anproj_2.miz
begin
reserve V for
RealLinearSpace,
o,p,q,r,s,u,v,w,y,y1,u1,v1,w1,u2,v2,w2 for
Element of V,
a,b,c,d,a1,b1,c1,d1,a2,b2,c2,d2,a3,b3,c3,d3 for
Real,
z for
set;
theorem ::
ANPROJ_2:1
Th1: (for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ) implies not u is
zero & not v is
zero & not w is
zero & not (u,v,w)
are_LinDep & not
are_Prop (u,v)
proof
assume
A1: for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ;
A2:
now
assume not not v is
zero;
then
A3: v
= (
0. V);
(
0. V)
= ((
0. V)
+ (
0. V)) by
RLVECT_1: 4
.= (((
0. V)
+ (
0. V))
+ (
0. V)) by
RLVECT_1: 4
.= (((
0. V)
+ (1
* v))
+ (
0. V)) by
A3,
RLVECT_1:def 8
.= (((
0
* u)
+ (1
* v))
+ (
0. V)) by
RLVECT_1: 10
.= (((
0
* u)
+ (1
* v))
+ (
0
* w)) by
RLVECT_1: 10;
hence contradiction by
A1;
end;
A4:
now
assume not not w is
zero;
then
A5: w
= (
0. V);
(
0. V)
= ((
0. V)
+ (
0. V)) by
RLVECT_1: 4
.= (((
0. V)
+ (
0. V))
+ (
0. V)) by
RLVECT_1: 4
.= (((
0. V)
+ (
0. V))
+ (1
* w)) by
A5,
RLVECT_1:def 8
.= (((
0
* u)
+ (
0. V))
+ (1
* w)) by
RLVECT_1: 10
.= (((
0
* u)
+ (
0
* v))
+ (1
* w)) by
RLVECT_1: 10;
hence contradiction by
A1;
end;
now
assume not not u is
zero;
then
A6: u
= (
0. V);
(
0. V)
= ((
0. V)
+ (
0. V)) by
RLVECT_1: 4
.= (((
0. V)
+ (
0. V))
+ (
0. V)) by
RLVECT_1: 4
.= (((1
* u)
+ (
0. V))
+ (
0. V)) by
A6,
RLVECT_1:def 8
.= (((1
* u)
+ (
0
* v))
+ (
0. V)) by
RLVECT_1: 10
.= (((1
* u)
+ (
0
* v))
+ (
0
* w)) by
RLVECT_1: 10;
hence contradiction by
A1;
end;
hence not u is
zero & not v is
zero & not w is
zero by
A2,
A4;
thus not (u,v,w)
are_LinDep by
A1;
hence thesis by
ANPROJ_1: 12;
end;
Lm1: (for a, b st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 ) implies not u is
zero & not v is
zero & not
are_Prop (u,v)
proof
assume
A1: for a, b st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 ;
A2:
now
assume not not v is
zero;
then
A3: v
= (
0. V);
(
0. V)
= ((
0. V)
+ (
0. V)) by
RLVECT_1: 4
.= ((
0. V)
+ (1
* v)) by
A3,
RLVECT_1:def 8
.= ((
0
* u)
+ (1
* v)) by
RLVECT_1: 10;
hence contradiction by
A1;
end;
now
assume not not u is
zero;
then
A4: u
= (
0. V);
(
0. V)
= ((
0. V)
+ (
0. V)) by
RLVECT_1: 4
.= ((1
* u)
+ (
0. V)) by
A4,
RLVECT_1:def 8
.= ((1
* u)
+ (
0
* v)) by
RLVECT_1: 10;
hence contradiction by
A1;
end;
hence not u is
zero & not v is
zero by
A2;
given a, b such that
A5: (a
* u)
= (b
* v) and
A6: a
<>
0 and b
<>
0 ;
(
0. V)
= ((a
* u)
- (b
* v)) by
A5,
RLVECT_1: 15
.= ((a
* u)
+ (b
* (
- v))) by
RLVECT_1: 25
.= ((a
* u)
+ ((
- b)
* v)) by
RLVECT_1: 24;
hence contradiction by
A1,
A6;
end;
theorem ::
ANPROJ_2:2
Th2: for u, v, u1, v1 holds ((for a, b, a1, b1 st ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ) implies not u is
zero & not v is
zero & not
are_Prop (u,v) & not u1 is
zero & not v1 is
zero & not
are_Prop (u1,v1) & not (u,v,u1)
are_LinDep & not (u1,v1,u)
are_LinDep )
proof
let u, v, u1, v1;
assume
A1: for a, b, a1, b1 st ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ;
A2:
now
let d1, d2, d3;
assume (((d1
* u)
+ (d2
* v))
+ (d3
* u1))
= (
0. V);
then (
0. V)
= ((((d1
* u)
+ (d2
* v))
+ (d3
* u1))
+ (
0. V)) by
RLVECT_1: 4
.= ((((d1
* u)
+ (d2
* v))
+ (d3
* u1))
+ (
0
* v1)) by
RLVECT_1: 10;
hence d1
=
0 & d2
=
0 & d3
=
0 by
A1;
end;
now
let d1, d2, d3;
assume (((d1
* u1)
+ (d2
* v1))
+ (d3
* u))
= (
0. V);
then (
0. V)
= (((d3
* u)
+ (d1
* u1))
+ (d2
* v1)) by
RLVECT_1:def 3
.= ((((d3
* u)
+ (
0. V))
+ (d1
* u1))
+ (d2
* v1)) by
RLVECT_1: 4
.= ((((d3
* u)
+ (
0
* v))
+ (d1
* u1))
+ (d2
* v1)) by
RLVECT_1: 10;
hence d1
=
0 & d2
=
0 & d3
=
0 by
A1;
end;
hence thesis by
A2,
Th1;
end;
Lm2: (a
* (((b
* v)
+ (c
* w))
+ (d
* u)))
= ((((a
* b)
* v)
+ ((a
* c)
* w))
+ ((a
* d)
* u))
proof
thus ((((a
* b)
* v)
+ ((a
* c)
* w))
+ ((a
* d)
* u))
= (((a
* (b
* v))
+ ((a
* c)
* w))
+ ((a
* d)
* u)) by
RLVECT_1:def 7
.= (((a
* (b
* v))
+ (a
* (c
* w)))
+ ((a
* d)
* u)) by
RLVECT_1:def 7
.= ((a
* ((b
* v)
+ (c
* w)))
+ ((a
* d)
* u)) by
RLVECT_1:def 5
.= ((a
* ((b
* v)
+ (c
* w)))
+ (a
* (d
* u))) by
RLVECT_1:def 7
.= (a
* (((b
* v)
+ (c
* w))
+ (d
* u))) by
RLVECT_1:def 5;
end;
Lm3: (((u
+ v)
+ w)
+ ((u1
+ v1)
+ w1))
= (((u
+ u1)
+ (v
+ v1))
+ (w
+ w1))
proof
thus (((u
+ u1)
+ (v
+ v1))
+ (w
+ w1))
= ((u1
+ (u
+ (v
+ v1)))
+ (w
+ w1)) by
RLVECT_1:def 3
.= ((u1
+ ((u
+ v)
+ v1))
+ (w
+ w1)) by
RLVECT_1:def 3
.= (((u1
+ v1)
+ (u
+ v))
+ (w
+ w1)) by
RLVECT_1:def 3
.= ((u1
+ v1)
+ ((u
+ v)
+ (w
+ w1))) by
RLVECT_1:def 3
.= ((u1
+ v1)
+ (((u
+ v)
+ w)
+ w1)) by
RLVECT_1:def 3
.= (((u
+ v)
+ w)
+ ((u1
+ v1)
+ w1)) by
RLVECT_1:def 3;
end;
theorem ::
ANPROJ_2:3
Th3: (for w holds ex a, b, c st w
= (((a
* p)
+ (b
* q))
+ (c
* r))) & (for a, b, c st (((a
* p)
+ (b
* q))
+ (c
* r))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ) implies for u, u1 holds ex y st (p,q,y)
are_LinDep & (u,u1,y)
are_LinDep & not y is
zero
proof
assume that
A1: for w holds ex a, b, c st w
= (((a
* p)
+ (b
* q))
+ (c
* r)) and
A2: for a, b, c st (((a
* p)
+ (b
* q))
+ (c
* r))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ;
let u, u1;
consider a, b, c such that
A3: u
= (((a
* p)
+ (b
* q))
+ (c
* r)) by
A1;
consider a1, b1, c1 such that
A4: u1
= (((a1
* p)
+ (b1
* q))
+ (c1
* r)) by
A1;
A5: ((a3
* u)
+ (b3
* u1))
= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (((a3
* c)
+ (b3
* c1))
* r))
proof
(a3
* u)
= ((((a3
* a)
* p)
+ ((a3
* b)
* q))
+ ((a3
* c)
* r)) by
A3,
Lm2;
hence ((a3
* u)
+ (b3
* u1))
= (((((a3
* a)
* p)
+ ((a3
* b)
* q))
+ ((a3
* c)
* r))
+ ((((b3
* a1)
* p)
+ ((b3
* b1)
* q))
+ ((b3
* c1)
* r))) by
A4,
Lm2
.= (((((a3
* a)
* p)
+ ((b3
* a1)
* p))
+ (((a3
* b)
* q)
+ ((b3
* b1)
* q)))
+ (((a3
* c)
* r)
+ ((b3
* c1)
* r))) by
Lm3
.= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
* q)
+ ((b3
* b1)
* q)))
+ (((a3
* c)
* r)
+ ((b3
* c1)
* r))) by
RLVECT_1:def 6
.= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (((a3
* c)
* r)
+ ((b3
* c1)
* r))) by
RLVECT_1:def 6
.= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (((a3
* c)
+ (b3
* c1))
* r)) by
RLVECT_1:def 6;
end;
A6: not q is
zero by
A2,
Th1;
A7:
now
A8:
now
assume not not u1 is
zero;
then u1
= (
0. V);
then (p,q,q)
are_LinDep & (u,u1,q)
are_LinDep by
ANPROJ_1: 10,
ANPROJ_1: 11;
hence thesis by
A6;
end;
A9:
now
assume not not u is
zero;
then u
= (
0. V);
then (p,q,q)
are_LinDep & (u,u1,q)
are_LinDep by
ANPROJ_1: 10,
ANPROJ_1: 11;
hence thesis by
A6;
end;
A10:
now
assume
are_Prop (u,u1);
then (p,q,q)
are_LinDep & (u,u1,q)
are_LinDep by
ANPROJ_1: 11;
hence thesis by
A6;
end;
assume
are_Prop (u,u1) or not not u is
zero or not not u1 is
zero;
hence thesis by
A10,
A9,
A8;
end;
A11: not p is
zero & not
are_Prop (p,q) by
A2,
Th1;
A12:
now
assume that
A13: not
are_Prop (u,u1) and
A14: not u is
zero and
A15: not u1 is
zero and
A16: c
<>
0 ;
A17:
now
set a3 = 1, b3 = (
- (c
* (c1
" )));
set y = ((a3
* u)
+ (b3
* u1));
assume
A18: c1
<>
0 ;
then (c1
" )
<>
0 by
XCMPLX_1: 202;
then
A19: (c
* (c1
" ))
<>
0 by
A16,
XCMPLX_1: 6;
A20: not y is
zero
proof
assume not not y is
zero;
then (
0. V)
= ((1
* u)
+ ((
- (c
* (c1
" )))
* u1))
.= ((1
* u)
+ ((c
* (c1
" ))
* (
- u1))) by
RLVECT_1: 24
.= ((1
* u)
+ (
- ((c
* (c1
" ))
* u1))) by
RLVECT_1: 25;
then (
- (1
* u))
= (
- ((c
* (c1
" ))
* u1)) by
RLVECT_1:def 10;
then (1
* u)
= ((c
* (c1
" ))
* u1) by
RLVECT_1: 18;
hence contradiction by
A13,
A19;
end;
((a3
* c)
+ (b3
* c1))
= (c
+ ((
- c)
* ((c1
" )
* c1)))
.= (c
+ ((
- c)
* 1)) by
A18,
XCMPLX_0:def 7
.=
0 ;
then y
= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (
0
* r)) by
A5
.= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (
0. V)) by
RLVECT_1: 10
.= ((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q)) by
RLVECT_1: 4;
then
A21: (p,q,y)
are_LinDep by
A6,
A11,
ANPROJ_1: 6;
(u,u1,y)
are_LinDep by
A13,
A14,
A15,
ANPROJ_1: 6;
hence thesis by
A20,
A21;
end;
now
set a3 =
0 , b3 = 1;
set y = ((a3
* u)
+ (b3
* u1));
A22: y
= ((
0
* u)
+ u1) by
RLVECT_1:def 8
.= ((
0. V)
+ u1) by
RLVECT_1: 10
.= u1 by
RLVECT_1: 4;
assume c1
=
0 ;
then ((a3
* c)
+ (b3
* c1))
=
0 ;
then y
= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (
0
* r)) by
A5
.= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (
0. V)) by
RLVECT_1: 10
.= ((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q)) by
RLVECT_1: 4;
then
A23: (p,q,y)
are_LinDep by
A6,
A11,
ANPROJ_1: 6;
(u,u1,y)
are_LinDep by
A13,
A14,
A15,
ANPROJ_1: 6;
hence thesis by
A15,
A22,
A23;
end;
hence thesis by
A17;
end;
now
assume that
A24: not
are_Prop (u,u1) and
A25: not u is
zero and
A26: not u1 is
zero and
A27: c
=
0 ;
now
set a3 = 1, b3 =
0 ;
set y = ((a3
* u)
+ (b3
* u1));
A28: y
= (u
+ (
0
* u1)) by
RLVECT_1:def 8
.= (u
+ (
0. V)) by
RLVECT_1: 10
.= u by
RLVECT_1: 4;
((a3
* c)
+ (b3
* c1))
=
0 by
A27;
then y
= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (
0
* r)) by
A5
.= (((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q))
+ (
0. V)) by
RLVECT_1: 10
.= ((((a3
* a)
+ (b3
* a1))
* p)
+ (((a3
* b)
+ (b3
* b1))
* q)) by
RLVECT_1: 4;
then
A29: (p,q,y)
are_LinDep by
A6,
A11,
ANPROJ_1: 6;
(u,u1,y)
are_LinDep by
A24,
A25,
A26,
ANPROJ_1: 6;
hence thesis by
A25,
A28,
A29;
end;
hence thesis;
end;
hence thesis by
A7,
A12;
end;
Lm4: (a
* ((((b
* v)
+ (c
* w))
+ (d
* u))
+ (d1
* y)))
= (((((a
* b)
* v)
+ ((a
* c)
* w))
+ ((a
* d)
* u))
+ ((a
* d1)
* y))
proof
thus (((((a
* b)
* v)
+ ((a
* c)
* w))
+ ((a
* d)
* u))
+ ((a
* d1)
* y))
= ((((a
* (b
* v))
+ ((a
* c)
* w))
+ ((a
* d)
* u))
+ ((a
* d1)
* y)) by
RLVECT_1:def 7
.= ((((a
* (b
* v))
+ (a
* (c
* w)))
+ ((a
* d)
* u))
+ ((a
* d1)
* y)) by
RLVECT_1:def 7
.= (((a
* ((b
* v)
+ (c
* w)))
+ ((a
* d)
* u))
+ ((a
* d1)
* y)) by
RLVECT_1:def 5
.= (((a
* ((b
* v)
+ (c
* w)))
+ (a
* (d
* u)))
+ ((a
* d1)
* y)) by
RLVECT_1:def 7
.= (((a
* ((b
* v)
+ (c
* w)))
+ (a
* (d
* u)))
+ (a
* (d1
* y))) by
RLVECT_1:def 7
.= ((a
* (((b
* v)
+ (c
* w))
+ (d
* u)))
+ (a
* (d1
* y))) by
RLVECT_1:def 5
.= (a
* ((((b
* v)
+ (c
* w))
+ (d
* u))
+ (d1
* y))) by
RLVECT_1:def 5;
end;
Lm5: ((((u
+ v)
+ w)
+ y)
+ (((u1
+ v1)
+ w1)
+ y1))
= ((((u
+ u1)
+ (v
+ v1))
+ (w
+ w1))
+ (y
+ y1))
proof
thus ((((u
+ u1)
+ (v
+ v1))
+ (w
+ w1))
+ (y
+ y1))
= (((u1
+ (u
+ (v
+ v1)))
+ (w
+ w1))
+ (y
+ y1)) by
RLVECT_1:def 3
.= (((u1
+ ((u
+ v)
+ v1))
+ (w
+ w1))
+ (y
+ y1)) by
RLVECT_1:def 3
.= ((((u1
+ v1)
+ (u
+ v))
+ (w
+ w1))
+ (y
+ y1)) by
RLVECT_1:def 3
.= (((u1
+ v1)
+ ((u
+ v)
+ (w
+ w1)))
+ (y
+ y1)) by
RLVECT_1:def 3
.= (((u1
+ v1)
+ (((u
+ v)
+ w)
+ w1))
+ (y
+ y1)) by
RLVECT_1:def 3
.= ((((u1
+ v1)
+ w1)
+ ((u
+ v)
+ w))
+ (y
+ y1)) by
RLVECT_1:def 3
.= (((u
+ v)
+ w)
+ (((u1
+ v1)
+ w1)
+ (y
+ y1))) by
RLVECT_1:def 3
.= (((u
+ v)
+ w)
+ (y
+ (y1
+ ((u1
+ v1)
+ w1)))) by
RLVECT_1:def 3
.= ((((u
+ v)
+ w)
+ y)
+ (((u1
+ v1)
+ w1)
+ y1)) by
RLVECT_1:def 3;
end;
Lm6: (a
* (((b
* v)
+ (c
* w))
+ (d
* u)))
= ((((a
* b)
* v)
+ ((a
* c)
* w))
+ ((a
* d)
* u))
proof
thus ((((a
* b)
* v)
+ ((a
* c)
* w))
+ ((a
* d)
* u))
= (((a
* (b
* v))
+ ((a
* c)
* w))
+ ((a
* d)
* u)) by
RLVECT_1:def 7
.= (((a
* (b
* v))
+ (a
* (c
* w)))
+ ((a
* d)
* u)) by
RLVECT_1:def 7
.= ((a
* ((b
* v)
+ (c
* w)))
+ ((a
* d)
* u)) by
RLVECT_1:def 5
.= ((a
* ((b
* v)
+ (c
* w)))
+ (a
* (d
* u))) by
RLVECT_1:def 7
.= (a
* (((b
* v)
+ (c
* w))
+ (d
* u))) by
RLVECT_1:def 5;
end;
Lm7: y
= ((a1
* p)
+ (b1
* w)) & w
= (((a
* p)
+ (b
* q))
+ (c
* r)) implies y
= ((((a1
+ (b1
* a))
* p)
+ ((b1
* b)
* q))
+ ((b1
* c)
* r))
proof
assume y
= ((a1
* p)
+ (b1
* w)) & w
= (((a
* p)
+ (b
* q))
+ (c
* r));
hence y
= ((a1
* p)
+ ((((b1
* a)
* p)
+ ((b1
* b)
* q))
+ ((b1
* c)
* r))) by
Lm6
.= ((a1
* p)
+ (((b1
* a)
* p)
+ (((b1
* b)
* q)
+ ((b1
* c)
* r)))) by
RLVECT_1:def 3
.= (((a1
* p)
+ ((b1
* a)
* p))
+ (((b1
* b)
* q)
+ ((b1
* c)
* r))) by
RLVECT_1:def 3
.= (((a1
+ (b1
* a))
* p)
+ (((b1
* b)
* q)
+ ((b1
* c)
* r))) by
RLVECT_1:def 6
.= ((((a1
+ (b1
* a))
* p)
+ ((b1
* b)
* q))
+ ((b1
* c)
* r)) by
RLVECT_1:def 3;
end;
theorem ::
ANPROJ_2:4
Th4: (for w holds ex a, b, c, d st w
= ((((a
* p)
+ (b
* q))
+ (c
* r))
+ (d
* s))) & (for a, b, c, d st ((((a
* p)
+ (b
* q))
+ (c
* r))
+ (d
* s))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 & d
=
0 ) implies for u, v st not u is
zero & not v is
zero holds ex y, w st (u,v,w)
are_LinDep & (q,r,y)
are_LinDep & (p,w,y)
are_LinDep & not y is
zero & not w is
zero
proof
assume that
A1: for w holds ex a, b, c, d st w
= ((((a
* p)
+ (b
* q))
+ (c
* r))
+ (d
* s)) and
A2: for a, b, c, d st ((((a
* p)
+ (b
* q))
+ (c
* r))
+ (d
* s))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 & d
=
0 ;
A3: not p is
zero by
A2,
Th2;
let u, v such that
A4: not u is
zero and
A5: not v is
zero;
consider a1, b1, c1, d1 such that
A6: u
= ((((a1
* p)
+ (b1
* q))
+ (c1
* r))
+ (d1
* s)) by
A1;
not (p,q,r)
are_LinDep by
A2,
Th2;
then
A7: not
are_Prop (q,r) by
ANPROJ_1: 11;
A8: not q is
zero by
A2,
Th2;
consider a2, b2, c2, d2 such that
A9: v
= ((((a2
* p)
+ (b2
* q))
+ (c2
* r))
+ (d2
* s)) by
A1;
A10: ((a3
* u)
+ (b3
* v))
= ((((((a3
* a1)
+ (b3
* a2))
* p)
+ (((a3
* b1)
+ (b3
* b2))
* q))
+ (((a3
* c1)
+ (b3
* c2))
* r))
+ (((a3
* d1)
+ (b3
* d2))
* s))
proof
(a3
* u)
= (((((a3
* a1)
* p)
+ ((a3
* b1)
* q))
+ ((a3
* c1)
* r))
+ ((a3
* d1)
* s)) by
A6,
Lm4;
hence ((a3
* u)
+ (b3
* v))
= ((((((a3
* a1)
* p)
+ ((a3
* b1)
* q))
+ ((a3
* c1)
* r))
+ ((a3
* d1)
* s))
+ (((((b3
* a2)
* p)
+ ((b3
* b2)
* q))
+ ((b3
* c2)
* r))
+ ((b3
* d2)
* s))) by
A9,
Lm4
.= ((((((a3
* a1)
* p)
+ ((b3
* a2)
* p))
+ (((a3
* b1)
* q)
+ ((b3
* b2)
* q)))
+ (((a3
* c1)
* r)
+ ((b3
* c2)
* r)))
+ (((a3
* d1)
* s)
+ ((b3
* d2)
* s))) by
Lm5
.= ((((((a3
* a1)
+ (b3
* a2))
* p)
+ (((a3
* b1)
* q)
+ ((b3
* b2)
* q)))
+ (((a3
* c1)
* r)
+ ((b3
* c2)
* r)))
+ (((a3
* d1)
* s)
+ ((b3
* d2)
* s))) by
RLVECT_1:def 6
.= ((((((a3
* a1)
+ (b3
* a2))
* p)
+ (((a3
* b1)
+ (b3
* b2))
* q))
+ (((a3
* c1)
* r)
+ ((b3
* c2)
* r)))
+ (((a3
* d1)
* s)
+ ((b3
* d2)
* s))) by
RLVECT_1:def 6
.= ((((((a3
* a1)
+ (b3
* a2))
* p)
+ (((a3
* b1)
+ (b3
* b2))
* q))
+ (((a3
* c1)
+ (b3
* c2))
* r))
+ (((a3
* d1)
* s)
+ ((b3
* d2)
* s))) by
RLVECT_1:def 6
.= ((((((a3
* a1)
+ (b3
* a2))
* p)
+ (((a3
* b1)
+ (b3
* b2))
* q))
+ (((a3
* c1)
+ (b3
* c2))
* r))
+ (((a3
* d1)
+ (b3
* d2))
* s)) by
RLVECT_1:def 6;
end;
A11: not r is
zero by
A2,
Th2;
A12:
now
assume
A13: not
are_Prop (u,v);
ex w st ( not w is
zero & (u,v,w)
are_LinDep & ex A,B,C be
Real st w
= (((A
* p)
+ (B
* q))
+ (C
* r)))
proof
A14:
now
set a3 = (
- (d2
* (d1
" ))), b3 = 1, w = ((a3
* u)
+ (b3
* v));
assume that
A15: d1
<>
0 and
A16: d2
<>
0 ;
set A = ((a3
* a1)
+ (b3
* a2)), B = ((a3
* b1)
+ (b3
* b2)), C = ((a3
* c1)
+ (b3
* c2));
A17: A
<>
0 or B
<>
0 or C
<>
0
proof
A18: (d2
* (d1
" ))
<>
0
proof
assume not thesis;
then (d1
" )
=
0 by
A16,
XCMPLX_1: 6;
hence contradiction by
A15,
XCMPLX_1: 202;
end;
A19: ((d2
* (d1
" ))
* d1)
= (d2
* ((d1
" )
* d1))
.= (d2
* 1) by
A15,
XCMPLX_0:def 7
.= d2;
assume
A20: not thesis;
then
A21: (
- (
- ((d2
* (d1
" ))
* c1)))
= c2;
(
- (
- ((d2
* (d1
" ))
* a1)))
= a2 & (
- (
- ((d2
* (d1
" ))
* b1)))
= b2 by
A20;
then ((d2
* (d1
" ))
* u)
= v by
A6,
A9,
A21,
A19,
Lm4;
hence contradiction by
A13,
A18,
ANPROJ_1: 1;
end;
((a3
* d1)
+ (b3
* d2))
= ((
- (d2
* ((d1
" )
* d1)))
+ d2)
.= ((
- (d2
* 1))
+ d2) by
A15,
XCMPLX_0:def 7
.=
0 ;
then
A22: w
= ((((((a3
* a1)
+ (b3
* a2))
* p)
+ (((a3
* b1)
+ (b3
* b2))
* q))
+ (((a3
* c1)
+ (b3
* c2))
* r))
+ (
0
* s)) by
A10
.= ((((((a3
* a1)
+ (b3
* a2))
* p)
+ (((a3
* b1)
