e_siec.miz
    
    begin
    
    reserve x,y,z for
    object, 
    
X,Y for
    set;
    
    definition
    
      struct (
    1-sorted) 
    
    
    G_Net
    
    
    
    
    
     (# the 
    
    carrier -> 
    set,
    
the 
    
    entrance, 
    
    escape -> 
    Relation #)
    
      
    attr strict
    
    strict;
    
    end
    
    definition
    
      let IT be
    G_Net;
    
      :: 
    
    E_SIEC:def1
    
      attr IT is
    
    GG means 
    
      :
    
    Def1: the 
    entrance of IT 
    c=  
    [:the 
    carrier of IT, the 
    carrier of IT:] & the 
    escape of IT 
    c=  
    [:the 
    carrier of IT, the 
    carrier of IT:] & (the 
    entrance of IT 
    * the 
    entrance of IT) 
    = the 
    entrance of IT & (the 
    entrance of IT 
    * the 
    escape of IT) 
    = the 
    entrance of IT & (the 
    escape of IT 
    * the 
    escape of IT) 
    = the 
    escape of IT & (the 
    escape of IT 
    * the 
    entrance of IT) 
    = the 
    escape of IT; 
    
    end
    
    registration
    
      cluster 
    GG for 
    G_Net;
    
      existence
    
      proof
    
        take N =
    G_Net (# 
    {} , 
    {} , 
    {} #); 
    
        the
    escape of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] & (the 
    entrance of N 
    * the 
    entrance of N) 
    =  
    {} by 
    XBOOLE_1: 2;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      mode
    
    gg_net is 
    GG  
    G_Net;
    
    end
    
    definition
    
      let IT be
    G_Net;
    
      :: 
    
    E_SIEC:def2
    
      attr IT is
    
    EE means 
    
      :
    
    Def2: (the 
    entrance of IT 
    * (the 
    entrance of IT 
    \ ( 
    id the 
    carrier of IT))) 
    =  
    {} & (the 
    escape of IT 
    * (the 
    escape of IT 
    \ ( 
    id the 
    carrier of IT))) 
    =  
    {} ; 
    
    end
    
    registration
    
      cluster 
    EE for 
    G_Net;
    
      existence
    
      proof
    
        take N =
    G_Net (# 
    {} , 
    {} , 
    {} #); 
    
        thus thesis;
    
      end;
    
    end
    
    registration
    
      cluster 
    strict
    GG
    EE for 
    G_Net;
    
      existence
    
      proof
    
        take N =
    G_Net (# 
    {} , 
    {} , 
    {} #); 
    
        the
    entrance of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] & (the 
    escape of N 
    * (the 
    escape of N 
    \ ( 
    id N))) 
    =  
    {} by 
    XBOOLE_1: 2;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      mode
    
    e_net is 
    EE
    GG  
    G_Net;
    
    end
    
    reserve N for
    e_net;
    
    theorem :: 
    
    E_SIEC:1
    
    for R,S be
    Relation holds 
    G_Net (# X, R, S #) is 
    e_net iff R 
    c=  
    [:X, X:] & S
    c=  
    [:X, X:] & (R
    * R) 
    = R & (R 
    * S) 
    = R & (S 
    * S) 
    = S & (S 
    * R) 
    = S & (R 
    * (R 
    \ ( 
    id X))) 
    =  
    {} & (S 
    * (S 
    \ ( 
    id X))) 
    =  
    {} by 
    Def1,
    Def2;
    
    theorem :: 
    
    E_SIEC:2
    
    
    
    
    
    Th2: 
    G_Net (# X, 
    {} , 
    {} #) is 
    e_net
    
    proof
    
      
    {}  
    c=  
    [:X, X:] & (
    {}  
    * ( 
    {}  
    \ ( 
    id X))) 
    =  
    {} by 
    XBOOLE_1: 2;
    
      hence thesis by
    Def1,
    Def2;
    
    end;
    
    theorem :: 
    
    E_SIEC:3
    
    
    
    
    
    Th3: 
    G_Net (# X, ( 
    id X), ( 
    id X) #) is 
    e_net
    
    proof
    
      
    
      
    
    A1: (( 
    id X) 
    * (( 
    id X) 
    \ ( 
    id X))) 
    = (( 
    id X) 
    *  
    {} ) by 
    XBOOLE_1: 37
    
      .=
    {} ; 
    
      (
    id X) 
    c=  
    [:X, X:] & ((
    id X) 
    * ( 
    id X)) 
    = ( 
    id X) by 
    RELSET_1: 13,
    SYSREL: 12;
    
      hence thesis by
    A1,
    Def1,
    Def2;
    
    end;
    
    theorem :: 
    
    E_SIEC:4
    
    
    G_Net (# 
    {} , 
    {} , 
    {} #) is 
    e_net by 
    Th2;
    
    theorem :: 
    
    E_SIEC:5
    
    
    G_Net (# X, ( 
    id (X 
    \ Y)), ( 
    id (X 
    \ Y)) #) is 
    e_net
    
    proof
    
      
    
      
    
    A1: (( 
    id (X 
    \ Y)) 
    * (( 
    id (X 
    \ Y)) 
    \ ( 
    id X))) 
    = (( 
    id (X 
    \ Y)) 
    *  
    {} ) by 
    SYSREL: 16
    
      .=
    {} ; 
    
      (X
    \ Y) 
    c= X by 
    XBOOLE_1: 36;
    
      then
    
      
    
    A2: 
    [:(X
    \ Y), (X 
    \ Y):] 
    c=  
    [:X, X:] by
    ZFMISC_1: 96;
    
      (
    id (X 
    \ Y)) 
    c=  
    [:(X
    \ Y), (X 
    \ Y):] by 
    RELSET_1: 13;
    
      then
    
      
    
    A3: ( 
    id (X 
    \ Y)) 
    c=  
    [:X, X:] by
    A2,
    XBOOLE_1: 1;
    
      ((
    id (X 
    \ Y)) 
    * ( 
    id (X 
    \ Y))) 
    = ( 
    id (X 
    \ Y)) by 
    SYSREL: 12;
    
      hence thesis by
    A3,
    A1,
    Def1,
    Def2;
    
    end;
    
    definition
    
      :: 
    
    E_SIEC:def3
    
      func
    
    empty_e_net -> 
    strict  
    e_net equals 
    G_Net (# 
    {} , 
    {} , 
    {} #); 
    
      correctness by
    Th2;
    
    end
    
    definition
    
      let X;
    
      :: 
    
    E_SIEC:def4
    
      func
    
    Tempty_e_net X -> 
    strict  
    e_net equals 
    G_Net (# X, ( 
    id X), ( 
    id X) #); 
    
      coherence by
    Th3;
    
      :: 
    
    E_SIEC:def5
    
      func
    
    Pempty_e_net (X) -> 
    strict  
    e_net equals 
    G_Net (# X, 
    {} , 
    {} #); 
    
      coherence by
    Th2;
    
    end
    
    theorem :: 
    
    E_SIEC:6
    
    the
    carrier of ( 
    Tempty_e_net X) 
    = X & the 
    entrance of ( 
    Tempty_e_net X) 
    = ( 
    id X) & the 
    escape of ( 
    Tempty_e_net X) 
    = ( 
    id X); 
    
    theorem :: 
    
    E_SIEC:7
    
    the
    carrier of ( 
    Pempty_e_net X) 
    = X & the 
    entrance of ( 
    Pempty_e_net X) 
    =  
    {} & the 
    escape of ( 
    Pempty_e_net X) 
    =  
    {} ; 
    
    definition
    
      let x;
    
      :: 
    
    E_SIEC:def6
    
      func
    
    Psingle_e_net (x) -> 
    strict  
    e_net equals 
    G_Net (# 
    {x}, (
    id  
    {x}), (
    id  
    {x}) #);
    
      coherence by
    Th3;
    
      :: 
    
    E_SIEC:def7
    
      func
    
    Tsingle_e_net (x) -> 
    strict  
    e_net equals 
    G_Net (# 
    {x},
    {} , 
    {} #); 
    
      coherence by
    Th2;
    
    end
    
    theorem :: 
    
    E_SIEC:8
    
    the
    carrier of ( 
    Psingle_e_net x) 
    =  
    {x} & the
    entrance of ( 
    Psingle_e_net x) 
    = ( 
    id  
    {x}) & the
    escape of ( 
    Psingle_e_net x) 
    = ( 
    id  
    {x});
    
    theorem :: 
    
    E_SIEC:9
    
    the
    carrier of ( 
    Tsingle_e_net x) 
    =  
    {x} & the
    entrance of ( 
    Tsingle_e_net x) 
    =  
    {} & the 
    escape of ( 
    Tsingle_e_net x) 
    =  
    {} ; 
    
    theorem :: 
    
    E_SIEC:10
    
    
    
    
    
    Th10: 
    G_Net (# (X 
    \/ Y), ( 
    id X), ( 
    id X) #) is 
    e_net
    
    proof
    
      X
    c= (X 
    \/ Y) by 
    XBOOLE_1: 7;
    
      then (
    id X) 
    c=  
    [:X, X:] &
    [:X, X:]
    c=  
    [:(X
    \/ Y), (X 
    \/ Y):] by 
    RELSET_1: 13,
    ZFMISC_1: 96;
    
      then
    
      
    
    A1: ( 
    id X) 
    c=  
    [:(X
    \/ Y), (X 
    \/ Y):] by 
    XBOOLE_1: 1;
    
      (
    id X) 
    c= (( 
    id X) 
    \/ ( 
    id Y)) by 
    XBOOLE_1: 7;
    
      then (
    id X) 
    c= ( 
    id (X 
    \/ Y)) by 
    SYSREL: 14;
    
      
    
      then
    
      
    
    A2: (( 
    id X) 
    * (( 
    id X) 
    \ ( 
    id (X 
    \/ Y)))) 
    = (( 
    id X) 
    *  
    {} ) by 
    XBOOLE_1: 37
    
      .=
    {} ; 
    
      ((
    id X) 
    * ( 
    id X)) 
    = ( 
    id X) by 
    SYSREL: 12;
    
      hence thesis by
    A1,
    A2,
    Def1,
    Def2;
    
    end;
    
    definition
    
      let X, Y;
    
      :: 
    
    E_SIEC:def8
    
      func
    
    PTempty_e_net (X,Y) -> 
    strict  
    e_net equals 
    G_Net (# (X 
    \/ Y), ( 
    id X), ( 
    id X) #); 
    
      coherence by
    Th10;
    
    end
    
    theorem :: 
    
