enumset1.miz



    begin

    reserve x,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,y for object,

X,Z for set;

    

     Lm1: x in ( union {X, {y}}) iff x in X or x = y

    proof

      

       A1: x in ( union {X, {y}}) implies x in X or x in {y}

      proof

        assume x in ( union {X, {y}});

        then ex Z st x in Z & Z in {X, {y}} by TARSKI:def 4;

        hence thesis by TARSKI:def 2;

      end;

      

       A2: x in {y} iff x = y by TARSKI:def 1;

      X in {X, {y}} & {y} in {X, {y}} by TARSKI:def 2;

      hence thesis by A1, A2, TARSKI:def 4;

    end;

    definition

      let x1,x2,x3 be object;

      :: ENUMSET1:def1

      func {x1,x2,x3} -> set means

      : Def1: x in it iff x = x1 or x = x2 or x = x3;

      existence

      proof

        take ( union { {x1, x2}, {x3}});

        let x;

        x in {x1, x2} iff x = x1 or x = x2 by TARSKI:def 2;

        hence thesis by Lm1;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 = x1 or $1 = x2 or $1 = x3;

        for X1,X2 be set st (for x be object holds x in X1 iff P[x]) & (for x be object holds x in X2 iff P[x]) holds X1 = X2 from XBOOLE_0:sch 3;

        hence thesis;

      end;

    end

    definition

      let x1,x2,x3,x4 be object;

      :: ENUMSET1:def2

      func {x1,x2,x3,x4} -> set means

      : Def2: x in it iff x = x1 or x = x2 or x = x3 or x = x4;

      existence

      proof

        take ( union { {x1, x2, x3}, {x4}});

        let x;

        x in {x1, x2, x3} iff x = x1 or x = x2 or x = x3 by Def1;

        hence thesis by Lm1;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 = x1 or $1 = x2 or $1 = x3 or $1 = x4;

        for X1,X2 be set st (for x be object holds x in X1 iff P[x]) & (for x be object holds x in X2 iff P[x]) holds X1 = X2 from XBOOLE_0:sch 3;

        hence thesis;

      end;

    end

    definition

      let x1,x2,x3,x4,x5 be object;

      :: ENUMSET1:def3

      func {x1,x2,x3,x4,x5} -> set means

      : Def3: x in it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5;

      existence

      proof

        take ( union { {x1, x2, x3, x4}, {x5}});

        let x;

        x in {x1, x2, x3, x4} iff x = x1 or x = x2 or x = x3 or x = x4 by Def2;

        hence thesis by Lm1;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 = x1 or $1 = x2 or $1 = x3 or $1 = x4 or $1 = x5;

        for X1,X2 be set st (for x be object holds x in X1 iff P[x]) & (for x be object holds x in X2 iff P[x]) holds X1 = X2 from XBOOLE_0:sch 3;

        hence thesis;

      end;

    end

    definition

      let x1,x2,x3,x4,x5,x6 be object;

      :: ENUMSET1:def4

      func {x1,x2,x3,x4,x5,x6} -> set means

      : Def4: x in it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6;

      existence

      proof

        take ( union { {x1, x2, x3, x4, x5}, {x6}});

        let x;

        x in {x1, x2, x3, x4, x5} iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 by Def3;

        hence thesis by Lm1;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 = x1 or $1 = x2 or $1 = x3 or $1 = x4 or $1 = x5 or $1 = x6;

        for X1,X2 be set st (for x be object holds x in X1 iff P[x]) & (for x be object holds x in X2 iff P[x]) holds X1 = X2 from XBOOLE_0:sch 3;

        hence thesis;

      end;

    end

    definition

      let x1,x2,x3,x4,x5,x6,x7 be object;

      :: ENUMSET1:def5

      func {x1,x2,x3,x4,x5,x6,x7} -> set means

      : Def5: x in it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7;

      existence

      proof

        take ( union { {x1, x2, x3, x4, x5, x6}, {x7}});

        let x;

        x in {x1, x2, x3, x4, x5, x6} iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 by Def4;

        hence thesis by Lm1;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 = x1 or $1 = x2 or $1 = x3 or $1 = x4 or $1 = x5 or $1 = x6 or $1 = x7;

        for X1,X2 be set st (for x be object holds x in X1 iff P[x]) & (for x be object holds x in X2 iff P[x]) holds X1 = X2 from XBOOLE_0:sch 3;

        hence thesis;

      end;

    end

    definition

      let x1,x2,x3,x4,x5,x6,x7,x8 be object;

      :: ENUMSET1:def6

      func {x1,x2,x3,x4,x5,x6,x7,x8} -> set means

      : Def6: x in it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8;

      existence

      proof

        take ( union { {x1, x2, x3, x4, x5, x6, x7}, {x8}});

        let x;

        x in {x1, x2, x3, x4, x5, x6, x7} iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 by Def5;

        hence thesis by Lm1;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 = x1 or $1 = x2 or $1 = x3 or $1 = x4 or $1 = x5 or $1 = x6 or $1 = x7 or $1 = x8;

        for X1,X2 be set st (for x be object holds x in X1 iff P[x]) & (for x be object holds x in X2 iff P[x]) holds X1 = X2 from XBOOLE_0:sch 3;

        hence thesis;

      end;

    end

    definition

      let x1,x2,x3,x4,x5,x6,x7,x8,x9 be object;

