hessenbe.miz
begin
reserve PCPP for
CollProjectiveSpace,
a,a9,a1,a2,a3,b,b9,b1,b2,c,c1,c3,d,d9,e,o,p,p1,p2,p3,r,q,q1,q2,q3,x,y for
Element of PCPP;
theorem ::
HESSENBE:1
Th1: (a,b,c)
are_collinear implies (b,c,a)
are_collinear & (c,a,b)
are_collinear & (b,a,c)
are_collinear & (a,c,b)
are_collinear & (c,b,a)
are_collinear
proof
assume
A1: (a,b,c)
are_collinear ;
then (b,a,c)
are_collinear by
COLLSP: 4;
then
A2: (b,c,a)
are_collinear by
COLLSP: 4;
(a,c,b)
are_collinear by
A1,
COLLSP: 4;
hence thesis by
A2,
COLLSP: 4;
end;
theorem ::
HESSENBE:2
Th2: a
<> b & (a,b,c)
are_collinear & (a,b,d)
are_collinear implies (a,c,d)
are_collinear
proof
A1: (a,b,a)
are_collinear by
ANPROJ_2:def 7;
assume a
<> b & (a,b,c)
are_collinear & (a,b,d)
are_collinear ;
hence thesis by
A1,
ANPROJ_2:def 8;
end;
theorem ::
HESSENBE:3
p
<> q & (a,b,p)
are_collinear & (a,b,q)
are_collinear & (p,q,r)
are_collinear implies (a,b,r)
are_collinear
proof
assume that
A1: p
<> q and
A2: (a,b,p)
are_collinear & (a,b,q)
are_collinear and
A3: (p,q,r)
are_collinear ;
now
assume
A4: a
<> b;
(b,a,p)
are_collinear & (b,a,q)
are_collinear by
A2,
Th1;
then (b,p,q)
are_collinear by
A4,
Th2;
then
A5: (p,q,b)
are_collinear by
Th1;
(a,p,q)
are_collinear by
A2,
A4,
Th2;
then (p,q,a)
are_collinear by
Th1;
hence thesis by
A1,
A3,
A5,
ANPROJ_2:def 8;
end;
hence thesis by
ANPROJ_2:def 7;
end;
theorem ::
HESSENBE:4
Th4: p
<> q implies ex r st not (p,q,r)
are_collinear
proof
consider a, b, c such that
A1: not (a,b,c)
are_collinear by
COLLSP:def 6;
assume p
<> q;
then (p,q,a)
are_collinear & (p,q,b)
are_collinear & (p,q,c)
are_collinear implies contradiction by
A1,
ANPROJ_2:def 8;
hence thesis;
end;
theorem ::
HESSENBE:5
ex q, r st not (p,q,r)
are_collinear
proof
consider q such that
A1: p
<> q and p
<> q and (p,p,q)
are_collinear by
ANPROJ_2:def 10;
ex r st not (p,q,r)
are_collinear by
A1,
Th4;
hence thesis;
end;
theorem ::
HESSENBE:6
Th6: not (a,b,c)
are_collinear & (a,b,b9)
are_collinear & a
<> b9 implies not (a,b9,c)
are_collinear
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,b9)
are_collinear and
A3: a
<> b9;
assume
A4: not thesis;
(a,b9,b)
are_collinear by
A2,
Th1;
hence contradiction by
A1,
A3,
A4,
Th2;
end;
theorem ::
HESSENBE:7
Th7: not (a,b,c)
are_collinear & (a,b,d)
are_collinear & (a,c,d)
are_collinear implies a
= d
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,d)
are_collinear & (a,c,d)
are_collinear ;
assume
A3: not thesis;
A4: (a,d,a)
are_collinear by
ANPROJ_2:def 7;
(a,d,b)
are_collinear & (a,d,c)
are_collinear by
A2,
Th1;
hence contradiction by
A1,
A3,
A4,
ANPROJ_2:def 8;
end;
theorem ::
HESSENBE:8
Th8: not (o,a,d)
are_collinear & (o,d,d9)
are_collinear & d
<> d9 & (a9,d9,x)
are_collinear & (o,a,a9)
are_collinear & o
<> a9 implies x
<> d
proof
assume that
A1: not (o,a,d)
are_collinear and
A2: (o,d,d9)
are_collinear and
A3: d
<> d9 and
A4: (a9,d9,x)
are_collinear and
A5: (o,a,a9)
are_collinear and
A6: o
<> a9;
assume not thesis;
then
A7: (d,d9,a9)
are_collinear by
A4,
Th1;
(d,d9,o)
are_collinear by
A2,
Th1;
then (d,o,a9)
are_collinear by
A3,
A7,
Th2;
then
A8: (o,a9,d)
are_collinear by
Th1;
(o,a9,a)
are_collinear by
A5,
Th1;
hence contradiction by
A1,
A6,
A8,
Th2;
end;
theorem ::
HESSENBE:9
Th9: not (a1,a2,a3)
are_collinear & (a1,a2,c3)
are_collinear & (a2,a3,c1)
are_collinear & (c1,c3,x)
are_collinear & c3
<> a1 & c3
<> a2 & c1
<> a2 & c1
<> a3 implies a1
<> x & a3
<> x
proof
assume that
A1: not (a1,a2,a3)
are_collinear and
A2: (a1,a2,c3)
are_collinear and
A3: (a2,a3,c1)
are_collinear and
A4: (c1,c3,x)
are_collinear and
A5: c3
<> a1 and
A6: c3
<> a2 and
A7: c1
<> a2 and
A8: c1
<> a3;
A9: a3
<> x
proof
assume not thesis;
then
A10: (a3,c1,c3)
are_collinear by
A4,
Th1;
(a3,c1,a2)
are_collinear by
A3,
Th1;
then (a3,a2,c3)
are_collinear by
A8,
A10,
Th2;
then
A11: (a2,c3,a3)
are_collinear by
Th1;
(a2,c3,a1)
are_collinear by
A2,
Th1;
then (a2,a1,a3)
are_collinear by
A6,
A11,
Th2;
hence contradiction by
A1,
Th1;
end;
a1
<> x
proof
assume not thesis;
then
A12: (a1,c3,c1)
are_collinear by
A4,
Th1;
(a1,c3,a2)
are_collinear by
A2,
Th1;
then (a1,c1,a2)
are_collinear by
A5,
A12,
Th2;
then
A13: (a2,c1,a1)
are_collinear by
Th1;
(a2,c1,a3)
are_collinear by
A3,
Th1;
then (a2,a1,a3)
are_collinear by
A7,
A13,
Th2;
hence contradiction by
A1,
Th1;
end;
hence thesis by
A9;
end;
theorem ::
HESSENBE:10
Th10: not (a,b,c)
are_collinear & (a,b,d)
are_collinear & (c,e,d)
are_collinear & e
<> c & d
<> a implies not (e,a,c)
are_collinear
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,d)
are_collinear and
A3: (c,e,d)
are_collinear & e
<> c and
A4: d
<> a;
assume not thesis;
then (c,e,a)
are_collinear by
Th1;
then (c,a,d)
