e_siec.miz
begin
reserve x,y,z for
object,
X,Y for
set;
definition
struct (
1-sorted)
G_Net
(# the
carrier ->
set,
the
entrance,
escape ->
Relation #)
attr strict
strict;
end
definition
let IT be
G_Net;
::
E_SIEC:def1
attr IT is
GG means
:
Def1: the
entrance of IT
c=
[:the
carrier of IT, the
carrier of IT:] & the
escape of IT
c=
[:the
carrier of IT, the
carrier of IT:] & (the
entrance of IT
* the
entrance of IT)
= the
entrance of IT & (the
entrance of IT
* the
escape of IT)
= the
entrance of IT & (the
escape of IT
* the
escape of IT)
= the
escape of IT & (the
escape of IT
* the
entrance of IT)
= the
escape of IT;
end
registration
cluster
GG for
G_Net;
existence
proof
take N =
G_Net (#
{} ,
{} ,
{} #);
the
escape of N
c=
[:the
carrier of N, the
carrier of N:] & (the
entrance of N
* the
entrance of N)
=
{} by
XBOOLE_1: 2;
hence thesis;
end;
end
definition
mode
gg_net is
GG
G_Net;
end
definition
let IT be
G_Net;
::
E_SIEC:def2
attr IT is
EE means
:
Def2: (the
entrance of IT
* (the
entrance of IT
\ (
id the
carrier of IT)))
=
{} & (the
escape of IT
* (the
escape of IT
\ (
id the
carrier of IT)))
=
{} ;
end
registration
cluster
EE for
G_Net;
existence
proof
take N =
G_Net (#
{} ,
{} ,
{} #);
thus thesis;
end;
end
registration
cluster
strict
GG
EE for
G_Net;
existence
proof
take N =
G_Net (#
{} ,
{} ,
{} #);
the
entrance of N
c=
[:the
carrier of N, the
carrier of N:] & (the
escape of N
* (the
escape of N
\ (
id N)))
=
{} by
XBOOLE_1: 2;
hence thesis;
end;
end
definition
mode
e_net is
EE
GG
G_Net;
end
reserve N for
e_net;
theorem ::
E_SIEC:1
for R,S be
Relation holds
G_Net (# X, R, S #) is
e_net iff R
c=
[:X, X:] & S
c=
[:X, X:] & (R
* R)
= R & (R
* S)
= R & (S
* S)
= S & (S
* R)
= S & (R
* (R
\ (
id X)))
=
{} & (S
* (S
\ (
id X)))
=
{} by
Def1,
Def2;
theorem ::
E_SIEC:2
Th2:
G_Net (# X,
{} ,
{} #) is
e_net
proof
{}
c=
[:X, X:] & (
{}
* (
{}
\ (
id X)))
=
{} by
XBOOLE_1: 2;
hence thesis by
Def1,
Def2;
end;
theorem ::
E_SIEC:3
Th3:
G_Net (# X, (
id X), (
id X) #) is
e_net
proof
A1: ((
id X)
* ((
id X)
\ (
id X)))
= ((
id X)
*
{} ) by
XBOOLE_1: 37
.=
{} ;
(
id X)
c=
[:X, X:] & ((
id X)
* (
id X))
= (
id X) by
RELSET_1: 13,
SYSREL: 12;
hence thesis by
A1,
Def1,
Def2;
end;
theorem ::
E_SIEC:4
G_Net (#
{} ,
{} ,
{} #) is
e_net by
Th2;
theorem ::
E_SIEC:5
G_Net (# X, (
id (X
\ Y)), (
id (X
\ Y)) #) is
e_net
proof
A1: ((
id (X
\ Y))
* ((
id (X
\ Y))
\ (
id X)))
= ((
id (X
\ Y))
*
{} ) by
SYSREL: 16
.=
{} ;
(X
\ Y)
c= X by
XBOOLE_1: 36;
then
A2:
[:(X
\ Y), (X
\ Y):]
c=
[:X, X:] by
ZFMISC_1: 96;
(
id (X
\ Y))
c=
[:(X
\ Y), (X
\ Y):] by
RELSET_1: 13;
then
A3: (
id (X
\ Y))
c=
[:X, X:] by
A2,
XBOOLE_1: 1;
((
id (X
\ Y))
* (
id (X
\ Y)))
= (
id (X
\ Y)) by
SYSREL: 12;
hence thesis by
A3,
A1,
Def1,
Def2;
end;
definition
::
E_SIEC:def3
func
empty_e_net ->
strict
e_net equals
G_Net (#
{} ,
{} ,
{} #);
correctness by
Th2;
end
definition
let X;
::
E_SIEC:def4
func
Tempty_e_net X ->
strict
e_net equals
G_Net (# X, (
id X), (
id X) #);
coherence by
Th3;
::
E_SIEC:def5
func
Pempty_e_net (X) ->
strict
e_net equals
G_Net (# X,
{} ,
{} #);
coherence by
Th2;
end
theorem ::
E_SIEC:6
the
carrier of (
Tempty_e_net X)
= X & the
entrance of (
Tempty_e_net X)
= (
id X) & the
escape of (
Tempty_e_net X)
= (
id X);
theorem ::
E_SIEC:7
the
carrier of (
Pempty_e_net X)
= X & the
entrance of (
Pempty_e_net X)
=
{} & the
escape of (
Pempty_e_net X)
=
{} ;
definition
let x;
::
E_SIEC:def6
func
Psingle_e_net (x) ->
strict
e_net equals
G_Net (#
{x}, (
id
{x}), (
id
{x}) #);
coherence by
Th3;
::
E_SIEC:def7
func
Tsingle_e_net (x) ->
strict
e_net equals
G_Net (#
{x},
{} ,
{} #);
coherence by
Th2;
end
theorem ::
E_SIEC:8
the
carrier of (
Psingle_e_net x)
=
{x} & the
entrance of (
Psingle_e_net x)
= (
id
{x}) & the
escape of (
Psingle_e_net x)
= (
id
{x});
theorem ::
E_SIEC:9
the
carrier of (
Tsingle_e_net x)
=
{x} & the
entrance of (
Tsingle_e_net x)
=
{} & the
escape of (
Tsingle_e_net x)
=
{} ;
theorem ::
E_SIEC:10
Th10:
G_Net (# (X
\/ Y), (
id X), (
id X) #) is
e_net
proof
X
c= (X
\/ Y) by
XBOOLE_1: 7;
then (
id X)
c=
[:X, X:] &
[:X, X:]
c=
[:(X
\/ Y), (X
\/ Y):] by
RELSET_1: 13,
ZFMISC_1: 96;
then
A1: (
id X)
c=
[:(X
\/ Y), (X
\/ Y):] by
XBOOLE_1: 1;
(
id X)
c= ((
id X)
\/ (
id Y)) by
XBOOLE_1: 7;
then (
id X)
c= (
id (X
\/ Y)) by
SYSREL: 14;
then
A2: ((
id X)
* ((
id X)
\ (
id (X
\/ Y))))
= ((
id X)
*
{} ) by
XBOOLE_1: 37
.=
{} ;
((
id X)
* (
id X))
= (
id X) by
SYSREL: 12;
hence thesis by
A1,
A2,
Def1,
Def2;
end;
definition
let X, Y;
::
E_SIEC:def8
func
PTempty_e_net (X,Y) ->
strict
e_net equals
G_Net (# (X
\/ Y), (
id X), (
id X) #);
coherence by
Th10;
end
theorem ::
E_SIEC:11
Th11: (the
entrance of N
\ (
id (
dom the
entrance of N)))
= (the
entrance of N
\ (
id the
carrier of N)) & (the
escape of N
\ (
id (
dom the
escape of N)))
= (the
escape of N
\ (
id the
carrier of N)) & (the
entrance of N
\ (
id (
rng the
entrance of N)))
= (the
entrance of N
\ (
id the
carrier of N)) & (the
escape of N
\ (
id (
rng the
escape of N)))
= (the
escape of N
\ (
id the
carrier of N))
proof
the
entrance of N
c=
[:the
carrier of N, the
carrier of N:] & the
escape of N
c=
[:the
carrier of N, the
carrier of N:] by
Def1;
hence thesis by