      :: ENUMSET1:def7

      func {x1,x2,x3,x4,x5,x6,x7,x8,x9} -> set means

      : Def7: x in it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 or x = x9;

      existence

      proof

        take ( union { {x1, x2, x3, x4, x5, x6, x7, x8}, {x9}});

        let x;

        x in {x1, x2, x3, x4, x5, x6, x7, x8} iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 by Def6;

        hence thesis by Lm1;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 = x1 or $1 = x2 or $1 = x3 or $1 = x4 or $1 = x5 or $1 = x6 or $1 = x7 or $1 = x8 or $1 = x9;

        thus for X,Y be set st (for x be object holds x in X iff P[x]) & (for x be object holds x in Y iff P[x]) holds X = Y from XBOOLE_0:sch 3;

      end;

    end

    definition

      let x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 be object;

      :: ENUMSET1:def8

      func {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10} -> set means

      : Def8: x in it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 or x = x9 or x = x10;

      existence

      proof

        take ( union { {x1, x2, x3, x4, x5, x6, x7, x8, x9}, {x10}});

        let x;

        x in {x1, x2, x3, x4, x5, x6, x7, x8, x9} iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 or x = x9 by Def7;

        hence thesis by Lm1;

      end;

      uniqueness

      proof

        defpred P[ object] means $1 = x1 or $1 = x2 or $1 = x3 or $1 = x4 or $1 = x5 or $1 = x6 or $1 = x7 or $1 = x8 or $1 = x9 or $1 = x10;

        thus for X,Y be set st (for x be object holds x in X iff P[x]) & (for x be object holds x in Y iff P[x]) holds X = Y from XBOOLE_0:sch 3;

      end;

    end

    theorem :: ENUMSET1:1

    

     Th1: {x1, x2} = ( {x1} \/ {x2})

    proof

      now

        let x be object;

        x in {x1, x2} iff x = x1 or x = x2 by TARSKI:def 2;

        then x in {x1, x2} iff x in {x1} or x in {x2} by TARSKI:def 1;

        hence x in {x1, x2} iff x in ( {x1} \/ {x2}) by XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:2

    

     Th2: {x1, x2, x3} = ( {x1} \/ {x2, x3})

    proof

      now

        let x be object;

        x in {x1, x2, x3} iff x = x1 or x = x2 or x = x3 by Def1;

        then x in {x1, x2, x3} iff x in {x1} or x in {x2, x3} by TARSKI:def 1, TARSKI:def 2;

        hence x in {x1, x2, x3} iff x in ( {x1} \/ {x2, x3}) by XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:3

    

     Th3: {x1, x2, x3} = ( {x1, x2} \/ {x3})

    proof

      

      thus {x1, x2, x3} = ( {x1} \/ {x2, x3}) by Th2

      .= ( {x1} \/ ( {x2} \/ {x3})) by Th1

      .= (( {x1} \/ {x2}) \/ {x3}) by XBOOLE_1: 4

      .= ( {x1, x2} \/ {x3}) by Th1;

    end;

    

     Lm2: {x1, x2, x3, x4} = ( {x1, x2} \/ {x3, x4})

    proof

      now

        let x be object;

        x in {x1, x2, x3, x4} iff x = x1 or x = x2 or x = x3 or x = x4 by Def2;

        then x in {x1, x2, x3, x4} iff x in {x1, x2} or x in {x3, x4} by TARSKI:def 2;

        hence x in {x1, x2, x3, x4} iff x in ( {x1, x2} \/ {x3, x4}) by XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:4

    

     Th4: {x1, x2, x3, x4} = ( {x1} \/ {x2, x3, x4})

    proof

      

      thus {x1, x2, x3, x4} = ( {x1, x2} \/ {x3, x4}) by Lm2

      .= (( {x1} \/ {x2}) \/ {x3, x4}) by Th1

      .= ( {x1} \/ ( {x2} \/ {x3, x4})) by XBOOLE_1: 4

      .= ( {x1} \/ {x2, x3, x4}) by Th2;

    end;

    theorem :: ENUMSET1:5

     {x1, x2, x3, x4} = ( {x1, x2} \/ {x3, x4}) by Lm2;

    theorem :: ENUMSET1:6

    

     Th6: {x1, x2, x3, x4} = ( {x1, x2, x3} \/ {x4})

    proof

      

      thus {x1, x2, x3, x4} = ( {x1, x2} \/ {x3, x4}) by Lm2

      .= ( {x1, x2} \/ ( {x3} \/ {x4})) by Th1

      .= (( {x1, x2} \/ {x3}) \/ {x4}) by XBOOLE_1: 4

      .= ( {x1, x2, x3} \/ {x4}) by Th3;

    end;

    

     Lm3: {x1, x2, x3, x4, x5} = ( {x1, x2, x3} \/ {x4, x5})

    proof

      now

        let x be object;

        x in {x1, x2, x3, x4, x5} iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 by Def3;

        then x in {x1, x2, x3, x4, x5} iff x in {x1, x2, x3} or x in {x4, x5} by Def1, TARSKI:def 2;

        hence x in {x1, x2, x3, x4, x5} iff x in ( {x1, x2, x3} \/ {x4, x5}) by XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:7

    