are_collinear by
A3,
Th2;
then
A5: (a,d,c)
are_collinear by
Th1;
(a,d,b)
are_collinear by
A2,
Th1;
hence contradiction by
A1,
A4,
A5,
Th2;
end;
theorem ::
HESSENBE:11
Th11: not (p1,p2,q1)
are_collinear & (p1,p2,q2)
are_collinear & (q1,q2,q3)
are_collinear & q2
<> q3 implies not (p2,p1,q3)
are_collinear
proof
assume that
A1: not (p1,p2,q1)
are_collinear and
A2: (p1,p2,q2)
are_collinear and
A3: (q1,q2,q3)
are_collinear and
A4: q2
<> q3;
A5: p1
<> p2 by
A1,
ANPROJ_2:def 7;
assume
A6: not thesis;
then (p1,p2,q3)
are_collinear by
Th1;
then (p1,q2,q3)
are_collinear by
A2,
A5,
Th2;
then
A7: (q2,q3,p1)
are_collinear by
Th1;
(p2,p1,q2)
are_collinear by
A2,
Th1;
then (p2,q2,q3)
are_collinear by
A6,
A5,
Th2;
then
A8: (q2,q3,p2)
are_collinear by
Th1;
(q2,q3,q1)
are_collinear by
A3,
Th1;
hence contradiction by
A1,
A4,
A7,
A8,
ANPROJ_2:def 8;
end;
theorem ::
HESSENBE:12
not (p1,p2,q1)
are_collinear & (p1,p2,p3)
are_collinear & (q1,q2,p3)
are_collinear & p3
<> q2 & p2
<> p3 implies not (p3,p2,q2)
are_collinear
proof
assume that
A1: not (p1,p2,q1)
are_collinear and
A2: (p1,p2,p3)
are_collinear and
A3: (q1,q2,p3)
are_collinear and
A4: p3
<> q2 and
A5: p2
<> p3;
assume
A6: not thesis;
(p3,p2,p1)
are_collinear by
A2,
Th1;
then
A7: (p3,q2,p1)
are_collinear by
A5,
A6,
Th2;
A8: (p3,q2,q1)
are_collinear by
A3,
Th1;
(p3,q2,p2)
are_collinear by
A6,
Th1;
hence contradiction by
A1,
A4,
A7,
A8,
ANPROJ_2:def 8;
end;
theorem ::
HESSENBE:13
Th13: not (p1,p2,q1)
are_collinear & (p1,p2,p3)
are_collinear & (q1,q2,p1)
are_collinear & p1
<> p3 & p1
<> q2 implies not (p3,p1,q2)
are_collinear
proof
assume that
A1: not (p1,p2,q1)
are_collinear and
A2: (p1,p2,p3)
are_collinear and
A3: (q1,q2,p1)
are_collinear and
A4: p1
<> p3 and
A5: p1
<> q2;
A6: (p1,q2,q1)
are_collinear by
A3,
Th1;
assume not thesis;
then
A7: (p1,p3,q2)
are_collinear by
Th1;
(p1,p3,p2)
are_collinear by
A2,
Th1;
then (p1,q2,p2)
are_collinear by
A4,
A7,
Th2;
hence contradiction by
A1,
A5,
A6,
Th2;
end;
theorem ::
HESSENBE:14
Th14: a1
<> a2 & b1
<> b2 & (b1,b2,x)
are_collinear & (b1,b2,y)
are_collinear & (a1,a2,x)
are_collinear & (a1,a2,y)
are_collinear & not (a1,a2,b1)
are_collinear implies x
= y
proof
assume that
A1: a1
<> a2 and
A2: b1
<> b2 & (b1,b2,x)
are_collinear & (b1,b2,y)
are_collinear and
A3: (a1,a2,x)
are_collinear & (a1,a2,y)
are_collinear and
A4: not (a1,a2,b1)
are_collinear ;
(a1,a2,a2)
are_collinear by
ANPROJ_2:def 7;
then
A5: (x,y,a2)
are_collinear by
A1,
A3,
ANPROJ_2:def 8;
(b1,b2,b1)
are_collinear by
ANPROJ_2:def 7;
then
A6: (x,y,b1)
are_collinear by
A2,
ANPROJ_2:def 8;
assume
A7: not thesis;
(a1,a2,a1)
are_collinear by
ANPROJ_2:def 7;
then (x,y,a1)
are_collinear by
A1,
A3,
ANPROJ_2:def 8;
hence contradiction by
A4,
A7,
A6,
A5,
ANPROJ_2:def 8;
end;
theorem ::
HESSENBE:15
Th15: not (o,a1,a2)
are_collinear & (o,a1,b1)
are_collinear & (o,a2,b2)
are_collinear & o
<> b1 & o
<> b2 implies not (o,b1,b2)
are_collinear
proof
assume that
A1: ( not (o,a1,a2)
are_collinear ) & (o,a1,b1)
are_collinear and
A2: (o,a2,b2)
are_collinear and
A3: o
<> b1 and
A4: o
<> b2;
not (o,b1,a2)
are_collinear by
A1,
A3,
Th6;
then not (o,a2,b1)
are_collinear by
Th1;
then not (o,b2,b1)
are_collinear by
A2,
A4,
Th6;
hence thesis by
Th1;
end;
reserve PCPP for
Pappian
CollProjectivePlane,
a,a1,a2,a3,b1,b2,b3,c1,c2,c3,o,p,p1,p2,p3,q,q9,q1,q2,q3,r,r1,r2,r3,x,y,z for
Element of PCPP;
theorem ::
HESSENBE:16
Th16: p2
<> p3 & p1
<> p3 & q2
<> q3 & q1
<> q2 & q1
<> q3 & not (p1,p2,q1)
are_collinear & (p1,p2,p3)
are_collinear & (q1,q2,q3)
are_collinear & (p1,q2,r3)
are_collinear & (q1,p2,r3)
are_collinear & (p1,q3,r2)
are_collinear & (p3,q1,r2)
are_collinear & (p2,q3,r1)
are_collinear & (p3,q2,r1)
are_collinear implies (r1,r2,r3)
are_collinear
proof
assume that
A1: p2
<> p3 and
A2: p1
<> p3 and
A3: q2
<> q3 and
A4: q1
<> q2 and
A5: q1
<> q3 and
A6: not (p1,p2,q1)
are_collinear and
A7: (p1,p2,p3)
are_collinear and
A8: (q1,q2,q3)
are_collinear and
A9: (p1,q2,r3)
are_collinear and
A10: (q1,p2,r3)
are_collinear and
A11: (p1,q3,r2)
are_collinear and
A12: (p3,q1,r2)
are_collinear and
A13: (p2,q3,r1)
are_collinear and
A14: (p3,q2,r1)
are_collinear ;
A15: p1
<> p2 by
A6,
ANPROJ_2:def 7;
A16:
now
assume
A17: not (p1,p2,q2)
are_collinear ;
A18:
now
assume
A19: not (p1,p2,q3)
are_collinear ;
A20:
now
A21:
now
( not (p2,p1,q2)
are_collinear ) & (p2,p1,p3)
are_collinear by
A7,
A17,
Th1;
then not (p2,p3,q2)
are_collinear by
A1,
Th6;
then
A22: not (q2,p2,p3)
are_collinear by
Th1;
assume
A23: (q1,q2,p2)
are_collinear ;
then
A24: (p2,q1,q2)
are_collinear by
Th1;
p2
<> q1 & (p2,q1,r3)
are_collinear by
A6,
A10,
Th1,
ANPROJ_2:def 7;
then (p2,r3,q2)
are_collinear by
A24,
Th2;
then
A25: (q2,p2,r3)