    E_SIEC:11
    
    
    
    
    
    Th11: (the 
    entrance of N 
    \ ( 
    id ( 
    dom the 
    entrance of N))) 
    = (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) & (the 
    escape of N 
    \ ( 
    id ( 
    dom the 
    escape of N))) 
    = (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) & (the 
    entrance of N 
    \ ( 
    id ( 
    rng the 
    entrance of N))) 
    = (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) & (the 
    escape of N 
    \ ( 
    id ( 
    rng the 
    escape of N))) 
    = (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    
    proof
    
      the
    entrance of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] & the 
    escape of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    Def1;
    
      hence thesis by
    SYSREL: 20;
    
    end;
    
    theorem :: 
    
    E_SIEC:12
    
    
    
    
    
    Th12: ( 
    CL the 
    entrance of N) 
    = ( 
    CL the 
    escape of N) 
    
    proof
    
      (the
    escape of N 
    * (the 
    escape of N 
    \ ( 
    id N))) 
    =  
    {} by 
    Def2;
    
      then
    
      
    
    A1: (the 
    escape of N 
    * (the 
    escape of N 
    \ ( 
    id ( 
    dom the 
    escape of N)))) 
    =  
    {} by 
    Th11;
    
      (the
    entrance of N 
    * (the 
    entrance of N 
    \ ( 
    id N))) 
    =  
    {} by 
    Def2;
    
      then
    
      
    
    A2: (the 
    entrance of N 
    * (the 
    entrance of N 
    \ ( 
    id ( 
    dom the 
    entrance of N)))) 
    =  
    {} by 
    Th11;
    
      (the
    entrance of N 
    * the 
    escape of N) 
    = the 
    entrance of N & (the 
    escape of N 
    * the 
    entrance of N) 
    = the 
    escape of N by 
    Def1;
    
      hence thesis by
    A1,
    A2,
    SYSREL: 40;
    
    end;
    
    theorem :: 
    
    E_SIEC:13
    
    
    
    
    
    Th13: ( 
    rng the 
    entrance of N) 
    = ( 
    rng ( 
    CL the 
    entrance of N)) & ( 
    rng the 
    entrance of N) 
    = ( 
    dom ( 
    CL the 
    entrance of N)) & ( 
    rng the 
    escape of N) 
    = ( 
    rng ( 
    CL the 
    escape of N)) & ( 
    rng the 
    escape of N) 
    = ( 
    dom ( 
    CL the 
    escape of N)) & ( 
    rng the 
    entrance of N) 
    = ( 
    rng the 
    escape of N) 
    
    proof
    
      (the
    entrance of N 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} by 
    Def2;
    
      then
    
      
    
    A1: (the 
    entrance of N 
    * (the 
    entrance of N 
    \ ( 
    id ( 
    dom the 
    entrance of N)))) 
    =  
    {} by 
    Th11;
    
      (the
    escape of N 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} by 
    Def2;
    
      then
    
      
    
    A2: (the 
    escape of N 
    * (the 
    escape of N 
    \ ( 
    id ( 
    dom the 
    escape of N)))) 
    =  
    {} by 
    Th11;
    
      
    
      
    
    A3: (the 
    escape of N 
    * the 
    escape of N) 
    = the 
    escape of N by 
    Def1;
    
      then
    
      
    
    A4: ( 
    rng the 
    escape of N) 
    = ( 
    rng ( 
    CL the 
    escape of N)) by 
    A2,
    SYSREL: 31;
    
      
    
      
    
    A5: (the 
    entrance of N 
    * the 
    entrance of N) 
    = the 
    entrance of N by 
    Def1;
    
      then (
    rng the 
    entrance of N) 
    = ( 
    rng ( 
    CL the 
    entrance of N)) by 
    A1,
    SYSREL: 31;
    
      hence thesis by
    A5,
    A1,
    A3,
    A2,
    A4,
    Th12,
    SYSREL: 31;
    
    end;
    
    theorem :: 
    
    E_SIEC:14
    
    
    
    
    
    Th14: ( 
    dom the 
    entrance of N) 
    c= the 
    carrier of N & ( 
    rng the 
    entrance of N) 
    c= the 
    carrier of N & ( 
    dom the 
    escape of N) 
    c= the 
    carrier of N & ( 
    rng the 
    escape of N) 
    c= the 
    carrier of N 
    
    proof
    
      the
    entrance of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] & the 
    escape of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    Def1;
    
      hence thesis by
    SYSREL: 3;
    
    end;
    
    theorem :: 
    
    E_SIEC:15
    
    
    
    
    
    Th15: (the 
    entrance of N 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} & (the 
    escape of N 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {}  
    
    proof
    
      set R = the
    entrance of N; 
    
      set S = the
    escape of N; 
    
      set T = (
    id the 
    carrier of N); 
    
      
    
      
    
    A1: (S 
    * (R 
    \ T)) 
    = (S 
    * (R 
    \ ( 
    id ( 
    dom R)))) by 
    Th11
    
      .= ((S
    * R) 
    * (R 
    \ ( 
    id ( 
    dom R)))) by 
    Def1
    
      .= (S
    * (R 
    * (R 
    \ ( 
    id ( 
    dom R))))) by 
    RELAT_1: 36
    
      .= (S
    * (R 
    * (R 
    \ T))) by 
    Th11
    
      .= (S
    *  
    {} ) by 
    Def2
    
      .=
    {} ; 
    
      (R
    * (S 
    \ T)) 
    = (R 
    * (S 
    \ ( 
    id ( 
    dom S)))) by 
    Th11
    
      .= ((R
    * S) 
    * (S 
    \ ( 
    id ( 
    dom S)))) by 
    Def1
    
      .= (R
    * (S 
    * (S 
    \ ( 
    id ( 
    dom S))))) by 
    RELAT_1: 36
    
      .= (R
    * (S 
    * (S 
    \ T))) by 
    Th11
    
      .= (R
    *  
    {} ) by 
    Def2
    
      .=
    {} ; 
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    E_SIEC:16
    
    ((the
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} & ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} & ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} & ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {}  
    
    proof
    
      set R = the
    entrance of N; 
    
      set S = the
    escape of N; 
    
      set T = (
    id the 
    carrier of N); 
    
      ((R
    \ T) 
    * (S 
    \ T)) 
    c= (R 
    * (S 
    \ T)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then
    
      
    
    A1: ((R 
    \ T) 
    * (S 
    \ T)) 
    c=  
    {} by 
    Th15;
    
      ((S
    \ T) 
    * (S 
    \ T)) 
    c= (S 
    * (S 
    \ T)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then
    
      
    
    A2: ((S 
    \ T) 
    * (S 
    \ T)) 
    c=  
    {} by 
    Def2;
    
      ((S
    \ T) 
    * (R 
    \ T)) 
    c= (S 
    * (R 
    \ T)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then
    
      
    
    A3: ((S 
    \ T) 
    * (R 
    \ T)) 
    c=  
    {} by 
    Th15;
    
      ((R
    \ T) 
    * (R 
    \ T)) 
    c= (R 
    * (R 
    \ T)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then ((R
    \ T) 
    * (R 
    \ T)) 
    c=  
    {} by 
    Def2;
    
      hence thesis by
    A1,
    A2,
    A3,
    XBOOLE_1: 3;
    
    end;
    
    definition
    
      let N;
    
      :: 
    
    E_SIEC:def9
    
      func
    
    e_Places (N) -> 
    set equals ( 
    rng the 
    entrance of N); 
    
      correctness ;
    
    end
    
    definition
    
      let N;
    
      :: 
    
    E_SIEC:def10
    
      func
    
    e_Transitions (N) -> 
    set equals (the 
    carrier of N 
    \ ( 
    e_Places N)); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    E_SIEC:17
    
    
    
    
    
    Th17: ( 
    [x, y]
    in the 
    entrance of N or 
    [x, y]
    in the 
    escape of N) & x 
    <> y implies x 
    in ( 
    e_Transitions N) & y 
    in ( 
    e_Places N) 
    
    proof
    
      
    
      
    
    A1: 
    [x, y]
    in the 
    escape of N & x 
    <> y implies x 
    in ( 
    e_Transitions N) & y 
    in ( 
    e_Places N) 
    
      proof
    
        (the
    escape of N 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} by 
    Def2;
    
        then
    
        
    
    A2: (the 
    escape of N 
    * (the 
    escape of N 
    \ ( 
    id ( 
    dom the 
    escape of N)))) 
    =  
    {} by 
    Th11;
    
        (
    dom the 
    escape of N) 
    c= the 
    carrier of N by 
    Th14;
    
        then
    
        
    
    A3: (( 
    dom the 
    escape of N) 
    \ ( 
    dom ( 
    CL the 
    escape of N))) 
    c= (the 
    carrier of N 
    \ ( 
    dom ( 
    CL the 
    escape of N))) by 
    XBOOLE_1: 33;
    
        assume
    
        
    
    A4: 
    [x, y]
    in the 
    escape of N & x 
    <> y; 
    
        
    
        
    
    A5: (the 
    escape of N 
    * the 
    escape of N) 
    = the 
    escape of N by 
    Def1;
    
        then x
    in (( 
    dom the 
    escape of N) 
    \ ( 
    dom ( 
    CL the 
    escape of N))) by 
    A4,
    A2,
    SYSREL: 30;
    
        then x
    in (the 
    carrier of N 
    \ ( 
    dom ( 
    CL the 
    escape of N))) by 
    A3;
    
        then
    
        
    
    A6: x 
    in (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N)) by 
    Th13;
    
        y
    in ( 
    dom ( 
    CL the 
    escape of N)) by 
    A4,
    A5,
    A2,
    SYSREL: 30;
    
        then y
    in ( 
    rng the 
    escape of N) by 
    Th13;
    
        hence thesis by
    A6,
    Th13;
    
      end;
    
      
    [x, y]
    in the 
    entrance of N & x 
    <> y implies x 
    in ( 
    e_Transitions N) & y 
    in ( 
    e_Places N) 
    
      proof
    
        (the
    entrance of N 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} by 
    Def2;
    
        then
    
        
    
    A7: (the 
    entrance of N 
    * (the 
    entrance of N 
    \ ( 
    id ( 
    dom the 
    entrance of N)))) 
    =  
    {} by 
    Th11;
    
        (
    dom the 
    entrance of N) 
    c= the 
    carrier of N by 
    Th14;
    
        then
    
        
    