SYSREL: 20;
end;
theorem ::
E_SIEC:12
Th12: (
CL the
entrance of N)
= (
CL the
escape of N)
proof
(the
escape of N
* (the
escape of N
\ (
id N)))
=
{} by
Def2;
then
A1: (the
escape of N
* (the
escape of N
\ (
id (
dom the
escape of N))))
=
{} by
Th11;
(the
entrance of N
* (the
entrance of N
\ (
id N)))
=
{} by
Def2;
then
A2: (the
entrance of N
* (the
entrance of N
\ (
id (
dom the
entrance of N))))
=
{} by
Th11;
(the
entrance of N
* the
escape of N)
= the
entrance of N & (the
escape of N
* the
entrance of N)
= the
escape of N by
Def1;
hence thesis by
A1,
A2,
SYSREL: 40;
end;
theorem ::
E_SIEC:13
Th13: (
rng the
entrance of N)
= (
rng (
CL the
entrance of N)) & (
rng the
entrance of N)
= (
dom (
CL the
entrance of N)) & (
rng the
escape of N)
= (
rng (
CL the
escape of N)) & (
rng the
escape of N)
= (
dom (
CL the
escape of N)) & (
rng the
entrance of N)
= (
rng the
escape of N)
proof
(the
entrance of N
* (the
entrance of N
\ (
id the
carrier of N)))
=
{} by
Def2;
then
A1: (the
entrance of N
* (the
entrance of N
\ (
id (
dom the
entrance of N))))
=
{} by
Th11;
(the
escape of N
* (the
escape of N
\ (
id the
carrier of N)))
=
{} by
Def2;
then
A2: (the
escape of N
* (the
escape of N
\ (
id (
dom the
escape of N))))
=
{} by
Th11;
A3: (the
escape of N
* the
escape of N)
= the
escape of N by
Def1;
then
A4: (
rng the
escape of N)
= (
rng (
CL the
escape of N)) by
A2,
SYSREL: 31;
A5: (the
entrance of N
* the
entrance of N)
= the
entrance of N by
Def1;
then (
rng the
entrance of N)
= (
rng (
CL the
entrance of N)) by
A1,
SYSREL: 31;
hence thesis by
A5,
A1,
A3,
A2,
A4,
Th12,
SYSREL: 31;
end;
theorem ::
E_SIEC:14
Th14: (
dom the
entrance of N)
c= the
carrier of N & (
rng the
entrance of N)
c= the
carrier of N & (
dom the
escape of N)
c= the
carrier of N & (
rng the
escape of N)
c= the
carrier of N
proof
the
entrance of N
c=
[:the
carrier of N, the
carrier of N:] & the
escape of N
c=
[:the
carrier of N, the
carrier of N:] by
Def1;
hence thesis by
SYSREL: 3;
end;
theorem ::
E_SIEC:15
Th15: (the
entrance of N
* (the
escape of N
\ (
id the
carrier of N)))
=
{} & (the
escape of N
* (the
entrance of N
\ (
id the
carrier of N)))
=
{}
proof
set R = the
entrance of N;
set S = the
escape of N;
set T = (
id the
carrier of N);
A1: (S
* (R
\ T))
= (S
* (R
\ (
id (
dom R)))) by
Th11
.= ((S
* R)
* (R
\ (
id (
dom R)))) by
Def1
.= (S
* (R
* (R
\ (
id (
dom R))))) by
RELAT_1: 36
.= (S
* (R
* (R
\ T))) by
Th11
.= (S
*
{} ) by
Def2
.=
{} ;
(R
* (S
\ T))
= (R
* (S
\ (
id (
dom S)))) by
Th11
.= ((R
* S)
* (S
\ (
id (
dom S)))) by
Def1
.= (R
* (S
* (S
\ (
id (
dom S))))) by
RELAT_1: 36
.= (R
* (S
* (S
\ T))) by
Th11
.= (R
*
{} ) by
Def2
.=
{} ;
hence thesis by
A1;
end;
theorem ::
E_SIEC:16
((the
entrance of N
\ (
id the
carrier of N))
* (the
entrance of N
\ (
id the
carrier of N)))
=
{} & ((the
escape of N
\ (
id the
carrier of N))
* (the
escape of N
\ (
id the
carrier of N)))
=
{} & ((the
entrance of N
\ (
id the
carrier of N))
* (the
escape of N
\ (
id the
carrier of N)))
=
{} & ((the
escape of N
\ (
id the
carrier of N))
* (the
entrance of N
\ (
id the
carrier of N)))
=
{}
proof
set R = the
entrance of N;
set S = the
escape of N;
set T = (
id the
carrier of N);
((R
\ T)
* (S
\ T))
c= (R
* (S
\ T)) by
RELAT_1: 30,
XBOOLE_1: 36;
then
A1: ((R
\ T)
* (S
\ T))
c=
{} by
Th15;
((S
\ T)
* (S
\ T))
c= (S
* (S
\ T)) by
RELAT_1: 30,
XBOOLE_1: 36;
then
A2: ((S
\ T)
* (S
\ T))
c=
{} by
Def2;
((S
\ T)
* (R
\ T))
c= (S
* (R
\ T)) by
RELAT_1: 30,
XBOOLE_1: 36;
then
A3: ((S
\ T)
* (R
\ T))
c=
{} by
Th15;
((R
\ T)
* (R
\ T))
c= (R
* (R
\ T)) by
RELAT_1: 30,
XBOOLE_1: 36;
then ((R
\ T)
* (R
\ T))
c=
{} by
Def2;
hence thesis by
A1,
A2,
A3,
XBOOLE_1: 3;
end;
definition
let N;
::
E_SIEC:def9
func
e_Places (N) ->
set equals (
rng the
entrance of N);
correctness ;
end
definition
let N;
::
E_SIEC:def10
func
e_Transitions (N) ->
set equals (the
carrier of N
\ (
e_Places N));
correctness ;
end
theorem ::
E_SIEC:17
Th17: (
[x, y]
in the
entrance of N or
[x, y]
in the
escape of N) & x
<> y implies x
in (
e_Transitions N) & y
in (
e_Places N)
proof
A1:
[x, y]
in the
escape of N & x
<> y implies x
in (
e_Transitions N) & y
in (
e_Places N)
proof
(the
escape of N
* (the
escape of N
\ (
id the
carrier of N)))
=
{} by
Def2;
then
A2: (the
escape of N
* (the
escape of N
\ (
id (
dom the
escape of N))))
=
{} by
Th11;
(
dom the
escape of N)
c= the
carrier of N by
Th14;
then
A3: ((
dom the
escape of N)
\ (
dom (
CL the
escape of N)))
c= (the
carrier of N
\ (
dom (
CL the
escape of N))) by
XBOOLE_1: 33;
assume
A4:
[x, y]
in the
escape of N & x
<> y;
A5: (the
escape of N
* the
escape of N)
= the
escape of N by
Def1;
then x
in ((
dom the
escape of N)
\ (
dom (
CL the
escape of N))) by
A4,
A2,
SYSREL: 30;
then x
in (the
carrier of N
\ (
dom (
CL the
escape of N))) by
A3;
then
A6: x
in (the
carrier of N
\ (
rng the
escape of N)) by
Th13;
y
in (
dom (
CL the
escape of N)) by
A4,
A5,
A2,
SYSREL: 30;
then y
in (
rng the
escape of N) by
Th13;
hence thesis by
A6,
Th13;
end;
[x, y]
in the
entrance of N & x
<> y implies x
in (
e_Transitions N) & y
in (
e_Places N)
proof
(the
entrance of N
* (the
entrance of N
\ (
id the
carrier of N)))
=
{} by
Def2;
then
A7: (the
