y) & for v1, w1 st (v1,w1,u,v)
are_COrte_wrt (x,y) holds ( not (v1,w1,u,w)
are_COrte_wrt (x,y) & not (v1,w1,w,u)
are_COrte_wrt (x,y) or v1
= w1))
proof
assume
A1:
Gen (x,y);
Gen (x,y) implies ex u, v st u
<> v
proof
assume
A2:
Gen (x,y);
take x, (
0. V);
thus thesis by
A2,
Lm4;
end;
then
consider u, v such that
A3: u
<> v by
A1;
take u, v;
consider w such that
A4: w
<> u and
A5: (u,v,u,w)
are_COrte_wrt (x,y) by
A1,
Th40;
take w;
thus (u,v,u,w)
are_COrte_wrt (x,y) by
A5;
A6: ((
Orte (x,y,u)),(
Orte (x,y,v)))
// (u,w) by
A5;
let v1, w1;
assume (v1,w1,u,v)
are_COrte_wrt (x,y);
then
A7: ((
Orte (x,y,v1)),(
Orte (x,y,w1)))
// (u,v);
now
assume
A8: v1
<> w1;
assume (v1,w1,u,w)
are_COrte_wrt (x,y) or (v1,w1,w,u)
are_COrte_wrt (x,y);
then ((
Orte (x,y,v1)),(
Orte (x,y,w1)))
// (u,w) or ((
Orte (x,y,v1)),(
Orte (x,y,w1)))
// (w,u);
then (u,v)
// (u,w) or (u,v)
// (w,u) by
A1,
A7,
A8,
Th13,
ANALOAF: 11;
then ((
Orte (x,y,u)),(
Orte (x,y,v)))
// ((
Orte (x,y,u)),(
Orte (x,y,w))) or ((
Orte (x,y,u)),(
Orte (x,y,v)))
// ((
Orte (x,y,w)),(
Orte (x,y,u))) by
A1,
Th16;
then (u,w)
// ((
Orte (x,y,u)),(
Orte (x,y,w))) or (u,w)
// ((
Orte (x,y,w)),(
Orte (x,y,u))) by
A1,
A3,
A6,
Th13,
ANALOAF: 11;
then
consider a, b such that
A9: (a
* (w
- u))
= (b
* ((
Orte (x,y,w))
- (
Orte (x,y,u)))) and
A10: a
<>
0 or b
<>
0 by
ANALMETR: 14;
take a, b;
(a
* (w
- u))
= (b
* (
Orte (x,y,(w
- u)))) by
A1,
A9,
Th11;
then
A11: (a
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y)))
= (b
* (
Orte (x,y,(w
- u)))) by
A1,
Lm5;
A12:
now
assume
A13: a
<>
0 ;
A14: (
pr2 (x,y,(w
- u)))
<>
0
proof
assume
A15: not thesis;
then (a
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y)))
= (((b
*
0 )
* x)
+ ((b
* (
- (
pr1 (x,y,(w
- u)))))
* y)) by
A11,
Lm2;
then (((a
* (
pr1 (x,y,(w
- u))))
* x)
+ ((a
* (
pr2 (x,y,(w
- u))))
* y))
= (((b
*
0 )
* x)
+ ((b
* (
- (
pr1 (x,y,(w
- u)))))
* y)) by
Lm2;
then (a
* (
pr1 (x,y,(w
- u))))
=
0 by
A1,
Lm3;
then (
pr1 (x,y,(w
- u)))
=
0 by
A13,
XCMPLX_1: 6;
then (w
- u)
= ((
0
* x)
+ (
0
* y)) by
A1,
A15,
Lm5
.= ((
0. V)
+ (
0
* y)) by
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
hence thesis by
A4,
RLVECT_1: 21;
end;
(((a
" )
* a)
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y)))
= ((a
" )
* (b
* (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y)))) by
A11,
RLVECT_1:def 7;
then (((a
" )
* a)
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y)))
= (((a
" )
* b)
* (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y))) by
RLVECT_1:def 7;
then (1
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y)))
= (((a
" )
* b)
* (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y))) by
A13,
