fintopo2.miz
    
    begin
    
    reserve FT for non
    empty  
    RelStr;
    
    reserve A for
    Subset of FT; 
    
    theorem :: 
    
    FINTOPO2:1
    
    for FT be non
    empty  
    RelStr, A,B be 
    Subset of FT holds A 
    c= B implies (A 
    ^i ) 
    c= (B 
    ^i ) 
    
    proof
    
      let FT be non
    empty  
    RelStr;
    
      let A,B be
    Subset of FT; 
    
      assume
    
      
    
    A1: A 
    c= B; 
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in (A 
    ^i ); 
    
      then
    
      reconsider y = x as
    Element of FT; 
    
      
    
      
    
    A3: ( 
    U_FT y) 
    c= A by 
    A2,
    FIN_TOPO: 7;
    
      for t be
    Element of FT st t 
    in ( 
    U_FT y) holds t 
    in B by 
    A3,
    A1;
    
      then (
    U_FT y) 
    c= B; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    FINTOPO2:2
    
    
    
    
    
    Th2: (A 
    ^delta ) 
    = ((A 
    ^b ) 
    /\ ((A 
    ^i ) 
    ` )) 
    
    proof
    
      for x be
    object holds x 
    in (A 
    ^delta ) iff x 
    in ((A 
    ^b ) 
    /\ ((A 
    ^i ) 
    ` )) 
    
      proof
    
        let x be
    object;
    
        thus x
    in (A 
    ^delta ) implies x 
    in ((A 
    ^b ) 
    /\ ((A 
    ^i ) 
    ` )) 
    
        proof
    
          assume
    
          
    
    A1: x 
    in (A 
    ^delta ); 
    
          then
    
          reconsider y = x as
    Element of FT; 
    
          (
    U_FT y) 
    meets (A 
    ` ) by 
    A1,
    FIN_TOPO: 5;
    
          then y
    in ((((A 
    ` ) 
    ^b ) 
    ` ) 
    ` ); 
    
          then
    
          
    
    A2: y 
    in ((A 
    ^i ) 
    ` ) by 
    FIN_TOPO: 17;
    
          (
    U_FT y) 
    meets A by 
    A1,
    FIN_TOPO: 5;
    
          then y
    in (A 
    ^b ); 
    
          hence thesis by
    A2,
    XBOOLE_0:def 4;
    
        end;
    
        assume
    
        
    
    A3: x 
    in ((A 
    ^b ) 
    /\ ((A 
    ^i ) 
    ` )); 
    
        then
    
        reconsider y = x as
    Element of FT; 
    
        x
    in ((A 
    ^i ) 
    ` ) by 
    A3,
    XBOOLE_0:def 4;
    
        then x
    in ((((A 
    ` ) 
    ^b ) 
    ` ) 
    ` ) by 
    FIN_TOPO: 17;
    
        then
    
        
    
    A4: ( 
    U_FT y) 
    meets (A 
    ` ) by 
    FIN_TOPO: 8;
    
        x
    in (A 
    ^b ) by 
    A3,
    XBOOLE_0:def 4;
    
        then (
    U_FT y) 
    meets A by 
    FIN_TOPO: 8;
    
        hence thesis by
    A4;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    theorem :: 
    
    FINTOPO2:3
    
    (A
    ^delta ) 
    = ((A 
    ^b ) 
    \ (A 
    ^i )) 
    
    proof
    
      for x be
    object holds x 
    in (A 
    ^delta ) iff x 
    in ((A 
    ^b ) 
    \ (A 
    ^i )) 
    
      proof
    
        let x be
    object;
    
        thus x
    in (A 
    ^delta ) implies x 
    in ((A 
    ^b ) 
    \ (A 
    ^i )) 
    
        proof
    
          assume x
    in (A 
    ^delta ); 
    
          then x
    in ((A 
    ^b ) 
    /\ ((A 
    ^i ) 
    ` )) by 
    Th2;
    
          hence thesis by
    SUBSET_1: 13;
    
        end;
    
        assume x
    in ((A 
    ^b ) 
    \ (A 
    ^i )); 
    
        then x
    in ((A 
    ^b ) 
    /\ ((A 
    ^i ) 
    ` )) by 
    SUBSET_1: 13;
    
        hence thesis by
    Th2;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    theorem :: 
    
    FINTOPO2:4
    
    (A
    ` ) is 
    open implies A is 
    closed
    
    proof
    
      assume (A
    ` ) is 
    open;
    
      then
    
      
    
    A1: (A 
    ` ) 
    = ((A 
    ` ) 
    ^i ); 
    
      ((A
    ` ) 
    ^i ) 
    = ((((A 
    ` ) 
    ` ) 
    ^b ) 
    ` ) by 
    FIN_TOPO: 17
    
      .= ((A
    ^b ) 
    ` ); 
    
      
    
      then A
    = (((A 
    ^b ) 
    ` ) 
    ` ) by 
    A1
    
      .= (A
    ^b ); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    FINTOPO2:5
    
    (A
    ` ) is 
    closed implies A is 
    open
    
    proof
    
      assume (A
    ` ) is 
    closed;
    
      then
    
      
    
    A1: (A 
    ` ) 
    = ((A 
    ` ) 
    ^b ); 
    
      ((A
    ` ) 
    ^b ) 
    = ((((A 
    ` ) 
    ` ) 
    ^i ) 
    ` ) by 
    FIN_TOPO: 16
    
      .= ((A
    ^i ) 
    ` ); 
    
      
    
      then A
    = (((A 
    ^i ) 
    ` ) 
    ` ) by 
    A1
    
      .= (A
    ^i ); 
    
      hence thesis;
    
    end;
    
    definition
    
      let FT be non
    empty  
    RelStr;
    
      let x be
    Element of FT; 
    
      let y be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      :: 
    
    FINTOPO2:def1
    
      func
    
    P_1 (x,y,A) -> 
    Element of 
    BOOLEAN equals 
    
      :
    
    Def1: 
    TRUE if y 
    in ( 
    U_FT x) & y 
    in A 
    
      otherwise
    FALSE ; 
    
      correctness ;
    
    end
    
    definition
    
      let FT be non
    empty  
    RelStr;
    
      let x be
    Element of FT; 
    
      let y be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      :: 
    
    FINTOPO2:def2
    
      func
    
    P_2 (x,y,A) -> 
    Element of 
    BOOLEAN equals 
    
      :
    
    Def2: 
    TRUE if y 
    in ( 
    U_FT x) & y 
    in (A 
    ` ) 
    
      otherwise
    FALSE ; 
    
      correctness ;
    
    end
    
    theorem :: 
    
    FINTOPO2:6
    
    for x,y be
    Element of FT, A be 
    Subset of FT holds ( 
    P_1 (x,y,A)) 
    =  
    TRUE iff y 
    in ( 
    U_FT x) & y 
    in A by 
    Def1;
    
    theorem :: 
    
    FINTOPO2:7
    
    for x,y be
    Element of FT, A be 
    Subset of FT holds ( 
    P_2 (x,y,A)) 
    =  
    TRUE iff y 
    in ( 
    U_FT x) & y 
    in (A 
    ` ) by 
    Def2;
    
    theorem :: 
    
    FINTOPO2:8
    
    
    
    
    
    Th8: for x be 
    Element of FT, A be 
    Subset of FT holds x 
    in (A 
    ^delta ) iff ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE  
    
    proof
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      
    
      
    
    A1: x 
    in (A 
    ^delta ) implies ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE  
    
      proof
    
        reconsider z = x as
    Element of FT; 
    
        assume
    
        
    
    A2: x 
    in (A 
    ^delta ); 
    
        then (
    U_FT z) 
    meets A by 
    FIN_TOPO: 5;
    
        then
    
        consider w1 be
    object such that 
    
        
    
    A3: w1 
    in ( 
    U_FT z) and 
    
        
    
    A4: w1 
    in A by 
    XBOOLE_0: 3;
    
        reconsider w1 as
    Element of FT by 
    A3;
    
        take w1;
    
        (
    U_FT z) 
    meets (A 
    ` ) by 
    A2,
    FIN_TOPO: 5;
    
        then
    
        consider w2 be
    object such that 
    
        
    
    A5: w2 
    in ( 
    U_FT z) & w2 
    in (A 
    ` ) by 
    XBOOLE_0: 3;
    
        take w2;
    
        thus thesis by
    A3,
    A4,
    A5,
    Def1,
    Def2;
    
      end;
    
      (ex y1,y2 be
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ) implies x 
    in (A 
    ^delta ) 
    
      proof
    
        given y1,y2 be
    Element of FT such that 
    
        
    
    A6: ( 
    P_1 (x,y1,A)) 
    =  
    TRUE and 
    
        
    
    A7: ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ; 
    
        y1
    in ( 
    U_FT x) & y1 
    in A by 
    A6,
    Def1;
    
        then ((
    U_FT x) 
    /\ A) 
    <>  
    {} by 
    XBOOLE_0:def 4;
    
        then
    
        
    
    A8: ( 
    U_FT x) 
    meets A; 
    
        y2
    in ( 
    U_FT x) & y2 
    in (A 
    ` ) by 
    A7,
    Def2;
    
        then (
    U_FT x) 
    meets (A 
    ` ) by 
    XBOOLE_0: 3;
    
        hence thesis by
    A8;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    definition
    
      let FT be non
    empty  
    RelStr;
    
      let x be
    Element of FT; 
    
      let y be
    Element of FT; 
    
      :: 
    
    FINTOPO2:def3
    
      func
    
    P_0 (x,y) -> 
    Element of 
    BOOLEAN equals 
    
      :
    
    Def3: 
    TRUE if y 
    in ( 
    U_FT x) 
    
      otherwise
    FALSE ; 
    
      correctness ;
    
    end
    
    theorem :: 
    
    FINTOPO2:9
    
    for x,y be
    Element of FT holds ( 
    P_0 (x,y)) 
    =  
    TRUE iff y 
    in ( 
    U_FT x) by 
    Def3;
    
    theorem :: 
    
    FINTOPO2:10
    
    for x be
    Element of FT, A be 
    Subset of FT holds x 
    in (A 
    ^i ) iff for y be 
    Element of FT holds (( 
    P_0 (x,y)) 
    =  
    TRUE implies ( 
    P_1 (x,y,A)) 
    =  
    TRUE ) 
    
    proof
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      
    
      
    
    A1: (for y be 
    Element of FT holds (( 
    P_0 (x,y)) 
    =  
    TRUE implies ( 
    P_1 (x,y,A)) 
    =  
    TRUE )) implies x 
    in (A 
    ^i ) 
    
      proof
    
        assume
    
        
    
