anproj_2.miz
    
    begin
    
    reserve V for
    RealLinearSpace, 
    
o,p,q,r,s,u,v,w,y,y1,u1,v1,w1,u2,v2,w2 for
    Element of V, 
    
a,b,c,d,a1,b1,c1,d1,a2,b2,c2,d2,a3,b3,c3,d3 for
    Real, 
    
z for
    set;
    
    theorem :: 
    
    ANPROJ_2:1
    
    
    
    
    
    Th1: (for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ) implies not u is 
    zero & not v is 
    zero & not w is 
    zero & not (u,v,w) 
    are_LinDep & not 
    are_Prop (u,v) 
    
    proof
    
      assume
    
      
    
    A1: for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ; 
    
      
    
    A2: 
    
      now
    
        assume not not v is
    zero;
    
        then
    
        
    
    A3: v 
    = ( 
    0. V); 
    
        (
    0. V) 
    = (( 
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= (((
    0. V) 
    + ( 
    0. V)) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= (((
    0. V) 
    + (1 
    * v)) 
    + ( 
    0. V)) by 
    A3,
    RLVECT_1:def 8
    
        .= (((
    0  
    * u) 
    + (1 
    * v)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
        .= (((
    0  
    * u) 
    + (1 
    * v)) 
    + ( 
    0  
    * w)) by 
    RLVECT_1: 10;
    
        hence contradiction by
    A1;
    
      end;
    
      
    
    A4: 
    
      now
    
        assume not not w is
    zero;
    
        then
    
        
    
    A5: w 
    = ( 
    0. V); 
    
        (
    0. V) 
    = (( 
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= (((
    0. V) 
    + ( 
    0. V)) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= (((
    0. V) 
    + ( 
    0. V)) 
    + (1 
    * w)) by 
    A5,
    RLVECT_1:def 8
    
        .= (((
    0  
    * u) 
    + ( 
    0. V)) 
    + (1 
    * w)) by 
    RLVECT_1: 10
    
        .= (((
    0  
    * u) 
    + ( 
    0  
    * v)) 
    + (1 
    * w)) by 
    RLVECT_1: 10;
    
        hence contradiction by
    A1;
    
      end;
    
      now
    
        assume not not u is
    zero;
    
        then
    
        
    
    A6: u 
    = ( 
    0. V); 
    
        (
    0. V) 
    = (( 
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= (((
    0. V) 
    + ( 
    0. V)) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= (((1
    * u) 
    + ( 
    0. V)) 
    + ( 
    0. V)) by 
    A6,
    RLVECT_1:def 8
    
        .= (((1
    * u) 
    + ( 
    0  
    * v)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
        .= (((1
    * u) 
    + ( 
    0  
    * v)) 
    + ( 
    0  
    * w)) by 
    RLVECT_1: 10;
    
        hence contradiction by
    A1;
    
      end;
    
      hence not u is
    zero & not v is 
    zero & not w is 
    zero by 
    A2,
    A4;
    
      thus not (u,v,w)
    are_LinDep by 
    A1;
    
      hence thesis by
    ANPROJ_1: 12;
    
    end;
    
    
    
    
    
    Lm1: (for a, b st ((a 
    * u) 
    + (b 
    * v)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 ) implies not u is 
    zero & not v is 
    zero & not 
    are_Prop (u,v) 
    
    proof
    
      assume
    
      
    
    A1: for a, b st ((a 
    * u) 
    + (b 
    * v)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 ; 
    
      
    
    A2: 
    
      now
    
        assume not not v is
    zero;
    
        then
    
        
    
    A3: v 
    = ( 
    0. V); 
    
        (
    0. V) 
    = (( 
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= ((
    0. V) 
    + (1 
    * v)) by 
    A3,
    RLVECT_1:def 8
    
        .= ((
    0  
    * u) 
    + (1 
    * v)) by 
    RLVECT_1: 10;
    
        hence contradiction by
    A1;
    
      end;
    
      now
    
        assume not not u is
    zero;
    
        then
    
        
    
    A4: u 
    = ( 
    0. V); 
    
        (
    0. V) 
    = (( 
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= ((1
    * u) 
    + ( 
    0. V)) by 
    A4,
    RLVECT_1:def 8
    
        .= ((1
    * u) 
    + ( 
    0  
    * v)) by 
    RLVECT_1: 10;
    
        hence contradiction by
    A1;
    
      end;
    
      hence not u is
    zero & not v is 
    zero by 
    A2;
    
      given a, b such that
    
      
    
    A5: (a 
    * u) 
    = (b 
    * v) and 
    
      
    
    A6: a 
    <>  
    0 and b 
    <>  
    0 ; 
    
      (
    0. V) 
    = ((a 
    * u) 
    - (b 
    * v)) by 
    A5,
    RLVECT_1: 15
    
      .= ((a
    * u) 
    + (b 
    * ( 
    - v))) by 
    RLVECT_1: 25
    
      .= ((a
    * u) 
    + (( 
    - b) 
    * v)) by 
    RLVECT_1: 24;
    
      hence contradiction by
    A1,
    A6;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:2
    
    
    
    
    
    Th2: for u, v, u1, v1 holds ((for a, b, a1, b1 st ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ) implies not u is 
    zero & not v is 
    zero & not 
    are_Prop (u,v) & not u1 is 
    zero & not v1 is 
    zero & not 
    are_Prop (u1,v1) & not (u,v,u1) 
    are_LinDep & not (u1,v1,u) 
    are_LinDep ) 
    
    proof
    
      let u, v, u1, v1;
    
      assume
    
      
    
    A1: for a, b, a1, b1 st ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ; 
    
      
    
    A2: 
    
      now
    
        let d1, d2, d3;
    
        assume (((d1
    * u) 
    + (d2 
    * v)) 
    + (d3 
    * u1)) 
    = ( 
    0. V); 
    
        
    
        then (
    0. V) 
    = ((((d1 
    * u) 
    + (d2 
    * v)) 
    + (d3 
    * u1)) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= ((((d1
    * u) 
    + (d2 
    * v)) 
    + (d3 
    * u1)) 
    + ( 
    0  
    * v1)) by 
    RLVECT_1: 10;
    
        hence d1
    =  
    0 & d2 
    =  
    0 & d3 
    =  
    0 by 
    A1;
    
      end;
    
      now
    
        let d1, d2, d3;
    
        assume (((d1
    * u1) 
    + (d2 
    * v1)) 
    + (d3 
    * u)) 
    = ( 
    0. V); 
    
        
    
        then (
    0. V) 
    = (((d3 
    * u) 
    + (d1 
    * u1)) 
    + (d2 
    * v1)) by 
    RLVECT_1:def 3
    
        .= ((((d3
    * u) 
    + ( 
    0. V)) 
    + (d1 
    * u1)) 
    + (d2 
    * v1)) by 
    RLVECT_1: 4
    
        .= ((((d3
    * u) 
    + ( 
    0  
    * v)) 
    + (d1 
    * u1)) 
    + (d2 
    * v1)) by 
    RLVECT_1: 10;
    
        hence d1
    =  
    0 & d2 
    =  
    0 & d3 
    =  
    0 by 
    A1;
    
      end;
    
      hence thesis by
    A2,
    Th1;
    
    end;
    
    
    
    
    
    Lm2: (a 
    * (((b 
    * v) 
    + (c 
    * w)) 
    + (d 
    * u))) 
    = ((((a 
    * b) 
    * v) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) 
    
    proof
    
      
    
      thus ((((a
    * b) 
    * v) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) 
    = (((a 
    * (b 
    * v)) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) by 
    RLVECT_1:def 7
    
      .= (((a
    * (b 
    * v)) 
    + (a 
    * (c 
    * w))) 
    + ((a 
    * d) 
    * u)) by 
    RLVECT_1:def 7
    
      .= ((a
    * ((b 
    * v) 
    + (c 
    * w))) 
    + ((a 
    * d) 
    * u)) by 
    RLVECT_1:def 5
    
      .= ((a
    * ((b 
    * v) 
    + (c 
    * w))) 
    + (a 
    * (d 
    * u))) by 
    RLVECT_1:def 7
    
      .= (a
    * (((b 
    * v) 
    + (c 
    * w)) 
    + (d 
    * u))) by 
    RLVECT_1:def 5;
    
    end;
    
    
    
    
    
    Lm3: (((u 
    + v) 
    + w) 
    + ((u1 
    + v1) 
    + w1)) 
    = (((u 
    + u1) 
    + (v 
    + v1)) 
    + (w 
    + w1)) 
    
    proof
    
      
    
      thus (((u
    + u1) 
    + (v 
    + v1)) 
    + (w 
    + w1)) 
    = ((u1 
    + (u 
    + (v 
    + v1))) 
    + (w 
    + w1)) by 
    RLVECT_1:def 3
    
      .= ((u1
    + ((u 
    + v) 
    + v1)) 
    + (w 
    + w1)) by 
    RLVECT_1:def 3
    
      .= (((u1
    + v1) 
    + (u 
    + v)) 
    + (w 
    + w1)) by 
    RLVECT_1:def 3
    
      .= ((u1
    + v1) 
    + ((u 
    + v) 
    + (w 
    + w1))) by 
    RLVECT_1:def 3
    
      .= ((u1
    + v1) 
    + (((u 
    + v) 
    + w) 
    + w1)) by 
    RLVECT_1:def 3
    
      .= (((u
    + v) 
    + w) 
    + ((u1 
    + v1) 
    + w1)) by 
    RLVECT_1:def 3;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:3
    
    
    
    
    
    Th3: (for w holds ex a, b, c st w 
    = (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r))) & (for a, b, c st (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ) implies for u, u1 holds ex y st (p,q,y) 
    are_LinDep & (u,u1,y) 
    are_LinDep & not y is 
    zero
    
    proof
    
      assume that
    
      
    
    A1: for w holds ex a, b, c st w 
    = (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) and 
    
      
    
    A2: for a, b, c st (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ; 
    
      let u, u1;
    
      consider a, b, c such that
    
      
    
    A3: u 
    = (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) by 
    A1;
    
      consider a1, b1, c1 such that
    
      
    
    A4: u1 
    = (((a1 
    * p) 
    + (b1 
    * q)) 
    + (c1 
    * r)) by 
    A1;
    
      
    
      
    
    A5: ((a3 
    * u) 
    + (b3 
    * u1)) 
    = (((((a3 
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + (((a3 
    * c) 
    + (b3 
    * c1)) 
    * r)) 
    
      proof
    
        (a3
    * u) 
    = ((((a3 
    * a) 
    * p) 
    + ((a3 
    * b) 
    * q)) 
    + ((a3 
    * c) 
    * r)) by 
    A3,
    Lm2;
    
        
    
        hence ((a3
    * u) 
    + (b3 
    * u1)) 
    = (((((a3 
    * a) 
    * p) 
    + ((a3 
    * b) 
    * q)) 
    + ((a3 
    * c) 
    * r)) 
    + ((((b3 
    * a1) 
    * p) 
    + ((b3 
    * b1) 
    * q)) 
    + ((b3 
    * c1) 
    * r))) by 
    A4,
    Lm2
    
        .= (((((a3
    * a) 
    * p) 
    + ((b3 
    * a1) 
    * p)) 
    + (((a3 
    * b) 
    * q) 
    + ((b3 
    * b1) 
    * q))) 
    + (((a3 
    * c) 
    * r) 
    + ((b3 
    * c1) 
    * r))) by 
    Lm3
    
        .= (((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    * q) 
    + ((b3 
    * b1) 
    * q))) 
    + (((a3 
    * c) 
    * r) 
    + ((b3 
    * c1) 
    * r))) by 
    RLVECT_1:def 6
    
        .= (((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + (((a3 
    * c) 
    * r) 
    + ((b3 
    * c1) 
    * r))) by 
    RLVECT_1:def 6
    
        .= (((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + (((a3 
    * c) 
    + (b3 
    * c1)) 
    * r)) by 
    RLVECT_1:def 6;
    
      end;
    
      
    
      
    
    A6: not q is 
    zero by 
    A2,
    Th1;
    
      
    
    A7: 
    
      now
    
        
    
    A8: 
    
        now
    
          assume not not u1 is
    zero;
    
          then u1
    = ( 
    0. V); 
    
          then (p,q,q)
    are_LinDep & (u,u1,q) 
    are_LinDep by 
    ANPROJ_1: 10,
    ANPROJ_1: 11;
    
          hence thesis by
    A6;
    
        end;
    
        
    
    A9: 
    
        now
    
          assume not not u is
    zero;
    
          then u
    = ( 
    0. V); 
    
          then (p,q,q)
    are_LinDep & (u,u1,q) 
    are_LinDep by 
    ANPROJ_1: 10,
    ANPROJ_1: 11;
    
          hence thesis by
    A6;
    
        end;
    
        
    
    A10: 
    
        now
    
          assume
    are_Prop (u,u1); 
    
          then (p,q,q)
    are_LinDep & (u,u1,q) 
    are_LinDep by 
    ANPROJ_1: 11;
    
          hence thesis by
    A6;
    
        end;
    
        assume
    are_Prop (u,u1) or not not u is 
    zero or not not u1 is 
    zero;
    
        hence thesis by
    A10,
    A9,
    A8;
    
      end;
    
      
    
      
    
    A11: not p is 
    zero & not 
    are_Prop (p,q) by 
    A2,
    Th1;
    
      
    
    A12: 
    
      now
    
        assume that
    
        
    
    A13: not 
    are_Prop (u,u1) and 
    
        
    
    A14: not u is 
    zero and 
    
        
    
    A15: not u1 is 
    zero and 
    
        
    
    A16: c 
    <>  
    0 ; 
    
        
    
    A17: 
    
        now
    
          set a3 = 1, b3 = (
    - (c 
    * (c1 
    " ))); 
    
          set y = ((a3
    * u) 
    + (b3 
    * u1)); 
    
          assume
    
          
    
    A18: c1 
    <>  
    0 ; 
    
          then (c1
    " ) 
    <>  
    0 by 
    XCMPLX_1: 202;
    
          then
    
          
    
    A19: (c 
    * (c1 
    " )) 
    <>  
    0 by 
    A16,
    XCMPLX_1: 6;
    
          
    
          
    
    A20: not y is 
    zero
    
          proof
    
            assume not not y is
    zero;
    
            
    
            then (
    0. V) 
    = ((1 
    * u) 
    + (( 
    - (c 
    * (c1 
    " ))) 
    * u1)) 
    
            .= ((1
    * u) 
    + ((c 
    * (c1 
    " )) 
    * ( 
    - u1))) by 
    RLVECT_1: 24
    
            .= ((1
    * u) 
    + ( 
    - ((c 
    * (c1 
    " )) 
    * u1))) by 
    RLVECT_1: 25;
    
            then (
    - (1 
    * u)) 
    = ( 
    - ((c 
    * (c1 
    " )) 
    * u1)) by 
    RLVECT_1:def 10;
    
            then (1
    * u) 
    = ((c 
    * (c1 
    " )) 
    * u1) by 
    RLVECT_1: 18;
    
            hence contradiction by
    A13,
    A19;
    
          end;
    
          ((a3
    * c) 
    + (b3 
    * c1)) 
    = (c 
    + (( 
    - c) 
    * ((c1 
    " ) 
    * c1))) 
    
          .= (c
    + (( 
    - c) 
    * 1)) by 
    A18,
    XCMPLX_0:def 7
    
          .=
    0 ; 
    
          
    
          then y
    = (((((a3 
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + ( 
    0  
    * r)) by 
    A5
    
          .= (((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
          .= ((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) by 
    RLVECT_1: 4;
    
          then
    
          
    
    A21: (p,q,y) 
    are_LinDep by 
    A6,
    A11,
    ANPROJ_1: 6;
    
          (u,u1,y)
    are_LinDep by 
    A13,
    A14,
    A15,
    ANPROJ_1: 6;
    
          hence thesis by
    A20,
    A21;
    
        end;
    
        now
    
          set a3 =
    0 , b3 = 1; 
    
          set y = ((a3
    * u) 
    + (b3 
    * u1)); 
    
          
    
          
    
    A22: y 
    = (( 
    0  
    * u) 
    + u1) by 
    RLVECT_1:def 8
    
          .= ((
    0. V) 
    + u1) by 
    RLVECT_1: 10
    
          .= u1 by
    RLVECT_1: 4;
    
          assume c1
    =  
    0 ; 
    
          then ((a3
    * c) 
    + (b3 
    * c1)) 
    =  
    0 ; 
    
          
    
          then y
    = (((((a3 
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + ( 
    0  
    * r)) by 
    A5
    
          .= (((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
          .= ((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) by 
    RLVECT_1: 4;
    
          then
    
          
    
    A23: (p,q,y) 
    are_LinDep by 
    A6,
    A11,
    ANPROJ_1: 6;
    
          (u,u1,y)
    are_LinDep by 
    A13,
    A14,
    A15,
    ANPROJ_1: 6;
    
          hence thesis by
    A15,
    A22,
    A23;
    
        end;
    
        hence thesis by
    A17;
    
      end;
    
      now
    
        assume that
    
        
    
    A24: not 
    are_Prop (u,u1) and 
    
        
    
    A25: not u is 
    zero and 
    
        
    
    A26: not u1 is 
    zero and 
    
        
    
    A27: c 
    =  
    0 ; 
    
        now
    
          set a3 = 1, b3 =
    0 ; 
    
          set y = ((a3
    * u) 
    + (b3 
    * u1)); 
    
          
    
          
    
    A28: y 
    = (u 
    + ( 
    0  
    * u1)) by 
    RLVECT_1:def 8
    
          .= (u
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
          .= u by
    RLVECT_1: 4;
    
          ((a3
    * c) 
    + (b3 
    * c1)) 
    =  
    0 by 
    A27;
    
          
    
          then y
    = (((((a3 
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + ( 
    0  
    * r)) by 
    A5
    
          .= (((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
          .= ((((a3
    * a) 
    + (b3 
    * a1)) 
    * p) 
    + (((a3 
    * b) 
    + (b3 
    * b1)) 
    * q)) by 
    RLVECT_1: 4;
    
          then
    
          
    
    A29: (p,q,y) 
    are_LinDep by 
    A6,
    A11,
    ANPROJ_1: 6;
    
          (u,u1,y)
    are_LinDep by 
    A24,
    A25,
    A26,
    ANPROJ_1: 6;
    
          hence thesis by
    A25,
    A28,
    A29;
    
        end;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A7,
    A12;
    
    end;
    
    
    
    
    
    Lm4: (a 
    * ((((b 
    * v) 
    + (c 
    * w)) 
    + (d 
    * u)) 
    + (d1 
    * y))) 
    = (((((a 
    * b) 
    * v) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) 
    + ((a 
    * d1) 
    * y)) 
    
    proof
    
      
    
      thus (((((a
    * b) 
    * v) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) 
    + ((a 
    * d1) 
    * y)) 
    = ((((a 
    * (b 
    * v)) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) 
    + ((a 
    * d1) 
    * y)) by 
    RLVECT_1:def 7
    
      .= ((((a
    * (b 
    * v)) 
    + (a 
    * (c 
    * w))) 
    + ((a 
    * d) 
    * u)) 
    + ((a 
    * d1) 
    * y)) by 
    RLVECT_1:def 7
    
      .= (((a
    * ((b 
    * v) 
    + (c 
    * w))) 
    + ((a 
    * d) 
    * u)) 
    + ((a 
    * d1) 
    * y)) by 
    RLVECT_1:def 5
    
      .= (((a
    * ((b 
    * v) 
    + (c 
    * w))) 
    + (a 
    * (d 
    * u))) 
    + ((a 
    * d1) 
    * y)) by 
    RLVECT_1:def 7
    
      .= (((a
    * ((b 
    * v) 
    + (c 
    * w))) 
    + (a 
    * (d 
    * u))) 
    + (a 
    * (d1 
    * y))) by 
    RLVECT_1:def 7
    
      .= ((a
    * (((b 
    * v) 
    + (c 
    * w)) 
    + (d 
    * u))) 
    + (a 
    * (d1 
    * y))) by 
    RLVECT_1:def 5
    
      .= (a
    * ((((b 
    * v) 
    + (c 
    * w)) 
    + (d 
    * u)) 
    + (d1 
    * y))) by 
    RLVECT_1:def 5;
    
    end;
    
    
    
    
    
    Lm5: ((((u 
    + v) 
    + w) 
    + y) 
    + (((u1 
    + v1) 
    + w1) 
    + y1)) 
    = ((((u 
    + u1) 
    + (v 
    + v1)) 
    + (w 
    + w1)) 
    + (y 
    + y1)) 
    
    proof
    
      
    
      thus ((((u
    + u1) 
    + (v 
    + v1)) 
    + (w 
    + w1)) 
    + (y 
    + y1)) 
    = (((u1 
    + (u 
    + (v 
    + v1))) 
    + (w 
    + w1)) 
    + (y 
    + y1)) by 
    RLVECT_1:def 3
    
      .= (((u1
    + ((u 
    + v) 
    + v1)) 
    + (w 
    + w1)) 
    + (y 
    + y1)) by 
    RLVECT_1:def 3
    
      .= ((((u1
    + v1) 
    + (u 
    + v)) 
    + (w 
    + w1)) 
    + (y 
    + y1)) by 
    RLVECT_1:def 3
    
      .= (((u1
    + v1) 
    + ((u 
    + v) 
    + (w 
    + w1))) 
    + (y 
    + y1)) by 
    RLVECT_1:def 3
    
      .= (((u1
    + v1) 
    + (((u 
    + v) 
    + w) 
    + w1)) 
    + (y 
    + y1)) by 
    RLVECT_1:def 3
    
      .= ((((u1
    + v1) 
    + w1) 
    + ((u 
    + v) 
    + w)) 
    + (y 
    + y1)) by 
    RLVECT_1:def 3
    
      .= (((u
    + v) 
    + w) 
    + (((u1 
    + v1) 
    + w1) 
    + (y 
    + y1))) by 
    RLVECT_1:def 3
    
      .= (((u
    + v) 
    + w) 
    + (y 
    + (y1 
    + ((u1 
    + v1) 
    + w1)))) by 
    RLVECT_1:def 3
    
      .= ((((u
    + v) 
    + w) 
    + y) 
    + (((u1 
    + v1) 
    + w1) 
    + y1)) by 
    RLVECT_1:def 3;
    
    end;
    
    
    
    
    
    Lm6: (a 
    * (((b 
    * v) 
    + (c 
    * w)) 
    + (d 
    * u))) 
    = ((((a 
    * b) 
    * v) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) 
    
    proof
    
      
    
      thus ((((a
    * b) 
    * v) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) 
    = (((a 
    * (b 
    * v)) 
    + ((a 
    * c) 
    * w)) 
    + ((a 
    * d) 
    * u)) by 
    RLVECT_1:def 7
    
      .= (((a
    * (b 
    * v)) 
    + (a 
    * (c 
    * w))) 
    + ((a 
    * d) 
    * u)) by 
    RLVECT_1:def 7
    
      .= ((a
    * ((b 
    * v) 
    + (c 
    * w))) 
    + ((a 
    * d) 
    * u)) by 
    RLVECT_1:def 5
    
      .= ((a
    * ((b 
    * v) 
    + (c 
    * w))) 
    + (a 
    * (d 
    * u))) by 
    RLVECT_1:def 7
    
      .= (a
    * (((b 
    * v) 
    + (c 
    * w)) 
    + (d 
    * u))) by 
    RLVECT_1:def 5;
    
    end;
    
    
    
    
    
    Lm7: y 
    = ((a1 
    * p) 
    + (b1 
    * w)) & w 
    = (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) implies y 
    = ((((a1 
    + (b1 
    * a)) 
    * p) 
    + ((b1 
    * b) 
    * q)) 
    + ((b1 
    * c) 
    * r)) 
    
    proof
    
      assume y
    = ((a1 
    * p) 
    + (b1 
    * w)) & w 
    = (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)); 
    
      
    
      hence y
    = ((a1 
    * p) 
    + ((((b1 
    * a) 
    * p) 
    + ((b1 
    * b) 
    * q)) 
    + ((b1 
    * c) 
    * r))) by 
    Lm6
    
      .= ((a1
    * p) 
    + (((b1 
    * a) 
    * p) 
    + (((b1 
    * b) 
    * q) 
    + ((b1 
    * c) 
    * r)))) by 
    RLVECT_1:def 3
    
      .= (((a1
    * p) 
    + ((b1 
    * a) 
    * p)) 
    + (((b1 
    * b) 
    * q) 
    + ((b1 
    * c) 
    * r))) by 
    RLVECT_1:def 3
    
      .= (((a1
    + (b1 
    * a)) 
    * p) 
    + (((b1 
    * b) 
    * q) 
    + ((b1 
    * c) 
    * r))) by 
    RLVECT_1:def 6
    
      .= ((((a1
    + (b1 
    * a)) 
    * p) 
    + ((b1 
    * b) 
    * q)) 
    + ((b1 
    * c) 
    * r)) by 
    RLVECT_1:def 3;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:4
    
    
    
    
    
    Th4: (for w holds ex a, b, c, d st w 
    = ((((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) 
    + (d 
    * s))) & (for a, b, c, d st ((((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) 
    + (d 
    * s)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0 ) implies for u, v st not u is 
    zero & not v is 
    zero holds ex y, w st (u,v,w) 
    are_LinDep & (q,r,y) 
    are_LinDep & (p,w,y) 
    are_LinDep & not y is 
    zero & not w is 
    zero
    
    proof
    
      assume that
    
      
    
    A1: for w holds ex a, b, c, d st w 
    = ((((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) 
    + (d 
    * s)) and 
    
      
    
    A2: for a, b, c, d st ((((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) 
    + (d 
    * s)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0 ; 
    
      
    
      
    
    A3: not p is 
    zero by 
    A2,
    Th2;
    
      let u, v such that
    
      
    
    A4: not u is 
    zero and 
    
      
    
    A5: not v is 
    zero;
    
      consider a1, b1, c1, d1 such that
    
      
    
    A6: u 
    = ((((a1 
    * p) 
    + (b1 
    * q)) 
    + (c1 
    * r)) 
    + (d1 
    * s)) by 
    A1;
    
       not (p,q,r)
    are_LinDep by 
    A2,
    Th2;
    
      then
    
      
    
    A7: not 
    are_Prop (q,r) by 
    ANPROJ_1: 11;
    
      
    
      
    
    A8: not q is 
    zero by 
    A2,
    Th2;
    
      consider a2, b2, c2, d2 such that
    
      
    
    A9: v 
    = ((((a2 
    * p) 
    + (b2 
    * q)) 
    + (c2 
    * r)) 
    + (d2 
    * s)) by 
    A1;
    
      
    
      
    
    A10: ((a3 
    * u) 
    + (b3 
    * v)) 
    = ((((((a3 
    * a1) 
    + (b3 
    * a2)) 
    * p) 
    + (((a3 
    * b1) 
    + (b3 
    * b2)) 
    * q)) 
    + (((a3 
    * c1) 
    + (b3 
    * c2)) 
    * r)) 
    + (((a3 
    * d1) 
    + (b3 
    * d2)) 
    * s)) 
    
      proof
    
        (a3
    * u) 
    = (((((a3 
    * a1) 
    * p) 
    + ((a3 
    * b1) 
    * q)) 
    + ((a3 
    * c1) 
    * r)) 
    + ((a3 
    * d1) 
    * s)) by 
    A6,
    Lm4;
    
        
    
        hence ((a3
    * u) 
    + (b3 
    * v)) 
    = ((((((a3 
    * a1) 
    * p) 
    + ((a3 
    * b1) 
    * q)) 
    + ((a3 
    * c1) 
    * r)) 
    + ((a3 
    * d1) 
    * s)) 
    + (((((b3 
    * a2) 
    * p) 
    + ((b3 
    * b2) 
    * q)) 
    + ((b3 
    * c2) 
    * r)) 
    + ((b3 
    * d2) 
    * s))) by 
    A9,
    Lm4
    
        .= ((((((a3
    * a1) 
    * p) 
    + ((b3 
    * a2) 
    * p)) 
    + (((a3 
    * b1) 
    * q) 
    + ((b3 
    * b2) 
    * q))) 
    + (((a3 
    * c1) 
    * r) 
    + ((b3 
    * c2) 
    * r))) 
    + (((a3 
    * d1) 
    * s) 
    + ((b3 
    * d2) 
    * s))) by 
    Lm5
    
        .= ((((((a3
    * a1) 
    + (b3 
    * a2)) 
    * p) 
    + (((a3 
    * b1) 
    * q) 
    + ((b3 
    * b2) 
    * q))) 
    + (((a3 
    * c1) 
    * r) 
    + ((b3 
    * c2) 
    * r))) 
    + (((a3 
    * d1) 
    * s) 
    + ((b3 
    * d2) 
    * s))) by 
    RLVECT_1:def 6
    
        .= ((((((a3
    * a1) 
    + (b3 
    * a2)) 
    * p) 
    + (((a3 
    * b1) 
    + (b3 
    * b2)) 
    * q)) 
    + (((a3 
    * c1) 
    * r) 
    + ((b3 
    * c2) 
    * r))) 
    + (((a3 
    * d1) 
    * s) 
    + ((b3 
    * d2) 
    * s))) by 
    RLVECT_1:def 6
    
        .= ((((((a3
    * a1) 
    + (b3 
    * a2)) 
    * p) 
    + (((a3 
    * b1) 
    + (b3 
    * b2)) 
    * q)) 
    + (((a3 
    * c1) 
    + (b3 
    * c2)) 
    * r)) 
    + (((a3 
    * d1) 
    * s) 
    + ((b3 
    * d2) 
    * s))) by 
    RLVECT_1:def 6
    
        .= ((((((a3
    * a1) 
    + (b3 
    * a2)) 
    * p) 
    + (((a3 
    * b1) 
    + (b3 
    * b2)) 
    * q)) 
    + (((a3 
    * c1) 
    + (b3 
    * c2)) 
    * r)) 
    + (((a3 
    * d1) 
    + (b3 
    * d2)) 
    * s)) by 
    RLVECT_1:def 6;
    
      end;
    