     Th7: {x1, x2, x3, x4, x5} = ( {x1} \/ {x2, x3, x4, x5})

    proof

      

      thus {x1, x2, x3, x4, x5} = ( {x1, x2, x3} \/ {x4, x5}) by Lm3

      .= (( {x1} \/ {x2, x3}) \/ {x4, x5}) by Th2

      .= ( {x1} \/ ( {x2, x3} \/ {x4, x5})) by XBOOLE_1: 4

      .= ( {x1} \/ {x2, x3, x4, x5}) by Lm2;

    end;

    theorem :: ENUMSET1:8

    

     Th8: {x1, x2, x3, x4, x5} = ( {x1, x2} \/ {x3, x4, x5})

    proof

      

      thus {x1, x2, x3, x4, x5} = ( {x1, x2, x3} \/ {x4, x5}) by Lm3

      .= (( {x1, x2} \/ {x3}) \/ {x4, x5}) by Th3

      .= ( {x1, x2} \/ ( {x3} \/ {x4, x5})) by XBOOLE_1: 4

      .= ( {x1, x2} \/ {x3, x4, x5}) by Th2;

    end;

    theorem :: ENUMSET1:9

     {x1, x2, x3, x4, x5} = ( {x1, x2, x3} \/ {x4, x5}) by Lm3;

    theorem :: ENUMSET1:10

    

     Th10: {x1, x2, x3, x4, x5} = ( {x1, x2, x3, x4} \/ {x5})

    proof

      

      thus {x1, x2, x3, x4, x5} = ( {x1, x2, x3} \/ {x4, x5}) by Lm3

      .= ( {x1, x2, x3} \/ ( {x4} \/ {x5})) by Th1

      .= (( {x1, x2, x3} \/ {x4}) \/ {x5}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4} \/ {x5}) by Th6;

    end;

    

     Lm4: {x1, x2, x3, x4, x5, x6} = ( {x1, x2, x3} \/ {x4, x5, x6})

    proof

      now

        let x be object;

        x in {x1, x2, x3, x4, x5, x6} iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 by Def4;

        then x in {x1, x2, x3, x4, x5, x6} iff x in {x1, x2, x3} or x in {x4, x5, x6} by Def1;

        hence x in {x1, x2, x3, x4, x5, x6} iff x in ( {x1, x2, x3} \/ {x4, x5, x6}) by XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:11

    

     Th11: {x1, x2, x3, x4, x5, x6} = ( {x1} \/ {x2, x3, x4, x5, x6})

    proof

      

      thus {x1, x2, x3, x4, x5, x6} = ( {x1, x2, x3} \/ {x4, x5, x6}) by Lm4

      .= (( {x1} \/ {x2, x3}) \/ {x4, x5, x6}) by Th2

      .= ( {x1} \/ ( {x2, x3} \/ {x4, x5, x6})) by XBOOLE_1: 4

      .= ( {x1} \/ {x2, x3, x4, x5, x6}) by Th8;

    end;

    theorem :: ENUMSET1:12

    

     Th12: {x1, x2, x3, x4, x5, x6} = ( {x1, x2} \/ {x3, x4, x5, x6})

    proof

      

      thus {x1, x2, x3, x4, x5, x6} = ( {x1, x2, x3} \/ {x4, x5, x6}) by Lm4

      .= (( {x1, x2} \/ {x3}) \/ {x4, x5, x6}) by Th3

      .= ( {x1, x2} \/ ( {x3} \/ {x4, x5, x6})) by XBOOLE_1: 4

      .= ( {x1, x2} \/ {x3, x4, x5, x6}) by Th4;

    end;

    theorem :: ENUMSET1:13

     {x1, x2, x3, x4, x5, x6} = ( {x1, x2, x3} \/ {x4, x5, x6}) by Lm4;

    theorem :: ENUMSET1:14

    

     Th14: {x1, x2, x3, x4, x5, x6} = ( {x1, x2, x3, x4} \/ {x5, x6})

    proof

      

      thus {x1, x2, x3, x4, x5, x6} = ( {x1, x2, x3} \/ {x4, x5, x6}) by Lm4

      .= ( {x1, x2, x3} \/ ( {x4} \/ {x5, x6})) by Th2

      .= (( {x1, x2, x3} \/ {x4}) \/ {x5, x6}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4} \/ {x5, x6}) by Th6;

    end;

    theorem :: ENUMSET1:15

     {x1, x2, x3, x4, x5, x6} = ( {x1, x2, x3, x4, x5} \/ {x6})

    proof

      

      thus {x1, x2, x3, x4, x5, x6} = ( {x1, x2, x3} \/ {x4, x5, x6}) by Lm4

      .= ( {x1, x2, x3} \/ ( {x4, x5} \/ {x6})) by Th3

      .= (( {x1, x2, x3} \/ {x4, x5}) \/ {x6}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5} \/ {x6}) by Lm3;

    end;

    

     Lm5: {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4} \/ {x5, x6, x7})

    proof

      now

        let x be object;

        

         A1: x in {x5, x6, x7} iff x = x5 or x = x6 or x = x7 by Def1;

        x in {x1, x2, x3, x4} iff x = x1 or x = x2 or x = x3 or x = x4 by Def2;

        hence x in {x1, x2, x3, x4, x5, x6, x7} iff x in ( {x1, x2, x3, x4} \/ {x5, x6, x7}) by A1, Def5, XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:16

    

     Th16: {x1, x2, x3, x4, x5, x6, x7} = ( {x1} \/ {x2, x3, x4, x5, x6, x7})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4} \/ {x5, x6, x7}) by Lm5