    A2: for y be 
    Element of FT holds (( 
    P_0 (x,y)) 
    =  
    TRUE implies ( 
    P_1 (x,y,A)) 
    =  
    TRUE ); 
    
        for y be
    Element of FT holds y 
    in ( 
    U_FT x) implies y 
    in ( 
    U_FT x) & y 
    in A 
    
        proof
    
          let y be
    Element of FT; 
    
          assume y
    in ( 
    U_FT x); 
    
          then (
    P_0 (x,y)) 
    =  
    TRUE by 
    Def3;
    
          then (
    P_1 (x,y,A)) 
    =  
    TRUE by 
    A2;
    
          hence thesis by
    Def1;
    
        end;
    
        then for y be
    Element of FT holds y 
    in ( 
    U_FT x) implies y 
    in A; 
    
        then (
    U_FT x) 
    c= A; 
    
        hence thesis;
    
      end;
    
      x
    in (A 
    ^i ) implies for y be 
    Element of FT holds (( 
    P_0 (x,y)) 
    =  
    TRUE implies ( 
    P_1 (x,y,A)) 
    =  
    TRUE ) 
    
      proof
    
        assume x
    in (A 
    ^i ); 
    
        then
    
        
    
    A3: ( 
    U_FT x) 
    c= A by 
    FIN_TOPO: 7;
    
        let y be
    Element of FT; 
    
        assume (
    P_0 (x,y)) 
    =  
    TRUE ; 
    
        then y
    in ( 
    U_FT x) by 
    Def3;
    
        hence thesis by
    A3,
    Def1;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:11
    
    for x be
    Element of FT, A be 
    Subset of FT holds x 
    in (A 
    ^b ) iff ex y1 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE  
    
    proof
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      
    
      
    
    A1: x 
    in (A 
    ^b ) implies ex y1 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE  
    
      proof
    
        reconsider z = x as
    Element of FT; 
    
        assume x
    in (A 
    ^b ); 
    
        then (
    U_FT z) 
    meets A by 
    FIN_TOPO: 8;
    
        then
    
        consider w be
    object such that 
    
        
    
    A2: w 
    in ( 
    U_FT z) and 
    
        
    
    A3: w 
    in A by 
    XBOOLE_0: 3;
    
        reconsider w as
    Element of FT by 
    A2;
    
        take w;
    
        thus thesis by
    A2,
    A3,
    Def1;
    
      end;
    
      (ex y1 be
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE ) implies x 
    in (A 
    ^b ) 
    
      proof
    
        given y be
    Element of FT such that 
    
        
    
    A4: ( 
    P_1 (x,y,A)) 
    =  
    TRUE ; 
    
        y
    in ( 
    U_FT x) & y 
    in A by 
    A4,
    Def1;
    
        then y
    in (( 
    U_FT x) 
    /\ A) by 
    XBOOLE_0:def 4;
    
        then (
    U_FT x) 
    meets A; 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    definition
    
      let FT be non
    empty  
    RelStr;
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      :: 
    
    FINTOPO2:def4
    
      func
    
    P_A (x,A) -> 
    Element of 
    BOOLEAN equals 
    
      :
    
    Def4: 
    TRUE if x 
    in A 
    
      otherwise
    FALSE ; 
    
      correctness ;
    
    end
    
    theorem :: 
    
    FINTOPO2:12
    
    for x be
    Element of FT, A be 
    Subset of FT holds ( 
    P_A (x,A)) 
    =  
    TRUE iff x 
    in A by 
    Def4;
    
    theorem :: 
    
    FINTOPO2:13
    
    for x be
    Element of FT, A be 
    Subset of FT holds x 
    in (A 
    ^deltai ) iff (ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ) & ( 
    P_A (x,A)) 
    =  
    TRUE  
    
    proof
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      
    
      
    
    A1: (ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ) & ( 
    P_A (x,A)) 
    =  
    TRUE implies x 
    in (A 
    ^deltai ) 
    
      proof
    
        assume (ex y1,y2 be
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ) & ( 
    P_A (x,A)) 
    =  
    TRUE ; 
    
        then x
    in (A 
    ^delta ) & x 
    in A by 
    Def4,
    Th8;
    
        hence thesis by
    XBOOLE_0:def 4;
    
      end;
    
      x
    in (A 
    ^deltai ) implies (ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ) & ( 
    P_A (x,A)) 
    =  
    TRUE  
    
      proof
    
        assume x
    in (A 
    ^deltai ); 
    
        then x
    in A & x 
    in (A 
    ^delta ) by 
    XBOOLE_0:def 4;
    
        hence thesis by
    Def4,
    Th8;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:14
    
    for x be
    Element of FT, A be 
    Subset of FT holds x 
    in (A 
    ^deltao ) iff (ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ) & ( 
    P_A (x,A)) 
    =  
    FALSE  
    
    proof
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      
    
      
    
    A1: (ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ) & ( 
    P_A (x,A)) 
    =  
    FALSE implies x 
    in (A 
    ^deltao ) 
    
      proof
    
        assume that
    
        
    
    A2: ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE and 
    
        
    
    A3: ( 
    P_A (x,A)) 
    =  
    FALSE ; 
    
         not x
    in A by 
    A3,
    Def4;
    
        then
    
        
    
    A4: x 
    in (A 
    ` ) by 
    XBOOLE_0:def 5;
    
        x
    in (A 
    ^delta ) by 
    A2,
    Th8;
    
        hence thesis by
    A4,
    XBOOLE_0:def 4;
    
      end;
    
      x
    in (A 
    ^deltao ) implies (ex y1,y2 be 
    Element of FT st ( 
    P_1 (x,y1,A)) 
    =  
    TRUE & ( 
    P_2 (x,y2,A)) 
    =  
    TRUE ) & ( 
    P_A (x,A)) 
    =  
    FALSE  
    
      proof
    
        assume
    
        
    
    A5: x 
    in (A 
    ^deltao ); 
    
        then x
    in (A 
    ` ) by 
    XBOOLE_0:def 4;
    
        then
    
        
    
    A6: not x 
    in A by 
    XBOOLE_0:def 5;
    
        x
    in (A 
    ^delta ) by 
    A5,
    XBOOLE_0:def 4;
    
        hence thesis by
    A6,
    Def4,
    Th8;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    definition
    
      let FT be non
    empty  
    RelStr;
    
      let x be
    Element of FT; 
    
      let y be
    Element of FT; 
    
      :: 
    
    FINTOPO2:def5
    
      func
    
    P_e (x,y) -> 
    Element of 
    BOOLEAN equals 
    
      :
    
    Def5: 
    TRUE if x 
    = y 
    
      otherwise
    FALSE ; 
    
      correctness ;
    
    end
    
    theorem :: 
    
    FINTOPO2:15
    
    for x,y be
    Element of FT holds ( 
    P_e (x,y)) 
    =  
    TRUE iff x 
    = y by 
    Def5;
    
    theorem :: 
    
    FINTOPO2:16
    
    for x be
    Element of FT, A be 
    Subset of FT holds x 
    in (A 
    ^s ) iff ( 
    P_A (x,A)) 
    =  
    TRUE & not (ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE ) 
    
    proof
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      
    
      
    
    A1: x 
    in (A 
    ^s ) implies ( 
    P_A (x,A)) 
    =  
    TRUE & not (ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE ) 
    
      proof
    
        assume
    
        
    
    A2: x 
    in (A 
    ^s ); 
    
        then ((
    U_FT x) 
    \  
    {x})
    misses A by 
    FIN_TOPO: 9;
    
        then
    
        
    
    A3: ((( 
    U_FT x) 
    \  
    {x})
    /\ A) 
    =  
    {} ; 
    
        
    
        
    
    A4: not (ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE ) 
    
        proof
    
          given y be
    Element of FT such that 
    
          
    
    A5: ( 
    P_1 (x,y,A)) 
    =  
    TRUE and 
    
          
    
    A6: ( 
    P_e (x,y)) 
    =  
    FALSE ; 
    
           not x
    = y by 
    A6,
    Def5;
    
          then
    
          
    
    A7: not y 
    in  
    {x} by
    TARSKI:def 1;
    
          y
    in ( 
    U_FT x) by 
    A5,
    Def1;
    
          then
    
          
    
    A8: y 
    in (( 
    U_FT x) 
    \  
    {x}) by
    A7,
    XBOOLE_0:def 5;
    
          y
    in A by 
    A5,
    Def1;
    
          hence contradiction by
    A3,
    A8,
    XBOOLE_0:def 4;
    
        end;
    
        x
    in A by 
    A2,
    FIN_TOPO: 9;
    
        hence thesis by
    A4,
    Def4;
    
      end;
    
      (
    P_A (x,A)) 
    =  
    TRUE & not (ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE ) implies x 
    in (A 
    ^s ) 
    
      proof
    
        assume that
    
        
    
    A9: ( 
    P_A (x,A)) 
    =  
    TRUE and 
    
        
    
    A10: not (ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE ); 
    
        for y be
    Element of FT holds not y 
    in ((( 
    U_FT x) 
    \  
    {x})
    /\ A) 
    
        proof
    
          let y be
    Element of FT; 
    
           not ((
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE ) by 
    A10;
    
          then not (y
    in ( 
    U_FT x) & ( not x 
    = y) & y 
    in A) by 
    Def1,
    Def5;
    
          then not (y
    in ( 
    U_FT x) & ( not y 
    in  
    {x}) & y
    in A) by 
    TARSKI:def 1;
    
          then not (y
    in (( 
    U_FT x) 
    \  
    {x}) & y
    in A) by 
    XBOOLE_0:def 5;
    
          hence thesis by
    XBOOLE_0:def 4;
    
        end;
    
        then (((
    U_FT x) 
    \  
    {x})
    /\ A) 
    =  
    {} by 
    SUBSET_1: 4;
    
        then
    
        
    
    A11: (( 
    U_FT x) 
    \  
    {x})
    misses A; 
    
        x
    in A by 
    A9,
    Def4;
    
        hence thesis by
    A11;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:17
    
    for x be
    Element of FT, A be 
    Subset of FT holds x 
    in (A 
    ^n ) iff ( 
    P_A (x,A)) 
    =  
    TRUE & ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE  
    
    proof
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      
    
      
    
    A1: x 
    in (A 
    ^n ) implies ( 
    P_A (x,A)) 
    =  
    TRUE & ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE  
    
      proof
    
        assume
    
        
    
    A2: x 
    in (A 
    ^n ); 
    
        then ((
    U_FT x) 
    \  
    {x})
    meets A by 
    FIN_TOPO: 10;
    
        then (((
    U_FT x) 
    \  
    {x})
    /\ A) 
    <>  
    {} ; 
    
        then
    
        consider y be
    Element of FT such that 
    
        
    
    A3: y 
    in ((( 
    U_FT x) 
    \  
    {x})
    /\ A) by 
    SUBSET_1: 4;
    
        
    
        
    
    A4: y 
    in (( 
    U_FT x) 
    \  
    {x}) by
    A3,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A5: y 
    in ( 
    U_FT x) by 
    XBOOLE_0:def 5;
    
         not y
    in  
    {x} by
    A4,
    XBOOLE_0:def 5;
    
        then not x
    = y by 
    TARSKI:def 1;
    
        then
    
        
    