+ (b3
* b2))
* q))
+ (((a3
* c1)
+ (b3
* c2))
* r))
+ (
0. V)) by
RLVECT_1: 10
.= (((((a3
* a1)
+ (b3
* a2))
* p)
+ (((a3
* b1)
+ (b3
* b2))
* q))
+ (((a3
* c1)
+ (b3
* c2))
* r)) by
RLVECT_1: 4;
then
A23: w
= ((((A
* p)
+ (B
* q))
+ (C
* r))
+ (
0. V)) by
RLVECT_1: 4
.= ((((A
* p)
+ (B
* q))
+ (C
* r))
+ (
0
* s)) by
RLVECT_1: 10;
A24: not w is
zero by
A2,
A23,
A17;
(u,v,w)
are_LinDep by
A4,
A5,
A13,
ANPROJ_1: 6;
hence thesis by
A22,
A24;
end;
A25:
now
assume
A26: d2
=
0 ;
take w = v;
A27: (u,v,w)
are_LinDep by
ANPROJ_1: 11;
w
= ((((a2
* p)
+ (b2
* q))
+ (c2
* r))
+ (
0. V)) by
A9,
A26,
RLVECT_1: 10
.= (((a2
* p)
+ (b2
* q))
+ (c2
* r)) by
RLVECT_1: 4;
hence thesis by
A5,
A27;
end;
now
assume
A28: d1
=
0 ;
take w = u;
A29: (u,v,w)
are_LinDep by
ANPROJ_1: 11;
w
= ((((a1
* p)
+ (b1
* q))
+ (c1
* r))
+ (
0. V)) by
A6,
A28,
RLVECT_1: 10
.= (((a1
* p)
+ (b1
* q))
+ (c1
* r)) by
RLVECT_1: 4;
hence thesis by
A4,
A29;
end;
hence thesis by
A25,
A14;
end;
then
consider w such that
A30: not w is
zero and
A31: (u,v,w)
are_LinDep and
A32: ex A,B,C be
Real st w
= (((A
* p)
+ (B
* q))
+ (C
* r));
consider A,B,C be
Real such that
A33: w
= (((A
* p)
+ (B
* q))
+ (C
* r)) by
A32;
A34:
now
set b = 1, a = (
- A);
set y = ((a
* p)
+ (b
* w));
A35: y
= ((((a
+ (b
* A))
* p)
+ ((b
* B)
* q))
+ ((b
* C)
* r)) by
A33,
Lm7
.= (((
0. V)
+ ((1
* B)
* q))
+ ((1
* C)
* r)) by
RLVECT_1: 10
.= ((B
* q)
+ (C
* r)) by
RLVECT_1: 4;
assume
A36: not
are_Prop (p,w);
then
A37: (p,w,y)
are_LinDep by
A3,
A30,
ANPROJ_1: 6;
A38: B
<>
0 or C
<>
0
proof
assume not thesis;
then
A39: w
= (((A
* p)
+ (
0. V))
+ (
0
* r)) by
A33,
RLVECT_1: 10
.= (((A
* p)
+ (
0. V))
+ (
0. V)) by
RLVECT_1: 10
.= ((A
* p)
+ (
0. V)) by
RLVECT_1: 4
.= (A
* p) by
RLVECT_1: 4;
A
<>
0 by
A39,
RLVECT_1: 10,
A30;
hence contradiction by
A36,
A39,
ANPROJ_1: 1;
end;
A40: not y is
zero
proof
assume not thesis;
then (
0. V)
= ((B
* q)
+ (C
* r)) by
A35
.= (((
0. V)
+ (B
* q))
+ (C
* r)) by
RLVECT_1: 4
.= (((
0
* p)
+ (B
* q))
+ (C
* r)) by
RLVECT_1: 10
.= ((((
0
* p)
+ (B
* q))
+ (C
* r))
+ (
0. V)) by
RLVECT_1: 4
.= ((((
0
* p)
+ (B
* q))
+ (C
* r))
+ (
0
* s)) by
RLVECT_1: 10;
hence contradiction by
A2,
A38;
end;
(q,r,y)
are_LinDep by
A8,
A11,
A7,
A35,
ANPROJ_1: 6;
hence thesis by
A30,
A31,
A40,
A37;
end;
now
assume
are_Prop (p,w);
then (q,r,q)
are_LinDep & (p,w,q)
are_LinDep by
ANPROJ_1: 11;
hence thesis by
A8,
A30,
A31;
end;
hence thesis by
A34;
end;
now
assume
are_Prop (u,v);
then
A41: (u,v,p)
are_LinDep by
ANPROJ_1: 11;
(q,r,q)
are_LinDep & (p,p,q)
are_LinDep by
ANPROJ_1: 11;
hence thesis by
A3,
A8,
A41;
end;
hence thesis by
A12;
end;
theorem ::
ANPROJ_2:5
Th5: (for a, b, a1, b1 st ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ) implies not ex y st not y is
zero & (u,v,y)
are_LinDep & (u1,v1,y)
are_LinDep
proof
assume
A1: for a, b, a1, b1 st ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ;
then
A2: not
are_Prop (u,v) by
Th2;
assume not thesis;
then
consider y such that
A3: not y is
zero and
A4: (u,v,y)
are_LinDep and
A5: (u1,v1,y)
are_LinDep ;
not u is
zero & not v is
zero by
A1,
Th2;
then
consider a, b such that
A6: y
= ((a
* u)
+ (b
* v)) by
A4,
A2,
ANPROJ_1: 6;
A7: not
are_Prop (u1,v1) by
A1,
Th2;
not u1 is
zero & not v1 is
zero by
A1,
Th2;
then
consider a1, b1 such that
A8: y
= ((a1
* u1)
+ (b1
* v1)) by
A5,
A7,
ANPROJ_1: 6;
(
0. V)
= (((a
* u)
+ (b
* v))
- ((a1
* u1)
+ (b1
* v1))) by
A6,
A8,
RLVECT_1: 15
.= (((a
* u)
+ (b
* v))
+ ((
- 1)
* ((a1
* u1)
+ (b1
* v1)))) by
RLVECT_1: 16
.= (((a
* u)
+ (b
* v))
+ (((
- 1)
* (a1
* u1))
+ ((
- 1)
* (b1
* v1)))) by
RLVECT_1:def 5
.= (((a
* u)
+ (b
* v))
+ ((((
- 1)
* a1)
* u1)
+ ((
- 1)
* (b1
* v1)))) by
RLVECT_1:def 7
.= (((a
* u)
+ (b
* v))
+ ((((
- 1)
* a1)
* u1)
+ (((
- 1)
* b1)
* v1))) by
RLVECT_1:def 7
.= ((((a
* u)
+ (b
* v))
+ (((
- 1)
* a1)
* u1))
+ (((
- 1)
* b1)
* v1)) by
RLVECT_1:def 3;
then a
=
0 & b
=
0 by
A1;
then y
= ((
0. V)
+ (
0
* v)) by
A6,
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
hence contradiction by
A3;
end;
definition
let V, u, v, w;
::
ANPROJ_2:def1
pred u,v,w
are_Prop_Vect means not u is
zero & not v is
zero & not w is
zero;
end
definition
let V, u, v, w, u1, v1, w1;
::
ANPROJ_2:def2
pred u,v,w,u1,v1,w1
lie_on_a_triangle means (u,v,w1)
are_LinDep & (u,w,v1)
are_LinDep & (v,w,u1)
are_LinDep ;
end
definition
let V, o, u, v, w, u2, v2, w2;
::
ANPROJ_2:def3
pred o,u,v,w,u2,v2,w2
are_perspective means (o,u,u2)
are_LinDep & (o,v,v2)
are_LinDep & (o,w,w2)
are_LinDep ;
end
Lm8: (
- (a
* o))
= ((
- a)
* o)
proof
thus (
- (a
* o))
= (a
* (
- o)) by
RLVECT_1: 25
.= ((
- a)
* o) by
RLVECT_1: 24;
end;
theorem ::
ANPROJ_2:6
Th6: (o,u,u2)
are_LinDep & not
are_Prop (o,u) & not
are_Prop (o,u2) & not
are_Prop (u,u2) & (o,u,u2)
are_Prop_Vect implies (ex a1, b1 st (b1
* u2)
= (o
+ (a1
* u)) & a1
<>
0 & b1
<>
0 ) & ex a2, c2 st u2
= ((c2
* o)
+ (a2
* u)) & c2
<>
0 & a2
<>
0
proof
assume that
A1: (o,u,u2)
are_LinDep and
A2: not
are_Prop (o,u) and
A3: not
are_Prop (o,u2) and
A4: not
are_Prop (u,u2) and
A5: (o,u,u2)
are_Prop_Vect ;
consider a, b, c such that
A6: (((a
* o)
+ (b
* u))
+ (c
* u2))
= (
0. V) and
A7: a
<>
0 or b
<>
0 or c
<>
0 by
A1;
not u is
zero by
A5;
then
A8: u
<> (
0. V);
not u2 is
zero by
A5;
then
A9: u2
<> (
0. V);
not o is
zero by
A5;
then
A10: o
<> (
0. V);
A11: a
<>
0 & b
<>
0 & c
<>
0
proof
A12:
now
assume
A13: b
=
0 ;
then (
0. V)
= (((a
* o)
+ (
0. V))
+ (c
* u2)) by
A6,
RLVECT_1: 10
.= ((a
* o)
+ (c
* u2)) by
RLVECT_1: 4;
then (a
* o)
= (
- (c
* u2)) by
RLVECT_1: 6
.= (c
* (
- u2)) by
RLVECT_1: 25;
then
A14: (a
* o)
= ((
- c)
* u2) by
RLVECT_1: 24;
A15: a
<>
0 & c
<>
0
proof
A16:
now
assume
A17: c
=
0 ;
then (
0. V)
= (((a
* o)
+ (
0
* u))
+ (
0. V)) by
A6,
A13,
RLVECT_1: 10
.= ((a
* o)
+ (
0
* u)) by
RLVECT_1: 4
.= ((a
* o)
+ (
0. V)) by
RLVECT_1: 10
.= (a
* o) by
RLVECT_1: 4;
hence contradiction by
A7,
A10,
A13,
A17,
RLVECT_1: 11;
end;
A18:
now
assume
A19: a
=
0 ;
then (
0. V)
= (((
0. V)
+ (
0
* u))
+ (c
* u2)) by
A6,
A13,
RLVECT_1: 10
.= ((
0
* u)
+ (c
* u2)) by
RLVECT_1: 4
.= ((
0. V)
+ (c
* u2)) by
RLVECT_1: 10
.= (c
* u2) by
RLVECT_1: 4;
hence contradiction by
A7,
A9,
A13,
A19,
RLVECT_1: 11;
end;
assume not thesis;
hence contradiction by
A18,
A16;
end;
then (
- c)
<>
0 ;
hence contradiction by
A3,
A15,
A14;
end;
A20:
now
assume
A21: a
=
0 ;
then (
0. V)
= (((
0. V)
+ (b
* u))
+ (c
* u2)) by
A6,
RLVECT_1: 10
.= ((b
* u)
+ (c
* u2)) by
RLVECT_1: 4;
then (b
* u)
= (
- (c
* u2)) by
RLVECT_1: 6
.= (c
* (
- u2)) by
RLVECT_1: 25;
then
A22: (b
* u)
= ((
- c)
* u2) by
RLVECT_1: 24;
A23: b
<>
0 & c
<>
0
proof
A24:
now
assume
A25: c
=
0 ;
then (
0. V)
= (((
0. V)
+ (b
* u))
+ (
0
* u2)) by
A6,
A21,
RLVECT_1: 10
.= ((b
* u)
+ (
0
* u2)) by
RLVECT_1: 4
.= ((b
* u)
+ (
0. V)) by
RLVECT_1: 10
.= (b
* u) by
RLVECT_1: 4;
hence contradiction by
A7,
A8,
A21,
A25,
RLVECT_1: 11;
end;
A26:
now
assume
A27: b
=
0 ;
then (
0. V)
= (((
0. V)
+ (
0
* u))
+ (c
* u2)) by
A6,
A21,
RLVECT_1: 10
.= ((
0
* u)
+ (c
* u2)) by
RLVECT_1: 4
.= ((
0. V)
+ (c
* u2)) by
RLVECT_1: 10
.= (c
* u2) by
RLVECT_1: 4;
hence contradiction by
A7,
A9,
A21,
A27,
RLVECT_1: 11;
end;
assume not thesis;
hence contradiction by
A26,
A24;
end;
then (
- c)
<>
0 ;
hence contradiction by
A4,
A23,
A22;
end;
A28:
now
assume
A29: c
=
0 ;
then (
0. V)
= (((a
* o)
+ (b
* u))
+ (
0. V)) by
A6,
RLVECT_1: 10
.= ((a
* o)
+ (b
* u)) by
RLVECT_1: 4;
then (a
* o)
= (
- (b
* u)) by
RLVECT_1: 6
.= (b
* (
- u)) by
RLVECT_1: 25;
then
A30: (a
* o)
= ((
- b)
* u) by
RLVECT_1: 24;
A31: a
<>
0 & b
<>
0
proof
A32:
now
assume
A33: b
=
0 ;
then (
0. V)
= (((a
* o)
+ (
0
* u))
+ (
0. V)) by
A6,
A29,
RLVECT_1: 10
.= ((a
* o)
+ (
0
* u)) by
RLVECT_1: 4
.= ((a
* o)
+ (
0. V)) by
RLVECT_1: 10
.= (a
* o) by
RLVECT_1: 4;
hence contradiction by
A7,
A10,
A29,
A33,
RLVECT_1: 11;
end;
A34:
now
assume
A35: a
=
0 ;
then (
0. V)
= (((
0. V)
+ (b
* u))
+ (
0
* u2)) by
A6,
A29,
RLVECT_1: 10
.= ((b
* u)
+ (
0
* u2)) by
RLVECT_1: 4
.= ((b
* u)
+ (
0. V)) by
RLVECT_1: 10
.= (b
* u) by
RLVECT_1: 4;
hence contradiction by
A7,
A8,
A29,
A35,
RLVECT_1: 11;
end;
assume not thesis;
hence contradiction by
A34,
A32;
end;
then (
- b)
<>
0 ;
hence contradiction by
A2,
A31,
A30;
end;
assume not thesis;
hence contradiction by
A20,
A12,
A28;
end;
then
A36: (c
" )
<>
0 by
XCMPLX_1: 202;
(a
" )
<>
0 by
A11,
XCMPLX_1: 202;
then
A37: ((a
" )
* b)
<>
0 & (
- ((a
" )
* c))
<>
0 by
A11,
XCMPLX_1: 6;
((a
" )
* (
- (c
* u2)))
= ((a
" )
* ((a
* o)
+ (b
* u))) by
A6,
RLVECT_1: 6
.= (((a
" )
* (a
* o))
+ ((a
" )
* (b
* u))) by
RLVECT_1:def 5
.= ((((a
" )
* a)
* o)
+ ((a
" )
* (b
* u))) by
RLVECT_1:def 7
.= ((((a
" )
* a)
* o)
+ (((a
" )
* b)
* u)) by
RLVECT_1:def 7
.= ((1
* o)
+ (((a
" )
* b)
* u)) by
A11,
XCMPLX_0:def 7
.= (o
+ (((a
" )
* b)
* u)) by
RLVECT_1:def 8;
then (o
+ (((a
" )
* b)
* u))
= ((a
" )
* (c
* (
- u2))) by
RLVECT_1: 25
.= (((a
" )
* c)
* (
- u2)) by
RLVECT_1:def 7
.= ((
- ((a
" )
* c))
* u2) by
RLVECT_1: 24;
hence ex a1, b1 st (b1
* u2)
= (o
+ (a1
* u)) & a1
<>
0 & b1
<>
0 by
A37;
(
- b)
<>
0 by
A11;
then
A38: ((c
" )
* (
- b))
<>
0 by
A36,
XCMPLX_1: 6;
(c
* u2)
= (
- ((a
* o)
+ (b
* u))) by
A6,
RLVECT_1:def 10
.= ((
- (a
* o))
+ (
- (b
* u))) by
RLVECT_1: 31
.= (((
- a)
* o)
+ (
- (b
* u))) by
Lm8
.= (((
- a)
* o)
+ ((
- b)
* u)) by
Lm8;
then ((c
" )
* (c
* u2))
= (((c
" )
* ((
- a)
* o))
+ ((c
" )
* ((
- b)
* u))) by
RLVECT_1:def 5
.= ((((c
" )
* (
- a))
* o)
+ ((c
" )
* ((
- b)
* u))) by
RLVECT_1:def 7
.= ((((c
" )
* (
- a))
* o)
+ (((c
" )
* (
- b))
* u)) by
RLVECT_1:def 7;
then
A39: ((((c
" )
* (
- a))
* o)
+ (((c
" )
* (
- b))
* u))
= (((c
" )
* c)
* u2) by
RLVECT_1:def 7
.= (1
* u2) by
A11,
XCMPLX_0:def 7
.= u2 by
RLVECT_1:def 8;
(
- a)
<>
0 by
A11;
then ((c
" )
* (
- a))
<>
0 by
A36,
XCMPLX_1: 6;
hence thesis by
A39,
A38;
end;
theorem ::
ANPROJ_2:7
Th7: (p,q,r)
are_LinDep & not
are_Prop (p,q) & (p,q,r)
are_Prop_Vect implies ex a, b st r
= ((a
* p)
+ (b
* q))
proof
assume that
A1: (p,q,r)
are_LinDep and
A2: not
are_Prop (p,q) and
A3: (p,q,r)
are_Prop_Vect ;
consider a, b, c such that
A4: (((a
* p)
+ (b
* q))
+ (c
* r))
= (
0. V) and
A5: a
<>
0 or b
<>
0 or c
<>
0 by
A1;
not q is
zero by
A3;
then
A6: q
<> (
0. V);
not p is
zero by
A3;
then
A7: p
<> (
0. V);
A8: c
<>
0
proof
assume
A9: not thesis;
then (
0. V)
= (((a
* p)
+ (b
* q))
+ (
0. V)) by
A4,
RLVECT_1: 10
.= ((a
* p)
+ (b
* q)) by
RLVECT_1: 4;
then
A10: (a
* p)
= (
- (b
* q)) by
RLVECT_1: 6
.= ((
- b)
* q) by
Lm8;
A11: a
<>
0 & b
<>
0
proof
A12:
now
assume
A13: b
=
0 ;
then (
0. V)
= (((a
* p)
+ (
0. V))
+ (
0
* r)) by
A4,
A9,
RLVECT_1: 10
.= (((a
* p)
+ (
0. V))
+ (
0. V)) by
RLVECT_1: 10
.= ((a
* p)
+ (
0. V)) by
RLVECT_1: 4
.= (a
* p) by
RLVECT_1: 4;
hence contradiction by
A7,
A5,
A9,
A13,
RLVECT_1: 11;
end;
A14:
now
assume
A15: a
=
0 ;
then (
0. V)
= (((
0. V)
+ (b
* q))
+ (
0
* r)) by
A4,
A9,
RLVECT_1: 10
.= (((
0. V)
+ (b
* q))
+ (
0. V)) by
RLVECT_1: 10
.= ((b
* q)
+ (
0. V)) by
RLVECT_1: 4
.= (b
* q) by
RLVECT_1: 4;
hence contradiction by
A6,
A5,
A9,
A15,
RLVECT_1: 11;
end;
assume not thesis;
hence contradiction by
A14,
A12;
end;
then (
- b)
<>
0 ;
hence contradiction by
A2,
A11,
A10;
end;
(c
* r)
= (
- ((a
* p)
+ (b
* q))) by
A4,
RLVECT_1:def 10
.= ((
- (a
* p))
+ (
- (b
* q))) by
RLVECT_1: 31
.= (((
- a)
* p)
+ (
- (b
* q))) by
Lm8
.= (((
- a)
* p)
+ ((
- b)
* q)) by
Lm8;
then ((c
" )
* (c
* r))
= (((c
" )
* ((
- a)
* p))
+ ((c
" )
* ((
- b)
* q))) by
RLVECT_1:def 5
.= ((((c
" )
* (
- a))
* p)
+ ((c
" )
* ((
- b)
* q))) by
RLVECT_1:def 7
.= ((((c
" )
* (
- a))
* p)
+ (((c
" )
* (
- b))
* q)) by
RLVECT_1:def 7;
then ((((c
" )
* (
- a))
* p)
+ (((c
" )
* (
- b))
* q))
= (((c
" )
* c)
* r) by
RLVECT_1:def 7
.= (1
* r) by
A8,
XCMPLX_0:def 7
.= r by
RLVECT_1:def 8;
hence thesis;
end;
Lm9: (b1
* u2)
= w2 & b1
<>
0 implies
are_Prop (u2,w2)
proof
assume that
A1: (b1
* u2)
= w2 and
A2: b1
<>
0 ;
(b1
* u2)
= (1
* w2) by
A1,
RLVECT_1:def 8;
hence thesis by
A2;
end;
Lm10: q
= (o
+ (a
* p)) & r
= (o
+ (b
* s)) &
are_Prop (q,r) & a
<>
0 implies (o,p,s)
are_LinDep
proof
assume that
A1: q
= (o
+ (a
* p)) & r
= (o
+ (b
* s)) &
are_Prop (q,r) and
A2: a
<>
0 ;
consider A be
Real such that A
<>
0 and
A3: (o
+ (a
* p))
= (A
* (o
+ (b
* s))) by
A1,
ANPROJ_1: 1;
(o
+ (a
* p))
= ((A
* o)
+ (A
* (b
* s))) by
A3,
RLVECT_1:def 5
.= ((A
* o)
+ ((A
* b)
* s)) by
RLVECT_1:def 7;
then ((
- (A
* o))
+ (o
+ (a
* p)))
= (((
- (A
* o))
+ (A
* o))
+ ((A
* b)
* s)) by
RLVECT_1:def 3
.= ((
0. V)
+ ((A
* b)
* s)) by
RLVECT_1: 5
.= ((A
* b)
* s) by
RLVECT_1: 4;
then (((
- (A
* o))
+ o)
+ (a
* p))
= ((A
* b)
* s) by
RLVECT_1:def 3;
then ((A
* b)
* s)
= ((((
- A)
* o)
+ o)
+ (a
* p)) by
Lm8
.= ((((
- A)
* o)
+ (1
* o))
+ (a
* p)) by
RLVECT_1:def 8
.= ((((
- A)
+ 1)
* o)
+ (a
* p)) by
RLVECT_1:def 6;
then (((((
- A)
+ 1)
* o)
+ (a
* p))
+ (
- ((A
* b)
* s)))
= (
0. V) by
RLVECT_1: 5;
then (
0. V)
= (((((
- A)
+ 1)
* o)
+ (a
* p))
+ ((
- (A
* b))
* s)) by
Lm8;
hence thesis by
A2;
end;
Lm11: (a
* p)
= q & a
<>
0 & not p is
zero implies not q is
zero by
RLVECT_1: 11;
Lm12: for A,B be
Real holds (r
= ((A
* u2)
+ (B
* v2)) & u2
= (o
+ (a1
* u)) & v2
= (o
+ (a2
* v)) implies r
= ((((A
+ B)
* o)
+ ((A
* a1)
* u))
+ ((B
* a2)
* v)))
proof
let A,B be
Real;
assume r
= ((A
* u2)
+ (B
* v2)) & u2
= (o
+ (a1
* u)) & v2
= (o
+ (a2
* v));
hence r
= (((A
* o)
+ (A
* (a1
* u)))
+ (B
* (o
+ (a2
* v)))) by
RLVECT_1:def 5
.= (((A
* o)
+ (A
* (a1
* u)))
+ ((B
* o)
+ (B
* (a2
* v)))) by
RLVECT_1:def 5
.= (((A
* o)
+ ((A
* a1)
* u))
+ ((B
* o)
+ (B
* (a2
* v)))) by
RLVECT_1:def 7
.= (((A
* o)
+ ((A
* a1)
* u))
+ ((B
* o)
+ ((B
* a2)
* v))) by
RLVECT_1:def 7
.= ((((A
* o)
+ ((A
* a1)
* u))
+ (B
* o))
+ ((B
* a2)
* v)) by
RLVECT_1:def 3
.= ((((A
* o)
+ (B
* o))
+ ((A
* a1)
* u))
+ ((B
* a2)
* v)) by
RLVECT_1:def 3
.= ((((A
+ B)
* o)
+ ((A
* a1)
* u))
+ ((B
* a2)
* v)) by
RLVECT_1:def 6;
end;
Lm13: r
= ((a
* p)
+ (b
* q)) implies r
= (((
0
* o)
+ (a
* p))
+ (b
* q))
proof
assume r
= ((a
* p)
+ (b
* q));
hence r
= (((
0. V)
+ (a
* p))
+ (b
* q)) by
RLVECT_1: 4
.= (((
0
* o)
+ (a
* p))
+ (b
* q)) by
RLVECT_1: 10;
end;
Lm14: ((
0
* p)
+ (
0
* q))
= (
0. V)
proof
thus ((
0
* p)
+ (
0
* q))
= ((
0. V)
+ (
0
* q)) by
RLVECT_1: 10
.= (
0
* q) by
RLVECT_1: 4
.= (
0. V) by
RLVECT_1: 10;
end;
Lm15: (((
0
* o)
+ ((b
* a2)
* v))
+ (((
- b)
* a3)
* w))
= (b
* ((a2
* v)
- (a3
* w)))
proof
thus (((
0
* o)
+ ((b
* a2)
* v))
+ (((
- b)
* a3)
* w))
= (((
0. V)
+ ((b
* a2)
* v))
+ (((
- b)
* a3)
* w)) by
RLVECT_1: 10
.= (((b
* a2)
* v)
+ (((
- b)
* a3)
* w)) by
RLVECT_1: 4
.= ((b
* (a2
* v))
+ ((b
* (
- a3))
* w)) by
RLVECT_1:def 7
.= ((b
* (a2
* v))
+ (b
* ((
- a3)
* w))) by
RLVECT_1:def 7
.= ((b
* (a2
* v))
+ (b
* (
- (a3
* w)))) by
Lm8
.= (b
* ((a2
* v)
- (a3
* w))) by
RLVECT_1:def 5;
end;
theorem ::
ANPROJ_2:8
Th8: not o is
zero & (u,v,w)
are_Prop_Vect & (u2,v2,w2)
are_Prop_Vect & (u1,v1,w1)
are_Prop_Vect & (o,u,v,w,u2,v2,w2)
are_perspective & not
are_Prop (o,u2) & not
are_Prop (o,v2) & not
are_Prop (o,w2) & not
are_Prop (u,u2) & not
are_Prop (v,v2) & not
are_Prop (w,w2) & not (o,u,v)
are_LinDep & not (o,u,w)
are_LinDep & not (o,v,w)
are_LinDep & (u,v,w,u1,v1,w1)
lie_on_a_triangle & (u2,v2,w2,u1,v1,w1)
lie_on_a_triangle implies (u1,v1,w1)
are_LinDep
proof
assume that
A1: not o is
zero and
A2: (u,v,w)
are_Prop_Vect and
A3: (u2,v2,w2)
are_Prop_Vect and
A4: (u1,v1,w1)
are_Prop_Vect and
A5: (o,u,v,w,u2,v2,w2)
are_perspective and
A6: not