are_collinear by
Th1;
(q2,p1,r3)
are_collinear & not (q2,p1,p2)
are_collinear by
A9,
A17,
Th1;
then
A26: q2
= r3 by
A25,
Th7;
A27: (q2,q1,q3)
are_collinear by
A8,
Th1;
(q2,q1,p2)
are_collinear by
A23,
Th1;
then (q2,p2,q3)
are_collinear by
A4,
A27,
Th2;
then
A28: (p2,q3,q2)
are_collinear by
Th1;
p2
<> q3 by
A19,
ANPROJ_2:def 7;
then (p2,r1,q2)
are_collinear by
A13,
A28,
Th2;
then
A29: (q2,p2,r1)
are_collinear by
Th1;
(q2,p3,r1)
are_collinear by
A14,
Th1;
then q2
= r1 by
A29,
A22,
Th7;
hence thesis by
A26,
ANPROJ_2:def 7;
end;
A30:
now
( not (p2,p1,q3)
are_collinear ) & (p2,p1,p3)
are_collinear by
A7,
A19,
Th1;
then not (p2,p3,q3)
are_collinear by
A1,
Th6;
then
A31: not (q3,p2,p3)
are_collinear by
Th1;
assume
A32: (q1,q2,p3)
are_collinear ;
then
A33: (q2,q1,p3)
are_collinear by
Th1;
(q2,q1,q3)
are_collinear by
A8,
Th1;
then (q2,q3,p3)
are_collinear by
A4,
A33,
Th2;
then (p3,q2,q3)
are_collinear by
Th1;
then (p3,r1,q3)
are_collinear by
A7,
A14,
A17,
Th2;
then
A34: (q3,p3,r1)
are_collinear by
Th1;
not (p1,p3,q3)
are_collinear by
A2,
A7,
A19,
Th6;
then
A35: not (q3,p1,p3)
are_collinear by
Th1;
(q1,q3,p3)
are_collinear by
A4,
A8,
A32,
Th2;
then (p3,q1,q3)
are_collinear by
Th1;
then (p3,r2,q3)
are_collinear by
A6,
A7,
A12,
Th2;
then
A36: (q3,p3,r2)
are_collinear by
Th1;
(q3,p2,r1)
are_collinear by
A13,
Th1;
then
A37: q3
= r1 by
A34,
A31,
Th7;
(q3,p1,r2)
are_collinear by
A11,
Th1;
then q3
= r2 by
A36,
A35,
Th7;
hence thesis by
A37,
ANPROJ_2:def 7;
end;
A38:
now
not (p1,p3,q1)
are_collinear by
A2,
A6,
A7,
Th6;
then
A39: not (q1,p1,p3)
are_collinear by
Th1;
assume
A40: (q1,q2,p1)
are_collinear ;
then (q1,p1,q3)
are_collinear by
A4,
A8,
Th2;
then
A41: (p1,q3,q1)
are_collinear by
Th1;
p1
<> q3 by
A19,
ANPROJ_2:def 7;
then (p1,r2,q1)
are_collinear by
A11,
A41,
Th2;
then
A42: (q1,p1,r2)
are_collinear by
Th1;
A43: p1
<> q2 by
A17,
ANPROJ_2:def 7;
(p1,q2,q1)
are_collinear by
A40,
Th1;
then (p1,r3,q1)
are_collinear by
A9,
A43,
Th2;
then
A44: (q1,p1,r3)
are_collinear by
Th1;
not (q1,p2,p1)
are_collinear by
A6,
Th1;
then
A45: q1
= r3 by
A10,
A44,
Th7;
(q1,p3,r2)
are_collinear by
A12,
Th1;
then q1
= r2 by
A42,
A39,
Th7;
hence thesis by
A45,
ANPROJ_2:def 7;
end;
assume (q1,q2,p1)
are_collinear or (q1,q2,p2)
are_collinear or (q1,q2,p3)
are_collinear ;
hence thesis by
A38,
A21,
A30;
end;
now
assume that
A46: not (q1,q2,p1)
are_collinear and
A47: ( not (q1,q2,p2)
are_collinear ) & not (q1,q2,p3)
are_collinear ;
consider o such that
A48: (p1,p2,o)
are_collinear and
A49: (q1,q2,o)
are_collinear by
ANPROJ_2:def 14;
not (p1,o,q1)
are_collinear by
A6,
A46,
A48,
A49,
Th6;
then
A50: not (o,p1,q1)
are_collinear by
Th1;
(q1,q3,o)
are_collinear by
A4,
A8,
A49,
Th2;
then
A51: (o,q1,q3)
are_collinear by
Th1;
(p1,p3,o)
are_collinear by
A7,
A15,
A48,
Th2;
then
A52: (o,p1,p3)
are_collinear by
Th1;
(o,p1,p2)
are_collinear & (o,q1,q2)
are_collinear by
A48,
A49,
Th1;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A17,
A19,
A47,
A48,
A49,
A52,
A51,
A50,
ANPROJ_2:def 13;
end;
hence thesis by
A20;
end;
now
assume
A53: (p1,p2,q3)
are_collinear ;
A54:
now
assume that
A55: p2
<> q3 and
A56: p1
<> q3;
(p1,q3,p2)
are_collinear by
A53,
Th1;
then (p1,p2,r2)
are_collinear by
A11,
A56,
Th2;
then (p1,r2,p3)
are_collinear by
A7,
A15,
Th2;
then
A57: (p3,p1,r2)
are_collinear by
Th1;
not (p1,p3,q1)
are_collinear by
A2,
A6,
A7,
Th6;
then not (p3,q1,p1)
are_collinear by
Th1;
then
A58: p3
= r2 by
A12,
A57,
Th7;
A59: (p2,p1,p3)
are_collinear by
A7,
Th1;
(p2,q3,p1)
are_collinear by
A53,
Th1;
then (p2,p1,r1)
are_collinear by
A13,
A55,
Th2;
then (p2,r1,p3)
are_collinear by
A15,
A59,
Th2;
then
A60: (p3,p2,r1)
are_collinear by
Th1;
( not (p2,p1,q2)
are_collinear ) & (p2,p1,p3)
are_collinear by
A7,
A17,
Th1;
then not (p2,p3,q2)
are_collinear by
A1,
Th6;
then not (p3,q2,p2)
are_collinear by
Th1;
then p3
= r1 by
A14,
A60,
Th7;
hence thesis by
A58,
ANPROJ_2:def 7;
end;
A61:
now
not (p1,p3,q1)
are_collinear by
A2,
A6,
A7,
Th6;
then
A62: not (p3,p1,q1)
are_collinear by
Th1;
A63: not (p2,q1,p1)
are_collinear by
A6,
Th1;
A64: (p2,q1,r3)
are_collinear by
A10,
Th1;
assume
A65: p2
= q3;
then (p2,q1,q2)
are_collinear by
A8,
Th1;
then (p2,q2,r3)
are_collinear by
A5,
A65,
A64,
Th2;
then
A66: (q2,p2,r3)
are_collinear by
Th1;
(p2,q1,q2)
are_collinear by
A8,
A65,
Th1;
then not (p2,q2,p1)
are_collinear by
A3,
A65,
A63,
Th6;
then
A67: not (q2,p1,p2)
are_collinear by
Th1;
(p1,p3,r2)
are_collinear by
A7,
A11,
A15,
A65,
Th2;
then (p3,p1,r2)
are_collinear by
Th1;
then
A68: p3
= r2 by
A12,
A62,
Th7;
(q2,p1,r3)
are_collinear by
A9,
Th1;
then q2
= r3 by
A66,
A67,
Th7;
hence thesis by
A14,
A68,
Th1;
end;
now
assume
A69: p1
= q3;
then (p1,p2,r1)
are_collinear by