    A6: ( 
    P_e (x,y)) 
    =  
    FALSE by 
    Def5;
    
        y
    in A by 
    A3,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A7: ( 
    P_1 (x,y,A)) 
    =  
    TRUE by 
    A5,
    Def1;
    
        x
    in A by 
    A2,
    FIN_TOPO: 10;
    
        hence thesis by
    A6,
    A7,
    Def4;
    
      end;
    
      ((
    P_A (x,A)) 
    =  
    TRUE & ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE ) implies x 
    in (A 
    ^n ) 
    
      proof
    
        assume that
    
        
    
    A8: ( 
    P_A (x,A)) 
    =  
    TRUE and 
    
        
    
    A9: ex y be 
    Element of FT st ( 
    P_1 (x,y,A)) 
    =  
    TRUE & ( 
    P_e (x,y)) 
    =  
    FALSE ; 
    
        consider y be
    Element of FT such that 
    
        
    
    A10: ( 
    P_1 (x,y,A)) 
    =  
    TRUE and 
    
        
    
    A11: ( 
    P_e (x,y)) 
    =  
    FALSE by 
    A9;
    
        x
    <> y by 
    A11,
    Def5;
    
        then
    
        
    
    A12: not y 
    in  
    {x} by
    TARSKI:def 1;
    
        y
    in ( 
    U_FT x) by 
    A10,
    Def1;
    
        then
    
        
    
    A13: y 
    in (( 
    U_FT x) 
    \  
    {x}) by
    A12,
    XBOOLE_0:def 5;
    
        y
    in A by 
    A10,
    Def1;
    
        then
    
        
    
    A14: (( 
    U_FT x) 
    \  
    {x})
    meets A by 
    A13,
    XBOOLE_0: 3;
    
        x
    in A by 
    A8,
    Def4;
    
        hence thesis by
    A14,
    FIN_TOPO: 10;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:18
    
    for x be
    Element of FT, A be 
    Subset of FT holds x 
    in (A 
    ^f ) iff ex y be 
    Element of FT st ( 
    P_A (y,A)) 
    =  
    TRUE & ( 
    P_0 (y,x)) 
    =  
    TRUE  
    
    proof
    
      let x be
    Element of FT; 
    
      let A be
    Subset of FT; 
    
      
    
      
    
    A1: (ex y be 
    Element of FT st ( 
    P_A (y,A)) 
    =  
    TRUE & ( 
    P_0 (y,x)) 
    =  
    TRUE ) implies x 
    in (A 
    ^f ) 
    
      proof
    
        assume ex y be
    Element of FT st ( 
    P_A (y,A)) 
    =  
    TRUE & ( 
    P_0 (y,x)) 
    =  
    TRUE ; 
    
        then
    
        consider y be
    Element of FT such that 
    
        
    
    A2: ( 
    P_A (y,A)) 
    =  
    TRUE & ( 
    P_0 (y,x)) 
    =  
    TRUE ; 
    
        y
    in A & x 
    in ( 
    U_FT y) by 
    A2,
    Def3,
    Def4;
    
        hence thesis;
    
      end;
    
      x
    in (A 
    ^f ) implies ex y be 
    Element of FT st ( 
    P_A (y,A)) 
    =  
    TRUE & ( 
    P_0 (y,x)) 
    =  
    TRUE  
    
      proof
    
        assume x
    in (A 
    ^f ); 
    
        then
    
        consider y be
    Element of FT such that 
    
        
    
    A3: y 
    in A & x 
    in ( 
    U_FT y) by 
    FIN_TOPO: 11;
    
        (
    P_A (y,A)) 
    =  
    TRUE & ( 
    P_0 (y,x)) 
    =  
    TRUE by 
    A3,
    Def3,
    Def4;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    begin
    
    definition
    
      struct (
    1-sorted) 
    
    
    FMT_Space_Str
    
    
    
     (# the 
    
    carrier -> 
    set,
    
the 
    
    BNbd -> 
    Function of the carrier, ( 
    bool ( 
    bool the carrier)) #) 
    
      
    attr strict
    
    strict;
    
    end
    
    registration
    
      cluster non 
    empty
    strict for 
    FMT_Space_Str;
    
      existence
    
      proof
    
        set D = the non
    empty  
    set, f = the 
    Function of D, ( 
    bool ( 
    bool D)); 
    
        take
    FMT_Space_Str (# D, f #); 
    
        thus the
    carrier of 
    FMT_Space_Str (# D, f #) is non 
    empty;
    
        thus thesis;
    
      end;
    
    end
    
    reserve T for non
    empty  
    TopStruct;
    
    reserve FMT for non
    empty  
    FMT_Space_Str;
    
    reserve x,y for
    Element of FMT; 
    
    definition
    
      let FMT;
    
      let x be
    Element of FMT; 
    
      :: 
    
    FINTOPO2:def6
    
      func
    
    U_FMT x -> 
    Subset-Family of FMT equals (the 
    BNbd of FMT 
    . x); 
    
      correctness ;
    
    end
    
    definition
    
      let T;
    
      :: 
    
    FINTOPO2:def7
    
      func
    
    NeighSp T -> non 
    empty
    strict  
    FMT_Space_Str means the 
    carrier of it 
    = the 
    carrier of T & for x be 
    Point of it holds ( 
    U_FMT x) 
    = { V where V be 
    Subset of T : V 
    in the 
    topology of T & x 
    in V }; 
    
      existence
    
      proof
    
        ex IT be non
    empty
    strict  
    FMT_Space_Str st the 
    carrier of IT 
    = the 
    carrier of T & for x be 
    Point of IT holds ( 
    U_FMT x) 
    = { V where V be 
    Subset of T : V 
    in the 
    topology of T & x 
    in V } 
    
        proof
    
          deffunc
    
    F(
    set) = { V where V be
    Subset of T : V 
    in the 
    topology of T & $1 
    in V }; 
    
          
    
          
    
    A1: for x be 
    Element of T holds 
    F(x)
    in ( 
    bool ( 
    bool the 
    carrier of T)) 
    
          proof
    
            let x be
    Element of T; 
    
            now
    
              let Y be
    object;
    
              assume Y
    in { V where V be 
    Subset of T : V 
    in the 
    topology of T & x 
    in V }; 
    
              then ex V be
    Subset of T st V 
    = Y & V 
    in the 
    topology of T & x 
    in V; 
    
              hence Y
    in ( 
    bool the 
    carrier of T); 
    
            end;
    
            then { V where V be
    Subset of T : V 
    in the 
    topology of T & x 
    in V } 
    c= ( 
    bool the 
    carrier of T); 
    
            hence thesis;
    
          end;
    
          consider f be
    Function of the 
    carrier of T, ( 
    bool ( 
    bool the 
    carrier of T)) such that 
    
          
    
    A2: for x be 
    Element of T holds (f 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 8(
    A1);
    
          reconsider IT =
    FMT_Space_Str (# the 
    carrier of T, f #) as non 
    empty
    strict  
    FMT_Space_Str;
    
          take IT;
    
          thus thesis by
    A2;
    
        end;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let it1,it2 be non
    empty
    strict  
    FMT_Space_Str such that 
    
        
    
    A3: the 
    carrier of it1 
    = the 
    carrier of T and 
    
        
    
    A4: for x be 
    Point of it1 holds ( 
    U_FMT x) 
    = { V where V be 
    Subset of T : V 
    in the 
    topology of T & x 
    in V } and 
    
        
    
    A5: the 
    carrier of it2 
    = the 
    carrier of T and 
    
        
    
    A6: for x be 
    Point of it2 holds ( 
    U_FMT x) 
    = { V where V be 
    Subset of T : V 
    in the 
    topology of T & x 
    in V }; 
    
        
    
        
    
    A7: for x be 
    Element of it2 holds (the 
    BNbd of it2 
    . x) 
    = { V where V be 
    Subset of T : V 
    in the 
    topology of T & x 
    in V } 
    
        proof
    
          let x be
    Element of it2; 
    
          (the
    BNbd of it2 
    . x) 
    = ( 
    U_FMT x); 
    
          hence thesis by
    A6;
    
        end;
    
        
    
        
    
    A8: for x be 
    Element of it1 holds (the 
    BNbd of it1 
    . x) 
    = { V where V be 
    Subset of T : V 
    in the 
    topology of T & x 
    in V } 
    
        proof
    
          let x be
    Element of it1; 
    
          (the
    BNbd of it1 
    . x) 
    = ( 
    U_FMT x); 
    
          hence thesis by
    A4;
    
        end;
    
        now
    
          let x be
    Point of it1; 
    
          
    
          thus (the
    BNbd of it1 
    . x) 
    = { V where V be 
    Subset of T : V 
    in the 
    topology of T & x 
    in V } by 
    A8
    
          .= (the
    BNbd of it2 
    . x) by 
    A3,
    A5,
    A7;
    
        end;
    
        hence thesis by
    A3,
    A5,
    FUNCT_2: 63;
    
      end;
    
    end
    
    reserve A,B,W,V for
    Subset of FMT; 
    
    definition
    
      let IT be non
    empty  
    FMT_Space_Str;
    
      :: 
    
    FINTOPO2:def8
    
      attr IT is
    
    Fo_filled means for x be 
    Element of IT holds for D be 
    Subset of IT st D 
    in ( 
    U_FMT x) holds x 
    in D; 
    
    end
    
    definition
    
      let FMT;
    
      let A;
    
      :: 
    
    FINTOPO2:def9
    
      func A
    
    ^Fodelta -> 
    Subset of FMT equals { x : for W st W 
    in ( 
    U_FMT x) holds W 
    meets A & W 
    meets (A 
    ` ) }; 
    
      coherence
    
      proof
    
        defpred
    
    P[
    Element of FMT] means for W st W 
    in ( 
    U_FMT $1) holds W 
    meets A & W 
    meets (A 
    ` ); 
    
        { x :
    P[x] } is
    Subset of FMT from 
    DOMAIN_1:sch 7;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    FINTOPO2:19
    
    
    
    
    
    Th19: x 
    in (A 
    ^Fodelta ) iff for W st W 
    in ( 
    U_FMT x) holds W 
    meets A & W 
    meets (A 
    ` ) 
    
    proof
    
      thus x
    in (A 
    ^Fodelta ) implies for W st W 
    in ( 
    U_FMT x) holds W 
    meets A & W 
    meets (A 
    ` ) 
    
      proof
    
        assume x
    in (A 
    ^Fodelta ); 
    
        then ex y st y
    = x & for W st W 
    in ( 
    U_FMT y) holds W 
    meets A & W 
    meets (A 
    ` ); 
    
        hence thesis;
    
      end;
    
      assume for W st W
    in ( 
    U_FMT x) holds W 
    meets A & W 
    meets (A 
    ` ); 
    
      hence thesis;
    
    end;
    
    definition
    
      let FMT, A;
    
      :: 
    
    FINTOPO2:def10
    
      func A
    
    ^Fob -> 
    Subset of FMT equals { x : for W st W 
    in ( 
    U_FMT x) holds W 
    meets A }; 
    
      coherence
    
      proof
    
        defpred
    
    P[
    Element of FMT] means for W st W 
    in ( 
    U_FMT $1) holds W 
    meets A; 
    