      .= (( {x1} \/ {x2, x3, x4}) \/ {x5, x6, x7}) by Th4

      .= ( {x1} \/ ( {x2, x3, x4} \/ {x5, x6, x7})) by XBOOLE_1: 4

      .= ( {x1} \/ {x2, x3, x4, x5, x6, x7}) by Lm4;

    end;

    theorem :: ENUMSET1:17

    

     Th17: {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2} \/ {x3, x4, x5, x6, x7})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4} \/ {x5, x6, x7}) by Lm5

      .= (( {x1, x2} \/ {x3, x4}) \/ {x5, x6, x7}) by Lm2

      .= ( {x1, x2} \/ ( {x3, x4} \/ {x5, x6, x7})) by XBOOLE_1: 4

      .= ( {x1, x2} \/ {x3, x4, x5, x6, x7}) by Th8;

    end;

    theorem :: ENUMSET1:18

    

     Th18: {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3} \/ {x4, x5, x6, x7})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4} \/ {x5, x6, x7}) by Lm5

      .= (( {x1, x2, x3} \/ {x4}) \/ {x5, x6, x7}) by Th6

      .= ( {x1, x2, x3} \/ ( {x4} \/ {x5, x6, x7})) by XBOOLE_1: 4

      .= ( {x1, x2, x3} \/ {x4, x5, x6, x7}) by Th4;

    end;

    theorem :: ENUMSET1:19

     {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4} \/ {x5, x6, x7}) by Lm5;

    theorem :: ENUMSET1:20

     {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4, x5} \/ {x6, x7})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4} \/ {x5, x6, x7}) by Lm5

      .= ( {x1, x2, x3, x4} \/ ( {x5} \/ {x6, x7})) by Th2

      .= (( {x1, x2, x3, x4} \/ {x5}) \/ {x6, x7}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5} \/ {x6, x7}) by Th10;

    end;

    theorem :: ENUMSET1:21

     {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4, x5, x6} \/ {x7})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7} = ( {x1, x2, x3, x4} \/ {x5, x6, x7}) by Lm5

      .= ( {x1, x2, x3, x4} \/ ( {x5, x6} \/ {x7})) by Th3

      .= (( {x1, x2, x3, x4} \/ {x5, x6}) \/ {x7}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5, x6} \/ {x7}) by Th14;

    end;

    

     Lm6: {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8})

    proof

      now

        let x be object;

        

         A1: x in {x5, x6, x7, x8} iff x = x5 or x = x6 or x = x7 or x = x8 by Def2;

        x in {x1, x2, x3, x4} iff x = x1 or x = x2 or x = x3 or x = x4 by Def2;

        hence x in {x1, x2, x3, x4, x5, x6, x7, x8} iff x in ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) by A1, Def6, XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:22

     {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1} \/ {x2, x3, x4, x5, x6, x7, x8})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) by Lm6

      .= (( {x1} \/ {x2, x3, x4}) \/ {x5, x6, x7, x8}) by Th4

      .= ( {x1} \/ ( {x2, x3, x4} \/ {x5, x6, x7, x8})) by XBOOLE_1: 4

      .= ( {x1} \/ {x2, x3, x4, x5, x6, x7, x8}) by Th18;

    end;

    theorem :: ENUMSET1:23

    

     Th23: {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2} \/ {x3, x4, x5, x6, x7, x8})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) by Lm6

      .= (( {x1, x2} \/ {x3, x4}) \/ {x5, x6, x7, x8}) by Lm2

      .= ( {x1, x2} \/ ( {x3, x4} \/ {x5, x6, x7, x8})) by XBOOLE_1: 4

      .= ( {x1, x2} \/ {x3, x4, x5, x6, x7, x8}) by Th12;

    end;

    theorem :: ENUMSET1:24

    

     Th24: {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3} \/ {x4, x5, x6, x7, x8})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) by Lm6

      .= (( {x1, x2, x3} \/ {x4}) \/ {x5, x6, x7, x8}) by Th6

      .= ( {x1, x2, x3} \/ ( {x4} \/ {x5, x6, x7, x8})) by XBOOLE_1: 4

      .= ( {x1, x2, x3} \/ {x4, x5, x6, x7, x8}) by Th7;

    end;

    theorem :: ENUMSET1:25

     {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) by Lm6;

    theorem :: ENUMSET1:26

     {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4, x5} \/ {x6, x7, x8})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) by Lm6

      .= ( {x1, x2, x3, x4} \/ ( {x5} \/ {x6, x7, x8})) by Th4

      .= (( {x1, x2, x3, x4} \/ {x5}) \/ {x6, x7, x8}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5} \/ {x6, x7, x8}) by Th10;

    end;

    theorem :: ENUMSET1:27

     {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4, x5, x6} \/ {x7, x8})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) by Lm6

      .= ( {x1, x2, x3, x4} \/ ( {x5, x6} \/ {x7, x8})) by Lm2

      .= (( {x1, x2, x3, x4} \/ {x5, x6}) \/ {x7, x8}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5, x6} \/ {x7, x8}) by Th14;

    end;

    theorem :: ENUMSET1:28

     {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4, x5, x6, x7} \/ {x8})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) by Lm6

      .= ( {x1, x2, x3, x4} \/ ( {x5, x6, x7} \/ {x8})) by Th6

      .= (( {x1, x2, x3, x4} \/ {x5, x6, x7}) \/ {x8}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5, x6, x7} \/ {x8}) by Lm5;

    end;

    theorem :: ENUMSET1:29

    