    A8: (( 
    dom the 
    entrance of N) 
    \ ( 
    dom ( 
    CL the 
    entrance of N))) 
    c= (the 
    carrier of N 
    \ ( 
    dom ( 
    CL the 
    entrance of N))) by 
    XBOOLE_1: 33;
    
        assume
    
        
    
    A9: 
    [x, y]
    in the 
    entrance of N & x 
    <> y; 
    
        
    
        
    
    A10: (the 
    entrance of N 
    * the 
    entrance of N) 
    = the 
    entrance of N by 
    Def1;
    
        then x
    in (( 
    dom the 
    entrance of N) 
    \ ( 
    dom ( 
    CL the 
    entrance of N))) by 
    A9,
    A7,
    SYSREL: 30;
    
        then
    
        
    
    A11: x 
    in (the 
    carrier of N 
    \ ( 
    dom ( 
    CL the 
    entrance of N))) by 
    A8;
    
        y
    in ( 
    dom ( 
    CL the 
    entrance of N)) by 
    A9,
    A10,
    A7,
    SYSREL: 30;
    
        hence thesis by
    A11,
    Th13;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    E_SIEC:18
    
    
    
    
    
    Th18: (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    c=  
    [:(
    e_Transitions N), ( 
    e_Places N):] & (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    c=  
    [:(
    e_Transitions N), ( 
    e_Places N):] 
    
    proof
    
      
    
      
    
    A1: for x,y be 
    object holds 
    [x, y]
    in (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) implies 
    [x, y]
    in  
    [:(
    e_Transitions N), ( 
    e_Places N):] 
    
      proof
    
        let x,y be
    object;
    
        assume
    
        
    
    A2: 
    [x, y]
    in (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)); 
    
        then
    [x, y]
    in the 
    entrance of N by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A3: x 
    in ( 
    dom the 
    entrance of N) by 
    XTUPLE_0:def 12;
    
         not
    [x, y]
    in ( 
    id the 
    carrier of N) by 
    A2,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A4: not x 
    in the 
    carrier of N or x 
    <> y by 
    RELAT_1:def 10;
    
        
    
        
    
    A5: 
    [x, y]
    in the 
    entrance of N by 
    A2,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A6: y 
    in ( 
    e_Places N) by 
    XTUPLE_0:def 13;
    
        (
    dom the 
    entrance of N) 
    c= the 
    carrier of N by 
    Th14;
    
        then x
    in ( 
    e_Transitions N) by 
    A5,
    A4,
    A3,
    Th17;
    
        hence thesis by
    A6,
    ZFMISC_1: 87;
    
      end;
    
      for x,y be
    object holds 
    [x, y]
    in (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) implies 
    [x, y]
    in  
    [:(
    e_Transitions N), ( 
    e_Places N):] 
    
      proof
    
        let x,y be
    object;
    
        
    
        
    
    A7: ( 
    dom the 
    escape of N) 
    c= the 
    carrier of N by 
    Th14;
    
        assume
    
        
    
    A8: 
    [x, y]
    in (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)); 
    
        then
    [x, y]
    in the 
    escape of N by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A9: x 
    in ( 
    dom the 
    escape of N) by 
    XTUPLE_0:def 12;
    
         not
    [x, y]
    in ( 
    id the 
    carrier of N) by 
    A8,
    XBOOLE_0:def 5;
    
        then
    
        
    
    A10: not x 
    in the 
    carrier of N or x 
    <> y by 
    RELAT_1:def 10;
    
        
    [x, y]
    in the 
    escape of N by 
    A8,
    XBOOLE_0:def 5;
    
        then x
    in ( 
    e_Transitions N) & y 
    in ( 
    e_Places N) by 
    A10,
    A9,
    A7,
    Th17;
    
        hence thesis by
    ZFMISC_1: 87;
    
      end;
    
      hence thesis by
    A1,
    RELAT_1:def 3;
    
    end;
    
    definition
    
      let N;
    
      :: 
    
    E_SIEC:def11
    
      func
    
    e_Flow N -> 
    Relation equals (((the 
    entrance of N 
    ~ ) 
    \/ the 
    escape of N) 
    \ ( 
    id N)); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    E_SIEC:19
    
    (
    e_Flow N) 
    c= ( 
    [:(
    e_Places N), ( 
    e_Transitions N):] 
    \/  
    [:(
    e_Transitions N), ( 
    e_Places N):]) 
    
    proof
    
      
    
      
    
    A1: ((the 
    entrance of N 
    ~ ) 
    \ ( 
    id N)) 
    = ((the 
    entrance of N 
    ~ ) 
    \ (( 
    id the 
    carrier of N) 
    ~ )) 
    
      .= ((the
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) by 
    RELAT_1: 24;
    
      
    
      
    
    A2: ( 
    e_Flow N) 
    = (((the 
    entrance of N 
    ~ ) 
    \ ( 
    id the 
    carrier of N)) 
    \/ (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) & (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    c=  
    [:(
    e_Transitions N), ( 
    e_Places N):] by 
    Th18,
    XBOOLE_1: 42;
    
      (the
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    c=  
    [:(
    e_Transitions N), ( 
    e_Places N):] by 
    Th18;
    
      then ((the
    entrance of N 
    ~ ) 
    \ ( 
    id the 
    carrier of N)) 
    c=  
    [:(
    e_Places N), ( 
    e_Transitions N):] by 
    A1,
    SYSREL: 4;
    
      hence thesis by
    A2,
    XBOOLE_1: 13;
    
    end;
    
    definition
    
      let N;
    
      :: 
    
    E_SIEC:def12
    
      func
    
    e_pre (N) -> 
    Relation equals (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)); 
    
      correctness ;
    
      :: 
    
    E_SIEC:def13
    
      func
    
    e_post (N) -> 
    Relation equals (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    E_SIEC:20
    
    (
    e_pre N) 
    c=  
    [:(
    e_Transitions N), ( 
    e_Places N):] & ( 
    e_post N) 
    c=  
    [:(
    e_Transitions N), ( 
    e_Places N):] by 
    Th18;
    
    definition
    
      let N;
    
      :: 
    
    E_SIEC:def14
    
      func
    
    e_shore (N) -> 
    set equals the 
    carrier of N; 
    
      correctness ;
    
      :: 
    
    E_SIEC:def15
    
      func
    
    e_prox (N) -> 
    Relation equals ((the 
    entrance of N 
    \/ the 
    escape of N) 
    ~ ); 
    
      correctness ;
    
      :: 
    
    E_SIEC:def16
    
      func
    
    e_flow (N) -> 
    Relation equals (((the 
    entrance of N 
    ~ ) 
    \/ the 
    escape of N) 
    \/ ( 
    id the 
    carrier of N)); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    E_SIEC:21
    
    (
    e_prox N) 
    c=  
    [:(
    e_shore N), ( 
    e_shore N):] & ( 
    e_flow N) 
    c=  
    [:(
    e_shore N), ( 
    e_shore N):] 
    
    proof
    
      
    
      
    
    A1: ( 
    id the 
    carrier of N) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    RELSET_1: 13;
    
      
    
      
    
    A2: the 
    escape of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    Def1;
    
      
    
      
    
    A3: the 
    entrance of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    Def1;
    
      then (the
    entrance of N 
    ~ ) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    SYSREL: 4;
    
      then
    
      
    
    A4: ((the 
    entrance of N 
    ~ ) 
    \/ the 
    escape of N) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    A2,
    XBOOLE_1: 8;
    
      (the
    entrance of N 
    \/ the 
    escape of N) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    A3,
    A2,
    XBOOLE_1: 8;
    
      hence thesis by
    A4,
    A1,
    SYSREL: 4,
    XBOOLE_1: 8;
    
    end;
    
    theorem :: 
    
    E_SIEC:22
    
    ((
    e_prox N) 
    * ( 
    e_prox N)) 
    = ( 
    e_prox N) & ((( 
    e_prox N) 
    \ ( 
    id ( 
    e_shore N))) 
    * ( 
    e_prox N)) 
    =  
    {} & ((( 
    e_prox N) 
    \/ (( 
    e_prox N) 
    ~ )) 
    \/ ( 
    id ( 
    e_shore N))) 
    = (( 
    e_flow N) 
    \/ (( 
    e_flow N) 
    ~ )) 
    
    proof
    
      set R = the
    entrance of N; 
    
      set S = the
    escape of N; 
    
      set T = (
    id the 
    carrier of N); 
    
      
    
      
    
    A1: ((( 
    e_prox N) 
    \/ (( 
    e_prox N) 
    ~ )) 
    \/ ( 
    id ( 
    e_shore N))) 
    = ((((R 
    ~ ) 
    \/ (S 
    ~ )) 
    \/ (S 
    \/ R)) 
    \/ T) by 
    RELAT_1: 23
    
      .= (((((R
    ~ ) 
    \/ (S 
    ~ )) 
    \/ S) 
    \/ R) 
    \/ T) by 
    XBOOLE_1: 4
    
      .= ((((R
    ~ ) 
    \/ ((S 
    ~ ) 
    \/ S)) 
    \/ R) 
    \/ T) by 
    XBOOLE_1: 4
    
      .= (((R
    ~ ) 
    \/ ((S 
    \/ (S 
    ~ )) 
    \/ R)) 
    \/ T) by 
    XBOOLE_1: 4
    
      .= (((R
    ~ ) 
    \/ (S 
    \/ ((S 
    ~ ) 
    \/ R))) 
    \/ T) by 
    XBOOLE_1: 4
    
      .= ((((R
    ~ ) 
    \/ S) 
    \/ ((S 
    ~ ) 
    \/ R)) 
    \/ T) by 
    XBOOLE_1: 4
    
      .= ((
    e_flow N) 
    \/ (((S 
    ~ ) 
    \/ ((R 
    ~ ) 
    ~ )) 
    \/ T)) by 
    XBOOLE_1: 5
    
      .= ((
    e_flow N) 
    \/ ((((R 
    ~ ) 
    \/ S) 
    ~ ) 
    \/ T)) by 
    RELAT_1: 23
    
      .= ((
    e_flow N) 
    \/ ((((R 
    ~ ) 
    \/ S) 
    ~ ) 
    \/ (T 
    ~ ))) 
    
      .= ((
    e_flow N) 
    \/ (( 
    e_flow N) 
    ~ )) by 
    RELAT_1: 23;
    
      
    
      
    
    A2: ((( 
    e_prox N) 
    \ T) 
    * ( 
    e_prox N)) 
    = ((((R 
    ~ ) 
    \/ (S 
    ~ )) 
    \ T) 
    * ((R 
    \/ S) 
    ~ )) by 
    RELAT_1: 23
    