        { x :
    P[x] } is
    Subset of FMT from 
    DOMAIN_1:sch 7;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    FINTOPO2:20
    
    
    
    
    
    Th20: x 
    in (A 
    ^Fob ) iff for W st W 
    in ( 
    U_FMT x) holds W 
    meets A 
    
    proof
    
      thus x
    in (A 
    ^Fob ) implies for W st W 
    in ( 
    U_FMT x) holds W 
    meets A 
    
      proof
    
        assume x
    in (A 
    ^Fob ); 
    
        then ex y st y
    = x & for W st W 
    in ( 
    U_FMT y) holds W 
    meets A; 
    
        hence thesis;
    
      end;
    
      assume for W st W
    in ( 
    U_FMT x) holds W 
    meets A; 
    
      hence thesis;
    
    end;
    
    definition
    
      let FMT, A;
    
      :: 
    
    FINTOPO2:def11
    
      func A
    
    ^Foi -> 
    Subset of FMT equals { x : ex V st V 
    in ( 
    U_FMT x) & V 
    c= A }; 
    
      coherence
    
      proof
    
        defpred
    
    P[
    Element of FMT] means ex V st V 
    in ( 
    U_FMT $1) & V 
    c= A; 
    
        { x :
    P[x] } is
    Subset of FMT from 
    DOMAIN_1:sch 7;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    FINTOPO2:21
    
    
    
    
    
    Th21: x 
    in (A 
    ^Foi ) iff ex V st V 
    in ( 
    U_FMT x) & V 
    c= A 
    
    proof
    
      thus x
    in (A 
    ^Foi ) implies ex V st V 
    in ( 
    U_FMT x) & V 
    c= A 
    
      proof
    
        assume x
    in (A 
    ^Foi ); 
    
        then ex y st y
    = x & ex V st V 
    in ( 
    U_FMT y) & V 
    c= A; 
    
        hence thesis;
    
      end;
    
      assume ex V st V
    in ( 
    U_FMT x) & V 
    c= A; 
    
      hence thesis;
    
    end;
    
    definition
    
      let FMT, A;
    
      :: 
    
    FINTOPO2:def12
    
      func A
    
    ^Fos -> 
    Subset of FMT equals { x : x 
    in A & (ex V st V 
    in ( 
    U_FMT x) & (V 
    \  
    {x})
    misses A) }; 
    
      coherence
    
      proof
    
        defpred
    
    P[
    Element of FMT] means $1 
    in A & (ex V st V 
    in ( 
    U_FMT $1) & (V 
    \  
    {$1})
    misses A); 
    
        { x :
    P[x] } is
    Subset of FMT from 
    DOMAIN_1:sch 7;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    FINTOPO2:22
    
    
    
    
    
    Th22: x 
    in (A 
    ^Fos ) iff x 
    in A & ex V st V 
    in ( 
    U_FMT x) & (V 
    \  
    {x})
    misses A 
    
    proof
    
      thus x
    in (A 
    ^Fos ) implies x 
    in A & ex V st V 
    in ( 
    U_FMT x) & (V 
    \  
    {x})
    misses A 
    
      proof
    
        assume x
    in (A 
    ^Fos ); 
    
        then ex y st y
    = x & y 
    in A & ex V st V 
    in ( 
    U_FMT y) & (V 
    \  
    {y})
    misses A; 
    
        hence thesis;
    
      end;
    
      assume x
    in A & ex V st V 
    in ( 
    U_FMT x) & (V 
    \  
    {x})
    misses A; 
    
      hence thesis;
    
    end;
    
    definition
    
      let FMT, A;
    
      :: 
    
    FINTOPO2:def13
    
      func A
    
    ^Fon -> 
    Subset of FMT equals (A 
    \ (A 
    ^Fos )); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    FINTOPO2:23
    
    x
    in (A 
    ^Fon ) iff x 
    in A & for V st V 
    in ( 
    U_FMT x) holds (V 
    \  
    {x})
    meets A 
    
    proof
    
      thus x
    in (A 
    ^Fon ) implies x 
    in A & for V st V 
    in ( 
    U_FMT x) holds (V 
    \  
    {x})
    meets A 
    
      proof
    
        assume x
    in (A 
    ^Fon ); 
    
        then x
    in A & not x 
    in (A 
    ^Fos ) by 
    XBOOLE_0:def 5;
    
        hence thesis;
    
      end;
    
      assume that
    
      
    
    A1: x 
    in A and 
    
      
    
    A2: for V st V 
    in ( 
    U_FMT x) holds (V 
    \  
    {x})
    meets A; 
    
       not x
    in (A 
    ^Fos ) by 
    A2,
    Th22;
    
      hence thesis by
    A1,
    XBOOLE_0:def 5;
    
    end;
    
    theorem :: 
    
    FINTOPO2:24
    
    
    
    
    
    Th24: for FMT be non 
    empty  
    FMT_Space_Str, A,B be 
    Subset of FMT holds A 
    c= B implies (A 
    ^Fob ) 
    c= (B 
    ^Fob ) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      let A,B be
    Subset of FMT; 
    
      assume
    
      
    
    A1: A 
    c= B; 
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in (A 
    ^Fob ); 
    
      then
    
      reconsider y = x as
    Element of FMT; 
    
      for W be
    Subset of FMT st W 
    in ( 
    U_FMT y) holds W 
    meets B 
    
      proof
    
        let W be
    Subset of FMT; 
    
        assume W
    in ( 
    U_FMT y); 
    
        then W
    meets A by 
    A2,
    Th20;
    
        then ex z be
    object st z 
    in W & z 
    in A by 
    XBOOLE_0: 3;
    
        hence (W
    /\ B) 
    <>  
    {} by 
    A1,
    XBOOLE_0:def 4;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    FINTOPO2:25
    
    
    
    
    
    Th25: for FMT be non 
    empty  
    FMT_Space_Str, A,B be 
    Subset of FMT holds A 
    c= B implies (A 
    ^Foi ) 
    c= (B 
    ^Foi ) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      let A,B be
    Subset of FMT; 
    
      assume
    
      
    
    A1: A 
    c= B; 
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in (A 
    ^Foi ); 
    
      then
    
      reconsider y = x as
    Element of FMT; 
    
      consider V9 be
    Subset of FMT such that 
    
      
    
    A3: V9 
    in ( 
    U_FMT y) and 
    
      
    
    A4: V9 
    c= A by 
    A2,
    Th21;
    
      V9
    c= B by 
    A1,
    A4;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    FINTOPO2:26
    
    
    
    
    
    Th26: ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )) 
    c= ((A 
    \/ B) 
    ^Fob ) 
    
    proof
    
      let x be
    object;
    
      assume x
    in ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )); 
    
      then
    
      
    
    A1: x 
    in (A 
    ^Fob ) or x 
    in (B 
    ^Fob ) by 
    XBOOLE_0:def 3;
    
      (A
    ^Fob ) 
    c= ((A 
    \/ B) 
    ^Fob ) & (B 
    ^Fob ) 
    c= ((B 
    \/ A) 
    ^Fob ) by 
    Th24,
    XBOOLE_1: 7;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:27
    
    ((A
    /\ B) 
    ^Fob ) 
    c= ((A 
    ^Fob ) 
    /\ (B 
    ^Fob )) 
    
    proof
    
      let x be
    object;
    
      assume
    
      
    
    A1: x 
    in ((A 
    /\ B) 
    ^Fob ); 
    
      ((A
    /\ B) 
    ^Fob ) 
    c= (A 
    ^Fob ) & ((B 
    /\ A) 
    ^Fob ) 
    c= (B 
    ^Fob ) by 
    Th24,
    XBOOLE_1: 17;
    
      hence thesis by
    A1,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    FINTOPO2:28
    
    ((A
    ^Foi ) 
    \/ (B 
    ^Foi )) 
    c= ((A 
    \/ B) 
    ^Foi ) 
    
    proof
    
      let x be
    object;
    
      assume x
    in ((A 
    ^Foi ) 
    \/ (B 
    ^Foi )); 
    
      then
    
      
    
    A1: x 
    in (A 
    ^Foi ) or x 
    in (B 
    ^Foi ) by 
    XBOOLE_0:def 3;
    
      (A
    ^Foi ) 
    c= ((A 
    \/ B) 
    ^Foi ) & (B 
    ^Foi ) 
    c= ((B 
    \/ A) 
    ^Foi ) by 
    Th25,
    XBOOLE_1: 7;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:29
    
    
    
    
    
    Th29: ((A 
    /\ B) 
    ^Foi ) 
    c= ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) 
    
    proof
    
      let x be
    object;
    
      assume
    
      
    
    A1: x 
    in ((A 
    /\ B) 
    ^Foi ); 
    
      ((A
    /\ B) 
    ^Foi ) 
    c= (A 
    ^Foi ) & ((B 
    /\ A) 
    ^Foi ) 
    c= (B 
    ^Foi ) by 
    Th25,
    XBOOLE_1: 17;
    
      hence thesis by
    A1,
    XBOOLE_0:def 4;
    
    end;
    
    theorem :: 
    
    FINTOPO2:30
    
    for FMT be non
    empty  
    FMT_Space_Str holds (for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st ((V1 
    in ( 
    U_FMT x)) & (V2 
    in ( 
    U_FMT x))) holds ex W be 
    Subset of FMT st ((W 
    in ( 
    U_FMT x)) & (W 
    c= (V1 
    /\ V2)))) iff for A,B be 
    Subset of FMT holds ((A 
    \/ B) 
    ^Fob ) 
    = ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      
    
      
    
    A1: (for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st ((V1 
    in ( 
    U_FMT x)) & (V2 
    in ( 
    U_FMT x))) holds ex W be 
    Subset of FMT st ((W 
    in ( 
    U_FMT x)) & (W 
    c= (V1 
    /\ V2)))) implies for A,B be 
    Subset of FMT holds ((A 
    \/ B) 
    ^Fob ) 
    = ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )) 
    
      proof
    
        assume
    
        
    
    A2: for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds ex W be 
    Subset of FMT st W 
    in ( 
    U_FMT x) & W 
    c= (V1 
    /\ V2); 
    
        let A,B be
    Subset of FMT; 
    
        for x be
    Element of FMT holds x 
    in ((A 
    \/ B) 
    ^Fob ) iff x 
    in ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )) 
    
        proof
    
          let x be
    Element of FMT; 
    
          
    
          
    
    A3: x 
    in ((A 
    \/ B) 
    ^Fob ) implies x 
    in ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )) 
    
          proof
    
            assume
    
            
    
    A4: x 
    in ((A 
    \/ B) 
    ^Fob ); 
    
            
    
            
    