entrance of N
* (the
entrance of N
\ (
id (
dom the
entrance of N))))
=
{} by
Th11;
(
dom the
entrance of N)
c= the
carrier of N by
Th14;
then
A8: ((
dom the
entrance of N)
\ (
dom (
CL the
entrance of N)))
c= (the
carrier of N
\ (
dom (
CL the
entrance of N))) by
XBOOLE_1: 33;
assume
A9:
[x, y]
in the
entrance of N & x
<> y;
A10: (the
entrance of N
* the
entrance of N)
= the
entrance of N by
Def1;
then x
in ((
dom the
entrance of N)
\ (
dom (
CL the
entrance of N))) by
A9,
A7,
SYSREL: 30;
then
A11: x
in (the
carrier of N
\ (
dom (
CL the
entrance of N))) by
A8;
y
in (
dom (
CL the
entrance of N)) by
A9,
A10,
A7,
SYSREL: 30;
hence thesis by
A11,
Th13;
end;
hence thesis by
A1;
end;
theorem ::
E_SIEC:18
Th18: (the
entrance of N
\ (
id the
carrier of N))
c=
[:(
e_Transitions N), (
e_Places N):] & (the
escape of N
\ (
id the
carrier of N))
c=
[:(
e_Transitions N), (
e_Places N):]
proof
A1: for x,y be
object holds
[x, y]
in (the
entrance of N
\ (
id the
carrier of N)) implies
[x, y]
in
[:(
e_Transitions N), (
e_Places N):]
proof
let x,y be
object;
assume
A2:
[x, y]
in (the
entrance of N
\ (
id the
carrier of N));
then
[x, y]
in the
entrance of N by
XBOOLE_0:def 5;
then
A3: x
in (
dom the
entrance of N) by
XTUPLE_0:def 12;
not
[x, y]
in (
id the
carrier of N) by
A2,
XBOOLE_0:def 5;
then
A4: not x
in the
carrier of N or x
<> y by
RELAT_1:def 10;
A5:
[x, y]
in the
entrance of N by
A2,
XBOOLE_0:def 5;
then
A6: y
in (
e_Places N) by
XTUPLE_0:def 13;
(
dom the
entrance of N)
c= the
carrier of N by
Th14;
then x
in (
e_Transitions N) by
A5,
A4,
A3,
Th17;
hence thesis by
A6,
ZFMISC_1: 87;
end;
for x,y be
object holds
[x, y]
in (the
escape of N
\ (
id the
carrier of N)) implies
[x, y]
in
[:(
e_Transitions N), (
e_Places N):]
proof
let x,y be
object;
A7: (
dom the
escape of N)
c= the
carrier of N by
Th14;
assume
A8:
[x, y]
in (the
escape of N
\ (
id the
carrier of N));
then
[x, y]
in the
escape of N by
XBOOLE_0:def 5;
then
A9: x
in (
dom the
escape of N) by
XTUPLE_0:def 12;
not
[x, y]
in (
id the
carrier of N) by
A8,
XBOOLE_0:def 5;
then
A10: not x
in the
carrier of N or x
<> y by
RELAT_1:def 10;
[x, y]
in the
escape of N by
A8,
XBOOLE_0:def 5;
then x
in (
e_Transitions N) & y
in (
e_Places N) by
A10,
A9,
A7,
Th17;
hence thesis by
ZFMISC_1: 87;
end;
hence thesis by
A1,
RELAT_1:def 3;
end;
definition
let N;
::
E_SIEC:def11
func
e_Flow N ->
Relation equals (((the
entrance of N
~ )
\/ the
escape of N)
\ (
id N));
correctness ;
end
theorem ::
E_SIEC:19
(
e_Flow N)
c= (
[:(
e_Places N), (
e_Transitions N):]
\/
[:(
e_Transitions N), (
e_Places N):])
proof
A1: ((the
entrance of N
~ )
\ (
id N))
= ((the
entrance of N
~ )
\ ((
id the
carrier of N)
~ ))
.= ((the
entrance of N
\ (
id the
carrier of N))
~ ) by
RELAT_1: 24;
A2: (
e_Flow N)
= (((the
entrance of N
~ )
\ (
id the
carrier of N))
\/ (the
escape of N
\ (
id the
carrier of N))) & (the
escape of N
\ (
id the
carrier of N))
c=
[:(
e_Transitions N), (
e_Places N):] by
Th18,
XBOOLE_1: 42;
(the
entrance of N
\ (
id the
carrier of N))
c=
[:(
e_Transitions N), (
e_Places N):] by
Th18;
then ((the
entrance of N
~ )
\ (
id the
carrier of N))
c=
[:(
e_Places N), (
e_Transitions N):] by
A1,
SYSREL: 4;
hence thesis by
A2,
XBOOLE_1: 13;
end;
definition
let N;
::
E_SIEC:def12
func
e_pre (N) ->
Relation equals (the
entrance of N
\ (
id the
carrier of N));
correctness ;
::
E_SIEC:def13
func
e_post (N) ->
Relation equals (the
escape of N
\ (
id the
carrier of N));
correctness ;
end
theorem ::
E_SIEC:20
(
e_pre N)
c=
[:(
e_Transitions N), (
e_Places N):] & (
e_post N)
c=
[:(
e_Transitions N), (
e_Places N):] by
Th18;
definition
let N;
::
E_SIEC:def14
func
e_shore (N) ->
set equals the
carrier of N;
correctness ;
::
E_SIEC:def15
func
e_prox (N) ->
Relation equals ((the
entrance of N
\/ the
escape of N)
~ );
correctness ;
::
E_SIEC:def16
func
e_flow (N) ->
Relation equals (((the
entrance of N
~ )
\/ the
escape of N)
\/ (
id the
carrier of N));
correctness ;
end
theorem ::
E_SIEC:21
(
e_prox N)
c=
[:(
e_shore N), (
e_shore N):] & (
e_flow N)
c=
[:(
e_shore N), (
e_shore N):]
proof
A1: (
id the
carrier of N)
c=
[:the
carrier of N, the
carrier of N:] by
RELSET_1: 13;
A2: the
escape of N
c=
[:the
carrier of N, the
carrier of N:] by
Def1;
A3: the
entrance of N
c=
[:the
carrier of N, the
carrier of N:] by
Def1;
then (the
entrance of N
~ )
c=
[:the
carrier of N, the
carrier of N:] by
SYSREL: 4;
then
A4: ((the
entrance of N
~ )
\/ the
escape of N)
c=
[:the
carrier of N, the
carrier of N:] by
A2,
XBOOLE_1: 8;
(the
entrance of N
\/ the
escape of N)
c=
[:the
carrier of N, the
carrier of N:] by
A3,
A2,
XBOOLE_1: 8;
hence thesis by
A4,
A1,
SYSREL: 4,
XBOOLE_1: 8;
end;
theorem ::
E_SIEC:22
((
e_prox N)
* (
e_prox N))
= (
e_prox N) & (((
e_prox N)
\ (
id (
e_shore N)))
* (
e_prox N))
=
{} & (((
e_prox N)
\/ ((
e_prox N)
~ ))
\/ (
id (
e_shore N)))
= ((
e_flow N)
\/ ((
e_flow N)
~ ))
proof
set R = the
entrance of N;
set S = the
escape of N;
set T = (
id the
carrier of N);
A1: (((
e_prox N)
\/ ((
e_prox N)
~ ))
\/ (
id (
e_shore N)))
= ((((R
~ )
\/ (S
~ ))
\/ (S
\/ R))
\/ T) by
RELAT_1: 23
.= (((((R
~ )
\/ (S
~ ))
\/ S)
\/ R)
\/ T) by
XBOOLE_1: 4
.= ((((R
~ )
\/ ((S
~ )
\/ S))
\/ R)
\/ T) by