XCMPLX_0:def 7;
then (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y))
= (((a
" )
* b)
* (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y))) by
RLVECT_1:def 8;
then
A16: (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y))
= (((((a
" )
* b)
* (
pr2 (x,y,(w
- u))))
* x)
+ ((((a
" )
* b)
* (
- (
pr1 (x,y,(w
- u)))))
* y)) by
Lm2;
then (
pr1 (x,y,(w
- u)))
= (((a
" )
* b)
* (
pr2 (x,y,(w
- u)))) by
A1,
Lm3;
then
A17: (
pr2 (x,y,(w
- u)))
= (
- (((a
" )
* b)
* (((a
" )
* b)
* (
pr2 (x,y,(w
- u)))))) by
A1,
A16,
Lm3;
(
- (((
pr2 (x,y,(w
- u)))
" )
* (
pr2 (x,y,(w
- u)))))
= (((
pr2 (x,y,(w
- u)))
" )
* (
- (
pr2 (x,y,(w
- u)))))
.= (((
pr2 (x,y,(w
- u)))
" )
* (((a
" )
* b)
* (((a
" )
* b)
* (
pr2 (x,y,(w
- u)))))) by
A17;
then (
- 1)
= ((((
pr2 (x,y,(w
- u)))
" )
* (
pr2 (x,y,(w
- u))))
* (((a
" )
* b)
* ((a
" )
* b))) by
A14,
XCMPLX_0:def 7;
then (
- 1)
= (1
* (((a
" )
* b)
* ((a
" )
* b))) by
A14,
XCMPLX_0:def 7;
hence thesis by
XREAL_1: 63;
end;
now
assume
A18: b
<>
0 ;
A19: (
pr2 (x,y,(w
- u)))
<>
0
proof
assume
A20: not thesis;
then (a
* (((
pr1 (x,y,(w
- u)))
* x)
+ (
0
* y)))
= (((b
*
0 )
* x)
+ ((b
* (
- (
pr1 (x,y,(w
- u)))))
* y)) by
A11,
Lm2;
then (((a
* (
pr1 (x,y,(w
- u))))
* x)
+ ((a
*
0 )
* y))
= (((b
*
0 )
* x)
+ ((b
* (
- (
pr1 (x,y,(w
- u)))))
* y)) by
Lm2;
then (b
* (
- (
pr1 (x,y,(w
- u)))))
=
0 by
A1,
Lm3;
then (
- (
pr1 (x,y,(w
- u))))
=
0 by
A18,
XCMPLX_1: 6;
then (w
- u)
= ((
0
* x)
+ ((
-
0 )
* y)) by
A1,
A20,
Lm5
.= ((
0. V)
+ (
0
* y)) by
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
hence thesis by
A4,
RLVECT_1: 21;
end;
((b
" )
* (a
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y))))
= (((b
" )
* b)
* (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y))) by
A11,
RLVECT_1:def 7;
then (((b
" )
* a)
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y)))
= (((b
" )
* b)
* (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y))) by
RLVECT_1:def 7;
then (((b
" )
* a)
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y)))
= (1
* (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y))) by
A18,
XCMPLX_0:def 7;
then (((b
" )
* a)
* (((
pr1 (x,y,(w
- u)))
* x)
+ ((
pr2 (x,y,(w
- u)))
* y)))
= (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y)) by
RLVECT_1:def 8;
then
A21: (((((b
" )
* a)
* (
pr1 (x,y,(w
- u))))
* x)
+ ((((b
" )
* a)
* (
pr2 (x,y,(w
- u))))
* y))
= (((
pr2 (x,y,(w
- u)))
* x)
+ ((
- (
pr1 (x,y,(w
- u))))
* y)) by
Lm2;
then (((b
" )
* a)
* (
pr2 (x,y,(w
- u))))
= (
- (
pr1 (x,y,(w
- u)))) by
A1,
Lm3;
then
A22: (
pr2 (x,y,(w
- u)))
= (((b
" )
* a)
* (
- (((b
" )
* a)
* (
pr2 (x,y,(w
- u)))))) by
A1,
A21,
Lm3;
(
- (((
pr2 (x,y,(w
- u)))