    A5: for W1 be 
    Subset of FMT st W1 
    in ( 
    U_FMT x) holds W1 
    meets A or W1 
    meets B 
    
            proof
    
              let W1 be
    Subset of FMT; 
    
              assume W1
    in ( 
    U_FMT x); 
    
              then W1
    meets (A 
    \/ B) by 
    A4,
    Th20;
    
              then (W1
    /\ (A 
    \/ B)) 
    <>  
    {} ; 
    
              then ((W1
    /\ A) 
    \/ (W1 
    /\ B)) 
    <>  
    {} by 
    XBOOLE_1: 23;
    
              then (W1
    /\ A) 
    <>  
    {} or (W1 
    /\ B) 
    <>  
    {} ; 
    
              hence thesis;
    
            end;
    
            for V1,V2 be
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds (V1 
    meets A or V2 
    meets B) 
    
            proof
    
              let V1,V2 be
    Subset of FMT; 
    
              assume V1
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x); 
    
              then
    
              consider W be
    Subset of FMT such that 
    
              
    
    A6: W 
    in ( 
    U_FMT x) and 
    
              
    
    A7: W 
    c= (V1 
    /\ V2) by 
    A2;
    
              (V1
    /\ V2) 
    c= V1 by 
    XBOOLE_1: 17;
    
              then W
    c= V1 by 
    A7;
    
              then
    
              
    
    A8: (W 
    /\ A) 
    c= (V1 
    /\ A) by 
    XBOOLE_1: 26;
    
              (V1
    /\ V2) 
    c= V2 by 
    XBOOLE_1: 17;
    
              then W
    c= V2 by 
    A7;
    
              then
    
              
    
    A9: (W 
    /\ B) 
    c= (V2 
    /\ B) by 
    XBOOLE_1: 26;
    
              W
    meets A or W 
    meets B by 
    A5,
    A6;
    
              then (W
    /\ A) 
    <>  
    {} or (W 
    /\ B) 
    <>  
    {} ; 
    
              then ex z1,z2 be
    Element of FMT st (z1 
    in (W 
    /\ A) or z2 
    in (W 
    /\ B)) by 
    SUBSET_1: 4;
    
              hence thesis by
    A8,
    A9;
    
            end;
    
            then (for V1 be
    Subset of FMT st V1 
    in ( 
    U_FMT x) holds V1 
    meets A) or for V2 be 
    Subset of FMT st V2 
    in ( 
    U_FMT x) holds V2 
    meets B; 
    
            then x
    in (A 
    ^Fob ) or x 
    in (B 
    ^Fob ); 
    
            hence thesis by
    XBOOLE_0:def 3;
    
          end;
    
          x
    in ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )) implies x 
    in ((A 
    \/ B) 
    ^Fob ) 
    
          proof
    
            assume
    
            
    
    A10: x 
    in ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )); 
    
            ((A
    ^Fob ) 
    \/ (B 
    ^Fob )) 
    c= ((A 
    \/ B) 
    ^Fob ) by 
    Th26;
    
            hence thesis by
    A10;
    
          end;
    
          hence thesis by
    A3;
    
        end;
    
        hence thesis by
    SUBSET_1: 3;
    
      end;
    
      (ex x be
    Element of FMT, V1,V2 be 
    Subset of FMT st (V1 
    in ( 
    U_FMT x)) & (V2 
    in ( 
    U_FMT x)) & (for W be 
    Subset of FMT st W 
    in ( 
    U_FMT x) holds ( not (W 
    c= (V1 
    /\ V2))))) implies ex A,B be 
    Subset of FMT st ((A 
    \/ B) 
    ^Fob ) 
    <> ((A 
    ^Fob ) 
    \/ (B 
    ^Fob )) 
    
      proof
    
        given x0 be
    Element of FMT, V1,V2 be 
    Subset of FMT such that 
    
        
    
    A11: V1 
    in ( 
    U_FMT x0) and 
    
        
    
    A12: V2 
    in ( 
    U_FMT x0) and 
    
        
    
    A13: for W be 
    Subset of FMT st W 
    in ( 
    U_FMT x0) holds not W 
    c= (V1 
    /\ V2); 
    
        
    
        
    
    A14: not x0 
    in ((V2 
    ` ) 
    ^Fob ) 
    
        proof
    
          
    
          
    
    A15: V2 
    misses (V2 
    ` ) by 
    XBOOLE_1: 79;
    
          assume x0
    in ((V2 
    ` ) 
    ^Fob ); 
    
          hence contradiction by
    A12,
    A15,
    Th20;
    
        end;
    
        take (V1
    ` ), (V2 
    ` ); 
    
        for W be
    Subset of FMT st W 
    in ( 
    U_FMT x0) holds W 
    meets ((V1 
    ` ) 
    \/ (V2 
    ` )) 
    
        proof
    
          let W be
    Subset of FMT; 
    
          assume W
    in ( 
    U_FMT x0); 
    
          then
    
          
    
    A16: not W 
    c= (V1 
    /\ V2) by 
    A13;
    
          (W
    /\ ((V1 
    /\ V2) 
    ` )) 
    <>  
    {}  
    
          proof
    
            assume (W
    /\ ((V1 
    /\ V2) 
    ` )) 
    =  
    {} ; 
    
            then (W
    \ (V1 
    /\ V2)) 
    =  
    {} by 
    SUBSET_1: 13;
    
            hence contradiction by
    A16,
    XBOOLE_1: 37;
    
          end;
    
          hence (W
    /\ ((V1 
    ` ) 
    \/ (V2 
    ` ))) 
    <>  
    {} by 
    XBOOLE_1: 54;
    
        end;
    
        then
    
        
    
    A17: x0 
    in (((V1 
    ` ) 
    \/ (V2 
    ` )) 
    ^Fob ); 
    
         not x0
    in ((V1 
    ` ) 
    ^Fob ) 
    
        proof
    
          
    
          
    
    A18: V1 
    misses (V1 
    ` ) by 
    XBOOLE_1: 79;
    
          assume x0
    in ((V1 
    ` ) 
    ^Fob ); 
    
          hence contradiction by
    A11,
    A18,
    Th20;
    
        end;
    
        hence thesis by
    A17,
    A14,
    XBOOLE_0:def 3;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:31
    
    for FMT be non
    empty  
    FMT_Space_Str holds (for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds ex W be 
    Subset of FMT st (W 
    in ( 
    U_FMT x) & W 
    c= (V1 
    /\ V2))) iff for A,B be 
    Subset of FMT holds ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) 
    = ((A 
    /\ B) 
    ^Foi ) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      thus (for x be
    Element of FMT, V1,V2 be 
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds ex W be 
    Subset of FMT st (W 
    in ( 
    U_FMT x) & W 
    c= (V1 
    /\ V2))) implies for A,B be 
    Subset of FMT holds ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) 
    = ((A 
    /\ B) 
    ^Foi ) 
    
      proof
    
        assume
    
        
    
    A1: for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds ex W be 
    Subset of FMT st W 
    in ( 
    U_FMT x) & W 
    c= (V1 
    /\ V2); 
    
        let A,B be
    Subset of FMT; 
    
        for x be
    Element of FMT holds x 
    in ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) iff x 
    in ((A 
    /\ B) 
    ^Foi ) 
    
        proof
    
          let x be
    Element of FMT; 
    
          
    
          
    
    A2: x 
    in ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) implies x 
    in ((A 
    /\ B) 
    ^Foi ) 
    
          proof
    
            assume
    
            
    
    A3: x 
    in ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )); 
    
            then x
    in (B 
    ^Foi ) by 
    XBOOLE_0:def 4;
    
            then
    
            
    
    A4: ex W2 be 
    Subset of FMT st W2 
    in ( 
    U_FMT x) & W2 
    c= B by 
    Th21;
    
            x
    in (A 
    ^Foi ) by 
    A3,
    XBOOLE_0:def 4;
    
            then ex W1 be
    Subset of FMT st W1 
    in ( 
    U_FMT x) & W1 
    c= A by 
    Th21;
    
            then
    
            consider W1,W2 be
    Subset of FMT such that 
    
            
    
    A5: W1 
    in ( 
    U_FMT x) & W2 
    in ( 
    U_FMT x) and 
    
            
    
    A6: W1 
    c= A and 
    
            
    
    A7: W2 
    c= B by 
    A4;
    
            consider W be
    Subset of FMT such that 
    
            
    
    A8: W 
    in ( 
    U_FMT x) and 
    
            
    
    A9: W 
    c= (W1 
    /\ W2) by 
    A1,
    A5;
    
            (W1
    /\ W2) 
    c= W2 by 
    XBOOLE_1: 17;
    
            then W
    c= W2 by 
    A9;
    
            then
    
            
    
    A10: W 
    c= B by 
    A7;
    
            (W1
    /\ W2) 
    c= W1 by 
    XBOOLE_1: 17;
    
            then W
    c= W1 by 
    A9;
    
            then W
    c= A by 
    A6;
    
            then W
    c= (A 
    /\ B) by 
    A10,
    XBOOLE_1: 19;
    
            hence thesis by
    A8;
    
          end;
    
          x
    in ((A 
    /\ B) 
    ^Foi ) implies x 
    in ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) 
    
          proof
    
            assume
    
            
    
    A11: x 
    in ((A 
    /\ B) 
    ^Foi ); 
    
            ((A
    /\ B) 
    ^Foi ) 
    c= ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) by 
    Th29;
    
            hence thesis by
    A11;
    
          end;
    
          hence thesis by
    A2;
    
        end;
    
        hence ((A
    ^Foi ) 
    /\ (B 
    ^Foi )) 
    = ((A 
    /\ B) 
    ^Foi ) by 
    SUBSET_1: 3;
    
      end;
    
      (ex x be
    Element of FMT, V1,V2 be 
    Subset of FMT st (V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x)) & (for W be 
    Subset of FMT st W 
    in ( 
    U_FMT x) holds ( not (W 
    c= (V1 
    /\ V2))))) implies ex A,B be 
    Subset of FMT st ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) 
    <> ((A 
    /\ B) 
    ^Foi ) 
    
      proof
    
        given x0 be
    Element of FMT, V1,V2 be 
    Subset of FMT such that 
    
        
    
    A12: V1 
    in ( 
    U_FMT x0) & V2 
    in ( 
    U_FMT x0) and 
    
        
    
    A13: for W be 
    Subset of FMT st W 
    in ( 
    U_FMT x0) holds not W 
    c= (V1 
    /\ V2); 
    
        take V1, V2;
    
        x0
    in (V1 
    ^Foi ) & x0 
    in (V2 
    ^Foi ) by 
    A12;
    
        then x0
    in ((V1 
    ^Foi ) 
    /\ (V2 
    ^Foi )) by 
    XBOOLE_0:def 4;
    
        hence thesis by
    A13,
    Th21;
    
      end;
    
      hence (for A,B be
    Subset of FMT holds ((A 
    ^Foi ) 
    /\ (B 
    ^Foi )) 
    = ((A 
    /\ B) 
    ^Foi )) implies for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds ex W be 
    Subset of FMT st W 
    in ( 
    U_FMT x) & W 
    c= (V1 
    /\ V2); 
    
    end;
    
    theorem :: 
    