XBOOLE_1: 4
.= (((R
~ )
\/ ((S
\/ (S
~ ))
\/ R))
\/ T) by
XBOOLE_1: 4
.= (((R
~ )
\/ (S
\/ ((S
~ )
\/ R)))
\/ T) by
XBOOLE_1: 4
.= ((((R
~ )
\/ S)
\/ ((S
~ )
\/ R))
\/ T) by
XBOOLE_1: 4
.= ((
e_flow N)
\/ (((S
~ )
\/ ((R
~ )
~ ))
\/ T)) by
XBOOLE_1: 5
.= ((
e_flow N)
\/ ((((R
~ )
\/ S)
~ )
\/ T)) by
RELAT_1: 23
.= ((
e_flow N)
\/ ((((R
~ )
\/ S)
~ )
\/ (T
~ )))
.= ((
e_flow N)
\/ ((
e_flow N)
~ )) by
RELAT_1: 23;
A2: (((
e_prox N)
\ T)
* (
e_prox N))
= ((((R
~ )
\/ (S
~ ))
\ T)
* ((R
\/ S)
~ )) by
RELAT_1: 23
.= ((((R
~ )
\ T)
\/ ((S
~ )
\ T))
* ((R
\/ S)
~ )) by
XBOOLE_1: 42
.= ((((R
~ )
\ T)
\/ ((S
~ )
\ T))
* ((R
~ )
\/ (S
~ ))) by
RELAT_1: 23
.= (((((R
~ )
\ T)
\/ ((S
~ )
\ T))
* (R
~ ))
\/ ((((R
~ )
\ T)
\/ ((S
~ )
\ T))
* (S
~ ))) by
RELAT_1: 32
.= (((((R
~ )
\ T)
* (R
~ ))
\/ (((S
~ )
\ T)
* (R
~ )))
\/ ((((R
~ )
\ T)
\/ ((S
~ )
\ T))
* (S
~ ))) by
SYSREL: 6
.= (((((R
~ )
\ T)
* (R
~ ))
\/ (((S
~ )
\ T)
* (R
~ )))
\/ ((((R
~ )
\ T)
* (S
~ ))
\/ (((S
~ )
\ T)
* (S
~ )))) by
SYSREL: 6
.= (((((R
~ )
\ (T
~ ))
* (R
~ ))
\/ (((S
~ )
\ T)
* (R
~ )))
\/ ((((R
~ )
\ T)
* (S
~ ))
\/ (((S
~ )
\ T)
* (S
~ ))))
.= (((((R
~ )
\ (T
~ ))
* (R
~ ))
\/ (((S
~ )
\ (T
~ ))
* (R
~ )))
\/ ((((R
~ )
\ T)
* (S
~ ))
\/ (((S
~ )
\ T)
* (S
~ ))))
.= (((((R
~ )
\ (T
~ ))
* (R
~ ))
\/ (((S
~ )
\ (T
~ ))
* (R
~ )))
\/ ((((R
~ )
\ (T
~ ))
* (S
~ ))
\/ (((S
~ )
\ T)
* (S
~ ))))
.= (((((R
~ )
\ (T
~ ))
* (R
~ ))
\/ (((S
~ )
\ (T
~ ))
* (R
~ )))
\/ ((((R
~ )
\ (T
~ ))
* (S
~ ))
\/ (((S
~ )
\ (T
~ ))
* (S
~ ))))
.= (((((R
\ T)
~ )
* (R
~ ))
\/ (((S
~ )
\ (T
~ ))
* (R
~ )))
\/ ((((R
~ )
\ (T
~ ))
* (S
~ ))
\/ (((S
~ )
\ (T
~ ))
* (S
~ )))) by
RELAT_1: 24
.= (((((R
\ T)
~ )
* (R
~ ))
\/ (((S
\ T)
~ )
* (R
~ )))
\/ ((((R
~ )
\ (T
~ ))
* (S
~ ))
\/ (((S
~ )
\ (T
~ ))
* (S
~ )))) by
RELAT_1: 24
.= (((((R
\ T)
~ )
* (R
~ ))
\/ (((S
\ T)
~ )
* (R
~ )))
\/ ((((R
\ T)
~ )
* (S
~ ))
\/ (((S
~ )
\ (T
~ ))
* (S
~ )))) by
RELAT_1: 24
.= (((((R
\ T)
~ )
* (R
~ ))
\/ (((S
\ T)
~ )
* (R
~ )))
\/ ((((R
\ T)
~ )
* (S
~ ))
\/ (((S
\ T)
~ )
* (S
~ )))) by
RELAT_1: 24
.= ((((R
* (R
\ T))
~ )
\/ (((S
\ T)
~ )
* (R
~ )))
\/ ((((R
\ T)
~ )
* (S
~ ))
\/ (((S
\ T)
~ )
* (S
~ )))) by
RELAT_1: 35
.= ((((R
* (R
\ T))
~ )
\/ ((R
* (S
\ T))
~ ))
\/ ((((R
\ T)
~ )
* (S
~ ))
\/ (((S
\ T)
~ )
* (S
~ )))) by
RELAT_1: 35
.= ((((R
* (R
\ T))
~ )
\/ ((R
* (S
\ T))
~ ))
\/ (((S
* (R
\ T))
~ )
\/ (((S
\ T)
~ )
* (S
~ )))) by
RELAT_1: 35
.= ((((R
* (R
\ T))
~ )
\/ ((R
* (S
\ T))
~ ))
\/ (((S
* (R
\ T))
~ )
\/ ((S
* (S
\ T))
~ ))) by
RELAT_1: 35
.= (((
{}
~ )
\/ ((R
* (S
\ T))
~ ))
\/ (((S
* (R
\ T))
~ )
\/ ((S
* (S
\ T))
~ ))) by
Def2
.= (((
{}
~ )
\/ ((R
* (S
\ T))
~ ))
\/ (((S
* (R
\ T))
~ )
\/ (
{}
~ ))) by
Def2
.= (((
{}
~ )
\/ (
{}
~ ))
\/ (((S
* (R
\ T))
~ )
\/ (
{}
~ ))) by
Th15
.=
{} by
Th15;
((
e_prox N)
* (
e_prox N))
= (((R
\/ S)
* (R
\/ S))
~ ) by
RELAT_1: 35
.= ((((R
\/ S)
* R)
\/ ((R
\/ S)
* S))
~ ) by
RELAT_1: 32
.= ((((R
* R)
\/ (S
* R))
\/ ((R
\/ S)
* S))
~ ) by
SYSREL: 6
.= ((((R
* R)
\/ (S
* R))
\/ ((R
* S)
\/ (S
* S)))
~ ) by
SYSREL: 6
.= (((R
\/ (S
* R))
\/ ((R
* S)
\/ (S
* S)))
~ ) by
Def1
.= (((R
\/ S)
\/ ((R
* S)
\/ (S
* S)))
~ ) by
Def1
.= (((R
\/ S)
\/ (R
\/ (S
* S)))
~ ) by
Def1
.= (((R
\/ S)
\/ (R
\/ S))
~ ) by
Def1
.= (
e_prox N);
hence thesis by
A2,
A1;
end;
theorem ::
E_SIEC:23
Th23: ((
id (the
carrier of N
\ (
rng the
escape of N)))
* (the
escape of N
\ (
id the
carrier of N)))
= (the
escape of N
\ (
id the
carrier of N)) & ((
id (the
carrier of N
\ (
rng the
entrance of N)))
* (the
entrance of N
\ (
id the
carrier of N)))
= (the
entrance of N
\ (
id the
carrier of N))
proof
set T = the
entrance of N, C = the
carrier of N;
set E = the
escape of N, I = (
id C);
for x,y be
object holds
[x, y]
in (E
\ I) implies
[x, y]
in ((
id (C
\ (
rng E)))
* (E
\ I))
proof
let x,y be
object;
assume
A1:
[x, y]
in (E
\ I);
then
[x, y]
in E by
XBOOLE_0:def 5;
then
A2: x
in (
dom E) by
XTUPLE_0:def 12;
A3: not x
in (
rng E)
proof
assume x
in (
rng E);
then ex z be
object st
[z, x]
in E by
XTUPLE_0:def 13;
then (E
* (E
\ I))
<>
{} by
A1,
RELAT_1:def 8;
hence thesis by
Def2;
end;
(
dom E)
c= C by
Th14;
then x
in (C
\ (
rng E)) by
A2,
A3,
XBOOLE_0:def 5;
then
[x, x]
in (
id (C
\ (
rng E))) by
RELAT_1:def 10;
hence thesis by
A1,
RELAT_1:def 8;
end;
then
A4: (E
\ I)
c= ((
id (C
\ (
rng E)))
* (E
\ I)) by
RELAT_1:def 3;
for x,y be
object holds
[x, y]
in (T
\ I) implies
[x, y]
in ((
id (C
\ (
rng T)))
* (T
\ I))
proof
let x,y be
object;
assume
A5:
[x, y]
in (T
\ I);
then
[x, y]
in T by
XBOOLE_0:def 5;
then
A6: x
in (
dom T) by
XTUPLE_0:def 12;
A7: not x
in (
rng T)
proof
assume x
in (
rng T);
then ex z be
object st
[z, x]
in T by
XTUPLE_0:def 13;
then (T
* (T
\ I))
<>
{} by
A5,
RELAT_1:def 8;
hence thesis by
Def2;
end;
(
dom T)
c= C by
Th14;
then x
in (C
\ (
rng T)) by
A6,
A7,
XBOOLE_0:def 5;
then
[x, x]
in (
id (C
\ (
rng T))) by
RELAT_1:def 10;
hence thesis by
A5,
RELAT_1:def 8;
end;
then
A8: (T
\ I)
c= ((
id (C
\ (
rng T)))
* (T
\ I)) by
RELAT_1:def 3;
((
id (C
\ (
rng E)))
* (E
\ I))
c= (E
\ I) & ((
id (C
\ (
rng T)))
* (T
\ I))
c= (T
\ I) by
RELAT_1: 50;
hence thesis by
A4,
A8,
XBOOLE_0:def 10;
end;
theorem ::
E_SIEC:24
Th24: ((the