" )
* (
pr2 (x,y,(w
- u)))))
= (((
pr2 (x,y,(w
- u)))
" )
* (
- (
pr2 (x,y,(w
- u)))))
.= (((
pr2 (x,y,(w
- u)))
" )
* (((b
" )
* a)
* (((b
" )
* a)
* (
pr2 (x,y,(w
- u)))))) by
A22;
then (
- 1)
= ((((
pr2 (x,y,(w
- u)))
" )
* (
pr2 (x,y,(w
- u))))
* (((b
" )
* a)
* ((b
" )
* a))) by
A19,
XCMPLX_0:def 7;
then (
- 1)
= (1
* (((b
" )
* a)
* ((b
" )
* a))) by
A19,
XCMPLX_0:def 7;
hence thesis by
XREAL_1: 63;
end;
hence thesis by
A10,
A12;
end;
hence thesis;
end;
theorem ::
ANALORT:50
Gen (x,y) implies for v, w, u1, v1, w1 holds not (v,v1,w,u1)
are_COrtm_wrt (x,y) & not (v,v1,u1,w)
are_COrtm_wrt (x,y) & (u1,w1,u1,w)
are_COrtm_wrt (x,y) implies ex u2 st ((v,v1,v,u2)
are_COrtm_wrt (x,y) or (v,v1,u2,v)
are_COrtm_wrt (x,y)) & ((u1,w1,u1,u2)
are_COrtm_wrt (x,y) or (u1,w1,u2,u1)
are_COrtm_wrt (x,y))
proof
assume
A1:
Gen (x,y);
let v, w, u1, v1, w1;
consider u such that
A2: v
<> u and
A3: (v,v1,v,u)
are_COrtm_wrt (x,y) by
A1,
Th41;
assume that
A4: not (v,v1,w,u1)
are_COrtm_wrt (x,y) and
A5: not (v,v1,u1,w)
are_COrtm_wrt (x,y) and
A6: (u1,w1,u1,w)
are_COrtm_wrt (x,y);
A7: not ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// (w,u1) by
A4;
A8: ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// (v,u) by
A3;
A9: ((
Ortm (x,y,u1)),(
Ortm (x,y,w1)))
// (u1,w) by
A6;
A10: not ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// (u1,w) by
A5;
A11: (v,u)
// ((
Ortm (x,y,v)),(
Ortm (x,y,v1))) by
A8,
ANALOAF: 12;
A12: (u1,w)
// ((
Ortm (x,y,u1)),(
Ortm (x,y,w1))) by
A9,
ANALOAF: 12;
A13: u1
<> w by
A7,
ANALOAF: 9;
A14: not (v,u)
// (u1,w) by
A2,
A10,
A11,
ANALOAF: 11;
A15: not (v,u)
// (w,u1) by
A2,
A7,
A11,
ANALOAF: 11;
Gen (x,y) implies ex u, v st for w holds ex a, b st ((a
* u)
+ (b
* v))
= w
proof
assume
A16:
Gen (x,y);
take x, y;
thus thesis by
A16,
ANALMETR:def 1;
end;
then
consider u2 such that
A17: (v,u)
// (v,u2) or (v,u)
// (u2,v) and
A18: (u1,w)
// (u1,u2) or (u1,w)
// (u2,u1) by
A1,
A14,
A15,
ANALOAF: 21;
((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// (v,u2) or ((
Ortm (x,y,v)),(
Ortm (x,y,v1)))
// (u2,v) by
A2,
A11,
A17,
ANALOAF: 11;
then
A19: (v,v1,v,u2)
are_COrtm_wrt (x,y) or (v,v1,u2,v)
are_COrtm_wrt (x,y);
((
Ortm (x,y,u1)),(
Ortm (x,y,w1)))
// (u1,u2) or ((
Ortm (x,y,u1)),(
Ortm (x,y,w1)))
// (u2,u1) by
A12,
A13,
A18,
ANALOAF: 11;
then (u1,w1,u1,u2)
are_COrtm_wrt (x,y) or (u1,w1,u2,u1)
are_COrtm_wrt (x,y);
hence thesis by
A19;
end;
theorem ::
ANALORT:51
Gen (x,y) implies ex u, v, w st ((u,v,u,w)
are_COrtm_wrt (x,y) & for v1, w1 holds ((v1,w1,u,v)
are_COrtm_wrt (x,y) implies ( not (v1,w1,u,w)
are_COrtm_wrt (x,y) & not (v1,w1,w,u)
are_COrtm_wrt (x,y) or v1
= w1)))
proof
assume
A1:
Gen (x,y);