      .= ((((R
    ~ ) 
    \ T) 
    \/ ((S 
    ~ ) 
    \ T)) 
    * ((R 
    \/ S) 
    ~ )) by 
    XBOOLE_1: 42
    
      .= ((((R
    ~ ) 
    \ T) 
    \/ ((S 
    ~ ) 
    \ T)) 
    * ((R 
    ~ ) 
    \/ (S 
    ~ ))) by 
    RELAT_1: 23
    
      .= (((((R
    ~ ) 
    \ T) 
    \/ ((S 
    ~ ) 
    \ T)) 
    * (R 
    ~ )) 
    \/ ((((R 
    ~ ) 
    \ T) 
    \/ ((S 
    ~ ) 
    \ T)) 
    * (S 
    ~ ))) by 
    RELAT_1: 32
    
      .= (((((R
    ~ ) 
    \ T) 
    * (R 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ T) 
    * (R 
    ~ ))) 
    \/ ((((R 
    ~ ) 
    \ T) 
    \/ ((S 
    ~ ) 
    \ T)) 
    * (S 
    ~ ))) by 
    SYSREL: 6
    
      .= (((((R
    ~ ) 
    \ T) 
    * (R 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ T) 
    * (R 
    ~ ))) 
    \/ ((((R 
    ~ ) 
    \ T) 
    * (S 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ T) 
    * (S 
    ~ )))) by 
    SYSREL: 6
    
      .= (((((R
    ~ ) 
    \ (T 
    ~ )) 
    * (R 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ T) 
    * (R 
    ~ ))) 
    \/ ((((R 
    ~ ) 
    \ T) 
    * (S 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ T) 
    * (S 
    ~ )))) 
    
      .= (((((R
    ~ ) 
    \ (T 
    ~ )) 
    * (R 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ (T 
    ~ )) 
    * (R 
    ~ ))) 
    \/ ((((R 
    ~ ) 
    \ T) 
    * (S 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ T) 
    * (S 
    ~ )))) 
    
      .= (((((R
    ~ ) 
    \ (T 
    ~ )) 
    * (R 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ (T 
    ~ )) 
    * (R 
    ~ ))) 
    \/ ((((R 
    ~ ) 
    \ (T 
    ~ )) 
    * (S 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ T) 
    * (S 
    ~ )))) 
    
      .= (((((R
    ~ ) 
    \ (T 
    ~ )) 
    * (R 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ (T 
    ~ )) 
    * (R 
    ~ ))) 
    \/ ((((R 
    ~ ) 
    \ (T 
    ~ )) 
    * (S 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ (T 
    ~ )) 
    * (S 
    ~ )))) 
    
      .= (((((R
    \ T) 
    ~ ) 
    * (R 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ (T 
    ~ )) 
    * (R 
    ~ ))) 
    \/ ((((R 
    ~ ) 
    \ (T 
    ~ )) 
    * (S 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ (T 
    ~ )) 
    * (S 
    ~ )))) by 
    RELAT_1: 24
    
      .= (((((R
    \ T) 
    ~ ) 
    * (R 
    ~ )) 
    \/ (((S 
    \ T) 
    ~ ) 
    * (R 
    ~ ))) 
    \/ ((((R 
    ~ ) 
    \ (T 
    ~ )) 
    * (S 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ (T 
    ~ )) 
    * (S 
    ~ )))) by 
    RELAT_1: 24
    
      .= (((((R
    \ T) 
    ~ ) 
    * (R 
    ~ )) 
    \/ (((S 
    \ T) 
    ~ ) 
    * (R 
    ~ ))) 
    \/ ((((R 
    \ T) 
    ~ ) 
    * (S 
    ~ )) 
    \/ (((S 
    ~ ) 
    \ (T 
    ~ )) 
    * (S 
    ~ )))) by 
    RELAT_1: 24
    
      .= (((((R
    \ T) 
    ~ ) 
    * (R 
    ~ )) 
    \/ (((S 
    \ T) 
    ~ ) 
    * (R 
    ~ ))) 
    \/ ((((R 
    \ T) 
    ~ ) 
    * (S 
    ~ )) 
    \/ (((S 
    \ T) 
    ~ ) 
    * (S 
    ~ )))) by 
    RELAT_1: 24
    
      .= ((((R
    * (R 
    \ T)) 
    ~ ) 
    \/ (((S 
    \ T) 
    ~ ) 
    * (R 
    ~ ))) 
    \/ ((((R 
    \ T) 
    ~ ) 
    * (S 
    ~ )) 
    \/ (((S 
    \ T) 
    ~ ) 
    * (S 
    ~ )))) by 
    RELAT_1: 35
    
      .= ((((R
    * (R 
    \ T)) 
    ~ ) 
    \/ ((R 
    * (S 
    \ T)) 
    ~ )) 
    \/ ((((R 
    \ T) 
    ~ ) 
    * (S 
    ~ )) 
    \/ (((S 
    \ T) 
    ~ ) 
    * (S 
    ~ )))) by 
    RELAT_1: 35
    
      .= ((((R
    * (R 
    \ T)) 
    ~ ) 
    \/ ((R 
    * (S 
    \ T)) 
    ~ )) 
    \/ (((S 
    * (R 
    \ T)) 
    ~ ) 
    \/ (((S 
    \ T) 
    ~ ) 
    * (S 
    ~ )))) by 
    RELAT_1: 35
    
      .= ((((R
    * (R 
    \ T)) 
    ~ ) 
    \/ ((R 
    * (S 
    \ T)) 
    ~ )) 
    \/ (((S 
    * (R 
    \ T)) 
    ~ ) 
    \/ ((S 
    * (S 
    \ T)) 
    ~ ))) by 
    RELAT_1: 35
    
      .= (((
    {}  
    ~ ) 
    \/ ((R 
    * (S 
    \ T)) 
    ~ )) 
    \/ (((S 
    * (R 
    \ T)) 
    ~ ) 
    \/ ((S 
    * (S 
    \ T)) 
    ~ ))) by 
    Def2
    
      .= (((
    {}  
    ~ ) 
    \/ ((R 
    * (S 
    \ T)) 
    ~ )) 
    \/ (((S 
    * (R 
    \ T)) 
    ~ ) 
    \/ ( 
    {}  
    ~ ))) by 
    Def2
    
      .= (((
    {}  
    ~ ) 
    \/ ( 
    {}  
    ~ )) 
    \/ (((S 
    * (R 
    \ T)) 
    ~ ) 
    \/ ( 
    {}  
    ~ ))) by 
    Th15
    
      .=
    {} by 
    Th15;
    
      ((
    e_prox N) 
    * ( 
    e_prox N)) 
    = (((R 
    \/ S) 
    * (R 
    \/ S)) 
    ~ ) by 
    RELAT_1: 35
    
      .= ((((R
    \/ S) 
    * R) 
    \/ ((R 
    \/ S) 
    * S)) 
    ~ ) by 
    RELAT_1: 32
    
      .= ((((R
    * R) 
    \/ (S 
    * R)) 
    \/ ((R 
    \/ S) 
    * S)) 
    ~ ) by 
    SYSREL: 6
    
      .= ((((R
    * R) 
    \/ (S 
    * R)) 
    \/ ((R 
    * S) 
    \/ (S 
    * S))) 
    ~ ) by 
    SYSREL: 6
    
      .= (((R
    \/ (S 
    * R)) 
    \/ ((R 
    * S) 
    \/ (S 
    * S))) 
    ~ ) by 
    Def1
    
      .= (((R
    \/ S) 
    \/ ((R 
    * S) 
    \/ (S 
    * S))) 
    ~ ) by 
    Def1
    
      .= (((R
    \/ S) 
    \/ (R 
    \/ (S 
    * S))) 
    ~ ) by 
    Def1
    
      .= (((R
    \/ S) 
    \/ (R 
    \/ S)) 
    ~ ) by 
    Def1
    
      .= (
    e_prox N); 
    
      hence thesis by
    A2,
    A1;
    
    end;
    
    theorem :: 
    
    E_SIEC:23
    
    
    
    
    
    Th23: (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))) 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    = (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) & (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    = (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    
    proof
    
      set T = the
    entrance of N, C = the 
    carrier of N; 
    
      set E = the
    escape of N, I = ( 
    id C); 
    
      for x,y be
    object holds 
    [x, y]
    in (E 
    \ I) implies 
    [x, y]
    in (( 
    id (C 
    \ ( 
    rng E))) 
    * (E 
    \ I)) 
    
      proof
    
        let x,y be
    object;
    
        assume
    
        
    
    A1: 
    [x, y]
    in (E 
    \ I); 
    
        then
    [x, y]
    in E by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A2: x 
    in ( 
    dom E) by 
    XTUPLE_0:def 12;
    
        
    
        
    
    A3: not x 
    in ( 
    rng E) 
    
        proof
    
          assume x
    in ( 
    rng E); 
    
          then ex z be
    object st 
    [z, x]
    in E by 
    XTUPLE_0:def 13;
    
          then (E
    * (E 
    \ I)) 
    <>  
    {} by 
    A1,
    RELAT_1:def 8;
    
          hence thesis by
    Def2;
    
        end;
    
        (
    dom E) 
    c= C by 
    Th14;
    
        then x
    in (C 
    \ ( 
    rng E)) by 
    A2,
    A3,
    XBOOLE_0:def 5;
    
        then
    [x, x]
    in ( 
    id (C 
    \ ( 
    rng E))) by 
    RELAT_1:def 10;
    
        hence thesis by
    A1,
    RELAT_1:def 8;
    
      end;
    
      then
    
      
    
    A4: (E 
    \ I) 
    c= (( 
    id (C 
    \ ( 
    rng E))) 
    * (E 
    \ I)) by 
    RELAT_1:def 3;
    
      for x,y be
    object holds 
    [x, y]
    in (T 
    \ I) implies 
    [x, y]
    in (( 
    id (C 
    \ ( 
    rng T))) 
    * (T 
    \ I)) 
    
      proof
    
        let x,y be
    object;
    
        assume
    
        
    
    A5: 
    [x, y]
    in (T 
    \ I); 
    
        then
    [x, y]
    in T by 
    XBOOLE_0:def 5;
    
        then
    
        
    
    A6: x 
    in ( 
    dom T) by 
    XTUPLE_0:def 12;
    
        
    
        
    