A13,
Th1;
then (p1,p3,r1)
are_collinear by
A7,
A15,
Th2;
then
A70: (p3,p1,r1)
are_collinear by
Th1;
(p1,q2,q1)
are_collinear by
A8,
A69,
Th1;
then (p1,q1,r3)
are_collinear by
A3,
A9,
A69,
Th2;
then
A71: (q1,p1,r3)
are_collinear by
Th1;
not (p3,p1,q2)
are_collinear by
A2,
A3,
A6,
A7,
A8,
A69,
Th13;
then
A72: p3
= r1 by
A14,
A70,
Th7;
not (q1,p1,p2)
are_collinear by
A6,
Th1;
then q1
= r3 by
A10,
A71,
Th7;
hence thesis by
A12,
A72,
Th1;
end;
hence thesis by
A61,
A54;
end;
hence thesis by
A18;
end;
now
A73:
now
not (p1,p3,q1)
are_collinear by
A2,
A6,
A7,
Th6;
then
A74: not (q1,p1,p3)
are_collinear by
Th1;
A75: not (p1,q1,p2)
are_collinear by
A6,
Th1;
assume
A76: p1
= q2;
then (p1,q3,q1)
are_collinear by
A8,
Th1;
then (p1,q1,r2)
are_collinear by
A3,
A11,
A76,
Th2;
then
A77: (q1,p1,r2)
are_collinear by
Th1;
A78: (p1,p3,p2)
are_collinear by
A7,
Th1;
(p1,p3,r1)
are_collinear by
A14,
A76,
Th1;
then (p1,p2,r1)
are_collinear by
A2,
A78,
Th2;
then
A79: (p2,p1,r1)
are_collinear by
Th1;
(q1,p3,r2)
are_collinear by
A12,
Th1;
then
A80: q1
= r2 by
A77,
A74,
Th7;
(p1,q1,q3)
are_collinear by
A8,
A76,
Th1;
then not (p1,q3,p2)
are_collinear by
A3,
A76,
A75,
Th6;
then not (p2,p1,q3)
are_collinear by
Th1;
then r1
= p2 by
A13,
A79,
Th7;
hence thesis by
A10,
A80,
Th1;
end;
assume
A81: (p1,p2,q2)
are_collinear ;
A82:
now
assume that
A83: p1
<> q2 and
A84: p3
<> q2;
(p1,q2,p2)
are_collinear by
A81,
Th1;
then (p1,p2,r3)
are_collinear by
A9,
A83,
Th2;
then
A85: (p2,p1,r3)
are_collinear by
Th1;
(p1,q2,p3)
are_collinear by
A7,
A15,
A81,
Th2;
then (p3,q2,p1)
are_collinear by
Th1;
then (p3,p1,r1)
are_collinear by
A14,
A84,
Th2;
then
A86: (p1,p3,r1)
are_collinear by
Th1;
(p1,p3,p2)
are_collinear by
A7,
Th1;
then (p1,p2,r1)
are_collinear by
A2,
A86,
Th2;
then
A87: (p2,p1,r1)
are_collinear by
Th1;
not (p2,p1,q3)
are_collinear by
A3,
A6,
A8,
A81,
Th11;
then
A88: p2
= r1 by
A13,
A87,
Th7;
( not (p2,p1,q1)
are_collinear ) & (p2,q1,r3)
are_collinear by
A6,
A10,
Th1;
then p2
= r3 by
A85,
Th7;
hence thesis by
A88,
ANPROJ_2:def 7;
end;
now
assume
A89: p3
= q2;
then (q1,q3,p3)
are_collinear by
A8,
Th1;
then
A90: not (q3,p1,q1)
are_collinear by
A2,
A5,
A6,
A7,
Th10;
(p1,p3,p2)
are_collinear by
A7,
Th1;
then (p1,p2,r3)
are_collinear by
A2,
A9,
A89,
Th2;
then
A91: (p2,p1,r3)
are_collinear by
Th1;
( not (p2,p1,q1)
are_collinear ) & (p2,q1,r3)
are_collinear by
A6,
A10,
Th1;
then
A92: p2
= r3 by
A91,
Th7;
(q1,q2,r2)
are_collinear by
A12,
A89,
Th1;
then (q1,q3,r2)
are_collinear by
A4,
A8,
Th2;
then
A93: (q3,q1,r2)
are_collinear by
Th1;
(q3,p1,r2)
are_collinear by
A11,
Th1;
then (r3,r2,r1)
are_collinear by
A13,
A92,
A90,
A93,
Th7;
hence thesis by
Th1;
end;
hence thesis by
A73,
A82;
end;
hence thesis by
A16;
end;
Lm1: o
<> b1 & o
<> b2 & not (o,a1,a2)
are_collinear & not (o,a1,a3)
are_collinear & not (o,a2,a3)
are_collinear & (a1,a2,c3)
are_collinear & (b1,b2,c3)
are_collinear & (a2,a3,c1)
are_collinear & (b2,b3,c1)
are_collinear & (a1,a3,c2)
are_collinear & (b1,b3,c2)
are_collinear & (o,a1,b1)
are_collinear & (o,a2,b2)
are_collinear & (o,a3,b3)
are_collinear & ((a1,a2,a3)
are_collinear or (b1,b2,b3)
are_collinear ) implies (c1,c2,c3)
are_collinear
proof
assume that
A1: o
<> b1 and
A2: o
<> b2 and
A3: not (o,a1,a2)
are_collinear and
A4: not (o,a1,a3)
are_collinear and
A5: not (o,a2,a3)
are_collinear and
A6: (a1,a2,c3)
are_collinear and
A7: (b1,b2,c3)
are_collinear and
A8: (a2,a3,c1)
are_collinear and
A9: (b2,b3,c1)
are_collinear and
A10: (a1,a3,c2)
are_collinear and
A11: (b1,b3,c2)
are_collinear and
A12: (o,a1,b1)
are_collinear and
A13: (o,a2,b2)
are_collinear and
A14: (o,a3,b3)
are_collinear and
A15: (a1,a2,a3)
are_collinear or (b1,b2,b3)
are_collinear ;
A16: a1
<> a3 by
A4,
ANPROJ_2:def 7;
A17: a2
<> a3 by
A5,
ANPROJ_2:def 7;
A18: a1
<> a2 by
A3,
ANPROJ_2:def 7;
A19:
now
assume
A20: (a1,a2,a3)
are_collinear ;
then (a2,a3,a1)
are_collinear by
Th1;
then (a2,a1,c1)
are_collinear by
A8,
A17,
Th2;
then
A21: (a1,a2,c1)
are_collinear by
Th1;
(a1,a3,a2)
are_collinear by
A20,
Th1;
then (a1,a2,c2)
are_collinear by
A10,
A16,
Th2;
hence thesis by
A6,
A18,
A21,
ANPROJ_2:def 8;
end;
A22: b2
<> b3 by
A2,
A5,
A13,
A14,
Th7;
A23: b1
<> b3 by
A1,
A4,
A12,
A14,
Th7;
A24: b1
<> b2 by
A1,
A3,
A12,
A13,
Th7;
now
assume
A25: (b1,b2,b3)
are_collinear ;
then (b2,b3,b1)
are_collinear by
Th1;
then (b2,b1,c1)
are_collinear by
A9,
A22,
Th2;
then
A26: (b1,b2,c1)
are_collinear by
Th1;
(b1,b3,b2)
are_collinear by
A25,
Th1;
then (b1,b2,c2)
are_collinear by
A11,
A23,
Th2;
hence thesis by
A7,
A24,
A26,
ANPROJ_2:def 8;
end;
hence thesis by
A15,
A19;
end;
Lm2: o
<> b1 & a1
<> b1 & o
<> b2 & a2
<> b2 & o
<> b3 & a3
<> b3 & not (o,a1,a2)
are_collinear & not (o,a1,a3)