are_Prop (o,u2) and
A7: not
are_Prop (o,v2) and
A8: not
are_Prop (o,w2) and
A9: not
are_Prop (u,u2) and
A10: not
are_Prop (v,v2) and
A11: not
are_Prop (w,w2) and
A12: not (o,u,v)
are_LinDep and
A13: not (o,u,w)
are_LinDep and
A14: not (o,v,w)
are_LinDep and
A15: (u,v,w,u1,v1,w1)
lie_on_a_triangle and
A16: (u2,v2,w2,u1,v1,w1)
lie_on_a_triangle ;
A17: not w is
zero by
A2;
A18: (o,w,w2)
are_LinDep & not
are_Prop (w,o) by
A5,
A13,
ANPROJ_1: 11;
A19: not w2 is
zero by
A3;
then (o,w,w2)
are_Prop_Vect by
A1,
A17;
then
consider a3, b3 such that
A20: (b3
* w2)
= (o
+ (a3
* w)) and a3
<>
0 and
A21: b3
<>
0 by
A8,
A11,
A18,
Th6;
A22: not u is
zero by
A2;
A23: not v is
zero by
A2;
A24: (o,v,v2)
are_LinDep & not
are_Prop (o,v) by
A5,
A12,
ANPROJ_1: 11;
A25: (o,u,u2)
are_LinDep & not
are_Prop (o,u) by
A5,
A12,
ANPROJ_1: 11;
A26: not u2 is
zero by
A3;
then (o,u,u2)
are_Prop_Vect by
A1,
A22;
then
consider a1, b1 such that
A27: (b1
* u2)
= (o
+ (a1
* u)) and
A28: a1
<>
0 and
A29: b1
<>
0 by
A6,
A9,
A25,
Th6;
A30: not v2 is
zero by
A3;
then (o,v,v2)
are_Prop_Vect by
A1,
A23;
then
consider a2, b2 such that
A31: (b2
* v2)
= (o
+ (a2
* v)) and
A32: a2
<>
0 and
A33: b2
<>
0 by
A7,
A10,
A24,
Th6;
set u29 = (o
+ (a1
* u)), v29 = (o
+ (a2
* v)), w29 = (o
+ (a3
* w));
A34:
are_Prop (v2,v29) by
A31,
A33,
Lm9;
A35: not v29 is
zero by
A30,
A31,
A33,
Lm11;
A36:
are_Prop (w2,w29) by
A20,
A21,
Lm9;
A37: (u,v,w1)
are_LinDep & not
are_Prop (u,v) by
A12,
A15,
ANPROJ_1: 12;
A38: not w1 is
zero by
A4;
then (u,v,w1)
are_Prop_Vect by
A22,
A23;
then
consider c3, d3 such that
A39: w1
= ((c3
* u)
+ (d3
* v)) by
A37,
Th7;
A40:
are_Prop (u2,u29) by
A27,
A29,
Lm9;
A41: (v,w,u1)
are_LinDep & not
are_Prop (v,w) by
A14,
A15,
ANPROJ_1: 12;
A42: not u1 is
zero by
A4;
then (v,w,u1)
are_Prop_Vect by
A23,
A17;
then
consider c1, d1 such that
A43: u1
= ((c1
* v)
+ (d1
* w)) by
A41,
Th7;
(v2,w2,u1)
are_LinDep by
A16;
then
A44: (v29,w29,u1)
are_LinDep by
A34,
A36,
ANPROJ_1: 4;
A45: not
are_Prop (v29,w29) by
A14,
A32,
Lm10;
A46: not w29 is
zero by
A19,
A20,
A21,
Lm11;
then (v29,w29,u1)
are_Prop_Vect by
A42,
A35;
then
consider A1,B1 be
Real such that
A47: u1
= ((A1
* v29)
+ (B1
* w29)) by
A44,
A45,
Th7;
A48: (u,w,v1)
are_LinDep & not
are_Prop (u,w) by
A13,
A15,
ANPROJ_1: 12;
A49: not v1 is
zero by
A4;
then (u,w,v1)
are_Prop_Vect by
A22,
A17;
then
consider c2, d2 such that
A50: v1
= ((c2
* u)
+ (d2
* w)) by
A48,
Th7;
A51: u1
= ((((A1
+ B1)
* o)
+ ((A1
* a2)
* v))
+ ((B1
* a3)
* w)) by
A47,
Lm12;
(u2,v2,w1)
are_LinDep by
A16;
then
A52: (u29,v29,w1)
are_LinDep by
A40,
A34,
ANPROJ_1: 4;
A53: not
are_Prop (u29,v29) by
A12,
A28,
Lm10;
A54: not u29 is
zero by
A26,
A27,
A29,
Lm11;
then (u29,v29,w1)
are_Prop_Vect by
A38,
A35;
then
consider A3,B3 be
Real such that
A55: w1
= ((A3
* u29)
+ (B3
* v29)) by
A52,
A53,
Th7;
(u2,w2,v1)
are_LinDep by
A16;
then
A56: (u29,w29,v1)
are_LinDep by
A40,
A36,
ANPROJ_1: 4;
A57: not
are_Prop (u29,w29) by
A13,
A28,
Lm10;
A58: w1
= ((((A3
+ B3)
* o)
+ ((A3
* a1)
* u))
+ ((B3
* a2)
* v)) by
A55,
Lm12;
(u29,w29,v1)
are_Prop_Vect by
A49,
A54,
A46;
then
consider A2,B2 be
Real such that
A59: v1
= ((A2
* u29)
+ (B2
* w29)) by
A56,
A57,
Th7;
A60: v1
= ((((A2
+ B2)
* o)
+ ((A2
* a1)
* u))
+ ((B2
* a3)
* w)) by
A59,
Lm12;
w1
= (((
0
* o)
+ (c3
* u))
+ (d3
* v)) by
A39,
Lm13;
then
A61: (A3
+ B3)
=
0 by
A12,
A58,
ANPROJ_1: 8;
u1
= (((
0
* o)
+ (c1
* v))
+ (d1
* w)) by
A43,
Lm13;
then
A62: (A1
+ B1)
=
0 by
A14,
A51,
ANPROJ_1: 8;
v1
= (((
0
* o)
+ (c2
* u))
+ (d2
* w)) by
A50,
Lm13;
then
A63: (A2
+ B2)
=
0 by
A13,
A60,
ANPROJ_1: 8;
then
A64: A1
<>
0 & A2
<>
0 & A3
<>
0 by
A42,
A47,
A62,
A49,
A59,
A38,
A55,
A61,
Lm14;
set u19 = ((a2
* v)
- (a3
* w)), v19 = ((a1
* u)
- (a3
* w)), w19 = ((a1
* u)
- (a2
* v));
B1
= (
- A1) by
A62;
then u1
= (A1
* u19) by
A51,
Lm15;
then
A65:
are_Prop (u19,u1) by
A64,
Lm9;
B3
= (
- A3) by
A61;
then w1
= (A3
* w19) by
A58,
Lm15;
then
A66:
are_Prop (w19,w1) by
A64,
Lm9;
B2
= (
- A2) by
A63;
then v1
= (A2
* v19) by
A60,
Lm15;
then
A67:
are_Prop (v19,v1) by
A64,
Lm9;
(((1
* u19)
+ ((
- 1)
* v19))
+ (1
* w19))
= ((u19
+ ((
- 1)
* v19))
+ (1
* w19)) by
RLVECT_1:def 8
.= ((u19
+ ((
- 1)
* v19))
+ w19) by
RLVECT_1:def 8
.= ((u19
+ (
- v19))
+ w19) by
RLVECT_1: 16
.= ((((a2
* v)
+ (
- (a3
* w)))
+ ((a3
* w)
+ (
- (a1
* u))))
+ ((a1
* u)
- (a2
* v))) by
RLVECT_1: 33
.= (((((a2
* v)
+ (
- (a3
* w)))
+ (a3
* w))
+ (
- (a1
* u)))
+ ((a1
* u)
+ (
- (a2
* v)))) by
RLVECT_1:def 3
.= ((((a2
* v)
+ ((
- (a3
* w))
+ (a3
* w)))
+ (
- (a1
* u)))
+ ((a1
* u)
+ (
- (a2
* v)))) by
RLVECT_1:def 3
.= ((((a2
* v)
+ (
0. V))
+ (
- (a1
* u)))
+ ((a1
* u)
+ (
- (a2
* v)))) by
RLVECT_1: 5
.= (((a2
* v)
+ (
- (a1
* u)))
+ ((a1
* u)
+ (
- (a2
* v)))) by
RLVECT_1: 4
.= ((a2
* v)
+ ((
- (a1
* u))
+ ((a1
* u)
+ (
- (a2
* v))))) by
RLVECT_1:def 3
.= ((a2
* v)
+ (((
- (a1
* u))
+ (a1
* u))
+ (
- (a2
* v)))) by
RLVECT_1:def 3
.= ((a2
* v)
+ ((
0. V)
+ (
- (a2
* v)))) by
RLVECT_1: 5
.= ((a2
* v)
+ (
- (a2
* v))) by
RLVECT_1: 4
.= (
0. V) by
RLVECT_1: 5;
then (u19,v19,w19)
are_LinDep ;
hence thesis by
A65,
A67,
A66,
ANPROJ_1: 4;
end;
definition
let V, o, u, v, w, u2, v2, w2;
::
ANPROJ_2:def4
pred o,u,v,w,u2,v2,w2
lie_on_an_angle means not (o,u,u2)
are_LinDep & (o,u,v)
are_LinDep & (o,u,w)
are_LinDep & (o,u2,v2)
are_LinDep & (o,u2,w2)
are_LinDep ;
end
definition
let V, o, u, v, w, u2, v2, w2;
::
ANPROJ_2:def5
pred o,u,v,w,u2,v2,w2
are_half_mutually_not_Prop means not
are_Prop (o,v) & not
are_Prop (o,w) & not
are_Prop (o,v2) & not
are_Prop (o,w2) & not
are_Prop (u,v) & not
are_Prop (u,w) & not
are_Prop (u2,v2) & not
are_Prop (u2,w2) & not
are_Prop (v,w) & not
are_Prop (v2,w2);
end
Lm16: (b1
* u2)
= w2 & b1
<>
0 implies
are_Prop (u2,w2)
proof
assume that
A1: (b1
* u2)
= w2 and
A2: b1
<>
0 ;
(b1
* u2)
= (1
* w2) by
A1,
RLVECT_1:def 8;
hence thesis by
A2;
end;
Lm17: not
are_Prop (p,q) & y
= (a
* q) & a
<>
0 implies not
are_Prop (p,y)
proof
assume that
A1: not
are_Prop (p,q) and
A2: y
= (a
* q) & a
<>
0 ;
assume not thesis;
then
consider b such that
A3: b
<>
0 & p
= (b
* y) by
ANPROJ_1: 1;
p
= ((b
* a)
* q) & (b
* a)
<>
0 by
A2,
A3,
RLVECT_1:def 7,
XCMPLX_1: 6;
hence contradiction by
A1,
ANPROJ_1: 1;
end;
Lm18: w1
= ((a
* u)
+ (b
* v2)) & v2
= (o
+ (c2
* u2)) implies w1
= (((b
* o)
+ (a
* u))
+ ((b
* c2)
* u2))
proof
assume w1
= ((a
* u)
+ (b
* v2)) & v2
= (o
+ (c2
* u2));
hence w1
= ((a
* u)
+ ((b
* o)
+ (b
* (c2
* u2)))) by
RLVECT_1:def 5
.= (((a
* u)
+ (b
* o))
+ (b
* (c2
* u2))) by
RLVECT_1:def 3
.= (((b
* o)
+ (a
* u))
+ ((b
* c2)
* u2)) by
RLVECT_1:def 7;
end;
Lm19: w1
= ((a
* u2)
+ (b
* v1)) & v1
= (o
+ (a2
* u)) implies w1
= (((b
* o)
+ ((b
* a2)
* u))
+ (a
* u2))
proof
assume w1
= ((a
* u2)
+ (b
* v1)) & v1
= (o
+ (a2
* u));
hence w1
= (((b
* o)
+ (a
* u2))
+ ((b
* a2)
* u)) by
Lm18
.= (((b
* o)
+ ((b
* a2)
* u))
+ (a
* u2)) by
RLVECT_1:def 3;
end;
Lm20: (a
* p)
= q & a
<>
0 & not p is
zero implies not q is
zero by
RLVECT_1: 11;
Lm21: not
are_Prop (p,q) & y
= (a
* q) & a
<>
0 & s
= (b
* p) & b
<>
0 implies not
are_Prop (s,y)
proof
assume that
A1: not
are_Prop (p,q) and
A2: y
= (a
* q) & a
<>
0 and
A3: s
= (b
* p) & b
<>
0 ;
assume not thesis;
then
consider c such that
A4: c
<>
0 & s
= (c
* y) by
ANPROJ_1: 1;
s
= ((c
* a)
* q) & (c
* a)
<>
0 by
A2,
A4,
RLVECT_1:def 7,
XCMPLX_1: 6;
hence contradiction by
A1,
A3;
end;
Lm22: for A,B be
Real holds (r
= ((A
* u2)
+ (B
* v2)) & u2
= (o
+ (a1
* u)) & v2
= (o
+ (a2
* v)) implies r
= ((((A
+ B)
* o)
+ ((A
* a1)
* u))
+ ((B
* a2)
* v)))
proof
let A,B be
Real;
assume r
= ((A
* u2)
+ (B
* v2)) & u2
= (o
+ (a1
* u)) & v2
= (o
+ (a2
* v));
hence r
= (((A
* o)
+ (A
* (a1
* u)))
+ (B
* (o
+ (a2
* v)))) by
RLVECT_1:def 5
.= (((A
* o)
+ (A
* (a1
* u)))
+ ((B
* o)
+ (B
* (a2
* v)))) by
RLVECT_1:def 5
.= (((A
* o)
+ ((A
* a1)
* u))
+ ((B
* o)
+ (B
* (a2
* v)))) by
RLVECT_1:def 7
.= (((A
* o)
+ ((A
* a1)
* u))
+ ((B
* o)
+ ((B
* a2)
* v))) by
RLVECT_1:def 7
.= ((((A
* o)
+ ((A
* a1)
* u))
+ (B
* o))
+ ((B
* a2)
* v)) by
RLVECT_1:def 3
.= ((((A
* o)
+ (B
* o))
+ ((A
* a1)
* u))
+ ((B
* a2)
* v)) by
RLVECT_1:def 3
.= ((((A
+ B)
* o)
+ ((A
* a1)
* u))
+ ((B
* a2)
* v)) by
RLVECT_1:def 6;
end;
Lm23: a2
<> a3 & c2
<>
0 implies ((a3
* c2)
- (a2
* c2))
<>
0
proof
assume that
A1: a2
<> a3 and
A2: c2
<>
0 ;
((a3
* c2)
- (a2
* c2))
= ((a3
- a2)
* c2) & (a3
- a2)
<>
0 by
A1;
hence thesis by
A2,
XCMPLX_1: 6;
end;
Lm24: for A1,A19,B1,B19 be
Real holds ((A1
+ B1)
= (A19
+ B19) & (A1
* a2)
= (A19
* a3) & (B1
* c3)
= (B19
* c2) & a2
<> a3 & c2
<>
0 implies A1
= ((((a3
* c3)
- (a3
* c2))
* (((a3
* c2)
- (a2
* c2))
" ))
* B1))
proof
let A1,A19,B1,B19 be
Real;
assume that
A1: (A1
+ B1)
= (A19
+ B19) and
A2: (A1
* a2)
= (A19
* a3) & (B1
* c3)
= (B19
* c2) and
A3: a2
<> a3 & c2
<>
0 ;
A4: ((A1
* (a3
* c2))
+ (B1
* (a3
* c2)))
= ((A19
+ B19)
* (a3
* c2)) by
A1,
XCMPLX_1: 8;
(A1
* (a2
* c2))
= ((A19
* a3)
* c2) & (B1
* (c3
* a3))
= ((B19
* c2)
* a3) by
A2,
XCMPLX_1: 4;
then (B1
* ((a3
* c3)
- (a3
* c2)))
= (A1
* ((a3
* c2)
- (a2
* c2))) by
A4;
then
A5: (A1
* (((a3
* c2)
- (a2
* c2))
* (((a3
* c2)
- (a2
* c2))
" )))
= ((B1
* ((a3
* c3)
- (a3
* c2)))
* (((a3
* c2)
- (a2
* c2))
" )) by
XCMPLX_1: 4;
((a3
* c2)
- (a2
* c2))
<>
0 by
A3,
Lm23;
then (A1
* 1)
= ((B1
* ((a3
* c3)
- (a3
* c2)))
* (((a3
* c2)
- (a2
* c2))
" )) by
A5,
XCMPLX_0:def 7;
hence thesis;
end;
Lm25: for B1 be
Real st c2
<>
0 & a2
<> a3 & B1
<>
0 holds (B1
* (((a3
* c2)
- (a2
* c2))
" ))
<>
0
proof
let B1 be
Real;
assume that
A1: c2
<>
0 & a2
<> a3 and
A2: B1
<>
0 ;
(((a3
* c2)
- (a2
* c2))
" )
<>
0 by
A1,
Lm23,
XCMPLX_1: 202;
hence thesis by
A2,
XCMPLX_1: 6;
end;
Lm26: for A1,B1 be
Real holds (A1
= ((((a3
* c3)
- (a3
* c2))
* (((a3
* c2)
- (a2
* c2))
" ))
* B1) & c2
<>
0 & a2
<> a3 & u1
= ((((A1
+ B1)
* o)
+ ((A1
* a2)
* u))
+ ((B1
* c3)
* u2)) implies u1
= ((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* (((((a3
* c3)
- (a2
* c2))
* o)
+ (((a2
* a3)
* (c3
- c2))
* u))
+ (((c2
* c3)
* (a3
- a2))
* u2))))
proof
let A1,B1 be
Real;
assume that
A1: A1
= ((((a3
* c3)
- (a3
* c2))
* (((a3
* c2)
- (a2
* c2))
" ))
* B1) and
A2: c2
<>
0 & a2
<> a3 and
A3: u1
= ((((A1
+ B1)
* o)
+ ((A1
* a2)
* u))
+ ((B1
* c3)
* u2));
A4: ((a3
* c2)
- (a2
* c2))
<>
0 by
A2,
Lm23;
A5: ((B1
* c3)
* u2)
= (((B1
* 1)
* c3)
* u2)
.= (((B1
* ((((a3
* c2)
- (a2
* c2))
" )
* ((a3
* c2)
- (a2
* c2))))
* c3)
* u2) by
A4,
XCMPLX_0:def 7
.= (((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* ((c3
* c2)
* (a3
- a2)))
* u2)
.= ((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* (((c2
* c3)
* (a3
- a2))
* u2)) by
RLVECT_1:def 7;
A6: ((((((a3
* c3)
- (a3
* c2))
* (((a3
* c2)
- (a2
* c2))
" ))
* B1)
* a2)
* u)
= (((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* ((a2
* a3)
* (c3
- c2)))
* u)
.= ((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* (((a2
* a3)
* (c3
- c2))
* u)) by
RLVECT_1:def 7;
((((((a3
* c3)
- (a3
* c2))
* (((a3
* c2)
- (a2
* c2))
" ))
* B1)
+ (B1
* 1))
* o)
= (((((a3
* c3)
- (a3
* c2))
* (B1
* (((a3
* c2)
- (a2
* c2))
" )))
+ (B1
* ((((a3
* c2)
- (a2
* c2))
" )
* ((a3
* c2)
- (a2
* c2)))))
* o) by
A4,
XCMPLX_0:def 7
.= (((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* ((((a3
* c3)
+ (
- (a3
* c2)))
+ (a3
* c2))
- (a2
* c2)))
* o)
.= ((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* (((a3
* c3)
- (a2
* c2))
* o)) by
RLVECT_1:def 7;
hence u1
= (((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* ((((a3
* c3)
- (a2
* c2))
* o)
+ (((a2
* a3)
* (c3
- c2))
* u)))
+ ((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* (((c2
* c3)
* (a3
- a2))
* u2))) by
A1,
A3,
A6,
A5,
RLVECT_1:def 5
.= ((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* (((((a3
* c3)
- (a2
* c2))
* o)
+ (((a2
* a3)
* (c3
- c2))
* u))
+ (((c2
* c3)
* (a3
- a2))
* u2))) by
RLVECT_1:def 5;
end;
Lm27: (((p
+ q)
+ r)
+ ((u
+ u2)
+ u1))
= (((p
+ u)
+ (q
+ u2))
+ (r
+ u1))
proof
thus (((p
+ u)
+ (q
+ u2))
+ (r
+ u1))
= ((u
+ (p
+ (q
+ u2)))
+ (r
+ u1)) by
RLVECT_1:def 3
.= ((u
+ ((p
+ q)
+ u2))
+ (r
+ u1)) by
RLVECT_1:def 3
.= (((u
+ u2)
+ (p
+ q))
+ (r
+ u1)) by
RLVECT_1:def 3
.= ((u
+ u2)
+ ((p
+ q)
+ (r
+ u1))) by
RLVECT_1:def 3
.= ((u
+ u2)
+ (((p
+ q)
+ r)
+ u1)) by
RLVECT_1:def 3
.= (((p
+ q)
+ r)
+ ((u
+ u2)
+ u1)) by
RLVECT_1:def 3;
end;
Lm28: for C2,C3 be
Real holds (u1
= (((((a3
* c3)
- (a2
* c2))
* o)
+ (((a2
* a3)
* (c3
- c2))
* u))
+ (((c2
* c3)
* (a3
- a2))
* u2)) & v1
= ((o
+ (a3
* u))
+ (c3
* u2)) & w2
= ((o
+ (a2
* u))
+ (c2
* u2)) & (C2
+ C3)
= ((a2
* c2)
- (a3
* c3)) & ((C2
* a3)
+ (C3
* a2))
= ((a2
* a3)
* (c2
- c3)) & ((C2
* c3)
+ (C3
* c2))
= ((c2
* c3)
* (a2
- a3)) implies (((1
* u1)
+ (C2
* v1))
+ (C3
* w2))
= (
0. V))
proof
let C2,C3 be
Real such that
A1: u1
= (((((a3
* c3)
- (a2
* c2))
* o)
+ (((a2
* a3)
* (c3
- c2))
* u))
+ (((c2
* c3)
* (a3
- a2))
* u2)) and
A2: v1
= ((o
+ (a3
* u))
+ (c3
* u2)) & w2
= ((o
+ (a2
* u))
+ (c2
* u2)) and
A3: (C2
+ C3)
= ((a2
* c2)
- (a3
* c3)) & ((C2
* a3)
+ (C3
* a2))
= ((a2
* a3)
* (c2
- c3)) & ((C2
* c3)
+ (C3
* c2))
= ((c2
* c3)
* (a2
- a3));
A4: (((1
* u1)
+ (C2
* v1))
+ (C3
* w2))
= ((u1
+ (C2
* v1))
+ (C3
* w2)) by
RLVECT_1:def 8
.= (u1
+ ((C2
* v1)
+ (C3
* w2))) by
RLVECT_1:def 3;
((C2
* v1)
+ (C3
* w2))
= (((C2
* (o
+ (a3
* u)))
+ (C2
* (c3
* u2)))
+ (C3
* ((o
+ (a2
* u))
+ (c2
* u2)))) by
A2,
RLVECT_1:def 5
.= ((((C2
* o)
+ (C2
* (a3
* u)))
+ (C2
* (c3
* u2)))
+ (C3
* ((o
+ (a2
* u))
+ (c2
* u2)))) by
RLVECT_1:def 5
.= ((((C2
* o)
+ (C2
* (a3
* u)))
+ (C2
* (c3
* u2)))
+ ((C3
* (o
+ (a2
* u)))
+ (C3
* (c2
* u2)))) by
RLVECT_1:def 5
.= ((((C2
* o)
+ (C2
* (a3
* u)))
+ (C2
* (c3
* u2)))
+ (((C3
* o)
+ (C3
* (a2
* u)))
+ (C3
* (c2
* u2)))) by
RLVECT_1:def 5
.= ((((C2
* o)
+ (C3
* o))
+ ((C2
* (a3
* u))
+ (C3
* (a2
* u))))
+ ((C2
* (c3
* u2))
+ (C3
* (c2
* u2)))) by
Lm27
.= ((((C2
+ C3)
* o)
+ ((C2
* (a3
* u))
+ (C3
* (a2
* u))))
+ ((C2
* (c3
* u2))
+ (C3
* (c2
* u2)))) by
RLVECT_1:def 6
.= ((((C2
+ C3)
* o)
+ (((C2
* a3)
* u)
+ (C3
* (a2
* u))))
+ ((C2
* (c3
* u2))
+ (C3
* (c2
* u2)))) by
RLVECT_1:def 7
.= ((((C2
+ C3)
* o)
+ (((C2
* a3)
* u)
+ ((C3
* a2)
* u)))
+ ((C2
* (c3
* u2))
+ (C3
* (c2
* u2)))) by
RLVECT_1:def 7
.= ((((C2
+ C3)
* o)
+ (((C2
* a3)
* u)
+ ((C3
* a2)
* u)))
+ (((C2
* c3)
* u2)
+ (C3
* (c2
* u2)))) by
RLVECT_1:def 7
.= ((((C2
+ C3)
* o)
+ (((C2
* a3)
* u)
+ ((C3
* a2)
* u)))
+ (((C2
* c3)
* u2)
+ ((C3
* c2)
* u2))) by
RLVECT_1:def 7
.= ((((C2
+ C3)
* o)
+ (((C2
* a3)
+ (C3
* a2))
* u))
+ (((C2
* c3)
* u2)
+ ((C3
* c2)
* u2))) by
RLVECT_1:def 6
.= (((((a2
* c2)
- (a3
* c3))
* o)
+ (((a2
* a3)
* (c2
- c3))
* u))
+ (((c2
* c3)
* (a2
- a3))
* u2)) by
A3,
RLVECT_1:def 6;
hence (((1
* u1)
+ (C2
* v1))
+ (C3
* w2))
= ((((((a3
* c3)
- (a2
* c2))
* o)
+ (((a2
* c2)
- (a3
* c3))
* o))
+ ((((a2
* a3)
* (c3
- c2))
* u)
+ (((a2
* a3)
* (c2
- c3))
* u)))
+ ((((c2
* c3)
* (a3
- a2))
* u2)
+ (((c2
* c3)
* (a2
- a3))
* u2))) by
A1,
A4,
Lm27
.= ((((((a3
* c3)
- (a2
* c2))
+ ((a2
* c2)
- (a3
* c3)))
* o)
+ ((((a2
* a3)
* (c3
- c2))
* u)
+ (((a2
* a3)
* (c2
- c3))
* u)))
+ ((((c2
* c3)
* (a3
- a2))
* u2)
+ (((c2
* c3)
* (a2
- a3))
* u2))) by
RLVECT_1:def 6
.= ((((((a3
* c3)
- (a2
* c2))
+ ((a2
* c2)
- (a3
* c3)))
* o)
+ ((((a2
* a3)
* (c3
- c2))
+ ((a2
* a3)
* (c2
- c3)))
* u))
+ ((((c2
* c3)
* (a3
- a2))
* u2)
+ (((c2
* c3)
* (a2
- a3))
* u2))) by
RLVECT_1:def 6
.= (((((((a3
* c3)
+ (
- (a2
* c2)))
+ (a2
* c2))
+ (
- (a3
* c3)))
* o)
+ ((((a2
* a3)
* (c3
- c2))
+ ((a2
* a3)
* (c2
- c3)))
* u))