    FINTOPO2:32
    
    for FMT be non
    empty  
    FMT_Space_Str, A,B be 
    Subset of FMT holds (for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st ((V1 
    in ( 
    U_FMT x)) & V2 
    in ( 
    U_FMT x)) holds ex W be 
    Subset of FMT st ((W 
    in ( 
    U_FMT x)) & (W 
    c= (V1 
    /\ V2)))) implies ((A 
    \/ B) 
    ^Fodelta ) 
    c= ((A 
    ^Fodelta ) 
    \/ (B 
    ^Fodelta )) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      let A,B be
    Subset of FMT; 
    
      assume
    
      
    
    A1: for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds ex W be 
    Subset of FMT st W 
    in ( 
    U_FMT x) & W 
    c= (V1 
    /\ V2); 
    
      for x be
    Element of FMT holds x 
    in ((A 
    \/ B) 
    ^Fodelta ) implies x 
    in ((A 
    ^Fodelta ) 
    \/ (B 
    ^Fodelta )) 
    
      proof
    
        let x be
    Element of FMT; 
    
        assume
    
        
    
    A2: x 
    in ((A 
    \/ B) 
    ^Fodelta ); 
    
        
    
        
    
    A3: for W1 be 
    Subset of FMT st W1 
    in ( 
    U_FMT x) holds (W1 
    meets A & W1 
    meets (A 
    ` ) or W1 
    meets B & W1 
    meets (B 
    ` )) 
    
        proof
    
          let W1 be
    Subset of FMT; 
    
          assume
    
          
    
    A4: W1 
    in ( 
    U_FMT x); 
    
          then W1
    meets ((A 
    \/ B) 
    ` ) by 
    A2,
    Th19;
    
          then (W1
    /\ ((A 
    \/ B) 
    ` )) 
    <>  
    {} ; 
    
          then
    
          
    
    A5: (W1 
    /\ ((A 
    ` ) 
    /\ (B 
    ` ))) 
    <>  
    {} by 
    XBOOLE_1: 53;
    
          then ((W1
    /\ (A 
    ` )) 
    /\ (B 
    ` )) 
    <>  
    {} by 
    XBOOLE_1: 16;
    
          then (W1
    /\ (A 
    ` )) 
    meets (B 
    ` ); 
    
          then
    
          
    
    A6: ex z1 be 
    object st z1 
    in ((W1 
    /\ (A 
    ` )) 
    /\ (B 
    ` )) by 
    XBOOLE_0: 4;
    
          ((W1
    /\ (B 
    ` )) 
    /\ (A 
    ` )) 
    <>  
    {} by 
    A5,
    XBOOLE_1: 16;
    
          then (W1
    /\ (B 
    ` )) 
    meets (A 
    ` ); 
    
          then
    
          
    
    A7: ex z2 be 
    object st z2 
    in ((W1 
    /\ (B 
    ` )) 
    /\ (A 
    ` )) by 
    XBOOLE_0: 4;
    
          W1
    meets (A 
    \/ B) by 
    A2,
    A4,
    Th19;
    
          then (W1
    /\ (A 
    \/ B)) 
    <>  
    {} ; 
    
          then ((W1
    /\ A) 
    \/ (W1 
    /\ B)) 
    <>  
    {} by 
    XBOOLE_1: 23;
    
          then (W1
    /\ A) 
    <>  
    {} & (W1 
    /\ (A 
    ` )) 
    <>  
    {} or (W1 
    /\ B) 
    <>  
    {} & (W1 
    /\ (B 
    ` )) 
    <>  
    {} by 
    A6,
    A7;
    
          hence thesis;
    
        end;
    
        for V1,V2 be
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds V1 
    meets A & V1 
    meets (A 
    ` ) or V2 
    meets B & V2 
    meets (B 
    ` ) 
    
        proof
    
          let V1,V2 be
    Subset of FMT; 
    
          assume V1
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x); 
    
          then
    
          consider W be
    Subset of FMT such that 
    
          
    
    A8: W 
    in ( 
    U_FMT x) and 
    
          
    
    A9: W 
    c= (V1 
    /\ V2) by 
    A1;
    
          (V1
    /\ V2) 
    c= V2 by 
    XBOOLE_1: 17;
    
          then W
    c= V2 by 
    A9;
    
          then
    
          
    
    A10: (W 
    /\ B) 
    c= (V2 
    /\ B) & (W 
    /\ (B 
    ` )) 
    c= (V2 
    /\ (B 
    ` )) by 
    XBOOLE_1: 26;
    
          (V1
    /\ V2) 
    c= V1 by 
    XBOOLE_1: 17;
    
          then W
    c= V1 by 
    A9;
    
          then
    
          
    
    A11: (W 
    /\ A) 
    c= (V1 
    /\ A) & (W 
    /\ (A 
    ` )) 
    c= (V1 
    /\ (A 
    ` )) by 
    XBOOLE_1: 26;
    
          V1
    meets A & V1 
    meets (A 
    ` ) or V2 
    meets B & V2 
    meets (B 
    ` ) 
    
          proof
    
            now
    
              per cases by
    A3,
    A8;
    
                case W
    meets A & W 
    meets (A 
    ` ); 
    
                then (ex z1 be
    object st z1 
    in (W 
    /\ A)) & ex z2 be 
    object st z2 
    in (W 
    /\ (A 
    ` )) by 
    XBOOLE_0: 4;
    
                hence thesis by
    A11;
    
              end;
    
                case W
    meets B & W 
    meets (B 
    ` ); 
    
                then (ex z3 be
    object st z3 
    in (W 
    /\ B)) & ex z4 be 
    object st z4 
    in (W 
    /\ (B 
    ` )) by 
    XBOOLE_0: 4;
    
                hence thesis by
    A10;
    
              end;
    
            end;
    
            hence thesis;
    
          end;
    
          hence thesis;
    
        end;
    
        then (for V1 be
    Subset of FMT st V1 
    in ( 
    U_FMT x) holds (V1 
    meets A & V1 
    meets (A 
    ` ))) or for V2 be 
    Subset of FMT st V2 
    in ( 
    U_FMT x) holds V2 
    meets B & V2 
    meets (B 
    ` ); 
    
        then x
    in (A 
    ^Fodelta ) or x 
    in (B 
    ^Fodelta ); 
    
        hence thesis by
    XBOOLE_0:def 3;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    FINTOPO2:33
    
    for FMT be non
    empty  
    FMT_Space_Str st FMT is 
    Fo_filled holds (for A,B be 
    Subset of FMT holds ((A 
    \/ B) 
    ^Fodelta ) 
    = ((A 
    ^Fodelta ) 
    \/ (B 
    ^Fodelta ))) implies for x be 
    Element of FMT, V1,V2 be 
    Subset of FMT st V1 
    in ( 
    U_FMT x) & V2 
    in ( 
    U_FMT x) holds ex W be 
    Subset of FMT st W 
    in ( 
    U_FMT x) & W 
    c= (V1 
    /\ V2) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      assume
    
      
    
    A1: FMT is 
    Fo_filled;
    
      (ex x be
    Element of FMT, V1,V2 be 
    Subset of FMT st (V1 
    in ( 
    U_FMT x)) & (V2 
    in ( 
    U_FMT x)) & (for W be 
    Subset of FMT st W 
    in ( 
    U_FMT x) holds ( not (W 
    c= (V1 
    /\ V2))))) implies ex A,B be 
    Subset of FMT st ((A 
    \/ B) 
    ^Fodelta ) 
    <> ((A 
    ^Fodelta ) 
    \/ (B 
    ^Fodelta )) 
    
      proof
    
        given x0 be
    Element of FMT, V1,V2 be 
    Subset of FMT such that 
    
        
    
    A2: V1 
    in ( 
    U_FMT x0) and 
    
        
    
    A3: V2 
    in ( 
    U_FMT x0) and 
    
        
    
    A4: for W be 
    Subset of FMT st W 
    in ( 
    U_FMT x0) holds not W 
    c= (V1 
    /\ V2); 
    
        take (V1
    ` ), (V2 
    ` ); 
    
        
    
        
    
    A5: not x0 
    in ((V2 
    ` ) 
    ^Fodelta ) 
    
        proof
    
          assume x0
    in ((V2 
    ` ) 
    ^Fodelta ); 
    
          then V2
    meets (V2 
    ` ) by 
    A3,
    Th19;
    
          hence contradiction by
    XBOOLE_1: 79;
    
        end;
    
        for W be
    Subset of FMT st W 
    in ( 
    U_FMT x0) holds W 
    meets ((V1 
    ` ) 
    \/ (V2 
    ` )) & W 
    meets (((V1 
    ` ) 
    \/ (V2 
    ` )) 
    ` ) 
    
        proof
    
          let W be
    Subset of FMT; 
    
          assume
    
          
    
    A6: W 
    in ( 
    U_FMT x0); 
    
          then
    
          
    
    A7: not W 
    c= (V1 
    /\ V2) by 
    A4;
    
          
    
          
    
    A8: W 
    meets ((V1 
    /\ V2) 
    ` ) 
    
          proof
    
            assume (W
    /\ ((V1 
    /\ V2) 
    ` )) 
    =  
    {} ; 
    
            then (W
    \ (V1 
    /\ V2)) 
    =  
    {} by 
    SUBSET_1: 13;
    
            hence contradiction by
    A7,
    XBOOLE_1: 37;
    
          end;
    
          x0
    in V1 & x0 
    in V2 by 
    A1,
    A2,
    A3;
    
          then
    
          
    
    A9: x0 
    in (V1 
    /\ V2) by 
    XBOOLE_0:def 4;
    
          x0
    in W by 
    A1,
    A6;
    
          then (W
    /\ (((V1 
    /\ V2) 
    ` ) 
    ` )) 
    <>  
    {} by 
    A9,
    XBOOLE_0:def 4;
    
          then W
    meets (((V1 
    /\ V2) 
    ` ) 
    ` ); 
    
          hence thesis by
    A8,
    XBOOLE_1: 54;
    
        end;
    
        then
    
        
    
    A10: x0 
    in (((V1 
    ` ) 
    \/ (V2 
    ` )) 
    ^Fodelta ); 
    
         not x0
    in ((V1 
    ` ) 
    ^Fodelta ) 
    
        proof
    
          assume x0
    in ((V1 
    ` ) 
    ^Fodelta ); 
    
          then V1
    meets (V1 
    ` ) by 
    A2,
    Th19;
    
          hence contradiction by
    XBOOLE_1: 79;
    
        end;
    
        hence thesis by
    A10,
    A5,
    XBOOLE_0:def 3;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    FINTOPO2:34
    
    for x be
    Element of FMT, A be 
    Subset of FMT holds x 
    in (A 
    ^Fos ) iff x 
    in A & not x 
    in ((A 
    \  
    {x})
    ^Fob ) 
    
    proof
    
      let x be
    Element of FMT; 
    
      let A be
    Subset of FMT; 
    
      
    
      
    
    A1: x 
    in A & not x 
    in ((A 
    \  
    {x})
    ^Fob ) implies x 
    in (A 
    ^Fos ) 
    
      proof
    
        assume that
    
        
    