are_collinear & not (o,a2,a3)
are_collinear & not (o,c1,c3)
are_collinear & (a1,a2,c3)
are_collinear & (b1,b2,c3)
are_collinear & (a2,a3,c1)
are_collinear & (b2,b3,c1)
are_collinear & (a1,a3,c2)
are_collinear & (b1,b3,c2)
are_collinear & (o,a1,b1)
are_collinear & (o,a2,b2)
are_collinear & (o,a3,b3)
are_collinear & (o,a2,x)
are_collinear & (a1,a3,x)
are_collinear & not (c1,c3,x)
are_collinear implies (c1,c2,c3)
are_collinear
proof
assume that
A1: o
<> b1 and
A2: a1
<> b1 and
A3: o
<> b2 and
A4: a2
<> b2 and
A5: o
<> b3 and
A6: a3
<> b3 and
A7: not (o,a1,a2)
are_collinear and
A8: not (o,a1,a3)
are_collinear and
A9: not (o,a2,a3)
are_collinear and
A10: not (o,c1,c3)
are_collinear and
A11: (a1,a2,c3)
are_collinear and
A12: (b1,b2,c3)
are_collinear and
A13: (a2,a3,c1)
are_collinear and
A14: (b2,b3,c1)
are_collinear and
A15: (a1,a3,c2)
are_collinear and
A16: (b1,b3,c2)
are_collinear and
A17: (o,a1,b1)
are_collinear and
A18: (o,a2,b2)
are_collinear and
A19: (o,a3,b3)
are_collinear and
A20: (o,a2,x)
are_collinear and
A21: (a1,a3,x)
are_collinear and
A22: not (c1,c3,x)
are_collinear ;
A23: o
<> a1 by
A7,
ANPROJ_2:def 7;
A24: b1
<> b3 by
A1,
A8,
A17,
A19,
Th7;
A25: a1
<> a2 by
A7,
ANPROJ_2:def 7;
A26: o
<> a2 by
A7,
ANPROJ_2:def 7;
A27: o
<> a3 by
A8,
ANPROJ_2:def 7;
A28: a1
<> a3 by
A8,
ANPROJ_2:def 7;
A29: a2
<> a3 by
A9,
ANPROJ_2:def 7;
( not (a1,o,a3)
are_collinear ) & (a1,o,b1)
are_collinear by
A8,
A17,
Th1;
then not (a1,b1,a3)
are_collinear by
A2,
Th6;
then
A30: not (a1,a3,b1)
are_collinear by
Th1;
A31:
now
( not (o,a2,a1)
are_collinear ) & (b2,b1,c3)
are_collinear by
A7,
A12,
Th1;
then
A32: a1
<> c3 by
A2,
A3,
A17,
A18,
Th8;
not (a1,a2,o)
are_collinear by
A7,
Th1;
then not (a1,c3,o)
are_collinear by
A11,
A32,
Th6;
then
A33: not (o,a1,c3)
are_collinear by
Th1;
A34: c1
<> c3 by
A10,
ANPROJ_2:def 7;
o
<> x by
A8,
A21,
Th1;
then not (o,x,a3)
are_collinear by
A9,
A20,
Th6;
then
A35: not (x,a3,o)
are_collinear by
Th1;
A36: a1
<> a3 by
A8,
ANPROJ_2:def 7;
( not (o,a2,a1)
are_collinear ) & (b2,b1,c3)
are_collinear by
A7,
A12,
Th1;
then
A37: a1
<> c3 by
A2,
A3,
A17,
A18,
Th8;
A38: (a2,a1,c3)
are_collinear by
A11,
Th1;
A39: (a2,a1,c3)
are_collinear by
A11,
Th1;
A40: a2
<> c3 by
A1,
A4,
A7,
A12,
A17,
A18,
Th8;
not (o,b2,a3)
are_collinear by
A3,
A9,
A18,
Th6;
then
A41: not (a3,o,b2)
are_collinear by
Th1;
A42: c1
<> c3 by
A10,
ANPROJ_2:def 7;
A43: (o,b1,a1)
are_collinear by
A17,
Th1;
A44: not (a1,a3,o)
are_collinear by
A8,
Th1;
( not (o,a3,a2)
are_collinear ) & (b3,b2,c1)
are_collinear by
A9,
A14,
Th1;
then
A45: a2
<> c1 by
A4,
A5,
A18,
A19,
Th8;
(a3,b3,o)
are_collinear by
A19,
Th1;
then not (b2,o,b3)
are_collinear by
A3,
A5,
A9,
A18,
Th13;
then
A46: not (o,b3,b2)
are_collinear by
Th1;
A47: o
<> a2 by
A7,
ANPROJ_2:def 7;
assume that
A48: not (a1,a2,a3)
are_collinear and
A49: not (b1,b2,b3)
are_collinear ;
A50: b1
<> b3 by
A49,
ANPROJ_2:def 7;
consider z such that
A51: (a1,a3,z)
are_collinear and
A52: (c1,c3,z)
are_collinear by
ANPROJ_2:def 14;
consider p such that
A53: (o,z,p)
are_collinear and
A54: (a2,a3,p)
are_collinear by
ANPROJ_2:def 14;
A55: o
<> p by
A9,
A54,
Th1;
A56: a3
<> c1 by
A3,
A6,
A9,
A14,
A18,
A19,
Th8;
then
A57: a1
<> z by
A11,
A13,
A48,
A52,
A40,
A45,
A37,
Th9;
A58: a3
<> z by
A11,
A13,
A48,
A52,
A40,
A45,
A37,
A56,
Th9;
A59: a3
<> p
proof
assume not thesis;
then
A60: (a3,o,z)
are_collinear by
A53,
Th1;
(a3,a1,z)
are_collinear & not (a3,o,a1)
are_collinear by
A8,
A51,
Th1;
hence contradiction by
A58,
A60,
Th7;
end;
A61: (a3,a1,x)
are_collinear by
A21,
Th1;
A62: (o,b2,a2)
are_collinear by
A18,
Th1;
a1
<> z by
A11,
A13,
A48,
A52,
A40,
A45,
A37,
A56,
Th9;
then not (a1,z,o)
are_collinear by
A51,
A44,
Th6;
then not (o,z,a1)
are_collinear by
Th1;
then not (o,p,a1)
are_collinear by
A53,
A55,
Th6;
then
A63: not (o,a1,p)
are_collinear by
Th1;
A64: (a3,z,a1)
are_collinear by
A51,
Th1;
A65: (p,a2,a3)
are_collinear by
A54,
Th1;
consider q such that
A66: (o,a1,q)
are_collinear and
A67: (p,c3,q)
are_collinear by
ANPROJ_2:def 14;
consider r such that
A68: (p,b2,r)
are_collinear and
A69: (q,a3,r)
are_collinear by
ANPROJ_2:def 14;
A70: (a3,q,r)
are_collinear by
A69,
Th1;
(o,b3,a3)
are_collinear & (a3,a2,c1)
are_collinear by
A13,
A19,
Th1;
then
A71: b2
<> c1 by
A4,
A27,
A62,
A46,
Th8;
A72: a2
<> c3 by
A1,
A4,
A7,
A12,
A17,
A18,
Th8;
not (a1,a3,o)
are_collinear by
A8,
Th1;
then not (a1,z,o)
are_collinear by
A51,
A57,
Th6;
then not (o,z,a1)
are_collinear by
Th1;
then not (o,p,a1)
are_collinear by
A53,
A55,
Th6;
then
A73: b1
<> p by
A17,
Th1;
consider a such that
A74: (c1,c3,a)
are_collinear and
A75: (o,a2,a)
are_collinear by
ANPROJ_2:def 14;
A76: (c3,c1,a)
are_collinear by
A74,