      
    
      
    
    A11: not r is 
    zero by 
    A2,
    Th2;
    
      
    
    A12: 
    
      now
    
        assume
    
        
    
    A13: not 
    are_Prop (u,v); 
    
        ex w st ( not w is
    zero & (u,v,w) 
    are_LinDep & ex A,B,C be 
    Real st w 
    = (((A 
    * p) 
    + (B 
    * q)) 
    + (C 
    * r))) 
    
        proof
    
          
    
    A14: 
    
          now
    
            set a3 = (
    - (d2 
    * (d1 
    " ))), b3 = 1, w = ((a3 
    * u) 
    + (b3 
    * v)); 
    
            assume that
    
            
    
    A15: d1 
    <>  
    0 and 
    
            
    
    A16: d2 
    <>  
    0 ; 
    
            set A = ((a3
    * a1) 
    + (b3 
    * a2)), B = ((a3 
    * b1) 
    + (b3 
    * b2)), C = ((a3 
    * c1) 
    + (b3 
    * c2)); 
    
            
    
            
    
    A17: A 
    <>  
    0 or B 
    <>  
    0 or C 
    <>  
    0  
    
            proof
    
              
    
              
    
    A18: (d2 
    * (d1 
    " )) 
    <>  
    0  
    
              proof
    
                assume not thesis;
    
                then (d1
    " ) 
    =  
    0 by 
    A16,
    XCMPLX_1: 6;
    
                hence contradiction by
    A15,
    XCMPLX_1: 202;
    
              end;
    
              
    
              
    
    A19: ((d2 
    * (d1 
    " )) 
    * d1) 
    = (d2 
    * ((d1 
    " ) 
    * d1)) 
    
              .= (d2
    * 1) by 
    A15,
    XCMPLX_0:def 7
    
              .= d2;
    
              assume
    
              
    
    A20: not thesis; 
    
              then
    
              
    
    A21: ( 
    - ( 
    - ((d2 
    * (d1 
    " )) 
    * c1))) 
    = c2; 
    
              (
    - ( 
    - ((d2 
    * (d1 
    " )) 
    * a1))) 
    = a2 & ( 
    - ( 
    - ((d2 
    * (d1 
    " )) 
    * b1))) 
    = b2 by 
    A20;
    
              then ((d2
    * (d1 
    " )) 
    * u) 
    = v by 
    A6,
    A9,
    A21,
    A19,
    Lm4;
    
              hence contradiction by
    A13,
    A18,
    ANPROJ_1: 1;
    
            end;
    
            ((a3
    * d1) 
    + (b3 
    * d2)) 
    = (( 
    - (d2 
    * ((d1 
    " ) 
    * d1))) 
    + d2) 
    
            .= ((
    - (d2 
    * 1)) 
    + d2) by 
    A15,
    XCMPLX_0:def 7
    
            .=
    0 ; 
    
            
    
            then
    
            
    
    A22: w 
    = ((((((a3 
    * a1) 
    + (b3 
    * a2)) 
    * p) 
    + (((a3 
    * b1) 
    + (b3 
    * b2)) 
    * q)) 
    + (((a3 
    * c1) 
    + (b3 
    * c2)) 
    * r)) 
    + ( 
    0  
    * s)) by 
    A10
    
            .= ((((((a3
    * a1) 
    + (b3 
    * a2)) 
    * p) 
    + (((a3 
    * b1) 
    + (b3 
    * b2)) 
    * q)) 
    + (((a3 
    * c1) 
    + (b3 
    * c2)) 
    * r)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
            .= (((((a3
    * a1) 
    + (b3 
    * a2)) 
    * p) 
    + (((a3 
    * b1) 
    + (b3 
    * b2)) 
    * q)) 
    + (((a3 
    * c1) 
    + (b3 
    * c2)) 
    * r)) by 
    RLVECT_1: 4;
    
            
    
            then
    
            
    
    A23: w 
    = ((((A 
    * p) 
    + (B 
    * q)) 
    + (C 
    * r)) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
            .= ((((A
    * p) 
    + (B 
    * q)) 
    + (C 
    * r)) 
    + ( 
    0  
    * s)) by 
    RLVECT_1: 10;
    
            
    
            
    
    A24: not w is 
    zero by 
    A2,
    A23,
    A17;
    
            (u,v,w)
    are_LinDep by 
    A4,
    A5,
    A13,
    ANPROJ_1: 6;
    
            hence thesis by
    A22,
    A24;
    
          end;
    
          
    
    A25: 
    
          now
    
            assume
    
            
    
    A26: d2 
    =  
    0 ; 
    
            take w = v;
    
            
    
            
    
    A27: (u,v,w) 
    are_LinDep by 
    ANPROJ_1: 11;
    
            w
    = ((((a2 
    * p) 
    + (b2 
    * q)) 
    + (c2 
    * r)) 
    + ( 
    0. V)) by 
    A9,
    A26,
    RLVECT_1: 10
    
            .= (((a2
    * p) 
    + (b2 
    * q)) 
    + (c2 
    * r)) by 
    RLVECT_1: 4;
    
            hence thesis by
    A5,
    A27;
    
          end;
    
          now
    
            assume
    
            
    
    A28: d1 
    =  
    0 ; 
    
            take w = u;
    
            
    
            
    
    A29: (u,v,w) 
    are_LinDep by 
    ANPROJ_1: 11;
    
            w
    = ((((a1 
    * p) 
    + (b1 
    * q)) 
    + (c1 
    * r)) 
    + ( 
    0. V)) by 
    A6,
    A28,
    RLVECT_1: 10
    
            .= (((a1
    * p) 
    + (b1 
    * q)) 
    + (c1 
    * r)) by 
    RLVECT_1: 4;
    
            hence thesis by
    A4,
    A29;
    
          end;
    
          hence thesis by
    A25,
    A14;
    
        end;
    
        then
    
        consider w such that
    
        
    
    A30: not w is 
    zero and 
    
        
    
    A31: (u,v,w) 
    are_LinDep and 
    
        
    
    A32: ex A,B,C be 
    Real st w 
    = (((A 
    * p) 
    + (B 
    * q)) 
    + (C 
    * r)); 
    
        consider A,B,C be
    Real such that 
    
        
    
    A33: w 
    = (((A 
    * p) 
    + (B 
    * q)) 
    + (C 
    * r)) by 
    A32;
    
        
    
    A34: 
    
        now
    
          set b = 1, a = (
    - A); 
    
          set y = ((a
    * p) 
    + (b 
    * w)); 
    
          
    
          
    
    A35: y 
    = ((((a 
    + (b 
    * A)) 
    * p) 
    + ((b 
    * B) 
    * q)) 
    + ((b 
    * C) 
    * r)) by 
    A33,
    Lm7
    
          .= (((
    0. V) 
    + ((1 
    * B) 
    * q)) 
    + ((1 
    * C) 
    * r)) by 
    RLVECT_1: 10
    
          .= ((B
    * q) 
    + (C 
    * r)) by 
    RLVECT_1: 4;
    
          assume
    
          
    
    A36: not 
    are_Prop (p,w); 
    
          then
    
          
    
    A37: (p,w,y) 
    are_LinDep by 
    A3,
    A30,
    ANPROJ_1: 6;
    
          
    
          
    
    A38: B 
    <>  
    0 or C 
    <>  
    0  
    
          proof
    
            assume not thesis;
    
            
    
            then
    
            
    
    A39: w 
    = (((A 
    * p) 
    + ( 
    0. V)) 
    + ( 
    0  
    * r)) by 
    A33,
    RLVECT_1: 10
    
            .= (((A
    * p) 
    + ( 
    0. V)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
            .= ((A
    * p) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
            .= (A
    * p) by 
    RLVECT_1: 4;
    
            A
    <>  
    0 by 
    A39,
    RLVECT_1: 10,
    A30;
    
            hence contradiction by
    A36,
    A39,
    ANPROJ_1: 1;
    
          end;
    
          
    
          
    
    A40: not y is 
    zero
    
          proof
    
            assume not thesis;
    
            
    
            then (
    0. V) 
    = ((B 
    * q) 
    + (C 
    * r)) by 
    A35
    
            .= (((
    0. V) 
    + (B 
    * q)) 
    + (C 
    * r)) by 
    RLVECT_1: 4
    
            .= (((
    0  
    * p) 
    + (B 
    * q)) 
    + (C 
    * r)) by 
    RLVECT_1: 10
    
            .= ((((
    0  
    * p) 
    + (B 
    * q)) 
    + (C 
    * r)) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
            .= ((((
    0  
    * p) 
    + (B 
    * q)) 
    + (C 
    * r)) 
    + ( 
    0  
    * s)) by 
    RLVECT_1: 10;
    
            hence contradiction by
    A2,
    A38;
    
          end;
    
          (q,r,y)
    are_LinDep by 
    A8,
    A11,
    A7,
    A35,
    ANPROJ_1: 6;
    
          hence thesis by
    A30,
    A31,
    A40,
    A37;
    
        end;
    
        now
    
          assume
    are_Prop (p,w); 
    
          then (q,r,q)
    are_LinDep & (p,w,q) 
    are_LinDep by 
    ANPROJ_1: 11;
    
          hence thesis by
    A8,
    A30,
    A31;
    
        end;
    
        hence thesis by
    A34;
    
      end;
    
      now
    
        assume
    are_Prop (u,v); 
    
        then
    
        
    
    A41: (u,v,p) 
    are_LinDep by 
    ANPROJ_1: 11;
    
        (q,r,q)
    are_LinDep & (p,p,q) 
    are_LinDep by 
    ANPROJ_1: 11;
    
        hence thesis by
    A3,
    A8,
    A41;
    
      end;
    
      hence thesis by
    A12;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:5
    
    
    
    
    
    Th5: (for a, b, a1, b1 st ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ) implies not ex y st not y is 
    zero & (u,v,y) 
    are_LinDep & (u1,v1,y) 
    are_LinDep  
    
    proof
    
      assume
    
      
    
    A1: for a, b, a1, b1 st ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ; 
    
      then
    
      
    
    A2: not 
    are_Prop (u,v) by 
    Th2;
    
      assume not thesis;
    
      then
    
      consider y such that
    
      
    
    A3: not y is 
    zero and 
    
      
    
    A4: (u,v,y) 
    are_LinDep and 
    
      
    
    A5: (u1,v1,y) 
    are_LinDep ; 
    
       not u is
    zero & not v is 
    zero by 
    A1,
    Th2;
    
      then
    
      consider a, b such that
    
      
    
    A6: y 
    = ((a 
    * u) 
    + (b 
    * v)) by 
    A4,
    A2,
    ANPROJ_1: 6;
    
      
    
      
    
    A7: not 
    are_Prop (u1,v1) by 
    A1,
    Th2;
    
       not u1 is
    zero & not v1 is 
    zero by 
    A1,
    Th2;
    
      then
    
      consider a1, b1 such that
    
      
    
    A8: y 
    = ((a1 
    * u1) 
    + (b1 
    * v1)) by 
    A5,
    A7,
    ANPROJ_1: 6;
    
      (
    0. V) 
    = (((a 
    * u) 
    + (b 
    * v)) 
    - ((a1 
    * u1) 
    + (b1 
    * v1))) by 
    A6,
    A8,
    RLVECT_1: 15
    
      .= (((a
    * u) 
    + (b 
    * v)) 
    + (( 
    - 1) 
    * ((a1 
    * u1) 
    + (b1 
    * v1)))) by 
    RLVECT_1: 16
    
      .= (((a
    * u) 
    + (b 
    * v)) 
    + ((( 
    - 1) 
    * (a1 
    * u1)) 
    + (( 
    - 1) 
    * (b1 
    * v1)))) by 
    RLVECT_1:def 5
    
      .= (((a
    * u) 
    + (b 
    * v)) 
    + (((( 
    - 1) 
    * a1) 
    * u1) 
    + (( 
    - 1) 
    * (b1 
    * v1)))) by 
    RLVECT_1:def 7
    
      .= (((a
    * u) 
    + (b 
    * v)) 
    + (((( 
    - 1) 
    * a1) 
    * u1) 
    + ((( 
    - 1) 
    * b1) 
    * v1))) by 
    RLVECT_1:def 7
    
      .= ((((a
    * u) 
    + (b 
    * v)) 
    + ((( 
    - 1) 
    * a1) 
    * u1)) 
    + ((( 
    - 1) 
    * b1) 
    * v1)) by 
    RLVECT_1:def 3;
    
      then a
    =  
    0 & b 
    =  
    0 by 
    A1;
    
      
    
      then y
    = (( 
    0. V) 
    + ( 
    0  
    * v)) by 
    A6,
    RLVECT_1: 10
    
      .= ((
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
      .= (
    0. V) by 
    RLVECT_1: 4;
    
      hence contradiction by
    A3;
    
    end;
    
    definition
    
      let V, u, v, w;
    
      :: 
    
    ANPROJ_2:def1
    
      pred u,v,w
    
    are_Prop_Vect means not u is 
    zero & not v is 
    zero & not w is 
    zero;
    
    end
    
    definition
    
      let V, u, v, w, u1, v1, w1;
    
      :: 
    
    ANPROJ_2:def2
    
      pred u,v,w,u1,v1,w1
    
    lie_on_a_triangle means (u,v,w1) 
    are_LinDep & (u,w,v1) 
    are_LinDep & (v,w,u1) 
    are_LinDep ; 
    
    end
    
    definition
    
      let V, o, u, v, w, u2, v2, w2;
    
      :: 
    
    ANPROJ_2:def3
    
      pred o,u,v,w,u2,v2,w2
    
    are_perspective means (o,u,u2) 
    are_LinDep & (o,v,v2) 
    are_LinDep & (o,w,w2) 
    are_LinDep ; 
    
    end
    
    
    
    
    
    Lm8: ( 
    - (a 
    * o)) 
    = (( 
    - a) 
    * o) 
    
    proof
    
      
    
      thus (
    - (a 
    * o)) 
    = (a 
    * ( 
    - o)) by 
    RLVECT_1: 25
    
      .= ((
    - a) 
    * o) by 
    RLVECT_1: 24;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:6
    
    
    
    
    
    Th6: (o,u,u2) 
    are_LinDep & not 
    are_Prop (o,u) & not 
    are_Prop (o,u2) & not 
    are_Prop (u,u2) & (o,u,u2) 
    are_Prop_Vect implies (ex a1, b1 st (b1 
    * u2) 
    = (o 
    + (a1 
    * u)) & a1 
    <>  
    0 & b1 
    <>  
    0 ) & ex a2, c2 st u2 
    = ((c2 
    * o) 
    + (a2 
    * u)) & c2 
    <>  
    0 & a2 
    <>  
    0  
    
    proof
    
      assume that
    
      
    
    A1: (o,u,u2) 
    are_LinDep and 
    
      
    
    A2: not 
    are_Prop (o,u) and 
    
      
    
    A3: not 
    are_Prop (o,u2) and 
    
      
    
    A4: not 
    are_Prop (u,u2) and 
    
      
    
    A5: (o,u,u2) 
    are_Prop_Vect ; 
    
      consider a, b, c such that
    
      
    
    A6: (((a 
    * o) 
    + (b 
    * u)) 
    + (c 
    * u2)) 
    = ( 
    0. V) and 
    
      
    
    A7: a 
    <>  
    0 or b 
    <>  
    0 or c 
    <>  
    0 by 
    A1;
    
       not u is
    zero by 
    A5;
    
      then
    
      
    
    A8: u 
    <> ( 
    0. V); 
    
       not u2 is
    zero by 
    A5;
    
      then
    
      
    
    A9: u2 
    <> ( 
    0. V); 
    
       not o is
    zero by 
    A5;
    
      then
    
      
    
    A10: o 
    <> ( 
    0. V); 
    
      
    
      
    
    A11: a 
    <>  
    0 & b 
    <>  
    0 & c 
    <>  
    0  
    
      proof
    
        
    
    A12: 
    
        now
    
          assume
    
          
    
    A13: b 
    =  
    0 ; 
    
          
    
          then (
    0. V) 
    = (((a 
    * o) 
    + ( 
    0. V)) 
    + (c 
    * u2)) by 
    A6,
    RLVECT_1: 10
    
          .= ((a
    * o) 
    + (c 
    * u2)) by 
    RLVECT_1: 4;
    
          
    
          then (a
    * o) 
    = ( 
    - (c 
    * u2)) by 
    RLVECT_1: 6
    
          .= (c
    * ( 
    - u2)) by 
    RLVECT_1: 25;
    
          then
    
          
    
    A14: (a 
    * o) 
    = (( 
    - c) 
    * u2) by 
    RLVECT_1: 24;
    
          
    
          
    
    A15: a 
    <>  
    0 & c 
    <>  
    0  
    
          proof
    
            
    
    A16: 
    
            now
    
              assume
    
              
    
    A17: c 
    =  
    0 ; 
    
              
    
              then (
    0. V) 
    = (((a 
    * o) 
    + ( 
    0  
    * u)) 
    + ( 
    0. V)) by 
    A6,
    A13,
    RLVECT_1: 10
    
              .= ((a
    * o) 
    + ( 
    0  
    * u)) by 
    RLVECT_1: 4
    
              .= ((a
    * o) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
              .= (a
    * o) by 
    RLVECT_1: 4;
    
              hence contradiction by
    A7,
    A10,
    A13,
    A17,
    RLVECT_1: 11;
    
            end;
    
            
    
    A18: 
    
            now
    
              assume
    
              
    
    A19: a 
    =  
    0 ; 
    
              
    
              then (
    0. V) 
    = ((( 
    0. V) 
    + ( 
    0  
    * u)) 
    + (c 
    * u2)) by 
    A6,
    A13,
    RLVECT_1: 10
    
              .= ((
    0  
    * u) 
    + (c 
    * u2)) by 
    RLVECT_1: 4
    
              .= ((
    0. V) 
    + (c 
    * u2)) by 
    RLVECT_1: 10
    
              .= (c
    * u2) by 
    RLVECT_1: 4;
    
              hence contradiction by
    A7,
    A9,
    A13,
    A19,
    RLVECT_1: 11;
    
            end;
    
            assume not thesis;
    
            hence contradiction by
    A18,
    A16;
    
          end;
    
          then (
    - c) 
    <>  
    0 ; 
    
          hence contradiction by
    A3,
    A15,
    A14;
    
        end;
    
        
    
    A20: 
    
        now
    
          assume
    
          
    
    A21: a 
    =  
    0 ; 
    
          
    
          then (
    0. V) 
    = ((( 
    0. V) 
    + (b 
    * u)) 
    + (c 
    * u2)) by 
    A6,
    RLVECT_1: 10
    
          .= ((b
    * u) 
    + (c 
    * u2)) by 
    RLVECT_1: 4;
    
          
    
          then (b
    * u) 
    = ( 
    - (c 
    * u2)) by 
    RLVECT_1: 6
    
          .= (c
    * ( 
    - u2)) by 
    RLVECT_1: 25;
    
          then
    
          
    
    A22: (b 
    * u) 
    = (( 
    - c) 
    * u2) by 
    RLVECT_1: 24;
    
          
    
          
    
    A23: b 
    <>  
    0 & c 
    <>  
    0  
    
          proof
    
            
    
    A24: 
    
            now
    
              assume
    
              
    
    A25: c 
    =  
    0 ; 
    
              
    
              then (
    0. V) 
    = ((( 
    0. V) 
    + (b 
    * u)) 
    + ( 
    0  
    * u2)) by 
    A6,
    A21,
    RLVECT_1: 10
    
              .= ((b
    * u) 
    + ( 
    0  
    * u2)) by 
    RLVECT_1: 4
    
              .= ((b
    * u) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
              .= (b
    * u) by 
    RLVECT_1: 4;
    
              hence contradiction by
    A7,
    A8,
    A21,
    A25,
    RLVECT_1: 11;
    
            end;
    
            
    
    A26: 
    
            now
    
              assume
    
              
    
    A27: b 
    =  
    0 ; 
    
              
    
              then (
    0. V) 
    = ((( 
    0. V) 
    + ( 
    0  
    * u)) 
    + (c 
    * u2)) by 
    A6,
    A21,
    RLVECT_1: 10
    
              .= ((
    0  
    * u) 
    + (c 
    * u2)) by 
    RLVECT_1: 4
    
              .= ((
    0. V) 
    + (c 
    * u2)) by 
    RLVECT_1: 10
    
              .= (c
    * u2) by 
    RLVECT_1: 4;
    
              hence contradiction by
    A7,
    A9,
    A21,
    A27,
    RLVECT_1: 11;
    
            end;
    
            assume not thesis;
    
            hence contradiction by
    A26,
    A24;
    
          end;
    
          then (
    - c) 
    <>  
    0 ; 
    
          hence contradiction by
    A4,
    A23,
    A22;
    
        end;
    
        
    
    A28: 
    
        now
    
          assume
    
          
    
    A29: c 
    =  
    0 ; 
    
          
    
          then (
    0. V) 
    = (((a 
    * o) 
    + (b 
    * u)) 
    + ( 
    0. V)) by 
    A6,
    RLVECT_1: 10
    
          .= ((a
    * o) 
    + (b 
    * u)) by 
    RLVECT_1: 4;
    
          
    
          then (a
    * o) 
    = ( 
    - (b 
    * u)) by 
    RLVECT_1: 6
    
          .= (b
    * ( 
    - u)) by 
    RLVECT_1: 25;
    
          then
    
          
    
    A30: (a 
    * o) 
    = (( 
    - b) 
    * u) by 
    RLVECT_1: 24;
    
          
    
          
    
    A31: a 
    <>  
    0 & b 
    <>  
    0  
    
          proof
    
            
    
    A32: 
    
            now
    
              assume
    
              
    
    A33: b 
    =  
    0 ; 
    
              
    
              then (
    0. V) 
    = (((a 
    * o) 
    + ( 
    0  
    * u)) 
    + ( 
    0. V)) by 
    A6,
    A29,
    RLVECT_1: 10
    
              .= ((a
    * o) 
    + ( 
    0  
    * u)) by 
    RLVECT_1: 4
    
              .= ((a
    * o) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
              .= (a
    * o) by 
    RLVECT_1: 4;
    
              hence contradiction by
    A7,
    A10,
    A29,
    A33,
    RLVECT_1: 11;
    
            end;
    
            
    
    A34: 
    
            now
    
              assume
    
              
    
    A35: a 
    =  
    0 ; 
    
              
    
              then (
    0. V) 
    = ((( 
    0. V) 
    + (b 
    * u)) 
    + ( 
    0  
    * u2)) by 
    A6,
    A29,
    RLVECT_1: 10
    
              .= ((b
    * u) 
    + ( 
    0  
    * u2)) by 
    RLVECT_1: 4
    
              .= ((b
    * u) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
              .= (b
    * u) by 
    RLVECT_1: 4;
    
              hence contradiction by
    A7,
    A8,
    A29,
    A35,
    RLVECT_1: 11;
    
            end;
    
            assume not thesis;
    
            hence contradiction by
    A34,
    A32;
    
          end;
    
          then (
    - b) 
    <>  
    0 ; 
    
          hence contradiction by
    A2,
    A31,
    A30;
    
        end;
    
        assume not thesis;
    
        hence contradiction by
    A20,
    A12,
    A28;
    
      end;
    
      then
    
      
    
    A36: (c 
    " ) 
    <>  
    0 by 
    XCMPLX_1: 202;
    
      (a
    " ) 
    <>  
    0 by 
    A11,
    XCMPLX_1: 202;
    
      then
    
      
    
    A37: ((a 
    " ) 
    * b) 
    <>  
    0 & ( 
    - ((a 
    " ) 
    * c)) 
    <>  
    0 by 
    A11,
    XCMPLX_1: 6;
    
      ((a
    " ) 
    * ( 
    - (c 
    * u2))) 
    = ((a 
    " ) 
    * ((a 
    * o) 
    + (b 
    * u))) by 
    A6,
    RLVECT_1: 6
    
      .= (((a
    " ) 
    * (a 
    * o)) 
    + ((a 
    " ) 
    * (b 
    * u))) by 
    RLVECT_1:def 5
    
      .= ((((a
    " ) 
    * a) 
    * o) 
    + ((a 
    " ) 
    * (b 
    * u))) by 
    RLVECT_1:def 7
    
      .= ((((a
    " ) 
    * a) 
    * o) 
    + (((a 
    " ) 
    * b) 
    * u)) by 
    RLVECT_1:def 7
    
      .= ((1
    * o) 
    + (((a 
    " ) 
    * b) 
    * u)) by 
    A11,
    XCMPLX_0:def 7
    
      .= (o
    + (((a 
    " ) 
    * b) 
    * u)) by 
    RLVECT_1:def 8;
    
      
    
      then (o
    + (((a 
    " ) 
    * b) 
    * u)) 
    = ((a 
    " ) 
    * (c 
    * ( 
    - u2))) by 
    RLVECT_1: 25
    
      .= (((a
    " ) 
    * c) 
    * ( 
    - u2)) by 
    RLVECT_1:def 7
    
      .= ((
    - ((a 
    " ) 
    * c)) 
    * u2) by 
    RLVECT_1: 24;
    
      hence ex a1, b1 st (b1
    * u2) 
    = (o 
    + (a1 
    * u)) & a1 
    <>  
    0 & b1 
    <>  
    0 by 
    A37;
    
      (
    - b) 
    <>  
    0 by 
    A11;
    
      then
    
      
    
    A38: ((c 
    " ) 
    * ( 
    - b)) 
    <>  
    0 by 
    A36,
    XCMPLX_1: 6;
    
      (c
    * u2) 
    = ( 
    - ((a 
    * o) 
    + (b 
    * u))) by 
    A6,
    RLVECT_1:def 10
    
      .= ((
    - (a 
    * o)) 
    + ( 
    - (b 
    * u))) by 
    RLVECT_1: 31
    
      .= (((
    - a) 
    * o) 
    + ( 
    - (b 
    * u))) by 
    Lm8
    
      .= (((
    - a) 
    * o) 
    + (( 
    - b) 
    * u)) by 
    Lm8;
    
      
    
      then ((c
    " ) 
    * (c 
    * u2)) 
    = (((c 
    " ) 
    * (( 
    - a) 
    * o)) 
    + ((c 
    " ) 
    * (( 
    - b) 
    * u))) by 
    RLVECT_1:def 5
    
      .= ((((c
    " ) 
    * ( 
    - a)) 
    * o) 
    + ((c 
    " ) 
    * (( 
    - b) 
    * u))) by 
    RLVECT_1:def 7
    
      .= ((((c
    " ) 
    * ( 
    - a)) 
    * o) 
    + (((c 
    " ) 
    * ( 
    - b)) 
    * u)) by 
    RLVECT_1:def 7;
    
      
    
      then
    
      
    
    A39: ((((c 
    " ) 
    * ( 
    - a)) 
    * o) 
    + (((c 
    " ) 
    * ( 
    - b)) 
    * u)) 
    = (((c 
    " ) 
    * c) 
    * u2) by 
    RLVECT_1:def 7
    
      .= (1
    * u2) by 
    A11,
    XCMPLX_0:def 7
    
      .= u2 by
    RLVECT_1:def 8;
    
      (
    - a) 
    <>  
    0 by 
    A11;
    
      then ((c
    " ) 
    * ( 
    - a)) 
    <>  
    0 by 
    A36,
    XCMPLX_1: 6;
    
      hence thesis by
    A39,
    A38;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:7
    
    
    
    
    
    Th7: (p,q,r) 
    are_LinDep & not 
    are_Prop (p,q) & (p,q,r) 
    are_Prop_Vect implies ex a, b st r 
    = ((a 
    * p) 
    + (b 
    * q)) 
    
    proof
    
      assume that
    
      
    
    A1: (p,q,r) 
    are_LinDep and 
    
      
    
    A2: not 
    are_Prop (p,q) and 
    
      
    
    A3: (p,q,r) 
    are_Prop_Vect ; 
    
      consider a, b, c such that
    
      
    
    A4: (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) 
    = ( 
    0. V) and 
    
      
    
    A5: a 
    <>  
    0 or b 
    <>  
    0 or c 
    <>  
    0 by 
    A1;
    
       not q is
    zero by 
    A3;
    
      then
    
      
    
    A6: q 
    <> ( 
    0. V); 
    
       not p is
    zero by 
    A3;
    
      then
    
      
    
    A7: p 
    <> ( 
    0. V); 
    
      
    
      
    
    A8: c 
    <>  
    0  
    
      proof
    
        assume
    
        
    
    A9: not thesis; 
    
        
    
        then (
    0. V) 
    = (((a 
    * p) 
    + (b 
    * q)) 
    + ( 
    0. V)) by 
    A4,
    RLVECT_1: 10
    
        .= ((a
    * p) 
    + (b 
    * q)) by 
    RLVECT_1: 4;
    
        
    
        then
    
        
    
    A10: (a 
    * p) 
    = ( 
    - (b 
    * q)) by 
    RLVECT_1: 6
    
        .= ((
    - b) 
    * q) by 
    Lm8;
    
        
    
        
    
    A11: a 
    <>  
    0 & b 
    <>  
    0  
    
        proof
    
          
    
    A12: 
    
          now
    
            assume
    
            
    
    A13: b 
    =  
    0 ; 
    
            
    
            then (
    0. V) 
    = (((a 
    * p) 
    + ( 
    0. V)) 
    + ( 
    0  
    * r)) by 
    A4,
    A9,
    RLVECT_1: 10
    
            .= (((a
    * p) 
    + ( 
    0. V)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
            .= ((a
    * p) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
            .= (a
    * p) by 
    RLVECT_1: 4;
    
            hence contradiction by
    A7,
    A5,
    A9,
    A13,
    RLVECT_1: 11;
    
          end;
    
          
    
    A14: 
    
          now
    
            assume
    
            
    
    A15: a 
    =  
    0 ; 
    