+ ((((c2
* c3)
* (a3
- a2))
+ ((c2
* c3)
* (a2
- a3)))
* u2)) by
RLVECT_1:def 6
.= (((
0. V)
+ ((((a2
* a3)
* (c3
- c2))
+ ((a2
* a3)
* (c2
- c3)))
* u))
+ ((((c2
* c3)
* (a3
- a2))
+ ((c2
* c3)
* (a2
- a3)))
* u2)) by
RLVECT_1: 10
.= ((
0
* u)
+ ((((c2
* c3)
* (a3
- a2))
+ (
- ((c2
* c3)
* (a3
- a2))))
* u2)) by
RLVECT_1: 4
.= ((
0. V)
+ (
0
* u2)) by
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
end;
Lm29: for A3,A39,B3,B39 be
Real holds (w2
= ((o
+ (a2
* u))
+ (c2
* u2)) & w1
= (((B3
* o)
+ (A3
* u))
+ ((B3
* c2)
* u2)) & B3
= B39 & A3
= (B39
* a2) implies w1
= (B3
* w2))
proof
let A3,A39,B3,B39 be
Real;
assume that
A1: w2
= ((o
+ (a2
* u))
+ (c2
* u2)) and
A2: w1
= (((B3
* o)
+ (A3
* u))
+ ((B3
* c2)
* u2)) & B3
= B39 & A3
= (B39
* a2);
thus w1
= (((B3
* o)
+ (B3
* (a2
* u)))
+ ((B3
* c2)
* u2)) by
A2,
RLVECT_1:def 7
.= (((B3
* o)
+ (B3
* (a2
* u)))
+ (B3
* (c2
* u2))) by
RLVECT_1:def 7
.= ((B3
* (o
+ (a2
* u)))
+ (B3
* (c2
* u2))) by
RLVECT_1:def 5
.= (B3
* w2) by
A1,
RLVECT_1:def 5;
end;
theorem ::
ANPROJ_2:9
Th9: not o is
zero & (u,v,w)
are_Prop_Vect & (u2,v2,w2)
are_Prop_Vect & (u1,v1,w1)
are_Prop_Vect & (o,u,v,w,u2,v2,w2)
lie_on_an_angle & (o,u,v,w,u2,v2,w2)
are_half_mutually_not_Prop & (u,v2,w1)
are_LinDep & (u2,v,w1)
are_LinDep & (u,w2,v1)
are_LinDep & (w,u2,v1)
are_LinDep & (v,w2,u1)
are_LinDep & (w,v2,u1)
are_LinDep implies (u1,v1,w1)
are_LinDep
proof
assume that
A1: not o is
zero and
A2: (u,v,w)
are_Prop_Vect and
A3: (u2,v2,w2)
are_Prop_Vect and
A4: (u1,v1,w1)
are_Prop_Vect and
A5: (o,u,v,w,u2,v2,w2)
lie_on_an_angle and
A6: (o,u,v,w,u2,v2,w2)
are_half_mutually_not_Prop and
A7: (u,v2,w1)
are_LinDep and
A8: (u2,v,w1)
are_LinDep and
A9: (u,w2,v1)
are_LinDep and
A10: (w,u2,v1)
are_LinDep and
A11: (v,w2,u1)
are_LinDep and
A12: (w,v2,u1)
are_LinDep ;
A13: not u is
zero by
A2;
A14: not
are_Prop (u2,v2) by
A6;
A15: not
are_Prop (o,v) by
A6;
A16: not
are_Prop (u,v) by
A6;
A17: (o,u2,v2)
are_LinDep by
A5;
A18: ( not
are_Prop (o,w2)) & not
are_Prop (u2,w2) by
A6;
A19: not u2 is
zero by
A3;
A20: ( not
are_Prop (o,w)) & not
are_Prop (u,w) by
A6;
A21: (o,u,w)
are_LinDep by
A5;
A22: not
are_Prop (o,v2) by
A6;
A23: (o,u2,w2)
are_LinDep by
A5;
A24: not (o,u,u2)
are_LinDep by
A5;
then
A25: not
are_Prop (o,u) by
ANPROJ_1: 12;
A26: not w is
zero by
A2;
then (o,u,w)
are_Prop_Vect by
A1,
A13;
then
consider a3, b3 such that
A27: (b3
* w)
= (o
+ (a3
* u)) and a3
<>
0 and
A28: b3
<>
0 by
A21,
A20,
A25,
Th6;
A29: not
are_Prop (u2,o) by
A24,
ANPROJ_1: 12;
A30: not w2 is
zero by
A3;
then (o,u2,w2)
are_Prop_Vect by
A1,
A19;
then
consider c3, d3 such that
A31: (d3
* w2)
= (o
+ (c3
* u2)) and c3
<>
0 and
A32: d3
<>
0 by
A23,
A18,
A29,
Th6;
A33: (o,u,v)
are_LinDep by
A5;
A34: not v2 is
zero by
A3;
then (o,u2,v2)
are_Prop_Vect by
A1,
A19;
then
consider c2, d2 such that
A35: (d2
* v2)
= (o
+ (c2
* u2)) and
A36: c2
<>
0 and
A37: d2
<>
0 by
A17,
A22,
A14,
A29,
Th6;
A38: not v is
zero by
A2;
then (o,u,v)
are_Prop_Vect by
A1,
A13;
then
consider a2, b2 such that
A39: (b2
* v)
= (o
+ (a2
* u)) and a2
<>
0 and
A40: b2
<>
0 by
A33,
A15,
A16,
A25,
Th6;
set v9 = (o
+ (a2
* u)), w9 = (o
+ (a3
* u)), v29 = (o
+ (c2
* u2)), w29 = (o
+ (c3
* u2));
A41: not v29 is
zero by
A34,
A35,
A37,
Lm20;
A42: not v9 is
zero by
A38,
A39,
A40,
Lm20;
A43: not w9 is
zero by
A26,
A27,
A28,
Lm20;
A44: not w29 is
zero by
A30,
A31,
A32,
Lm20;
A45:
are_Prop (w2,w29) by
A31,
A32,
Lm16;
then
A46: (u,w29,v1)
are_LinDep by
A9,
ANPROJ_1: 4;
A47:
are_Prop (v,v9) by
A39,
A40,
Lm16;
then
A48: (v9,w29,u1)
are_LinDep by
A11,
A45,
ANPROJ_1: 4;
A49:
are_Prop (v2,v29) by
A35,
A37,
Lm16;
then
A50: (u,v29,w1)
are_LinDep by
A7,
ANPROJ_1: 4;
A51:
are_Prop (w,w9) by
A27,
A28,
Lm16;
then
A52: (w9,v29,u1)
are_LinDep by
A12,
A49,
ANPROJ_1: 4;
not
are_Prop (u,v2)
proof
assume not thesis;
then (o,u2,u)
are_LinDep by
A17,
ANPROJ_1: 4;
hence contradiction by
A24,
ANPROJ_1: 5;
end;
then not
are_Prop (u,v29) by
A35,
A37,
Lm17;
then
consider A3,B3 be
Real such that
A53: w1
= ((A3
* u)
+ (B3
* v29)) by
A13,
A50,
A41,
ANPROJ_1: 6;
not (o,u2,v)
are_LinDep
proof
assume not thesis;
then
A54: (o,v,u2)
are_LinDep by
ANPROJ_1: 5;
(o,v,u)
are_LinDep & (o,v,o)
are_LinDep by
A33,
ANPROJ_1: 5,
ANPROJ_1: 11;
hence contradiction by
A1,
A38,
A24,
A15,
A54,
ANPROJ_1: 14;
end;
then not
are_Prop (v,w2) by
A23,
ANPROJ_1: 4;
then not
are_Prop (v9,w29) by
A39,
A40,
A31,
A32,
Lm21;
then
consider A1,B1 be
Real such that
A55: u1
= ((A1
* v9)
+ (B1
* w29)) by
A42,
A44,
A48,
ANPROJ_1: 6;
not (o,u,v2)
are_LinDep
proof
assume not thesis;
then
A56: (o,v2,u)
are_LinDep by
ANPROJ_1: 5;
(o,v2,u2)
are_LinDep & (o,v2,o)
are_LinDep by
A17,
ANPROJ_1: 5,
ANPROJ_1: 11;
hence contradiction by
A1,
A34,
A24,
A22,
A56,
ANPROJ_1: 14;
end;
then not
are_Prop (v2,w) by
A21,
ANPROJ_1: 4;
then not
are_Prop (w9,v29) by
A27,
A28,
A35,
A37,
Lm21;
then
consider A19,B19 be
Real such that
A57: u1
= ((A19
* w9)
+ (B19
* v29)) by
A41,
A43,
A52,
ANPROJ_1: 6;
A58: u1
= ((((A1
+ B1)
* o)
+ ((A1
* a2)
* u))
+ ((B1
* c3)
* u2)) by
A55,
Lm22;
A59: not
are_Prop (v2,w2) by
A6;
A60: not
are_Prop (v,w) by
A6;
A61: not
are_Prop (v9,w9) & not
are_Prop (v29,w29)
proof
A62:
now
assume
are_Prop (v29,w29);
then
are_Prop (v2,w29) by
A49,
ANPROJ_1: 2;
hence contradiction by
A59,
A45,
ANPROJ_1: 2;
end;
A63:
now
assume
are_Prop (v9,w9);
then
are_Prop (v,w9) by
A47,
ANPROJ_1: 2;
hence contradiction by
A60,
A51,
ANPROJ_1: 2;
end;
assume not thesis;
hence contradiction by
A63,
A62;
end;
not
are_Prop (u,w2)
proof
assume not thesis;
then (o,u2,u)
are_LinDep by
A23,
ANPROJ_1: 4;
hence contradiction by
A24,
ANPROJ_1: 5;
end;
then not
are_Prop (u,w29) by
A31,
A32,
Lm17;
then
consider A2,B2 be
Real such that
A64: v1
= ((A2
* u)
+ (B2
* w29)) by
A13,
A44,
A46,
ANPROJ_1: 6;
(u2,w,v1)
are_LinDep by
A10;
then
A65: (u2,w9,v1)
are_LinDep by
A51,
ANPROJ_1: 4;
not
are_Prop (u2,w) by
A24,
A21,
ANPROJ_1: 4;
then not
are_Prop (u2,w9) by
A27,
A28,
Lm17;
then
consider A29,B29 be
Real such that
A66: v1
= ((A29
* u2)
+ (B29
* w9)) by
A19,
A43,
A65,
ANPROJ_1: 6;
A67: v1
= (((B2
* o)
+ (A2
* u))
+ ((B2
* c3)
* u2)) by
A64,
Lm18;
A68: (u2,v9,w1)
are_LinDep by
A8,
A47,
ANPROJ_1: 4;
not
are_Prop (u2,v) by
A24,
A33,
ANPROJ_1: 4;
then not
are_Prop (u2,v9) by
A39,
A40,
Lm17;
then
consider A39,B39 be
Real such that
A69: w1
= ((A39
* u2)
+ (B39
* v9)) by
A19,
A68,
A42,
ANPROJ_1: 6;
A70: w1
= (((B3
* o)
+ (A3
* u))
+ ((B3
* c2)
* u2)) by
A53,
Lm18;
v1
= (((B29
* o)
+ ((B29
* a3)
* u))
+ (A29
* u2)) by
A66,
Lm19;
then
A71: B2
= B29 & A2
= (B29
* a3) by
A24,
A67,
ANPROJ_1: 8;
w1
= (((B39
* o)
+ ((B39
* a2)
* u))
+ (A39
* u2)) by
A69,
Lm19;
then
A72: B3
= B39 & A3
= (B39
* a2) by
A24,
A70,
ANPROJ_1: 8;
A73: u1
= ((((A19
+ B19)
* o)
+ ((A19
* a3)
* u))
+ ((B19
* c2)
* u2)) by
A57,
Lm22;
then
A74: (B1
* c3)
= (B19
* c2) by
A24,
A58,
ANPROJ_1: 8;
(A1
+ B1)
= (A19
+ B19) & (A1
* a2)
= (A19
* a3) by
A24,
A58,
A73,
ANPROJ_1: 8;
then
A75: A1
= ((((a3
* c3)
- (a3
* c2))
* (((a3
* c2)
- (a2
* c2))
" ))
* B1) by
A36,
A61,
A74,
Lm24;
set v19 = ((o
+ (a3
* u))
+ (c3
* u2));
set C2 = (a2
* c2), C3 = (
- (a3
* c3));
set u19 = (((((a3
* c3)
- (a2
* c2))
* o)
+ (((a2
* a3)
* (c3
- c2))
* u))
+ (((c2
* c3)
* (a3
- a2))
* u2));
set w19 = ((o
+ (a2
* u))
+ (c2
* u2));
A76: ((C2
* c3)
+ (C3
* c2))
= ((c2
* c3)
* (a2
- a3));
(C2
+ C3)
= ((a2
* c2)
- (a3
* c3)) & ((C2
* a3)
+ (C3
* a2))
= ((a2
* a3)
* (c2
- c3));
then (((1
* u19)
+ (C2
* v19))
+ (C3
* w19))
= (
0. V) by
A76,
Lm28;
then
A77: (u19,v19,w19)
are_LinDep ;
A78: not v1 is
zero by
A4;
A79: B2
<>
0
proof
assume not thesis;
then v1
= ((
0. V)
+ (
0
* w29)) by
A64,
A71,
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
hence contradiction by
A78;
end;
v1
= (B2
* v19) by
A67,
A71,
Lm29;
then
A80:
are_Prop (v19,v1) by
A79,
Lm16;
A81: not w1 is
zero by
A4;
A82: B3
<>
0
proof
assume not thesis;
then w1
= ((
0. V)
+ (
0
* v29)) by
A53,
A72,
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
hence contradiction by
A81;
end;
w1
= (B3
* w19) by
A70,
A72,
Lm29;
then
A83:
are_Prop (w19,w1) by
A82,
Lm16;
A84: not u1 is
zero by
A4;
A85: B1
<>
0
proof
assume not thesis;
then u1
= ((
0. V)
+ (
0
* w29)) by
A55,
A75,
RLVECT_1: 10
.= ((
0. V)
+ (
0. V)) by
RLVECT_1: 10
.= (
0. V) by
RLVECT_1: 4;
hence contradiction by
A84;
end;
u1
= ((B1
* (((a3
* c2)
- (a2
* c2))
" ))
* (((((a3
* c3)
- (a2
* c2))
* o)
+ (((a2
* a3)
* (c3
- c2))
* u))
+ (((c2
* c3)
* (a3
- a2))
* u2))) by
A36,
A61,
A58,
A75,
Lm26;
then
are_Prop (u19,u1) by
A36,
A61,
A85,
Lm16,
Lm25;
hence thesis by
A83,
A80,
A77,
ANPROJ_1: 4;
end;
reserve A for non
empty
set;
reserve f,g,h,f1 for
Element of (
Funcs (A,
REAL ));
reserve x1,x2,x3,x4 for
Element of A;
theorem ::
ANPROJ_2:10
Th10: ex f st (f
. x1)
= 1 & for z st z
in A & z
<> x1 holds (f
. z)
=
0
proof
deffunc
G(
object) = (
In (
0 ,
REAL ));
deffunc
F(
object) = 1;
defpred
P[
object] means $1
= x1;
A1: for z be
object st z
in A holds (
P[z] implies
F(z)
in
REAL ) & ( not
P[z] implies
G(z)
in
REAL ) by
XREAL_0:def 1;
consider f be
Function of A,
REAL such that
A2: for z be
object st z
in A holds (
P[z] implies (f
. z)
=
F(z)) & ( not
P[z] implies (f
. z)
=
G(z)) from
FUNCT_2:sch 5(
A1);
reconsider f as
Element of (
Funcs (A,
REAL )) by
FUNCT_2: 8;
take f;
thus thesis by
A2;
end;
theorem ::
ANPROJ_2:11
Th11: x1
<> x2 & x1
<> x3 & x2
<> x3 & (f
. x1)
= 1 & (for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 )) & (g
. x2)
= 1 & (for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 )) & (h
. x3)
= 1 & (for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 )) implies for a,b,c be
Real st ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 & c
=
0
proof
set RM = (
RealFuncExtMult A), RA = (
RealFuncAdd A);
assume that
A1: x1
<> x2 and
A2: x1
<> x3 and
A3: x2
<> x3 and
A4: (f
. x1)
= 1 and
A5: for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) and
A6: (g
. x2)
= 1 and
A7: for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) and
A8: (h
. x3)
= 1 and
A9: for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 );
A10: (f
. x2)
=
0 & (h
. x2)
=
0 by
A1,
A3,
A5,
A9;
let a,b,c be
Real;
assume
A11: (RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h])))
= (
RealFuncZero A);
reconsider a, b, c as
Element of
REAL by
XREAL_0:def 1;
A12:
0
= ((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h])))
. x2) by
FUNCOP_1: 7,
A11
.= (((RA
. ((RM
.
[a, f]),(RM
.
[b, g])))
. x2)
+ ((RM
.
[c, h])
. x2)) by
FUNCSDOM: 1
.= ((((RM
.
[a, f])
. x2)
+ ((RM
.
[b, g])
. x2))
+ ((RM
.
[c, h])
. x2)) by
FUNCSDOM: 1
.= ((((RM
.
[a, f])
. x2)
+ ((RM
.
[b, g])
. x2))
+ (c
* (h
. x2))) by
FUNCSDOM: 4
.= ((((RM
.
[a, f])
. x2)
+ (b
* (g
. x2)))
+ (c
* (h
. x2))) by
FUNCSDOM: 4
.= (((a
*
0 )
+ (b
* 1))
+ (c
*
0 )) by
A6,
A10,
FUNCSDOM: 4
.= b;
A13: (g
. x1)
=
0 & (h
. x1)
=
0 by
A1,
A2,
A7,
A9;
A14: (f
. x3)
=
0 & (g
. x3)
=
0 by
A2,
A3,
A5,
A7;
A15:
0
= ((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h])))
. x3) by
A11,
FUNCOP_1: 7
.= (((RA
. ((RM
.
[a, f]),(RM
.
[b, g])))
. x3)
+ ((RM
.
[c, h])
. x3)) by
FUNCSDOM: 1
.= ((((RM
.
[a, f])
. x3)
+ ((RM
.
[b, g])
. x3))
+ ((RM
.
[c, h])
. x3)) by
FUNCSDOM: 1
.= ((((RM
.
[a, f])
. x3)
+ ((RM
.
[b, g])
. x3))
+ (c
* (h
. x3))) by
FUNCSDOM: 4
.= ((((RM
.
[a, f])
. x3)
+ (b
* (g
. x3)))
+ (c
* (h
. x3))) by
FUNCSDOM: 4
.= (((a
*
0 )
+ (b
*
0 ))
+ (c
* 1)) by
A8,
A14,
FUNCSDOM: 4
.= c;
0
= ((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h])))
. x1) by
A11,
FUNCOP_1: 7
.= (((RA
. ((RM
.
[a, f]),(RM
.
[b, g])))
. x1)
+ ((RM
.
[c, h])
. x1)) by
FUNCSDOM: 1
.= ((((RM
.
[a, f])
. x1)
+ ((RM
.
[b, g])
. x1))
+ ((RM
.
[c, h])
. x1)) by
FUNCSDOM: 1
.= ((((RM
.
[a, f])
. x1)
+ ((RM
.
[b, g])
. x1))
+ (c
* (h
. x1))) by
FUNCSDOM: 4
.= ((((RM
.
[a, f])
. x1)
+ (b
* (g
. x1)))
+ (c
* (h
. x1))) by
FUNCSDOM: 4
.= (((a
* 1)
+ (b
*
0 ))
+ (c
*
0 )) by
A4,
A13,
FUNCSDOM: 4
.= a;
hence thesis by
A12,
A15;
end;
theorem ::
ANPROJ_2:12
x1
<> x2 & x1
<> x3 & x2
<> x3 implies ex f, g, h st for a,b,c be
Real st ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 & c
=
0
proof
assume
A1: x1
<> x2 & x1
<> x3 & x2
<> x3;
consider f such that
A2: (f
. x1)
= 1 & for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) by
Th10;
consider h such that
A3: (h
. x3)
= 1 & for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 ) by
Th10;
consider g such that
A4: (g
. x2)
= 1 & for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) by
Th10;
take f, g, h;
let a,b,c be
Real;
assume ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
= (
RealFuncZero A);
hence thesis by
A1,
A2,
A4,
A3,
Th11;
end;
theorem ::
ANPROJ_2:13
Th13: A
=
{x1, x2, x3} & x1
<> x2 & x1
<> x3 & x2
<> x3 & (f
. x1)
= 1 & (for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 )) & (g
. x2)
= 1 & (for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 )) & (h
. x3)
= 1 & (for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 )) implies for h9 be
Element of (
Funcs (A,
REAL )) holds ex a,b,c be
Real st h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
proof
assume that
A1: A
=
{x1, x2, x3} and
A2: x1
<> x2 and
A3: x1
<> x3 and
A4: x2
<> x3 and
A5: (f
. x1)
= 1 and
A6: for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) and
A7: (g
. x2)
= 1 and
A8: for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) and
A9: (h
. x3)
= 1 and
A10: for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 );
A11: (g
. x1)
=
0 & (h
. x1)
=
0 by
A2,
A3,
A8,
A10;
A12: (f
. x2)
=
0 & (h
. x2)
=
0 by
A2,
A4,
A6,
A10;
let h9 be
Element of (
Funcs (A,
REAL ));
take a = (h9
. x1), b = (h9
. x2), c = (h9
. x3);
A13: (f
. x3)
=
0 & (g
. x3)
=
0 by
A3,
A4,
A6,
A8;
now
let x be
Element of A;
A14: x
= x1 or x
= x2 or x
= x3 by
A1,
ENUMSET1:def 1;
A15: (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
. x2)
= ((((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x2)
+ (((
RealFuncExtMult A)
.
[c, h])
. x2)) by
FUNCSDOM: 1
.= (((((
RealFuncExtMult A)
.
[a, f])
. x2)
+ (((
RealFuncExtMult A)
.
[b, g])
. x2))
+ (((
RealFuncExtMult A)
.
[c, h])
. x2)) by
FUNCSDOM: 1
.= (((((
RealFuncExtMult A)
.
[a, f])
. x2)
+ (((
RealFuncExtMult A)
.
[b, g])
. x2))
+ (c
* (h
. x2))) by
FUNCSDOM: 4
.= (((((
RealFuncExtMult A)
.
[a, f])
. x2)
+ (b
* (g
. x2)))
+ (c
* (h
. x2))) by
FUNCSDOM: 4
.= (((a
*
0 )
+ (b
* 1))
+ (c
*
0 )) by
A7,
A12,
FUNCSDOM: 4
.= (h9
. x2);
A16: (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
. x3)
= ((((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x3)
+ (((
RealFuncExtMult A)
.
[c, h])
. x3)) by
FUNCSDOM: 1
.= (((((
RealFuncExtMult A)
.
[a, f])
. x3)
+ (((
RealFuncExtMult A)
.
[b, g])
. x3))
+ (((
RealFuncExtMult A)
.
[c, h])
. x3)) by
FUNCSDOM: 1
.= (((((
RealFuncExtMult A)
.
[a, f])
. x3)
+ (((
RealFuncExtMult A)
.
[b, g])
. x3))
+ (c
* (h
. x3))) by
FUNCSDOM: 4
.= (((((
RealFuncExtMult A)
.
[a, f])
. x3)
+ (b
* (g
. x3)))
+ (c
* (h
. x3))) by
FUNCSDOM: 4
.= (((a
*
0 )
+ (b
*
0 ))
+ (c
* 1)) by
A9,
A13,
FUNCSDOM: 4
.= (h9
. x3);
(((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
. x1)
= ((((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x1)
+ (((
RealFuncExtMult A)
.
[c, h])
. x1)) by
FUNCSDOM: 1
.= (((((
RealFuncExtMult A)
.
[a, f])
. x1)
+ (((
RealFuncExtMult A)
.
[b, g])
. x1))
+ (((
RealFuncExtMult A)
.
[c, h])
. x1)) by
FUNCSDOM: 1
.= (((((
RealFuncExtMult A)
.
[a, f])
. x1)
+ (((
RealFuncExtMult A)
.
[b, g])
. x1))
+ (c
* (h
. x1))) by
FUNCSDOM: 4
.= (((((
RealFuncExtMult A)
.