    A7: not x 
    in ( 
    rng T) 
    
        proof
    
          assume x
    in ( 
    rng T); 
    
          then ex z be
    object st 
    [z, x]
    in T by 
    XTUPLE_0:def 13;
    
          then (T
    * (T 
    \ I)) 
    <>  
    {} by 
    A5,
    RELAT_1:def 8;
    
          hence thesis by
    Def2;
    
        end;
    
        (
    dom T) 
    c= C by 
    Th14;
    
        then x
    in (C 
    \ ( 
    rng T)) by 
    A6,
    A7,
    XBOOLE_0:def 5;
    
        then
    [x, x]
    in ( 
    id (C 
    \ ( 
    rng T))) by 
    RELAT_1:def 10;
    
        hence thesis by
    A5,
    RELAT_1:def 8;
    
      end;
    
      then
    
      
    
    A8: (T 
    \ I) 
    c= (( 
    id (C 
    \ ( 
    rng T))) 
    * (T 
    \ I)) by 
    RELAT_1:def 3;
    
      ((
    id (C 
    \ ( 
    rng E))) 
    * (E 
    \ I)) 
    c= (E 
    \ I) & (( 
    id (C 
    \ ( 
    rng T))) 
    * (T 
    \ I)) 
    c= (T 
    \ I) by 
    RELAT_1: 50;
    
      hence thesis by
    A4,
    A8,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    E_SIEC:24
    
    
    
    
    
    Th24: ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} & ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} & ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {} & ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    =  
    {}  
    
    proof
    
      set T = the
    entrance of N, C = the 
    carrier of N; 
    
      set E = the
    escape of N, I = ( 
    id C); 
    
      ((T
    \ I) 
    * (T 
    \ I)) 
    c= (T 
    * (T 
    \ I)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then
    
      
    
    A1: ((T 
    \ I) 
    * (T 
    \ I)) 
    c=  
    {} by 
    Def2;
    
      ((E
    \ I) 
    * (T 
    \ I)) 
    c= (E 
    * (T 
    \ I)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then
    
      
    
    A2: ((E 
    \ I) 
    * (T 
    \ I)) 
    c=  
    {} by 
    Th15;
    
      ((T
    \ I) 
    * (E 
    \ I)) 
    c= (T 
    * (E 
    \ I)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then
    
      
    
    A3: ((T 
    \ I) 
    * (E 
    \ I)) 
    c=  
    {} by 
    Th15;
    
      ((E
    \ I) 
    * (E 
    \ I)) 
    c= (E 
    * (E 
    \ I)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then ((E
    \ I) 
    * (E 
    \ I)) 
    c=  
    {} by 
    Def2;
    
      hence thesis by
    A1,
    A2,
    A3,
    XBOOLE_1: 3;
    
    end;
    
    theorem :: 
    
    E_SIEC:25
    
    
    
    
    
    Th25: (((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    * ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    =  
    {} & (((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    * ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    =  
    {}  
    
    proof
    
      
    
      
    
    A1: (((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    * ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    = (((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    ~ ) by 
    RELAT_1: 35
    
      .=
    {} by 
    Th24,
    RELAT_1: 43;
    
      (((the
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    * ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    = (((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    ~ ) by 
    RELAT_1: 35
    
      .=
    {} by 
    Th24,
    RELAT_1: 43;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    E_SIEC:26
    
    (((the
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    * (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))) 
    ~ )) 
    = ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) & (((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    * (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    ~ )) 
    = ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    
    proof
    
      
    
      
    
    A1: (((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    * (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    ~ )) 
    = ((( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    * (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N))) 
    ~ ) by 
    RELAT_1: 35
    
      .= ((the
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) by 
    Th23;
    
      (((the
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    * (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))) 
    ~ )) 
    = ((( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))) 
    * (the 
    escape of N 
    \ ( 
    id the 
    carrier of N))) 
    ~ ) by 
    RELAT_1: 35
    
      .= ((the
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) by 
    Th23;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    E_SIEC:27
    
    
    
    
    
    Th27: ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N)))) 
    =  
    {} & ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N)))) 
    =  
    {}  
    
    proof
    
      
    
      
    
    A1: for x,y be 
    object holds not 
    [x, y]
    in ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N)))) 
    
      proof
    
        let x,y be
    object;
    
        assume
    [x, y]
    in ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N)))); 
    
        then
    
        consider z be
    object such that 
    
        
    
    A2: 
    [x, z]
    in (the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) and 
    
        
    
    A3: 
    [z, y]
    in ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) by 
    RELAT_1:def 8;
    
        z
    in (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N)) by 
    A3,
    RELAT_1:def 10;
    
        then
    
        
    
    A4: not z 
    in ( 
    rng the 
    entrance of N) by 
    XBOOLE_0:def 5;
    
        
    [x, z]
    in the 
    entrance of N by 
    A2,
    XBOOLE_0:def 5;
    
        hence thesis by
    A4,
    XTUPLE_0:def 13;
    
      end;
    
      for x,y be
    object holds not 
    [x, y]
    in ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N)))) 
    
      proof
    
        let x,y be
    object;
    
        assume
    [x, y]
    in ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N)))); 
    
        then
    
        consider z be
    object such that 
    
        
    
    A5: 
    [x, z]
    in (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) and 
    
        
    
    A6: 
    [z, y]
    in ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))) by 
    RELAT_1:def 8;
    
        z
    in (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N)) by 
    A6,
    RELAT_1:def 10;
    
        then
    
        
    
    A7: not z 
    in ( 
    rng the 
    escape of N) by 
    XBOOLE_0:def 5;
    
        
    [x, z]
    in the 
    escape of N by 
    A5,
    XBOOLE_0:def 5;
    
        hence thesis by
    A7,
    XTUPLE_0:def 13;
    
      end;
    
      hence thesis by
    A1,
    RELAT_1: 37;
    
    end;
    
    theorem :: 
    
    E_SIEC:28
    
    
    
    
    
    Th28: (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))) 
    * ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    =  
    {} & (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    * ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    =  
    {}  
    
    proof
    
      
    
      
    
    A1: (( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    * ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    = ((( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    ~ ) 
    * ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    
      .= (((the
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    * ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N)))) 
    ~ ) by 
    RELAT_1: 35
    
      .=
    {} by 
    Th27,
    RELAT_1: 43;
    
      ((
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))) 
    * ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    = ((( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))) 
    ~ ) 
    * ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ )) 
    
      .= (((the
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    * ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N)))) 
    ~ ) by 
    RELAT_1: 35
    
      .=
    {} by 
    Th27,
    RELAT_1: 43;
    
      hence thesis by
    A1;
    
    end;
    
    definition
    
      let N;
    
      :: 
    
    E_SIEC:def17
    
      func
    
    e_entrance (N) -> 
    Relation equals (((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    \/ ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N)))); 
    
      correctness ;
    
      :: 
    
    E_SIEC:def18
    
      func
    
    e_escape (N) -> 
    Relation equals (((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    \/ ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N)))); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    E_SIEC:29
    
    ((
    e_entrance N) 
    * ( 
    e_entrance N)) 
    = ( 
    e_entrance N) & (( 
    e_entrance N) 
    * ( 
    e_escape N)) 
    = ( 
    e_entrance N) & (( 
    e_escape N) 
    * ( 
    e_entrance N)) 
    = ( 
    e_escape N) & (( 
    e_escape N) 
    * ( 
    e_escape N)) 
    = ( 
    e_escape N) 
    
    proof
    
      set P = (the
    escape of N 
    \ ( 
    id the 
    carrier of N)); 
    
      set Q = (the
    entrance of N 
    \ ( 
    id the 
    carrier of N)); 
    
      set S = (
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))); 
    
      set T = (
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))); 
    
      
    
      
    
    A1: (( 
    e_entrance N) 
    * ( 
    e_entrance N)) 
    = (((P 
    ~ ) 
    * ((P 
    ~ ) 
    \/ T)) 
    \/ (T 
    * ((P 
    ~ ) 
    \/ T))) by 
    SYSREL: 6
    
      .= ((((P
    ~ ) 
    * (P 
    ~ )) 
    \/ ((P 
    ~ ) 
    * T)) 
    \/ (T 
    * ((P 
    ~ ) 
    \/ T))) by 
    RELAT_1: 32
    
      .= ((((P
    ~ ) 
    * (P 
    ~ )) 
    \/ ((P 
    ~ ) 
    * T)) 
    \/ ((T 
    * (P 
    ~ )) 
    \/ (T 
    * T))) by 
    RELAT_1: 32
    
      .= ((((P
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * T)) 
    \/ ((T 
    * (P 
    ~ )) 
    \/ (T 
    * T))) by 
    RELAT_1: 35
    
      .= ((((P
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * (T 
    ~ ))) 
    \/ ((T 
    * (P 
    ~ )) 
    \/ (T 
    * T))) 
    
      .= ((((P
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * (T 
    ~ ))) 
    \/ (((T 
    ~ ) 
    * (P 
    ~ )) 
    \/ (T 
    * T))) 
    
      .= ((((P
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * (T 
    ~ ))) 
    \/ (((T 
    ~ ) 
    * (P 
    ~ )) 
    \/ T)) by 
    SYSREL: 12
    
      .= ((((P
    * P) 
    ~ ) 
    \/ ((T 
    * P) 
    ~ )) 
    \/ (((T 
    ~ ) 
    * (P 
    ~ )) 
    \/ T)) by 
    RELAT_1: 35
    
      .= ((((P
    * P) 
    ~ ) 
    \/ ((T 
    * P) 
    ~ )) 
    \/ (((P 
    * T) 
    ~ ) 
    \/ T)) by 
    RELAT_1: 35
    
      .= (((
    {}  
    ~ ) 
    \/ ((T 
    * P) 
    ~ )) 
    \/ (((P 
    * T) 
    ~ ) 
    \/ T)) by 
    Th24
    
      .= (((
    {}  
    ~ ) 
    \/ (P 
    ~ )) 
    \/ (((P 
    * T) 
    ~ ) 
    \/ T)) by 
    Th23
    
      .= ((
    {}  
    \/ (P 
    ~ )) 
    \/ ( 
    {}  
    \/ T)) by 
    Th27
    
      .= (
    e_entrance N); 
    
      
    
      
    
    A2: (( 
    e_escape N) 
    * ( 
    e_escape N)) 
    = (((Q 
    ~ ) 
    * ((Q 
    ~ ) 
    \/ S)) 
    \/ (S 
    * ((Q 
    ~ ) 
    \/ S))) by 
    SYSREL: 6
    