            
    
            then (
    0. V) 
    = ((( 
    0. V) 
    + (b 
    * q)) 
    + ( 
    0  
    * r)) by 
    A4,
    A9,
    RLVECT_1: 10
    
            .= (((
    0. V) 
    + (b 
    * q)) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
            .= ((b
    * q) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
            .= (b
    * q) by 
    RLVECT_1: 4;
    
            hence contradiction by
    A6,
    A5,
    A9,
    A15,
    RLVECT_1: 11;
    
          end;
    
          assume not thesis;
    
          hence contradiction by
    A14,
    A12;
    
        end;
    
        then (
    - b) 
    <>  
    0 ; 
    
        hence contradiction by
    A2,
    A11,
    A10;
    
      end;
    
      (c
    * r) 
    = ( 
    - ((a 
    * p) 
    + (b 
    * q))) by 
    A4,
    RLVECT_1:def 10
    
      .= ((
    - (a 
    * p)) 
    + ( 
    - (b 
    * q))) by 
    RLVECT_1: 31
    
      .= (((
    - a) 
    * p) 
    + ( 
    - (b 
    * q))) by 
    Lm8
    
      .= (((
    - a) 
    * p) 
    + (( 
    - b) 
    * q)) by 
    Lm8;
    
      
    
      then ((c
    " ) 
    * (c 
    * r)) 
    = (((c 
    " ) 
    * (( 
    - a) 
    * p)) 
    + ((c 
    " ) 
    * (( 
    - b) 
    * q))) by 
    RLVECT_1:def 5
    
      .= ((((c
    " ) 
    * ( 
    - a)) 
    * p) 
    + ((c 
    " ) 
    * (( 
    - b) 
    * q))) by 
    RLVECT_1:def 7
    
      .= ((((c
    " ) 
    * ( 
    - a)) 
    * p) 
    + (((c 
    " ) 
    * ( 
    - b)) 
    * q)) by 
    RLVECT_1:def 7;
    
      
    
      then ((((c
    " ) 
    * ( 
    - a)) 
    * p) 
    + (((c 
    " ) 
    * ( 
    - b)) 
    * q)) 
    = (((c 
    " ) 
    * c) 
    * r) by 
    RLVECT_1:def 7
    
      .= (1
    * r) by 
    A8,
    XCMPLX_0:def 7
    
      .= r by
    RLVECT_1:def 8;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm9: (b1 
    * u2) 
    = w2 & b1 
    <>  
    0 implies 
    are_Prop (u2,w2) 
    
    proof
    
      assume that
    
      
    
    A1: (b1 
    * u2) 
    = w2 and 
    
      
    
    A2: b1 
    <>  
    0 ; 
    
      (b1
    * u2) 
    = (1 
    * w2) by 
    A1,
    RLVECT_1:def 8;
    
      hence thesis by
    A2;
    
    end;
    
    
    
    
    
    Lm10: q 
    = (o 
    + (a 
    * p)) & r 
    = (o 
    + (b 
    * s)) & 
    are_Prop (q,r) & a 
    <>  
    0 implies (o,p,s) 
    are_LinDep  
    
    proof
    
      assume that
    
      
    
    A1: q 
    = (o 
    + (a 
    * p)) & r 
    = (o 
    + (b 
    * s)) & 
    are_Prop (q,r) and 
    
      
    
    A2: a 
    <>  
    0 ; 
    
      consider A be
    Real such that A 
    <>  
    0 and 
    
      
    
    A3: (o 
    + (a 
    * p)) 
    = (A 
    * (o 
    + (b 
    * s))) by 
    A1,
    ANPROJ_1: 1;
    
      (o
    + (a 
    * p)) 
    = ((A 
    * o) 
    + (A 
    * (b 
    * s))) by 
    A3,
    RLVECT_1:def 5
    
      .= ((A
    * o) 
    + ((A 
    * b) 
    * s)) by 
    RLVECT_1:def 7;
    
      
    
      then ((
    - (A 
    * o)) 
    + (o 
    + (a 
    * p))) 
    = ((( 
    - (A 
    * o)) 
    + (A 
    * o)) 
    + ((A 
    * b) 
    * s)) by 
    RLVECT_1:def 3
    
      .= ((
    0. V) 
    + ((A 
    * b) 
    * s)) by 
    RLVECT_1: 5
    
      .= ((A
    * b) 
    * s) by 
    RLVECT_1: 4;
    
      then (((
    - (A 
    * o)) 
    + o) 
    + (a 
    * p)) 
    = ((A 
    * b) 
    * s) by 
    RLVECT_1:def 3;
    
      
    
      then ((A
    * b) 
    * s) 
    = (((( 
    - A) 
    * o) 
    + o) 
    + (a 
    * p)) by 
    Lm8
    
      .= ((((
    - A) 
    * o) 
    + (1 
    * o)) 
    + (a 
    * p)) by 
    RLVECT_1:def 8
    
      .= ((((
    - A) 
    + 1) 
    * o) 
    + (a 
    * p)) by 
    RLVECT_1:def 6;
    
      then (((((
    - A) 
    + 1) 
    * o) 
    + (a 
    * p)) 
    + ( 
    - ((A 
    * b) 
    * s))) 
    = ( 
    0. V) by 
    RLVECT_1: 5;
    
      then (
    0. V) 
    = ((((( 
    - A) 
    + 1) 
    * o) 
    + (a 
    * p)) 
    + (( 
    - (A 
    * b)) 
    * s)) by 
    Lm8;
    
      hence thesis by
    A2;
    
    end;
    
    
    
    
    
    Lm11: (a 
    * p) 
    = q & a 
    <>  
    0 & not p is 
    zero implies not q is 
    zero by 
    RLVECT_1: 11;
    
    
    
    
    
    Lm12: for A,B be 
    Real holds (r 
    = ((A 
    * u2) 
    + (B 
    * v2)) & u2 
    = (o 
    + (a1 
    * u)) & v2 
    = (o 
    + (a2 
    * v)) implies r 
    = ((((A 
    + B) 
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * a2) 
    * v))) 
    
    proof
    
      let A,B be
    Real;
    
      assume r
    = ((A 
    * u2) 
    + (B 
    * v2)) & u2 
    = (o 
    + (a1 
    * u)) & v2 
    = (o 
    + (a2 
    * v)); 
    
      
    
      hence r
    = (((A 
    * o) 
    + (A 
    * (a1 
    * u))) 
    + (B 
    * (o 
    + (a2 
    * v)))) by 
    RLVECT_1:def 5
    
      .= (((A
    * o) 
    + (A 
    * (a1 
    * u))) 
    + ((B 
    * o) 
    + (B 
    * (a2 
    * v)))) by 
    RLVECT_1:def 5
    
      .= (((A
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * o) 
    + (B 
    * (a2 
    * v)))) by 
    RLVECT_1:def 7
    
      .= (((A
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * o) 
    + ((B 
    * a2) 
    * v))) by 
    RLVECT_1:def 7
    
      .= ((((A
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + (B 
    * o)) 
    + ((B 
    * a2) 
    * v)) by 
    RLVECT_1:def 3
    
      .= ((((A
    * o) 
    + (B 
    * o)) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * a2) 
    * v)) by 
    RLVECT_1:def 3
    
      .= ((((A
    + B) 
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * a2) 
    * v)) by 
    RLVECT_1:def 6;
    
    end;
    
    
    
    
    
    Lm13: r 
    = ((a 
    * p) 
    + (b 
    * q)) implies r 
    = ((( 
    0  
    * o) 
    + (a 
    * p)) 
    + (b 
    * q)) 
    
    proof
    
      assume r
    = ((a 
    * p) 
    + (b 
    * q)); 
    
      
    
      hence r
    = ((( 
    0. V) 
    + (a 
    * p)) 
    + (b 
    * q)) by 
    RLVECT_1: 4
    
      .= (((
    0  
    * o) 
    + (a 
    * p)) 
    + (b 
    * q)) by 
    RLVECT_1: 10;
    
    end;
    
    
    
    
    
    Lm14: (( 
    0  
    * p) 
    + ( 
    0  
    * q)) 
    = ( 
    0. V) 
    
    proof
    
      
    
      thus ((
    0  
    * p) 
    + ( 
    0  
    * q)) 
    = (( 
    0. V) 
    + ( 
    0  
    * q)) by 
    RLVECT_1: 10
    
      .= (
    0  
    * q) by 
    RLVECT_1: 4
    
      .= (
    0. V) by 
    RLVECT_1: 10;
    
    end;
    
    
    
    
    
    Lm15: ((( 
    0  
    * o) 
    + ((b 
    * a2) 
    * v)) 
    + ((( 
    - b) 
    * a3) 
    * w)) 
    = (b 
    * ((a2 
    * v) 
    - (a3 
    * w))) 
    
    proof
    
      
    
      thus (((
    0  
    * o) 
    + ((b 
    * a2) 
    * v)) 
    + ((( 
    - b) 
    * a3) 
    * w)) 
    = ((( 
    0. V) 
    + ((b 
    * a2) 
    * v)) 
    + ((( 
    - b) 
    * a3) 
    * w)) by 
    RLVECT_1: 10
    
      .= (((b
    * a2) 
    * v) 
    + ((( 
    - b) 
    * a3) 
    * w)) by 
    RLVECT_1: 4
    
      .= ((b
    * (a2 
    * v)) 
    + ((b 
    * ( 
    - a3)) 
    * w)) by 
    RLVECT_1:def 7
    
      .= ((b
    * (a2 
    * v)) 
    + (b 
    * (( 
    - a3) 
    * w))) by 
    RLVECT_1:def 7
    
      .= ((b
    * (a2 
    * v)) 
    + (b 
    * ( 
    - (a3 
    * w)))) by 
    Lm8
    
      .= (b
    * ((a2 
    * v) 
    - (a3 
    * w))) by 
    RLVECT_1:def 5;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:8
    
    
    
    
    
    Th8: not o is 
    zero & (u,v,w) 
    are_Prop_Vect & (u2,v2,w2) 
    are_Prop_Vect & (u1,v1,w1) 
    are_Prop_Vect & (o,u,v,w,u2,v2,w2) 
    are_perspective & not 
    are_Prop (o,u2) & not 
    are_Prop (o,v2) & not 
    are_Prop (o,w2) & not 
    are_Prop (u,u2) & not 
    are_Prop (v,v2) & not 
    are_Prop (w,w2) & not (o,u,v) 
    are_LinDep & not (o,u,w) 
    are_LinDep & not (o,v,w) 
    are_LinDep & (u,v,w,u1,v1,w1) 
    lie_on_a_triangle & (u2,v2,w2,u1,v1,w1) 
    lie_on_a_triangle implies (u1,v1,w1) 
    are_LinDep  
    
    proof
    
      assume that
    
      
    
    A1: not o is 
    zero and 
    
      
    
    A2: (u,v,w) 
    are_Prop_Vect and 
    
      
    
    A3: (u2,v2,w2) 
    are_Prop_Vect and 
    
      
    
    A4: (u1,v1,w1) 
    are_Prop_Vect and 
    
      
    
    A5: (o,u,v,w,u2,v2,w2) 
    are_perspective and 
    
      
    
    A6: not 
    are_Prop (o,u2) and 
    
      
    
    A7: not 
    are_Prop (o,v2) and 
    
      
    
    A8: not 
    are_Prop (o,w2) and 
    
      
    
    A9: not 
    are_Prop (u,u2) and 
    
      
    
    A10: not 
    are_Prop (v,v2) and 
    
      
    
    A11: not 
    are_Prop (w,w2) and 
    
      
    
    A12: not (o,u,v) 
    are_LinDep and 
    
      
    
    A13: not (o,u,w) 
    are_LinDep and 
    
      
    
    A14: not (o,v,w) 
    are_LinDep and 
    
      
    
    A15: (u,v,w,u1,v1,w1) 
    lie_on_a_triangle and 
    
      
    
    A16: (u2,v2,w2,u1,v1,w1) 
    lie_on_a_triangle ; 
    
      
    
      
    
    A17: not w is 
    zero by 
    A2;
    
      
    
      
    
    A18: (o,w,w2) 
    are_LinDep & not 
    are_Prop (w,o) by 
    A5,
    A13,
    ANPROJ_1: 11;
    
      
    
      
    
    A19: not w2 is 
    zero by 
    A3;
    
      then (o,w,w2)
    are_Prop_Vect by 
    A1,
    A17;
    
      then
    
      consider a3, b3 such that
    
      
    
    A20: (b3 
    * w2) 
    = (o 
    + (a3 
    * w)) and a3 
    <>  
    0 and 
    
      
    
    A21: b3 
    <>  
    0 by 
    A8,
    A11,
    A18,
    Th6;
    
      
    
      
    
    A22: not u is 
    zero by 
    A2;
    
      
    
      
    
    A23: not v is 
    zero by 
    A2;
    
      
    
      
    
    A24: (o,v,v2) 
    are_LinDep & not 
    are_Prop (o,v) by 
    A5,
    A12,
    ANPROJ_1: 11;
    
      
    
      
    
    A25: (o,u,u2) 
    are_LinDep & not 
    are_Prop (o,u) by 
    A5,
    A12,
    ANPROJ_1: 11;
    
      
    
      
    
    A26: not u2 is 
    zero by 
    A3;
    
      then (o,u,u2)
    are_Prop_Vect by 
    A1,
    A22;
    
      then
    
      consider a1, b1 such that
    
      
    
    A27: (b1 
    * u2) 
    = (o 
    + (a1 
    * u)) and 
    
      
    
    A28: a1 
    <>  
    0 and 
    
      
    
    A29: b1 
    <>  
    0 by 
    A6,
    A9,
    A25,
    Th6;
    
      
    
      
    
    A30: not v2 is 
    zero by 
    A3;
    
      then (o,v,v2)
    are_Prop_Vect by 
    A1,
    A23;
    
      then
    
      consider a2, b2 such that
    
      
    
    A31: (b2 
    * v2) 
    = (o 
    + (a2 
    * v)) and 
    
      
    
    A32: a2 
    <>  
    0 and 
    
      
    
    A33: b2 
    <>  
    0 by 
    A7,
    A10,
    A24,
    Th6;
    
      set u29 = (o
    + (a1 
    * u)), v29 = (o 
    + (a2 
    * v)), w29 = (o 
    + (a3 
    * w)); 
    
      
    
      
    
    A34: 
    are_Prop (v2,v29) by 
    A31,
    A33,
    Lm9;
    
      
    
      
    
    A35: not v29 is 
    zero by 
    A30,
    A31,
    A33,
    Lm11;
    
      
    
      
    
    A36: 
    are_Prop (w2,w29) by 
    A20,
    A21,
    Lm9;
    
      
    
      
    
    A37: (u,v,w1) 
    are_LinDep & not 
    are_Prop (u,v) by 
    A12,
    A15,
    ANPROJ_1: 12;
    
      
    
      
    
    A38: not w1 is 
    zero by 
    A4;
    
      then (u,v,w1)
    are_Prop_Vect by 
    A22,
    A23;
    
      then
    
      consider c3, d3 such that
    
      
    
    A39: w1 
    = ((c3 
    * u) 
    + (d3 
    * v)) by 
    A37,
    Th7;
    
      
    
      
    
    A40: 
    are_Prop (u2,u29) by 
    A27,
    A29,
    Lm9;
    
      
    
      
    
    A41: (v,w,u1) 
    are_LinDep & not 
    are_Prop (v,w) by 
    A14,
    A15,
    ANPROJ_1: 12;
    
      
    
      
    
    A42: not u1 is 
    zero by 
    A4;
    
      then (v,w,u1)
    are_Prop_Vect by 
    A23,
    A17;
    
      then
    
      consider c1, d1 such that
    
      
    
    A43: u1 
    = ((c1 
    * v) 
    + (d1 
    * w)) by 
    A41,
    Th7;
    
      (v2,w2,u1)
    are_LinDep by 
    A16;
    
      then
    
      
    
    A44: (v29,w29,u1) 
    are_LinDep by 
    A34,
    A36,
    ANPROJ_1: 4;
    
      
    
      
    
    A45: not 
    are_Prop (v29,w29) by 
    A14,
    A32,
    Lm10;
    
      
    
      
    
    A46: not w29 is 
    zero by 
    A19,
    A20,
    A21,
    Lm11;
    
      then (v29,w29,u1)
    are_Prop_Vect by 
    A42,
    A35;
    
      then
    
      consider A1,B1 be
    Real such that 
    
      
    
    A47: u1 
    = ((A1 
    * v29) 
    + (B1 
    * w29)) by 
    A44,
    A45,
    Th7;
    
      
    
      
    
    A48: (u,w,v1) 
    are_LinDep & not 
    are_Prop (u,w) by 
    A13,
    A15,
    ANPROJ_1: 12;
    
      
    
      
    
    A49: not v1 is 
    zero by 
    A4;
    
      then (u,w,v1)
    are_Prop_Vect by 
    A22,
    A17;
    
      then
    
      consider c2, d2 such that
    
      
    
    A50: v1 
    = ((c2 
    * u) 
    + (d2 
    * w)) by 
    A48,
    Th7;
    
      
    
      
    
    A51: u1 
    = ((((A1 
    + B1) 
    * o) 
    + ((A1 
    * a2) 
    * v)) 
    + ((B1 
    * a3) 
    * w)) by 
    A47,
    Lm12;
    
      (u2,v2,w1)
    are_LinDep by 
    A16;
    
      then
    
      
    
    A52: (u29,v29,w1) 
    are_LinDep by 
    A40,
    A34,
    ANPROJ_1: 4;
    
      
    
      
    
    A53: not 
    are_Prop (u29,v29) by 
    A12,
    A28,
    Lm10;
    
      
    
      
    
    A54: not u29 is 
    zero by 
    A26,
    A27,
    A29,
    Lm11;
    
      then (u29,v29,w1)
    are_Prop_Vect by 
    A38,
    A35;
    
      then
    
      consider A3,B3 be
    Real such that 
    
      
    
    A55: w1 
    = ((A3 
    * u29) 
    + (B3 
    * v29)) by 
    A52,
    A53,
    Th7;
    
      (u2,w2,v1)
    are_LinDep by 
    A16;
    
      then
    
      
    
    A56: (u29,w29,v1) 
    are_LinDep by 
    A40,
    A36,
    ANPROJ_1: 4;
    
      
    
      
    
    A57: not 
    are_Prop (u29,w29) by 
    A13,
    A28,
    Lm10;
    
      
    
      
    
    A58: w1 
    = ((((A3 
    + B3) 
    * o) 
    + ((A3 
    * a1) 
    * u)) 
    + ((B3 
    * a2) 
    * v)) by 
    A55,
    Lm12;
    
      (u29,w29,v1)
    are_Prop_Vect by 
    A49,
    A54,
    A46;
    
      then
    
      consider A2,B2 be
    Real such that 
    
      
    
    A59: v1 
    = ((A2 
    * u29) 
    + (B2 
    * w29)) by 
    A56,
    A57,
    Th7;
    
      
    
      
    
    A60: v1 
    = ((((A2 
    + B2) 
    * o) 
    + ((A2 
    * a1) 
    * u)) 
    + ((B2 
    * a3) 
    * w)) by 
    A59,
    Lm12;
    
      w1
    = ((( 
    0  
    * o) 
    + (c3 
    * u)) 
    + (d3 
    * v)) by 
    A39,
    Lm13;
    
      then
    
      
    
    A61: (A3 
    + B3) 
    =  
    0 by 
    A12,
    A58,
    ANPROJ_1: 8;
    
      u1
    = ((( 
    0  
    * o) 
    + (c1 
    * v)) 
    + (d1 
    * w)) by 
    A43,
    Lm13;
    
      then
    
      
    
    A62: (A1 
    + B1) 
    =  
    0 by 
    A14,
    A51,
    ANPROJ_1: 8;
    
      v1
    = ((( 
    0  
    * o) 
    + (c2 
    * u)) 
    + (d2 
    * w)) by 
    A50,
    Lm13;
    
      then
    
      
    
    A63: (A2 
    + B2) 
    =  
    0 by 
    A13,
    A60,
    ANPROJ_1: 8;
    
      then
    
      
    
    A64: A1 
    <>  
    0 & A2 
    <>  
    0 & A3 
    <>  
    0 by 
    A42,
    A47,
    A62,
    A49,
    A59,
    A38,
    A55,
    A61,
    Lm14;
    
      set u19 = ((a2
    * v) 
    - (a3 
    * w)), v19 = ((a1 
    * u) 
    - (a3 
    * w)), w19 = ((a1 
    * u) 
    - (a2 
    * v)); 
    
      B1
    = ( 
    - A1) by 
    A62;
    
      then u1
    = (A1 
    * u19) by 
    A51,
    Lm15;
    
      then
    
      
    
    A65: 
    are_Prop (u19,u1) by 
    A64,
    Lm9;
    
      B3
    = ( 
    - A3) by 
    A61;
    
      then w1
    = (A3 
    * w19) by 
    A58,
    Lm15;
    
      then
    
      
    
    A66: 
    are_Prop (w19,w1) by 
    A64,
    Lm9;
    
      B2
    = ( 
    - A2) by 
    A63;
    
      then v1
    = (A2 
    * v19) by 
    A60,
    Lm15;
    
      then
    
      
    
    A67: 
    are_Prop (v19,v1) by 
    A64,
    Lm9;
    
      (((1
    * u19) 
    + (( 
    - 1) 
    * v19)) 
    + (1 
    * w19)) 
    = ((u19 
    + (( 
    - 1) 
    * v19)) 
    + (1 
    * w19)) by 
    RLVECT_1:def 8
    
      .= ((u19
    + (( 
    - 1) 
    * v19)) 
    + w19) by 
    RLVECT_1:def 8
    
      .= ((u19
    + ( 
    - v19)) 
    + w19) by 
    RLVECT_1: 16
    
      .= ((((a2
    * v) 
    + ( 
    - (a3 
    * w))) 
    + ((a3 
    * w) 
    + ( 
    - (a1 
    * u)))) 
    + ((a1 
    * u) 
    - (a2 
    * v))) by 
    RLVECT_1: 33
    
      .= (((((a2
    * v) 
    + ( 
    - (a3 
    * w))) 
    + (a3 
    * w)) 
    + ( 
    - (a1 
    * u))) 
    + ((a1 
    * u) 
    + ( 
    - (a2 
    * v)))) by 
    RLVECT_1:def 3
    
      .= ((((a2
    * v) 
    + (( 
    - (a3 
    * w)) 
    + (a3 
    * w))) 
    + ( 
    - (a1 
    * u))) 
    + ((a1 
    * u) 
    + ( 
    - (a2 
    * v)))) by 
    RLVECT_1:def 3
    
      .= ((((a2
    * v) 
    + ( 
    0. V)) 
    + ( 
    - (a1 
    * u))) 
    + ((a1 
    * u) 
    + ( 
    - (a2 
    * v)))) by 
    RLVECT_1: 5
    
      .= (((a2
    * v) 
    + ( 
    - (a1 
    * u))) 
    + ((a1 
    * u) 
    + ( 
    - (a2 
    * v)))) by 
    RLVECT_1: 4
    
      .= ((a2
    * v) 
    + (( 
    - (a1 
    * u)) 
    + ((a1 
    * u) 
    + ( 
    - (a2 
    * v))))) by 
    RLVECT_1:def 3
    
      .= ((a2
    * v) 
    + ((( 
    - (a1 
    * u)) 
    + (a1 
    * u)) 
    + ( 
    - (a2 
    * v)))) by 
    RLVECT_1:def 3
    
      .= ((a2
    * v) 
    + (( 
    0. V) 
    + ( 
    - (a2 
    * v)))) by 
    RLVECT_1: 5
    
      .= ((a2
    * v) 
    + ( 
    - (a2 
    * v))) by 
    RLVECT_1: 4
    
      .= (
    0. V) by 
    RLVECT_1: 5;
    
      then (u19,v19,w19)
    are_LinDep ; 
    
      hence thesis by
    A65,
    A67,
    A66,
    ANPROJ_1: 4;
    
    end;
    
    definition
    
      let V, o, u, v, w, u2, v2, w2;
    
      :: 
    
    ANPROJ_2:def4
    
      pred o,u,v,w,u2,v2,w2
    
    lie_on_an_angle means not (o,u,u2) 
    are_LinDep & (o,u,v) 
    are_LinDep & (o,u,w) 
    are_LinDep & (o,u2,v2) 
    are_LinDep & (o,u2,w2) 
    are_LinDep ; 
    
    end
    
    definition
    
      let V, o, u, v, w, u2, v2, w2;
    
      :: 
    
    ANPROJ_2:def5
    
      pred o,u,v,w,u2,v2,w2
    
    are_half_mutually_not_Prop means not 
    are_Prop (o,v) & not 
    are_Prop (o,w) & not 
    are_Prop (o,v2) & not 
    are_Prop (o,w2) & not 
    are_Prop (u,v) & not 
    are_Prop (u,w) & not 
    are_Prop (u2,v2) & not 
    are_Prop (u2,w2) & not 
    are_Prop (v,w) & not 
    are_Prop (v2,w2); 
    
    end
    
    
    
    
    
    Lm16: (b1 
    * u2) 
    = w2 & b1 
    <>  
    0 implies 
    are_Prop (u2,w2) 
    
    proof
    
      assume that
    
      
    
    A1: (b1 
    * u2) 
    = w2 and 
    
      
    
    A2: b1 
    <>  
    0 ; 
    
      (b1
    * u2) 
    = (1 
    * w2) by 
    A1,
    RLVECT_1:def 8;
    
      hence thesis by
    A2;
    
    end;
    
    
    
    
    
    Lm17: not 
    are_Prop (p,q) & y 
    = (a 
    * q) & a 
    <>  
    0 implies not 
    are_Prop (p,y) 
    
    proof
    
      assume that
    
      
    
    A1: not 
    are_Prop (p,q) and 
    
      
    
    A2: y 
    = (a 
    * q) & a 
    <>  
    0 ; 
    
      assume not thesis;
    
      then
    
      consider b such that
    
      
    
    A3: b 
    <>  
    0 & p 
    = (b 
    * y) by 
    ANPROJ_1: 1;
    
      p
    = ((b 
    * a) 
    * q) & (b 
    * a) 
    <>  
    0 by 
    A2,
    A3,
    RLVECT_1:def 7,
    XCMPLX_1: 6;
    
      hence contradiction by
    A1,
    ANPROJ_1: 1;
    
    end;
    
    
    
    
    
    Lm18: w1 
    = ((a 
    * u) 
    + (b 
    * v2)) & v2 
    = (o 
    + (c2 
    * u2)) implies w1 
    = (((b 
    * o) 
    + (a 
    * u)) 
    + ((b 
    * c2) 
    * u2)) 
    
    proof
    
      assume w1
    = ((a 
    * u) 
    + (b 
    * v2)) & v2 
    = (o 
    + (c2 
    * u2)); 
    
      
    
      hence w1
    = ((a 
    * u) 
    + ((b 
    * o) 
    + (b 
    * (c2 
    * u2)))) by 
    RLVECT_1:def 5
    
      .= (((a
    * u) 
    + (b 
    * o)) 
    + (b 
    * (c2 
    * u2))) by 
    RLVECT_1:def 3
    
      .= (((b
    * o) 
    + (a 
    * u)) 
    + ((b 
    * c2) 
    * u2)) by 
    RLVECT_1:def 7;
    
    end;
    
    
    
    
    
    Lm19: w1 
    = ((a 
    * u2) 
    + (b 
    * v1)) & v1 
    = (o 
    + (a2 
    * u)) implies w1 
    = (((b 
    * o) 
    + ((b 
    * a2) 
    * u)) 
    + (a 
    * u2)) 
    
    proof
    
      assume w1
    = ((a 
    * u2) 
    + (b 
    * v1)) & v1 
    = (o 
    + (a2 
    * u)); 
    
      
    
      hence w1
    = (((b 
    * o) 
    + (a 
    * u2)) 
    + ((b 
    * a2) 
    * u)) by 
    Lm18
    
      .= (((b
    * o) 
    + ((b 
    * a2) 
    * u)) 
    + (a 
    * u2)) by 
    RLVECT_1:def 3;
    
    end;
    
    
    
    
    
    Lm20: (a 
    * p) 
    = q & a 
    <>  
    0 & not p is 
    zero implies not q is 
    zero by 
    RLVECT_1: 11;
    
    
    
    
    
    Lm21: not 
    are_Prop (p,q) & y 
    = (a 
    * q) & a 
    <>  
    0 & s 
    = (b 
    * p) & b 
    <>  
    0 implies not 
    are_Prop (s,y) 
    
    proof
    
      assume that
    
      
    
    A1: not 
    are_Prop (p,q) and 
    
      
    
    A2: y 
    = (a 
    * q) & a 
    <>  
    0 and 
    
      
    
    A3: s 
    = (b 
    * p) & b 
    <>  
    0 ; 
    
      assume not thesis;
    
      then
    
      consider c such that
    
      
    
    A4: c 
    <>  
    0 & s 
    = (c 
    * y) by 
    ANPROJ_1: 1;
    
      s
    = ((c 
    * a) 
    * q) & (c 
    * a) 
    <>  
    0 by 
    A2,
    A4,
    RLVECT_1:def 7,
    XCMPLX_1: 6;
    
      hence contradiction by
    A1,
    A3;
    
    end;
    
    
    
    
    
    Lm22: for A,B be 
    Real holds (r 
    = ((A 
    * u2) 
    + (B 
    * v2)) & u2 
    = (o 
    + (a1 
    * u)) & v2 
    = (o 
    + (a2 
    * v)) implies r 
    = ((((A 
    + B) 
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * a2) 
    * v))) 
    
    proof
    
      let A,B be
    Real;
    
      assume r
    = ((A 
    * u2) 
    + (B 
    * v2)) & u2 
    = (o 
    + (a1 
    * u)) & v2 
    = (o 
    + (a2 
    * v)); 
    