     Th29: {x1, x1} = {x1}

    proof

      now

        let x be object;

        x in {x1, x1} iff x = x1 by TARSKI:def 2;

        hence x in {x1, x1} iff x in {x1} by TARSKI:def 1;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:30

    

     Th30: {x1, x1, x2} = {x1, x2}

    proof

      

      thus {x1, x1, x2} = ( {x1, x1} \/ {x2}) by Th3

      .= ( {x1} \/ {x2}) by Th29

      .= {x1, x2} by Th1;

    end;

    theorem :: ENUMSET1:31

    

     Th31: {x1, x1, x2, x3} = {x1, x2, x3}

    proof

      

      thus {x1, x1, x2, x3} = ( {x1, x1} \/ {x2, x3}) by Lm2

      .= ( {x1} \/ {x2, x3}) by Th29

      .= {x1, x2, x3} by Th2;

    end;

    theorem :: ENUMSET1:32

    

     Th32: {x1, x1, x2, x3, x4} = {x1, x2, x3, x4}

    proof

      

      thus {x1, x1, x2, x3, x4} = ( {x1, x1} \/ {x2, x3, x4}) by Th8

      .= ( {x1} \/ {x2, x3, x4}) by Th29

      .= {x1, x2, x3, x4} by Th4;

    end;

    theorem :: ENUMSET1:33

    

     Th33: {x1, x1, x2, x3, x4, x5} = {x1, x2, x3, x4, x5}

    proof

      

      thus {x1, x1, x2, x3, x4, x5} = ( {x1, x1} \/ {x2, x3, x4, x5}) by Th12

      .= ( {x1} \/ {x2, x3, x4, x5}) by Th29

      .= {x1, x2, x3, x4, x5} by Th7;

    end;

    theorem :: ENUMSET1:34

    

     Th34: {x1, x1, x2, x3, x4, x5, x6} = {x1, x2, x3, x4, x5, x6}

    proof

      

      thus {x1, x1, x2, x3, x4, x5, x6} = ( {x1, x1} \/ {x2, x3, x4, x5, x6}) by Th17

      .= ( {x1} \/ {x2, x3, x4, x5, x6}) by Th29

      .= {x1, x2, x3, x4, x5, x6} by Th11;

    end;

    theorem :: ENUMSET1:35

    

     Th35: {x1, x1, x2, x3, x4, x5, x6, x7} = {x1, x2, x3, x4, x5, x6, x7}

    proof

      

      thus {x1, x1, x2, x3, x4, x5, x6, x7} = ( {x1, x1} \/ {x2, x3, x4, x5, x6, x7}) by Th23

      .= ( {x1} \/ {x2, x3, x4, x5, x6, x7}) by Th29

      .= {x1, x2, x3, x4, x5, x6, x7} by Th16;

    end;

    theorem :: ENUMSET1:36

     {x1, x1, x1} = {x1}

    proof

      

      thus {x1, x1, x1} = {x1, x1} by Th30

      .= {x1} by Th29;

    end;

    theorem :: ENUMSET1:37

    

     Th37: {x1, x1, x1, x2} = {x1, x2}

    proof

      

      thus {x1, x1, x1, x2} = {x1, x1, x2} by Th31

      .= {x1, x2} by Th30;

    end;

    theorem :: ENUMSET1:38

    

     Th38: {x1, x1, x1, x2, x3} = {x1, x2, x3}

    proof

      

      thus {x1, x1, x1, x2, x3} = {x1, x1, x2, x3} by Th32

      .= {x1, x2, x3} by Th31;

    end;

    theorem :: ENUMSET1:39

    

     Th39: {x1, x1, x1, x2, x3, x4} = {x1, x2, x3, x4}

    proof

      

      thus {x1, x1, x1, x2, x3, x4} = {x1, x1, x2, x3, x4} by Th33

      .= {x1, x2, x3, x4} by Th32;

    end;

    theorem :: ENUMSET1:40

    

     Th40: {x1, x1, x1, x2, x3, x4, x5} = {x1, x2, x3, x4, x5}

    proof

      

      thus {x1, x1, x1, x2, x3, x4, x5} = {x1, x1, x2, x3, x4, x5} by Th34

      .= {x1, x2, x3, x4, x5} by Th33;

    end;

    theorem :: ENUMSET1:41

    

     Th41: {x1, x1, x1, x2, x3, x4, x5, x6} = {x1, x2, x3, x4, x5, x6}

    proof

      

      thus {x1, x1, x1, x2, x3, x4, x5, x6} = {x1, x1, x2, x3, x4, x5, x6} by Th35

      .= {x1, x2, x3, x4, x5, x6} by Th34;

    end;

    theorem :: ENUMSET1:42

     {x1, x1, x1, x1} = {x1}

    proof

      

      thus {x1, x1, x1, x1} = {x1, x1} by Th37

      .= {x1} by Th29;

    end;

    theorem :: ENUMSET1:43

    

     Th43: {x1, x1, x1, x1, x2} = {x1, x2}

    proof

      

      thus {x1, x1, x1, x1, x2} = {x1, x1, x2} by Th38

      .= {x1, x2} by Th30;

    end;

    theorem :: ENUMSET1:44

    

     Th44: {x1, x1, x1, x1, x2, x3} = {x1, x2, x3}

    proof

      

      thus {x1, x1, x1, x1, x2, x3} = {x1, x1, x2, x3} by Th39

      .= {x1, x2, x3} by Th31;

    end;

    theorem :: ENUMSET1:45

    