      .= ((((Q
    ~ ) 
    * (Q 
    ~ )) 
    \/ ((Q 
    ~ ) 
    * S)) 
    \/ (S 
    * ((Q 
    ~ ) 
    \/ S))) by 
    RELAT_1: 32
    
      .= ((((Q
    ~ ) 
    * (Q 
    ~ )) 
    \/ ((Q 
    ~ ) 
    * S)) 
    \/ ((S 
    * (Q 
    ~ )) 
    \/ (S 
    * S))) by 
    RELAT_1: 32
    
      .= ((((Q
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * S)) 
    \/ ((S 
    * (Q 
    ~ )) 
    \/ (S 
    * S))) by 
    RELAT_1: 35
    
      .= ((((Q
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * (S 
    ~ ))) 
    \/ ((S 
    * (Q 
    ~ )) 
    \/ (S 
    * S))) 
    
      .= ((((Q
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * (S 
    ~ ))) 
    \/ (((S 
    ~ ) 
    * (Q 
    ~ )) 
    \/ (S 
    * S))) 
    
      .= ((((Q
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * (S 
    ~ ))) 
    \/ (((S 
    ~ ) 
    * (Q 
    ~ )) 
    \/ S)) by 
    SYSREL: 12
    
      .= ((((Q
    * Q) 
    ~ ) 
    \/ ((S 
    * Q) 
    ~ )) 
    \/ (((S 
    ~ ) 
    * (Q 
    ~ )) 
    \/ S)) by 
    RELAT_1: 35
    
      .= ((((Q
    * Q) 
    ~ ) 
    \/ ((S 
    * Q) 
    ~ )) 
    \/ (((Q 
    * S) 
    ~ ) 
    \/ S)) by 
    RELAT_1: 35
    
      .= (((
    {}  
    ~ ) 
    \/ ((S 
    * Q) 
    ~ )) 
    \/ (((Q 
    * S) 
    ~ ) 
    \/ S)) by 
    Th24
    
      .= (((
    {}  
    ~ ) 
    \/ (Q 
    ~ )) 
    \/ (((Q 
    * S) 
    ~ ) 
    \/ S)) by 
    Th23
    
      .= ((
    {}  
    \/ (Q 
    ~ )) 
    \/ ( 
    {}  
    \/ S)) by 
    Th27
    
      .= (
    e_escape N); 
    
      
    
      
    
    A3: (( 
    e_escape N) 
    * ( 
    e_entrance N)) 
    = (((Q 
    ~ ) 
    * ((P 
    ~ ) 
    \/ T)) 
    \/ (S 
    * ((P 
    ~ ) 
    \/ T))) by 
    SYSREL: 6
    
      .= ((((Q
    ~ ) 
    * (P 
    ~ )) 
    \/ ((Q 
    ~ ) 
    * T)) 
    \/ (S 
    * ((P 
    ~ ) 
    \/ T))) by 
    RELAT_1: 32
    
      .= ((((Q
    ~ ) 
    * (P 
    ~ )) 
    \/ ((Q 
    ~ ) 
    * T)) 
    \/ ((S 
    * (P 
    ~ )) 
    \/ (S 
    * T))) by 
    RELAT_1: 32
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * T)) 
    \/ ((S 
    * (P 
    ~ )) 
    \/ (S 
    * T))) by 
    RELAT_1: 35
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * (T 
    ~ ))) 
    \/ ((S 
    * (P 
    ~ )) 
    \/ (S 
    * T))) 
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * (T 
    ~ ))) 
    \/ (((S 
    ~ ) 
    * (P 
    ~ )) 
    \/ (S 
    * T))) 
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * (T 
    ~ ))) 
    \/ (((S 
    ~ ) 
    * (P 
    ~ )) 
    \/ (S 
    * S))) by 
    Th13
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((Q 
    ~ ) 
    * (T 
    ~ ))) 
    \/ (((S 
    ~ ) 
    * (P 
    ~ )) 
    \/ S)) by 
    SYSREL: 12
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((T 
    * Q) 
    ~ )) 
    \/ (((S 
    ~ ) 
    * (P 
    ~ )) 
    \/ S)) by 
    RELAT_1: 35
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((T 
    * Q) 
    ~ )) 
    \/ (((P 
    * S) 
    ~ ) 
    \/ S)) by 
    RELAT_1: 35
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((S 
    * Q) 
    ~ )) 
    \/ (((P 
    * S) 
    ~ ) 
    \/ S)) by 
    Th13
    
      .= ((((P
    * Q) 
    ~ ) 
    \/ ((S 
    * Q) 
    ~ )) 
    \/ (((P 
    * T) 
    ~ ) 
    \/ S)) by 
    Th13
    
      .= (((
    {}  
    ~ ) 
    \/ ((S 
    * Q) 
    ~ )) 
    \/ (((P 
    * T) 
    ~ ) 
    \/ S)) by 
    Th24
    
      .= (((
    {}  
    ~ ) 
    \/ (Q 
    ~ )) 
    \/ (((P 
    * T) 
    ~ ) 
    \/ S)) by 
    Th23
    
      .= ((
    {}  
    \/ (Q 
    ~ )) 
    \/ ( 
    {}  
    \/ S)) by 
    Th27
    
      .= (
    e_escape N); 
    
      ((
    e_entrance N) 
    * ( 
    e_escape N)) 
    = (((P 
    ~ ) 
    * ((Q 
    ~ ) 
    \/ S)) 
    \/ (T 
    * ((Q 
    ~ ) 
    \/ S))) by 
    SYSREL: 6
    
      .= ((((P
    ~ ) 
    * (Q 
    ~ )) 
    \/ ((P 
    ~ ) 
    * S)) 
    \/ (T 
    * ((Q 
    ~ ) 
    \/ S))) by 
    RELAT_1: 32
    
      .= ((((P
    ~ ) 
    * (Q 
    ~ )) 
    \/ ((P 
    ~ ) 
    * S)) 
    \/ ((T 
    * (Q 
    ~ )) 
    \/ (T 
    * S))) by 
    RELAT_1: 32
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * S)) 
    \/ ((T 
    * (Q 
    ~ )) 
    \/ (T 
    * S))) by 
    RELAT_1: 35
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * (S 
    ~ ))) 
    \/ ((T 
    * (Q 
    ~ )) 
    \/ (T 
    * S))) 
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * (S 
    ~ ))) 
    \/ (((T 
    ~ ) 
    * (Q 
    ~ )) 
    \/ (T 
    * S))) 
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * (S 
    ~ ))) 
    \/ (((T 
    ~ ) 
    * (Q 
    ~ )) 
    \/ (T 
    * T))) by 
    Th13
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((P 
    ~ ) 
    * (S 
    ~ ))) 
    \/ (((T 
    ~ ) 
    * (Q 
    ~ )) 
    \/ T)) by 
    SYSREL: 12
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((S 
    * P) 
    ~ )) 
    \/ (((T 
    ~ ) 
    * (Q 
    ~ )) 
    \/ T)) by 
    RELAT_1: 35
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((S 
    * P) 
    ~ )) 
    \/ (((Q 
    * T) 
    ~ ) 
    \/ T)) by 
    RELAT_1: 35
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((T 
    * P) 
    ~ )) 
    \/ (((Q 
    * T) 
    ~ ) 
    \/ T)) by 
    Th13
    
      .= ((((Q
    * P) 
    ~ ) 
    \/ ((T 
    * P) 
    ~ )) 
    \/ (((Q 
    * S) 
    ~ ) 
    \/ T)) by 
    Th13
    
      .= (((
    {}  
    ~ ) 
    \/ ((T 
    * P) 
    ~ )) 
    \/ (((Q 
    * S) 
    ~ ) 
    \/ T)) by 
    Th24
    
      .= (((
    {}  
    ~ ) 
    \/ (P 
    ~ )) 
    \/ (((Q 
    * S) 
    ~ ) 
    \/ T)) by 
    Th23
    
      .= ((
    {}  
    \/ (P 
    ~ )) 
    \/ ( 
    {}  
    \/ T)) by 
    Th27
    
      .= (
    e_entrance N); 
    
      hence thesis by
    A1,
    A3,
    A2;
    
    end;
    
    theorem :: 
    
    E_SIEC:30
    
    ((
    e_entrance N) 
    * (( 
    e_entrance N) 
    \ ( 
    id ( 
    e_shore N)))) 
    =  
    {} & (( 
    e_escape N) 
    * (( 
    e_escape N) 
    \ ( 
    id ( 
    e_shore N)))) 
    =  
    {}  
    
    proof
    
      set P = (the
    escape of N 
    \ ( 
    id N)); 
    
      set Q = (the
    entrance of N 
    \ ( 
    id the 
    carrier of N)); 
    
      set S = (
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))); 
    
      set T = (
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))); 
    
      set R = (
    id the 
    carrier of N); 
    
      
    
      
    
    A1: S 
    c= R by 
    SYSREL: 15,
    XBOOLE_1: 36;
    
      ((Q
    ~ ) 
    * ((Q 
    ~ ) 
    \ R)) 
    c= ((Q 
    ~ ) 
    * (Q 
    ~ )) by 
    RELAT_1: 29,
    XBOOLE_1: 36;
    
      then ((Q
    ~ ) 
    * ((Q 
    ~ ) 
    \ R)) 
    c=  
    {} by 
    Th25;
    
      then
    
      
    
    A2: ((Q 
    ~ ) 
    * ((Q 
    ~ ) 
    \ R)) 
    =  
    {} by 
    XBOOLE_1: 3;
    
      (S
    * ((Q 
    ~ ) 
    \ R)) 
    c= (S 
    * (Q 
    ~ )) by 
    RELAT_1: 29,
    XBOOLE_1: 36;
    
      then (S
    * ((Q 
    ~ ) 
    \ R)) 
    c=  
    {} by 
    Th28;
    
      then
    
      
    
    A3: (S 
    * ((Q 
    ~ ) 
    \ R)) 
    =  
    {} by 
    XBOOLE_1: 3;
    
      
    
      
    
    A4: (( 
    e_escape N) 
    * (( 
    e_escape N) 
    \ ( 
    id ( 
    e_shore N)))) 
    = (((Q 
    ~ ) 
    \/ S) 
    * (((Q 
    ~ ) 
    \ R) 
    \/ (S 
    \ R))) by 
    XBOOLE_1: 42
    
      .= (((Q
    ~ ) 
    \/ S) 
    * (((Q 
    ~ ) 
    \ R) 
    \/  
    {} )) by 
    A1,
    XBOOLE_1: 37
    
      .= (
    {}  
    \/  
    {} ) by 
    A2,
    A3,
    SYSREL: 6
    
      .=
    {} ; 
    