      
    
      hence r
    = (((A 
    * o) 
    + (A 
    * (a1 
    * u))) 
    + (B 
    * (o 
    + (a2 
    * v)))) by 
    RLVECT_1:def 5
    
      .= (((A
    * o) 
    + (A 
    * (a1 
    * u))) 
    + ((B 
    * o) 
    + (B 
    * (a2 
    * v)))) by 
    RLVECT_1:def 5
    
      .= (((A
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * o) 
    + (B 
    * (a2 
    * v)))) by 
    RLVECT_1:def 7
    
      .= (((A
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * o) 
    + ((B 
    * a2) 
    * v))) by 
    RLVECT_1:def 7
    
      .= ((((A
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + (B 
    * o)) 
    + ((B 
    * a2) 
    * v)) by 
    RLVECT_1:def 3
    
      .= ((((A
    * o) 
    + (B 
    * o)) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * a2) 
    * v)) by 
    RLVECT_1:def 3
    
      .= ((((A
    + B) 
    * o) 
    + ((A 
    * a1) 
    * u)) 
    + ((B 
    * a2) 
    * v)) by 
    RLVECT_1:def 6;
    
    end;
    
    
    
    
    
    Lm23: a2 
    <> a3 & c2 
    <>  
    0 implies ((a3 
    * c2) 
    - (a2 
    * c2)) 
    <>  
    0  
    
    proof
    
      assume that
    
      
    
    A1: a2 
    <> a3 and 
    
      
    
    A2: c2 
    <>  
    0 ; 
    
      ((a3
    * c2) 
    - (a2 
    * c2)) 
    = ((a3 
    - a2) 
    * c2) & (a3 
    - a2) 
    <>  
    0 by 
    A1;
    
      hence thesis by
    A2,
    XCMPLX_1: 6;
    
    end;
    
    
    
    
    
    Lm24: for A1,A19,B1,B19 be 
    Real holds ((A1 
    + B1) 
    = (A19 
    + B19) & (A1 
    * a2) 
    = (A19 
    * a3) & (B1 
    * c3) 
    = (B19 
    * c2) & a2 
    <> a3 & c2 
    <>  
    0 implies A1 
    = ((((a3 
    * c3) 
    - (a3 
    * c2)) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * B1)) 
    
    proof
    
      let A1,A19,B1,B19 be
    Real;
    
      assume that
    
      
    
    A1: (A1 
    + B1) 
    = (A19 
    + B19) and 
    
      
    
    A2: (A1 
    * a2) 
    = (A19 
    * a3) & (B1 
    * c3) 
    = (B19 
    * c2) and 
    
      
    
    A3: a2 
    <> a3 & c2 
    <>  
    0 ; 
    
      
    
      
    
    A4: ((A1 
    * (a3 
    * c2)) 
    + (B1 
    * (a3 
    * c2))) 
    = ((A19 
    + B19) 
    * (a3 
    * c2)) by 
    A1,
    XCMPLX_1: 8;
    
      (A1
    * (a2 
    * c2)) 
    = ((A19 
    * a3) 
    * c2) & (B1 
    * (c3 
    * a3)) 
    = ((B19 
    * c2) 
    * a3) by 
    A2,
    XCMPLX_1: 4;
    
      then (B1
    * ((a3 
    * c3) 
    - (a3 
    * c2))) 
    = (A1 
    * ((a3 
    * c2) 
    - (a2 
    * c2))) by 
    A4;
    
      then
    
      
    
    A5: (A1 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " ))) 
    = ((B1 
    * ((a3 
    * c3) 
    - (a3 
    * c2))) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) by 
    XCMPLX_1: 4;
    
      ((a3
    * c2) 
    - (a2 
    * c2)) 
    <>  
    0 by 
    A3,
    Lm23;
    
      then (A1
    * 1) 
    = ((B1 
    * ((a3 
    * c3) 
    - (a3 
    * c2))) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) by 
    A5,
    XCMPLX_0:def 7;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm25: for B1 be 
    Real st c2 
    <>  
    0 & a2 
    <> a3 & B1 
    <>  
    0 holds (B1 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    <>  
    0  
    
    proof
    
      let B1 be
    Real;
    
      assume that
    
      
    
    A1: c2 
    <>  
    0 & a2 
    <> a3 and 
    
      
    
    A2: B1 
    <>  
    0 ; 
    
      (((a3
    * c2) 
    - (a2 
    * c2)) 
    " ) 
    <>  
    0 by 
    A1,
    Lm23,
    XCMPLX_1: 202;
    
      hence thesis by
    A2,
    XCMPLX_1: 6;
    
    end;
    
    
    
    
    
    Lm26: for A1,B1 be 
    Real holds (A1 
    = ((((a3 
    * c3) 
    - (a3 
    * c2)) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * B1) & c2 
    <>  
    0 & a2 
    <> a3 & u1 
    = ((((A1 
    + B1) 
    * o) 
    + ((A1 
    * a2) 
    * u)) 
    + ((B1 
    * c3) 
    * u2)) implies u1 
    = ((B1 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * (((((a3 
    * c3) 
    - (a2 
    * c2)) 
    * o) 
    + (((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u)) 
    + (((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2)))) 
    
    proof
    
      let A1,B1 be
    Real;
    
      assume that
    
      
    
    A1: A1 
    = ((((a3 
    * c3) 
    - (a3 
    * c2)) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * B1) and 
    
      
    
    A2: c2 
    <>  
    0 & a2 
    <> a3 and 
    
      
    
    A3: u1 
    = ((((A1 
    + B1) 
    * o) 
    + ((A1 
    * a2) 
    * u)) 
    + ((B1 
    * c3) 
    * u2)); 
    
      
    
      
    
    A4: ((a3 
    * c2) 
    - (a2 
    * c2)) 
    <>  
    0 by 
    A2,
    Lm23;
    
      
    
      
    
    A5: ((B1 
    * c3) 
    * u2) 
    = (((B1 
    * 1) 
    * c3) 
    * u2) 
    
      .= (((B1
    * ((((a3 
    * c2) 
    - (a2 
    * c2)) 
    " ) 
    * ((a3 
    * c2) 
    - (a2 
    * c2)))) 
    * c3) 
    * u2) by 
    A4,
    XCMPLX_0:def 7
    
      .= (((B1
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * ((c3 
    * c2) 
    * (a3 
    - a2))) 
    * u2) 
    
      .= ((B1
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * (((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2)) by 
    RLVECT_1:def 7;
    
      
    
      
    
    A6: ((((((a3 
    * c3) 
    - (a3 
    * c2)) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * B1) 
    * a2) 
    * u) 
    = (((B1 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * ((a2 
    * a3) 
    * (c3 
    - c2))) 
    * u) 
    
      .= ((B1
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * (((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u)) by 
    RLVECT_1:def 7;
    
      ((((((a3
    * c3) 
    - (a3 
    * c2)) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * B1) 
    + (B1 
    * 1)) 
    * o) 
    = (((((a3 
    * c3) 
    - (a3 
    * c2)) 
    * (B1 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " ))) 
    + (B1 
    * ((((a3 
    * c2) 
    - (a2 
    * c2)) 
    " ) 
    * ((a3 
    * c2) 
    - (a2 
    * c2))))) 
    * o) by 
    A4,
    XCMPLX_0:def 7
    
      .= (((B1
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * ((((a3 
    * c3) 
    + ( 
    - (a3 
    * c2))) 
    + (a3 
    * c2)) 
    - (a2 
    * c2))) 
    * o) 
    
      .= ((B1
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * (((a3 
    * c3) 
    - (a2 
    * c2)) 
    * o)) by 
    RLVECT_1:def 7;
    
      
    
      hence u1
    = (((B1 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * ((((a3 
    * c3) 
    - (a2 
    * c2)) 
    * o) 
    + (((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u))) 
    + ((B1 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * (((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2))) by 
    A1,
    A3,
    A6,
    A5,
    RLVECT_1:def 5
    
      .= ((B1
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * (((((a3 
    * c3) 
    - (a2 
    * c2)) 
    * o) 
    + (((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u)) 
    + (((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2))) by 
    RLVECT_1:def 5;
    
    end;
    
    
    
    
    
    Lm27: (((p 
    + q) 
    + r) 
    + ((u 
    + u2) 
    + u1)) 
    = (((p 
    + u) 
    + (q 
    + u2)) 
    + (r 
    + u1)) 
    
    proof
    
      
    
      thus (((p
    + u) 
    + (q 
    + u2)) 
    + (r 
    + u1)) 
    = ((u 
    + (p 
    + (q 
    + u2))) 
    + (r 
    + u1)) by 
    RLVECT_1:def 3
    
      .= ((u
    + ((p 
    + q) 
    + u2)) 
    + (r 
    + u1)) by 
    RLVECT_1:def 3
    
      .= (((u
    + u2) 
    + (p 
    + q)) 
    + (r 
    + u1)) by 
    RLVECT_1:def 3
    
      .= ((u
    + u2) 
    + ((p 
    + q) 
    + (r 
    + u1))) by 
    RLVECT_1:def 3
    
      .= ((u
    + u2) 
    + (((p 
    + q) 
    + r) 
    + u1)) by 
    RLVECT_1:def 3
    
      .= (((p
    + q) 
    + r) 
    + ((u 
    + u2) 
    + u1)) by 
    RLVECT_1:def 3;
    
    end;
    
    
    
    
    
    Lm28: for C2,C3 be 
    Real holds (u1 
    = (((((a3 
    * c3) 
    - (a2 
    * c2)) 
    * o) 
    + (((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u)) 
    + (((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2)) & v1 
    = ((o 
    + (a3 
    * u)) 
    + (c3 
    * u2)) & w2 
    = ((o 
    + (a2 
    * u)) 
    + (c2 
    * u2)) & (C2 
    + C3) 
    = ((a2 
    * c2) 
    - (a3 
    * c3)) & ((C2 
    * a3) 
    + (C3 
    * a2)) 
    = ((a2 
    * a3) 
    * (c2 
    - c3)) & ((C2 
    * c3) 
    + (C3 
    * c2)) 
    = ((c2 
    * c3) 
    * (a2 
    - a3)) implies (((1 
    * u1) 
    + (C2 
    * v1)) 
    + (C3 
    * w2)) 
    = ( 
    0. V)) 
    
    proof
    
      let C2,C3 be
    Real such that 
    
      
    
    A1: u1 
    = (((((a3 
    * c3) 
    - (a2 
    * c2)) 
    * o) 
    + (((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u)) 
    + (((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2)) and 
    
      
    
    A2: v1 
    = ((o 
    + (a3 
    * u)) 
    + (c3 
    * u2)) & w2 
    = ((o 
    + (a2 
    * u)) 
    + (c2 
    * u2)) and 
    
      
    
    A3: (C2 
    + C3) 
    = ((a2 
    * c2) 
    - (a3 
    * c3)) & ((C2 
    * a3) 
    + (C3 
    * a2)) 
    = ((a2 
    * a3) 
    * (c2 
    - c3)) & ((C2 
    * c3) 
    + (C3 
    * c2)) 
    = ((c2 
    * c3) 
    * (a2 
    - a3)); 
    
      
    
      
    
    A4: (((1 
    * u1) 
    + (C2 
    * v1)) 
    + (C3 
    * w2)) 
    = ((u1 
    + (C2 
    * v1)) 
    + (C3 
    * w2)) by 
    RLVECT_1:def 8
    
      .= (u1
    + ((C2 
    * v1) 
    + (C3 
    * w2))) by 
    RLVECT_1:def 3;
    
      ((C2
    * v1) 
    + (C3 
    * w2)) 
    = (((C2 
    * (o 
    + (a3 
    * u))) 
    + (C2 
    * (c3 
    * u2))) 
    + (C3 
    * ((o 
    + (a2 
    * u)) 
    + (c2 
    * u2)))) by 
    A2,
    RLVECT_1:def 5
    
      .= ((((C2
    * o) 
    + (C2 
    * (a3 
    * u))) 
    + (C2 
    * (c3 
    * u2))) 
    + (C3 
    * ((o 
    + (a2 
    * u)) 
    + (c2 
    * u2)))) by 
    RLVECT_1:def 5
    
      .= ((((C2
    * o) 
    + (C2 
    * (a3 
    * u))) 
    + (C2 
    * (c3 
    * u2))) 
    + ((C3 
    * (o 
    + (a2 
    * u))) 
    + (C3 
    * (c2 
    * u2)))) by 
    RLVECT_1:def 5
    
      .= ((((C2
    * o) 
    + (C2 
    * (a3 
    * u))) 
    + (C2 
    * (c3 
    * u2))) 
    + (((C3 
    * o) 
    + (C3 
    * (a2 
    * u))) 
    + (C3 
    * (c2 
    * u2)))) by 
    RLVECT_1:def 5
    
      .= ((((C2
    * o) 
    + (C3 
    * o)) 
    + ((C2 
    * (a3 
    * u)) 
    + (C3 
    * (a2 
    * u)))) 
    + ((C2 
    * (c3 
    * u2)) 
    + (C3 
    * (c2 
    * u2)))) by 
    Lm27
    
      .= ((((C2
    + C3) 
    * o) 
    + ((C2 
    * (a3 
    * u)) 
    + (C3 
    * (a2 
    * u)))) 
    + ((C2 
    * (c3 
    * u2)) 
    + (C3 
    * (c2 
    * u2)))) by 
    RLVECT_1:def 6
    
      .= ((((C2
    + C3) 
    * o) 
    + (((C2 
    * a3) 
    * u) 
    + (C3 
    * (a2 
    * u)))) 
    + ((C2 
    * (c3 
    * u2)) 
    + (C3 
    * (c2 
    * u2)))) by 
    RLVECT_1:def 7
    
      .= ((((C2
    + C3) 
    * o) 
    + (((C2 
    * a3) 
    * u) 
    + ((C3 
    * a2) 
    * u))) 
    + ((C2 
    * (c3 
    * u2)) 
    + (C3 
    * (c2 
    * u2)))) by 
    RLVECT_1:def 7
    
      .= ((((C2
    + C3) 
    * o) 
    + (((C2 
    * a3) 
    * u) 
    + ((C3 
    * a2) 
    * u))) 
    + (((C2 
    * c3) 
    * u2) 
    + (C3 
    * (c2 
    * u2)))) by 
    RLVECT_1:def 7
    
      .= ((((C2
    + C3) 
    * o) 
    + (((C2 
    * a3) 
    * u) 
    + ((C3 
    * a2) 
    * u))) 
    + (((C2 
    * c3) 
    * u2) 
    + ((C3 
    * c2) 
    * u2))) by 
    RLVECT_1:def 7
    
      .= ((((C2
    + C3) 
    * o) 
    + (((C2 
    * a3) 
    + (C3 
    * a2)) 
    * u)) 
    + (((C2 
    * c3) 
    * u2) 
    + ((C3 
    * c2) 
    * u2))) by 
    RLVECT_1:def 6
    
      .= (((((a2
    * c2) 
    - (a3 
    * c3)) 
    * o) 
    + (((a2 
    * a3) 
    * (c2 
    - c3)) 
    * u)) 
    + (((c2 
    * c3) 
    * (a2 
    - a3)) 
    * u2)) by 
    A3,
    RLVECT_1:def 6;
    
      
    
      hence (((1
    * u1) 
    + (C2 
    * v1)) 
    + (C3 
    * w2)) 
    = ((((((a3 
    * c3) 
    - (a2 
    * c2)) 
    * o) 
    + (((a2 
    * c2) 
    - (a3 
    * c3)) 
    * o)) 
    + ((((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u) 
    + (((a2 
    * a3) 
    * (c2 
    - c3)) 
    * u))) 
    + ((((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2) 
    + (((c2 
    * c3) 
    * (a2 
    - a3)) 
    * u2))) by 
    A1,
    A4,
    Lm27
    
      .= ((((((a3
    * c3) 
    - (a2 
    * c2)) 
    + ((a2 
    * c2) 
    - (a3 
    * c3))) 
    * o) 
    + ((((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u) 
    + (((a2 
    * a3) 
    * (c2 
    - c3)) 
    * u))) 
    + ((((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2) 
    + (((c2 
    * c3) 
    * (a2 
    - a3)) 
    * u2))) by 
    RLVECT_1:def 6
    
      .= ((((((a3
    * c3) 
    - (a2 
    * c2)) 
    + ((a2 
    * c2) 
    - (a3 
    * c3))) 
    * o) 
    + ((((a2 
    * a3) 
    * (c3 
    - c2)) 
    + ((a2 
    * a3) 
    * (c2 
    - c3))) 
    * u)) 
    + ((((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2) 
    + (((c2 
    * c3) 
    * (a2 
    - a3)) 
    * u2))) by 
    RLVECT_1:def 6
    
      .= (((((((a3
    * c3) 
    + ( 
    - (a2 
    * c2))) 
    + (a2 
    * c2)) 
    + ( 
    - (a3 
    * c3))) 
    * o) 
    + ((((a2 
    * a3) 
    * (c3 
    - c2)) 
    + ((a2 
    * a3) 
    * (c2 
    - c3))) 
    * u)) 
    + ((((c2 
    * c3) 
    * (a3 
    - a2)) 
    + ((c2 
    * c3) 
    * (a2 
    - a3))) 
    * u2)) by 
    RLVECT_1:def 6
    
      .= (((
    0. V) 
    + ((((a2 
    * a3) 
    * (c3 
    - c2)) 
    + ((a2 
    * a3) 
    * (c2 
    - c3))) 
    * u)) 
    + ((((c2 
    * c3) 
    * (a3 
    - a2)) 
    + ((c2 
    * c3) 
    * (a2 
    - a3))) 
    * u2)) by 
    RLVECT_1: 10
    
      .= ((
    0  
    * u) 
    + ((((c2 
    * c3) 
    * (a3 
    - a2)) 
    + ( 
    - ((c2 
    * c3) 
    * (a3 
    - a2)))) 
    * u2)) by 
    RLVECT_1: 4
    
      .= ((
    0. V) 
    + ( 
    0  
    * u2)) by 
    RLVECT_1: 10
    
      .= ((
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
      .= (
    0. V) by 
    RLVECT_1: 4;
    
    end;
    
    
    
    
    
    Lm29: for A3,A39,B3,B39 be 
    Real holds (w2 
    = ((o 
    + (a2 
    * u)) 
    + (c2 
    * u2)) & w1 
    = (((B3 
    * o) 
    + (A3 
    * u)) 
    + ((B3 
    * c2) 
    * u2)) & B3 
    = B39 & A3 
    = (B39 
    * a2) implies w1 
    = (B3 
    * w2)) 
    
    proof
    
      let A3,A39,B3,B39 be
    Real;
    
      assume that
    
      
    
    A1: w2 
    = ((o 
    + (a2 
    * u)) 
    + (c2 
    * u2)) and 
    
      
    
    A2: w1 
    = (((B3 
    * o) 
    + (A3 
    * u)) 
    + ((B3 
    * c2) 
    * u2)) & B3 
    = B39 & A3 
    = (B39 
    * a2); 
    
      
    
      thus w1
    = (((B3 
    * o) 
    + (B3 
    * (a2 
    * u))) 
    + ((B3 
    * c2) 
    * u2)) by 
    A2,
    RLVECT_1:def 7
    
      .= (((B3
    * o) 
    + (B3 
    * (a2 
    * u))) 
    + (B3 
    * (c2 
    * u2))) by 
    RLVECT_1:def 7
    
      .= ((B3
    * (o 
    + (a2 
    * u))) 
    + (B3 
    * (c2 
    * u2))) by 
    RLVECT_1:def 5
    
      .= (B3
    * w2) by 
    A1,
    RLVECT_1:def 5;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:9
    
    
    
    
    
    Th9: not o is 
    zero & (u,v,w) 
    are_Prop_Vect & (u2,v2,w2) 
    are_Prop_Vect & (u1,v1,w1) 
    are_Prop_Vect & (o,u,v,w,u2,v2,w2) 
    lie_on_an_angle & (o,u,v,w,u2,v2,w2) 
    are_half_mutually_not_Prop & (u,v2,w1) 
    are_LinDep & (u2,v,w1) 
    are_LinDep & (u,w2,v1) 
    are_LinDep & (w,u2,v1) 
    are_LinDep & (v,w2,u1) 
    are_LinDep & (w,v2,u1) 
    are_LinDep implies (u1,v1,w1) 
    are_LinDep  
    
    proof
    
      assume that
    
      
    
    A1: not o is 
    zero and 
    
      
    
    A2: (u,v,w) 
    are_Prop_Vect and 
    
      
    
    A3: (u2,v2,w2) 
    are_Prop_Vect and 
    
      
    
    A4: (u1,v1,w1) 
    are_Prop_Vect and 
    
      
    
    A5: (o,u,v,w,u2,v2,w2) 
    lie_on_an_angle and 
    
      
    
    A6: (o,u,v,w,u2,v2,w2) 
    are_half_mutually_not_Prop and 
    
      
    
    A7: (u,v2,w1) 
    are_LinDep and 
    
      
    
    A8: (u2,v,w1) 
    are_LinDep and 
    
      
    
    A9: (u,w2,v1) 
    are_LinDep and 
    
      
    
    A10: (w,u2,v1) 
    are_LinDep and 
    
      
    
    A11: (v,w2,u1) 
    are_LinDep and 
    
      
    
    A12: (w,v2,u1) 
    are_LinDep ; 
    
      
    
      
    
    A13: not u is 
    zero by 
    A2;
    
      
    
      
    
    A14: not 
    are_Prop (u2,v2) by 
    A6;
    
      
    
      
    
    A15: not 
    are_Prop (o,v) by 
    A6;
    
      
    
      
    
    A16: not 
    are_Prop (u,v) by 
    A6;
    
      
    
      
    
    A17: (o,u2,v2) 
    are_LinDep by 
    A5;
    
      
    
      
    
    A18: ( not 
    are_Prop (o,w2)) & not 
    are_Prop (u2,w2) by 
    A6;
    
      
    
      
    
    A19: not u2 is 
    zero by 
    A3;
    
      
    
      
    
    A20: ( not 
    are_Prop (o,w)) & not 
    are_Prop (u,w) by 
    A6;
    
      
    
      
    
    A21: (o,u,w) 
    are_LinDep by 
    A5;
    
      
    
      
    
    A22: not 
    are_Prop (o,v2) by 
    A6;
    
      
    
      
    
    A23: (o,u2,w2) 
    are_LinDep by 
    A5;
    
      
    
      
    
    A24: not (o,u,u2) 
    are_LinDep by 
    A5;
    
      then
    
      
    
    A25: not 
    are_Prop (o,u) by 
    ANPROJ_1: 12;
    
      
    
      
    
    A26: not w is 
    zero by 
    A2;
    
      then (o,u,w)
    are_Prop_Vect by 
    A1,
    A13;
    
      then
    
      consider a3, b3 such that
    
      
    
    A27: (b3 
    * w) 
    = (o 
    + (a3 
    * u)) and a3 
    <>  
    0 and 
    
      
    
    A28: b3 
    <>  
    0 by 
    A21,
    A20,
    A25,
    Th6;
    
      
    
      
    
    A29: not 
    are_Prop (u2,o) by 
    A24,
    ANPROJ_1: 12;
    
      
    
      
    
    A30: not w2 is 
    zero by 
    A3;
    
      then (o,u2,w2)
    are_Prop_Vect by 
    A1,
    A19;
    
      then
    
      consider c3, d3 such that
    
      
    
    A31: (d3 
    * w2) 
    = (o 
    + (c3 
    * u2)) and c3 
    <>  
    0 and 
    
      
    
    A32: d3 
    <>  
    0 by 
    A23,
    A18,
    A29,
    Th6;
    
      
    
      
    
    A33: (o,u,v) 
    are_LinDep by 
    A5;
    
      
    
      
    
    A34: not v2 is 
    zero by 
    A3;
    
      then (o,u2,v2)
    are_Prop_Vect by 
    A1,
    A19;
    
      then
    
      consider c2, d2 such that
    
      
    
    A35: (d2 
    * v2) 
    = (o 
    + (c2 
    * u2)) and 
    
      
    
    A36: c2 
    <>  
    0 and 
    
      
    
    A37: d2 
    <>  
    0 by 
    A17,
    A22,
    A14,
    A29,
    Th6;
    
      
    
      
    
    A38: not v is 
    zero by 
    A2;
    
      then (o,u,v)
    are_Prop_Vect by 
    A1,
    A13;
    
      then
    
      consider a2, b2 such that
    
      
    
    A39: (b2 
    * v) 
    = (o 
    + (a2 
    * u)) and a2 
    <>  
    0 and 
    
      
    
    A40: b2 
    <>  
    0 by 
    A33,
    A15,
    A16,
    A25,
    Th6;
    
      set v9 = (o
    + (a2 
    * u)), w9 = (o 
    + (a3 
    * u)), v29 = (o 
    + (c2 
    * u2)), w29 = (o 
    + (c3 
    * u2)); 
    
      
    
      
    
    A41: not v29 is 
    zero by 
    A34,
    A35,
    A37,
    Lm20;
    
      
    
      
    
    A42: not v9 is 
    zero by 
    A38,
    A39,
    A40,
    Lm20;
    
      
    
      
    
    A43: not w9 is 
    zero by 
    A26,
    A27,
    A28,
    Lm20;
    
      
    
      
    
    A44: not w29 is 
    zero by 
    A30,
    A31,
    A32,
    Lm20;
    
      
    
      
    
    A45: 
    are_Prop (w2,w29) by 
    A31,
    A32,
    Lm16;
    
      then
    
      
    
    A46: (u,w29,v1) 
    are_LinDep by 
    A9,
    ANPROJ_1: 4;
    
      
    
      
    
    A47: 
    are_Prop (v,v9) by 
    A39,
    A40,
    Lm16;
    
      then
    
      
    
    A48: (v9,w29,u1) 
    are_LinDep by 
    A11,
    A45,
    ANPROJ_1: 4;
    
      
    
      
    
    A49: 
    are_Prop (v2,v29) by 
    A35,
    A37,
    Lm16;
    
      then
    
      
    
    A50: (u,v29,w1) 
    are_LinDep by 
    A7,
    ANPROJ_1: 4;
    
      
    
      
    
    A51: 
    are_Prop (w,w9) by 
    A27,
    A28,
    Lm16;
    
      then
    
      
    
    A52: (w9,v29,u1) 
    are_LinDep by 
    A12,
    A49,
    ANPROJ_1: 4;
    
       not
    are_Prop (u,v2) 
    
      proof
    
        assume not thesis;
    
        then (o,u2,u)
    are_LinDep by 
    A17,
    ANPROJ_1: 4;
    
        hence contradiction by
    A24,
    ANPROJ_1: 5;
    
      end;
    
      then not
    are_Prop (u,v29) by 
    A35,
    A37,
    Lm17;
    
      then
    
      consider A3,B3 be
    Real such that 
    
      
    
    A53: w1 
    = ((A3 
    * u) 
    + (B3 
    * v29)) by 
    A13,
    A50,
    A41,
    ANPROJ_1: 6;
    
       not (o,u2,v)
    are_LinDep  
    
      proof
    
        assume not thesis;
    
        then
    
        
    
    A54: (o,v,u2) 
    are_LinDep by 
    ANPROJ_1: 5;
    
        (o,v,u)
    are_LinDep & (o,v,o) 
    are_LinDep by 
    A33,
    ANPROJ_1: 5,
    ANPROJ_1: 11;
    
        hence contradiction by
    A1,
    A38,
    A24,
    A15,
    A54,
    ANPROJ_1: 14;
    
      end;
    
      then not
    are_Prop (v,w2) by 
    A23,
    ANPROJ_1: 4;
    
      then not
    are_Prop (v9,w29) by 
    A39,
    A40,
    A31,
    A32,
    Lm21;
    
      then
    
      consider A1,B1 be
    Real such that 
    
      
    
    A55: u1 
    = ((A1 
    * v9) 
    + (B1 
    * w29)) by 
    A42,
    A44,
    A48,
    ANPROJ_1: 6;
    
       not (o,u,v2)
    are_LinDep  
    
      proof
    
        assume not thesis;
    
        then
    
        
    
    A56: (o,v2,u) 
    are_LinDep by 
    ANPROJ_1: 5;
    
        (o,v2,u2)
    are_LinDep & (o,v2,o) 
    are_LinDep by 
    A17,
    ANPROJ_1: 5,
    ANPROJ_1: 11;
    
        hence contradiction by
    A1,
    A34,
    A24,
    A22,
    A56,
    ANPROJ_1: 14;
    
      end;
    
      then not
    are_Prop (v2,w) by 
    A21,
    ANPROJ_1: 4;
    
      then not
    are_Prop (w9,v29) by 
    A27,
    A28,
    A35,
    A37,
    Lm21;
    
      then
    
      consider A19,B19 be
    Real such that 
    
      
    
    A57: u1 
    = ((A19 
    * w9) 
    + (B19 
    * v29)) by 
    A41,
    A43,
    A52,
    ANPROJ_1: 6;
    
      
    
      
    
    A58: u1 
    = ((((A1 
    + B1) 
    * o) 
    + ((A1 
    * a2) 
    * u)) 
    + ((B1 
    * c3) 
    * u2)) by 
    A55,
    Lm22;
    
      
    
      
    
    A59: not 
    are_Prop (v2,w2) by 
    A6;
    
      
    
      
    
    A60: not 
    are_Prop (v,w) by 
    A6;
    
      
    
      
    
    A61: not 
    are_Prop (v9,w9) & not 
    are_Prop (v29,w29) 
    
      proof
    
        
    
    A62: 
    
        now
    
          assume
    are_Prop (v29,w29); 
    
          then
    are_Prop (v2,w29) by 
    A49,
    ANPROJ_1: 2;
    
          hence contradiction by
    A59,
    A45,
    ANPROJ_1: 2;
    
        end;
    
        
    