    A2: x 
    in A and 
    
        
    
    A3: not x 
    in ((A 
    \  
    {x})
    ^Fob ); 
    
        consider V9 be
    Subset of FMT such that 
    
        
    
    A4: V9 
    in ( 
    U_FMT x) and 
    
        
    
    A5: V9 
    misses (A 
    \  
    {x}) by
    A3;
    
        V9
    misses (A 
    /\ ( 
    {x}
    ` )) by 
    A5,
    SUBSET_1: 13;
    
        then (V9
    /\ (A 
    /\ ( 
    {x}
    ` ))) 
    =  
    {} ; 
    
        then ((V9
    /\ ( 
    {x}
    ` )) 
    /\ A) 
    =  
    {} by 
    XBOOLE_1: 16;
    
        then ((V9
    \  
    {x})
    /\ A) 
    =  
    {} by 
    SUBSET_1: 13;
    
        then (V9
    \  
    {x})
    misses A; 
    
        hence thesis by
    A2,
    A4;
    
      end;
    
      x
    in (A 
    ^Fos ) implies x 
    in A & not x 
    in ((A 
    \  
    {x})
    ^Fob ) 
    
      proof
    
        assume
    
        
    
    A6: x 
    in (A 
    ^Fos ); 
    
        then
    
        consider V9 be
    Subset of FMT such that 
    
        
    
    A7: V9 
    in ( 
    U_FMT x) and 
    
        
    
    A8: (V9 
    \  
    {x})
    misses A by 
    Th22;
    
        (V9
    /\ ( 
    {x}
    ` )) 
    misses A by 
    A8,
    SUBSET_1: 13;
    
        then ((V9
    /\ ( 
    {x}
    ` )) 
    /\ A) 
    =  
    {} ; 
    
        then (V9
    /\ (( 
    {x}
    ` ) 
    /\ A)) 
    =  
    {} by 
    XBOOLE_1: 16;
    
        then V9
    misses (( 
    {x}
    ` ) 
    /\ A); 
    
        then V9
    misses (A 
    \  
    {x}) by
    SUBSET_1: 13;
    
        hence thesis by
    A6,
    A7,
    Th20,
    Th22;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:35
    
    
    
    
    
    Th35: for FMT be non 
    empty  
    FMT_Space_Str holds FMT is 
    Fo_filled iff for A be 
    Subset of FMT holds A 
    c= (A 
    ^Fob ) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      
    
      
    
    A1: (for A be 
    Subset of FMT holds A 
    c= (A 
    ^Fob )) implies FMT is 
    Fo_filled
    
      proof
    
        assume
    
        
    
    A2: for A be 
    Subset of FMT holds A 
    c= (A 
    ^Fob ); 
    
        assume not FMT is
    Fo_filled;
    
        then
    
        consider y be
    Element of FMT, V be 
    Subset of FMT such that 
    
        
    
    A3: V 
    in ( 
    U_FMT y) and 
    
        
    
    A4: not y 
    in V; 
    
        
    
        
    
    A5: V 
    misses  
    {y}
    
        proof
    
          assume V
    meets  
    {y};
    
          then ex z be
    object st z 
    in V & z 
    in  
    {y} by
    XBOOLE_0: 3;
    
          hence contradiction by
    A4,
    TARSKI:def 1;
    
        end;
    
         not
    {y}
    c= ( 
    {y}
    ^Fob ) 
    
        proof
    
          
    
          
    
    A6: y 
    in  
    {y} by
    TARSKI:def 1;
    
          assume
    {y}
    c= ( 
    {y}
    ^Fob ); 
    
          hence contradiction by
    A3,
    A5,
    A6,
    Th20;
    
        end;
    
        hence contradiction by
    A2;
    
      end;
    
      FMT is
    Fo_filled implies for A be 
    Subset of FMT holds A 
    c= (A 
    ^Fob ) 
    
      proof
    
        assume
    
        
    
    A7: FMT is 
    Fo_filled;
    
        let A be
    Subset of FMT; 
    
        let x be
    object;
    
        assume
    
        
    
    A8: x 
    in A; 
    
        then
    
        reconsider y = x as
    Element of FMT; 
    
        for W be
    Subset of FMT st W 
    in ( 
    U_FMT y) holds W 
    meets A 
    
        proof
    
          let W be
    Subset of FMT; 
    
          assume W
    in ( 
    U_FMT y); 
    
          then y
    in W by 
    A7;
    
          hence thesis by
    A8,
    XBOOLE_0: 3;
    
        end;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:36
    
    
    
    
    
    Th36: for FMT be non 
    empty  
    FMT_Space_Str holds FMT is 
    Fo_filled iff for A be 
    Subset of FMT holds (A 
    ^Foi ) 
    c= A 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      
    
      
    
    A1: FMT is 
    Fo_filled implies for A be 
    Subset of FMT holds (A 
    ^Foi ) 
    c= A 
    
      proof
    
        assume
    
        
    
    A2: FMT is 
    Fo_filled;
    
        let A be
    Subset of FMT; 
    
        let x be
    object;
    
        assume
    
        
    
    A3: x 
    in (A 
    ^Foi ); 
    
        then
    
        reconsider y = x as
    Element of FMT; 
    
        consider V be
    Subset of FMT such that 
    
        
    
    A4: V 
    in ( 
    U_FMT y) and 
    
        
    
    A5: V 
    c= A by 
    A3,
    Th21;
    
        y
    in V by 
    A2,
    A4;
    
        hence thesis by
    A5;
    
      end;
    
      (for A be
    Subset of FMT holds (A 
    ^Foi ) 
    c= A) implies FMT is 
    Fo_filled
    
      proof
    
        assume
    
        
    
    A6: for A be 
    Subset of FMT holds (A 
    ^Foi ) 
    c= A; 
    
        assume not FMT is
    Fo_filled;
    
        then
    
        consider y be
    Element of FMT, V be 
    Subset of FMT such that 
    
        
    
    A7: V 
    in ( 
    U_FMT y) and 
    
        
    
    A8: not y 
    in V; 
    
        y
    in (V 
    ^Foi ) by 
    A7;
    
        then not (V
    ^Foi ) 
    c= V by 
    A8;
    
        hence contradiction by
    A6;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:37
    
    
    
    
    
    Th37: (((A 
    ` ) 
    ^Fob ) 
    ` ) 
    = (A 
    ^Foi ) 
    
    proof
    
      for x be
    object holds x 
    in (((A 
    ` ) 
    ^Fob ) 
    ` ) iff x 
    in (A 
    ^Foi ) 
    
      proof
    
        let x be
    object;
    
        thus x
    in (((A 
    ` ) 
    ^Fob ) 
    ` ) implies x 
    in (A 
    ^Foi ) 
    
        proof
    
          assume
    
          
    
    A1: x 
    in (((A 
    ` ) 
    ^Fob ) 
    ` ); 
    
          then
    
          reconsider y = x as
    Element of FMT; 
    
           not y
    in ((A 
    ` ) 
    ^Fob ) by 
    A1,
    XBOOLE_0:def 5;
    
          then
    
          consider V be
    Subset of FMT such that 
    
          
    
    A2: V 
    in ( 
    U_FMT y) and 
    
          
    
    A3: V 
    misses (A 
    ` ); 
    
          (V
    /\ (A 
    ` )) 
    =  
    {} by 
    A3;
    
          then (V
    \ A) 
    =  
    {} by 
    SUBSET_1: 13;
    
          then V
    c= A by 
    XBOOLE_1: 37;
    
          hence thesis by
    A2;
    
        end;
    
        assume
    
        
    
    A4: x 
    in (A 
    ^Foi ); 
    
        then
    
        reconsider y = x as
    Element of FMT; 
    
        consider V be
    Subset of FMT such that 
    
        
    
    A5: V 
    in ( 
    U_FMT y) and 
    
        
    
    A6: V 
    c= A by 
    A4,
    Th21;
    
        (V
    \ A) 
    =  
    {} by 
    A6,
    XBOOLE_1: 37;
    
        then (V
    /\ (A 
    ` )) 
    =  
    {} by 
    SUBSET_1: 13;
    
        then V
    misses (A 
    ` ); 
    
        then not y
    in ((A 
    ` ) 
    ^Fob ) by 
    A5,
    Th20;
    
        hence thesis by
    XBOOLE_0:def 5;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    theorem :: 
    
    FINTOPO2:38
    
    
    
    
    
    Th38: (((A 
    ` ) 
    ^Foi ) 
    ` ) 
    = (A 
    ^Fob ) 
    
    proof
    
      for x be
    object holds x 
    in (((A 
    ` ) 
    ^Foi ) 
    ` ) iff x 
    in (A 
    ^Fob ) 
    
      proof
    
        let x be
    object;
    
        thus x
    in (((A 
    ` ) 
    ^Foi ) 
    ` ) implies x 
    in (A 
    ^Fob ) 
    
        proof
    
          assume
    
          
    
    A1: x 
    in (((A 
    ` ) 
    ^Foi ) 
    ` ); 
    
          then
    
          reconsider y = x as
    Element of FMT; 
    
          
    
          
    
    A2: not y 
    in ((A 
    ` ) 
    ^Foi ) by 
    A1,
    XBOOLE_0:def 5;
    
          for W be
    Subset of FMT st W 
    in ( 
    U_FMT y) holds W 
    meets A 
    
          proof
    
            let W be
    Subset of FMT; 
    
            assume W
    in ( 
    U_FMT y); 
    
            then not W
    c= (A 
    ` ) by 
    A2;
    
            then
    
            consider z be
    object such that 
    
            
    
    A3: z 
    in W and 
    
            
    
    A4: not z 
    in (A 
    ` ); 
    
            z
    in A by 
    A3,
    A4,
    XBOOLE_0:def 5;
    
            hence thesis by
    A3,
    XBOOLE_0: 3;
    
          end;
    
          hence thesis;
    
        end;
    
        assume
    
        
    
    A5: x 
    in (A 
    ^Fob ); 
    
        then
    
        reconsider y = x as
    Element of FMT; 
    
        for W be
    Subset of FMT st W 
    in ( 
    U_FMT y) holds not W 
    c= (A 
    ` ) 
    
        proof
    
          let W be
    Subset of FMT; 
    
          assume W
    in ( 
    U_FMT y); 
    
          then W
    meets A by 
    A5,
    Th20;
    
          then ex z be
    object st z 
    in W & z 
    in A by 
    XBOOLE_0: 3;
    
          hence thesis by
    XBOOLE_0:def 5;
    
        end;
    
        then not y
    in ((A 
    ` ) 
    ^Foi ) by 
    Th21;
    
        hence thesis by
    XBOOLE_0:def 5;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    theorem :: 
    
    FINTOPO2:39
    
    
    
    
    