take u = ((
0
* x)
+ (
0
* y)), v = ((1
* x)
+ (1
* y)), w = ((1
* x)
+ ((
- 1)
* y));
A2: (
pr1 (x,y,u))
=
0 by
A1,
Lm6;
A3: (
pr2 (x,y,u))
=
0 by
A1,
Lm6;
A4: (
pr1 (x,y,v))
= 1 by
A1,
Lm6;
(
pr2 (x,y,v))
= 1 by
A1,
Lm6;
then
A5: ((
Ortm (x,y,u)),(
Ortm (x,y,v)))
// (u,w) by
A2,
A3,
A4,
ANALOAF: 8;
for v1, w1 holds ((v1,w1,u,v)
are_COrtm_wrt (x,y) implies ( not (v1,w1,u,w)
are_COrtm_wrt (x,y) & not (v1,w1,w,u)
are_COrtm_wrt (x,y) or v1
= w1))
proof
let v1, w1;
assume (v1,w1,u,v)
are_COrtm_wrt (x,y);
then
A6: ((
Ortm (x,y,v1)),(
Ortm (x,y,w1)))
// (u,v);
now
assume
A7: v1
<> w1;
assume (v1,w1,u,w)
are_COrtm_wrt (x,y) or (v1,w1,w,u)
are_COrtm_wrt (x,y);
then ((
Ortm (x,y,v1)),(
Ortm (x,y,w1)))
// (u,w) or ((
Ortm (x,y,v1)),(
Ortm (x,y,w1)))
// (w,u);
then (u,v)
// (u,w) or (u,v)
// (w,u) by
A1,
A6,
A7,
Th6,
ANALOAF: 11;
then
consider a, b such that
A8: (a
* (v
- u))
= (b
* (w
- u)) and
A9: a
<>
0 or b
<>
0 by
ANALMETR: 14;
take a, b;
u
= ((
0. V)
+ (
0
* y)) by
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
then (a
* v)
= (b
* (w
- (
0. V))) by
A8,
RLVECT_1: 13;
then
A10: (a
* v)
= (b
* w) by
RLVECT_1: 13;
A11:
now
assume
A12: a
<>
0 ;
(((a
" )
* a)
* v)
= ((a
" )
* (b
* w)) by
A10,
RLVECT_1:def 7;
then (((a
" )
* a)
* v)
= (((a
" )
* b)
* w) by
RLVECT_1:def 7;
then (1
* v)
= (((a
" )
* b)
* w) by
A12,
XCMPLX_0:def 7;
then (1
* v)
= (((((a
" )
* b)
* 1)
* x)
+ ((((a
" )
* b)
* (
- 1))
* y)) by
Lm2;
then
A13: (((1
* 1)
* x)
+ ((1
* 1)
* y))
= (((((a
" )
* b)
* 1)
* x)
+ ((((a
" )
* b)
* (
- 1))
* y)) by
Lm2;
then (a
* 1)
= (a
* ((a
" )
* (b
* 1))) by
A1,
Lm3;
then
A14: (a
* 1)
= ((a
* (a
" ))
* (b
* 1));
1
= (((a
" )
* b)
* (
- 1)) by
A1,
A13,
Lm3;
then 1
= (((a
" )
* a)
* (
- 1)) by
A12,
A14,
XCMPLX_0:def 7;
hence thesis by
A12,
XCMPLX_0:def 7;
end;
now
assume
A15: b
<>
0 ;
(((b
" )
* a)
* v)
= ((b
" )
* (b
* w)) by
A10,
RLVECT_1:def 7;
then (((b
" )
* a)
* v)
= (((b
" )
* b)
* w) by
RLVECT_1:def 7;
then (((b
" )
* a)
* v)
= (1
* w) by
A15,
XCMPLX_0:def 7;
then (((((b
" )
* a)
* 1)
* x)
+ ((((b
" )
* a)
* 1)
* y))
= (1
* w) by
Lm2;
then
A16: (((((b
" )
* a)
* 1)
* x)
+ ((((b
" )
* a)
* 1)
* y))
= (((1
* 1)
* x)
+ ((1
* (
- 1))
* y)) by
Lm2;
then (b
* 1)
= (b
* ((b
" )
* (a
* 1))) by
A1,
Lm3;
then
A17: (b
* 1)
= ((b
* (b
" ))
* (a
* 1));
(
- 1)
= (((b
" )
* a)
* 1) by
A1,
A16,
Lm3;
then (
- 1)
= (((b
" )
* b)
* 1) by
A15,
A17,
XCMPLX_0:def 7;
hence thesis by
A15,
XCMPLX_0:def 7;
end;
hence thesis by
A9,
A11;
end;
hence thesis;
end;
hence thesis by
A5;
end;
reserve uu,vv for
object;
definition
let V;
let x, y;
::
ANALORT:def5
func
CORTE (V,x,y) ->
Relation of
[:the
carrier of V, the
carrier of V:] means
:
Def5:
[uu, vv]
in it iff ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrte_wrt (x,y);
existence
proof
set VV =
[:the
carrier of V, the
carrier of V:];
defpred
P[
object,
object] means ex u1, u2, v1, v2 st $1
=
[u1, u2] & $2
=
[v1, v2] & (u1,u2,v1,v2)
are_COrte_wrt (x,y);
consider P be
Relation of VV, VV such that
A1: for uu,vv be
object holds (
[uu, vv]
in P iff uu
in VV & vv
in VV &
P[uu, vv]) from
RELSET_1:sch 1;
take P;
let uu, vv;
thus
[uu, vv]
in P implies ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrte_wrt (x,y) by
A1;
assume
A2: ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrte_wrt (x,y);
then
A3: uu
in VV by
ZFMISC_1:def 2;
vv
in VV by
A2,
ZFMISC_1:def 2;
hence thesis by
A1,
A2,
A3;
end;
uniqueness
proof
let P,Q be
Relation of
[:the
carrier of V, the
carrier of V:] such that
A4:
[uu, vv]
in P iff ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrte_wrt (x,y) and
A5:
[uu, vv]
in Q iff ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrte_wrt (x,y);
for uu,vv be
object holds
[uu, vv]
in P iff
[uu, vv]
in Q
proof
let uu,vv be
object;
[uu, vv]
in P iff ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrte_wrt (x,y) by
A4;
hence thesis by
A5;
end;
hence thesis by
RELAT_1:def 2;
end;
end
definition
let V;
let x, y;
::
ANALORT:def6
func
CORTM (V,x,y) ->
Relation of
[:the
carrier of V, the
carrier of V:] means
:
Def6:
[uu, vv]
in it iff ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrtm_wrt (x,y);
existence
proof
set VV =
[:the
carrier of V, the
carrier of V:];
defpred
P[
object,
object] means ex u1, u2, v1, v2 st $1
=
[u1, u2] & $2
=
[v1, v2] & (u1,u2,v1,v2)
are_COrtm_wrt (x,y);
consider P be
Relation of VV, VV such that
A1: for uu,vv be
object holds (
[uu, vv]
in P iff uu
in VV & vv
in VV &
P[uu, vv]) from
RELSET_1:sch 1;
take P;
let uu, vv;
thus
[uu, vv]
in P implies ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrtm_wrt (x,y) by
A1;
assume
A2: ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrtm_wrt (x,y);
then
A3: uu
in VV by
ZFMISC_1:def 2;
vv
in VV by
A2,
ZFMISC_1:def 2;
hence thesis by
A1,
A2,
A3;
end;
uniqueness
proof
let P,Q be
Relation of
[:the
carrier of V, the
carrier of V:] such that
A4:
[uu, vv]
in P iff ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrtm_wrt (x,y) and
A5:
[uu, vv]
in Q iff ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrtm_wrt (x,y);
for uu,vv be
object holds
[uu, vv]
in P iff
[uu, vv]
in Q
proof
let uu,vv be
object;
[uu, vv]
in P iff ex u1, u2, v1, v2 st uu
=
[u1, u2] & vv
=
[v1, v2] & (u1,u2,v1,v2)
are_COrtm_wrt (x,y) by
A4;
hence thesis by
A5;
end;
hence thesis by
RELAT_1:def 2;
end;
end
definition
let V;
let x, y;
::
ANALORT:def7