    A63: 
    
        now
    
          assume
    are_Prop (v9,w9); 
    
          then
    are_Prop (v,w9) by 
    A47,
    ANPROJ_1: 2;
    
          hence contradiction by
    A60,
    A51,
    ANPROJ_1: 2;
    
        end;
    
        assume not thesis;
    
        hence contradiction by
    A63,
    A62;
    
      end;
    
       not
    are_Prop (u,w2) 
    
      proof
    
        assume not thesis;
    
        then (o,u2,u)
    are_LinDep by 
    A23,
    ANPROJ_1: 4;
    
        hence contradiction by
    A24,
    ANPROJ_1: 5;
    
      end;
    
      then not
    are_Prop (u,w29) by 
    A31,
    A32,
    Lm17;
    
      then
    
      consider A2,B2 be
    Real such that 
    
      
    
    A64: v1 
    = ((A2 
    * u) 
    + (B2 
    * w29)) by 
    A13,
    A44,
    A46,
    ANPROJ_1: 6;
    
      (u2,w,v1)
    are_LinDep by 
    A10;
    
      then
    
      
    
    A65: (u2,w9,v1) 
    are_LinDep by 
    A51,
    ANPROJ_1: 4;
    
       not
    are_Prop (u2,w) by 
    A24,
    A21,
    ANPROJ_1: 4;
    
      then not
    are_Prop (u2,w9) by 
    A27,
    A28,
    Lm17;
    
      then
    
      consider A29,B29 be
    Real such that 
    
      
    
    A66: v1 
    = ((A29 
    * u2) 
    + (B29 
    * w9)) by 
    A19,
    A43,
    A65,
    ANPROJ_1: 6;
    
      
    
      
    
    A67: v1 
    = (((B2 
    * o) 
    + (A2 
    * u)) 
    + ((B2 
    * c3) 
    * u2)) by 
    A64,
    Lm18;
    
      
    
      
    
    A68: (u2,v9,w1) 
    are_LinDep by 
    A8,
    A47,
    ANPROJ_1: 4;
    
       not
    are_Prop (u2,v) by 
    A24,
    A33,
    ANPROJ_1: 4;
    
      then not
    are_Prop (u2,v9) by 
    A39,
    A40,
    Lm17;
    
      then
    
      consider A39,B39 be
    Real such that 
    
      
    
    A69: w1 
    = ((A39 
    * u2) 
    + (B39 
    * v9)) by 
    A19,
    A68,
    A42,
    ANPROJ_1: 6;
    
      
    
      
    
    A70: w1 
    = (((B3 
    * o) 
    + (A3 
    * u)) 
    + ((B3 
    * c2) 
    * u2)) by 
    A53,
    Lm18;
    
      v1
    = (((B29 
    * o) 
    + ((B29 
    * a3) 
    * u)) 
    + (A29 
    * u2)) by 
    A66,
    Lm19;
    
      then
    
      
    
    A71: B2 
    = B29 & A2 
    = (B29 
    * a3) by 
    A24,
    A67,
    ANPROJ_1: 8;
    
      w1
    = (((B39 
    * o) 
    + ((B39 
    * a2) 
    * u)) 
    + (A39 
    * u2)) by 
    A69,
    Lm19;
    
      then
    
      
    
    A72: B3 
    = B39 & A3 
    = (B39 
    * a2) by 
    A24,
    A70,
    ANPROJ_1: 8;
    
      
    
      
    
    A73: u1 
    = ((((A19 
    + B19) 
    * o) 
    + ((A19 
    * a3) 
    * u)) 
    + ((B19 
    * c2) 
    * u2)) by 
    A57,
    Lm22;
    
      then
    
      
    
    A74: (B1 
    * c3) 
    = (B19 
    * c2) by 
    A24,
    A58,
    ANPROJ_1: 8;
    
      (A1
    + B1) 
    = (A19 
    + B19) & (A1 
    * a2) 
    = (A19 
    * a3) by 
    A24,
    A58,
    A73,
    ANPROJ_1: 8;
    
      then
    
      
    
    A75: A1 
    = ((((a3 
    * c3) 
    - (a3 
    * c2)) 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * B1) by 
    A36,
    A61,
    A74,
    Lm24;
    
      set v19 = ((o
    + (a3 
    * u)) 
    + (c3 
    * u2)); 
    
      set C2 = (a2
    * c2), C3 = ( 
    - (a3 
    * c3)); 
    
      set u19 = (((((a3
    * c3) 
    - (a2 
    * c2)) 
    * o) 
    + (((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u)) 
    + (((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2)); 
    
      set w19 = ((o
    + (a2 
    * u)) 
    + (c2 
    * u2)); 
    
      
    
      
    
    A76: ((C2 
    * c3) 
    + (C3 
    * c2)) 
    = ((c2 
    * c3) 
    * (a2 
    - a3)); 
    
      (C2
    + C3) 
    = ((a2 
    * c2) 
    - (a3 
    * c3)) & ((C2 
    * a3) 
    + (C3 
    * a2)) 
    = ((a2 
    * a3) 
    * (c2 
    - c3)); 
    
      then (((1
    * u19) 
    + (C2 
    * v19)) 
    + (C3 
    * w19)) 
    = ( 
    0. V) by 
    A76,
    Lm28;
    
      then
    
      
    
    A77: (u19,v19,w19) 
    are_LinDep ; 
    
      
    
      
    
    A78: not v1 is 
    zero by 
    A4;
    
      
    
      
    
    A79: B2 
    <>  
    0  
    
      proof
    
        assume not thesis;
    
        
    
        then v1
    = (( 
    0. V) 
    + ( 
    0  
    * w29)) by 
    A64,
    A71,
    RLVECT_1: 10
    
        .= ((
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
        .= (
    0. V) by 
    RLVECT_1: 4;
    
        hence contradiction by
    A78;
    
      end;
    
      v1
    = (B2 
    * v19) by 
    A67,
    A71,
    Lm29;
    
      then
    
      
    
    A80: 
    are_Prop (v19,v1) by 
    A79,
    Lm16;
    
      
    
      
    
    A81: not w1 is 
    zero by 
    A4;
    
      
    
      
    
    A82: B3 
    <>  
    0  
    
      proof
    
        assume not thesis;
    
        
    
        then w1
    = (( 
    0. V) 
    + ( 
    0  
    * v29)) by 
    A53,
    A72,
    RLVECT_1: 10
    
        .= ((
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
        .= (
    0. V) by 
    RLVECT_1: 4;
    
        hence contradiction by
    A81;
    
      end;
    
      w1
    = (B3 
    * w19) by 
    A70,
    A72,
    Lm29;
    
      then
    
      
    
    A83: 
    are_Prop (w19,w1) by 
    A82,
    Lm16;
    
      
    
      
    
    A84: not u1 is 
    zero by 
    A4;
    
      
    
      
    
    A85: B1 
    <>  
    0  
    
      proof
    
        assume not thesis;
    
        
    
        then u1
    = (( 
    0. V) 
    + ( 
    0  
    * w29)) by 
    A55,
    A75,
    RLVECT_1: 10
    
        .= ((
    0. V) 
    + ( 
    0. V)) by 
    RLVECT_1: 10
    
        .= (
    0. V) by 
    RLVECT_1: 4;
    
        hence contradiction by
    A84;
    
      end;
    
      u1
    = ((B1 
    * (((a3 
    * c2) 
    - (a2 
    * c2)) 
    " )) 
    * (((((a3 
    * c3) 
    - (a2 
    * c2)) 
    * o) 
    + (((a2 
    * a3) 
    * (c3 
    - c2)) 
    * u)) 
    + (((c2 
    * c3) 
    * (a3 
    - a2)) 
    * u2))) by 
    A36,
    A61,
    A58,
    A75,
    Lm26;
    
      then
    are_Prop (u19,u1) by 
    A36,
    A61,
    A85,
    Lm16,
    Lm25;
    
      hence thesis by
    A83,
    A80,
    A77,
    ANPROJ_1: 4;
    
    end;
    
    reserve A for non
    empty  
    set;
    
    reserve f,g,h,f1 for
    Element of ( 
    Funcs (A, 
    REAL )); 
    
    reserve x1,x2,x3,x4 for
    Element of A; 
    
    theorem :: 
    
    ANPROJ_2:10
    
    
    
    
    
    Th10: ex f st (f 
    . x1) 
    = 1 & for z st z 
    in A & z 
    <> x1 holds (f 
    . z) 
    =  
    0  
    
    proof
    
      deffunc
    
    G(
    object) = (
    In ( 
    0 , 
    REAL )); 
    
      deffunc
    
    F(
    object) = 1;
    
      defpred
    
    P[
    object] means $1
    = x1; 
    
      
    
      
    
    A1: for z be 
    object st z 
    in A holds ( 
    P[z] implies
    F(z)
    in  
    REAL ) & ( not 
    P[z] implies
    G(z)
    in  
    REAL ) by 
    XREAL_0:def 1;
    
      consider f be
    Function of A, 
    REAL such that 
    
      
    
    A2: for z be 
    object st z 
    in A holds ( 
    P[z] implies (f
    . z) 
    =  
    F(z)) & ( not
    P[z] implies (f
    . z) 
    =  
    G(z)) from
    FUNCT_2:sch 5(
    A1);
    
      reconsider f as
    Element of ( 
    Funcs (A, 
    REAL )) by 
    FUNCT_2: 8;
    
      take f;
    
      thus thesis by
    A2;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:11
    
    
    
    
    
    Th11: x1 
    <> x2 & x1 
    <> x3 & x2 
    <> x3 & (f 
    . x1) 
    = 1 & (for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 )) & (g 
    . x2) 
    = 1 & (for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 )) & (h 
    . x3) 
    = 1 & (for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 )) implies for a,b,c be 
    Real st (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    = ( 
    RealFuncZero A) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0  
    
    proof
    
      set RM = (
    RealFuncExtMult A), RA = ( 
    RealFuncAdd A); 
    
      assume that
    
      
    
    A1: x1 
    <> x2 and 
    
      
    
    A2: x1 
    <> x3 and 
    
      
    
    A3: x2 
    <> x3 and 
    
      
    
    A4: (f 
    . x1) 
    = 1 and 
    
      
    
    A5: for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) and 
    
      
    
    A6: (g 
    . x2) 
    = 1 and 
    
      
    
    A7: for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) and 
    
      
    
    A8: (h 
    . x3) 
    = 1 and 
    
      
    
    A9: for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ); 
    
      
    
      
    
    A10: (f 
    . x2) 
    =  
    0 & (h 
    . x2) 
    =  
    0 by 
    A1,
    A3,
    A5,
    A9;
    
      let a,b,c be
    Real;
    
      assume
    
      
    
    A11: (RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h])))
    = ( 
    RealFuncZero A); 
    
      reconsider a, b, c as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      
    
      
    
    A12: 
    0  
    = ((RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h])))
    . x2) by 
    FUNCOP_1: 7,
    A11
    
      .= (((RA
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g])))
    . x2) 
    + ((RM 
    .  
    [c, h])
    . x2)) by 
    FUNCSDOM: 1
    
      .= ((((RM
    .  
    [a, f])
    . x2) 
    + ((RM 
    .  
    [b, g])
    . x2)) 
    + ((RM 
    .  
    [c, h])
    . x2)) by 
    FUNCSDOM: 1
    
      .= ((((RM
    .  
    [a, f])
    . x2) 
    + ((RM 
    .  
    [b, g])
    . x2)) 
    + (c 
    * (h 
    . x2))) by 
    FUNCSDOM: 4
    
      .= ((((RM
    .  
    [a, f])
    . x2) 
    + (b 
    * (g 
    . x2))) 
    + (c 
    * (h 
    . x2))) by 
    FUNCSDOM: 4
    
      .= (((a
    *  
    0 ) 
    + (b 
    * 1)) 
    + (c 
    *  
    0 )) by 
    A6,
    A10,
    FUNCSDOM: 4
    
      .= b;
    
      
    
      
    
    A13: (g 
    . x1) 
    =  
    0 & (h 
    . x1) 
    =  
    0 by 
    A1,
    A2,
    A7,
    A9;
    
      
    
      
    
    A14: (f 
    . x3) 
    =  
    0 & (g 
    . x3) 
    =  
    0 by 
    A2,
    A3,
    A5,
    A7;
    
      
    
      
    
    A15: 
    0  
    = ((RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h])))
    . x3) by 
    A11,
    FUNCOP_1: 7
    
      .= (((RA
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g])))
    . x3) 
    + ((RM 
    .  
    [c, h])
    . x3)) by 
    FUNCSDOM: 1
    
      .= ((((RM
    .  
    [a, f])
    . x3) 
    + ((RM 
    .  
    [b, g])
    . x3)) 
    + ((RM 
    .  
    [c, h])
    . x3)) by 
    FUNCSDOM: 1
    
      .= ((((RM
    .  
    [a, f])
    . x3) 
    + ((RM 
    .  
    [b, g])
    . x3)) 
    + (c 
    * (h 
    . x3))) by 
    FUNCSDOM: 4
    
      .= ((((RM
    .  
    [a, f])
    . x3) 
    + (b 
    * (g 
    . x3))) 
    + (c 
    * (h 
    . x3))) by 
    FUNCSDOM: 4
    
      .= (((a
    *  
    0 ) 
    + (b 
    *  
    0 )) 
    + (c 
    * 1)) by 
    A8,
    A14,
    FUNCSDOM: 4
    
      .= c;
    
      
    0  
    = ((RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h])))
    . x1) by 
    A11,
    FUNCOP_1: 7
    
      .= (((RA
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g])))
    . x1) 
    + ((RM 
    .  
    [c, h])
    . x1)) by 
    FUNCSDOM: 1
    
      .= ((((RM
    .  
    [a, f])
    . x1) 
    + ((RM 
    .  
    [b, g])
    . x1)) 
    + ((RM 
    .  
    [c, h])
    . x1)) by 
    FUNCSDOM: 1
    
      .= ((((RM
    .  
    [a, f])
    . x1) 
    + ((RM 
    .  
    [b, g])
    . x1)) 
    + (c 
    * (h 
    . x1))) by 
    FUNCSDOM: 4
    
      .= ((((RM
    .  
    [a, f])
    . x1) 
    + (b 
    * (g 
    . x1))) 
    + (c 
    * (h 
    . x1))) by 
    FUNCSDOM: 4
    
      .= (((a
    * 1) 
    + (b 
    *  
    0 )) 
    + (c 
    *  
    0 )) by 
    A4,
    A13,
    FUNCSDOM: 4
    
      .= a;
    
      hence thesis by
    A12,
    A15;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:12
    
    x1
    <> x2 & x1 
    <> x3 & x2 
    <> x3 implies ex f, g, h st for a,b,c be 
    Real st (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    = ( 
    RealFuncZero A) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0  
    
    proof
    
      assume
    
      
    
    A1: x1 
    <> x2 & x1 
    <> x3 & x2 
    <> x3; 
    
      consider f such that
    
      
    
    A2: (f 
    . x1) 
    = 1 & for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider h such that
    
      
    
    A3: (h 
    . x3) 
    = 1 & for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider g such that
    
      
    
    A4: (g 
    . x2) 
    = 1 & for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) by 
    Th10;
    
      take f, g, h;
    
      let a,b,c be
    Real;
    
      assume ((
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    = ( 
    RealFuncZero A); 
    
      hence thesis by
    A1,
    A2,
    A4,
    A3,
    Th11;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:13
    
    
    
    
    
    Th13: A 
    =  
    {x1, x2, x3} & x1
    <> x2 & x1 
    <> x3 & x2 
    <> x3 & (f 
    . x1) 
    = 1 & (for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 )) & (g 
    . x2) 
    = 1 & (for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 )) & (h 
    . x3) 
    = 1 & (for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 )) implies for h9 be 
    Element of ( 
    Funcs (A, 
    REAL )) holds ex a,b,c be 
    Real st h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    
    proof
    
      assume that
    
      
    
    A1: A 
    =  
    {x1, x2, x3} and
    
      
    
    A2: x1 
    <> x2 and 
    
      
    
    A3: x1 
    <> x3 and 
    
      
    
    A4: x2 
    <> x3 and 
    
      
    
    A5: (f 
    . x1) 
    = 1 and 
    
      
    
    A6: for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) and 
    
      
    
    A7: (g 
    . x2) 
    = 1 and 
    
      
    
    A8: for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) and 
    
      
    
    A9: (h 
    . x3) 
    = 1 and 
    
      
    
    A10: for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ); 
    
      
    
      
    
    A11: (g 
    . x1) 
    =  
    0 & (h 
    . x1) 
    =  
    0 by 
    A2,
    A3,
    A8,
    A10;
    
      
    
      
    
    A12: (f 
    . x2) 
    =  
    0 & (h 
    . x2) 
    =  
    0 by 
    A2,
    A4,
    A6,
    A10;
    
      let h9 be
    Element of ( 
    Funcs (A, 
    REAL )); 
    
      take a = (h9
    . x1), b = (h9 
    . x2), c = (h9 
    . x3); 
    
      
    
      
    
    A13: (f 
    . x3) 
    =  
    0 & (g 
    . x3) 
    =  
    0 by 
    A3,
    A4,
    A6,
    A8;
    
      now
    
        let x be
    Element of A; 
    
        
    
        
    
    A14: x 
    = x1 or x 
    = x2 or x 
    = x3 by 
    A1,
    ENUMSET1:def 1;
    
        
    
        
    
    A15: ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    . x2) 
    = (((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g])))
    . x2) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x2)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x2) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x2)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x2)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x2) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x2)) 
    + (c 
    * (h 
    . x2))) by 
    FUNCSDOM: 4
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x2) 
    + (b 
    * (g 
    . x2))) 
    + (c 
    * (h 
    . x2))) by 
    FUNCSDOM: 4
    
        .= (((a
    *  
    0 ) 
    + (b 
    * 1)) 
    + (c 
    *  
    0 )) by 
    A7,
    A12,
    FUNCSDOM: 4
    
        .= (h9
    . x2); 
    
        
    
        
    
    A16: ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    . x3) 
    = (((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g])))
    . x3) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x3)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x3) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x3)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x3)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x3) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x3)) 
    + (c 
    * (h 
    . x3))) by 
    FUNCSDOM: 4
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x3) 
    + (b 
    * (g 
    . x3))) 
    + (c 
    * (h 
    . x3))) by 
    FUNCSDOM: 4
    
        .= (((a
    *  
    0 ) 
    + (b 
    *  
    0 )) 
    + (c 
    * 1)) by 
    A9,
    A13,
    FUNCSDOM: 4
    
        .= (h9
    . x3); 
    
        (((
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    . x1) 
    = (((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g])))
    . x1) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x1)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x1) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x1)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x1)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x1) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x1)) 
    + (c 
    * (h 
    . x1))) by 
    FUNCSDOM: 4
    
        .= (((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x1) 
    + (b 
    * (g 
    . x1))) 
    + (c 
    * (h 
    . x1))) by 
    FUNCSDOM: 4
    
        .= (((a
    * 1) 
    + (b 
    *  
    0 )) 
    + (c 
    *  
    0 )) by 
    A5,
    A11,
    FUNCSDOM: 4
    
        .= (h9
    . x1); 
    
        hence (h9
    . x) 
    = ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    . x) by 
    A14,
    A15,
    A16;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:14
    
    A
    =  
    {x1, x2, x3} & x1
    <> x2 & x1 
    <> x3 & x2 
    <> x3 implies ex f, g, h st for h9 be 
    Element of ( 
    Funcs (A, 
    REAL )) holds ex a,b,c be 
    Real st h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    
    proof
    
      assume
    
      
    
    A1: A 
    =  
    {x1, x2, x3} & x1
    <> x2 & x1 
    <> x3 & x2 
    <> x3; 
    
      consider f such that
    
      
    
    A2: (f 
    . x1) 
    = 1 & for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider h such that
    
      
    
    A3: (h 
    . x3) 
    = 1 & for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider g such that
    
      
    
    A4: (g 
    . x2) 
    = 1 & for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) by 
    Th10;
    
      take f, g, h;
    
      let h9 be
    Element of ( 
    Funcs (A, 
    REAL )); 
    
      thus thesis by
    A1,
    A2,
    A4,
    A3,
    Th13;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:15
    
    
    
    
    
    Th15: A 
    =  
    {x1, x2, x3} & x1
    <> x2 & x1 
    <> x3 & x2 
    <> x3 implies ex f, g, h st (for a,b,c be 
    Real st (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    = ( 
    RealFuncZero A) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ) & for h9 be 
    Element of ( 
    Funcs (A, 
    REAL )) holds ex a,b,c be 
    Real st h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    
    proof
    
      assume
    
      
    
    A1: A 
    =  
    {x1, x2, x3} & x1
    <> x2 & x1 
    <> x3 & x2 
    <> x3; 
    
      consider f such that
    
      
    
    A2: (f 
    . x1) 
    = 1 & for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider h such that
    
      
    
    A3: (h 
    . x3) 
    = 1 & for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider g such that
    
      
    
    A4: (g 
    . x2) 
    = 1 & for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) by 
    Th10;
    
      take f, g, h;
    
      thus thesis by
    A1,
    A2,
    A4,
    A3,
    Th11,
    Th13;
    
    end;
    
    
    
    
    
    Lm30: ex A, x1, x2, x3 st A 
    =  
    {x1, x2, x3} & x1
    <> x2 & x1 
    <> x3 & x2 
    <> x3 
    
    proof
    
      reconsider A =
    {
    0 , 1, 2} as non 
    empty  
    set;
    
      take A;
    
      reconsider x1 =
    0 , x2 = 1, x3 = 2 as 
    Element of A by 
    ENUMSET1:def 1;
    
      take x1, x2, x3;
    
      thus thesis;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:16
    
    
    
    
    
    Th16: ex V be non 
    trivial  
    RealLinearSpace st ex u,v,w be 
    Element of V st (for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ) & for y be 
    Element of V holds ex a, b, c st y 
    = (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    
    proof
    
      consider A, x1, x2, x3 such that
    
      
    
    A1: A 
    =  
    {x1, x2, x3} & x1
    <> x2 & x1 
    <> x3 & x2 
    <> x3 by 
    Lm30;
    
      set V = (
    RealVectSpace A); 
    
      consider f, g, h such that
    
      
    
    A2: for a,b,c be 
    Real st (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    = ( 
    RealFuncZero A) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 and 
    
      
    
    A3: for h9 be 
    Element of ( 
    Funcs (A, 
    REAL )) holds ex a,b,c be 
    Real st h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))) by
    A1,
    Th15;
    
      reconsider u = f, v = g, w = h as
    Element of V; 
    
      for a, b, c st (((a
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 by 
    A2;
    
      then not u is
    zero by 
    Th1;
    
      then
    
      
    
    A4: u 
    <> ( 
    0. V); 
    
      
    
      
    
    A5: for y be 
    Element of V holds ex a, b, c st y 
    = (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    
      proof
    
        let y be
    Element of V; 
    
        reconsider h9 = y as
    Element of ( 
    Funcs (A, 
    REAL )); 
    
        consider a,b,c be
    Real such that 
    
        
    
    A6: h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))) by
    A3;
    
        h9
    = (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) by 
    A6;
    
        hence thesis;
    
      end;
    
      reconsider V as non
    trivial  
    RealLinearSpace by 
    A4,
    STRUCT_0:def 18;
    
      take V;
    
      reconsider u, v, w as
    Element of V; 
    
      take u, v, w;
    
      thus for a, b, c st (((a
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 by 
    A2;
    
      let y be
    Element of V; 
    
      ex a, b, c st y
    = (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) by 
    A5;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:17
    
    
    
    
    
    Th17: x1 
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4 & (f 
    . x1) 
    = 1 & (for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 )) & (g 
    . x2) 
    = 1 & (for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 )) & (h 
    . x3) 
    = 1 & (for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 )) & (f1 
    . x4) 
    = 1 & (for z st z 
    in A holds (z 
    <> x4 implies (f1 
    . z) 
    =  
    0 )) implies for a,b,c,d be 
    Real st (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    = ( 
    RealFuncZero A) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0  
    
    proof
    
      set RM = (
    RealFuncExtMult A), RA = ( 
    RealFuncAdd A); 
    
      assume that
    
      
    
    A1: x1 
    <> x2 and 
    
      
    
    A2: x1 
    <> x3 and 
    
      
    
    A3: x1 
    <> x4 and 
    
      
    
    A4: x2 
    <> x3 and 
    
      
    
    A5: x2 
    <> x4 and 
    
      
    
    A6: x3 
    <> x4 and 
    
      
    
    A7: (f 
    . x1) 
    = 1 and 
    
      
    
    A8: for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) and 
    
      
    
    A9: (g 
    . x2) 
    = 1 and 
    
      
    
    A10: for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) and 
    
      
    
    A11: (h 
    . x3) 
    = 1 and 
    
      
    
    A12: for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ) and 
    
      
    
    A13: (f1 
    . x4) 
    = 1 and 
    
      
    
    A14: for z st z 
    in A holds (z 
    <> x4 implies (f1 
    . z) 
    =  
    0 ); 
    
      
    
      
    
    A15: (f 
    . x2) 
    =  
    0 & (h 
    . x2) 
    =  
    0 by 
    A1,
    A4,
    A8,
    A12;
    
      
    
      
    
    A16: (g 
    . x1) 
    =  
    0 & (h 
    . x1) 
    =  
    0 by 
    A1,
    A2,
    A10,
    A12;
    
      
    
      
    
    A17: (f1 
    . x1) 
    =  
    0 by 
    A3,
    A14;
    
      
    
      
    
    A18: (f1 
    . x2) 
    =  
    0 by 
    A5,
    A14;
    
      let a,b,c,d be
    Real;
    
      assume
    
      
    
    A19: (RA 
    . ((RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h]))),(RM
    .  
    [d, f1])))
    = ( 
    RealFuncZero A); 
    
      reconsider a, b, c, d as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      
    
      
    
    A20: 
    0  
    = ((RA 
    . ((RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h]))),(RM
    .  
    [d, f1])))
    . x2) by 
    FUNCOP_1: 7,
    A19
    
      .= (((RA
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h])))
    . x2) 
    + ((RM 
    .  
    [d, f1])
    . x2)) by 
    FUNCSDOM: 1
    
      .= ((((RA
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g])))
    . x2) 
    + ((RM 
    .  
    [c, h])
    . x2)) 
    + ((RM 
    .  
    [d, f1])
    . x2)) by 
    FUNCSDOM: 1
    
      .= (((((RM
    .  
    [a, f])
    . x2) 
    + ((RM 
    .  
    [b, g])
    . x2)) 
    + ((RM 
    .  
    [c, h])
    . x2)) 
    + ((RM 
    .  
    [d, f1])
    . x2)) by 
    FUNCSDOM: 1
    
      .= (((((RM
    .  
    [a, f])
    . x2) 
    + ((RM 
    .  
    [b, g])
    . x2)) 
    + ((RM 
    .  
    [c, h])
    . x2)) 
    + (d 
    * (f1 
    . x2))) by 
    FUNCSDOM: 4
    
      .= (((((RM
    .  
    [a, f])
    . x2) 
    + ((RM 
    .  
    [b, g])
    . x2)) 
    + (c 
    * (h 
    . x2))) 
    + (d 
    * (f1 
    . x2))) by 
    FUNCSDOM: 4
    
      .= (((((RM
    .  
    [a, f])
    . x2) 
    + (b 
    * (g 
    . x2))) 
    + (c 
    * (h 
    . x2))) 
    + (d 
    * (f1 
    . x2))) by 
    FUNCSDOM: 4
    
      .= ((((a
    *  
    0 ) 
    + (b 
    * 1)) 
    + (c 
    *  
    0 )) 
    + (d 
    *  
    0 )) by 
    A9,
    A15,
    A18,
    FUNCSDOM: 4
    
      .= b;
    
      
    
      
    
    A21: (f 
    . x4) 
    =  
    0 & (g 
    . x4) 
    =  
    0 by 
    A3,
    A5,
    A8,
    A10;
    
      
    
      
    
    A22: (h 
    . x4) 
    =  
    0 by 
    A6,
    A12;
    
      
    
      
    
    A23: (f 
    . x3) 
    =  
    0 & (g 
    . x3) 
    =  
    0 by 
    A2,
    A4,
    A8,
    A10;
    
      
    
      
    
    A24: (f1 
    . x3) 
    =  
    0 by 
    A6,
    A14;
    
      
    
      
    
    A25: 
    0  
    = ((RA 
    . ((RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h]))),(RM
    .  
    [d, f1])))
    . x4) by 
    A19,
    FUNCOP_1: 7
    
      .= (((RA
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h])))
    . x4) 
    + ((RM 
    .  
    [d, f1])
    . x4)) by 
    FUNCSDOM: 1
    
      .= ((((RA
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g])))
    . x4) 
    + ((RM 
    .  
    [c, h])
    . x4)) 
    + ((RM 
    .  
    [d, f1])
    . x4)) by 
    FUNCSDOM: 1
    
      .= (((((RM
    .  
    [a, f])
    . x4) 
    + ((RM 
    .  
    [b, g])
    . x4)) 
    + ((RM 
    .  
    [c, h])
    . x4)) 
    + ((RM 
    .  
    [d, f1])
    . x4)) by 
    FUNCSDOM: 1
    
      .= (((((RM
    .  
    [a, f])
    . x4) 
    + ((RM 
    .  
    [b, g])
    . x4)) 
    + ((RM 
    .  
    [c, h])
    . x4)) 
    + (d 
    * (f1 
    . x4))) by 
    FUNCSDOM: 4
    
      .= (((((RM
    .  
    [a, f])
    . x4) 
    + ((RM 
    .  
    [b, g])
    . x4)) 
    + (c 
    * (h 
    . x4))) 
    + (d 
    * (f1 
    . x4))) by 
    FUNCSDOM: 4
    
      .= (((((RM
    .  
    [a, f])
    . x4) 
    + (b 
    * (g 
    . x4))) 
    + (c 
    * (h 
    . x4))) 
    + (d 
    * (f1 
    . x4))) by 
    FUNCSDOM: 4
    