     Th45: {x1, x1, x1, x1, x2, x3, x4} = {x1, x2, x3, x4}

    proof

      

      thus {x1, x1, x1, x1, x2, x3, x4} = {x1, x1, x2, x3, x4} by Th40

      .= {x1, x2, x3, x4} by Th32;

    end;

    theorem :: ENUMSET1:46

    

     Th46: {x1, x1, x1, x1, x2, x3, x4, x5} = {x1, x2, x3, x4, x5}

    proof

      

      thus {x1, x1, x1, x1, x2, x3, x4, x5} = {x1, x1, x2, x3, x4, x5} by Th41

      .= {x1, x2, x3, x4, x5} by Th33;

    end;

    theorem :: ENUMSET1:47

     {x1, x1, x1, x1, x1} = {x1}

    proof

      

      thus {x1, x1, x1, x1, x1} = {x1, x1} by Th43

      .= {x1} by Th29;

    end;

    theorem :: ENUMSET1:48

    

     Th48: {x1, x1, x1, x1, x1, x2} = {x1, x2}

    proof

      

      thus {x1, x1, x1, x1, x1, x2} = {x1, x1, x2} by Th44

      .= {x1, x2} by Th30;

    end;

    theorem :: ENUMSET1:49

    

     Th49: {x1, x1, x1, x1, x1, x2, x3} = {x1, x2, x3}

    proof

      

      thus {x1, x1, x1, x1, x1, x2, x3} = {x1, x1, x2, x3} by Th45

      .= {x1, x2, x3} by Th31;

    end;

    theorem :: ENUMSET1:50

    

     Th50: {x1, x1, x1, x1, x1, x2, x3, x4} = {x1, x2, x3, x4}

    proof

      

      thus {x1, x1, x1, x1, x1, x2, x3, x4} = {x1, x1, x2, x3, x4} by Th46

      .= {x1, x2, x3, x4} by Th32;

    end;

    theorem :: ENUMSET1:51

     {x1, x1, x1, x1, x1, x1} = {x1}

    proof

      

      thus {x1, x1, x1, x1, x1, x1} = {x1, x1} by Th48

      .= {x1} by Th29;

    end;

    theorem :: ENUMSET1:52

    

     Th52: {x1, x1, x1, x1, x1, x1, x2} = {x1, x2}

    proof

      

      thus {x1, x1, x1, x1, x1, x1, x2} = {x1, x1, x2} by Th49

      .= {x1, x2} by Th30;

    end;

    theorem :: ENUMSET1:53

    

     Th53: {x1, x1, x1, x1, x1, x1, x2, x3} = {x1, x2, x3}

    proof

      

      thus {x1, x1, x1, x1, x1, x1, x2, x3} = {x1, x1, x2, x3} by Th50

      .= {x1, x2, x3} by Th31;

    end;

    theorem :: ENUMSET1:54

     {x1, x1, x1, x1, x1, x1, x1} = {x1}

    proof

      

      thus {x1, x1, x1, x1, x1, x1, x1} = {x1, x1} by Th52

      .= {x1} by Th29;

    end;

    theorem :: ENUMSET1:55

    

     Th55: {x1, x1, x1, x1, x1, x1, x1, x2} = {x1, x2}

    proof

      

      thus {x1, x1, x1, x1, x1, x1, x1, x2} = {x1, x1, x2} by Th53

      .= {x1, x2} by Th30;

    end;

    theorem :: ENUMSET1:56

     {x1, x1, x1, x1, x1, x1, x1, x1} = {x1}

    proof

      

      thus {x1, x1, x1, x1, x1, x1, x1, x1} = {x1, x1} by Th55

      .= {x1} by Th29;

    end;

    theorem :: ENUMSET1:57

    

     Th57: {x1, x2, x3} = {x1, x3, x2}

    proof

      

      thus {x1, x2, x3} = ( {x1} \/ {x2, x3}) by Th2

      .= {x1, x3, x2} by Th2;

    end;

    theorem :: ENUMSET1:58

    

     Th58: {x1, x2, x3} = {x2, x1, x3}

    proof

      

      thus {x1, x2, x3} = ( {x1, x2} \/ {x3}) by Th3

      .= {x2, x1, x3} by Th3;

    end;

    theorem :: ENUMSET1:59

    

     Th59: {x1, x2, x3} = {x2, x3, x1}

    proof

      

      thus {x1, x2, x3} = ( {x2, x3} \/ {x1}) by Th2

      .= {x2, x3, x1} by Th3;

    end;

    theorem :: ENUMSET1:60

    

     Th60: {x1, x2, x3} = {x3, x2, x1}

    proof

      

      thus {x1, x2, x3} = {x3, x1, x2} by Th59

      .= {x3, x2, x1} by Th57;

    end;

    theorem :: ENUMSET1:61

    

     Th61: {x1, x2, x3, x4} = {x1, x2, x4, x3}

    proof

      

      thus {x1, x2, x3, x4} = ( {x1} \/ {x2, x3, x4}) by Th4

      .= ( {x1} \/ {x2, x4, x3}) by Th57

      .= {x1, x2, x4, x3} by Th4;

    end;

    theorem :: ENUMSET1:62

     {x1, x2, x3, x4} = {x1, x3, x2, x4}

    proof

      

      thus {x1, x2, x3, x4} = ( {x1} \/ {x2, x3, x4}) by Th4

      .= ( {x1} \/ {x3, x2, x4}) by Th58

      .= {x1, x3, x2, x4} by Th4;

    end;

    theorem :: ENUMSET1:63

    