escape of N
\ (
id the
carrier of N))
* (the
escape of N
\ (
id the
carrier of N)))
=
{} & ((the
entrance of N
\ (
id the
carrier of N))
* (the
entrance of N
\ (
id the
carrier of N)))
=
{} & ((the
escape of N
\ (
id the
carrier of N))
* (the
entrance of N
\ (
id the
carrier of N)))
=
{} & ((the
entrance of N
\ (
id the
carrier of N))
* (the
escape of N
\ (
id the
carrier of N)))
=
{}
proof
set T = the
entrance of N, C = the
carrier of N;
set E = the
escape of N, I = (
id C);
((T
\ I)
* (T
\ I))
c= (T
* (T
\ I)) by
RELAT_1: 30,
XBOOLE_1: 36;
then
A1: ((T
\ I)
* (T
\ I))
c=
{} by
Def2;
((E
\ I)
* (T
\ I))
c= (E
* (T
\ I)) by
RELAT_1: 30,
XBOOLE_1: 36;
then
A2: ((E
\ I)
* (T
\ I))
c=
{} by
Th15;
((T
\ I)
* (E
\ I))
c= (T
* (E
\ I)) by
RELAT_1: 30,
XBOOLE_1: 36;
then
A3: ((T
\ I)
* (E
\ I))
c=
{} by
Th15;
((E
\ I)
* (E
\ I))
c= (E
* (E
\ I)) by
RELAT_1: 30,
XBOOLE_1: 36;
then ((E
\ I)
* (E
\ I))
c=
{} by
Def2;
hence thesis by
A1,
A2,
A3,
XBOOLE_1: 3;
end;
theorem ::
E_SIEC:25
Th25: (((the
escape of N
\ (
id the
carrier of N))
~ )
* ((the
escape of N
\ (
id the
carrier of N))
~ ))
=
{} & (((the
entrance of N
\ (
id the
carrier of N))
~ )
* ((the
entrance of N
\ (
id the
carrier of N))
~ ))
=
{}
proof
A1: (((the
entrance of N
\ (
id the
carrier of N))
~ )
* ((the
entrance of N
\ (
id the
carrier of N))
~ ))
= (((the
entrance of N
\ (
id the
carrier of N))
* (the
entrance of N
\ (
id the
carrier of N)))
~ ) by
RELAT_1: 35
.=
{} by
Th24,
RELAT_1: 43;
(((the
escape of N
\ (
id the
carrier of N))
~ )
* ((the
escape of N
\ (
id the
carrier of N))
~ ))
= (((the
escape of N
\ (
id the
carrier of N))
* (the
escape of N
\ (
id the
carrier of N)))
~ ) by
RELAT_1: 35
.=
{} by
Th24,
RELAT_1: 43;
hence thesis by
A1;
end;
theorem ::
E_SIEC:26
(((the
escape of N
\ (
id the
carrier of N))
~ )
* ((
id (the
carrier of N
\ (
rng the
escape of N)))
~ ))
= ((the
escape of N
\ (
id the
carrier of N))
~ ) & (((the
entrance of N
\ (
id the
carrier of N))
~ )
* ((
id (the
carrier of N
\ (
rng the
entrance of N)))
~ ))
= ((the
entrance of N
\ (
id the
carrier of N))
~ )
proof
A1: (((the
entrance of N
\ (
id the
carrier of N))
~ )
* ((
id (the
carrier of N
\ (
rng the
entrance of N)))
~ ))
= (((
id (the
carrier of N
\ (
rng the
entrance of N)))
* (the
entrance of N
\ (
id the
carrier of N)))
~ ) by
RELAT_1: 35
.= ((the
entrance of N
\ (
id the
carrier of N))
~ ) by
Th23;
(((the
escape of N
\ (
id the
carrier of N))
~ )
* ((
id (the
carrier of N
\ (
rng the
escape of N)))
~ ))
= (((
id (the
carrier of N
\ (
rng the
escape of N)))
* (the
escape of N
\ (
id the
carrier of N)))
~ ) by
RELAT_1: 35
.= ((the
escape of N
\ (
id the
carrier of N))
~ ) by
Th23;
hence thesis by
A1;
end;
theorem ::
E_SIEC:27
Th27: ((the
escape of N
\ (
id the
carrier of N))
* (
id (the
carrier of N
\ (
rng the
escape of N))))
=
{} & ((the
entrance of N
\ (
id the
carrier of N))
* (
id (the
carrier of N
\ (
rng the
entrance of N))))
=
{}
proof
A1: for x,y be
object holds not
[x, y]
in ((the
entrance of N
\ (
id the
carrier of N))
* (
id (the
carrier of N
\ (
rng the
entrance of N))))
proof
let x,y be
object;
assume
[x, y]
in ((the
entrance of N
\ (
id the
carrier of N))
* (
id (the
carrier of N
\ (
rng the
entrance of N))));
then
consider z be
object such that
A2:
[x, z]
in (the
entrance of N
\ (
id the
carrier of N)) and
A3:
[z, y]
in (
id (the
carrier of N
\ (
rng the
entrance of N))) by
RELAT_1:def 8;
z
in (the
carrier of N
\ (
rng the
entrance of N)) by
A3,
RELAT_1:def 10;
then
A4: not z
in (
rng the
entrance of N) by
XBOOLE_0:def 5;
[x, z]
in the
entrance of N by
A2,
XBOOLE_0:def 5;
hence thesis by
A4,
XTUPLE_0:def 13;
end;
for x,y be
object holds not
[x, y]
in ((the
escape of N
\ (
id the
carrier of N))
* (
id (the
carrier of N
\ (
rng the
escape of N))))
proof
let x,y be
object;
assume
[x, y]
in ((the
escape of N
\ (
id the
carrier of N))
* (
id (the
carrier of N
\ (
rng the
escape of N))));
then
consider z be
object such that
A5:
[x, z]
in (the
escape of N
\ (
id the
carrier of N)) and
A6:
[z, y]
in (
id (the
carrier of N
\ (
rng the
escape of N))) by
RELAT_1:def 8;
z
in (the
carrier of N
\ (
rng the
escape of N)) by
A6,
RELAT_1:def 10;
then
A7: not z
in (
rng the
escape of N) by
XBOOLE_0:def 5;
[x, z]
in the
escape of N by
A5,
XBOOLE_0:def 5;
hence thesis by
A7,
XTUPLE_0:def 13;
end;
hence thesis by
A1,
RELAT_1: 37;
end;
theorem ::
E_SIEC:28
Th28: ((
id (the
carrier of N
\ (
rng the
escape of N)))
* ((the
escape of N
\ (
id the
carrier of N))
~ ))
=
{} & ((
id (the
carrier of N
\ (
rng the
entrance of N)))
* ((the
entrance of N
\ (
id the
carrier of N))
~ ))
=
{}
proof
A1: ((
id (the
carrier of N
\ (
rng the
entrance of N)))
* ((the
entrance of N
\ (
id the
carrier of N))
~ ))
= (((
id (the
carrier of N
\ (
rng the
entrance of N)))
~ )
* ((the
entrance of N
\ (
id the
carrier of N))
~ ))
.= (((the
entrance of N
\ (
id the
carrier of N))
* (
id (the
carrier of N
\ (
rng the
entrance of N))))
~ ) by
RELAT_1: 35
.=
{} by
Th27,
RELAT_1: 43;
((
id (the
carrier of N
\ (
rng the
escape of N)))
* ((the
escape of N
\ (
id the
carrier of N))
~ ))
= (((
id (the
carrier of N
\ (
rng the
escape of N)))
~ )
* ((the
escape of N
\ (
id the
carrier of N))