[a, f])
. x1)
+ (b
* (g
. x1)))
+ (c
* (h
. x1))) by
FUNCSDOM: 4
.= (((a
* 1)
+ (b
*
0 ))
+ (c
*
0 )) by
A5,
A11,
FUNCSDOM: 4
.= (h9
. x1);
hence (h9
. x)
= (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
. x) by
A14,
A15,
A16;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
ANPROJ_2:14
A
=
{x1, x2, x3} & x1
<> x2 & x1
<> x3 & x2
<> x3 implies ex f, g, h st for h9 be
Element of (
Funcs (A,
REAL )) holds ex a,b,c be
Real st h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
proof
assume
A1: A
=
{x1, x2, x3} & x1
<> x2 & x1
<> x3 & x2
<> x3;
consider f such that
A2: (f
. x1)
= 1 & for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) by
Th10;
consider h such that
A3: (h
. x3)
= 1 & for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 ) by
Th10;
consider g such that
A4: (g
. x2)
= 1 & for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) by
Th10;
take f, g, h;
let h9 be
Element of (
Funcs (A,
REAL ));
thus thesis by
A1,
A2,
A4,
A3,
Th13;
end;
theorem ::
ANPROJ_2:15
Th15: A
=
{x1, x2, x3} & x1
<> x2 & x1
<> x3 & x2
<> x3 implies ex f, g, h st (for a,b,c be
Real st ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 & c
=
0 ) & for h9 be
Element of (
Funcs (A,
REAL )) holds ex a,b,c be
Real st h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
proof
assume
A1: A
=
{x1, x2, x3} & x1
<> x2 & x1
<> x3 & x2
<> x3;
consider f such that
A2: (f
. x1)
= 1 & for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) by
Th10;
consider h such that
A3: (h
. x3)
= 1 & for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 ) by
Th10;
consider g such that
A4: (g
. x2)
= 1 & for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) by
Th10;
take f, g, h;
thus thesis by
A1,
A2,
A4,
A3,
Th11,
Th13;
end;
Lm30: ex A, x1, x2, x3 st A
=
{x1, x2, x3} & x1
<> x2 & x1
<> x3 & x2
<> x3
proof
reconsider A =
{
0 , 1, 2} as non
empty
set;
take A;
reconsider x1 =
0 , x2 = 1, x3 = 2 as
Element of A by
ENUMSET1:def 1;
take x1, x2, x3;
thus thesis;
end;
theorem ::
ANPROJ_2:16
Th16: ex V be non
trivial
RealLinearSpace st ex u,v,w be
Element of V st (for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ) & for y be
Element of V holds ex a, b, c st y
= (((a
* u)
+ (b
* v))
+ (c
* w))
proof
consider A, x1, x2, x3 such that
A1: A
=
{x1, x2, x3} & x1
<> x2 & x1
<> x3 & x2
<> x3 by
Lm30;
set V = (
RealVectSpace A);
consider f, g, h such that
A2: for a,b,c be
Real st ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 & c
=
0 and
A3: for h9 be
Element of (
Funcs (A,
REAL )) holds ex a,b,c be
Real st h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))) by
A1,
Th15;
reconsider u = f, v = g, w = h as
Element of V;
for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 by
A2;
then not u is
zero by
Th1;
then
A4: u
<> (
0. V);
A5: for y be
Element of V holds ex a, b, c st y
= (((a
* u)
+ (b
* v))
+ (c
* w))
proof
let y be
Element of V;
reconsider h9 = y as
Element of (
Funcs (A,
REAL ));
consider a,b,c be
Real such that
A6: h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))) by
A3;
h9
= (((a
* u)
+ (b
* v))
+ (c
* w)) by
A6;
hence thesis;
end;
reconsider V as non
trivial
RealLinearSpace by
A4,
STRUCT_0:def 18;
take V;
reconsider u, v, w as
Element of V;
take u, v, w;
thus for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 by
A2;
let y be
Element of V;
ex a, b, c st y
= (((a
* u)
+ (b
* v))
+ (c
* w)) by
A5;
hence thesis;
end;
theorem ::
ANPROJ_2:17
Th17: x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4 & (f
. x1)
= 1 & (for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 )) & (g
. x2)
= 1 & (for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 )) & (h
. x3)
= 1 & (for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 )) & (f1
. x4)
= 1 & (for z st z
in A holds (z
<> x4 implies (f1
. z)
=
0 )) implies for a,b,c,d be
Real st ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 & c
=
0 & d
=
0
proof
set RM = (
RealFuncExtMult A), RA = (
RealFuncAdd A);
assume that
A1: x1
<> x2 and
A2: x1
<> x3 and
A3: x1
<> x4 and
A4: x2
<> x3 and
A5: x2
<> x4 and
A6: x3
<> x4 and
A7: (f
. x1)
= 1 and
A8: for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) and
A9: (g
. x2)
= 1 and
A10: for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) and
A11: (h
. x3)
= 1 and
A12: for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 ) and
A13: (f1
. x4)
= 1 and
A14: for z st z
in A holds (z
<> x4 implies (f1
. z)
=
0 );
A15: (f
. x2)
=
0 & (h
. x2)
=
0 by
A1,
A4,
A8,
A12;
A16: (g
. x1)
=
0 & (h
. x1)
=
0 by
A1,
A2,
A10,
A12;
A17: (f1
. x1)
=
0 by
A3,
A14;
A18: (f1
. x2)
=
0 by
A5,
A14;
let a,b,c,d be
Real;
assume
A19: (RA
. ((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h]))),(RM
.
[d, f1])))
= (
RealFuncZero A);
reconsider a, b, c, d as
Element of
REAL by
XREAL_0:def 1;
A20:
0
= ((RA
. ((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h]))),(RM
.
[d, f1])))
. x2) by
FUNCOP_1: 7,
A19
.= (((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h])))
. x2)
+ ((RM
.
[d, f1])
. x2)) by
FUNCSDOM: 1
.= ((((RA
. ((RM
.
[a, f]),(RM
.
[b, g])))
. x2)
+ ((RM
.
[c, h])
. x2))
+ ((RM
.
[d, f1])
. x2)) by
FUNCSDOM: 1
.= (((((RM
.
[a, f])
. x2)
+ ((RM
.
[b, g])
. x2))
+ ((RM
.
[c, h])
. x2))
+ ((RM
.
[d, f1])
. x2)) by
FUNCSDOM: 1
.= (((((RM
.
[a, f])
. x2)
+ ((RM
.
[b, g])
. x2))
+ ((RM
.
[c, h])
. x2))
+ (d
* (f1
. x2))) by
FUNCSDOM: 4
.= (((((RM
.
[a, f])
. x2)
+ ((RM
.
[b, g])
. x2))
+ (c
* (h
. x2)))
+ (d
* (f1
. x2))) by
FUNCSDOM: 4
.= (((((RM
.
[a, f])
. x2)
+ (b
* (g
. x2)))
+ (c
* (h
. x2)))
+ (d
* (f1
. x2))) by
FUNCSDOM: 4
.= ((((a
*
0 )
+ (b
* 1))
+ (c
*
0 ))
+ (d
*
0 )) by
A9,
A15,
A18,
FUNCSDOM: 4
.= b;
A21: (f
. x4)
=
0 & (g
. x4)
=
0 by
A3,
A5,
A8,
A10;
A22: (h
. x4)
=
0 by
A6,
A12;
A23: (f
. x3)
=
0 & (g
. x3)
=
0 by
A2,
A4,
A8,
A10;
A24: (f1
. x3)
=
0 by
A6,
A14;
A25:
0
= ((RA
. ((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h]))),(RM
.
[d, f1])))
. x4) by
A19,
FUNCOP_1: 7
.= (((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h])))
. x4)
+ ((RM
.
[d, f1])
. x4)) by
FUNCSDOM: 1
.= ((((RA
. ((RM
.
[a, f]),(RM
.
[b, g])))
. x4)
+ ((RM
.
[c, h])
. x4))
+ ((RM
.
[d, f1])
. x4)) by
FUNCSDOM: 1
.= (((((RM
.
[a, f])
. x4)
+ ((RM
.
[b, g])
. x4))
+ ((RM
.
[c, h])
. x4))
+ ((RM
.
[d, f1])
. x4)) by
FUNCSDOM: 1
.= (((((RM
.
[a, f])
. x4)
+ ((RM
.
[b, g])
. x4))
+ ((RM
.
[c, h])
. x4))
+ (d
* (f1
. x4))) by
FUNCSDOM: 4
.= (((((RM
.
[a, f])
. x4)
+ ((RM
.
[b, g])
. x4))
+ (c
* (h
. x4)))
+ (d
* (f1
. x4))) by
FUNCSDOM: 4
.= (((((RM
.
[a, f])
. x4)
+ (b
* (g
. x4)))
+ (c
* (h
. x4)))
+ (d
* (f1
. x4))) by
FUNCSDOM: 4
.= ((((a
*
0 )
+ (b
*
0 ))
+ (c
*
0 ))
+ (d
* 1)) by
A13,
A21,
A22,
FUNCSDOM: 4
.= d;
A26:
0
= ((RA
. ((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h]))),(RM
.
[d, f1])))
. x3) by
A19,
FUNCOP_1: 7
.= (((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h])))
. x3)
+ ((RM
.
[d, f1])
. x3)) by
FUNCSDOM: 1
.= ((((RA
. ((RM
.
[a, f]),(RM
.
[b, g])))
. x3)
+ ((RM
.
[c, h])
. x3))
+ ((RM
.
[d, f1])
. x3)) by
FUNCSDOM: 1
.= (((((RM
.
[a, f])
. x3)
+ ((RM
.
[b, g])
. x3))
+ ((RM
.
[c, h])
. x3))
+ ((RM
.
[d, f1])
. x3)) by
FUNCSDOM: 1
.= (((((RM
.
[a, f])
. x3)
+ ((RM
.
[b, g])
. x3))
+ ((RM
.
[c, h])
. x3))
+ (d
* (f1
. x3))) by
FUNCSDOM: 4
.= (((((RM
.
[a, f])
. x3)
+ ((RM
.
[b, g])
. x3))
+ (c
* (h
. x3)))
+ (d
* (f1
. x3))) by
FUNCSDOM: 4
.= (((((RM
.
[a, f])
. x3)
+ (b
* (g
. x3)))
+ (c
* (h
. x3)))
+ (d
* (f1
. x3))) by
FUNCSDOM: 4
.= ((((a
*
0 )
+ (b
*
0 ))
+ (c
* 1))
+ (d
*
0 )) by
A11,
A23,
A24,
FUNCSDOM: 4
.= c;
0
= ((RA
. ((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h]))),(RM
.
[d, f1])))
. x1) by
A19,
FUNCOP_1: 7
.= (((RA
. ((RA
. ((RM
.
[a, f]),(RM
.
[b, g]))),(RM
.
[c, h])))
. x1)
+ ((RM
.
[d, f1])
. x1)) by
FUNCSDOM: 1
.= ((((RA
. ((RM
.
[a, f]),(RM
.
[b, g])))
. x1)
+ ((RM
.
[c, h])
. x1))
+ ((RM
.
[d, f1])
. x1)) by
FUNCSDOM: 1
.= (((((RM
.
[a, f])
. x1)
+ ((RM
.
[b, g])
. x1))
+ ((RM
.
[c, h])
. x1))
+ ((RM
.
[d, f1])
. x1)) by
FUNCSDOM: 1
.= (((((RM
.
[a, f])
. x1)
+ ((RM
.
[b, g])
. x1))
+ ((RM
.
[c, h])
. x1))
+ (d
* (f1
. x1))) by
FUNCSDOM: 4
.= (((((RM
.
[a, f])
. x1)
+ ((RM
.
[b, g])
. x1))
+ (c
* (h
. x1)))
+ (d
* (f1
. x1))) by
FUNCSDOM: 4
.= (((((RM
.
[a, f])
. x1)
+ (b
* (g
. x1)))
+ (c
* (h
. x1)))
+ (d
* (f1
. x1))) by
FUNCSDOM: 4
.= ((((a
* 1)
+ (b
*
0 ))
+ (c
*
0 ))
+ (d
*
0 )) by
A7,
A16,
A17,
FUNCSDOM: 4
.= a;
hence thesis by
A20,
A26,
A25;
end;
theorem ::
ANPROJ_2:18
x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4 implies ex f, g, h, f1 st for a,b,c,d be
Real st ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 & c
=
0 & d
=
0
proof
assume
A1: x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4;
consider f such that
A2: (f
. x1)
= 1 & for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) by
Th10;
consider f1 such that
A3: (f1
. x4)
= 1 & for z st z
in A holds (z
<> x4 implies (f1
. z)
=
0 ) by
Th10;
consider h such that
A4: (h
. x3)
= 1 & for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 ) by
Th10;
consider g such that
A5: (g
. x2)
= 1 & for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) by
Th10;
take f, g, h, f1;
let a,b,c,d be
Real;
assume ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
= (
RealFuncZero A);
hence thesis by
A1,
A2,
A5,
A4,
A3,
Th17;
end;
theorem ::
ANPROJ_2:19
Th19: A
=
{x1, x2, x3, x4} & x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4 & (f
. x1)
= 1 & (for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 )) & (g
. x2)
= 1 & (for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 )) & (h
. x3)
= 1 & (for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 )) & (f1
. x4)
= 1 & (for z st z
in A holds (z
<> x4 implies (f1
. z)
=
0 )) implies for h9 be
Element of (
Funcs (A,
REAL )) holds ex a,b,c,d be
Real st h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
proof
assume that
A1: A
=
{x1, x2, x3, x4} and
A2: x1
<> x2 and
A3: x1
<> x3 and
A4: x1
<> x4 and
A5: x2
<> x3 and
A6: x2
<> x4 and
A7: x3
<> x4 and
A8: (f
. x1)
= 1 and
A9: for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) and
A10: (g
. x2)
= 1 and
A11: for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) and
A12: (h
. x3)
= 1 and
A13: for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 ) and
A14: (f1
. x4)
= 1 and
A15: for z st z
in A holds (z
<> x4 implies (f1
. z)
=
0 );
A16: (f
. x4)
=
0 & (g
. x4)
=
0 by
A4,
A6,
A9,
A11;
A17: (f1
. x3)
=
0 by
A7,
A15;
A18: (f1
. x2)
=
0 by
A6,
A15;
A19: (f
. x2)
=
0 & (h
. x2)
=
0 by
A2,
A5,
A9,
A13;
A20: (f1
. x1)
=
0 by
A4,
A15;
A21: (g
. x1)
=
0 & (h
. x1)
=
0 by
A2,
A3,
A11,
A13;
A22: (h
. x4)
=
0 by
A7,
A13;
let h9 be
Element of (
Funcs (A,
REAL ));
take a = (h9
. x1), b = (h9
. x2), c = (h9
. x3), d = (h9
. x4);
A23: (f
. x3)
=
0 & (g
. x3)
=
0 by
A3,
A5,
A9,
A11;
now
let x be
Element of A;
A24: x
= x1 or x
= x2 or x
= x3 or x
= x4 by
A1,
ENUMSET1:def 2;
A25: (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
. x2)
= ((((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
. x2)
+ (((
RealFuncExtMult A)
.
[d, f1])
. x2)) by
FUNCSDOM: 1
.= (((((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x2)
+ (((
RealFuncExtMult A)
.
[c, h])
. x2))
+ (((
RealFuncExtMult A)
.
[d, f1])
. x2)) by
FUNCSDOM: 1
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x2)
+ (((
RealFuncExtMult A)
.
[b, g])
. x2))
+ (((
RealFuncExtMult A)
.
[c, h])
. x2))
+ (((
RealFuncExtMult A)
.
[d, f1])
. x2)) by
FUNCSDOM: 1
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x2)
+ (((
RealFuncExtMult A)
.
[b, g])
. x2))
+ (((
RealFuncExtMult A)
.
[c, h])
. x2))
+ (d
* (f1
. x2))) by
FUNCSDOM: 4
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x2)
+ (((
RealFuncExtMult A)
.
[b, g])
. x2))
+ (c
* (h
. x2)))
+ (d
* (f1
. x2))) by
FUNCSDOM: 4
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x2)
+ (b
* (g
. x2)))
+ (c
* (h
. x2)))
+ (d
* (f1
. x2))) by
FUNCSDOM: 4
.= ((((a
*
0 )
+ (b
* 1))
+ (c
*
0 ))
+ (d
*
0 )) by
A10,
A19,
A18,
FUNCSDOM: 4
.= (h9
. x2);
A26: (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
. x4)
= ((((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
. x4)
+ (((
RealFuncExtMult A)
.
[d, f1])
. x4)) by
FUNCSDOM: 1
.= (((((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x4)
+ (((
RealFuncExtMult A)
.
[c, h])
. x4))
+ (((
RealFuncExtMult A)
.
[d, f1])
. x4)) by
FUNCSDOM: 1
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x4)
+ (((
RealFuncExtMult A)
.
[b, g])
. x4))
+ (((
RealFuncExtMult A)
.
[c, h])
. x4))
+ (((
RealFuncExtMult A)
.
[d, f1])
. x4)) by
FUNCSDOM: 1
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x4)
+ (((
RealFuncExtMult A)
.
[b, g])
. x4))
+ (((
RealFuncExtMult A)
.
[c, h])
. x4))
+ (d
* (f1
. x4))) by
FUNCSDOM: 4
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x4)
+ (((
RealFuncExtMult A)
.
[b, g])
. x4))
+ (c
* (h
. x4)))
+ (d
* (f1
. x4))) by
FUNCSDOM: 4
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x4)
+ (b
* (g
. x4)))
+ (c
* (h
. x4)))
+ (d
* (f1
. x4))) by
FUNCSDOM: 4
.= ((((a
*
0 )
+ (b
*
0 ))
+ (c
*
0 ))
+ (d
* 1)) by
A14,
A16,
A22,
FUNCSDOM: 4
.= (h9
. x4);
A27: (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
. x3)
= ((((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
. x3)
+ (((
RealFuncExtMult A)
.
[d, f1])
. x3)) by
FUNCSDOM: 1
.= (((((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x3)
+ (((
RealFuncExtMult A)
.
[c, h])
. x3))
+ (((
RealFuncExtMult A)
.
[d, f1])
. x3)) by
FUNCSDOM: 1
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x3)
+ (((
RealFuncExtMult A)
.
[b, g])
. x3))
+ (((
RealFuncExtMult A)
.
[c, h])
. x3))
+ (((
RealFuncExtMult A)
.
[d, f1])
. x3)) by
FUNCSDOM: 1
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x3)
+ (((
RealFuncExtMult A)
.
[b, g])
. x3))
+ (((
RealFuncExtMult A)
.
[c, h])
. x3))
+ (d
* (f1
. x3))) by
FUNCSDOM: 4
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x3)
+ (((
RealFuncExtMult A)
.
[b, g])
. x3))
+ (c
* (h
. x3)))
+ (d
* (f1
. x3))) by
FUNCSDOM: 4
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x3)
+ (b
* (g
. x3)))
+ (c
* (h
. x3)))
+ (d
* (f1
. x3))) by
FUNCSDOM: 4
.= ((((a
*
0 )
+ (b
*
0 ))
+ (c
* 1))
+ (d
*
0 )) by
A12,
A23,
A17,
FUNCSDOM: 4
.= (h9
. x3);
(((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
. x1)
= ((((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h])))
. x1)
+ (((
RealFuncExtMult A)
.
[d, f1])
. x1)) by
FUNCSDOM: 1
.= (((((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g])))
. x1)
+ (((
RealFuncExtMult A)
.
[c, h])
. x1))
+ (((
RealFuncExtMult A)
.
[d, f1])
. x1)) by
FUNCSDOM: 1
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x1)
+ (((
RealFuncExtMult A)
.
[b, g])
. x1))
+ (((
RealFuncExtMult A)
.
[c, h])
. x1))
+ (((
RealFuncExtMult A)
.
[d, f1])
. x1)) by
FUNCSDOM: 1
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x1)
+ (((
RealFuncExtMult A)
.
[b, g])
. x1))
+ (((
RealFuncExtMult A)
.
[c, h])
. x1))
+ (d
* (f1
. x1))) by
FUNCSDOM: 4
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x1)
+ (((
RealFuncExtMult A)
.
[b, g])
. x1))
+ (c
* (h
. x1)))
+ (d
* (f1
. x1))) by
FUNCSDOM: 4
.= ((((((
RealFuncExtMult A)
.
[a, f])
. x1)
+ (b
* (g
. x1)))
+ (c
* (h
. x1)))
+ (d
* (f1
. x1))) by
FUNCSDOM: 4
.= ((((a
* 1)
+ (b
*
0 ))
+ (c
*
0 ))
+ (d
*
0 )) by
A8,
A21,
A20,
FUNCSDOM: 4
.= (h9
. x1);
hence (h9
. x)
= (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
. x) by
A24,
A25,
A27,
A26;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
ANPROJ_2:20
A
=
{x1, x2, x3, x4} & x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4 implies ex f, g, h, f1 st for h9 be
Element of (
Funcs (A,
REAL )) holds ex a,b,c,d be
Real st h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
proof
assume
A1: A
=
{x1, x2, x3, x4} & x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4;
consider f such that
A2: (f
. x1)
= 1 & for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) by
Th10;
consider f1 such that
A3: (f1
. x4)
= 1 & for z st z
in A holds (z
<> x4 implies (f1
. z)
=
0 ) by
Th10;
consider h such that
A4: (h
. x3)
= 1 & for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 ) by
Th10;
consider g such that
A5: (g
. x2)
= 1 & for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) by
Th10;
take f, g, h, f1;
let h9 be
Element of (
Funcs (A,
REAL ));
thus thesis by
A1,
A2,
A5,
A4,
A3,
Th19;
end;
theorem ::
ANPROJ_2:21
Th21: A
=
{x1, x2, x3, x4} & x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4 implies ex f, g, h, f1 st (for a,b,c,d be
Real st ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 & c
=
0 & d
=
0 ) & for h9 be
Element of (
Funcs (A,
REAL )) holds ex a,b,c,d be
Real st h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
proof
assume
A1: A
=
{x1, x2, x3, x4} & x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4;
consider f such that
A2: (f
. x1)
= 1 & for z st z
in A holds (z
<> x1 implies (f
. z)
=
0 ) by
Th10;
consider f1 such that
A3: (f1
. x4)
= 1 & for z st z
in A holds (z
<> x4 implies (f1
. z)
=
0 ) by
Th10;
consider h such that
A4: (h
. x3)
= 1 & for z st z
in A holds (z
<> x3 implies (h
. z)
=
0 ) by
Th10;
consider g such that
A5: (g
. x2)
= 1 & for z st z
in A holds (z
<> x2 implies (g
. z)
=
0 ) by
Th10;
take f, g, h, f1;
thus thesis by
A1,
A2,
A5,
A4,
A3,
Th17,
Th19;
end;
Lm31: ex A, x1, x2, x3, x4 st A
=
{x1, x2, x3, x4} & x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4
proof
reconsider A =
{
0 , 1, 2, 3} as non
empty
set;
take A;
reconsider x1 =
0 , x2 = 1, x3 = 2, x4 = 3 as
Element of A by
ENUMSET1:def 2;
take x1, x2, x3, x4;
thus thesis;
end;
theorem ::
ANPROJ_2:22
Th22: ex V be non
trivial
RealLinearSpace st ex u,v,w,u1 be
Element of V st (for a, b, c, d st ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 & d
=
0 ) & for y be
Element of V holds ex a, b, c, d st y
= ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1))
proof
consider A, x1, x2, x3, x4 such that
A1: A
=
{x1, x2, x3, x4} & x1
<> x2 & x1
<> x3 & x1
<> x4 & x2
<> x3 & x2
<> x4 & x3
<> x4 by
Lm31;
set V = (
RealVectSpace A);
consider f, g, h, f1 such that
A2: for a,b,c,d be
Real st ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1])))
= (
RealFuncZero A) holds a
=
0 & b
=
0 & c
=
0 & d
=
0 and
A3: for h9 be
Element of (
Funcs (A,
REAL )) holds ex a,b,c,d be
Real st h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1]))) by
A1,
Th21;
reconsider u = f, v = g, w = h, u1 = f1 as
Element of V;
for a, b, c, d st ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 & d
=
0 by
A2;
then not u is
zero by
Th2;
then
A4: u
<> (
0. V);
A5: for y be
Element of V holds ex a, b, c, d st y
= ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1))
proof
let y be
Element of V;
reconsider h9 = y as
Element of (
Funcs (A,
REAL ));
consider a,b,c,d be
Real such that
A6: h9
= ((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncAdd A)
. (((
RealFuncExtMult A)
.
[a, f]),((
RealFuncExtMult A)
.
[b, g]))),((
RealFuncExtMult A)
.
[c, h]))),((
RealFuncExtMult A)
.