Th1;
A77: (a,o,a2)
are_collinear by
A75,
Th1;
A78: o
<> a by
A10,
A74,
Th1;
A79: c1
<> c3 by
A10,
ANPROJ_2:def 7;
A80: a2
<> a
proof
A81: (c3,a2,a1)
are_collinear by
A11,
Th1;
assume
A82: not thesis;
then (c3,a2,c1)
are_collinear by
A74,
Th1;
then (c3,c1,a1)
are_collinear by
A40,
A81,
Th2;
then
A83: (c1,c3,a1)
are_collinear by
Th1;
A84: (c1,a2,a3)
are_collinear by
A13,
Th1;
(c1,a2,c3)
are_collinear by
A74,
A82,
Th1;
then (c1,c3,a3)
are_collinear by
A45,
A84,
Th2;
hence contradiction by
A48,
A74,
A79,
A82,
A83,
ANPROJ_2:def 8;
end;
assume
A85: not thesis;
(c3,c1,z)
are_collinear by
A52,
Th1;
then (c3,a,z)
are_collinear by
A76,
A42,
Th2;
then
A86: (a,z,c3)
are_collinear by
Th1;
A87: (o,x,a)
are_collinear by
A20,
A26,
A75,
Th2;
consider q9 such that
A88: (o,a1,q9)
are_collinear & (a,a3,q9)
are_collinear by
ANPROJ_2:def 14;
(a3,a2,p)
are_collinear by
A54,
Th1;
then (c3,q9,p)
are_collinear by
A9,
A53,
A75,
A88,
A80,
A78,
A36,
A57,
A58,
A64,
A39,
A86,
Th16;
then
A89: (p,c3,q9)
are_collinear by
Th1;
not (a2,a1,a3)
are_collinear by
A48,
Th1;
then not (a2,c3,a3)
are_collinear by
A72,
A38,
Th6;
then p
<> c3 by
A54,
Th1;
then
A90: (a,a3,q)
are_collinear by
A23,
A66,
A67,
A88,
A89,
A63,
Th14;
then (a3,q,a)
are_collinear by
Th1;
then
A91: (a3,r,a)
are_collinear by
A8,
A66,
A70,
Th2;
( not (o,a3,a2)
are_collinear ) & (b3,b2,c1)
are_collinear by
A9,
A14,
Th1;
then
A92: a2
<> c1 by
A4,
A5,
A18,
A19,
Th8;
A93: a
<> a2
proof
A94: (c3,a2,a1)
are_collinear by
A11,
Th1;
assume
A95: not thesis;
then (c3,a2,c1)
are_collinear by
A74,
Th1;
then (c3,c1,a1)
are_collinear by
A72,
A94,
Th2;
then
A96: (c1,c3,a1)
are_collinear by
Th1;
A97: (c1,a2,a3)
are_collinear by
A13,
Th1;
(c1,a2,c3)
are_collinear by
A74,
A95,
Th1;
then (c1,c3,a3)
are_collinear by
A92,
A97,
Th2;
hence contradiction by
A48,
A74,
A34,
A95,
A96,
ANPROJ_2:def 8;
end;
consider z99 be
Element of PCPP such that
A98: (b3,r,z99)
are_collinear & (o,p,z99)
are_collinear by
ANPROJ_2:def 14;
(a2,b2,o)
are_collinear by
A18,
Th1;
then
A99: not (b1,o,b2)
are_collinear by
A1,
A3,
A7,
A17,
Th13;
then not (o,b1,b2)
are_collinear by
Th1;
then
A100: b2
<> c3 by
A4,
A11,
A23,
A43,
A62,
Th8;
A101: a
<> b2
proof
A102: (c3,b2,b1)
are_collinear by
A12,
Th1;
assume
A103: not thesis;
then (c3,b2,c1)
are_collinear by
A74,
Th1;
then (c3,c1,b1)
are_collinear by
A100,
A102,
Th2;
then
A104: (c1,c3,b1)
are_collinear by
Th1;
A105: (c1,b2,b3)
are_collinear by
A14,
Th1;
(c1,b2,c3)
are_collinear by
A74,
A103,
Th1;
then (c1,c3,b3)
are_collinear by
A71,
A105,
Th2;
hence contradiction by
A49,
A74,
A34,
A103,
A104,
ANPROJ_2:def 8;
end;
not (a2,a3,o)
are_collinear by
A9,
Th1;
then not (a2,c1,o)
are_collinear by
A13,
A92,
Th6;
then
A106: a
<> c1 by
A75,
Th1;
( not (a2,a1,o)
are_collinear ) & (a2,a1,c3)
are_collinear by
A7,
A11,
Th1;
then not (a2,c3,o)
are_collinear by
A72,
Th6;
then
A107: a
<> c3 by
A75,
Th1;
(o,a,b2)
are_collinear by
A18,
A26,
A75,
Th2;
then
A108: (a,o,b2)
are_collinear by
Th1;
(a2,o,b2)
are_collinear & not (a2,o,a3)
are_collinear by
A9,
A18,
Th1;
then
A109: not (a2,b2,a3)
are_collinear by
A4,
Th6;
then
A110: b2
<> p by
A54,
Th1;
(a3,a1,z)
are_collinear by
A51,
Th1;
then (a3,x,z)
are_collinear by
A36,
A61,
Th2;
then (x,a3,z)
are_collinear by
Th1;
then not (x,z,o)
are_collinear by
A22,
A52,
A35,
Th6;
then not (o,z,x)
are_collinear by
Th1;
then not (o,p,x)
are_collinear by
A53,
A55,
Th6;
then not (o,x,p)
are_collinear by
Th1;
then
A111: not (o,a,p)
are_collinear by
A78,
A87,
Th6;
then not (a,o,p)
are_collinear by
Th1;
then not (a,a2,p)
are_collinear by
A93,
A77,
Th6;
then not (p,a2,a)
are_collinear by
Th1;
then
A112: not (p,a3,a)
are_collinear by
A59,
A65,
Th6;
then
A113: p
<> r by
A91,
Th1;
(o,a,b2)
are_collinear by
A18,
A26,
A75,
Th2;
then not (o,b2,p)
are_collinear by
A3,
A111,
Th6;
then not (p,b2,o)
are_collinear by
Th1;
then not (p,r,o)
are_collinear by
A68,
A113,
Th6;
then
A114: z
<> r by
A53,
Th1;
consider z9 be
Element of PCPP such that
A115: (b1,r,z9)
are_collinear & (o,p,z9)
are_collinear by
ANPROJ_2:def 14;
A116: not (o,a,a3)
are_collinear by
A9,
A75,
A78,
Th6;
then not (a,o,a3)
are_collinear by
Th1;
then
A117: not (a,b2,a3)
are_collinear by
A101,
A108,
Th6;
then
A118: b2
<> r by
A91,
Th1;
A119:
now
(o,b1,q)
are_collinear by
A17,
A23,
A66,
Th2;
then
A120: (b1,o,q)
are_collinear by
Th1;
assume b1
<> q;
then not (b1,q,b2)
are_collinear by
A99,
A120,
Th6;
then
A121: not (q,b1,b2)
are_collinear by
Th1;
A122: (b2,p,r)
are_collinear & (q,p,c3)
are_collinear by
A67,
A68,
Th1;
(o,b1,q)
are_collinear by
A17,
A23,
A66,
Th2;
then
A123: (q,b1,o)
are_collinear by
Th1;
A124: q
<> o & b2
<> p by
A54,
A116,
A109,
A90,
Th1;
(c3,c1,z)
are_collinear & (c3,c1,a)