    Th39: (A 
    ^Fodelta ) 
    = ((A 
    ^Fob ) 
    /\ ((A 
    ` ) 
    ^Fob )) 
    
    proof
    
      for x be
    Element of FMT holds x 
    in (A 
    ^Fodelta ) iff x 
    in ((A 
    ^Fob ) 
    /\ ((A 
    ` ) 
    ^Fob )) 
    
      proof
    
        let x be
    Element of FMT; 
    
        thus x
    in (A 
    ^Fodelta ) implies x 
    in ((A 
    ^Fob ) 
    /\ ((A 
    ` ) 
    ^Fob )) 
    
        proof
    
          assume
    
          
    
    A1: x 
    in (A 
    ^Fodelta ); 
    
          then for W be
    Subset of FMT st W 
    in ( 
    U_FMT x) holds W 
    meets (A 
    ` ) by 
    Th19;
    
          then
    
          
    
    A2: x 
    in ((A 
    ` ) 
    ^Fob ); 
    
          for W be
    Subset of FMT st W 
    in ( 
    U_FMT x) holds W 
    meets A by 
    A1,
    Th19;
    
          then x
    in (A 
    ^Fob ); 
    
          hence thesis by
    A2,
    XBOOLE_0:def 4;
    
        end;
    
        assume x
    in ((A 
    ^Fob ) 
    /\ ((A 
    ` ) 
    ^Fob )); 
    
        then x
    in (A 
    ^Fob ) & x 
    in ((A 
    ` ) 
    ^Fob ) by 
    XBOOLE_0:def 4;
    
        then for W be
    Subset of FMT st W 
    in ( 
    U_FMT x) holds W 
    meets A & W 
    meets (A 
    ` ) by 
    Th20;
    
        hence thesis;
    
      end;
    
      hence thesis by
    SUBSET_1: 3;
    
    end;
    
    theorem :: 
    
    FINTOPO2:40
    
    (A
    ^Fodelta ) 
    = ((A 
    ^Fob ) 
    /\ ((A 
    ^Foi ) 
    ` )) 
    
    proof
    
      (((A
    ` ) 
    ^Fob ) 
    ` ) 
    = (A 
    ^Foi ) by 
    Th37;
    
      hence thesis by
    Th39;
    
    end;
    
    theorem :: 
    
    FINTOPO2:41
    
    (A
    ^Fodelta ) 
    = ((A 
    ` ) 
    ^Fodelta ) 
    
    proof
    
      (A
    ^Fodelta ) 
    = ((((A 
    ` ) 
    ` ) 
    ^Fob ) 
    /\ ((A 
    ` ) 
    ^Fob )) by 
    Th39;
    
      hence thesis by
    Th39;
    
    end;
    
    theorem :: 
    
    FINTOPO2:42
    
    (A
    ^Fodelta ) 
    = ((A 
    ^Fob ) 
    \ (A 
    ^Foi )) 
    
    proof
    
      for x be
    object holds x 
    in (A 
    ^Fodelta ) iff x 
    in ((A 
    ^Fob ) 
    \ (A 
    ^Foi )) 
    
      proof
    
        let x be
    object;
    
        thus x
    in (A 
    ^Fodelta ) implies x 
    in ((A 
    ^Fob ) 
    \ (A 
    ^Foi )) 
    
        proof
    
          assume x
    in (A 
    ^Fodelta ); 
    
          then x
    in ((A 
    ^Fob ) 
    /\ ((((A 
    ` ) 
    ^Fob ) 
    ` ) 
    ` )) by 
    Th39;
    
          then x
    in ((A 
    ^Fob ) 
    /\ ((A 
    ^Foi ) 
    ` )) by 
    Th37;
    
          hence thesis by
    SUBSET_1: 13;
    
        end;
    
        assume x
    in ((A 
    ^Fob ) 
    \ (A 
    ^Foi )); 
    
        then x
    in ((A 
    ^Fob ) 
    /\ ((A 
    ^Foi ) 
    ` )) by 
    SUBSET_1: 13;
    
        then x
    in ((A 
    ^Fob ) 
    /\ ((((A 
    ` ) 
    ^Fob ) 
    ` ) 
    ` )) by 
    Th37;
    
        hence thesis by
    Th39;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    definition
    
      let FMT;
    
      let A;
    
      :: 
    
    FINTOPO2:def14
    
      func A
    
    ^Fodel_i -> 
    Subset of FMT equals (A 
    /\ (A 
    ^Fodelta )); 
    
      coherence ;
    
      :: 
    
    FINTOPO2:def15
    
      func A
    
    ^Fodel_o -> 
    Subset of FMT equals ((A 
    ` ) 
    /\ (A 
    ^Fodelta )); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    FINTOPO2:43
    
    (A
    ^Fodelta ) 
    = ((A 
    ^Fodel_i ) 
    \/ (A 
    ^Fodel_o )) 
    
    proof
    
      for x be
    object holds x 
    in (A 
    ^Fodelta ) iff x 
    in ((A 
    ^Fodel_i ) 
    \/ (A 
    ^Fodel_o )) 
    
      proof
    
        let x be
    object;
    
        thus x
    in (A 
    ^Fodelta ) implies x 
    in ((A 
    ^Fodel_i ) 
    \/ (A 
    ^Fodel_o )) 
    
        proof
    
          assume x
    in (A 
    ^Fodelta ); 
    
          then x
    in (( 
    [#] the 
    carrier of FMT) 
    /\ (A 
    ^Fodelta )) by 
    XBOOLE_1: 28;
    
          then x
    in ((A 
    \/ (A 
    ` )) 
    /\ (A 
    ^Fodelta )) by 
    SUBSET_1: 10;
    
          hence thesis by
    XBOOLE_1: 23;
    
        end;
    
        assume x
    in ((A 
    ^Fodel_i ) 
    \/ (A 
    ^Fodel_o )); 
    
        then x
    in ((A 
    \/ (A 
    ` )) 
    /\ (A 
    ^Fodelta )) by 
    XBOOLE_1: 23;
    
        then x
    in (( 
    [#] the 
    carrier of FMT) 
    /\ (A 
    ^Fodelta )) by 
    SUBSET_1: 10;
    
        hence thesis by
    XBOOLE_1: 28;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    definition
    
      let FMT;
    
      let G be
    Subset of FMT; 
    
      :: 
    
    FINTOPO2:def16
    
      attr G is
    
    Fo_open means G 
    = (G 
    ^Foi ); 
    
      :: 
    
    FINTOPO2:def17
    
      attr G is
    
    Fo_closed means G 
    = (G 
    ^Fob ); 
    
    end
    
    theorem :: 
    
    FINTOPO2:44
    
    (A
    ` ) is 
    Fo_open implies A is 
    Fo_closed
    
    proof
    
      assume (A
    ` ) is 
    Fo_open;
    
      then
    
      
    
    A1: (A 
    ` ) 
    = ((A 
    ` ) 
    ^Foi ); 
    
      ((((A
    ` ) 
    ^Foi ) 
    ` ) 
    ` ) 
    = ((A 
    ^Fob ) 
    ` ) by 
    Th38;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    FINTOPO2:45
    
    (A
    ` ) is 
    Fo_closed implies A is 
    Fo_open
    
    proof
    
      assume (A
    ` ) is 
    Fo_closed;
    
      then
    
      
    
    A1: (A 
    ` ) 
    = ((A 
    ` ) 
    ^Fob ); 
    
      ((A
    ` ) 
    ^Fob ) 
    = ((((A 
    ` ) 
    ` ) 
    ^Foi ) 
    ` ) by 
    Th38
    
      .= ((A
    ^Foi ) 
    ` ); 
    
      
    
      then A
    = (((A 
    ^Foi ) 
    ` ) 
    ` ) by 
    A1
    
      .= (A
    ^Foi ); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    FINTOPO2:46
    
    for FMT be non
    empty  
    FMT_Space_Str, A,B be 
    Subset of FMT st FMT is 
    Fo_filled holds (for x be 
    Element of FMT holds 
    {x}
    in ( 
    U_FMT x)) implies ((A 
    /\ B) 
    ^Fob ) 
    = ((A 
    ^Fob ) 
    /\ (B 
    ^Fob )) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      let A,B be
    Subset of FMT; 
    
      assume
    
      
    
    A1: FMT is 
    Fo_filled;
    
      assume
    
      
    
    A2: for x be 
    Element of FMT holds 
    {x}
    in ( 
    U_FMT x); 
    
      
    
      
    
    A3: for C be 
    Subset of FMT holds (C 
    ^Fob ) 
    c= C 
    
      proof
    
        let C be
    Subset of FMT; 
    
        for y be
    Element of FMT holds y 
    in (C 
    ^Fob ) implies y 
    in C 
    
        proof
    
          let y be
    Element of FMT; 
    
          assume
    
          
    
    A4: y 
    in (C 
    ^Fob ); 
    
          
    {y}
    in ( 
    U_FMT y) by 
    A2;
    
          then
    {y}
    meets C by 
    A4,
    Th20;
    
          then ex z be
    object st z 
    in  
    {y} & z
    in C by 
    XBOOLE_0: 3;
    
          hence thesis by
    TARSKI:def 1;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A5: for C be 
    Subset of FMT holds (C 
    ^Fob ) 
    = C by 
    A1,
    A3,
    Th35;
    
      then ((A
    /\ B) 
    ^Fob ) 
    = (A 
    /\ B) & (A 
    ^Fob ) 
    = A; 
    
      hence thesis by
    A5;
    
    end;
    
    theorem :: 
    
    FINTOPO2:47
    
    for FMT be non
    empty  
    FMT_Space_Str, A,B be 
    Subset of FMT st FMT is 
    Fo_filled holds (for x be 
    Element of FMT holds 
    {x}
    in ( 
    U_FMT x)) implies ((A 
    ^Foi ) 
    \/ (B 
    ^Foi )) 
    = ((A 
    \/ B) 
    ^Foi ) 
    
    proof
    
      let FMT be non
    empty  
    FMT_Space_Str;
    
      let A,B be
    Subset of FMT; 
    
      assume
    
      
    
    A1: FMT is 
    Fo_filled;
    
      assume
    
      
    
    A2: for x be 
    Element of FMT holds 
    {x}
    in ( 
    U_FMT x); 
    
      
    
      
    
    A3: for C be 
    Subset of FMT holds C 
    c= (C 
    ^Foi ) 
    
      proof
    
        let C be
    Subset of FMT; 
    
        for y be
    Element of FMT holds y 
    in C implies y 
    in (C 
    ^Foi ) 
    
        proof
    
          let y be
    Element of FMT; 
    
          assume y
    in C; 
    
          then
    
          
    
    A4: 
    {y} is
    Subset of C by 
    SUBSET_1: 41;
    
          
    {y}
    in ( 
    U_FMT y) by 
    A2;
    
          hence thesis by
    A4;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A5: for C be 
    Subset of FMT holds C 
    = (C 
    ^Foi ) by 
    A1,
    A3,
    Th36;
    
      then ((A
    \/ B) 
    ^Foi ) 
    = (A 
    \/ B) & (A 
    ^Foi ) 
    = A; 
    
      hence thesis by
    A5;
    
    end;