[d, f1]))) by
A3;
h9
= ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1)) by
A6;
hence thesis;
end;
reconsider V as non
trivial
RealLinearSpace by
A4,
STRUCT_0:def 18;
take V;
reconsider u, v, w, u1 as
Element of V;
take u, v, w, u1;
thus for a, b, c, d st ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 & d
=
0 by
A2;
let y be
Element of V;
ex a, b, c, d st y
= ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1)) by
A5;
hence thesis;
end;
definition
let IT be
RealLinearSpace;
::
ANPROJ_2:def6
attr IT is
up-3-dimensional means
:
Def6: ex u,v,w1 be
Element of IT st for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w1))
= (
0. IT) holds a
=
0 & b
=
0 & c
=
0 ;
end
registration
cluster
up-3-dimensional for
RealLinearSpace;
existence by
Th16,
Def6;
end
registration
cluster
up-3-dimensional -> non
trivial for
RealLinearSpace;
coherence
proof
let V be
RealLinearSpace;
given u,v,w1 be
Element of V such that
A1: for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w1))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ;
now
assume w1
= (
0. V);
then
A2: (
0. V)
= (1
* w1) by
RLVECT_1: 10;
(
0. V)
= (
0
* u) & (
0. V)
= (
0
* v) by
RLVECT_1: 10;
then (
0. V)
= ((
0
* u)
+ (
0
* v)) by
RLVECT_1: 4
.= (((
0
* u)
+ (
0
* v))
+ (1
* w1)) by
A2,
RLVECT_1: 4;
hence contradiction by
A1;
end;
hence thesis;
end;
end
definition
let CS be non
empty
CollStr;
:: original:
reflexive
redefine
::
ANPROJ_2:def7
attr CS is
reflexive means
:
Def7: for p,q,r be
Element of CS holds (p,q,p)
are_collinear & (p,p,q)
are_collinear & (p,q,q)
are_collinear ;
compatibility
proof
thus CS is
reflexive implies for p,q,r be
Element of CS holds (p,q,p)
are_collinear & (p,p,q)
are_collinear & (p,q,q)
are_collinear ;
assume
A1: for p,q,r be
Element of CS holds (p,q,p)
are_collinear & (p,p,q)
are_collinear & (p,q,q)
are_collinear ;
let p,q,r be
Element of CS such that
A2: p
= q or p
= r or q
= r;
per cases by
A2;
suppose p
= q;
then (p,q,r)
are_collinear by
A1;
hence thesis;
end;
suppose p
= r;
then (p,q,r)
are_collinear by
A1;
hence thesis;
end;
suppose q
= r;
then (p,q,r)
are_collinear by
A1;
hence thesis;
end;
end;
:: original:
transitive
redefine
::
ANPROJ_2:def8
attr CS is
transitive means
:
Def8: for p,q,r,r1,r2 be
Element of CS st p
<> q & (p,q,r)
are_collinear & (p,q,r1)
are_collinear & (p,q,r2)
are_collinear holds (r,r1,r2)
are_collinear ;
compatibility
proof
thus CS is
transitive implies for p,q,r,r1,r2 be
Element of CS st p
<> q & (p,q,r)
are_collinear & (p,q,r1)
are_collinear & (p,q,r2)
are_collinear holds (r,r1,r2)
are_collinear ;
assume
A3: for p,q,r,r1,r2 be
Element of CS st p
<> q & (p,q,r)
are_collinear & (p,q,r1)
are_collinear & (p,q,r2)
are_collinear holds (r,r1,r2)
are_collinear ;
let p,q,r,r1,r2 be
Element of CS such that
A4: p
<> q and
A5:
[p, q, r]
in the
Collinearity of CS &
[p, q, r1]
in the
Collinearity of CS and
A6:
[p, q, r2]
in the
Collinearity of CS;
A7: (p,q,r2)
are_collinear by
A6;
(p,q,r)
are_collinear & (p,q,r1)
are_collinear by
A5;
then (r,r1,r2)
are_collinear by
A3,
A4,
A7;
hence thesis;
end;
end
definition
let IT be non
empty
CollStr;
::
ANPROJ_2:def9
attr IT is
Vebleian means
:
Def9: for p,p1,p2,r,r1 be
Element of IT st (p,p1,r)
are_collinear & (p1,p2,r1)
are_collinear holds ex r2 be
Element of IT st (p,p2,r2)
are_collinear & (r,r1,r2)
are_collinear ;
::
ANPROJ_2:def10
attr IT is
at_least_3rank means
:
Def10: for p,q be
Element of IT holds ex r be
Element of IT st p
<> r & q
<> r & (p,q,r)
are_collinear ;
end
reserve V for non
trivial
RealLinearSpace;
reserve u,v,w,y,u1,v1,w1,u2,w2 for
Element of V;
reserve p,p1,p2,p3,q,q1,q2,q3,r,r1,r2,r3 for
Element of (
ProjectiveSpace V);
theorem ::
ANPROJ_2:23
Th23: (p,q,r)
are_collinear iff ex u, v, w st p
= (
Dir u) & q
= (
Dir v) & r
= (
Dir w) & not u is
zero & not v is
zero & not w is
zero & (u,v,w)
are_LinDep by
ANPROJ_1: 24,
ANPROJ_1: 25;
Lm32: (
ProjectiveSpace V) is
reflexive
proof
let p, q;
consider u such that
A1: not u is
zero & p
= (
Dir u) by
ANPROJ_1: 26;
consider v such that
A2: not v is
zero & q
= (
Dir v) by
ANPROJ_1: 26;
A3: (u,v,v)
are_LinDep by
ANPROJ_1: 11;
(u,v,u)
are_LinDep & (u,u,v)
are_LinDep by
ANPROJ_1: 11;
hence thesis by
A1,
A2,
A3,
Th23;
end;
Lm33: (
ProjectiveSpace V) is
transitive
proof
let p, q, r, r1, r2;
assume that
A1: p
<> q and
A2: (p,q,r)
are_collinear and
A3: (p,q,r1)
are_collinear and
A4: (p,q,r2)
are_collinear ;
consider u1, v1, w1 such that
A5: p
= (
Dir u1) and
A6: q
= (
Dir v1) and
A7: r
= (
Dir w1) and
A8: not u1 is
zero and
A9: not v1 is
zero and
A10: not w1 is
zero and
A11: (u1,v1,w1)
are_LinDep by
A2,
Th23;
consider v such that
A12: not v is
zero and
A13: q
= (
Dir v) by
ANPROJ_1: 26;
A14:
are_Prop (v1,v) by
A12,
A13,
A6,
A9,
ANPROJ_1: 22;
consider u3,v3,w3 be
Element of V such that
A15: p
= (
Dir u3) and
A16: q
= (
Dir v3) and
A17: r2
= (
Dir w3) and
A18: not u3 is
zero and
A19: not v3 is
zero and
A20: not w3 is
zero and
A21: (u3,v3,w3)
are_LinDep by
A4,
Th23;
A22:
are_Prop (v3,v) by
A12,
A13,
A16,
A19,
ANPROJ_1: 22;
consider u2,v2,w2 be
Element of V such that
A23: p
= (
Dir u2) and
A24: q
= (
Dir v2) and
A25: r1
= (
Dir w2) and
A26: not u2 is
zero and
A27: not v2 is
zero and
A28: not w2 is
zero and
A29: (u2,v2,w2)
are_LinDep by
A3,
Th23;
A30:
are_Prop (v2,v) by
A12,
A13,
A24,
A27,
ANPROJ_1: 22;
consider u such that
A31: not u is
zero and
A32: p
= (
Dir u) by
ANPROJ_1: 26;
are_Prop (u1,u) by
A31,
A32,
A5,
A8,
ANPROJ_1: 22;
then
A33: (u,v,w1)
are_LinDep by
A11,
A14,
ANPROJ_1: 4;
are_Prop (u3,u) by
A31,
A32,
A15,
A18,
ANPROJ_1: 22;
then
A34: (u,v,w3)
are_LinDep by
A21,
A22,
ANPROJ_1: 4;
are_Prop (u2,u) by
A31,
A32,
A23,
A26,
ANPROJ_1: 22;
then
A35: (u,v,w2)
are_LinDep by
A29,
A30,
ANPROJ_1: 4;
not
are_Prop (u,v) by
A1,
A31,
A32,
A12,
A13,
ANPROJ_1: 22;
then (w1,w2,w3)
are_LinDep by
A31,
A12,
A33,
A35,
A34,
ANPROJ_1: 14;
hence thesis by
A7,
A10,
A25,
A28,
A17,
A20,
Th23;
end;
registration
let V;
cluster (
ProjectiveSpace V) ->
reflexive
transitive;
coherence by
Lm32,
Lm33;
end
theorem ::
ANPROJ_2:24
Th24: (p,q,r)
are_collinear implies (p,r,q)
are_collinear & (q,p,r)
are_collinear & (r,q,p)
are_collinear & (r,p,q)
are_collinear & (q,r,p)
are_collinear
proof
assume (p,q,r)
are_collinear ;
then
consider u, v, w such that
A1: p
= (
Dir u) & q
= (
Dir v) & r
= (
Dir w) & not u is
zero & not v is
zero & not w is
zero and
A2: (u,v,w)
are_LinDep by
Th23;
A3: (w,v,u)
are_LinDep & (w,u,v)
are_LinDep by
A2,
ANPROJ_1: 5;
A4: (v,w,u)
are_LinDep by
A2,
ANPROJ_1: 5;
(u,w,v)
are_LinDep & (v,u,w)
are_LinDep by
A2,
ANPROJ_1: 5;
hence thesis by
A1,
A3,
A4,
Th23;
end;
Lm34: (p,p1,p2)
are_collinear & (p,p1,r)
are_collinear & (p1,p2,r1)
are_collinear implies ex r2 st (p,p2,r2)
are_collinear & (r,r1,r2)
are_collinear
proof
assume that
A1: (p,p1,p2)
are_collinear and
A2: (p,p1,r)
are_collinear and
A3: (p1,p2,r1)
are_collinear ;
A4:
now
A5:
now
assume
A6: p1
<> p;
take r;
A7: (r,r1,r)
are_collinear by
Def7;
(p,p1,p)
are_collinear by
Def7;
then (p,p2,r)
are_collinear by
A1,
A2,
A6,
Def8;
hence thesis by
A7;
end;
A8:
now
assume
A9: p1
<> p2;
take r1;
A10: (r,r1,r1)
are_collinear by
Def7;
(p1,p2,p)
are_collinear & (p1,p2,p2)
are_collinear by
A1,
Def7,
Th24;
then (p,p2,r1)
are_collinear by
A3,
A9,
Def8;
hence thesis by
A10;
end;
assume p
<> p2;
hence thesis by
A5,
A8;
end;
now
assume p
= p2;
then
A11: (p,p2,r)
are_collinear by
Def7;
take r;
(r,r1,r)
are_collinear by
Def7;
hence thesis by
A11;
end;
hence thesis by
A4;
end;
Lm35: not (p,p1,p2)
are_collinear & (p,p1,r)
are_collinear & (p1,p2,r1)
are_collinear implies ex r2 st (p,p2,r2)
are_collinear & (r,r1,r2)
are_collinear
proof
assume that
A1: not (p,p1,p2)
are_collinear and
A2: (p,p1,r)
are_collinear and
A3: (p1,p2,r1)
are_collinear ;
consider u,v,t be
Element of V such that
A4: p
= (
Dir u) and
A5: p1
= (
Dir v) and
A6: r
= (
Dir t) and
A7: not u is
zero and
A8: not v is
zero and
A9: not t is
zero and
A10: (u,v,t)
are_LinDep by
A2,
Th23;
consider v1,w,s be
Element of V such that
A11: p1
= (
Dir v1) and
A12: p2
= (
Dir w) and
A13: r1
= (
Dir s) and
A14: not v1 is
zero and
A15: not w is
zero and
A16: not s is
zero and
A17: (v1,w,s)
are_LinDep by
A3,
Th23;
are_Prop (v1,v) by
A5,
A8,
A11,
A14,
ANPROJ_1: 22;
then
A18: (v,w,s)
are_LinDep by
A17,
ANPROJ_1: 4;
not (u,v,w)
are_LinDep by
A1,
A4,
A5,
A7,
A8,
A12,
A15,
Th23;
then
consider y such that
A19: (u,w,y)
are_LinDep & (t,s,y)
are_LinDep and
A20: not y is
zero by
A10,
A18,
ANPROJ_1: 15;
reconsider r2 = (
Dir y) as
Element of (
ProjectiveSpace V) by
A20,
ANPROJ_1: 26;
take r2;
thus thesis by
A4,
A6,
A7,
A9,
A12,
A13,
A15,
A16,
A19,
A20,
Th23;
end;
Lm36: (
ProjectiveSpace V) is
Vebleian
proof
let p, p1, p2, r, r1;
assume
A1: (p,p1,r)
are_collinear & (p1,p2,r1)
are_collinear ;
then (p,p1,p2)
are_collinear implies thesis by
Lm34;
hence thesis by
A1,
Lm35;
end;
registration
let V;
cluster (
ProjectiveSpace V) ->
Vebleian;
coherence by
Lm36;
end
Lm37: V is
up-3-dimensional implies (
ProjectiveSpace V) is
proper
proof
given u, v, w such that
A1: for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ;
A2: not (u,v,w)
are_LinDep by
A1;
A3: not w is
zero by
A1,
Th1;
A4: not u is
zero & not v is
zero by
A1,
Th1;
then
reconsider p = (
Dir u), q = (
Dir v), r = (
Dir w) as
Element of (
ProjectiveSpace V) by
A3,
ANPROJ_1: 26;
take p, q, r;
assume (p,q,r)
are_collinear ;
then
[(
Dir u), (
Dir v), (
Dir w)]
in the
Collinearity of (
ProjectiveSpace V);
hence contradiction by
A4,
A3,
A2,
ANPROJ_1: 25;
end;
registration
let V be
up-3-dimensional
RealLinearSpace;
cluster (
ProjectiveSpace V) ->
proper;
coherence by
Lm37;
end
theorem ::
ANPROJ_2:25
Th25: (ex u, v st for a, b st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 ) implies (
ProjectiveSpace V) is
at_least_3rank
proof
given u, v such that
A1: for a, b st ((a
* u)
+ (b
* v))
= (
0. V) holds a
=
0 & b
=
0 ;
A2: not
are_Prop (u,v) by
A1,
Lm1;
let p, q;
consider y such that
A3: not y is
zero & p
= (
Dir y) by
ANPROJ_1: 26;
consider w such that
A4: not w is
zero & q
= (
Dir w) by
ANPROJ_1: 26;
not u is
zero & not v is
zero by
A1,
Lm1;
then
consider z be
Element of V such that
A5: not z is
zero and
A6: (y,w,z)
are_LinDep and
A7: not
are_Prop (y,z) and
A8: not
are_Prop (w,z) by
A2,
ANPROJ_1: 16;
reconsider r = (
Dir z) as
Element of (
ProjectiveSpace V) by
A5,
ANPROJ_1: 26;
take r;
thus p
<> r by
A3,
A5,
A7,
ANPROJ_1: 22;
thus q
<> r by
A4,
A5,
A8,
ANPROJ_1: 22;
thus thesis by
A3,
A4,
A5,
A6,
Th23;
end;
Lm38: V is
up-3-dimensional implies (
ProjectiveSpace V) is
at_least_3rank
proof
given u, v, w1 such that
A1: for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w1))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ;
now
let a, b;
assume ((a
* u)
+ (b
* v))
= (
0. V);
then (
0. V)
= (((a
* u)
+ (b
* v))
+ (
0. V)) by
RLVECT_1: 4
.= (((a
* u)
+ (b
* v))
+ (
0
* w1)) by
RLVECT_1: 10;
hence a
=
0 & b
=
0 by
A1;
end;
hence thesis by
Th25;
end;
registration
let V be
up-3-dimensional
RealLinearSpace;
cluster (
ProjectiveSpace V) ->
at_least_3rank;
coherence by
Lm38;
end
registration
cluster
transitive
reflexive
proper
Vebleian
at_least_3rank for non
empty
CollStr;
existence
proof
set V0 = the
up-3-dimensional
RealLinearSpace;
take (
ProjectiveSpace V0);
thus thesis;
end;
end
definition
mode
CollProjectiveSpace is
reflexive
transitive
Vebleian
at_least_3rank
proper non
empty
CollStr;
end
definition
let IT be non
empty
CollStr;
::
ANPROJ_2:def11
attr IT is
Fanoian means for p1,r2,q,r1,q1,p,r be
Element of IT holds ((p1,r2,q)
are_collinear & (r1,q1,q)
are_collinear & (p1,r1,p)
are_collinear & (r2,q1,p)
are_collinear & (p1,q1,r)
are_collinear & (r2,r1,r)
are_collinear & (p,q,r)
are_collinear implies ((p1,r2,q1)
are_collinear or (p1,r2,r1)
are_collinear or (p1,r1,q1)
are_collinear or (r2,r1,q1)
are_collinear ));
::
ANPROJ_2:def12
attr IT is
Desarguesian means for o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be
Element of IT st o
<> q1 & p1
<> q1 & o
<> q2 & p2
<> q2 & o
<> q3 & p3
<> q3 & not (o,p1,p2)
are_collinear & not (o,p1,p3)
are_collinear & not (o,p2,p3)
are_collinear & (p1,p2,r3)
are_collinear & (q1,q2,r3)
are_collinear & (p2,p3,r1)
are_collinear & (q2,q3,r1)
are_collinear & (p1,p3,r2)
are_collinear & (q1,q3,r2)
are_collinear & (o,p1,q1)
are_collinear & (o,p2,q2)
are_collinear & (o,p3,q3)
are_collinear holds (r1,r2,r3)
are_collinear ;
::
ANPROJ_2:def13
attr IT is
Pappian means for o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be
Element of IT st o
<> p2 & o
<> p3 & p2
<> p3 & p1
<> p2 & p1
<> p3 & o
<> q2 & o
<> q3 & q2
<> q3 & q1
<> q2 & q1
<> q3 & not (o,p1,q1)
are_collinear & (o,p1,p2)
are_collinear & (o,p1,p3)
are_collinear & (o,q1,q2)
are_collinear & (o,q1,q3)
are_collinear & (p1,q2,r3)
are_collinear & (q1,p2,r3)
are_collinear & (p1,q3,r2)
are_collinear & (p3,q1,r2)
are_collinear & (p2,q3,r1)
are_collinear & (p3,q2,r1)
are_collinear holds (r1,r2,r3)
are_collinear ;
end
definition
let IT be
CollProjectiveSpace;
::
ANPROJ_2:def14
attr IT is
2-dimensional means
:
Def14: for p,p1,q,q1 be
Element of IT holds ex r be
Element of IT st (p,p1,r)
are_collinear & (q,q1,r)
are_collinear ;
end
notation
let IT be
CollProjectiveSpace;
antonym IT is
up-3-dimensional for IT is
2-dimensional;
end
definition
let IT be
CollProjectiveSpace;
::
ANPROJ_2:def15
attr IT is
at_most-3-dimensional means for p,p1,q,q1,r2 be
Element of IT holds ex r,r1 be
Element of IT st (p,q,r)
are_collinear & (p1,q1,r1)
are_collinear & (r2,r,r1)
are_collinear ;
end
theorem ::
ANPROJ_2:26
Th26: (p1,r2,q)
are_collinear & (r1,q1,q)
are_collinear & (p1,r1,p)
are_collinear & (r2,q1,p)
are_collinear & (p1,q1,r)
are_collinear & (r2,r1,r)
are_collinear & (p,q,r)
are_collinear implies ((p1,r2,q1)
are_collinear or (p1,r2,r1)
are_collinear or (p1,r1,q1)
are_collinear or (r2,r1,q1)
are_collinear )
proof
assume that
A1: (p1,r2,q)
are_collinear and
A2: (r1,q1,q)
are_collinear and
A3: (p1,r1,p)
are_collinear and
A4: (r2,q1,p)
are_collinear and
A5: (p1,q1,r)
are_collinear and
A6: (r2,r1,r)
are_collinear and
A7: (p,q,r)
are_collinear ;
consider u1,w1,x be
Element of V such that
A8: p1
= (
Dir u1) and
A9: r1
= (
Dir w1) and
A10: p
= (
Dir x) and
A11: not u1 is
zero and
A12: not w1 is
zero and
A13: not x is
zero and
A14: (u1,w1,x)
are_LinDep by
A3,
Th23;
consider u,v,z be
Element of V such that
A15: p1
= (
Dir u) and
A16: r2
= (
Dir v) and
A17: q
= (
Dir z) and
A18: not u is
zero and
A19: not v is
zero and
A20: not z is
zero and
A21: (u,v,z)
are_LinDep by
A1,
Th23;
consider w,y,z1 be
Element of V such that
A22: r1
= (
Dir w) and
A23: q1
= (
Dir y) and
A24: q
= (
Dir z1) and
A25: not w is
zero and
A26: not y is
zero and
A27: not z1 is
zero and
A28: (w,y,z1)
are_LinDep by
A2,
Th23;
A29:
are_Prop (w1,w) by
A22,
A25,
A9,
A12,
ANPROJ_1: 22;
are_Prop (z1,z) by
A17,
A20,
A24,
A27,
ANPROJ_1: 22;
then
A30: (w,y,z)
are_LinDep by
A28,
ANPROJ_1: 4;
consider x2,z2,t2 be
Element of V such that
A31: p
= (
Dir x2) and
A32: q
= (
Dir z2) and
A33: r
= (
Dir t2) and
A34: not x2 is
zero and
A35: not z2 is
zero and
A36: not t2 is
zero and
A37: (x2,z2,t2)
are_LinDep by
A7,
Th23;
A38:
are_Prop (x2,x) by
A10,
A13,
A31,
A34,
ANPROJ_1: 22;
consider u2,y2,t be
Element of V such that
A39: p1
= (
Dir u2) and
A40: q1
= (
Dir y2) and
A41: r
= (
Dir t) and
A42: not u2 is
zero and
A43: not y2 is
zero and
A44: not t is
zero and
A45: (u2,y2,t)
are_LinDep by
A5,
Th23;
A46:
are_Prop (y2,y) by
A23,
A26,
A40,
A43,
ANPROJ_1: 22;
A47:
are_Prop (t2,t) by
A41,
A44,
A33,
A36,
ANPROJ_1: 22;
are_Prop (z2,z) by
A17,
A20,
A32,
A35,
ANPROJ_1: 22;
then
A48: (x,z,t)
are_LinDep by
A37,
A38,
A47,
ANPROJ_1: 4;
are_Prop (u2,u) by
A15,
A18,
A39,
A42,
ANPROJ_1: 22;
then
A49: (u,y,t)
are_LinDep by
A45,
A46,
ANPROJ_1: 4;
consider v2,w2,t1 be
Element of V such that
A50: r2
= (
Dir v2) and
A51: r1
= (
Dir w2) and
A52: r
= (
Dir t1) and
A53: not v2 is
zero and
A54: not w2 is
zero and
A55: not t1 is
zero and
A56: (v2,w2,t1)
are_LinDep by
A6,
Th23;
A57:
are_Prop (t1,t) by
A41,
A44,
A52,
A55,
ANPROJ_1: 22;
are_Prop (u1,u) by
A15,
A18,
A8,
A11,
ANPROJ_1: 22;
then
A58: (u,w,x)
are_LinDep by
A14,
A29,
ANPROJ_1: 4;
consider v1,y1,x1 be
Element of V such that
A59: r2
= (
Dir v1) and
A60: q1
= (
Dir y1) and
A61: p
= (
Dir x1) and
A62: not v1 is
zero and
A63: not y1 is
zero and
A64: not x1 is
zero and
A65: (v1,y1,x1)
are_LinDep by
A4,
Th23;
A66:
are_Prop (x1,x) by
A10,
A13,
A61,
A64,
ANPROJ_1: 22;
A67:
are_Prop (w2,w) by
A22,
A25,
A51,
A54,
ANPROJ_1: 22;
are_Prop (v2,v) by
A16,
A19,
A50,
A53,
ANPROJ_1: 22;
then
A68: (v,w,t)
are_LinDep by
A56,
A67,
A57,
ANPROJ_1: 4;
A69:
are_Prop (y1,y) by
A23,
A26,
A60,
A63,
ANPROJ_1: 22;
are_Prop (v1,v) by
A16,
A19,
A59,
A62,
ANPROJ_1: 22;
then (v,y,x)
are_LinDep by
A65,
A69,
A66,
ANPROJ_1: 4;
then (u,v,y)
are_LinDep or (u,v,w)
are_LinDep or (u,w,y)
are_LinDep or (v,w,y)
are_LinDep by
A20,
A21,
A13,
A44,
A30,
A58,
A49,
A68,
A48,
ANPROJ_1: 18;
hence thesis by
A15,
A16,
A18,
A19,
A22,
A23,
A25,
A26,
Th23;
end;
Lm39: for V be
up-3-dimensional
RealLinearSpace holds (
ProjectiveSpace V) is
Fanoian by
Th26;
Lm40: for V be
up-3-dimensional
RealLinearSpace holds (
ProjectiveSpace V) is
Desarguesian
proof
let V be
up-3-dimensional
RealLinearSpace;
let o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be
Element of (
ProjectiveSpace V);
assume that
A1: o
<> q1 and
A2: p1
<> q1 and
A3: o
<> q2 and
A4: p2
<> q2 and
A5: o
<> q3 and
A6: p3
<> q3 and
A7: not (o,p1,p2)
are_collinear and
A8: ( not (o,p1,p3)
are_collinear ) & not (o,p2,p3)
are_collinear and
A9: (p1,p2,r3)
are_collinear and
A10: (q1,q2,r3)
are_collinear and
A11: (p2,p3,r1)
are_collinear and
A12: (q2,q3,r1)
are_collinear and
A13: (p1,p3,r2)
are_collinear and
A14: (q1,q3,r2)
are_collinear and
A15: (o,p1,q1)
are_collinear and
A16: (o,p2,q2)
are_collinear and
A17: (o,p3,q3)
are_collinear ;
consider q19,q29,r399 be
Element of V such that
A18: q1
= (
Dir q19) and
A19: q2
= (
Dir q29) and
A20: r3
= (
Dir r399) and
A21: not q19 is
zero and
A22: not q29 is
zero and
A23: not r399 is
zero and
A24: (q19,q29,r399)
are_LinDep by
A10,
Th23;
consider q299,q39,r199 be
Element of V such that
A25: q2
= (
Dir q299) and
A26: q3
= (
Dir q39) and
A27: r1
= (
Dir r199) and
A28: not q299 is
zero and
A29: not q39 is
zero and
A30: not r199 is