      .= ((((a
    *  
    0 ) 
    + (b 
    *  
    0 )) 
    + (c 
    *  
    0 )) 
    + (d 
    * 1)) by 
    A13,
    A21,
    A22,
    FUNCSDOM: 4
    
      .= d;
    
      
    
      
    
    A26: 
    0  
    = ((RA 
    . ((RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h]))),(RM
    .  
    [d, f1])))
    . x3) by 
    A19,
    FUNCOP_1: 7
    
      .= (((RA
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h])))
    . x3) 
    + ((RM 
    .  
    [d, f1])
    . x3)) by 
    FUNCSDOM: 1
    
      .= ((((RA
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g])))
    . x3) 
    + ((RM 
    .  
    [c, h])
    . x3)) 
    + ((RM 
    .  
    [d, f1])
    . x3)) by 
    FUNCSDOM: 1
    
      .= (((((RM
    .  
    [a, f])
    . x3) 
    + ((RM 
    .  
    [b, g])
    . x3)) 
    + ((RM 
    .  
    [c, h])
    . x3)) 
    + ((RM 
    .  
    [d, f1])
    . x3)) by 
    FUNCSDOM: 1
    
      .= (((((RM
    .  
    [a, f])
    . x3) 
    + ((RM 
    .  
    [b, g])
    . x3)) 
    + ((RM 
    .  
    [c, h])
    . x3)) 
    + (d 
    * (f1 
    . x3))) by 
    FUNCSDOM: 4
    
      .= (((((RM
    .  
    [a, f])
    . x3) 
    + ((RM 
    .  
    [b, g])
    . x3)) 
    + (c 
    * (h 
    . x3))) 
    + (d 
    * (f1 
    . x3))) by 
    FUNCSDOM: 4
    
      .= (((((RM
    .  
    [a, f])
    . x3) 
    + (b 
    * (g 
    . x3))) 
    + (c 
    * (h 
    . x3))) 
    + (d 
    * (f1 
    . x3))) by 
    FUNCSDOM: 4
    
      .= ((((a
    *  
    0 ) 
    + (b 
    *  
    0 )) 
    + (c 
    * 1)) 
    + (d 
    *  
    0 )) by 
    A11,
    A23,
    A24,
    FUNCSDOM: 4
    
      .= c;
    
      
    0  
    = ((RA 
    . ((RA 
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h]))),(RM
    .  
    [d, f1])))
    . x1) by 
    A19,
    FUNCOP_1: 7
    
      .= (((RA
    . ((RA 
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g]))),(RM
    .  
    [c, h])))
    . x1) 
    + ((RM 
    .  
    [d, f1])
    . x1)) by 
    FUNCSDOM: 1
    
      .= ((((RA
    . ((RM 
    .  
    [a, f]),(RM
    .  
    [b, g])))
    . x1) 
    + ((RM 
    .  
    [c, h])
    . x1)) 
    + ((RM 
    .  
    [d, f1])
    . x1)) by 
    FUNCSDOM: 1
    
      .= (((((RM
    .  
    [a, f])
    . x1) 
    + ((RM 
    .  
    [b, g])
    . x1)) 
    + ((RM 
    .  
    [c, h])
    . x1)) 
    + ((RM 
    .  
    [d, f1])
    . x1)) by 
    FUNCSDOM: 1
    
      .= (((((RM
    .  
    [a, f])
    . x1) 
    + ((RM 
    .  
    [b, g])
    . x1)) 
    + ((RM 
    .  
    [c, h])
    . x1)) 
    + (d 
    * (f1 
    . x1))) by 
    FUNCSDOM: 4
    
      .= (((((RM
    .  
    [a, f])
    . x1) 
    + ((RM 
    .  
    [b, g])
    . x1)) 
    + (c 
    * (h 
    . x1))) 
    + (d 
    * (f1 
    . x1))) by 
    FUNCSDOM: 4
    
      .= (((((RM
    .  
    [a, f])
    . x1) 
    + (b 
    * (g 
    . x1))) 
    + (c 
    * (h 
    . x1))) 
    + (d 
    * (f1 
    . x1))) by 
    FUNCSDOM: 4
    
      .= ((((a
    * 1) 
    + (b 
    *  
    0 )) 
    + (c 
    *  
    0 )) 
    + (d 
    *  
    0 )) by 
    A7,
    A16,
    A17,
    FUNCSDOM: 4
    
      .= a;
    
      hence thesis by
    A20,
    A26,
    A25;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:18
    
    x1
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4 implies ex f, g, h, f1 st for a,b,c,d be 
    Real st (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    = ( 
    RealFuncZero A) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0  
    
    proof
    
      assume
    
      
    
    A1: x1 
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4; 
    
      consider f such that
    
      
    
    A2: (f 
    . x1) 
    = 1 & for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider f1 such that
    
      
    
    A3: (f1 
    . x4) 
    = 1 & for z st z 
    in A holds (z 
    <> x4 implies (f1 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider h such that
    
      
    
    A4: (h 
    . x3) 
    = 1 & for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider g such that
    
      
    
    A5: (g 
    . x2) 
    = 1 & for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) by 
    Th10;
    
      take f, g, h, f1;
    
      let a,b,c,d be
    Real;
    
      assume ((
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    = ( 
    RealFuncZero A); 
    
      hence thesis by
    A1,
    A2,
    A5,
    A4,
    A3,
    Th17;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:19
    
    
    
    
    
    Th19: A 
    =  
    {x1, x2, x3, x4} & x1
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4 & (f 
    . x1) 
    = 1 & (for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 )) & (g 
    . x2) 
    = 1 & (for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 )) & (h 
    . x3) 
    = 1 & (for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 )) & (f1 
    . x4) 
    = 1 & (for z st z 
    in A holds (z 
    <> x4 implies (f1 
    . z) 
    =  
    0 )) implies for h9 be 
    Element of ( 
    Funcs (A, 
    REAL )) holds ex a,b,c,d be 
    Real st h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    
    proof
    
      assume that
    
      
    
    A1: A 
    =  
    {x1, x2, x3, x4} and
    
      
    
    A2: x1 
    <> x2 and 
    
      
    
    A3: x1 
    <> x3 and 
    
      
    
    A4: x1 
    <> x4 and 
    
      
    
    A5: x2 
    <> x3 and 
    
      
    
    A6: x2 
    <> x4 and 
    
      
    
    A7: x3 
    <> x4 and 
    
      
    
    A8: (f 
    . x1) 
    = 1 and 
    
      
    
    A9: for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) and 
    
      
    
    A10: (g 
    . x2) 
    = 1 and 
    
      
    
    A11: for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) and 
    
      
    
    A12: (h 
    . x3) 
    = 1 and 
    
      
    
    A13: for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ) and 
    
      
    
    A14: (f1 
    . x4) 
    = 1 and 
    
      
    
    A15: for z st z 
    in A holds (z 
    <> x4 implies (f1 
    . z) 
    =  
    0 ); 
    
      
    
      
    
    A16: (f 
    . x4) 
    =  
    0 & (g 
    . x4) 
    =  
    0 by 
    A4,
    A6,
    A9,
    A11;
    
      
    
      
    
    A17: (f1 
    . x3) 
    =  
    0 by 
    A7,
    A15;
    
      
    
      
    
    A18: (f1 
    . x2) 
    =  
    0 by 
    A6,
    A15;
    
      
    
      
    
    A19: (f 
    . x2) 
    =  
    0 & (h 
    . x2) 
    =  
    0 by 
    A2,
    A5,
    A9,
    A13;
    
      
    
      
    
    A20: (f1 
    . x1) 
    =  
    0 by 
    A4,
    A15;
    
      
    
      
    
    A21: (g 
    . x1) 
    =  
    0 & (h 
    . x1) 
    =  
    0 by 
    A2,
    A3,
    A11,
    A13;
    
      
    
      
    
    A22: (h 
    . x4) 
    =  
    0 by 
    A7,
    A13;
    
      let h9 be
    Element of ( 
    Funcs (A, 
    REAL )); 
    
      take a = (h9
    . x1), b = (h9 
    . x2), c = (h9 
    . x3), d = (h9 
    . x4); 
    
      
    
      
    
    A23: (f 
    . x3) 
    =  
    0 & (g 
    . x3) 
    =  
    0 by 
    A3,
    A5,
    A9,
    A11;
    
      now
    
        let x be
    Element of A; 
    
        
    
        
    
    A24: x 
    = x1 or x 
    = x2 or x 
    = x3 or x 
    = x4 by 
    A1,
    ENUMSET1:def 2;
    
        
    
        
    
    A25: ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    . x2) 
    = (((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    . x2) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x2)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g])))
    . x2) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x2)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x2)) by 
    FUNCSDOM: 1
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x2) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x2)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x2)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x2)) by 
    FUNCSDOM: 1
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x2) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x2)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x2)) 
    + (d 
    * (f1 
    . x2))) by 
    FUNCSDOM: 4
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x2) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x2)) 
    + (c 
    * (h 
    . x2))) 
    + (d 
    * (f1 
    . x2))) by 
    FUNCSDOM: 4
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x2) 
    + (b 
    * (g 
    . x2))) 
    + (c 
    * (h 
    . x2))) 
    + (d 
    * (f1 
    . x2))) by 
    FUNCSDOM: 4
    
        .= ((((a
    *  
    0 ) 
    + (b 
    * 1)) 
    + (c 
    *  
    0 )) 
    + (d 
    *  
    0 )) by 
    A10,
    A19,
    A18,
    FUNCSDOM: 4
    
        .= (h9
    . x2); 
    
        
    
        
    
    A26: ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    . x4) 
    = (((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    . x4) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x4)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g])))
    . x4) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x4)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x4)) by 
    FUNCSDOM: 1
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x4) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x4)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x4)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x4)) by 
    FUNCSDOM: 1
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x4) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x4)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x4)) 
    + (d 
    * (f1 
    . x4))) by 
    FUNCSDOM: 4
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x4) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x4)) 
    + (c 
    * (h 
    . x4))) 
    + (d 
    * (f1 
    . x4))) by 
    FUNCSDOM: 4
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x4) 
    + (b 
    * (g 
    . x4))) 
    + (c 
    * (h 
    . x4))) 
    + (d 
    * (f1 
    . x4))) by 
    FUNCSDOM: 4
    
        .= ((((a
    *  
    0 ) 
    + (b 
    *  
    0 )) 
    + (c 
    *  
    0 )) 
    + (d 
    * 1)) by 
    A14,
    A16,
    A22,
    FUNCSDOM: 4
    
        .= (h9
    . x4); 
    
        
    
        
    
    A27: ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    . x3) 
    = (((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    . x3) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x3)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g])))
    . x3) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x3)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x3)) by 
    FUNCSDOM: 1
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x3) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x3)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x3)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x3)) by 
    FUNCSDOM: 1
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x3) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x3)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x3)) 
    + (d 
    * (f1 
    . x3))) by 
    FUNCSDOM: 4
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x3) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x3)) 
    + (c 
    * (h 
    . x3))) 
    + (d 
    * (f1 
    . x3))) by 
    FUNCSDOM: 4
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x3) 
    + (b 
    * (g 
    . x3))) 
    + (c 
    * (h 
    . x3))) 
    + (d 
    * (f1 
    . x3))) by 
    FUNCSDOM: 4
    
        .= ((((a
    *  
    0 ) 
    + (b 
    *  
    0 )) 
    + (c 
    * 1)) 
    + (d 
    *  
    0 )) by 
    A12,
    A23,
    A17,
    FUNCSDOM: 4
    
        .= (h9
    . x3); 
    
        (((
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    . x1) 
    = (((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h])))
    . x1) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x1)) by 
    FUNCSDOM: 1
    
        .= (((((
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g])))
    . x1) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x1)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x1)) by 
    FUNCSDOM: 1
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x1) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x1)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x1)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [d, f1])
    . x1)) by 
    FUNCSDOM: 1
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x1) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x1)) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [c, h])
    . x1)) 
    + (d 
    * (f1 
    . x1))) by 
    FUNCSDOM: 4
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x1) 
    + ((( 
    RealFuncExtMult A) 
    .  
    [b, g])
    . x1)) 
    + (c 
    * (h 
    . x1))) 
    + (d 
    * (f1 
    . x1))) by 
    FUNCSDOM: 4
    
        .= ((((((
    RealFuncExtMult A) 
    .  
    [a, f])
    . x1) 
    + (b 
    * (g 
    . x1))) 
    + (c 
    * (h 
    . x1))) 
    + (d 
    * (f1 
    . x1))) by 
    FUNCSDOM: 4
    
        .= ((((a
    * 1) 
    + (b 
    *  
    0 )) 
    + (c 
    *  
    0 )) 
    + (d 
    *  
    0 )) by 
    A8,
    A21,
    A20,
    FUNCSDOM: 4
    
        .= (h9
    . x1); 
    
        hence (h9
    . x) 
    = ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    . x) by 
    A24,
    A25,
    A27,
    A26;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:20
    
    A
    =  
    {x1, x2, x3, x4} & x1
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4 implies ex f, g, h, f1 st for h9 be 
    Element of ( 
    Funcs (A, 
    REAL )) holds ex a,b,c,d be 
    Real st h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    
    proof
    
      assume
    
      
    
    A1: A 
    =  
    {x1, x2, x3, x4} & x1
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4; 
    
      consider f such that
    
      
    
    A2: (f 
    . x1) 
    = 1 & for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider f1 such that
    
      
    
    A3: (f1 
    . x4) 
    = 1 & for z st z 
    in A holds (z 
    <> x4 implies (f1 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider h such that
    
      
    
    A4: (h 
    . x3) 
    = 1 & for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider g such that
    
      
    
    A5: (g 
    . x2) 
    = 1 & for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) by 
    Th10;
    
      take f, g, h, f1;
    
      let h9 be
    Element of ( 
    Funcs (A, 
    REAL )); 
    
      thus thesis by
    A1,
    A2,
    A5,
    A4,
    A3,
    Th19;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:21
    
    
    
    
    
    Th21: A 
    =  
    {x1, x2, x3, x4} & x1
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4 implies ex f, g, h, f1 st (for a,b,c,d be 
    Real st (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    = ( 
    RealFuncZero A) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0 ) & for h9 be 
    Element of ( 
    Funcs (A, 
    REAL )) holds ex a,b,c,d be 
    Real st h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    
    proof
    
      assume
    
      
    
    A1: A 
    =  
    {x1, x2, x3, x4} & x1
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4; 
    
      consider f such that
    
      
    
    A2: (f 
    . x1) 
    = 1 & for z st z 
    in A holds (z 
    <> x1 implies (f 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider f1 such that
    
      
    
    A3: (f1 
    . x4) 
    = 1 & for z st z 
    in A holds (z 
    <> x4 implies (f1 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider h such that
    
      
    
    A4: (h 
    . x3) 
    = 1 & for z st z 
    in A holds (z 
    <> x3 implies (h 
    . z) 
    =  
    0 ) by 
    Th10;
    
      consider g such that
    
      
    
    A5: (g 
    . x2) 
    = 1 & for z st z 
    in A holds (z 
    <> x2 implies (g 
    . z) 
    =  
    0 ) by 
    Th10;
    
      take f, g, h, f1;
    
      thus thesis by
    A1,
    A2,
    A5,
    A4,
    A3,
    Th17,
    Th19;
    
    end;
    
    
    
    
    
    Lm31: ex A, x1, x2, x3, x4 st A 
    =  
    {x1, x2, x3, x4} & x1
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4 
    
    proof
    
      reconsider A =
    {
    0 , 1, 2, 3} as non 
    empty  
    set;
    
      take A;
    
      reconsider x1 =
    0 , x2 = 1, x3 = 2, x4 = 3 as 
    Element of A by 
    ENUMSET1:def 2;
    
      take x1, x2, x3, x4;
    
      thus thesis;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:22
    
    
    
    
    
    Th22: ex V be non 
    trivial  
    RealLinearSpace st ex u,v,w,u1 be 
    Element of V st (for a, b, c, d st ((((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0 ) & for y be 
    Element of V holds ex a, b, c, d st y 
    = ((((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) 
    
    proof
    
      consider A, x1, x2, x3, x4 such that
    
      
    
    A1: A 
    =  
    {x1, x2, x3, x4} & x1
    <> x2 & x1 
    <> x3 & x1 
    <> x4 & x2 
    <> x3 & x2 
    <> x4 & x3 
    <> x4 by 
    Lm31;
    
      set V = (
    RealVectSpace A); 
    
      consider f, g, h, f1 such that
    
      
    
    A2: for a,b,c,d be 
    Real st (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1])))
    = ( 
    RealFuncZero A) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0 and 
    
      
    
    A3: for h9 be 
    Element of ( 
    Funcs (A, 
    REAL )) holds ex a,b,c,d be 
    Real st h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1]))) by
    A1,
    Th21;
    
      reconsider u = f, v = g, w = h, u1 = f1 as
    Element of V; 
    
      for a, b, c, d st ((((a
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0 by 
    A2;
    
      then not u is
    zero by 
    Th2;
    
      then
    
      
    
    A4: u 
    <> ( 
    0. V); 
    
      
    
      
    
    A5: for y be 
    Element of V holds ex a, b, c, d st y 
    = ((((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) 
    
      proof
    
        let y be
    Element of V; 
    
        reconsider h9 = y as
    Element of ( 
    Funcs (A, 
    REAL )); 
    
        consider a,b,c,d be
    Real such that 
    
        
    
    A6: h9 
    = (( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncAdd A) 
    . ((( 
    RealFuncExtMult A) 
    .  
    [a, f]),((
    RealFuncExtMult A) 
    .  
    [b, g]))),((
    RealFuncExtMult A) 
    .  
    [c, h]))),((
    RealFuncExtMult A) 
    .  
    [d, f1]))) by
    A3;
    
        h9
    = ((((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) by 
    A6;
    
        hence thesis;
    
      end;
    
      reconsider V as non
    trivial  
    RealLinearSpace by 
    A4,
    STRUCT_0:def 18;
    
      take V;
    
      reconsider u, v, w, u1 as
    Element of V; 
    
      take u, v, w, u1;
    
      thus for a, b, c, d st ((((a
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0 by 
    A2;
    
      let y be
    Element of V; 
    
      ex a, b, c, d st y
    = ((((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) by 
    A5;
    
      hence thesis;
    
    end;
    
    definition
    
      let IT be
    RealLinearSpace;
    
      :: 
    
    ANPROJ_2:def6
    
      attr IT is
    
    up-3-dimensional means 
    
      :
    
    Def6: ex u,v,w1 be 
    Element of IT st for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w1)) 
    = ( 
    0. IT) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ; 
    
    end
    
    registration
    
      cluster 
    up-3-dimensional for 
    RealLinearSpace;
    
      existence by
    Th16,
    Def6;
    
    end
    
    registration
    
      cluster 
    up-3-dimensional -> non 
    trivial for 
    RealLinearSpace;
    
      coherence
    
      proof
    
        let V be
    RealLinearSpace;
    
        given u,v,w1 be
    Element of V such that 
    
        
    
    A1: for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ; 
    
        now
    
          assume w1
    = ( 
    0. V); 
    
          then
    
          
    
    A2: ( 
    0. V) 
    = (1 
    * w1) by 
    RLVECT_1: 10;
    
          (
    0. V) 
    = ( 
    0  
    * u) & ( 
    0. V) 
    = ( 
    0  
    * v) by 
    RLVECT_1: 10;
    
          
    
          then (
    0. V) 
    = (( 
    0  
    * u) 
    + ( 
    0  
    * v)) by 
    RLVECT_1: 4
    
          .= (((
    0  
    * u) 
    + ( 
    0  
    * v)) 
    + (1 
    * w1)) by 
    A2,
    RLVECT_1: 4;
    
          hence contradiction by
    A1;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let CS be non
    empty  
    CollStr;
    
      :: original:
    reflexive
    
      redefine
    
      :: 
    
    ANPROJ_2:def7
    
      attr CS is
    
    reflexive means 
    
      :
    
    Def7: for p,q,r be 
    Element of CS holds (p,q,p) 
    are_collinear & (p,p,q) 
    are_collinear & (p,q,q) 
    are_collinear ; 
    
      compatibility
    
      proof
    
        thus CS is
    reflexive implies for p,q,r be 
    Element of CS holds (p,q,p) 
    are_collinear & (p,p,q) 
    are_collinear & (p,q,q) 
    are_collinear ; 
    
        assume
    
        
    
    A1: for p,q,r be 
    Element of CS holds (p,q,p) 
    are_collinear & (p,p,q) 
    are_collinear & (p,q,q) 
    are_collinear ; 
    
        let p,q,r be
    Element of CS such that 
    
        
    
    A2: p 
    = q or p 
    = r or q 
    = r; 
    
        per cases by
    A2;
    
          suppose p
    = q; 
    
          then (p,q,r)
    are_collinear by 
    A1;
    
          hence thesis;
    
        end;
    
          suppose p
    = r; 
    
          then (p,q,r)
    are_collinear by 
    A1;
    
          hence thesis;
    
        end;
    
          suppose q
    = r; 
    
          then (p,q,r)
    are_collinear by 
    A1;
    
          hence thesis;
    
        end;
    
      end;
    
      :: original:
    transitive
    
      redefine
    
      :: 
    
    ANPROJ_2:def8
    
      attr CS is
    
    transitive means 
    
      :
    
    Def8: for p,q,r,r1,r2 be 
    Element of CS st p 
    <> q & (p,q,r) 
    are_collinear & (p,q,r1) 
    are_collinear & (p,q,r2) 
    are_collinear holds (r,r1,r2) 
    are_collinear ; 
    
      compatibility
    
      proof
    
        thus CS is
    transitive implies for p,q,r,r1,r2 be 
    Element of CS st p 
    <> q & (p,q,r) 
    are_collinear & (p,q,r1) 
    are_collinear & (p,q,r2) 
    are_collinear holds (r,r1,r2) 
    are_collinear ; 
    
        assume
    
        
    
    A3: for p,q,r,r1,r2 be 
    Element of CS st p 
    <> q & (p,q,r) 
    are_collinear & (p,q,r1) 
    are_collinear & (p,q,r2) 
    are_collinear holds (r,r1,r2) 
    are_collinear ; 
    
        let p,q,r,r1,r2 be
    Element of CS such that 
    
        
    
    A4: p 
    <> q and 
    
        
    
    A5: 
    [p, q, r]
    in the 
    Collinearity of CS & 
    [p, q, r1]
    in the 
    Collinearity of CS and 
    
        
    
    A6: 
    [p, q, r2]
    in the 
    Collinearity of CS; 
    
        
    
        
    
    A7: (p,q,r2) 
    are_collinear by 
    A6;
    
        (p,q,r)
    are_collinear & (p,q,r1) 
    are_collinear by 
    A5;
    
        then (r,r1,r2)
    are_collinear by 
    A3,
    A4,
    A7;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let IT be non
    empty  
    CollStr;
    
      :: 
    
    ANPROJ_2:def9
    
      attr IT is
    
    Vebleian means 
    
      :
    
    Def9: for p,p1,p2,r,r1 be 
    Element of IT st (p,p1,r) 
    are_collinear & (p1,p2,r1) 
    are_collinear holds ex r2 be 
    Element of IT st (p,p2,r2) 
    are_collinear & (r,r1,r2) 
    are_collinear ; 
    
      :: 
    
    ANPROJ_2:def10
    
      attr IT is
    
    at_least_3rank means 
    
      :
    
    Def10: for p,q be 
    Element of IT holds ex r be 
    Element of IT st p 
    <> r & q 
    <> r & (p,q,r) 
    are_collinear ; 
    
    end
    
    reserve V for non
    trivial  
    RealLinearSpace;
    
    reserve u,v,w,y,u1,v1,w1,u2,w2 for
    Element of V; 
    
    reserve p,p1,p2,p3,q,q1,q2,q3,r,r1,r2,r3 for
    Element of ( 
    ProjectiveSpace V); 
    
    theorem :: 
    
    ANPROJ_2:23
    
    
    
    
    
    Th23: (p,q,r) 
    are_collinear iff ex u, v, w st p 
    = ( 
    Dir u) & q 
    = ( 
    Dir v) & r 
    = ( 
    Dir w) & not u is 
    zero & not v is 
    zero & not w is 
    zero & (u,v,w) 
    are_LinDep by 
    ANPROJ_1: 24,
    ANPROJ_1: 25;
    
    
    
    
    
    Lm32: ( 
    ProjectiveSpace V) is 
    reflexive
    
    proof
    
      let p, q;
    
      consider u such that
    
      
    
    A1: not u is 
    zero & p 
    = ( 
    Dir u) by 
    ANPROJ_1: 26;
    
      consider v such that
    
      
    
    A2: not v is 
    zero & q 
    = ( 
    Dir v) by 
    ANPROJ_1: 26;
    
      
    
      
    
    A3: (u,v,v) 
    are_LinDep by 
    ANPROJ_1: 11;
    
      (u,v,u)
    are_LinDep & (u,u,v) 
    are_LinDep by 
    ANPROJ_1: 11;
    
      hence thesis by
    A1,
    A2,
    A3,
    Th23;
    
    end;
    
    
    
    
    
    Lm33: ( 
    ProjectiveSpace V) is 
    transitive
    
    proof
    
      let p, q, r, r1, r2;
    
      assume that
    
      
    
    A1: p 
    <> q and 
    
      
    
    A2: (p,q,r) 
    are_collinear and 
    
      
    
    A3: (p,q,r1) 
    are_collinear and 
    
      
    
    A4: (p,q,r2) 
    are_collinear ; 
    
      consider u1, v1, w1 such that
    
      
    
    A5: p 
    = ( 
    Dir u1) and 
    
      
    
    A6: q 
    = ( 
    Dir v1) and 
    
      
    
    A7: r 
    = ( 
    Dir w1) and 
    
      
    
    A8: not u1 is 
    zero and 
    
      
    
    A9: not v1 is 
    zero and 
    
      
    
    A10: not w1 is 
    zero and 
    
      
    
    A11: (u1,v1,w1) 
    are_LinDep by 
    A2,
    Th23;
    
      consider v such that
    
      
    
    A12: not v is 
    zero and 
    
      
    
    A13: q 
    = ( 
    Dir v) by 
    ANPROJ_1: 26;
    
      
    
      
    
    A14: 
    are_Prop (v1,v) by 
    A12,
    A13,
    A6,
    A9,
    ANPROJ_1: 22;
    
      consider u3,v3,w3 be
    Element of V such that 
    
      
    
    A15: p 
    = ( 
    Dir u3) and 
    
      
    
    A16: q 
    = ( 
    Dir v3) and 
    
      
    
    A17: r2 
    = ( 
    Dir w3) and 
    
      
    
    A18: not u3 is 
    zero and 
    
      
    
    A19: not v3 is 
    zero and 
    
      
    
    A20: not w3 is 
    zero and 
    
      
    
    A21: (u3,v3,w3) 
    are_LinDep by 
    A4,
    Th23;
    
      
    
      
    
    A22: 
    are_Prop (v3,v) by 
    A12,
    A13,
    A16,
    A19,
    ANPROJ_1: 22;
    
      consider u2,v2,w2 be
    Element of V such that 
    
      
    
    A23: p 
    = ( 
    Dir u2) and 
    
      
    
    A24: q 
    = ( 
    Dir v2) and 
    
      
    
    A25: r1 
    = ( 
    Dir w2) and 
    
      
    
    A26: not u2 is 
    zero and 
    
      
    
    A27: not v2 is 
    zero and 
    
      
    
    A28: not w2 is 
    zero and 
    
      
    
    A29: (u2,v2,w2) 
    are_LinDep by 
    A3,
    Th23;
    
      
    
      
    
    A30: 
    are_Prop (v2,v) by 
    A12,
    A13,
    A24,
    A27,
    ANPROJ_1: 22;
    
      consider u such that
    
      
    
    A31: not u is 
    zero and 
    
      
    
    A32: p 
    = ( 
    Dir u) by 
    ANPROJ_1: 26;
    
      
    are_Prop (u1,u) by 
    A31,
    A32,
    A5,
    A8,
    ANPROJ_1: 22;
    
      then
    
      
    
    A33: (u,v,w1) 
    are_LinDep by 
    A11,
    A14,
    ANPROJ_1: 4;
    
      
    are_Prop (u3,u) by 
    A31,
    A32,
    A15,
    A18,
    ANPROJ_1: 22;
    
      then
    
      
    
    A34: (u,v,w3) 
    are_LinDep by 
    A21,
    A22,
    ANPROJ_1: 4;
    
      
    are_Prop (u2,u) by 
    A31,
    A32,
    A23,
    A26,
    ANPROJ_1: 22;
    
      then
    
      
    
    A35: (u,v,w2) 
    are_LinDep by 
    A29,
    A30,
    ANPROJ_1: 4;
    
       not
    are_Prop (u,v) by 
    A1,
    A31,
    A32,
    A12,
    A13,
    ANPROJ_1: 22;
    
      then (w1,w2,w3)
    are_LinDep by 
    A31,
    A12,
    A33,
    A35,
    A34,
    ANPROJ_1: 14;
    
      hence thesis by
    A7,
    A10,
    A25,
    A28,
    A17,
    A20,
    Th23;
    
    end;
    
    registration
    
      let V;
    
      cluster ( 
    ProjectiveSpace V) -> 
    reflexive
    transitive;
    
      coherence by
    Lm32,
    Lm33;
    
    end
    
    theorem :: 
    
    ANPROJ_2:24
    
    
    
    
    
    Th24: (p,q,r) 
    are_collinear implies (p,r,q) 
    are_collinear & (q,p,r) 
    are_collinear & (r,q,p) 
    are_collinear & (r,p,q) 
    are_collinear & (q,r,p) 
    are_collinear  
    
    proof
    
      assume (p,q,r)
    are_collinear ; 
    
      then
    
      consider u, v, w such that
    
      
    
    A1: p 
    = ( 
    Dir u) & q 
    = ( 
    Dir v) & r 
    = ( 
    Dir w) & not u is 
    zero & not v is 
    zero & not w is 
    zero and 
    