     Th63: {x1, x2, x3, x4} = {x1, x3, x4, x2}

    proof

      

      thus {x1, x2, x3, x4} = ( {x1} \/ {x2, x3, x4}) by Th4

      .= ( {x1} \/ {x3, x4, x2}) by Th59

      .= {x1, x3, x4, x2} by Th4;

    end;

    theorem :: ENUMSET1:64

    

     Th64: {x1, x2, x3, x4} = {x1, x4, x3, x2}

    proof

      

      thus {x1, x2, x3, x4} = ( {x1} \/ {x2, x3, x4}) by Th4

      .= ( {x1} \/ {x4, x3, x2}) by Th60

      .= {x1, x4, x3, x2} by Th4;

    end;

    theorem :: ENUMSET1:65

    

     Th65: {x1, x2, x3, x4} = {x2, x1, x3, x4}

    proof

      

      thus {x1, x2, x3, x4} = ( {x1, x2, x3} \/ {x4}) by Th6

      .= ( {x2, x1, x3} \/ {x4}) by Th58

      .= {x2, x1, x3, x4} by Th6;

    end;

    

     Lm7: {x1, x2, x3, x4} = {x2, x3, x1, x4}

    proof

      

      thus {x1, x2, x3, x4} = ( {x1, x2, x3} \/ {x4}) by Th6

      .= ( {x2, x3, x1} \/ {x4}) by Th59

      .= {x2, x3, x1, x4} by Th6;

    end;

    theorem :: ENUMSET1:66

     {x1, x2, x3, x4} = {x2, x1, x4, x3}

    proof

      

      thus {x1, x2, x3, x4} = {x2, x3, x1, x4} by Lm7

      .= {x2, x1, x4, x3} by Th63;

    end;

    theorem :: ENUMSET1:67

     {x1, x2, x3, x4} = {x2, x3, x1, x4} by Lm7;

    theorem :: ENUMSET1:68

     {x1, x2, x3, x4} = {x2, x3, x4, x1}

    proof

      

      thus {x1, x2, x3, x4} = {x2, x3, x1, x4} by Lm7

      .= {x2, x3, x4, x1} by Th61;

    end;

    theorem :: ENUMSET1:69

    

     Th69: {x1, x2, x3, x4} = {x2, x4, x1, x3}

    proof

      

      thus {x1, x2, x3, x4} = {x2, x3, x1, x4} by Lm7

      .= {x2, x4, x1, x3} by Th64;

    end;

    theorem :: ENUMSET1:70

     {x1, x2, x3, x4} = {x2, x4, x3, x1}

    proof

      

      thus {x1, x2, x3, x4} = {x2, x3, x1, x4} by Lm7

      .= {x2, x4, x3, x1} by Th63;

    end;

    

     Lm8: {x1, x2, x3, x4} = {x3, x2, x1, x4}

    proof

      

      thus {x1, x2, x3, x4} = ( {x1, x2, x3} \/ {x4}) by Th6

      .= ( {x3, x2, x1} \/ {x4}) by Th60

      .= {x3, x2, x1, x4} by Th6;

    end;

    theorem :: ENUMSET1:71

     {x1, x2, x3, x4} = {x3, x2, x1, x4} by Lm8;

    theorem :: ENUMSET1:72

     {x1, x2, x3, x4} = {x3, x2, x4, x1}

    proof

      

      thus {x1, x2, x3, x4} = {x3, x2, x1, x4} by Lm8

      .= {x3, x2, x4, x1} by Th61;

    end;

    theorem :: ENUMSET1:73

     {x1, x2, x3, x4} = {x3, x4, x1, x2}

    proof

      

      thus {x1, x2, x3, x4} = {x3, x2, x1, x4} by Lm8

      .= {x3, x4, x1, x2} by Th64;

    end;

    theorem :: ENUMSET1:74

    

     Th74: {x1, x2, x3, x4} = {x3, x4, x2, x1}

    proof

      

      thus {x1, x2, x3, x4} = {x3, x2, x1, x4} by Lm8

      .= {x3, x4, x2, x1} by Th63;

    end;

    theorem :: ENUMSET1:75

     {x1, x2, x3, x4} = {x4, x2, x3, x1}

    proof

      

      thus {x1, x2, x3, x4} = {x3, x4, x2, x1} by Th74

      .= {x4, x2, x3, x1} by Lm7;

    end;

    theorem :: ENUMSET1:76

     {x1, x2, x3, x4} = {x4, x3, x2, x1}

    proof

      

      thus {x1, x2, x3, x4} = {x3, x4, x2, x1} by Th74

      .= {x4, x3, x2, x1} by Th65;

    end;

    

     Lm9: {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9})

    proof

      now

        let x be object;

        

         A1: x in {x5, x6, x7, x8, x9} iff x = x5 or x = x6 or x = x7 or x = x8 or x = x9 by Def3;

        x in {x1, x2, x3, x4} iff x = x1 or x = x2 or x = x3 or x = x4 by Def2;

        hence x in {x1, x2, x3, x4, x5, x6, x7, x8, x9} iff x in ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by A1, Def7, XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    theorem :: ENUMSET1:77

     {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1} \/ {x2, x3, x4, x5, x6, x7, x8, x9})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by Lm9