zero and
A31: (q299,q39,r199)
are_LinDep by
A12,
Th23;
A32:
are_Prop (q299,q29) by
A19,
A22,
A25,
A28,
ANPROJ_1: 22;
consider p299,p39,r19 be
Element of V such that
A33: p2
= (
Dir p299) and
A34: p3
= (
Dir p39) and
A35: r1
= (
Dir r19) and
A36: not p299 is
zero and
A37: not p39 is
zero and
A38: not r19 is
zero and
A39: (p299,p39,r19)
are_LinDep by
A11,
Th23;
A40: not
are_Prop (p39,q39) by
A6,
A34,
A37,
A26,
A29,
ANPROJ_1: 22;
are_Prop (r199,r19) by
A35,
A38,
A27,
A30,
ANPROJ_1: 22;
then
A41: (q29,q39,r19)
are_LinDep by
A31,
A32,
ANPROJ_1: 4;
consider p199,p399,r29 be
Element of V such that
A42: p1
= (
Dir p199) and
A43: p3
= (
Dir p399) and
A44: r2
= (
Dir r29) and
A45: not p199 is
zero and
A46: not p399 is
zero and
A47: not r29 is
zero and
A48: (p199,p399,r29)
are_LinDep by
A13,
Th23;
A49:
are_Prop (p399,p39) by
A34,
A37,
A43,
A46,
ANPROJ_1: 22;
consider o9 be
Element of V such that
A50: not o9 is
zero and
A51: o
= (
Dir o9) by
ANPROJ_1: 26;
A52: not
are_Prop (o9,q39) by
A5,
A50,
A51,
A26,
A29,
ANPROJ_1: 22;
consider p19,p29,r39 be
Element of V such that
A53: p1
= (
Dir p19) and
A54: p2
= (
Dir p29) and
A55: r3
= (
Dir r39) and
A56: not p19 is
zero and
A57: not p29 is
zero and
A58: not r39 is
zero and
A59: (p19,p29,r39)
are_LinDep by
A9,
Th23;
A60: ( not
are_Prop (p19,q19)) & not
are_Prop (p29,q29) by
A2,
A4,
A53,
A54,
A56,
A57,
A18,
A19,
A21,
A22,
ANPROJ_1: 22;
A61: ( not
are_Prop (o9,q19)) & not
are_Prop (o9,q29) by
A1,
A3,
A50,
A51,
A18,
A19,
A21,
A22,
ANPROJ_1: 22;
consider o999,p2999,q2999 be
Element of V such that
A62: o
= (
Dir o999) and
A63: p2
= (
Dir p2999) and
A64: q2
= (
Dir q2999) and
A65: not o999 is
zero and
A66: not p2999 is
zero and
A67: not q2999 is
zero and
A68: (o999,p2999,q2999)
are_LinDep by
A16,
Th23;
A69:
are_Prop (q2999,q29) by
A19,
A22,
A64,
A67,
ANPROJ_1: 22;
A70:
are_Prop (o999,o9) by
A50,
A51,
A62,
A65,
ANPROJ_1: 22;
are_Prop (p2999,p29) by
A54,
A57,
A63,
A66,
ANPROJ_1: 22;
then
A71: (o9,p29,q29)
are_LinDep by
A68,
A70,
A69,
ANPROJ_1: 4;
consider q199,q399,r299 be
Element of V such that
A72: q1
= (
Dir q199) and
A73: q3
= (
Dir q399) and
A74: r2
= (
Dir r299) and
A75: not q199 is
zero and
A76: not q399 is
zero and
A77: not r299 is
zero and
A78: (q199,q399,r299)
are_LinDep by
A14,
Th23;
A79:
are_Prop (q199,q19) by
A18,
A21,
A72,
A75,
ANPROJ_1: 22;
A80: not (o9,p19,p29)
are_LinDep by
A7,
A50,
A51,
A53,
A54,
A56,
A57,
Th23;
are_Prop (r399,r39) by
A55,
A58,
A20,
A23,
ANPROJ_1: 22;
then
A81: (q19,q29,r39)
are_LinDep by
A24,
ANPROJ_1: 4;
A82:
are_Prop (q399,q39) by
A26,
A29,
A73,
A76,
ANPROJ_1: 22;
consider o9999,p3999,q3999 be
Element of V such that
A83: o
= (
Dir o9999) and
A84: p3
= (
Dir p3999) and
A85: q3
= (
Dir q3999) and
A86: not o9999 is
zero and
A87: not p3999 is
zero and
A88: not q3999 is
zero and
A89: (o9999,p3999,q3999)
are_LinDep by
A17,
Th23;
A90:
are_Prop (q3999,q39) by
A26,
A29,
A85,
A88,
ANPROJ_1: 22;
are_Prop (p299,p29) by
A54,
A57,
A33,
A36,
ANPROJ_1: 22;
then
A91: (p29,p39,r19)
are_LinDep by
A39,
ANPROJ_1: 4;
are_Prop (p199,p19) by
A53,
A56,
A42,
A45,
ANPROJ_1: 22;
then (p19,p39,r29)
are_LinDep by
A48,
A49,
ANPROJ_1: 4;
then
A92: (p19,p29,p39,r19,r29,r39)
lie_on_a_triangle by
A59,
A91;
A93: (q19,q29,q39)
are_Prop_Vect by
A21,
A22,
A29;
consider o99,p1999,q1999 be
Element of V such that
A94: o
= (
Dir o99) and
A95: p1
= (
Dir p1999) and
A96: q1
= (
Dir q1999) and
A97: not o99 is
zero and
A98: not p1999 is
zero and
A99: not q1999 is
zero and
A100: (o99,p1999,q1999)
are_LinDep by
A15,
Th23;
A101:
are_Prop (q1999,q19) by
A18,
A21,
A96,
A99,
ANPROJ_1: 22;
A102: ( not (o9,p19,p39)
are_LinDep ) & not (o9,p29,p39)
are_LinDep by
A8,
A50,
A51,
A53,
A54,
A56,
A57,
A34,
A37,
Th23;
A103: (p19,p29,p39)
are_Prop_Vect by
A56,
A57,
A37;
A104:
are_Prop (o9999,o9) by
A50,
A51,
A83,
A86,
ANPROJ_1: 22;
are_Prop (p3999,p39) by
A34,
A37,
A84,
A87,
ANPROJ_1: 22;
then
A105: (o9,p39,q39)
are_LinDep by
A89,
A104,
A90,
ANPROJ_1: 4;
A106:
are_Prop (o99,o9) by
A50,
A51,
A94,
A97,
ANPROJ_1: 22;
are_Prop (p1999,p19) by
A53,
A56,
A95,
A98,
ANPROJ_1: 22;
then (o9,p19,q19)
are_LinDep by
A100,
A106,
A101,
ANPROJ_1: 4;
then
A107: (o9,p19,p29,p39,q19,q29,q39)
are_perspective by
A71,
A105;
are_Prop (r299,r29) by
A44,
A47,
A74,
A77,
ANPROJ_1: 22;
then (q19,q39,r29)
are_LinDep by
A78,
A79,
A82,
ANPROJ_1: 4;
then
A108: (q19,q29,q39,r19,r29,r39)
lie_on_a_triangle by
A81,
A41;
(r19,r29,r39)
are_Prop_Vect by
A58,
A38,
A47;
then (r19,r29,r39)
are_LinDep by
A50,
A61,
A52,
A60,
A40,
A103,
A93,
A107,
A80,
A102,
A92,
A108,
Th8;
hence thesis by
A55,
A58,
A35,
A38,
A44,
A47,
Th23;
end;
Lm41: for V be
up-3-dimensional
RealLinearSpace holds (
ProjectiveSpace V) is
Pappian
proof
let V be
up-3-dimensional
RealLinearSpace;
let o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be
Element of (
ProjectiveSpace V);
assume that
A1: o
<> p2 and
A2: o
<> p3 and
A3: p2
<> p3 and
A4: p1
<> p2 and
A5: p1
<> p3 and
A6: o
<> q2 and
A7: o
<> q3 and
A8: q2
<> q3 and
A9: q1
<> q2 and
A10: q1
<> q3 and
A11: not (o,p1,q1)
are_collinear and
A12: (o,p1,p2)
are_collinear and
A13: (o,p1,p3)
are_collinear and
A14: (o,q1,q2)
are_collinear and
A15: (o,q1,q3)
are_collinear and
A16: (p1,q2,r3)
are_collinear and
A17: (q1,p2,r3)
are_collinear and
A18: (p1,q3,r2)
are_collinear and
A19: (p3,q1,r2)
are_collinear and
A20: (p2,q3,r1)
are_collinear and
A21: (p3,q2,r1)
are_collinear ;
consider o999,q19,q29 be
Element of V such that
A22: o
= (
Dir o999) and
A23: q1
= (
Dir q19) and
A24: q2
= (
Dir q29) and
A25: not o999 is
zero and
A26: not q19 is
zero and
A27: not q29 is
zero and
A28: (o999,q19,q29)
are_LinDep by
A14,
Th23;
A29: not
are_Prop (q19,q29) by
A9,
A23,
A24,
A26,
A27,
ANPROJ_1: 22;
consider o9999,q199,q39 be
Element of V such that
A30: o
= (
Dir o9999) and
A31: q1
= (
Dir q199) and
A32: q3
= (
Dir q39) and
A33: not o9999 is
zero and
A34: not q199 is
zero and
A35: not q39 is
zero and
A36: (o9999,q199,q39)
are_LinDep by
A15,
Th23;
A37:
are_Prop (q199,q19) by
A23,
A26,
A31,
A34,
ANPROJ_1: 22;
consider o99,p199,p39 be
Element of V such that
A38: o
= (
Dir o99) & p1
= (
Dir p199) and
A39: p3
= (
Dir p39) and
A40: not o99 is
zero & not p199 is
zero and
A41: not p39 is
zero and
A42: (o99,p199,p39)
are_LinDep by
A13,
Th23;
consider o9,p19,p29 be
Element of V such that
A43: o
= (
Dir o9) and
A44: p1
= (
Dir p19) and
A45: p2
= (
Dir p29) and
A46: not o9 is
zero and
A47: not p19 is
zero and
A48: not p29 is
zero and
A49: (o9,p19,p29)
are_LinDep by
A12,
Th23;
A50: ( not
are_Prop (o9,p39)) & not
are_Prop (p19,p39) by
A2,
A5,
A43,
A44,
A46,
A47,
A39,
A41,
ANPROJ_1: 22;
A51: ( not
are_Prop (q19,q39)) & not
are_Prop (q29,q39) by
A8,
A10,
A23,
A24,
A26,
A27,
A32,
A35,
ANPROJ_1: 22;
A52: not
are_Prop (p29,p39) by
A3,
A45,
A48,
A39,
A41,
ANPROJ_1: 22;
A53: not
are_Prop (o9,q39) by
A7,
A43,
A46,
A32,
A35,
ANPROJ_1: 22;
A54: not
are_Prop (o9,q29) by
A6,
A43,
A46,
A24,
A27,
ANPROJ_1: 22;
( not
are_Prop (o9,p29)) & not
are_Prop (p19,p29) by
A1,
A4,
A43,
A44,
A45,
A46,
A47,
A48,
ANPROJ_1: 22;
then
A55: (o9,p19,p29,p39,q19,q29,q39)
are_half_mutually_not_Prop by
A54,
A53,
A50,
A29,
A52,
A51;
consider q1999,p2999,r399 be
Element of V such that
A56: q1
= (
Dir q1999) and
A57: p2
= (
Dir p2999) and
A58: r3
= (
Dir r399) and
A59: not q1999 is
zero and
A60: not p2999 is
zero and
A61: not r399 is
zero and
A62: (q1999,p2999,r399)
are_LinDep by
A17,
Th23;
A63:
are_Prop (q1999,q19) by
A23,
A26,
A56,
A59,
ANPROJ_1: 22;
consider p29999,q3999,r19 be
Element of V such that
A64: p2
= (
Dir p29999) and
A65: q3
= (
Dir q3999) and
A66: r1
= (
Dir r19) and
A67: not p29999 is
zero and
A68: not q3999 is
zero and
A69: not r19 is
zero and
A70: (p29999,q3999,r19)
are_LinDep by
A20,
Th23;
A71:
are_Prop (q3999,q39) by
A32,
A35,
A65,
A68,
ANPROJ_1: 22;
are_Prop (o999,o9) by
A43,
A46,
A22,
A25,
ANPROJ_1: 22;
then
A72: (o9,q19,q29)
are_LinDep by
A28,
ANPROJ_1: 4;
are_Prop (o9999,o9) by
A43,
A46,
A30,
A33,
ANPROJ_1: 22;
then
A73: (o9,q19,q39)
are_LinDep by
A36,
A37,
ANPROJ_1: 4;
are_Prop (o99,o9) &
are_Prop (p199,p19) by
A43,
A44,
A46,
A47,
A38,
A40,
ANPROJ_1: 22;
then
A74: (o9,p19,p39)
are_LinDep by
A42,
ANPROJ_1: 4;
not (o9,p19,q19)
are_LinDep by
A11,
A43,
A44,
A46,
A47,
A23,
A26,
Th23;
then
A75: (o9,p19,p29,p39,q19,q29,q39)
lie_on_an_angle by
A49,
A74,
A72,
A73;
consider p19999,q399,r29 be
Element of V such that
A76: p1
= (
Dir p19999) and
A77: q3
= (
Dir q399) and
A78: r2
= (
Dir r29) and
A79: not p19999 is
zero and
A80: not q399 is
zero and
A81: not r29 is
zero and
A82: (p19999,q399,r29)
are_LinDep by
A18,
Th23;
A83:
are_Prop (q399,q39) by
A32,
A35,
A77,
A80,
ANPROJ_1: 22;
consider p3999,q29999,r199 be
Element of V such that
A84: p3
= (
Dir p3999) and
A85: q2
= (
Dir q29999) and
A86: r1
= (
Dir r199) and
A87: not p3999 is
zero and
A88: not q29999 is
zero and
A89: not r199 is
zero and
A90: (p3999,q29999,r199)
are_LinDep by
A21,
Th23;
A91:
are_Prop (p3999,p39) by
A39,
A41,
A84,
A87,
ANPROJ_1: 22;
A92:
are_Prop (q29999,q29) by
A24,
A27,
A85,
A88,
ANPROJ_1: 22;
are_Prop (r199,r19) by
A66,
A69,
A86,
A89,
ANPROJ_1: 22;
then
A93: (p39,q29,r19)
are_LinDep by
A90,
A91,
A92,
ANPROJ_1: 4;
A94: (q19,q29,q39)
are_Prop_Vect by
A26,
A27,
A35;
A95: (p19,p29,p39)
are_Prop_Vect by
A47,
A48,
A41;
are_Prop (p29999,p29) by
A45,
A48,
A64,
A67,
ANPROJ_1: 22;
then
A96: (p29,q39,r19)
are_LinDep by
A70,
A71,
ANPROJ_1: 4;
consider p399,q1999,r299 be
Element of V such that
A97: p3
= (
Dir p399) and
A98: q1
= (
Dir q1999) and
A99: r2
= (
Dir r299) and
A100: not p399 is
zero and
A101: not q1999 is
zero and
A102: not r299 is
zero and
A103: (p399,q1999,r299)
are_LinDep by
A19,
Th23;
A104:
are_Prop (q1999,q19) by
A23,
A26,
A98,
A101,
ANPROJ_1: 22;
are_Prop (p19999,p19) by
A44,
A47,
A76,
A79,
ANPROJ_1: 22;
then
A105: (p19,q39,r29)
are_LinDep by
A82,
A83,
ANPROJ_1: 4;
consider p1999,q2999,r39 be
Element of V such that
A106: p1
= (
Dir p1999) and
A107: q2
= (
Dir q2999) and
A108: r3
= (
Dir r39) and
A109: not p1999 is
zero and
A110: not q2999 is
zero and
A111: not r39 is
zero and
A112: (p1999,q2999,r39)
are_LinDep by
A16,
Th23;
A113:
are_Prop (q2999,q29) by
A24,
A27,
A107,
A110,
ANPROJ_1: 22;
A114:
are_Prop (p2999,p29) by
A45,
A48,
A57,
A60,
ANPROJ_1: 22;
are_Prop (r399,r39) by
A108,
A111,
A58,
A61,
ANPROJ_1: 22;
then
A115: (q19,p29,r39)
are_LinDep by
A62,
A63,
A114,
ANPROJ_1: 4;
are_Prop (p1999,p19) by
A44,
A47,
A106,
A109,
ANPROJ_1: 22;
then
A116: (p19,q29,r39)
are_LinDep by
A112,
A113,
ANPROJ_1: 4;
A117:
are_Prop (p399,p39) by
A39,
A41,
A97,
A100,
ANPROJ_1: 22;
are_Prop (r299,r29) by
A78,
A81,
A99,
A102,
ANPROJ_1: 22;
then
A118: (p39,q19,r29)
are_LinDep by
A103,
A117,
A104,
ANPROJ_1: 4;
(r19,r29,r39)
are_Prop_Vect by
A111,
A81,
A69;
then (r19,r29,r39)
are_LinDep by
A46,
A75,
A55,
A95,
A94,
A116,
A115,
A105,
A118,
A96,
A93,
Th9;
hence thesis by
A108,
A111,
A78,
A81,
A66,
A69,
Th23;
end;
registration
let V be
up-3-dimensional
RealLinearSpace;
::$Notion-Name
cluster (
ProjectiveSpace V) ->
Fanoian
Desarguesian
Pappian;
coherence by
Lm39,
Lm40,
Lm41;
end
theorem ::
ANPROJ_2:27
Th27: (ex u, v, w st (for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ) & (for y holds ex a, b, c st y
= (((a
* u)
+ (b
* v))
+ (c
* w)))) implies ex x1,x2 be
Element of (
ProjectiveSpace V) st (x1
<> x2 & for r1, r2 holds ex q st (x1,x2,q)
are_collinear & (r1,r2,q)
are_collinear )
proof
given p,q,r be
Element of V such that
A1: for a, b, c st (((a
* p)
+ (b
* q))
+ (c
* r))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 and
A2: for y holds ex a, b, c st y
= (((a
* p)
+ (b
* q))
+ (c
* r));
A3: not p is
zero & not q is
zero by
A1,
Th1;
then
reconsider x1 = (
Dir p), x2 = (
Dir q) as
Element of (
ProjectiveSpace V) by
ANPROJ_1: 26;
take x1, x2;
not
are_Prop (p,q) by
A1,
Th1;
hence x1
<> x2 by
A3,
ANPROJ_1: 22;
let r1, r2;
consider u such that
A4: not u is
zero & r1
= (
Dir u) by
ANPROJ_1: 26;
consider u1 such that
A5: not u1 is
zero & r2
= (
Dir u1) by
ANPROJ_1: 26;
consider y such that
A6: (p,q,y)
are_LinDep and
A7: (u,u1,y)
are_LinDep and
A8: not y is
zero by
A1,
A2,
Th3;
reconsider q = (
Dir y) as
Element of (
ProjectiveSpace V) by
A8,
ANPROJ_1: 26;
take q;
thus (x1,x2,q)
are_collinear by
A3,
A6,
A8,
Th23;
thus thesis by
A4,
A5,
A7,
A8,
Th23;
end;
theorem ::
ANPROJ_2:28
Th28: (ex x1,x2 be
Element of (
ProjectiveSpace V) st (x1
<> x2 & for r1, r2 holds ex q st (x1,x2,q)
are_collinear & (r1,r2,q)
are_collinear )) implies for p, p1, q, q1 holds ex r st (p,p1,r)
are_collinear & (q,q1,r)
are_collinear
proof
given x1,x2 be
Element of (
ProjectiveSpace V) such that
A1: x1
<> x2 and
A2: for r1, r2 holds ex q st (x1,x2,q)
are_collinear & (r1,r2,q)
are_collinear ;
let p, p1, q, q1;
consider p3 be
Element of (
ProjectiveSpace V) such that
A3: (x1,x2,p3)
are_collinear and
A4: (p,p1,p3)
are_collinear by
A2;
consider q3 be
Element of (
ProjectiveSpace V) such that
A5: (x1,x2,q3)
are_collinear and
A6: (q,q1,q3)
are_collinear by
A2;
consider s2 be
Element of (
ProjectiveSpace V) such that
A7: (x1,x2,s2)
are_collinear and
A8: (p,q,s2)
are_collinear by
A2;
A9: (s2,p,q)
are_collinear by
A8,
Th24;
consider s4 be
Element of (
ProjectiveSpace V) such that
A10: (x1,x2,s4)
are_collinear and
A11: (p,q1,s4)
are_collinear by
A2;
A12: (s4,q1,p)
are_collinear by
A11,
Th24;
(p3,s2,q3)
are_collinear by
A1,
A3,
A5,
A7,
Def8;
then
consider s3 be
Element of (
ProjectiveSpace V) such that
A13: (p3,p,s3)
are_collinear and
A14: (q3,q,s3)
are_collinear by
A9,
Def9;
consider s be
Element of (
ProjectiveSpace V) such that
A15: (x1,x2,s)
are_collinear and
A16: (p1,q1,s)
are_collinear by
A2;
(q3,s4,p3)
are_collinear by
A1,
A3,
A5,
A10,
Def8;
then
consider s5 be
Element of (
ProjectiveSpace V) such that
A17: (q3,q1,s5)
are_collinear and
A18: (p3,p,s5)
are_collinear by
A12,
Def9;
A19: (p1,s,q1)
are_collinear by
A16,
Th24;
consider s6 be
Element of (
ProjectiveSpace V) such that
A20: (x1,x2,s6)
are_collinear and
A21: (p1,q,s6)
are_collinear by
A2;
A22: (s6,p1,q)
are_collinear by
A21,
Th24;
(p3,s6,q3)
are_collinear by
A1,
A3,
A5,
A20,
Def8;
then
consider s7 be
Element of (
ProjectiveSpace V) such that
A23: (p3,p1,s7)
are_collinear and
A24: (q3,q,s7)
are_collinear by
A22,
Def9;
(s,p3,q3)
are_collinear by
A1,
A3,
A5,
A15,
Def8;
then
consider s1 be
Element of (
ProjectiveSpace V) such that
A25: (p1,p3,s1)
are_collinear and
A26: (q1,q3,s1)
are_collinear by
A19,
Def9;
A27:
now
A28:
now
A29: (q3,q1,s1)
are_collinear by
A26,
Th24;
assume that
A30: p3
<> p1 and
A31: q3
<> q1;
(q3,q1,q)
are_collinear & (q3,q1,q1)
are_collinear by
A6,
Def7,
Th24;
then
A32: (q,q1,s1)
are_collinear by
A31,
A29,
Def8;
take s1;
A33: (p3,p1,s1)
are_collinear by
A25,
Th24;
(p3,p1,p)
are_collinear & (p3,p1,p1)
are_collinear by
A4,
Def7,
Th24;
then (p,p1,s1)
are_collinear by
A30,
A33,
Def8;
hence thesis by
A32;
end;
A34:
now
assume that
A35: p3
<> p and
A36: q3
<> q;
take s3;
(q3,q,q)
are_collinear & (q3,q,q1)
are_collinear by
A6,
Def7,
Th24;
then
A37: (q,q1,s3)
are_collinear by
A14,
A36,
Def8;
(p3,p,p)
are_collinear & (p3,p,p1)
are_collinear by
A4,
Def7,
Th24;
then (p,p1,s3)
are_collinear by
A13,
A35,
Def8;
hence thesis by
A37;
end;
A38:
now
assume that
A39: p3
<> p1 and
A40: q3
<> q;
take s7;
(q3,q,q)
are_collinear & (q3,q,q1)
are_collinear by
A6,
Def7,
Th24;
then
A41: (q,q1,s7)
are_collinear by
A24,
A40,
Def8;
(p3,p1,p)
are_collinear & (p3,p1,p1)
are_collinear by
A4,
Def7,
Th24;
then (p,p1,s7)
are_collinear by
A23,
A39,
Def8;
hence thesis by
A41;
end;
A42:
now
assume that
A43: p3
<> p and
A44: q3
<> q1;
take s5;
(q3,q1,q)
are_collinear & (q3,q1,q1)
are_collinear by
A6,
Def7,
Th24;
then
A45: (q,q1,s5)
are_collinear by
A17,
A44,
Def8;
(p3,p,p)
are_collinear & (p3,p,p1)
are_collinear by
A4,
Def7,
Th24;
then (p,p1,s5)
are_collinear by
A18,
A43,
Def8;
hence thesis by
A45;
end;
assume p
<> p1 & q
<> q1;
hence thesis by
A34,
A42,
A38,
A28;
end;
now
A46:
now
assume
A47: p
= p1;
take q3;
(p,p1,q3)
are_collinear by
A47,
Def7;
hence thesis by
A6;
end;
A48:
now
assume
A49: q
= q1;
take p3;
(q,q1,p3)
are_collinear by
A49,
Def7;
hence thesis by
A4;
end;
assume p
= p1 or q
= q1;
hence thesis by
A48,
A46;
end;
hence thesis by
A27;
end;
theorem ::
ANPROJ_2:29
Th29: (ex u, v, w st (for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ) & (for y holds ex a, b, c st y
= (((a
* u)
+ (b
* v))
+ (c
* w)))) implies ex CS be
CollProjectiveSpace st CS
= (
ProjectiveSpace V) & CS is
2-dimensional
proof
given u, v, w such that
A1: for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 and
A2: for y holds ex a, b, c st y
= (((a
* u)
+ (b
* v))
+ (c
* w));
reconsider V9 = V as
up-3-dimensional
RealLinearSpace by
A1,
Def6;
take (
ProjectiveSpace V9);
ex x1,x2 be
Element of (
ProjectiveSpace V) st (x1
<> x2 & for r1, r2 holds ex q st (x1,x2,q)
are_collinear & (r1,r2,q)
are_collinear ) by
A1,
A2,
Th27;
then for p, p1, q, q1 holds ex r st (p,p1,r)
are_collinear & (q,q1,r)
are_collinear by
Th28;
hence thesis;
end;
Lm42: (ex y, u, v, w st (for a, b, a1, b1 st ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 )) implies V is
up-3-dimensional
proof
given y, u, v, w such that
A1: for a, b, a1, b1 st ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ;
take y, u, v;
let a, b, a1;
assume (((a
* y)
+ (b
* u))
+ (a1
* v))
= (
0. V);
then (
0. V)
= ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (
0. V)) by
RLVECT_1: 4
.= ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (
0
* w)) by
RLVECT_1: 10;
hence thesis by
A1;
end;
Lm43: (ex y, u, v, w st (for a, b, a1, b1 st ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 )) implies (
ProjectiveSpace V) is
proper
at_least_3rank
proof
given y, u, v, w such that
A1: for a, b, a1, b1 st ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ;
V is
up-3-dimensional by
A1,
Lm42;
hence thesis;
end;
theorem ::
ANPROJ_2:30
Th30: (ex y, u, v, w st (for w1 holds ex a, b, a1, b1 st w1
= ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))) & (for a, b, a1, b1 st ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 )) implies ex p, q1, q2 st not (p,q1,q2)
are_collinear & for r1, r2 holds ex q3, r3 st (r1,r2,r3)
are_collinear & (q1,q2,q3)
are_collinear & (p,r3,q3)
are_collinear
proof
given y, u, v, w such that
A1: for w1 holds ex a, b, a1, b1 st w1
= ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w)) and