~ ))
.= (((the
escape of N
\ (
id the
carrier of N))
* (
id (the
carrier of N
\ (
rng the
escape of N))))
~ ) by
RELAT_1: 35
.=
{} by
Th27,
RELAT_1: 43;
hence thesis by
A1;
end;
definition
let N;
::
E_SIEC:def17
func
e_entrance (N) ->
Relation equals (((the
escape of N
\ (
id the
carrier of N))
~ )
\/ (
id (the
carrier of N
\ (
rng the
escape of N))));
correctness ;
::
E_SIEC:def18
func
e_escape (N) ->
Relation equals (((the
entrance of N
\ (
id the
carrier of N))
~ )
\/ (
id (the
carrier of N
\ (
rng the
entrance of N))));
correctness ;
end
theorem ::
E_SIEC:29
((
e_entrance N)
* (
e_entrance N))
= (
e_entrance N) & ((
e_entrance N)
* (
e_escape N))
= (
e_entrance N) & ((
e_escape N)
* (
e_entrance N))
= (
e_escape N) & ((
e_escape N)
* (
e_escape N))
= (
e_escape N)
proof
set P = (the
escape of N
\ (
id the
carrier of N));
set Q = (the
entrance of N
\ (
id the
carrier of N));
set S = (
id (the
carrier of N
\ (
rng the
entrance of N)));
set T = (
id (the
carrier of N
\ (
rng the
escape of N)));
A1: ((
e_entrance N)
* (
e_entrance N))
= (((P
~ )
* ((P
~ )
\/ T))
\/ (T
* ((P
~ )
\/ T))) by
SYSREL: 6
.= ((((P
~ )
* (P
~ ))
\/ ((P
~ )
* T))
\/ (T
* ((P
~ )
\/ T))) by
RELAT_1: 32
.= ((((P
~ )
* (P
~ ))
\/ ((P
~ )
* T))
\/ ((T
* (P
~ ))
\/ (T
* T))) by
RELAT_1: 32
.= ((((P
* P)
~ )
\/ ((P
~ )
* T))
\/ ((T
* (P
~ ))
\/ (T
* T))) by
RELAT_1: 35
.= ((((P
* P)
~ )
\/ ((P
~ )
* (T
~ )))
\/ ((T
* (P
~ ))
\/ (T
* T)))
.= ((((P
* P)
~ )
\/ ((P
~ )
* (T
~ )))
\/ (((T
~ )
* (P
~ ))
\/ (T
* T)))
.= ((((P
* P)
~ )
\/ ((P
~ )
* (T
~ )))
\/ (((T
~ )
* (P
~ ))
\/ T)) by
SYSREL: 12
.= ((((P
* P)
~ )
\/ ((T
* P)
~ ))
\/ (((T
~ )
* (P
~ ))
\/ T)) by
RELAT_1: 35
.= ((((P
* P)
~ )
\/ ((T
* P)
~ ))
\/ (((P
* T)
~ )
\/ T)) by
RELAT_1: 35
.= (((
{}
~ )
\/ ((T
* P)
~ ))
\/ (((P
* T)
~ )
\/ T)) by
Th24
.= (((
{}
~ )
\/ (P
~ ))
\/ (((P
* T)
~ )
\/ T)) by
Th23
.= ((
{}
\/ (P
~ ))
\/ (
{}
\/ T)) by
Th27
.= (
e_entrance N);
A2: ((
e_escape N)
* (
e_escape N))
= (((Q
~ )
* ((Q
~ )
\/ S))
\/ (S
* ((Q
~ )
\/ S))) by
SYSREL: 6
.= ((((Q
~ )
* (Q
~ ))
\/ ((Q
~ )
* S))
\/ (S
* ((Q
~ )
\/ S))) by
RELAT_1: 32
.= ((((Q
~ )
* (Q
~ ))
\/ ((Q
~ )
* S))
\/ ((S
* (Q
~ ))
\/ (S
* S))) by
RELAT_1: 32
.= ((((Q
* Q)
~ )
\/ ((Q
~ )
* S))
\/ ((S
* (Q
~ ))
\/ (S
* S))) by
RELAT_1: 35
.= ((((Q
* Q)
~ )
\/ ((Q
~ )
* (S
~ )))
\/ ((S
* (Q
~ ))
\/ (S
* S)))
.= ((((Q
* Q)
~ )
\/ ((Q
~ )
* (S
~ )))
\/ (((S
~ )
* (Q
~ ))
\/ (S
* S)))
.= ((((Q
* Q)
~ )
\/ ((Q
~ )
* (S
~ )))
\/ (((S
~ )
* (Q
~ ))
\/ S)) by
SYSREL: 12
.= ((((Q
* Q)
~ )
\/ ((S
* Q)
~ ))
\/ (((S
~ )
* (Q
~ ))
\/ S)) by
RELAT_1: 35
.= ((((Q
* Q)
~ )
\/ ((S
* Q)
~ ))
\/ (((Q
* S)
~ )
\/ S)) by
RELAT_1: 35
.= (((
{}
~ )
\/ ((S
* Q)
~ ))
\/ (((Q
* S)
~ )
\/ S)) by
Th24
.= (((
{}
~ )
\/ (Q
~ ))
\/ (((Q
* S)
~ )
\/ S)) by
Th23
.= ((
{}
\/ (Q
~ ))
\/ (
{}
\/ S)) by
Th27
.= (
e_escape N);
A3: ((
e_escape N)
* (
e_entrance N))
= (((Q
~ )
* ((P
~ )
\/ T))
\/ (S
* ((P
~ )
\/ T))) by
SYSREL: 6
.= ((((Q
~ )
* (P
~ ))
\/ ((Q
~ )
* T))
\/ (S
* ((P
~ )
\/ T))) by
RELAT_1: 32
.= ((((Q
~ )
* (P
~ ))
\/ ((Q
~ )
* T))
\/ ((S
* (P
~ ))
\/ (S
* T))) by
RELAT_1: 32
.= ((((P
* Q)
~ )
\/ ((Q
~ )
* T))
\/ ((S
* (P
~ ))
\/ (S
* T))) by
RELAT_1: 35
.= ((((P
* Q)
~ )
\/ ((Q
~ )
* (T
~ )))
\/ ((S
* (P
~ ))
\/ (S
* T)))
.= ((((P
* Q)
~ )
\/ ((Q
~ )
* (T
~ )))
\/ (((S
~ )
* (P
~ ))
\/ (S
* T)))
.= ((((P
* Q)
~ )
\/ ((Q
~ )
* (T
~ )))
\/ (((S
~ )
* (P
~ ))
\/ (S
* S))) by
Th13
.= ((((P
* Q)
~ )
\/ ((Q
~ )
* (T
~ )))
\/ (((S
~ )
* (P
~ ))
\/ S)) by
SYSREL: 12
.= ((((P
* Q)
~ )
\/ ((T
* Q)
~ ))
\/ (((S
~ )
* (P
~ ))
\/ S)) by
RELAT_1: 35
.= ((((P
* Q)
~ )
\/ ((T
* Q)
~ ))
\/ (((P
* S)
~ )
\/ S)) by
RELAT_1: 35
.= ((((P
* Q)
~ )
\/ ((S
* Q)
~ ))
\/ (((P
* S)
~ )
\/ S)) by
Th13
.= ((((P
* Q)
~ )
\/ ((S
* Q)
~ ))
\/ (((P
* T)
~ )
\/ S)) by
Th13
.= (((
{}
~ )
\/ ((S
* Q)
~ ))
\/ (((P
* T)
~ )
\/ S)) by
Th24
.= (((
{}
~ )
\/ (Q
~ ))
\/ (((P
* T)
~ )
\/ S)) by
Th23
.= ((
{}
\/ (Q
~ ))
\/ (
{}
\/ S)) by
Th27
.= (
e_escape N);
((
e_entrance N)
* (
e_escape N))
= (((P
~ )
* ((Q
~ )
\/ S))
\/ (T
* ((Q
~ )
\/ S))) by
SYSREL: 6
.= ((((P
~ )
* (Q
~ ))
\/ ((P
~ )
* S))
\/ (T
* ((Q
~ )
\/ S))) by
RELAT_1: 32
.= ((((P
~ )
* (Q
~ ))
\/ ((P
~ )
* S))
\/ ((T
* (Q
~ ))
\/ (T
* S))) by
RELAT_1: 32
.= ((((Q
* P)
~ )
\/ ((P
~ )
* S))
\/ ((T
* (Q
~ ))
\/ (T
* S))) by
RELAT_1: 35
.= ((((Q
* P)
~ )
\/ ((P
~ )
* (S
~ )))
\/ ((T
* (Q
~ ))
\/ (T
* S)))
.= ((((Q
* P)
~ )
\/ ((P
~ )
* (S
~ )))
\/ (((T
~ )
* (Q
~ ))
\/ (T
* S)))
.= ((((Q
* P)
~ )
\/ ((P
~ )
* (S
~ )))
\/ (((T
~ )
* (Q
~ ))
\/ (T
* T))) by
Th13
.= ((((Q
* P)
~ )
\/ ((P
~ )
* (S
~ )))
\/ (((T
~ )
* (Q
~ ))
\/ T)) by
SYSREL: 12
.= ((((Q
* P)
~ )
\/ ((S
* P)
~ ))
\/ (((T
~ )
* (Q
~ ))
\/ T)) by
RELAT_1: 35
.= ((((Q
* P)
~ )
\/ ((S
* P)
~ ))
\/ (((Q
* T)
~ )
\/ T)) by
RELAT_1: 35
.= ((((Q
* P)
~ )
\/ ((T
* P)
~ ))
\/ (((Q
* T)
~ )
\/ T)) by
Th13
.= ((((Q
* P)
~ )
\/ ((T
* P)
~ ))
\/ (((Q
* S)
~ )
\/ T)) by
Th13
.= (((
{}
~ )
\/ ((T
* P)
~ ))
\/ (((Q
* S)
~ )
\/ T)) by
Th24
.= (((
{}
~ )
\/ (P
~ ))
\/ (((Q
* S)
~ )
\/ T)) by
Th23
.= ((
{}
\/ (P
~ ))
\/ (
{}
\/ T)) by
Th27
.= (
e_entrance N);
hence thesis by
A1,
A3,
A2;
end;
theorem ::
E_SIEC:30
((
e_entrance N)
* ((
e_entrance N)
\ (