are_collinear by
A52,
A74,
Th1;
then (c3,z,a)
are_collinear by
A34,
Th2;
then
A125: (a,c3,z)
are_collinear by
Th1;
A126: ( not (c1,c3,o)
are_collinear ) & (o,p,z)
are_collinear by
A10,
A53,
Th1;
(a3,a2,c1)
are_collinear & (a3,a2,p)
are_collinear by
A13,
A54,
Th1;
then
A127: (a3,p,c1)
are_collinear by
A29,
Th2;
(o,a,b2)
are_collinear by
A18,
A26,
A75,
Th2;
then
A128: (b2,o,a)
are_collinear by
Th1;
(q,a3,a)
are_collinear by
A90,
Th1;
then
A129: (q,r,a)
are_collinear by
A8,
A66,
A69,
Th2;
A130: b2
<> r & p
<> r by
A117,
A91,
A112,
Th1;
(b2,b1,c3)
are_collinear & (o,b2,a)
are_collinear by
A12,
A18,
A26,
A75,
Th1,
Th2;
then (z9,a,c3)
are_collinear by
A1,
A115,
A124,
A130,
A121,
A123,
A122,
A129,
Th16;
then
A131: (a,c3,z9)
are_collinear by
Th1;
A132: (b3,b2,c1)
are_collinear by
A14,
Th1;
(a3,o,b3)
are_collinear & (b2,r,p)
are_collinear by
A19,
A68,
Th1;
then (z99,c1,a)
are_collinear by
A5,
A6,
A98,
A110,
A91,
A118,
A41,
A113,
A128,
A127,
A132,
Th16;
then
A133: (c1,a,z99)
are_collinear by
Th1;
(c1,a,c3)
are_collinear by
A74,
Th1;
then (c1,c3,z99)
are_collinear by
A106,
A133,
Th2;
then (b3,r,z)
are_collinear by
A52,
A98,
A34,
A55,
A126,
Th14;
then
A134: (z,r,b3)
are_collinear by
Th1;
(o,p,z)
are_collinear & not (o,p,a)
are_collinear by
A53,
A111,
Th1;
then (b1,r,z)
are_collinear by
A115,
A55,
A107,
A125,
A131,
Th14;
then (z,r,b1)
are_collinear by
Th1;
then (z,b1,b3)
are_collinear by
A114,
A134,
Th2;
then (b1,b3,z)
are_collinear by
Th1;
then (c1,c3,c2)
are_collinear by
A15,
A16,
A28,
A30,
A50,
A51,
A52,
Th14;
hence contradiction by
A85,
Th1;
end;
A135: not (p,o,a)
are_collinear by
A111,
Th1;
now
(a3,a2,c1)
are_collinear & (a3,a2,p)
are_collinear by
A13,
A54,
Th1;
then (a3,c1,p)
are_collinear by
A29,
Th2;
then
A136: (p,a3,c1)
are_collinear by
Th1;
A137: (b1,c3,b2)
are_collinear by
A12,
Th1;
( not (a1,o,a3)
are_collinear ) & (a1,o,b1)
are_collinear by
A8,
A17,
Th1;
then not (a1,b1,a3)
are_collinear by
A2,
Th6;
then
A138: not (a1,a3,b1)
are_collinear by
Th1;
assume
A139: b1
= q;
then
A140: (b1,a3,a)
are_collinear by
A90,
Th1;
(c1,a,z)
are_collinear by
A52,
A74,
A34,
Th2;
then
A141: (a,c1,z)
are_collinear by
Th1;
(a2,b2,o)
are_collinear by
A18,
Th1;
then not (b1,o,b2)
are_collinear by
A1,
A3,
A7,
A17,
Th13;
then
A142: not (b1,b2,o)
are_collinear by
Th1;
consider z9 be
Element of PCPP such that
A143: (b1,b3,z9)
are_collinear & (p,o,z9)
are_collinear by
ANPROJ_2:def 14;
(b1,c3,p)
are_collinear by
A67,
A139,
Th1;
then
A144: (b1,b2,p)
are_collinear by
A17,
A33,
A137,
Th2;
(o,b2,a)
are_collinear by
A18,
A75,
A47,
Th2;
then (c1,z9,a)
are_collinear by
A5,
A6,
A14,
A19,
A27,
A73,
A110,
A143,
A144,
A142,
A140,
A136,
Th16;
then
A145: (a,c1,z9)
are_collinear by
Th1;
(p,o,z)
are_collinear by
A53,
Th1;
then (b1,b3,z)
are_collinear by
A55,
A106,
A135,
A143,
A145,
A141,
Th14;
then (c1,c3,c2)
are_collinear by
A15,
A16,
A28,
A50,
A51,
A52,
A138,
Th14;
hence contradiction by
A85,
Th1;
end;
hence contradiction by
A119;
end;
A146: b2
<> b3 by
A3,
A9,
A18,
A19,
Th7;
A147: b1
<> b2 by
A1,
A7,
A17,
A18,
Th7;
now
A148:
now
assume
A149: (b1,b2,b3)
are_collinear ;
then (b2,b3,b1)
are_collinear by
Th1;
then (b2,b1,c1)
are_collinear by
A14,
A146,
Th2;
then
A150: (b1,b2,c1)
are_collinear by
Th1;
(b1,b3,b2)
are_collinear by
A149,
Th1;
then (b1,b2,c2)
are_collinear by
A16,
A24,
Th2;
hence thesis by
A12,
A147,
A150,
ANPROJ_2:def 8;
end;
A151:
now
assume
A152: (a1,a2,a3)
are_collinear ;
then (a2,a3,a1)
are_collinear by
Th1;
then (a2,a1,c1)
are_collinear by
A13,
A29,
Th2;
then
A153: (a1,a2,c1)
are_collinear by
Th1;
(a1,a3,a2)
are_collinear by
A152,
Th1;
then (a1,a2,c2)
are_collinear by
A15,
A28,
Th2;
hence thesis by
A11,
A25,
A153,
ANPROJ_2:def 8;
end;
assume (a1,a2,a3)
are_collinear or (b1,b2,b3)
are_collinear ;
hence thesis by
A151,
A148;
end;
hence thesis by
A31;
end;
Lm3: o
<> b1 & a1
<> b1 & o
<> b2 & a2
<> b2 & o
<> b3 & a3
<> b3 & not (o,a1,a2)
are_collinear & not (o,a1,a3)
are_collinear & not (o,a2,a3)
are_collinear & not (o,c1,c3)
are_collinear & (a1,a2,c3)
are_collinear & (b1,b2,c3)
are_collinear & (a2,a3,c1)
are_collinear & (b2,b3,c1)
are_collinear & (a1,a3,c2)
are_collinear & (b1,b3,c2)
are_collinear & (o,a1,b1)
are_collinear & (o,a2,b2)
are_collinear & (o,a3,b3)
are_collinear implies (c1,c2,c3)
are_collinear
proof
assume that
A1: o
<> b1 and
A2: a1
<> b1 and
A3: o
<> b2 and
A4: a2
<> b2 and
A5: o
<> b3 and
A6: a3
<> b3 and
A7: not (o,a1,a2)
are_collinear and
A8: not (o,a1,a3)
are_collinear and
A9: not (o,a2,a3)
are_collinear and
A10: not (o,c1,c3)
are_collinear and
A11: (a1,a2,c3)
are_collinear & (b1,b2,c3)
are_collinear and
A12: (a2,a3,c1)
are_collinear and
A13: (b2,b3,c1)
are_collinear and
A14: (a1,a3,c2)