A2: for a, b, a1, b1 st ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ;
A3: not u is
zero & not v is
zero by
A2,
Th2;
A4: not y is
zero by
A2,
Th2;
then
reconsider p = (
Dir y), q1 = (
Dir u), q2 = (
Dir v) as
Element of (
ProjectiveSpace V) by
A3,
ANPROJ_1: 26;
take p, q1, q2;
not (y,u,v)
are_LinDep by
A2,
Th2;
then not (p,q1,q2)
are_collinear by
A4,
A3,
ANPROJ_1: 25;
hence not (p,q1,q2)
are_collinear ;
let r1, r2;
consider u1 such that
A5: not u1 is
zero and
A6: r1
= (
Dir u1) by
ANPROJ_1: 26;
consider u2 such that
A7: not u2 is
zero and
A8: r2
= (
Dir u2) by
ANPROJ_1: 26;
consider w1, w2 such that
A9: (u1,u2,w2)
are_LinDep and
A10: (u,v,w1)
are_LinDep and
A11: (y,w2,w1)
are_LinDep and
A12: not w1 is
zero and
A13: not w2 is
zero by
A1,
A2,
A5,
A7,
Th4;
reconsider q3 = (
Dir w1), r3 = (
Dir w2) as
Element of (
ProjectiveSpace V) by
A12,
A13,
ANPROJ_1: 26;
take q3, r3;
thus (r1,r2,r3)
are_collinear by
A5,
A6,
A7,
A8,
A9,
A13,
Th23;
thus (q1,q2,q3)
are_collinear by
A3,
A10,
A12,
Th23;
thus thesis by
A4,
A11,
A12,
A13,
Th23;
end;
Lm44: for x,d,b,b9,d9,q be
Element of (
ProjectiveSpace V) st not (q,b,d)
are_collinear & (b,d,x)
are_collinear & (q,b9,b)
are_collinear & (q,d9,d)
are_collinear holds ex o be
Element of (
ProjectiveSpace V) st (b9,d9,o)
are_collinear & (q,x,o)
are_collinear
proof
let x,d,b,b9,d9,q be
Element of (
ProjectiveSpace V);
assume that
A1: not (q,b,d)
are_collinear and
A2: (b,d,x)
are_collinear and
A3: (q,b9,b)
are_collinear and
A4: (q,d9,d)
are_collinear ;
A5: (b9,q,b)
are_collinear by
A3,
Th24;
A6: b
<> d by
A1,
Def7;
A7:
now
A8: (b,b9,q)
are_collinear by
A3,
Th24;
consider z be
Element of (
ProjectiveSpace V) such that
A9: (b9,d9,z)
are_collinear and
A10: (b,d,z)
are_collinear by
A4,
A5,
Def9;
A11: (z,b9,b9)
are_collinear by
Def7;
(b,d,b)
are_collinear by
Def7;
then (z,b,x)
are_collinear by
A2,
A6,
A10,
Def8;
then
consider o be
Element of (
ProjectiveSpace V) such that
A12: (z,b9,o)
are_collinear and
A13: (x,q,o)
are_collinear by
A8,
Def9;
A14: (q,x,o)
are_collinear by
A13,
Th24;
assume
A15: b
<> b9;
A16: z
<> b9
proof
assume not thesis;
then
A17: (b,b9,d)
are_collinear by
A10,
Th24;
(b,b9,q)
are_collinear & (b,b9,b)
are_collinear by
A3,
Def7,
Th24;
hence contradiction by
A1,
A15,
A17,
Def8;
end;
(z,b9,d9)
are_collinear by
A9,
Th24;
then (b9,d9,o)
are_collinear by
A12,
A16,
A11,
Def8;
hence thesis by
A14;
end;
now
assume b
= b9;
then
A18: (d,b9,x)
are_collinear by
A2,
Th24;
(d9,d,q)
are_collinear by
A4,
Th24;
then
consider o be
Element of (
ProjectiveSpace V) such that
A19: (d9,b9,o)
are_collinear and
A20: (q,x,o)
are_collinear by
A18,
Def9;
(b9,d9,o)
are_collinear by
A19,
Th24;
hence thesis by
A20;
end;
hence thesis by
A7;
end;
reserve x,z,x1,y1,z1,x2,x3,y2,z2,p4,q4 for
Element of (
ProjectiveSpace V);
theorem ::
ANPROJ_2:31
Th31: (
ProjectiveSpace V) is
proper
at_least_3rank & (ex p, q1, q2 st not (p,q1,q2)
are_collinear & (for r1, r2 holds ex q3, r3 st (r1,r2,r3)
are_collinear & (q1,q2,q3)
are_collinear & (p,r3,q3)
are_collinear )) implies ex CS be
CollProjectiveSpace st CS
= (
ProjectiveSpace V) & CS is
at_most-3-dimensional
proof
assume that
A1: (
ProjectiveSpace V) is
proper and
A2: for p, q holds ex r st p
<> r & q
<> r & (p,q,r)
are_collinear ;
defpred
P[
Element of (
ProjectiveSpace V),
Element of (
ProjectiveSpace V),
Element of (
ProjectiveSpace V)] means for y1, y2 holds ex x2, x1 st (y1,y2,x1)
are_collinear & ($2,$3,x2)
are_collinear & ($1,x1,x2)
are_collinear ;
A3: for p, q1, q2 st (q1,q2,p)
are_collinear holds
P[p, q1, q2]
proof
let p, q1, q2 such that
A4: (q1,q2,p)
are_collinear ;
now
let y1, y2;
(y1,y2,y2)
are_collinear & (p,y2,p)
are_collinear by
Def7;
hence ex x2, x1 st (y1,y2,x1)
are_collinear & (q1,q2,x2)
are_collinear & (p,x1,x2)
are_collinear by
A4;
end;
hence thesis;
end;
A5: for q, q1, q2, p1, p2, x st
P[q, q1, q2] & not (q1,q2,q)
are_collinear & (q1,q2,x)
are_collinear & not (p1,p2,q)
are_collinear & (p1,p2,x)
are_collinear holds
P[q, p1, p2]
proof
let q, q1, q2, p1, p2, x;
assume that
A6:
P[q, q1, q2] and
A7: not (q1,q2,q)
are_collinear and
A8: (q1,q2,x)
are_collinear and
A9: not (p1,p2,q)
are_collinear and
A10: (p1,p2,x)
are_collinear ;
A11: q1
<> q2 by
A7,
Def7;
A12: p1
<> p2 by
A9,
Def7;
now
let y1, y2;
A13:
now
ex a be
Element of (
ProjectiveSpace V) st (p1,p2,a)
are_collinear & x
<> a
proof
A14:
now
assume
A15: x
<> p2;
take p2;
(p1,p2,p2)
are_collinear by
Def7;
hence thesis by
A15;
end;
now
assume
A16: x
<> p1;
take p1;
(p1,p2,p1)
are_collinear by
Def7;
hence thesis by
A16;
end;
hence thesis by
A9,
A14,
Def7;
end;
then
consider x1 such that
A17: (p1,p2,x1)
are_collinear and
A18: x
<> x1;
consider b,b9 be
Element of (
ProjectiveSpace V) such that
A19: (y1,y2,b9)
are_collinear and
A20: (q1,q2,b)
are_collinear and
A21: (q,b9,b)
are_collinear by
A6;
assume
A22: y1
<> y2;
ex a be
Element of (
ProjectiveSpace V) st (y1,y2,a)
are_collinear & b9
<> a
proof
A23:
now
assume
A24: b9
<> y2;
take y2;
(y1,y2,y2)
are_collinear by
Def7;
hence thesis by
A24;
end;
now
assume
A25: b9
<> y1;
take y1;
(y1,y2,y1)
are_collinear by
Def7;
hence thesis by
A25;
end;
hence thesis by
A22,
A23;
end;
then
consider x3 such that
A26: b9
<> x3 and
A27: (y1,y2,x3)
are_collinear ;
consider d,d9 be
Element of (
ProjectiveSpace V) such that
A28: (x1,x3,d9)
are_collinear and
A29: (q1,q2,d)
are_collinear and
A30: (q,d9,d)
are_collinear by
A6;
A31: (b,d,x)
are_collinear by
A8,
A11,
A20,
A29,
Def8;
A32:
now
assume
A33: b
<> d;
not (q,b,d)
are_collinear
proof
(q1,q2,q2)
are_collinear by
Def7;
then
A34: (b,d,q2)
are_collinear by
A11,
A20,
A29,
Def8;
assume not thesis;
then
A35: (b,d,q)
are_collinear by
Th24;
(q1,q2,q1)
are_collinear by
Def7;
then (b,d,q1)
are_collinear by
A11,
A20,
A29,
Def8;
hence contradiction by
A7,
A33,
A35,
A34,
Def8;
end;
then
consider o be
Element of (
ProjectiveSpace V) such that
A36: (b9,d9,o)
are_collinear and
A37: (q,x,o)
are_collinear by
A21,
A30,
A31,
Lm44;
A38: (o,x,q)
are_collinear by
A37,
Th24;
(d9,x3,x1)
are_collinear by
A28,
Th24;
then
consider z1 such that
A39: (b9,x3,z1)
are_collinear and
A40: (o,x1,z1)
are_collinear by
A36,
Def9;
(x1,o,z1)
are_collinear by
A40,
Th24;
then
consider z2 such that
A41: (x1,x,z2)
are_collinear and
A42: (z1,q,z2)
are_collinear by
A38,
Def9;
A43: (q,z1,z2)
are_collinear by
A42,
Th24;
(p1,p2,p2)
are_collinear by
Def7;
then
A44: (x1,x,p2)
are_collinear by
A10,
A12,
A17,
Def8;
(y1,y2,y2)
are_collinear by
Def7;
then
A45: (b9,x3,y2)
are_collinear by
A22,
A19,
A27,
Def8;
(p1,p2,p1)
are_collinear by
Def7;
then (x1,x,p1)
are_collinear by
A10,
A12,
A17,
Def8;
then
A46: (p1,p2,z2)
are_collinear by
A18,
A41,
A44,
Def8;
(y1,y2,y1)
are_collinear by
Def7;
then (b9,x3,y1)
are_collinear by
A22,
A19,
A27,
Def8;
then (y1,y2,z1)
are_collinear by
A26,
A39,
A45,
Def8;
hence ex z2, z1 st (y1,y2,z1)
are_collinear & (p1,p2,z2)
are_collinear & (q,z1,z2)
are_collinear by
A46,
A43;
end;
now
assume b
= d;
then
A47: (b,q,d9)
are_collinear by
A30,
Th24;
(y1,y2,y2)
are_collinear by
Def7;
then
A48: (b9,x3,y2)
are_collinear by
A22,
A19,
A27,
Def8;
A49: (d9,x3,x1)
are_collinear by
A28,
Th24;
(b,q,b9)
are_collinear & (b,q,q)
are_collinear by
A21,
Def7,
Th24;
then (b9,d9,q)
are_collinear by
A7,
A20,
A47,
Def8;
then
consider z1 such that
A50: (b9,x3,z1)
are_collinear and
A51: (q,x1,z1)
are_collinear by
A49,
Def9;
A52: (q,z1,x1)
are_collinear by
A51,
Th24;
(y1,y2,y1)
are_collinear by
Def7;
then (b9,x3,y1)
are_collinear by
A22,
A19,
A27,
Def8;
then (y1,y2,z1)
are_collinear by
A26,
A50,
A48,
Def8;
hence ex z2, z1 st (y1,y2,z1)
are_collinear & (p1,p2,z2)
are_collinear & (q,z1,z2)
are_collinear by
A17,
A52;
end;
hence ex z2, z1 st (y1,y2,z1)
are_collinear & (p1,p2,z2)
are_collinear & (q,z1,z2)
are_collinear by
A32;
end;
now
assume y1
= y2;
then
A53: (y1,y2,q)
are_collinear by
Def7;
(p1,p2,p1)
are_collinear & (q,q,p1)
are_collinear by
Def7;
hence ex z2, z1 st (y1,y2,z1)
are_collinear & (p1,p2,z2)
are_collinear & (q,z1,z2)
are_collinear by
A53;
end;
hence ex z2, z1 st (y1,y2,z1)
are_collinear & (p1,p2,z2)
are_collinear & (q,z1,z2)
are_collinear by
A13;
end;
hence thesis;
end;
A54: for q1, q2, p1, p2, q st not (q1,q2,q)
are_collinear & not (p1,p2,q)
are_collinear & ( not ex x st ((q1,q2,x)
are_collinear & (p1,p2,x)
are_collinear )) holds ex q3, p3 st (p1,p2,p3)
are_collinear & (q1,q2,q3)
are_collinear & not (q3,p3,q)
are_collinear
proof
let q1, q2, p1, p2, q such that
A55: not (q1,q2,q)
are_collinear and
A56: not (p1,p2,q)
are_collinear and not ex x st ((q1,q2,x)
are_collinear & (p1,p2,x)
are_collinear );
A57: q
<> q1 by
A55,
Def7;
A58: not (q1,p1,q)
are_collinear or not (q1,p2,q)
are_collinear
proof
assume not thesis;
then
A59: (q,q1,p1)
are_collinear & (q,q1,p2)
are_collinear by
Th24;
(q,q1,q)
are_collinear by
Def7;
hence contradiction by
A56,
A57,
A59,
Def8;
end;
A60: (p1,p2,p2)
are_collinear by
Def7;
(q1,q2,q1)
are_collinear & (p1,p2,p1)
are_collinear by
Def7;
hence thesis by
A60,
A58;
end;
A61: for q, q1, q2, p1, p2 st
P[q, q1, q2] & not (q1,q2,q)
are_collinear & not (p1,p2,q)
are_collinear & not ex x st ((q1,q2,x)
are_collinear & (p1,p2,x)
are_collinear ) holds
P[q, p1, p2]
proof
let q, q1, q2, p1, p2;
assume that
A62:
P[q, q1, q2] and
A63: not (q1,q2,q)
are_collinear and
A64: not (p1,p2,q)
are_collinear and
A65: not ex x st ((q1,q2,x)
are_collinear & (p1,p2,x)
are_collinear );
consider q3, p3 such that
A66: (p1,p2,p3)
are_collinear and
A67: (q1,q2,q3)
are_collinear and
A68: not (q3,p3,q)
are_collinear by
A54,
A63,
A64,
A65;
(q3,p3,q3)
are_collinear by
Def7;
then
A69:
P[q, q3, p3] by
A5,
A62,
A63,
A67,
A68;
(q3,p3,p3)
are_collinear by
Def7;
hence thesis by
A5,
A64,
A66,
A68,
A69;
end;
A70: for q, q1, q2 st
P[q, q1, q2] & not (q1,q2,q)
are_collinear holds for p1, p2 holds
P[q, p1, p2]
proof
let q, q1, q2 such that
A71:
P[q, q1, q2] & not (q1,q2,q)
are_collinear ;
let p1, p2;
A72: not (p1,p2,q)
are_collinear & ( not ex x st (q1,q2,x)
are_collinear & (p1,p2,x)
are_collinear ) implies
P[q, p1, p2] by
A61,
A71;
not (p1,p2,q)
are_collinear & (ex x st (q1,q2,x)
are_collinear & (p1,p2,x)
are_collinear ) implies
P[q, p1, p2] by
A5,
A71;
hence thesis by
A3,
A72;
end;
reconsider CS = (
ProjectiveSpace V) as
CollProjectiveSpace by
A1,
A2,
Def10;
given p, q1, q2 such that
A73: not (p,q1,q2)
are_collinear and
A74: for r1, r2 holds ex q3, r3 st (r1,r2,r3)
are_collinear & (q1,q2,q3)
are_collinear & (p,r3,q3)
are_collinear ;
take CS;
A75: for q, q1, q2, x, q3 st
P[q, q1, q2] & not (q1,q2,q)
are_collinear & (q1,q2,x)
are_collinear & (q,q3,x)
are_collinear holds
P[q3, q1, q2]
proof
let q, q1, q2, x, q3 such that
A76:
P[q, q1, q2] and
A77: not (q1,q2,q)
are_collinear and
A78: (q1,q2,x)
are_collinear and
A79: (q,q3,x)
are_collinear ;
now
let y1, y2;
consider z2, z1 such that
A80: (y1,y2,z1)
are_collinear and
A81: (q1,q2,z2)
are_collinear and
A82: (q,z1,z2)
are_collinear by
A76;
A83:
now
(q3,q,x)
are_collinear by
A79,
Th24;
then
consider x2 such that
A84: (q3,z1,x2)
are_collinear and
A85: (x,z2,x2)
are_collinear by
A82,
Def9;
A86: q1
<> q2 by
A77,
Def7;
(q1,q2,q2)
are_collinear by
Def7;
then
A87: (x,z2,q2)
are_collinear by
A78,
A81,
A86,
Def8;
(q1,q2,q1)
are_collinear by
Def7;
then
A88: (x,z2,q1)
are_collinear by
A78,
A81,
A86,
Def8;
assume x
<> z2;
then (q1,q2,x2)
are_collinear by
A85,
A88,
A87,
Def8;
hence ex x2, x1 st (y1,y2,x1)
are_collinear & (q1,q2,x2)
are_collinear & (q3,x1,x2)
are_collinear by
A80,
A84;
end;
now
A89: (q,x,q3)
are_collinear & (q,x,x)
are_collinear by
A79,
Def7,
Th24;
assume
A90: x
= z2;
then (q,x,z1)
are_collinear by
A82,
Th24;
then (q3,z1,z2)
are_collinear by
A77,
A78,
A90,
A89,
Def8;
hence ex x2, x1 st (y1,y2,x1)
are_collinear & (q1,q2,x2)
are_collinear & (q3,x1,x2)
are_collinear by
A80,
A81;
end;
hence ex x2, x1 st (y1,y2,x1)
are_collinear & (q1,q2,x2)
are_collinear & (q3,x1,x2)
are_collinear by
A83;
end;
hence thesis;
end;
A91: for q, p holds ((for q1, q2 holds
P[q, q1, q2]) implies ex p1, p2 st
P[p, p1, p2] & not (p1,p2,p)
are_collinear )
proof
let q, p such that
A92: for q1, q2 holds
P[q, q1, q2];
consider x1 such that
A93: p
<> x1 and
A94: q
<> x1 and
A95: (p,q,x1)
are_collinear by
A2;
consider x2 such that
A96: not (p,x1,x2)
are_collinear by
A1,
A93,
COLLSP: 12;
A97: not (x1,x2,q)
are_collinear
proof
assume not thesis;
then
A98: (q,x1,x2)
are_collinear by
Th24;
(q,x1,x1)
are_collinear & (q,x1,p)
are_collinear by
A95,
Def7,
Th24;
hence contradiction by
A94,
A96,
A98,
Def8;
end;
A99: (x1,x2,x1)
are_collinear by
Def7;
A100: not (x1,x2,p)
are_collinear by
A96,
Th24;
A101:
P[q, x1, x2] by
A92;
(q,p,x1)
are_collinear by
A95,
Th24;
then
P[p, x1, x2] by
A75,
A97,
A99,
A101;
hence thesis by
A100;
end;
A102: for x, y1, z holds
P[x, y1, z]
proof
let x, y1, z;
not (q1,q2,p)
are_collinear by
A73,
Th24;
then for p1, p2 holds
P[p, p1, p2] by
A74,
A70;
then ex r1, r2 st
P[x, r1, r2] & not (r1,r2,x)
are_collinear by
A91;
hence thesis by
A70;
end;
for p4, p1, q, q4, r2 holds ex r, r1 st (p4,q,r)
are_collinear & (p1,q4,r1)
are_collinear & (r2,r,r1)
are_collinear
proof
let p4, p1, q, q4, r2;
ex r1, r st (p4,q,r)
are_collinear & (p1,q4,r1)
are_collinear & (r2,r,r1)
are_collinear by
A102;
hence thesis;
end;
hence thesis;
end;
theorem ::
ANPROJ_2:32
Th32: (ex y, u, v, w st (for w1 holds ex a, b, c, c1 st w1
= ((((a
* y)
+ (b
* u))
+ (c
* v))
+ (c1
* w))) & (for a, b, a1, b1 st ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 )) implies ex CS be
CollProjectiveSpace st CS
= (
ProjectiveSpace V) & CS is
at_most-3-dimensional
proof
given y, u, v, w such that
A1: (for w1 holds ex a, b, c, c1 st w1
= ((((a
* y)
+ (b
* u))
+ (c
* v))
+ (c1
* w))) & for a, b, a1, b1 st ((((a
* y)
+ (b
* u))
+ (a1
* v))
+ (b1
* w))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ;
(
ProjectiveSpace V) is
proper
at_least_3rank & ex p, q1, q2 st not (p,q1,q2)
are_collinear & for r1, r2 holds ex q3, r3 st (r1,r2,r3)
are_collinear & (q1,q2,q3)
are_collinear & (p,r3,q3)
are_collinear by
A1,
Lm43,
Th30;
hence thesis by
Th31;
end;
theorem ::
ANPROJ_2:33
Th33: (ex u, v, u1, v1 st (for a, b, a1, b1 st ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 )) implies ex CS be
CollProjectiveSpace st CS
= (
ProjectiveSpace V) & CS is non
2-dimensional
proof
given u, v, u1, v1 such that
A1: for a, b, a1, b1 st ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ;
V is
up-3-dimensional by
A1,
Lm42;
then
reconsider CS = (
ProjectiveSpace V) as
CollProjectiveSpace;
take CS;
thus CS
= (
ProjectiveSpace V);
A2: not u1 is
zero & not v1 is
zero by
A1,
Th2;
A3: not u is
zero & not v is
zero by
A1,
Th2;
then
reconsider p = (
Dir u), p1 = (
Dir v), q = (
Dir u1), q1 = (
Dir v1) as
Element of CS by
A2,
ANPROJ_1: 26;
take p, p1, q, q1;
thus not ex r be
Element of CS st ((p,p1,r)
are_collinear & (q,q1,r)
are_collinear )
proof
assume not thesis;
then
consider r be
Element of CS such that
A4: (p,p1,r)
are_collinear and
A5: (q,q1,r)
are_collinear ;
consider y such that
A6: not y is
zero and
A7: r
= (
Dir y) by
ANPROJ_1: 26;
[q, q1, r]
in the
Collinearity of (
ProjectiveSpace V) by
A5;
then
A8: (u1,v1,y)
are_LinDep by
A2,
A6,
A7,
ANPROJ_1: 25;
[p, p1, r]
in the
Collinearity of (
ProjectiveSpace V) by
A4;
then (u,v,y)
are_LinDep by
A3,
A6,
A7,
ANPROJ_1: 25;
hence contradiction by
A1,
A6,
A8,
Th5;
end;
end;
theorem ::
ANPROJ_2:34
Th34: (ex u, v, u1, v1 st (for w holds ex a, b, a1, b1 st w
= ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))) & (for a, b, a1, b1 st ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 )) implies ex CS be
CollProjectiveSpace st CS
= (
ProjectiveSpace V) & CS is
up-3-dimensional
at_most-3-dimensional
proof
assume ex u, v, u1, v1 st (for w holds ex a, b, a1, b1 st w
= ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))) & for a, b, a1, b1 st ((((a
* u)
+ (b
* v))
+ (a1
* u1))
+ (b1
* v1))
= (
0. V) holds a
=
0 & b
=
0 & a1
=
0 & b1
=
0 ;
then (ex CS1 be
CollProjectiveSpace st CS1
= (
ProjectiveSpace V) & CS1 is
up-3-dimensional) & ex CS2 be
CollProjectiveSpace st CS2
= (
ProjectiveSpace V) & CS2 is
at_most-3-dimensional by
Th32,
Th33;
hence thesis;
end;
registration
cluster
strict
Fanoian
Desarguesian
Pappian
2-dimensional for
CollProjectiveSpace;
existence
proof
consider V be non
trivial
RealLinearSpace such that
A1: ex u,v,w be
Element of V st (for a, b, c st (((a
* u)
+ (b
* v))
+ (c
* w))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 ) & for y be
Element of V holds ex a, b, c st y
= (((a
* u)
+ (b
* v))
+ (c
* w)) by
Th16;
reconsider V as
up-3-dimensional
RealLinearSpace by
A1,
Def6;
take CS = (
ProjectiveSpace V);
thus CS is
strict
Fanoian
Desarguesian
Pappian;
ex CS1 be
CollProjectiveSpace st CS1
= (
ProjectiveSpace V) & CS1 is
2-dimensional by
A1,
Th29;
hence thesis;
end;
cluster
strict
Fanoian
Desarguesian
Pappian
at_most-3-dimensional
up-3-dimensional for
CollProjectiveSpace;
existence
proof
consider V be non
trivial
RealLinearSpace such that
A2: ex u,v,w,u1 be
Element of V st (for a, b, c, d st ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1))
= (
0. V) holds a
=
0 & b
=
0 & c
=
0 & d
=
0 ) & for y be
Element of V holds ex a, b, c, d st y
= ((((a
* u)
+ (b
* v))
+ (c
* w))
+ (d
* u1)) by
Th22;
reconsider V as
up-3-dimensional
RealLinearSpace by
A2,
Lm42;
take CS = (
ProjectiveSpace V);
thus CS is
strict
Fanoian
Desarguesian
Pappian;
ex CS be
CollProjectiveSpace st CS
= (
ProjectiveSpace V) & CS is
up-3-dimensional
at_most-3-dimensional by
A2,
Th34;
hence thesis;
end;
end
definition
mode
CollProjectivePlane is
2-dimensional
CollProjectiveSpace;
end
theorem ::
ANPROJ_2:35
for CS be non
empty
CollStr holds CS is
2-dimensional
CollProjectiveSpace iff (CS is
at_least_3rank
proper
CollSp & for p,p1,q,q1 be
Element of CS holds ex r be
Element of CS st (p,p1,r)
are_collinear & (q,q1,r)
are_collinear )
proof
let CS be non
empty
CollStr;
thus CS is
2-dimensional
CollProjectiveSpace implies CS is
at_least_3rank
proper
CollSp & for p,p1,q,q1 be
Element of CS holds ex r be
Element of CS st (p,p1,r)
are_collinear & (q,q1,r)
are_collinear by
Def14;
assume that
A1: CS is
at_least_3rank
proper
CollSp and
A2: for p,p1,q,q1 be
Element of CS holds ex r be
Element of CS st (p,p1,r)
are_collinear & (q,q1,r)
are_collinear ;
CS is
Vebleian by
A2;
hence thesis by
A1,
A2,
Def14;
end;