id (
e_shore N))))
=
{} & ((
e_escape N)
* ((
e_escape N)
\ (
id (
e_shore N))))
=
{}
proof
set P = (the
escape of N
\ (
id N));
set Q = (the
entrance of N
\ (
id the
carrier of N));
set S = (
id (the
carrier of N
\ (
rng the
entrance of N)));
set T = (
id (the
carrier of N
\ (
rng the
escape of N)));
set R = (
id the
carrier of N);
A1: S
c= R by
SYSREL: 15,
XBOOLE_1: 36;
((Q
~ )
* ((Q
~ )
\ R))
c= ((Q
~ )
* (Q
~ )) by
RELAT_1: 29,
XBOOLE_1: 36;
then ((Q
~ )
* ((Q
~ )
\ R))
c=
{} by
Th25;
then
A2: ((Q
~ )
* ((Q
~ )
\ R))
=
{} by
XBOOLE_1: 3;
(S
* ((Q
~ )
\ R))
c= (S
* (Q
~ )) by
RELAT_1: 29,
XBOOLE_1: 36;
then (S
* ((Q
~ )
\ R))
c=
{} by
Th28;
then
A3: (S
* ((Q
~ )
\ R))
=
{} by
XBOOLE_1: 3;
A4: ((
e_escape N)
* ((
e_escape N)
\ (
id (
e_shore N))))
= (((Q
~ )
\/ S)
* (((Q
~ )
\ R)
\/ (S
\ R))) by
XBOOLE_1: 42
.= (((Q
~ )
\/ S)
* (((Q
~ )
\ R)
\/
{} )) by
A1,
XBOOLE_1: 37
.= (
{}
\/
{} ) by
A2,
A3,
SYSREL: 6
.=
{} ;
A5: T
c= R by
SYSREL: 15,
XBOOLE_1: 36;
(T
* ((P
~ )
\ R))
c= (T
* (P
~ )) by
RELAT_1: 29,
XBOOLE_1: 36;
then (T
* ((P
~ )
\ R))
c=
{} by
Th28;
then
A6: (T
* ((P
~ )
\ R))
=
{} by
XBOOLE_1: 3;
((P
~ )
* ((P
~ )
\ R))
c= ((P
~ )
* (P
~ )) by
RELAT_1: 29,
XBOOLE_1: 36;
then ((P
~ )
* ((P
~ )
\ R))
c=
{} by
Th25;
then
A7: ((P
~ )
* ((P
~ )
\ R))
=
{} by
XBOOLE_1: 3;
((
e_entrance N)
* ((
e_entrance N)
\ (
id (
e_shore N))))
= (((P
~ )
\/ T)
* (((P
~ )
\ R)
\/ (T
\ R))) by
XBOOLE_1: 42
.= (((P
~ )
\/ T)
* (((P
~ )
\ R)
\/
{} )) by
A5,
XBOOLE_1: 37
.= (
{}
\/
{} ) by
A7,
A6,
SYSREL: 6
.=
{} ;
hence thesis by
A4;
end;
definition
let N;
::
E_SIEC:def19
func
e_adjac (N) ->
Relation equals (((the
entrance of N
\/ the
escape of N)
\ (
id the
carrier of N))
\/ (
id (the
carrier of N
\ (
rng the
entrance of N))));
correctness ;
end
theorem ::
E_SIEC:31
(
e_adjac N)
c=
[:(
e_shore N), (
e_shore N):] & (
e_flow N)
c=
[:(
e_shore N), (
e_shore N):]
proof
A1: ((the
entrance of N
\/ the
escape of N)
\ (
id the
carrier of N))
c= (the
entrance of N
\/ the
escape of N) by
XBOOLE_1: 36;
A2: the
escape of N
c=
[:the
carrier of N, the
carrier of N:] by
Def1;
A3: the
entrance of N
c=
[:the
carrier of N, the
carrier of N:] by
Def1;
then (the
entrance of N
~ )
c=
[:the
carrier of N, the
carrier of N:] by
SYSREL: 4;
then
A4: (
id the
carrier of N)
c=
[:the
carrier of N, the
carrier of N:] & ((the
entrance of N
~ )
\/ the
escape of N)
c=
[:the
carrier of N, the
carrier of N:] by
A2,
RELSET_1: 13,
XBOOLE_1: 8;
(
id (the
carrier of N
\ (
rng the
entrance of N)))
c= (
id the
carrier of N) & (
id the
carrier of N)
c=
[:the
carrier of N, the
carrier of N:] by
RELSET_1: 13,
SYSREL: 15,
XBOOLE_1: 36;
then
A5: (
id (the
carrier of N
\ (
rng the
entrance of N)))
c=
[:the
carrier of N, the
carrier of N:] by
XBOOLE_1: 1;
(the
entrance of N
\/ the
escape of N)
c=
[:the
carrier of N, the
carrier of N:] by
A3,
A2,
XBOOLE_1: 8;
then ((the
entrance of N
\/ the
escape of N)
\ (
id the
carrier of N))
c=
[:the
carrier of N, the
carrier of N:] by
A1,
XBOOLE_1: 1;
hence thesis by
A5,
A4,
XBOOLE_1: 8;
end;
theorem ::
E_SIEC:32
((
e_adjac N)
* (
e_adjac N))
= (
e_adjac N) & (((
e_adjac N)
\ (
id (
e_shore N)))
* (
e_adjac N))
=
{} & (((
e_adjac N)
\/ ((
e_adjac N)
~ ))
\/ (
id (
e_shore N)))
= ((
e_flow N)
\/ ((
e_flow N)
~ ))
proof
set P = the
entrance of N;
set Q = the
escape of N;
set R = (
id the
carrier of N);
set S = (
id (the
carrier of N
\ (
rng the
entrance of N)));
set T = (
id (the
carrier of N
\ (
rng the
escape of N)));
A1: S
c= R by
SYSREL: 15,
XBOOLE_1: 36;
((
e_adjac N)
\/ ((
e_adjac N)
~ ))
= ((((P
\/ Q)
\ R)
\/ S)
\/ ((((P
\/ Q)
\ R)
~ )
\/ (S
~ ))) by
RELAT_1: 23
.= ((((P
\/ Q)
\ R)
\/ S)
\/ ((((P
\/ Q)
\ R)
~ )
\/ S))
.= ((((P
\/ Q)
\ R)
\/ (((P
\/ Q)
\ R)
~ ))
\/ S) by
XBOOLE_1: 5
.= ((((P
\/ Q)
\ R)
\/ (((P
\/ Q)
~ )
\ (R
~ )))
\/ S) by
RELAT_1: 24
.= ((((P
\/ Q)
\ R)
\/ (((P
\/ Q)
~ )
\ R))
\/ S)
.= ((((P
\/ Q)
\/ ((P
\/ Q)
~ ))
\ R)
\/ S) by
XBOOLE_1: 42;
then
A2: (((
e_adjac N)
\/ ((
e_adjac N)
~ ))
\/ (
id (
e_shore N)))
= ((((P
\/ Q)
\/ ((P
\/ Q)
~ ))
\ R)
\/ (S
\/ R)) by
XBOOLE_1: 4
.= ((((P
\/ Q)
\/ ((P
\/ Q)
~ ))
\ R)
\/ R) by
A1,
XBOOLE_1: 12
.= (((((P
~ )
\/ (Q
~ ))
\/ (P
\/ Q))
\ R)
\/ R) by
RELAT_1: 23
.= ((((P
~ )
\/ ((Q
\/ P)
\/ (Q
~ )))
\ R)
\/ R) by
XBOOLE_1: 4
.= ((((P
~ )
\/ (Q
\/ (P
\/ (Q
~ ))))
\ R)
\/ R) by
XBOOLE_1: 4
.= (((((P
~ )
\/ Q)
\/ (P
\/ (Q
~ )))
\ R)
\/ R) by
XBOOLE_1: 4
.= ((((P
~ )
\/ Q)
\/ (P
\/ (Q
~ )))
\/ R) by
XBOOLE_1: 39
.= ((
e_flow N)
\/ ((((P
\/ (Q
~ ))
~ )
~ )
\/ R)) by
XBOOLE_1: 5
.= ((
e_flow N)
\/ ((((P
~ )
\/ ((Q
~ )
~ ))
~ )
\/ R)) by
RELAT_1: 23
.= ((
e_flow N)
\/ ((((P
~ )
\/ Q)
~ )
\/ (R
~ )))
.= ((
e_flow N)
\/ ((
e_flow N)
~ )) by
RELAT_1: 23;
S
c= R by
SYSREL: 15,
XBOOLE_1: 36;
then
A3: (S
\ R)
=
{} by
XBOOLE_1: 37;
((P
\ R)
* (Q
\ R))
c= (P
* (Q
\ R)) by
RELAT_1: 30,
XBOOLE_1: 36;
then ((P
\ R)
* (Q
\ R))
c=
{} by
Th15;
then
A4: ((P
\ R)
* (Q
\ R))
=
{} by
XBOOLE_1: 3;
((P
\ R)
* (P
\ R))
c= (P
* (P
\ R)) by
RELAT_1: 30,
XBOOLE_1: 36;
then ((P
\ R)
* (P
\ R))
c=
{} by
Def2;
then
A5: ((P
\ R)
* (P
\ R))
=
{} by
XBOOLE_1: 3;
((Q
\ R)
* (P
\ R))
c= (Q
* (P
\ R)) by
RELAT_1: 30,
XBOOLE_1: 36;
then ((Q
\ R)
* (P
\ R))
c=
{} by
Th15;
then
A6: ((Q
\ R)