      
    
      
    
    A5: T 
    c= R by 
    SYSREL: 15,
    XBOOLE_1: 36;
    
      (T
    * ((P 
    ~ ) 
    \ R)) 
    c= (T 
    * (P 
    ~ )) by 
    RELAT_1: 29,
    XBOOLE_1: 36;
    
      then (T
    * ((P 
    ~ ) 
    \ R)) 
    c=  
    {} by 
    Th28;
    
      then
    
      
    
    A6: (T 
    * ((P 
    ~ ) 
    \ R)) 
    =  
    {} by 
    XBOOLE_1: 3;
    
      ((P
    ~ ) 
    * ((P 
    ~ ) 
    \ R)) 
    c= ((P 
    ~ ) 
    * (P 
    ~ )) by 
    RELAT_1: 29,
    XBOOLE_1: 36;
    
      then ((P
    ~ ) 
    * ((P 
    ~ ) 
    \ R)) 
    c=  
    {} by 
    Th25;
    
      then
    
      
    
    A7: ((P 
    ~ ) 
    * ((P 
    ~ ) 
    \ R)) 
    =  
    {} by 
    XBOOLE_1: 3;
    
      ((
    e_entrance N) 
    * (( 
    e_entrance N) 
    \ ( 
    id ( 
    e_shore N)))) 
    = (((P 
    ~ ) 
    \/ T) 
    * (((P 
    ~ ) 
    \ R) 
    \/ (T 
    \ R))) by 
    XBOOLE_1: 42
    
      .= (((P
    ~ ) 
    \/ T) 
    * (((P 
    ~ ) 
    \ R) 
    \/  
    {} )) by 
    A5,
    XBOOLE_1: 37
    
      .= (
    {}  
    \/  
    {} ) by 
    A7,
    A6,
    SYSREL: 6
    
      .=
    {} ; 
    
      hence thesis by
    A4;
    
    end;
    
    definition
    
      let N;
    
      :: 
    
    E_SIEC:def19
    
      func
    
    e_adjac (N) -> 
    Relation equals (((the 
    entrance of N 
    \/ the 
    escape of N) 
    \ ( 
    id the 
    carrier of N)) 
    \/ ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N)))); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    E_SIEC:31
    
    (
    e_adjac N) 
    c=  
    [:(
    e_shore N), ( 
    e_shore N):] & ( 
    e_flow N) 
    c=  
    [:(
    e_shore N), ( 
    e_shore N):] 
    
    proof
    
      
    
      
    
    A1: ((the 
    entrance of N 
    \/ the 
    escape of N) 
    \ ( 
    id the 
    carrier of N)) 
    c= (the 
    entrance of N 
    \/ the 
    escape of N) by 
    XBOOLE_1: 36;
    
      
    
      
    
    A2: the 
    escape of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    Def1;
    
      
    
      
    
    A3: the 
    entrance of N 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    Def1;
    
      then (the
    entrance of N 
    ~ ) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    SYSREL: 4;
    
      then
    
      
    
    A4: ( 
    id the 
    carrier of N) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] & ((the 
    entrance of N 
    ~ ) 
    \/ the 
    escape of N) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    A2,
    RELSET_1: 13,
    XBOOLE_1: 8;
    
      (
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    c= ( 
    id the 
    carrier of N) & ( 
    id the 
    carrier of N) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    RELSET_1: 13,
    SYSREL: 15,
    XBOOLE_1: 36;
    
      then
    
      
    
    A5: ( 
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    XBOOLE_1: 1;
    
      (the
    entrance of N 
    \/ the 
    escape of N) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    A3,
    A2,
    XBOOLE_1: 8;
    
      then ((the
    entrance of N 
    \/ the 
    escape of N) 
    \ ( 
    id the 
    carrier of N)) 
    c=  
    [:the 
    carrier of N, the 
    carrier of N:] by 
    A1,
    XBOOLE_1: 1;
    
      hence thesis by
    A5,
    A4,
    XBOOLE_1: 8;
    
    end;
    
    theorem :: 
    
    E_SIEC:32
    
    ((
    e_adjac N) 
    * ( 
    e_adjac N)) 
    = ( 
    e_adjac N) & ((( 
    e_adjac N) 
    \ ( 
    id ( 
    e_shore N))) 
    * ( 
    e_adjac N)) 
    =  
    {} & ((( 
    e_adjac N) 
    \/ (( 
    e_adjac N) 
    ~ )) 
    \/ ( 
    id ( 
    e_shore N))) 
    = (( 
    e_flow N) 
    \/ (( 
    e_flow N) 
    ~ )) 
    
    proof
    
      set P = the
    entrance of N; 
    
      set Q = the
    escape of N; 
    
      set R = (
    id the 
    carrier of N); 
    
      set S = (
    id (the 
    carrier of N 
    \ ( 
    rng the 
    entrance of N))); 
    
      set T = (
    id (the 
    carrier of N 
    \ ( 
    rng the 
    escape of N))); 
    
      
    
      
    
    A1: S 
    c= R by 
    SYSREL: 15,
    XBOOLE_1: 36;
    
      ((
    e_adjac N) 
    \/ (( 
    e_adjac N) 
    ~ )) 
    = ((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \/ ((((P 
    \/ Q) 
    \ R) 
    ~ ) 
    \/ (S 
    ~ ))) by 
    RELAT_1: 23
    
      .= ((((P
    \/ Q) 
    \ R) 
    \/ S) 
    \/ ((((P 
    \/ Q) 
    \ R) 
    ~ ) 
    \/ S)) 
    
      .= ((((P
    \/ Q) 
    \ R) 
    \/ (((P 
    \/ Q) 
    \ R) 
    ~ )) 
    \/ S) by 
    XBOOLE_1: 5
    
      .= ((((P
    \/ Q) 
    \ R) 
    \/ (((P 
    \/ Q) 
    ~ ) 
    \ (R 
    ~ ))) 
    \/ S) by 
    RELAT_1: 24
    
      .= ((((P
    \/ Q) 
    \ R) 
    \/ (((P 
    \/ Q) 
    ~ ) 
    \ R)) 
    \/ S) 
    
      .= ((((P
    \/ Q) 
    \/ ((P 
    \/ Q) 
    ~ )) 
    \ R) 
    \/ S) by 
    XBOOLE_1: 42;
    
      
    
      then
    
      
    
    A2: ((( 
    e_adjac N) 
    \/ (( 
    e_adjac N) 
    ~ )) 
    \/ ( 
    id ( 
    e_shore N))) 
    = ((((P 
    \/ Q) 
    \/ ((P 
    \/ Q) 
    ~ )) 
    \ R) 
    \/ (S 
    \/ R)) by 
    XBOOLE_1: 4
    
      .= ((((P
    \/ Q) 
    \/ ((P 
    \/ Q) 
    ~ )) 
    \ R) 
    \/ R) by 
    A1,
    XBOOLE_1: 12
    
      .= (((((P
    ~ ) 
    \/ (Q 
    ~ )) 
    \/ (P 
    \/ Q)) 
    \ R) 
    \/ R) by 
    RELAT_1: 23
    
      .= ((((P
    ~ ) 
    \/ ((Q 
    \/ P) 
    \/ (Q 
    ~ ))) 
    \ R) 
    \/ R) by 
    XBOOLE_1: 4
    
      .= ((((P
    ~ ) 
    \/ (Q 
    \/ (P 
    \/ (Q 
    ~ )))) 
    \ R) 
    \/ R) by 
    XBOOLE_1: 4
    
      .= (((((P
    ~ ) 
    \/ Q) 
    \/ (P 
    \/ (Q 
    ~ ))) 
    \ R) 
    \/ R) by 
    XBOOLE_1: 4
    
      .= ((((P
    ~ ) 
    \/ Q) 
    \/ (P 
    \/ (Q 
    ~ ))) 
    \/ R) by 
    XBOOLE_1: 39
    
      .= ((
    e_flow N) 
    \/ ((((P 
    \/ (Q 
    ~ )) 
    ~ ) 
    ~ ) 
    \/ R)) by 
    XBOOLE_1: 5
    
      .= ((
    e_flow N) 
    \/ ((((P 
    ~ ) 
    \/ ((Q 
    ~ ) 
    ~ )) 
    ~ ) 
    \/ R)) by 
    RELAT_1: 23
    
      .= ((
    e_flow N) 
    \/ ((((P 
    ~ ) 
    \/ Q) 
    ~ ) 
    \/ (R 
    ~ ))) 
    
      .= ((
    e_flow N) 
    \/ (( 
    e_flow N) 
    ~ )) by 
    RELAT_1: 23;
    
      S
    c= R by 
    SYSREL: 15,
    XBOOLE_1: 36;
    
      then
    
      
    
    A3: (S 
    \ R) 
    =  
    {} by 
    XBOOLE_1: 37;
    
      ((P
    \ R) 
    * (Q 
    \ R)) 
    c= (P 
    * (Q 
    \ R)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then ((P
    \ R) 
    * (Q 
    \ R)) 
    c=  
    {} by 
    Th15;
    
      then
    
      
    
    A4: ((P 
    \ R) 
    * (Q 
    \ R)) 
    =  
    {} by 
    XBOOLE_1: 3;
    
      ((P
    \ R) 
    * (P 
    \ R)) 
    c= (P 
    * (P 
    \ R)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then ((P
    \ R) 
    * (P 
    \ R)) 
    c=  
    {} by 
    Def2;
    
      then
    
      
    
    A5: ((P 
    \ R) 
    * (P 
    \ R)) 
    =  
    {} by 
    XBOOLE_1: 3;
    
      ((Q
    \ R) 
    * (P 
    \ R)) 
    c= (Q 
    * (P 
    \ R)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then ((Q
    \ R) 
    * (P 
    \ R)) 
    c=  
    {} by 
    Th15;
    
      then
    
      
    
    A6: ((Q 
    \ R) 
    * (P 
    \ R)) 
    =  
    {} by 
    XBOOLE_1: 3;
    
      ((Q
    \ R) 
    * (Q 
    \ R)) 
    c= (Q 
    * (Q 
    \ R)) by 
    RELAT_1: 30,
    XBOOLE_1: 36;
    
      then ((Q
    \ R) 
    * (Q 
    \ R)) 
    c=  
    {} by 
    Def2;
    
      then
    
      
    
    A7: ((Q 
    \ R) 
    * (Q 
    \ R)) 
    =  
    {} by 
    XBOOLE_1: 3;
    