      
    
    A2: (u,v,w) 
    are_LinDep by 
    Th23;
    
      
    
      
    
    A3: (w,v,u) 
    are_LinDep & (w,u,v) 
    are_LinDep by 
    A2,
    ANPROJ_1: 5;
    
      
    
      
    
    A4: (v,w,u) 
    are_LinDep by 
    A2,
    ANPROJ_1: 5;
    
      (u,w,v)
    are_LinDep & (v,u,w) 
    are_LinDep by 
    A2,
    ANPROJ_1: 5;
    
      hence thesis by
    A1,
    A3,
    A4,
    Th23;
    
    end;
    
    
    
    
    
    Lm34: (p,p1,p2) 
    are_collinear & (p,p1,r) 
    are_collinear & (p1,p2,r1) 
    are_collinear implies ex r2 st (p,p2,r2) 
    are_collinear & (r,r1,r2) 
    are_collinear  
    
    proof
    
      assume that
    
      
    
    A1: (p,p1,p2) 
    are_collinear and 
    
      
    
    A2: (p,p1,r) 
    are_collinear and 
    
      
    
    A3: (p1,p2,r1) 
    are_collinear ; 
    
      
    
    A4: 
    
      now
    
        
    
    A5: 
    
        now
    
          assume
    
          
    
    A6: p1 
    <> p; 
    
          take r;
    
          
    
          
    
    A7: (r,r1,r) 
    are_collinear by 
    Def7;
    
          (p,p1,p)
    are_collinear by 
    Def7;
    
          then (p,p2,r)
    are_collinear by 
    A1,
    A2,
    A6,
    Def8;
    
          hence thesis by
    A7;
    
        end;
    
        
    
    A8: 
    
        now
    
          assume
    
          
    
    A9: p1 
    <> p2; 
    
          take r1;
    
          
    
          
    
    A10: (r,r1,r1) 
    are_collinear by 
    Def7;
    
          (p1,p2,p)
    are_collinear & (p1,p2,p2) 
    are_collinear by 
    A1,
    Def7,
    Th24;
    
          then (p,p2,r1)
    are_collinear by 
    A3,
    A9,
    Def8;
    
          hence thesis by
    A10;
    
        end;
    
        assume p
    <> p2; 
    
        hence thesis by
    A5,
    A8;
    
      end;
    
      now
    
        assume p
    = p2; 
    
        then
    
        
    
    A11: (p,p2,r) 
    are_collinear by 
    Def7;
    
        take r;
    
        (r,r1,r)
    are_collinear by 
    Def7;
    
        hence thesis by
    A11;
    
      end;
    
      hence thesis by
    A4;
    
    end;
    
    
    
    
    
    Lm35: not (p,p1,p2) 
    are_collinear & (p,p1,r) 
    are_collinear & (p1,p2,r1) 
    are_collinear implies ex r2 st (p,p2,r2) 
    are_collinear & (r,r1,r2) 
    are_collinear  
    
    proof
    
      assume that
    
      
    
    A1: not (p,p1,p2) 
    are_collinear and 
    
      
    
    A2: (p,p1,r) 
    are_collinear and 
    
      
    
    A3: (p1,p2,r1) 
    are_collinear ; 
    
      consider u,v,t be
    Element of V such that 
    
      
    
    A4: p 
    = ( 
    Dir u) and 
    
      
    
    A5: p1 
    = ( 
    Dir v) and 
    
      
    
    A6: r 
    = ( 
    Dir t) and 
    
      
    
    A7: not u is 
    zero and 
    
      
    
    A8: not v is 
    zero and 
    
      
    
    A9: not t is 
    zero and 
    
      
    
    A10: (u,v,t) 
    are_LinDep by 
    A2,
    Th23;
    
      consider v1,w,s be
    Element of V such that 
    
      
    
    A11: p1 
    = ( 
    Dir v1) and 
    
      
    
    A12: p2 
    = ( 
    Dir w) and 
    
      
    
    A13: r1 
    = ( 
    Dir s) and 
    
      
    
    A14: not v1 is 
    zero and 
    
      
    
    A15: not w is 
    zero and 
    
      
    
    A16: not s is 
    zero and 
    
      
    
    A17: (v1,w,s) 
    are_LinDep by 
    A3,
    Th23;
    
      
    are_Prop (v1,v) by 
    A5,
    A8,
    A11,
    A14,
    ANPROJ_1: 22;
    
      then
    
      
    
    A18: (v,w,s) 
    are_LinDep by 
    A17,
    ANPROJ_1: 4;
    
       not (u,v,w)
    are_LinDep by 
    A1,
    A4,
    A5,
    A7,
    A8,
    A12,
    A15,
    Th23;
    
      then
    
      consider y such that
    
      
    
    A19: (u,w,y) 
    are_LinDep & (t,s,y) 
    are_LinDep and 
    
      
    
    A20: not y is 
    zero by 
    A10,
    A18,
    ANPROJ_1: 15;
    
      reconsider r2 = (
    Dir y) as 
    Element of ( 
    ProjectiveSpace V) by 
    A20,
    ANPROJ_1: 26;
    
      take r2;
    
      thus thesis by
    A4,
    A6,
    A7,
    A9,
    A12,
    A13,
    A15,
    A16,
    A19,
    A20,
    Th23;
    
    end;
    
    
    
    
    
    Lm36: ( 
    ProjectiveSpace V) is 
    Vebleian
    
    proof
    
      let p, p1, p2, r, r1;
    
      assume
    
      
    
    A1: (p,p1,r) 
    are_collinear & (p1,p2,r1) 
    are_collinear ; 
    
      then (p,p1,p2)
    are_collinear implies thesis by 
    Lm34;
    
      hence thesis by
    A1,
    Lm35;
    
    end;
    
    registration
    
      let V;
    
      cluster ( 
    ProjectiveSpace V) -> 
    Vebleian;
    
      coherence by
    Lm36;
    
    end
    
    
    
    
    
    Lm37: V is 
    up-3-dimensional implies ( 
    ProjectiveSpace V) is 
    proper
    
    proof
    
      given u, v, w such that
    
      
    
    A1: for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ; 
    
      
    
      
    
    A2: not (u,v,w) 
    are_LinDep by 
    A1;
    
      
    
      
    
    A3: not w is 
    zero by 
    A1,
    Th1;
    
      
    
      
    
    A4: not u is 
    zero & not v is 
    zero by 
    A1,
    Th1;
    
      then
    
      reconsider p = (
    Dir u), q = ( 
    Dir v), r = ( 
    Dir w) as 
    Element of ( 
    ProjectiveSpace V) by 
    A3,
    ANPROJ_1: 26;
    
      take p, q, r;
    
      assume (p,q,r)
    are_collinear ; 
    
      then
    [(
    Dir u), ( 
    Dir v), ( 
    Dir w)] 
    in the 
    Collinearity of ( 
    ProjectiveSpace V); 
    
      hence contradiction by
    A4,
    A3,
    A2,
    ANPROJ_1: 25;
    
    end;
    
    registration
    
      let V be
    up-3-dimensional  
    RealLinearSpace;
    
      cluster ( 
    ProjectiveSpace V) -> 
    proper;
    
      coherence by
    Lm37;
    
    end
    
    theorem :: 
    
    ANPROJ_2:25
    
    
    
    
    
    Th25: (ex u, v st for a, b st ((a 
    * u) 
    + (b 
    * v)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 ) implies ( 
    ProjectiveSpace V) is 
    at_least_3rank
    
    proof
    
      given u, v such that
    
      
    
    A1: for a, b st ((a 
    * u) 
    + (b 
    * v)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 ; 
    
      
    
      
    
    A2: not 
    are_Prop (u,v) by 
    A1,
    Lm1;
    
      let p, q;
    
      consider y such that
    
      
    
    A3: not y is 
    zero & p 
    = ( 
    Dir y) by 
    ANPROJ_1: 26;
    
      consider w such that
    
      
    
    A4: not w is 
    zero & q 
    = ( 
    Dir w) by 
    ANPROJ_1: 26;
    
       not u is
    zero & not v is 
    zero by 
    A1,
    Lm1;
    
      then
    
      consider z be
    Element of V such that 
    
      
    
    A5: not z is 
    zero and 
    
      
    
    A6: (y,w,z) 
    are_LinDep and 
    
      
    
    A7: not 
    are_Prop (y,z) and 
    
      
    
    A8: not 
    are_Prop (w,z) by 
    A2,
    ANPROJ_1: 16;
    
      reconsider r = (
    Dir z) as 
    Element of ( 
    ProjectiveSpace V) by 
    A5,
    ANPROJ_1: 26;
    
      take r;
    
      thus p
    <> r by 
    A3,
    A5,
    A7,
    ANPROJ_1: 22;
    
      thus q
    <> r by 
    A4,
    A5,
    A8,
    ANPROJ_1: 22;
    
      thus thesis by
    A3,
    A4,
    A5,
    A6,
    Th23;
    
    end;
    
    
    
    
    
    Lm38: V is 
    up-3-dimensional implies ( 
    ProjectiveSpace V) is 
    at_least_3rank
    
    proof
    
      given u, v, w1 such that
    
      
    
    A1: for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ; 
    
      now
    
        let a, b;
    
        assume ((a
    * u) 
    + (b 
    * v)) 
    = ( 
    0. V); 
    
        
    
        then (
    0. V) 
    = (((a 
    * u) 
    + (b 
    * v)) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
        .= (((a
    * u) 
    + (b 
    * v)) 
    + ( 
    0  
    * w1)) by 
    RLVECT_1: 10;
    
        hence a
    =  
    0 & b 
    =  
    0 by 
    A1;
    
      end;
    
      hence thesis by
    Th25;
    
    end;
    
    registration
    
      let V be
    up-3-dimensional  
    RealLinearSpace;
    
      cluster ( 
    ProjectiveSpace V) -> 
    at_least_3rank;
    
      coherence by
    Lm38;
    
    end
    
    registration
    
      cluster 
    transitive
    reflexive
    proper
    Vebleian
    at_least_3rank for non 
    empty  
    CollStr;
    
      existence
    
      proof
    
        set V0 = the
    up-3-dimensional  
    RealLinearSpace;
    
        take (
    ProjectiveSpace V0); 
    
        thus thesis;
    
      end;
    
    end
    
    definition
    
      mode
    
    CollProjectiveSpace is 
    reflexive
    transitive
    Vebleian
    at_least_3rank
    proper non 
    empty  
    CollStr;
    
    end
    
    definition
    
      let IT be non
    empty  
    CollStr;
    
      :: 
    
    ANPROJ_2:def11
    
      attr IT is
    
    Fanoian means for p1,r2,q,r1,q1,p,r be 
    Element of IT holds ((p1,r2,q) 
    are_collinear & (r1,q1,q) 
    are_collinear & (p1,r1,p) 
    are_collinear & (r2,q1,p) 
    are_collinear & (p1,q1,r) 
    are_collinear & (r2,r1,r) 
    are_collinear & (p,q,r) 
    are_collinear implies ((p1,r2,q1) 
    are_collinear or (p1,r2,r1) 
    are_collinear or (p1,r1,q1) 
    are_collinear or (r2,r1,q1) 
    are_collinear )); 
    
      :: 
    
    ANPROJ_2:def12
    
      attr IT is
    
    Desarguesian means for o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be 
    Element of IT st o 
    <> q1 & p1 
    <> q1 & o 
    <> q2 & p2 
    <> q2 & o 
    <> q3 & p3 
    <> q3 & not (o,p1,p2) 
    are_collinear & not (o,p1,p3) 
    are_collinear & not (o,p2,p3) 
    are_collinear & (p1,p2,r3) 
    are_collinear & (q1,q2,r3) 
    are_collinear & (p2,p3,r1) 
    are_collinear & (q2,q3,r1) 
    are_collinear & (p1,p3,r2) 
    are_collinear & (q1,q3,r2) 
    are_collinear & (o,p1,q1) 
    are_collinear & (o,p2,q2) 
    are_collinear & (o,p3,q3) 
    are_collinear holds (r1,r2,r3) 
    are_collinear ; 
    
      :: 
    
    ANPROJ_2:def13
    
      attr IT is
    
    Pappian means for o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be 
    Element of IT st o 
    <> p2 & o 
    <> p3 & p2 
    <> p3 & p1 
    <> p2 & p1 
    <> p3 & o 
    <> q2 & o 
    <> q3 & q2 
    <> q3 & q1 
    <> q2 & q1 
    <> q3 & not (o,p1,q1) 
    are_collinear & (o,p1,p2) 
    are_collinear & (o,p1,p3) 
    are_collinear & (o,q1,q2) 
    are_collinear & (o,q1,q3) 
    are_collinear & (p1,q2,r3) 
    are_collinear & (q1,p2,r3) 
    are_collinear & (p1,q3,r2) 
    are_collinear & (p3,q1,r2) 
    are_collinear & (p2,q3,r1) 
    are_collinear & (p3,q2,r1) 
    are_collinear holds (r1,r2,r3) 
    are_collinear ; 
    
    end
    
    definition
    
      let IT be
    CollProjectiveSpace;
    
      :: 
    
    ANPROJ_2:def14
    
      attr IT is
    
    2-dimensional means 
    
      :
    
    Def14: for p,p1,q,q1 be 
    Element of IT holds ex r be 
    Element of IT st (p,p1,r) 
    are_collinear & (q,q1,r) 
    are_collinear ; 
    
    end
    
    notation
    
      let IT be
    CollProjectiveSpace;
    
      antonym IT is 
    
    up-3-dimensional for IT is 
    2-dimensional;
    
    end
    
    definition
    
      let IT be
    CollProjectiveSpace;
    
      :: 
    
    ANPROJ_2:def15
    
      attr IT is
    
    at_most-3-dimensional means for p,p1,q,q1,r2 be 
    Element of IT holds ex r,r1 be 
    Element of IT st (p,q,r) 
    are_collinear & (p1,q1,r1) 
    are_collinear & (r2,r,r1) 
    are_collinear ; 
    
    end
    
    theorem :: 
    
    ANPROJ_2:26
    
    
    
    
    
    Th26: (p1,r2,q) 
    are_collinear & (r1,q1,q) 
    are_collinear & (p1,r1,p) 
    are_collinear & (r2,q1,p) 
    are_collinear & (p1,q1,r) 
    are_collinear & (r2,r1,r) 
    are_collinear & (p,q,r) 
    are_collinear implies ((p1,r2,q1) 
    are_collinear or (p1,r2,r1) 
    are_collinear or (p1,r1,q1) 
    are_collinear or (r2,r1,q1) 
    are_collinear ) 
    
    proof
    
      assume that
    
      
    
    A1: (p1,r2,q) 
    are_collinear and 
    
      
    
    A2: (r1,q1,q) 
    are_collinear and 
    
      
    
    A3: (p1,r1,p) 
    are_collinear and 
    
      
    
    A4: (r2,q1,p) 
    are_collinear and 
    
      
    
    A5: (p1,q1,r) 
    are_collinear and 
    
      
    
    A6: (r2,r1,r) 
    are_collinear and 
    
      
    
    A7: (p,q,r) 
    are_collinear ; 
    
      consider u1,w1,x be
    Element of V such that 
    
      
    
    A8: p1 
    = ( 
    Dir u1) and 
    
      
    
    A9: r1 
    = ( 
    Dir w1) and 
    
      
    
    A10: p 
    = ( 
    Dir x) and 
    
      
    
    A11: not u1 is 
    zero and 
    
      
    
    A12: not w1 is 
    zero and 
    
      
    
    A13: not x is 
    zero and 
    
      
    
    A14: (u1,w1,x) 
    are_LinDep by 
    A3,
    Th23;
    
      consider u,v,z be
    Element of V such that 
    
      
    
    A15: p1 
    = ( 
    Dir u) and 
    
      
    
    A16: r2 
    = ( 
    Dir v) and 
    
      
    
    A17: q 
    = ( 
    Dir z) and 
    
      
    
    A18: not u is 
    zero and 
    
      
    
    A19: not v is 
    zero and 
    
      
    
    A20: not z is 
    zero and 
    
      
    
    A21: (u,v,z) 
    are_LinDep by 
    A1,
    Th23;
    
      consider w,y,z1 be
    Element of V such that 
    
      
    
    A22: r1 
    = ( 
    Dir w) and 
    
      
    
    A23: q1 
    = ( 
    Dir y) and 
    
      
    
    A24: q 
    = ( 
    Dir z1) and 
    
      
    
    A25: not w is 
    zero and 
    
      
    
    A26: not y is 
    zero and 
    
      
    
    A27: not z1 is 
    zero and 
    
      
    
    A28: (w,y,z1) 
    are_LinDep by 
    A2,
    Th23;
    
      
    
      
    
    A29: 
    are_Prop (w1,w) by 
    A22,
    A25,
    A9,
    A12,
    ANPROJ_1: 22;
    
      
    are_Prop (z1,z) by 
    A17,
    A20,
    A24,
    A27,
    ANPROJ_1: 22;
    
      then
    
      
    
    A30: (w,y,z) 
    are_LinDep by 
    A28,
    ANPROJ_1: 4;
    
      consider x2,z2,t2 be
    Element of V such that 
    
      
    
    A31: p 
    = ( 
    Dir x2) and 
    
      
    
    A32: q 
    = ( 
    Dir z2) and 
    
      
    
    A33: r 
    = ( 
    Dir t2) and 
    
      
    
    A34: not x2 is 
    zero and 
    
      
    
    A35: not z2 is 
    zero and 
    
      
    
    A36: not t2 is 
    zero and 
    
      
    
    A37: (x2,z2,t2) 
    are_LinDep by 
    A7,
    Th23;
    
      
    
      
    
    A38: 
    are_Prop (x2,x) by 
    A10,
    A13,
    A31,
    A34,
    ANPROJ_1: 22;
    
      consider u2,y2,t be
    Element of V such that 
    
      
    
    A39: p1 
    = ( 
    Dir u2) and 
    
      
    
    A40: q1 
    = ( 
    Dir y2) and 
    
      
    
    A41: r 
    = ( 
    Dir t) and 
    
      
    
    A42: not u2 is 
    zero and 
    
      
    
    A43: not y2 is 
    zero and 
    
      
    
    A44: not t is 
    zero and 
    
      
    
    A45: (u2,y2,t) 
    are_LinDep by 
    A5,
    Th23;
    
      
    
      
    
    A46: 
    are_Prop (y2,y) by 
    A23,
    A26,
    A40,
    A43,
    ANPROJ_1: 22;
    
      
    
      
    
    A47: 
    are_Prop (t2,t) by 
    A41,
    A44,
    A33,
    A36,
    ANPROJ_1: 22;
    
      
    are_Prop (z2,z) by 
    A17,
    A20,
    A32,
    A35,
    ANPROJ_1: 22;
    
      then
    
      
    
    A48: (x,z,t) 
    are_LinDep by 
    A37,
    A38,
    A47,
    ANPROJ_1: 4;
    
      
    are_Prop (u2,u) by 
    A15,
    A18,
    A39,
    A42,
    ANPROJ_1: 22;
    
      then
    
      
    
    A49: (u,y,t) 
    are_LinDep by 
    A45,
    A46,
    ANPROJ_1: 4;
    
      consider v2,w2,t1 be
    Element of V such that 
    
      
    
    A50: r2 
    = ( 
    Dir v2) and 
    
      
    
    A51: r1 
    = ( 
    Dir w2) and 
    
      
    
    A52: r 
    = ( 
    Dir t1) and 
    
      
    
    A53: not v2 is 
    zero and 
    
      
    
    A54: not w2 is 
    zero and 
    
      
    
    A55: not t1 is 
    zero and 
    
      
    
    A56: (v2,w2,t1) 
    are_LinDep by 
    A6,
    Th23;
    
      
    
      
    
    A57: 
    are_Prop (t1,t) by 
    A41,
    A44,
    A52,
    A55,
    ANPROJ_1: 22;
    
      
    are_Prop (u1,u) by 
    A15,
    A18,
    A8,
    A11,
    ANPROJ_1: 22;
    
      then
    
      
    
    A58: (u,w,x) 
    are_LinDep by 
    A14,
    A29,
    ANPROJ_1: 4;
    
      consider v1,y1,x1 be
    Element of V such that 
    
      
    
    A59: r2 
    = ( 
    Dir v1) and 
    
      
    
    A60: q1 
    = ( 
    Dir y1) and 
    
      
    
    A61: p 
    = ( 
    Dir x1) and 
    
      
    
    A62: not v1 is 
    zero and 
    
      
    
    A63: not y1 is 
    zero and 
    
      
    
    A64: not x1 is 
    zero and 
    
      
    
    A65: (v1,y1,x1) 
    are_LinDep by 
    A4,
    Th23;
    
      
    
      
    
    A66: 
    are_Prop (x1,x) by 
    A10,
    A13,
    A61,
    A64,
    ANPROJ_1: 22;
    
      
    
      
    
    A67: 
    are_Prop (w2,w) by 
    A22,
    A25,
    A51,
    A54,
    ANPROJ_1: 22;
    
      
    are_Prop (v2,v) by 
    A16,
    A19,
    A50,
    A53,
    ANPROJ_1: 22;
    
      then
    
      
    
    A68: (v,w,t) 
    are_LinDep by 
    A56,
    A67,
    A57,
    ANPROJ_1: 4;
    
      
    
      
    
    A69: 
    are_Prop (y1,y) by 
    A23,
    A26,
    A60,
    A63,
    ANPROJ_1: 22;
    
      
    are_Prop (v1,v) by 
    A16,
    A19,
    A59,
    A62,
    ANPROJ_1: 22;
    
      then (v,y,x)
    are_LinDep by 
    A65,
    A69,
    A66,
    ANPROJ_1: 4;
    
      then (u,v,y)
    are_LinDep or (u,v,w) 
    are_LinDep or (u,w,y) 
    are_LinDep or (v,w,y) 
    are_LinDep by 
    A20,
    A21,
    A13,
    A44,
    A30,
    A58,
    A49,
    A68,
    A48,
    ANPROJ_1: 18;
    
      hence thesis by
    A15,
    A16,
    A18,
    A19,
    A22,
    A23,
    A25,
    A26,
    Th23;
    
    end;
    
    
    
    
    
    Lm39: for V be 
    up-3-dimensional  
    RealLinearSpace holds ( 
    ProjectiveSpace V) is 
    Fanoian by 
    Th26;
    
    
    
    
    
    Lm40: for V be 
    up-3-dimensional  
    RealLinearSpace holds ( 
    ProjectiveSpace V) is 
    Desarguesian
    
    proof
    
      let V be
    up-3-dimensional  
    RealLinearSpace;
    
      let o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be
    Element of ( 
    ProjectiveSpace V); 
    
      assume that
    
      
    
    A1: o 
    <> q1 and 
    
      
    
    A2: p1 
    <> q1 and 
    
      
    
    A3: o 
    <> q2 and 
    
      
    
    A4: p2 
    <> q2 and 
    
      
    
    A5: o 
    <> q3 and 
    
      
    
    A6: p3 
    <> q3 and 
    
      
    
    A7: not (o,p1,p2) 
    are_collinear and 
    
      
    
    A8: ( not (o,p1,p3) 
    are_collinear ) & not (o,p2,p3) 
    are_collinear and 
    
      
    
    A9: (p1,p2,r3) 
    are_collinear and 
    
      
    
    A10: (q1,q2,r3) 
    are_collinear and 
    
      
    
    A11: (p2,p3,r1) 
    are_collinear and 
    
      
    
    A12: (q2,q3,r1) 
    are_collinear and 
    
      
    
    A13: (p1,p3,r2) 
    are_collinear and 
    
      
    
    A14: (q1,q3,r2) 
    are_collinear and 
    
      
    
    A15: (o,p1,q1) 
    are_collinear and 
    
      
    
    A16: (o,p2,q2) 
    are_collinear and 
    
      
    
    A17: (o,p3,q3) 
    are_collinear ; 
    
      consider q19,q29,r399 be
    Element of V such that 
    
      
    
    A18: q1 
    = ( 
    Dir q19) and 
    
      
    
    A19: q2 
    = ( 
    Dir q29) and 
    
      
    
    A20: r3 
    = ( 
    Dir r399) and 
    
      
    
    A21: not q19 is 
    zero and 
    
      
    
    A22: not q29 is 
    zero and 
    
      
    
    A23: not r399 is 
    zero and 
    
      
    
    A24: (q19,q29,r399) 
    are_LinDep by 
    A10,
    Th23;
    
      consider q299,q39,r199 be
    Element of V such that 
    
      
    
    A25: q2 
    = ( 
    Dir q299) and 
    
      
    
    A26: q3 
    = ( 
    Dir q39) and 
    
      
    
    A27: r1 
    = ( 
    Dir r199) and 
    
      
    
    A28: not q299 is 
    zero and 
    
      
    
    A29: not q39 is 
    zero and 
    
      
    
    A30: not r199 is 
    zero and 
    
      
    
    A31: (q299,q39,r199) 
    are_LinDep by 
    A12,
    Th23;
    
      
    
      
    
    A32: 
    are_Prop (q299,q29) by 
    A19,
    A22,
    A25,
    A28,
    ANPROJ_1: 22;
    
      consider p299,p39,r19 be
    Element of V such that 
    
      
    
    A33: p2 
    = ( 
    Dir p299) and 
    
      
    
    A34: p3 
    = ( 
    Dir p39) and 
    
      
    
    A35: r1 
    = ( 
    Dir r19) and 
    
      
    
    A36: not p299 is 
    zero and 
    
      
    
    A37: not p39 is 
    zero and 
    
      
    
    A38: not r19 is 
    zero and 
    
      
    
    A39: (p299,p39,r19) 
    are_LinDep by 
    A11,
    Th23;
    
      
    
      
    
    A40: not 
    are_Prop (p39,q39) by 
    A6,
    A34,
    A37,
    A26,
    A29,
    ANPROJ_1: 22;
    
      
    are_Prop (r199,r19) by 
    A35,
    A38,
    A27,
    A30,
    ANPROJ_1: 22;
    
      then
    
      
    
    A41: (q29,q39,r19) 
    are_LinDep by 
    A31,
    A32,
    ANPROJ_1: 4;
    
      consider p199,p399,r29 be
    Element of V such that 
    
      
    
    A42: p1 
    = ( 
    Dir p199) and 
    
      
    
    A43: p3 
    = ( 
    Dir p399) and 
    
      
    
    A44: r2 
    = ( 
    Dir r29) and 
    
      
    
    A45: not p199 is 
    zero and 
    
      
    
    A46: not p399 is 
    zero and 
    
      
    
    A47: not r29 is 
    zero and 
    
      
    
    A48: (p199,p399,r29) 
    are_LinDep by 
    A13,
    Th23;
    
      
    
      
    
    A49: 
    are_Prop (p399,p39) by 
    A34,
    A37,
    A43,
    A46,
    ANPROJ_1: 22;
    
      consider o9 be
    Element of V such that 
    
      
    
    A50: not o9 is 
    zero and 
    
      
    
    A51: o 
    = ( 
    Dir o9) by 
    ANPROJ_1: 26;
    
      
    
      
    
    A52: not 
    are_Prop (o9,q39) by 
    A5,
    A50,
    A51,
    A26,
    A29,
    ANPROJ_1: 22;
    
      consider p19,p29,r39 be
    Element of V such that 
    
      
    
    A53: p1 
    = ( 
    Dir p19) and 
    
      
    
    A54: p2 
    = ( 
    Dir p29) and 
    
      
    
    A55: r3 
    = ( 
    Dir r39) and 
    
      
    
    A56: not p19 is 
    zero and 
    
      
    
    A57: not p29 is 
    zero and 
    
      
    
    A58: not r39 is 
    zero and 
    
      
    
    A59: (p19,p29,r39) 
    are_LinDep by 
    A9,
    Th23;
    
      
    
      
    
    A60: ( not 
    are_Prop (p19,q19)) & not 
    are_Prop (p29,q29) by 
    A2,
    A4,
    A53,
    A54,
    A56,
    A57,
    A18,
    A19,
    A21,
    A22,
    ANPROJ_1: 22;
    
      
    
      
    
    A61: ( not 
    are_Prop (o9,q19)) & not 
    are_Prop (o9,q29) by 
    A1,
    A3,
    A50,
    A51,
    A18,
    A19,
    A21,
    A22,
    ANPROJ_1: 22;
    
      consider o999,p2999,q2999 be
    Element of V such that 
    
      
    
    A62: o 
    = ( 
    Dir o999) and 
    
      
    
    A63: p2 
    = ( 
    Dir p2999) and 
    
      
    
    A64: q2 
    = ( 
    Dir q2999) and 
    
      
    
    A65: not o999 is 
    zero and 
    
      
    
    A66: not p2999 is 
    zero and 
    
      
    
    A67: not q2999 is 
    zero and 
    
      
    
    A68: (o999,p2999,q2999) 
    are_LinDep by 
    A16,
    Th23;
    
      
    
      
    
    A69: 
    are_Prop (q2999,q29) by 
    A19,
    A22,
    A64,
    A67,
    ANPROJ_1: 22;
    
      
    
      
    
    A70: 
    are_Prop (o999,o9) by 
    A50,
    A51,
    A62,
    A65,
    ANPROJ_1: 22;
    
      
    are_Prop (p2999,p29) by 
    A54,
    A57,
    A63,
    A66,
    ANPROJ_1: 22;
    
      then
    
      
    
    A71: (o9,p29,q29) 
    are_LinDep by 
    A68,
    A70,
    A69,
    ANPROJ_1: 4;
    
      consider q199,q399,r299 be
    Element of V such that 
    
      
    
    A72: q1 
    = ( 
    Dir q199) and 
    
      
    
    A73: q3 
    = ( 
    Dir q399) and 
    
      
    
    A74: r2 
    = ( 
    Dir r299) and 
    
      
    
    A75: not q199 is 
    zero and 
    
      
    