* (P
\ R))
=
{} by
XBOOLE_1: 3;
((Q
\ R)
* (Q
\ R))
c= (Q
* (Q
\ R)) by
RELAT_1: 30,
XBOOLE_1: 36;
then ((Q
\ R)
* (Q
\ R))
c=
{} by
Def2;
then
A7: ((Q
\ R)
* (Q
\ R))
=
{} by
XBOOLE_1: 3;
A8: (((
e_adjac N)
\ R)
* (
e_adjac N))
= ((((((P
\/ Q)
\ R)
\/ S)
\ R)
* ((P
\/ Q)
\ R))
\/ (((((P
\/ Q)
\ R)
\/ S)
\ R)
* S)) by
RELAT_1: 32
.= ((((((P
\ R)
\/ (Q
\ R))
\/ S)
\ R)
* ((P
\/ Q)
\ R))
\/ (((((P
\/ Q)
\ R)
\/ S)
\ R)
* S)) by
XBOOLE_1: 42
.= ((((((P
\ R)
\/ (Q
\ R))
\ R)
\/ (S
\ R))
* ((P
\/ Q)
\ R))
\/ (((((P
\/ Q)
\ R)
\/ S)
\ R)
* S)) by
XBOOLE_1: 42
.= ((((((P
\ R)
\ R)
\/ ((Q
\ R)
\ R))
\/ (S
\ R))
* ((P
\/ Q)
\ R))
\/ (((((P
\/ Q)
\ R)
\/ S)
\ R)
* S)) by
XBOOLE_1: 42
.= (((((P
\ (R
\/ R))
\/ ((Q
\ R)
\ R))
\/ (S
\ R))
* ((P
\/ Q)
\ R))
\/ (((((P
\/ Q)
\ R)
\/ S)
\ R)
* S)) by
XBOOLE_1: 41
.= (((((P
\ R)
\/ (Q
\ (R
\/ R)))
\/ (S
\ R))
* ((P
\/ Q)
\ R))
\/ (((((P
\/ Q)
\ R)
\/ S)
\ R)
* S)) by
XBOOLE_1: 41
.= (((((P
\ R)
\/ (Q
\ R))
\/ (S
\ R))
* ((P
\ R)
\/ (Q
\ R)))
\/ (((((P
\/ Q)
\ R)
\/ S)
\ R)
* S)) by
XBOOLE_1: 42
.= (((((P
\ R)
\/ (Q
\ R))
\/ (S
\ R))
* ((P
\ R)
\/ (Q
\ R)))
\/ (((((P
\ R)
\/ (Q
\ R))
\/ S)
\ R)
* S)) by
XBOOLE_1: 42
.= ((((((P
\ R)
\/ (Q
\ R))
\/ (S
\ R))
* (P
\ R))
\/ ((((P
\ R)
\/ (Q
\ R))
\/ (S
\ R))
* (Q
\ R)))
\/ (((((P
\ R)
\/ (Q
\ R))
\/ S)
\ R)
* S)) by
RELAT_1: 32
.= ((((((P
\ R)
\/ (Q
\ R))
\/ (S
\ R))
* (P
\ R))
\/ ((((P
\ R)
\/ (Q
\ R))
* (Q
\ R))
\/ ((S
\ R)
* (Q
\ R))))
\/ (((((P
\ R)
\/ (Q
\ R))
\/ S)
\ R)
* S)) by
SYSREL: 6
.= ((((((P
\ R)
\/ (Q
\ R))
* (P
\ R))
\/ ((S
\ R)
* (P
\ R)))
\/ ((((P
\ R)
\/ (Q
\ R))
* (Q
\ R))
\/ ((S
\ R)
* (Q
\ R))))
\/ (((((P
\ R)
\/ (Q
\ R))
\/ S)
\ R)
* S)) by
SYSREL: 6
.= ((((
{}
\/
{} )
\/ ((S
\ R)
* (P
\ R)))
\/ ((((P
\ R)
\/ (Q
\ R))
* (Q
\ R))
\/ ((S
\ R)
* (Q
\ R))))
\/ (((((P
\ R)
\/ (Q
\ R))
\/ S)
\ R)
* S)) by
A5,
A6,
SYSREL: 6
.= (((
{}
* (P
\ R))
\/ (
{}
* (Q
\ R)))
\/ (((((P
\ R)
\/ (Q
\ R))
\/ S)
\ R)
* S)) by
A3,
A4,
A7,
SYSREL: 6
.= (((((P
\ R)
\/ (Q
\ R))
\ R)
\/ (S
\ R))
* S) by
XBOOLE_1: 42
.= (((((P
\ R)
\ R)
\/ ((Q
\ R)
\ R))
\/ (S
\ R))
* S) by
XBOOLE_1: 42
.= ((((P
\ (R
\/ R))
\/ ((Q
\ R)
\ R))
\/ (S
\ R))
* S) by
XBOOLE_1: 41
.= ((((P
\ R)
\/ (Q
\ (R
\/ R)))
\/ (S
\ R))
* S) by
XBOOLE_1: 41
.= (((P
\ R)
* S)
\/ ((Q
\ R)
* S)) by
A3,
SYSREL: 6
.= (
{}
\/ ((Q
\ R)
* S)) by
Th27
.= (
{}
\/ ((Q
\ R)
* T)) by
Th13
.=
{} by
Th27;
((
e_adjac N)
* (
e_adjac N))
= ((((P
\/ Q)
\ R)
* (((P
\/ Q)
\ R)
\/ S))
\/ (S
* (((P
\/ Q)
\ R)
\/ S))) by
SYSREL: 6
.= (((((P
\/ Q)
\ R)
* ((P
\/ Q)
\ R))
\/ (((P
\/ Q)
\ R)
* S))
\/ (S
* (((P
\/ Q)
\ R)
\/ S))) by
RELAT_1: 32
.= (((((P
\/ Q)
\ R)
* ((P
\/ Q)
\ R))
\/ (((P
\/ Q)
\ R)
* S))
\/ ((S
* ((P
\/ Q)
\ R))
\/ (S
* S))) by
RELAT_1: 32
.= (((((P
\ R)
\/ (Q
\ R))
* ((P
\/ Q)
\ R))
\/ (((P
\/ Q)
\ R)
* S))
\/ ((S
* ((P
\/ Q)
\ R))
\/ (S
* S))) by
XBOOLE_1: 42
.= (((((P
\ R)
\/ (Q
\ R))
* ((P
\ R)
\/ (Q
\ R)))
\/ (((P
\/ Q)
\ R)
* S))
\/ ((S
* ((P
\/ Q)
\ R))
\/ (S
* S))) by
XBOOLE_1: 42
.= (((((P
\ R)
\/ (Q
\ R))
* ((P
\ R)
\/ (Q
\ R)))
\/ (((P
\ R)
\/ (Q
\ R))
* S))
\/ ((S
* ((P
\/ Q)
\ R))
\/ (S
* S))) by
XBOOLE_1: 42
.= (((((P
\ R)
\/ (Q
\ R))
* ((P
\ R)
\/ (Q
\ R)))
\/ (((P
\ R)
\/ (Q
\ R))
* S))
\/ ((S
* ((P
\ R)
\/ (Q
\ R)))
\/ (S
* S))) by
XBOOLE_1: 42
.= ((((((P
\ R)
\/ (Q
\ R))
* (P
\ R))
\/ (((P
\ R)
\/ (Q
\ R))
* (Q
\ R)))
\/ (((P
\ R)
\/ (Q
\ R))
* S))
\/ ((S
* ((P
\ R)
\/ (Q
\ R)))
\/ (S
* S))) by
RELAT_1: 32
.= ((((
{}
\/
{} )
\/ (((P
\ R)
\/ (Q
\ R))
* (Q
\ R)))
\/ (((P
\ R)
\/ (Q
\ R))
* S))
\/ ((S
* ((P
\ R)
\/ (Q
\ R)))
\/ (S
* S))) by
A5,
A6,
SYSREL: 6
.= ((
{}
\/ (((P
\ R)
\/ (Q
\ R))
* S))
\/ ((S
* ((P
\ R)
\/ (Q
\ R)))
\/ (S
* S))) by
A4,
A7,
SYSREL: 6
.= ((((P
\ R)
\/ (Q
\ R))
* S)
\/ ((S
* ((P
\ R)
\/ (Q
\ R)))
\/ S)) by
SYSREL: 12
.= ((((P
\ R)
* S)
\/ ((Q
\ R)
* S))
\/ ((S
* ((P
\ R)
\/ (Q
\ R)))
\/ S)) by
SYSREL: 6
.= ((((P
\ R)
* S)
\/ ((Q
\ R)
* S))
\/ (((S
* (P
\ R))
\/ (S
* (Q
\ R)))
\/ S)) by
RELAT_1: 32
.= ((
{}
\/ ((Q
\ R)
* S))
\/ (((S
* (P
\ R))
\/ (S
* (Q
\ R)))
\/ S)) by
Th27
.= (((Q
\ R)
* T)
\/ (((S
* (P
\ R))
\/ (S
* (Q
\ R)))
\/ S)) by
Th13
.= (
{}
\/ (((S
* (P
\ R))
\/ (S
* (Q
\ R)))
\/ S)) by
Th27
.= (((P
\ R)
\/ (S
* (Q
\ R)))
\/ S) by
Th23
.= (((P
\ R)
\/ (T
* (Q
\ R)))
\/ S) by
Th13
.= (((P
\ R)
\/ (Q
\ R))
\/ S) by
Th23
.= (
e_adjac N) by
XBOOLE_1: 42;
hence thesis by
A8,
A2;
end;
reserve N for
e_net;
theorem ::
E_SIEC:33
Th33: ((the
entrance of N
\ (
id the
carrier of N))
~ )
c=
[:(
e_Places N), (
e_Transitions N):] & ((the
escape of N
\ (
id the
carrier of N))
~ )
c=
[:(
e_Places N), (
e_Transitions N):]
proof
(the
entrance of N
\ (
id the
carrier of N))
c=
[:(
e_Transitions N), (
e_Places N):] & (the
escape of N
\ (
id the
carrier of N))
c=
[:(
e_Transitions N), (
e_Places N):] by
Th18;
hence thesis by
SYSREL: 4;
end;
definition
let N be
G_Net;
::
E_SIEC:def20
func
s_pre (N) ->
Relation equals ((the
escape of N
\ (
id the
carrier of N))
~ );
coherence ;
::
E_SIEC:def21
func
s_post (N) ->
Relation equals ((the
entrance of N
\ (
id the
carrier of N))
~ );
coherence ;
end
theorem ::
E_SIEC:34
(
s_post N)
c=
[:(
e_Places N), (
e_Transitions N):] & (
s_pre N)
c=
[:(
e_Places N), (
e_Transitions N):] by
Th33;