      .= (( {x1} \/ {x2, x3, x4}) \/ {x5, x6, x7, x8, x9}) by Th4

      .= ( {x1} \/ ( {x2, x3, x4} \/ {x5, x6, x7, x8, x9})) by XBOOLE_1: 4

      .= ( {x1} \/ {x2, x3, x4, x5, x6, x7, x8, x9}) by Th24;

    end;

    theorem :: ENUMSET1:78

     {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2} \/ {x3, x4, x5, x6, x7, x8, x9})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by Lm9

      .= (( {x1, x2} \/ {x3, x4}) \/ {x5, x6, x7, x8, x9}) by Lm2

      .= ( {x1, x2} \/ ( {x3, x4} \/ {x5, x6, x7, x8, x9})) by XBOOLE_1: 4

      .= ( {x1, x2} \/ {x3, x4, x5, x6, x7, x8, x9}) by Th17;

    end;

    theorem :: ENUMSET1:79

     {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3} \/ {x4, x5, x6, x7, x8, x9})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by Lm9

      .= (( {x1, x2, x3} \/ {x4}) \/ {x5, x6, x7, x8, x9}) by Th6

      .= ( {x1, x2, x3} \/ ( {x4} \/ {x5, x6, x7, x8, x9})) by XBOOLE_1: 4

      .= ( {x1, x2, x3} \/ {x4, x5, x6, x7, x8, x9}) by Th11;

    end;

    theorem :: ENUMSET1:80

     {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by Lm9;

    theorem :: ENUMSET1:81

     {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4, x5} \/ {x6, x7, x8, x9})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by Lm9

      .= ( {x1, x2, x3, x4} \/ ( {x5} \/ {x6, x7, x8, x9})) by Th7

      .= (( {x1, x2, x3, x4} \/ {x5}) \/ {x6, x7, x8, x9}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5} \/ {x6, x7, x8, x9}) by Th10;

    end;

    theorem :: ENUMSET1:82

     {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4, x5, x6} \/ {x7, x8, x9})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by Lm9

      .= ( {x1, x2, x3, x4} \/ ( {x5, x6} \/ {x7, x8, x9})) by Th8

      .= (( {x1, x2, x3, x4} \/ {x5, x6}) \/ {x7, x8, x9}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5, x6} \/ {x7, x8, x9}) by Th14;

    end;

    theorem :: ENUMSET1:83

     {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4, x5, x6, x7} \/ {x8, x9})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by Lm9

      .= ( {x1, x2, x3, x4} \/ ( {x5, x6, x7} \/ {x8, x9})) by Lm3

      .= (( {x1, x2, x3, x4} \/ {x5, x6, x7}) \/ {x8, x9}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5, x6, x7} \/ {x8, x9}) by Lm5;

    end;

    theorem :: ENUMSET1:84

     {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4, x5, x6, x7, x8} \/ {x9})

    proof

      

      thus {x1, x2, x3, x4, x5, x6, x7, x8, x9} = ( {x1, x2, x3, x4} \/ {x5, x6, x7, x8, x9}) by Lm9

      .= ( {x1, x2, x3, x4} \/ ( {x5, x6, x7, x8} \/ {x9})) by Th10

      .= (( {x1, x2, x3, x4} \/ {x5, x6, x7, x8}) \/ {x9}) by XBOOLE_1: 4

      .= ( {x1, x2, x3, x4, x5, x6, x7, x8} \/ {x9}) by Lm6;

    end;

    theorem :: ENUMSET1:85

     {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} = ( {x1, x2, x3, x4, x5, x6, x7, x8, x9} \/ {x10})

    proof

      now

        let x be object;

        

         A1: x in {x10} iff x = x10 by TARSKI:def 1;

        x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8 or x = x9 or x = x10 iff x in {x1, x2, x3, x4, x5, x6, x7, x8, x9} or x = x10 by Def7;

        hence x in {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10} iff x in ( {x1, x2, x3, x4, x5, x6, x7, x8, x9} \/ {x10}) by A1, Def8, XBOOLE_0:def 3;

      end;

      hence thesis by TARSKI: 2;

    end;

    begin

    theorem :: ENUMSET1:86

    for x,y,z be set st x <> y & x <> z holds ( {x, y, z} \ {x}) = {y, z}

    proof

      let x,y,z be set such that

       A1: x <> y & x <> z;

      hereby

        let a be object;

        assume

         A2: a in ( {x, y, z} \ {x});

        then a in {x, y, z} by XBOOLE_0:def 5;

        then

         A3: a = x or a = y or a = z by Def1;

         not a in {x} by A2, XBOOLE_0:def 5;

        hence a in {y, z} by A3, TARSKI:def 1, TARSKI:def 2;

      end;

      let a be object;

      assume a in {y, z};

      then

       A4: a = y or a = z by TARSKI:def 2;

      then

       A5: not a in {x} by A1, TARSKI:def 1;

      a in {x, y, z} by A4, Def1;

      hence thesis by A5, XBOOLE_0:def 5;

    end;

    theorem :: ENUMSET1:87

    for x1,x2,x3 be set holds ( {x2, x1} \/ {x3, x1}) = {x1, x2, x3}

    proof

      let x1,x2,x3 be set;

      

      thus ( {x2, x1} \/ {x3, x1}) = {x2, x1, x3, x1} by Lm2

      .= {x1, x1, x2, x3} by Th69

      .= {x1, x2, x3} by Th31;

    end;