are_collinear & (b1,b3,c2)
are_collinear and
A15: (o,a1,b1)
are_collinear and
A16: (o,a2,b2)
are_collinear and
A17: (o,a3,b3)
are_collinear ;
A18: o
<> a2 by
A7,
ANPROJ_2:def 7;
A19: a1
<> a3 by
A8,
ANPROJ_2:def 7;
A20: o
<> a1 & o
<> a3 by
A8,
ANPROJ_2:def 7;
now
assume that not (a1,a2,a3)
are_collinear and not (b1,b2,b3)
are_collinear ;
consider x such that
A21: (a1,a3,x)
are_collinear and
A22: (o,a2,x)
are_collinear by
ANPROJ_2:def 14;
consider y such that
A23: (b1,b3,y)
are_collinear and
A24: (o,a2,y)
are_collinear by
ANPROJ_2:def 14;
assume
A25: not thesis;
A26:
now
( not (o,a3,a2)
are_collinear ) & (b3,b2,c1)
are_collinear by
A9,
A13,
Th1;
then
A27: a2
<> c1 by
A4,
A5,
A16,
A17,
Th8;
not (a2,a3,o)
are_collinear by
A9,
Th1;
then not (a2,c1,o)
are_collinear by
A12,
A27,
Th6;
then
A28: not (o,a2,c1)
are_collinear by
Th1;
A29: b1
<> b3 by
A1,
A8,
A15,
A17,
Th7;
( not (a1,o,a3)
are_collinear ) & (a1,o,b1)
are_collinear by
A8,
A15,
Th1;
then not (a1,b1,a3)
are_collinear by
A2,
Th6;
then
A30: not (a1,a3,b1)
are_collinear by
Th1;
assume that
A31: (c1,c3,x)
are_collinear and
A32: (c1,c3,y)
are_collinear ;
c1
<> c3 & o
<> a2 by
A7,
A10,
ANPROJ_2:def 7;
then (b1,b3,x)
are_collinear by
A22,
A23,
A24,
A31,
A32,
A28,
Th14;
then (c1,c3,c2)
are_collinear by
A14,
A19,
A21,
A31,
A29,
A30,
Th14;
hence contradiction by
A25,
Th1;
end;
now
A33:
now
A34: not (o,b1,b3)
are_collinear by
A1,
A5,
A8,
A15,
A17,
Th15;
A35: (o,b2,a2)
are_collinear & (o,b3,a3)
are_collinear by
A16,
A17,
Th1;
A36: (o,b2,y)
are_collinear & (o,b1,a1)
are_collinear by
A15,
A16,
A18,
A24,
Th1,
Th2;
assume
A37: not (c1,c3,y)
are_collinear ;
( not (o,b1,b2)
are_collinear ) & not (o,b2,b3)
are_collinear by
A1,
A3,
A5,
A7,
A9,
A15,
A16,
A17,
Th15;
hence contradiction by
A2,
A4,
A6,
A10,
A11,
A12,
A13,
A14,
A18,
A20,
A23,
A25,
A37,
A36,
A35,
A34,
Lm2;
end;
assume not (c1,c3,x)
are_collinear or not (c1,c3,y)
are_collinear ;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A21,
A22,
A33,
Lm2;
end;
hence thesis by
A26;
end;
hence thesis by
A1,
A3,
A7,
A8,
A9,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
Lm1;
end;
theorem ::
HESSENBE:17
Th17: o
<> b1 & a1
<> b1 & o
<> b2 & a2
<> b2 & o
<> b3 & a3
<> b3 & not (o,a1,a2)
are_collinear & not (o,a1,a3)
are_collinear & not (o,a2,a3)
are_collinear & (a1,a2,c3)
are_collinear & (b1,b2,c3)
are_collinear & (a2,a3,c1)
are_collinear & (b2,b3,c1)
are_collinear & (a1,a3,c2)
are_collinear & (b1,b3,c2)
are_collinear & (o,a1,b1)
are_collinear & (o,a2,b2)
are_collinear & (o,a3,b3)
are_collinear implies (c1,c2,c3)
are_collinear
proof
assume that
A1: o
<> b1 & a1
<> b1 & o
<> b2 & a2
<> b2 & o
<> b3 & a3
<> b3 & ( not (o,a1,a2)
are_collinear ) & not (o,a1,a3)
are_collinear and
A2: not (o,a2,a3)
are_collinear and
A3: (a1,a2,c3)
are_collinear & (b1,b2,c3)
are_collinear and
A4: (a2,a3,c1)
are_collinear and
A5: (b2,b3,c1)
are_collinear and
A6: (a1,a3,c2)
are_collinear & (b1,b3,c2)
are_collinear & (o,a1,b1)
are_collinear & (o,a2,b2)
are_collinear & (o,a3,b3)
are_collinear ;
A7: o
<> c1 by
A2,
A4,
Th1;
A8: (b3,b2,c1)
are_collinear by
A5,
Th1;
A9: ( not (o,a3,a2)
are_collinear ) & (a3,a2,c1)
are_collinear by
A2,
A4,
Th1;
now
assume (o,c1,c3)
are_collinear ;
then
A10: (c1,c3,o)
are_collinear by
Th1;
assume not thesis;
then
A11: not (c1,c3,c2)
are_collinear by
Th1;
then not (c1,o,c2)
are_collinear by
A7,
A10,
Th6;
then not (o,c1,c2)
are_collinear by
Th1;
hence contradiction by
A1,
A3,
A6,
A9,
A8,
A11,
Lm3;
end;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
Lm3;
end;
registration
cluster
Pappian ->
Desarguesian for
CollProjectiveSpace;
coherence
proof
let PCPP be
CollProjectiveSpace such that
A1: PCPP is
Pappian;
A2:
now
assume not ex p,p1,q,q1 be
Element of PCPP st not ex r be
Element of PCPP st (p,p1,r)
are_collinear & (q,q1,r)
are_collinear ;
then PCPP is
Pappian
CollProjectivePlane by
A1,
ANPROJ_2:def 14;
then for o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be
Element of PCPP st o
<> q1 & p1
<> q1 & o
<> q2 & p2
<> q2 & o
<> q3 & p3
<> q3 & not (o,p1,p2)
are_collinear & not (o,p1,p3)
are_collinear & not (o,p2,p3)
are_collinear & (p1,p2,r3)
are_collinear & (q1,q2,r3)
are_collinear & (p2,p3,r1)
are_collinear & (q2,q3,r1)
are_collinear & (p1,p3,r2)
are_collinear & (q1,q3,r2)
are_collinear & (o,p1,q1)
are_collinear & (o,p2,q2)
are_collinear & (o,p3,q3)
are_collinear holds (r1,r2,r3)
are_collinear by
Th17;
hence thesis by
ANPROJ_2:def 12;
end;
now
assume ex p,p1,q,q1 be
Element of PCPP st not ex r be
Element of PCPP st (p,p1,r)
are_collinear & (q,q1,r)
are_collinear ;
then PCPP is
up-3-dimensional
CollProjectiveSpace by
ANPROJ_2:def 14;
hence thesis;
end;
hence thesis by
A2;
end;
end