func
CESpace (V,x,y) ->
strict
OrtStr equals
OrtStr (# the
carrier of V, (
CORTE (V,x,y)) #);
correctness ;
end
registration
let V;
let x, y;
cluster (
CESpace (V,x,y)) -> non
empty;
coherence ;
end
definition
let V;
let x, y;
::
ANALORT:def8
func
CMSpace (V,x,y) ->
strict
OrtStr equals
OrtStr (# the
carrier of V, (
CORTM (V,x,y)) #);
correctness ;
end
registration
let V;
let x, y;
cluster (
CMSpace (V,x,y)) -> non
empty;
coherence ;
end
theorem ::
ANALORT:52
uu is
Element of (
CESpace (V,x,y)) iff uu is
VECTOR of V;
theorem ::
ANALORT:53
uu is
Element of (
CMSpace (V,x,y)) iff uu is
VECTOR of V;
reserve p,q,r,s for
Element of (
CESpace (V,x,y));
theorem ::
ANALORT:54
u
= p & v
= q & u1
= r & v1
= s implies ((p,q)
_|_ (r,s) iff (u,v,u1,v1)
are_COrte_wrt (x,y))
proof
assume that
A1: u
= p and
A2: v
= q and
A3: u1
= r and
A4: v1
= s;
A5: (p,q)
_|_ (r,s) implies (u,v,u1,v1)
are_COrte_wrt (x,y)
proof
assume (p,q)
_|_ (r,s);
then
[
[p, q],
[r, s]]
in the
orthogonality of (
CESpace (V,x,y)) by
ANALMETR:def 5;
then
consider u19,u29,v19,v29 be
VECTOR of V such that
A6:
[u, v]
=
[u19, u29] and
A7:
[u1, v1]
=
[v19, v29] and
A8: (u19,u29,v19,v29)
are_COrte_wrt (x,y) by
A1,
A2,
A3,
A4,
Def5;
A9: u
= u19 by
A6,
XTUPLE_0: 1;
A10: v
= u29 by
A6,
XTUPLE_0: 1;
u1
= v19 by
A7,
XTUPLE_0: 1;
hence thesis by
A7,
A8,
A9,
A10,
XTUPLE_0: 1;
end;
(u,v,u1,v1)
are_COrte_wrt (x,y) implies (p,q)
_|_ (r,s)
proof
assume (u,v,u1,v1)
are_COrte_wrt (x,y);
then
[
[u, v],
[u1, v1]]
in the
orthogonality of
OrtStr (# the
carrier of V, (
CORTE (V,x,y)) #) by
Def5;
hence thesis by
A1,
A2,
A3,
A4,
ANALMETR:def 5;
end;
hence thesis by
A5;
end;
reserve p,q,r,s for
Element of (
CMSpace (V,x,y));
theorem ::
ANALORT:55
u
= p & v
= q & u1
= r & v1
= s implies ((p,q)
_|_ (r,s) iff (u,v,u1,v1)
are_COrtm_wrt (x,y))
proof
assume that
A1: u
= p and
A2: v
= q and
A3: u1
= r and
A4: v1
= s;
A5: (p,q)
_|_ (r,s) implies (u,v,u1,v1)
are_COrtm_wrt (x,y)
proof
assume (p,q)
_|_ (r,s);
then
[
[p, q],
[r, s]]
in the
orthogonality of (
CMSpace (V,x,y)) by
ANALMETR:def 5;
then
consider u19,u29,v19,v29 be
VECTOR of V such that
A6:
[u, v]
=
[u19, u29] and
A7:
[u1, v1]
=
[v19, v29] and
A8: (u19,u29,v19,v29)
are_COrtm_wrt (x,y) by
A1,
A2,
A3,
A4,
Def6;
A9: u
= u19 by
A6,
XTUPLE_0: 1;
A10: v
= u29 by
A6,
XTUPLE_0: 1;
u1
= v19 by
A7,
XTUPLE_0: 1;
hence thesis by
A7,
A8,
A9,
A10,
XTUPLE_0: 1;
end;
(u,v,u1,v1)
are_COrtm_wrt (x,y) implies (p,q)
_|_ (r,s)
proof
assume (u,v,u1,v1)
are_COrtm_wrt (x,y);
then
[
[u, v],
[u1, v1]]
in the
orthogonality of
OrtStr (# the
carrier of V, (
CORTM (V,x,y)) #) by
Def6;
hence thesis by
A1,
A2,
A3,
A4,
ANALMETR:def 5;
end;
hence thesis by
A5;
end;