      
    
      
    
    A8: ((( 
    e_adjac N) 
    \ R) 
    * ( 
    e_adjac N)) 
    = ((((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \ R) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \ R) 
    * S)) by 
    RELAT_1: 32
    
      .= ((((((P
    \ R) 
    \/ (Q 
    \ R)) 
    \/ S) 
    \ R) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \ R) 
    * S)) by 
    XBOOLE_1: 42
    
      .= ((((((P
    \ R) 
    \/ (Q 
    \ R)) 
    \ R) 
    \/ (S 
    \ R)) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \ R) 
    * S)) by 
    XBOOLE_1: 42
    
      .= ((((((P
    \ R) 
    \ R) 
    \/ ((Q 
    \ R) 
    \ R)) 
    \/ (S 
    \ R)) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \ R) 
    * S)) by 
    XBOOLE_1: 42
    
      .= (((((P
    \ (R 
    \/ R)) 
    \/ ((Q 
    \ R) 
    \ R)) 
    \/ (S 
    \ R)) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \ R) 
    * S)) by 
    XBOOLE_1: 41
    
      .= (((((P
    \ R) 
    \/ (Q 
    \ (R 
    \/ R))) 
    \/ (S 
    \ R)) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \ R) 
    * S)) by 
    XBOOLE_1: 41
    
      .= (((((P
    \ R) 
    \/ (Q 
    \ R)) 
    \/ (S 
    \ R)) 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (((((P 
    \/ Q) 
    \ R) 
    \/ S) 
    \ R) 
    * S)) by 
    XBOOLE_1: 42
    
      .= (((((P
    \ R) 
    \/ (Q 
    \ R)) 
    \/ (S 
    \ R)) 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    \/ S) 
    \ R) 
    * S)) by 
    XBOOLE_1: 42
    
      .= ((((((P
    \ R) 
    \/ (Q 
    \ R)) 
    \/ (S 
    \ R)) 
    * (P 
    \ R)) 
    \/ ((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    \/ (S 
    \ R)) 
    * (Q 
    \ R))) 
    \/ (((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    \/ S) 
    \ R) 
    * S)) by 
    RELAT_1: 32
    
      .= ((((((P
    \ R) 
    \/ (Q 
    \ R)) 
    \/ (S 
    \ R)) 
    * (P 
    \ R)) 
    \/ ((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * (Q 
    \ R)) 
    \/ ((S 
    \ R) 
    * (Q 
    \ R)))) 
    \/ (((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    \/ S) 
    \ R) 
    * S)) by 
    SYSREL: 6
    
      .= ((((((P
    \ R) 
    \/ (Q 
    \ R)) 
    * (P 
    \ R)) 
    \/ ((S 
    \ R) 
    * (P 
    \ R))) 
    \/ ((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * (Q 
    \ R)) 
    \/ ((S 
    \ R) 
    * (Q 
    \ R)))) 
    \/ (((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    \/ S) 
    \ R) 
    * S)) by 
    SYSREL: 6
    
      .= ((((
    {}  
    \/  
    {} ) 
    \/ ((S 
    \ R) 
    * (P 
    \ R))) 
    \/ ((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * (Q 
    \ R)) 
    \/ ((S 
    \ R) 
    * (Q 
    \ R)))) 
    \/ (((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    \/ S) 
    \ R) 
    * S)) by 
    A5,
    A6,
    SYSREL: 6
    
      .= (((
    {}  
    * (P 
    \ R)) 
    \/ ( 
    {}  
    * (Q 
    \ R))) 
    \/ (((((P 
    \ R) 
    \/ (Q 
    \ R)) 
    \/ S) 
    \ R) 
    * S)) by 
    A3,
    A4,
    A7,
    SYSREL: 6
    
      .= (((((P
    \ R) 
    \/ (Q 
    \ R)) 
    \ R) 
    \/ (S 
    \ R)) 
    * S) by 
    XBOOLE_1: 42
    
      .= (((((P
    \ R) 
    \ R) 
    \/ ((Q 
    \ R) 
    \ R)) 
    \/ (S 
    \ R)) 
    * S) by 
    XBOOLE_1: 42
    
      .= ((((P
    \ (R 
    \/ R)) 
    \/ ((Q 
    \ R) 
    \ R)) 
    \/ (S 
    \ R)) 
    * S) by 
    XBOOLE_1: 41
    
      .= ((((P
    \ R) 
    \/ (Q 
    \ (R 
    \/ R))) 
    \/ (S 
    \ R)) 
    * S) by 
    XBOOLE_1: 41
    
      .= (((P
    \ R) 
    * S) 
    \/ ((Q 
    \ R) 
    * S)) by 
    A3,
    SYSREL: 6
    
      .= (
    {}  
    \/ ((Q 
    \ R) 
    * S)) by 
    Th27
    
      .= (
    {}  
    \/ ((Q 
    \ R) 
    * T)) by 
    Th13
    
      .=
    {} by 
    Th27;
    
      ((
    e_adjac N) 
    * ( 
    e_adjac N)) 
    = ((((P 
    \/ Q) 
    \ R) 
    * (((P 
    \/ Q) 
    \ R) 
    \/ S)) 
    \/ (S 
    * (((P 
    \/ Q) 
    \ R) 
    \/ S))) by 
    SYSREL: 6
    
      .= (((((P
    \/ Q) 
    \ R) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((P 
    \/ Q) 
    \ R) 
    * S)) 
    \/ (S 
    * (((P 
    \/ Q) 
    \ R) 
    \/ S))) by 
    RELAT_1: 32
    
      .= (((((P
    \/ Q) 
    \ R) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((P 
    \/ Q) 
    \ R) 
    * S)) 
    \/ ((S 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (S 
    * S))) by 
    RELAT_1: 32
    
      .= (((((P
    \ R) 
    \/ (Q 
    \ R)) 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (((P 
    \/ Q) 
    \ R) 
    * S)) 
    \/ ((S 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (S 
    * S))) by 
    XBOOLE_1: 42
    
      .= (((((P
    \ R) 
    \/ (Q 
    \ R)) 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (((P 
    \/ Q) 
    \ R) 
    * S)) 
    \/ ((S 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (S 
    * S))) by 
    XBOOLE_1: 42
    
      .= (((((P
    \ R) 
    \/ (Q 
    \ R)) 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * S)) 
    \/ ((S 
    * ((P 
    \/ Q) 
    \ R)) 
    \/ (S 
    * S))) by 
    XBOOLE_1: 42
    
      .= (((((P
    \ R) 
    \/ (Q 
    \ R)) 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * S)) 
    \/ ((S 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (S 
    * S))) by 
    XBOOLE_1: 42
    
      .= ((((((P
    \ R) 
    \/ (Q 
    \ R)) 
    * (P 
    \ R)) 
    \/ (((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * (Q 
    \ R))) 
    \/ (((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * S)) 
    \/ ((S 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (S 
    * S))) by 
    RELAT_1: 32
    
      .= ((((
    {}  
    \/  
    {} ) 
    \/ (((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * (Q 
    \ R))) 
    \/ (((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * S)) 
    \/ ((S 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (S 
    * S))) by 
    A5,
    A6,
    SYSREL: 6
    
      .= ((
    {}  
    \/ (((P 
    \ R) 
    \/ (Q 
    \ R)) 
    * S)) 
    \/ ((S 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ (S 
    * S))) by 
    A4,
    A7,
    SYSREL: 6
    
      .= ((((P
    \ R) 
    \/ (Q 
    \ R)) 
    * S) 
    \/ ((S 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ S)) by 
    SYSREL: 12
    
      .= ((((P
    \ R) 
    * S) 
    \/ ((Q 
    \ R) 
    * S)) 
    \/ ((S 
    * ((P 
    \ R) 
    \/ (Q 
    \ R))) 
    \/ S)) by 
    SYSREL: 6
    
      .= ((((P
    \ R) 
    * S) 
    \/ ((Q 
    \ R) 
    * S)) 
    \/ (((S 
    * (P 
    \ R)) 
    \/ (S 
    * (Q 
    \ R))) 
    \/ S)) by 
    RELAT_1: 32
    
      .= ((
    {}  
    \/ ((Q 
    \ R) 
    * S)) 
    \/ (((S 
    * (P 
    \ R)) 
    \/ (S 
    * (Q 
    \ R))) 
    \/ S)) by 
    Th27
    
      .= (((Q
    \ R) 
    * T) 
    \/ (((S 
    * (P 
    \ R)) 
    \/ (S 
    * (Q 
    \ R))) 
    \/ S)) by 
    Th13
    
      .= (
    {}  
    \/ (((S 
    * (P 
    \ R)) 
    \/ (S 
    * (Q 
    \ R))) 
    \/ S)) by 
    Th27
    
      .= (((P
    \ R) 
    \/ (S 
    * (Q 
    \ R))) 
    \/ S) by 
    Th23
    
      .= (((P
    \ R) 
    \/ (T 
    * (Q 
    \ R))) 
    \/ S) by 
    Th13
    
      .= (((P
    \ R) 
    \/ (Q 
    \ R)) 
    \/ S) by 
    Th23
    
      .= (
    e_adjac N) by 
    XBOOLE_1: 42;
    
      hence thesis by
    A8,
    A2;
    
    end;
    
    reserve N for
    e_net;
    
    theorem :: 
    
    E_SIEC:33
    
    
    
    
    
    Th33: ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    c=  
    [:(
    e_Places N), ( 
    e_Transitions N):] & ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ) 
    c=  
    [:(
    e_Places N), ( 
    e_Transitions N):] 
    
    proof
    
      (the
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    c=  
    [:(
    e_Transitions N), ( 
    e_Places N):] & (the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    c=  
    [:(
    e_Transitions N), ( 
    e_Places N):] by 
    Th18;
    
      hence thesis by
    SYSREL: 4;
    
    end;
    
    definition
    
      let N be
    G_Net;
    
      :: 
    
    E_SIEC:def20
    
      func
    
    s_pre (N) -> 
    Relation equals ((the 
    escape of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ); 
    
      coherence ;
    
      :: 
    
    E_SIEC:def21
    
      func
    
    s_post (N) -> 
    Relation equals ((the 
    entrance of N 
    \ ( 
    id the 
    carrier of N)) 
    ~ ); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    E_SIEC:34
    
    (
    s_post N) 
    c=  
    [:(
    e_Places N), ( 
    e_Transitions N):] & ( 
    s_pre N) 
    c=  
    [:(
    e_Places N), ( 
    e_Transitions N):] by 
    Th33;