    A76: not q399 is 
    zero and 
    
      
    
    A77: not r299 is 
    zero and 
    
      
    
    A78: (q199,q399,r299) 
    are_LinDep by 
    A14,
    Th23;
    
      
    
      
    
    A79: 
    are_Prop (q199,q19) by 
    A18,
    A21,
    A72,
    A75,
    ANPROJ_1: 22;
    
      
    
      
    
    A80: not (o9,p19,p29) 
    are_LinDep by 
    A7,
    A50,
    A51,
    A53,
    A54,
    A56,
    A57,
    Th23;
    
      
    are_Prop (r399,r39) by 
    A55,
    A58,
    A20,
    A23,
    ANPROJ_1: 22;
    
      then
    
      
    
    A81: (q19,q29,r39) 
    are_LinDep by 
    A24,
    ANPROJ_1: 4;
    
      
    
      
    
    A82: 
    are_Prop (q399,q39) by 
    A26,
    A29,
    A73,
    A76,
    ANPROJ_1: 22;
    
      consider o9999,p3999,q3999 be
    Element of V such that 
    
      
    
    A83: o 
    = ( 
    Dir o9999) and 
    
      
    
    A84: p3 
    = ( 
    Dir p3999) and 
    
      
    
    A85: q3 
    = ( 
    Dir q3999) and 
    
      
    
    A86: not o9999 is 
    zero and 
    
      
    
    A87: not p3999 is 
    zero and 
    
      
    
    A88: not q3999 is 
    zero and 
    
      
    
    A89: (o9999,p3999,q3999) 
    are_LinDep by 
    A17,
    Th23;
    
      
    
      
    
    A90: 
    are_Prop (q3999,q39) by 
    A26,
    A29,
    A85,
    A88,
    ANPROJ_1: 22;
    
      
    are_Prop (p299,p29) by 
    A54,
    A57,
    A33,
    A36,
    ANPROJ_1: 22;
    
      then
    
      
    
    A91: (p29,p39,r19) 
    are_LinDep by 
    A39,
    ANPROJ_1: 4;
    
      
    are_Prop (p199,p19) by 
    A53,
    A56,
    A42,
    A45,
    ANPROJ_1: 22;
    
      then (p19,p39,r29)
    are_LinDep by 
    A48,
    A49,
    ANPROJ_1: 4;
    
      then
    
      
    
    A92: (p19,p29,p39,r19,r29,r39) 
    lie_on_a_triangle by 
    A59,
    A91;
    
      
    
      
    
    A93: (q19,q29,q39) 
    are_Prop_Vect by 
    A21,
    A22,
    A29;
    
      consider o99,p1999,q1999 be
    Element of V such that 
    
      
    
    A94: o 
    = ( 
    Dir o99) and 
    
      
    
    A95: p1 
    = ( 
    Dir p1999) and 
    
      
    
    A96: q1 
    = ( 
    Dir q1999) and 
    
      
    
    A97: not o99 is 
    zero and 
    
      
    
    A98: not p1999 is 
    zero and 
    
      
    
    A99: not q1999 is 
    zero and 
    
      
    
    A100: (o99,p1999,q1999) 
    are_LinDep by 
    A15,
    Th23;
    
      
    
      
    
    A101: 
    are_Prop (q1999,q19) by 
    A18,
    A21,
    A96,
    A99,
    ANPROJ_1: 22;
    
      
    
      
    
    A102: ( not (o9,p19,p39) 
    are_LinDep ) & not (o9,p29,p39) 
    are_LinDep by 
    A8,
    A50,
    A51,
    A53,
    A54,
    A56,
    A57,
    A34,
    A37,
    Th23;
    
      
    
      
    
    A103: (p19,p29,p39) 
    are_Prop_Vect by 
    A56,
    A57,
    A37;
    
      
    
      
    
    A104: 
    are_Prop (o9999,o9) by 
    A50,
    A51,
    A83,
    A86,
    ANPROJ_1: 22;
    
      
    are_Prop (p3999,p39) by 
    A34,
    A37,
    A84,
    A87,
    ANPROJ_1: 22;
    
      then
    
      
    
    A105: (o9,p39,q39) 
    are_LinDep by 
    A89,
    A104,
    A90,
    ANPROJ_1: 4;
    
      
    
      
    
    A106: 
    are_Prop (o99,o9) by 
    A50,
    A51,
    A94,
    A97,
    ANPROJ_1: 22;
    
      
    are_Prop (p1999,p19) by 
    A53,
    A56,
    A95,
    A98,
    ANPROJ_1: 22;
    
      then (o9,p19,q19)
    are_LinDep by 
    A100,
    A106,
    A101,
    ANPROJ_1: 4;
    
      then
    
      
    
    A107: (o9,p19,p29,p39,q19,q29,q39) 
    are_perspective by 
    A71,
    A105;
    
      
    are_Prop (r299,r29) by 
    A44,
    A47,
    A74,
    A77,
    ANPROJ_1: 22;
    
      then (q19,q39,r29)
    are_LinDep by 
    A78,
    A79,
    A82,
    ANPROJ_1: 4;
    
      then
    
      
    
    A108: (q19,q29,q39,r19,r29,r39) 
    lie_on_a_triangle by 
    A81,
    A41;
    
      (r19,r29,r39)
    are_Prop_Vect by 
    A58,
    A38,
    A47;
    
      then (r19,r29,r39)
    are_LinDep by 
    A50,
    A61,
    A52,
    A60,
    A40,
    A103,
    A93,
    A107,
    A80,
    A102,
    A92,
    A108,
    Th8;
    
      hence thesis by
    A55,
    A58,
    A35,
    A38,
    A44,
    A47,
    Th23;
    
    end;
    
    
    
    
    
    Lm41: for V be 
    up-3-dimensional  
    RealLinearSpace holds ( 
    ProjectiveSpace V) is 
    Pappian
    
    proof
    
      let V be
    up-3-dimensional  
    RealLinearSpace;
    
      let o,p1,p2,p3,q1,q2,q3,r1,r2,r3 be
    Element of ( 
    ProjectiveSpace V); 
    
      assume that
    
      
    
    A1: o 
    <> p2 and 
    
      
    
    A2: o 
    <> p3 and 
    
      
    
    A3: p2 
    <> p3 and 
    
      
    
    A4: p1 
    <> p2 and 
    
      
    
    A5: p1 
    <> p3 and 
    
      
    
    A6: o 
    <> q2 and 
    
      
    
    A7: o 
    <> q3 and 
    
      
    
    A8: q2 
    <> q3 and 
    
      
    
    A9: q1 
    <> q2 and 
    
      
    
    A10: q1 
    <> q3 and 
    
      
    
    A11: not (o,p1,q1) 
    are_collinear and 
    
      
    
    A12: (o,p1,p2) 
    are_collinear and 
    
      
    
    A13: (o,p1,p3) 
    are_collinear and 
    
      
    
    A14: (o,q1,q2) 
    are_collinear and 
    
      
    
    A15: (o,q1,q3) 
    are_collinear and 
    
      
    
    A16: (p1,q2,r3) 
    are_collinear and 
    
      
    
    A17: (q1,p2,r3) 
    are_collinear and 
    
      
    
    A18: (p1,q3,r2) 
    are_collinear and 
    
      
    
    A19: (p3,q1,r2) 
    are_collinear and 
    
      
    
    A20: (p2,q3,r1) 
    are_collinear and 
    
      
    
    A21: (p3,q2,r1) 
    are_collinear ; 
    
      consider o999,q19,q29 be
    Element of V such that 
    
      
    
    A22: o 
    = ( 
    Dir o999) and 
    
      
    
    A23: q1 
    = ( 
    Dir q19) and 
    
      
    
    A24: q2 
    = ( 
    Dir q29) and 
    
      
    
    A25: not o999 is 
    zero and 
    
      
    
    A26: not q19 is 
    zero and 
    
      
    
    A27: not q29 is 
    zero and 
    
      
    
    A28: (o999,q19,q29) 
    are_LinDep by 
    A14,
    Th23;
    
      
    
      
    
    A29: not 
    are_Prop (q19,q29) by 
    A9,
    A23,
    A24,
    A26,
    A27,
    ANPROJ_1: 22;
    
      consider o9999,q199,q39 be
    Element of V such that 
    
      
    
    A30: o 
    = ( 
    Dir o9999) and 
    
      
    
    A31: q1 
    = ( 
    Dir q199) and 
    
      
    
    A32: q3 
    = ( 
    Dir q39) and 
    
      
    
    A33: not o9999 is 
    zero and 
    
      
    
    A34: not q199 is 
    zero and 
    
      
    
    A35: not q39 is 
    zero and 
    
      
    
    A36: (o9999,q199,q39) 
    are_LinDep by 
    A15,
    Th23;
    
      
    
      
    
    A37: 
    are_Prop (q199,q19) by 
    A23,
    A26,
    A31,
    A34,
    ANPROJ_1: 22;
    
      consider o99,p199,p39 be
    Element of V such that 
    
      
    
    A38: o 
    = ( 
    Dir o99) & p1 
    = ( 
    Dir p199) and 
    
      
    
    A39: p3 
    = ( 
    Dir p39) and 
    
      
    
    A40: not o99 is 
    zero & not p199 is 
    zero and 
    
      
    
    A41: not p39 is 
    zero and 
    
      
    
    A42: (o99,p199,p39) 
    are_LinDep by 
    A13,
    Th23;
    
      consider o9,p19,p29 be
    Element of V such that 
    
      
    
    A43: o 
    = ( 
    Dir o9) and 
    
      
    
    A44: p1 
    = ( 
    Dir p19) and 
    
      
    
    A45: p2 
    = ( 
    Dir p29) and 
    
      
    
    A46: not o9 is 
    zero and 
    
      
    
    A47: not p19 is 
    zero and 
    
      
    
    A48: not p29 is 
    zero and 
    
      
    
    A49: (o9,p19,p29) 
    are_LinDep by 
    A12,
    Th23;
    
      
    
      
    
    A50: ( not 
    are_Prop (o9,p39)) & not 
    are_Prop (p19,p39) by 
    A2,
    A5,
    A43,
    A44,
    A46,
    A47,
    A39,
    A41,
    ANPROJ_1: 22;
    
      
    
      
    
    A51: ( not 
    are_Prop (q19,q39)) & not 
    are_Prop (q29,q39) by 
    A8,
    A10,
    A23,
    A24,
    A26,
    A27,
    A32,
    A35,
    ANPROJ_1: 22;
    
      
    
      
    
    A52: not 
    are_Prop (p29,p39) by 
    A3,
    A45,
    A48,
    A39,
    A41,
    ANPROJ_1: 22;
    
      
    
      
    
    A53: not 
    are_Prop (o9,q39) by 
    A7,
    A43,
    A46,
    A32,
    A35,
    ANPROJ_1: 22;
    
      
    
      
    
    A54: not 
    are_Prop (o9,q29) by 
    A6,
    A43,
    A46,
    A24,
    A27,
    ANPROJ_1: 22;
    
      ( not
    are_Prop (o9,p29)) & not 
    are_Prop (p19,p29) by 
    A1,
    A4,
    A43,
    A44,
    A45,
    A46,
    A47,
    A48,
    ANPROJ_1: 22;
    
      then
    
      
    
    A55: (o9,p19,p29,p39,q19,q29,q39) 
    are_half_mutually_not_Prop by 
    A54,
    A53,
    A50,
    A29,
    A52,
    A51;
    
      consider q1999,p2999,r399 be
    Element of V such that 
    
      
    
    A56: q1 
    = ( 
    Dir q1999) and 
    
      
    
    A57: p2 
    = ( 
    Dir p2999) and 
    
      
    
    A58: r3 
    = ( 
    Dir r399) and 
    
      
    
    A59: not q1999 is 
    zero and 
    
      
    
    A60: not p2999 is 
    zero and 
    
      
    
    A61: not r399 is 
    zero and 
    
      
    
    A62: (q1999,p2999,r399) 
    are_LinDep by 
    A17,
    Th23;
    
      
    
      
    
    A63: 
    are_Prop (q1999,q19) by 
    A23,
    A26,
    A56,
    A59,
    ANPROJ_1: 22;
    
      consider p29999,q3999,r19 be
    Element of V such that 
    
      
    
    A64: p2 
    = ( 
    Dir p29999) and 
    
      
    
    A65: q3 
    = ( 
    Dir q3999) and 
    
      
    
    A66: r1 
    = ( 
    Dir r19) and 
    
      
    
    A67: not p29999 is 
    zero and 
    
      
    
    A68: not q3999 is 
    zero and 
    
      
    
    A69: not r19 is 
    zero and 
    
      
    
    A70: (p29999,q3999,r19) 
    are_LinDep by 
    A20,
    Th23;
    
      
    
      
    
    A71: 
    are_Prop (q3999,q39) by 
    A32,
    A35,
    A65,
    A68,
    ANPROJ_1: 22;
    
      
    are_Prop (o999,o9) by 
    A43,
    A46,
    A22,
    A25,
    ANPROJ_1: 22;
    
      then
    
      
    
    A72: (o9,q19,q29) 
    are_LinDep by 
    A28,
    ANPROJ_1: 4;
    
      
    are_Prop (o9999,o9) by 
    A43,
    A46,
    A30,
    A33,
    ANPROJ_1: 22;
    
      then
    
      
    
    A73: (o9,q19,q39) 
    are_LinDep by 
    A36,
    A37,
    ANPROJ_1: 4;
    
      
    are_Prop (o99,o9) & 
    are_Prop (p199,p19) by 
    A43,
    A44,
    A46,
    A47,
    A38,
    A40,
    ANPROJ_1: 22;
    
      then
    
      
    
    A74: (o9,p19,p39) 
    are_LinDep by 
    A42,
    ANPROJ_1: 4;
    
       not (o9,p19,q19)
    are_LinDep by 
    A11,
    A43,
    A44,
    A46,
    A47,
    A23,
    A26,
    Th23;
    
      then
    
      
    
    A75: (o9,p19,p29,p39,q19,q29,q39) 
    lie_on_an_angle by 
    A49,
    A74,
    A72,
    A73;
    
      consider p19999,q399,r29 be
    Element of V such that 
    
      
    
    A76: p1 
    = ( 
    Dir p19999) and 
    
      
    
    A77: q3 
    = ( 
    Dir q399) and 
    
      
    
    A78: r2 
    = ( 
    Dir r29) and 
    
      
    
    A79: not p19999 is 
    zero and 
    
      
    
    A80: not q399 is 
    zero and 
    
      
    
    A81: not r29 is 
    zero and 
    
      
    
    A82: (p19999,q399,r29) 
    are_LinDep by 
    A18,
    Th23;
    
      
    
      
    
    A83: 
    are_Prop (q399,q39) by 
    A32,
    A35,
    A77,
    A80,
    ANPROJ_1: 22;
    
      consider p3999,q29999,r199 be
    Element of V such that 
    
      
    
    A84: p3 
    = ( 
    Dir p3999) and 
    
      
    
    A85: q2 
    = ( 
    Dir q29999) and 
    
      
    
    A86: r1 
    = ( 
    Dir r199) and 
    
      
    
    A87: not p3999 is 
    zero and 
    
      
    
    A88: not q29999 is 
    zero and 
    
      
    
    A89: not r199 is 
    zero and 
    
      
    
    A90: (p3999,q29999,r199) 
    are_LinDep by 
    A21,
    Th23;
    
      
    
      
    
    A91: 
    are_Prop (p3999,p39) by 
    A39,
    A41,
    A84,
    A87,
    ANPROJ_1: 22;
    
      
    
      
    
    A92: 
    are_Prop (q29999,q29) by 
    A24,
    A27,
    A85,
    A88,
    ANPROJ_1: 22;
    
      
    are_Prop (r199,r19) by 
    A66,
    A69,
    A86,
    A89,
    ANPROJ_1: 22;
    
      then
    
      
    
    A93: (p39,q29,r19) 
    are_LinDep by 
    A90,
    A91,
    A92,
    ANPROJ_1: 4;
    
      
    
      
    
    A94: (q19,q29,q39) 
    are_Prop_Vect by 
    A26,
    A27,
    A35;
    
      
    
      
    
    A95: (p19,p29,p39) 
    are_Prop_Vect by 
    A47,
    A48,
    A41;
    
      
    are_Prop (p29999,p29) by 
    A45,
    A48,
    A64,
    A67,
    ANPROJ_1: 22;
    
      then
    
      
    
    A96: (p29,q39,r19) 
    are_LinDep by 
    A70,
    A71,
    ANPROJ_1: 4;
    
      consider p399,q1999,r299 be
    Element of V such that 
    
      
    
    A97: p3 
    = ( 
    Dir p399) and 
    
      
    
    A98: q1 
    = ( 
    Dir q1999) and 
    
      
    
    A99: r2 
    = ( 
    Dir r299) and 
    
      
    
    A100: not p399 is 
    zero and 
    
      
    
    A101: not q1999 is 
    zero and 
    
      
    
    A102: not r299 is 
    zero and 
    
      
    
    A103: (p399,q1999,r299) 
    are_LinDep by 
    A19,
    Th23;
    
      
    
      
    
    A104: 
    are_Prop (q1999,q19) by 
    A23,
    A26,
    A98,
    A101,
    ANPROJ_1: 22;
    
      
    are_Prop (p19999,p19) by 
    A44,
    A47,
    A76,
    A79,
    ANPROJ_1: 22;
    
      then
    
      
    
    A105: (p19,q39,r29) 
    are_LinDep by 
    A82,
    A83,
    ANPROJ_1: 4;
    
      consider p1999,q2999,r39 be
    Element of V such that 
    
      
    
    A106: p1 
    = ( 
    Dir p1999) and 
    
      
    
    A107: q2 
    = ( 
    Dir q2999) and 
    
      
    
    A108: r3 
    = ( 
    Dir r39) and 
    
      
    
    A109: not p1999 is 
    zero and 
    
      
    
    A110: not q2999 is 
    zero and 
    
      
    
    A111: not r39 is 
    zero and 
    
      
    
    A112: (p1999,q2999,r39) 
    are_LinDep by 
    A16,
    Th23;
    
      
    
      
    
    A113: 
    are_Prop (q2999,q29) by 
    A24,
    A27,
    A107,
    A110,
    ANPROJ_1: 22;
    
      
    
      
    
    A114: 
    are_Prop (p2999,p29) by 
    A45,
    A48,
    A57,
    A60,
    ANPROJ_1: 22;
    
      
    are_Prop (r399,r39) by 
    A108,
    A111,
    A58,
    A61,
    ANPROJ_1: 22;
    
      then
    
      
    
    A115: (q19,p29,r39) 
    are_LinDep by 
    A62,
    A63,
    A114,
    ANPROJ_1: 4;
    
      
    are_Prop (p1999,p19) by 
    A44,
    A47,
    A106,
    A109,
    ANPROJ_1: 22;
    
      then
    
      
    
    A116: (p19,q29,r39) 
    are_LinDep by 
    A112,
    A113,
    ANPROJ_1: 4;
    
      
    
      
    
    A117: 
    are_Prop (p399,p39) by 
    A39,
    A41,
    A97,
    A100,
    ANPROJ_1: 22;
    
      
    are_Prop (r299,r29) by 
    A78,
    A81,
    A99,
    A102,
    ANPROJ_1: 22;
    
      then
    
      
    
    A118: (p39,q19,r29) 
    are_LinDep by 
    A103,
    A117,
    A104,
    ANPROJ_1: 4;
    
      (r19,r29,r39)
    are_Prop_Vect by 
    A111,
    A81,
    A69;
    
      then (r19,r29,r39)
    are_LinDep by 
    A46,
    A75,
    A55,
    A95,
    A94,
    A116,
    A115,
    A105,
    A118,
    A96,
    A93,
    Th9;
    
      hence thesis by
    A108,
    A111,
    A78,
    A81,
    A66,
    A69,
    Th23;
    
    end;
    
    registration
    
      let V be
    up-3-dimensional  
    RealLinearSpace;
    
      ::$Notion-Name
    
      cluster ( 
    ProjectiveSpace V) -> 
    Fanoian
    Desarguesian
    Pappian;
    
      coherence by
    Lm39,
    Lm40,
    Lm41;
    
    end
    
    theorem :: 
    
    ANPROJ_2:27
    
    
    
    
    
    Th27: (ex u, v, w st (for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ) & (for y holds ex a, b, c st y 
    = (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)))) implies ex x1,x2 be 
    Element of ( 
    ProjectiveSpace V) st (x1 
    <> x2 & for r1, r2 holds ex q st (x1,x2,q) 
    are_collinear & (r1,r2,q) 
    are_collinear ) 
    
    proof
    
      given p,q,r be
    Element of V such that 
    
      
    
    A1: for a, b, c st (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 and 
    
      
    
    A2: for y holds ex a, b, c st y 
    = (((a 
    * p) 
    + (b 
    * q)) 
    + (c 
    * r)); 
    
      
    
      
    
    A3: not p is 
    zero & not q is 
    zero by 
    A1,
    Th1;
    
      then
    
      reconsider x1 = (
    Dir p), x2 = ( 
    Dir q) as 
    Element of ( 
    ProjectiveSpace V) by 
    ANPROJ_1: 26;
    
      take x1, x2;
    
       not
    are_Prop (p,q) by 
    A1,
    Th1;
    
      hence x1
    <> x2 by 
    A3,
    ANPROJ_1: 22;
    
      let r1, r2;
    
      consider u such that
    
      
    
    A4: not u is 
    zero & r1 
    = ( 
    Dir u) by 
    ANPROJ_1: 26;
    
      consider u1 such that
    
      
    
    A5: not u1 is 
    zero & r2 
    = ( 
    Dir u1) by 
    ANPROJ_1: 26;
    
      consider y such that
    
      
    
    A6: (p,q,y) 
    are_LinDep and 
    
      
    
    A7: (u,u1,y) 
    are_LinDep and 
    
      
    
    A8: not y is 
    zero by 
    A1,
    A2,
    Th3;
    
      reconsider q = (
    Dir y) as 
    Element of ( 
    ProjectiveSpace V) by 
    A8,
    ANPROJ_1: 26;
    
      take q;
    
      thus (x1,x2,q)
    are_collinear by 
    A3,
    A6,
    A8,
    Th23;
    
      thus thesis by
    A4,
    A5,
    A7,
    A8,
    Th23;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:28
    
    
    
    
    
    Th28: (ex x1,x2 be 
    Element of ( 
    ProjectiveSpace V) st (x1 
    <> x2 & for r1, r2 holds ex q st (x1,x2,q) 
    are_collinear & (r1,r2,q) 
    are_collinear )) implies for p, p1, q, q1 holds ex r st (p,p1,r) 
    are_collinear & (q,q1,r) 
    are_collinear  
    
    proof
    
      given x1,x2 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A1: x1 
    <> x2 and 
    
      
    
    A2: for r1, r2 holds ex q st (x1,x2,q) 
    are_collinear & (r1,r2,q) 
    are_collinear ; 
    
      let p, p1, q, q1;
    
      consider p3 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A3: (x1,x2,p3) 
    are_collinear and 
    
      
    
    A4: (p,p1,p3) 
    are_collinear by 
    A2;
    
      consider q3 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A5: (x1,x2,q3) 
    are_collinear and 
    
      
    
    A6: (q,q1,q3) 
    are_collinear by 
    A2;
    
      consider s2 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A7: (x1,x2,s2) 
    are_collinear and 
    
      
    
    A8: (p,q,s2) 
    are_collinear by 
    A2;
    
      
    
      
    
    A9: (s2,p,q) 
    are_collinear by 
    A8,
    Th24;
    
      consider s4 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A10: (x1,x2,s4) 
    are_collinear and 
    
      
    
    A11: (p,q1,s4) 
    are_collinear by 
    A2;
    
      
    
      
    
    A12: (s4,q1,p) 
    are_collinear by 
    A11,
    Th24;
    
      (p3,s2,q3)
    are_collinear by 
    A1,
    A3,
    A5,
    A7,
    Def8;
    
      then
    
      consider s3 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A13: (p3,p,s3) 
    are_collinear and 
    
      
    
    A14: (q3,q,s3) 
    are_collinear by 
    A9,
    Def9;
    
      consider s be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A15: (x1,x2,s) 
    are_collinear and 
    
      
    
    A16: (p1,q1,s) 
    are_collinear by 
    A2;
    
      (q3,s4,p3)
    are_collinear by 
    A1,
    A3,
    A5,
    A10,
    Def8;
    
      then
    
      consider s5 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A17: (q3,q1,s5) 
    are_collinear and 
    
      
    
    A18: (p3,p,s5) 
    are_collinear by 
    A12,
    Def9;
    
      
    
      
    
    A19: (p1,s,q1) 
    are_collinear by 
    A16,
    Th24;
    
      consider s6 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A20: (x1,x2,s6) 
    are_collinear and 
    
      
    
    A21: (p1,q,s6) 
    are_collinear by 
    A2;
    
      
    
      
    
    A22: (s6,p1,q) 
    are_collinear by 
    A21,
    Th24;
    
      (p3,s6,q3)
    are_collinear by 
    A1,
    A3,
    A5,
    A20,
    Def8;
    
      then
    
      consider s7 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A23: (p3,p1,s7) 
    are_collinear and 
    
      
    
    A24: (q3,q,s7) 
    are_collinear by 
    A22,
    Def9;
    
      (s,p3,q3)
    are_collinear by 
    A1,
    A3,
    A5,
    A15,
    Def8;
    
      then
    
      consider s1 be
    Element of ( 
    ProjectiveSpace V) such that 
    
      
    
    A25: (p1,p3,s1) 
    are_collinear and 
    
      
    
    A26: (q1,q3,s1) 
    are_collinear by 
    A19,
    Def9;
    
      
    
    A27: 
    
      now
    
        
    
    A28: 
    
        now
    
          
    
          
    
    A29: (q3,q1,s1) 
    are_collinear by 
    A26,
    Th24;
    
          assume that
    
          
    
    A30: p3 
    <> p1 and 
    
          
    
    A31: q3 
    <> q1; 
    
          (q3,q1,q)
    are_collinear & (q3,q1,q1) 
    are_collinear by 
    A6,
    Def7,
    Th24;
    
          then
    
          
    
    A32: (q,q1,s1) 
    are_collinear by 
    A31,
    A29,
    Def8;
    
          take s1;
    
          
    
          
    
    A33: (p3,p1,s1) 
    are_collinear by 
    A25,
    Th24;
    
          (p3,p1,p)
    are_collinear & (p3,p1,p1) 
    are_collinear by 
    A4,
    Def7,
    Th24;
    
          then (p,p1,s1)
    are_collinear by 
    A30,
    A33,
    Def8;
    
          hence thesis by
    A32;
    
        end;
    
        
    
    A34: 
    
        now
    
          assume that
    
          
    
    A35: p3 
    <> p and 
    
          
    
    A36: q3 
    <> q; 
    
          take s3;
    
          (q3,q,q)
    are_collinear & (q3,q,q1) 
    are_collinear by 
    A6,
    Def7,
    Th24;
    
          then
    
          
    
    A37: (q,q1,s3) 
    are_collinear by 
    A14,
    A36,
    Def8;
    
          (p3,p,p)
    are_collinear & (p3,p,p1) 
    are_collinear by 
    A4,
    Def7,
    Th24;
    
          then (p,p1,s3)
    are_collinear by 
    A13,
    A35,
    Def8;
    
          hence thesis by
    A37;
    
        end;
    
        
    
    A38: 
    
        now
    
          assume that
    
          
    
    A39: p3 
    <> p1 and 
    
          
    
    A40: q3 
    <> q; 
    
          take s7;
    
          (q3,q,q)
    are_collinear & (q3,q,q1) 
    are_collinear by 
    A6,
    Def7,
    Th24;
    
          then
    
          
    
    A41: (q,q1,s7) 
    are_collinear by 
    A24,
    A40,
    Def8;
    
          (p3,p1,p)
    are_collinear & (p3,p1,p1) 
    are_collinear by 
    A4,
    Def7,
    Th24;
    
          then (p,p1,s7)
    are_collinear by 
    A23,
    A39,
    Def8;
    
          hence thesis by
    A41;
    
        end;
    
        
    
    A42: 
    
        now
    
          assume that
    
          
    
    A43: p3 
    <> p and 
    
          
    
    A44: q3 
    <> q1; 
    
          take s5;
    
          (q3,q1,q)
    are_collinear & (q3,q1,q1) 
    are_collinear by 
    A6,
    Def7,
    Th24;
    
          then
    
          
    
    A45: (q,q1,s5) 
    are_collinear by 
    A17,
    A44,
    Def8;
    
          (p3,p,p)
    are_collinear & (p3,p,p1) 
    are_collinear by 
    A4,
    Def7,
    Th24;
    
          then (p,p1,s5)
    are_collinear by 
    A18,
    A43,
    Def8;
    
          hence thesis by
    A45;
    
        end;
    
        assume p
    <> p1 & q 
    <> q1; 
    
        hence thesis by
    A34,
    A42,
    A38,
    A28;
    
      end;
    
      now
    
        
    
    A46: 
    
        now
    
          assume
    
          
    
    A47: p 
    = p1; 
    
          take q3;
    
          (p,p1,q3)
    are_collinear by 
    A47,
    Def7;
    
          hence thesis by
    A6;
    
        end;
    
        
    
    A48: 
    
        now
    
          assume
    
          
    
    A49: q 
    = q1; 
    
          take p3;
    
          (q,q1,p3)
    are_collinear by 
    A49,
    Def7;
    
          hence thesis by
    A4;
    
        end;
    
        assume p
    = p1 or q 
    = q1; 
    
        hence thesis by
    A48,
    A46;
    
      end;
    
      hence thesis by
    A27;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:29
    
    
    
    
    
    Th29: (ex u, v, w st (for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ) & (for y holds ex a, b, c st y 
    = (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)))) implies ex CS be 
    CollProjectiveSpace st CS 
    = ( 
    ProjectiveSpace V) & CS is 
    2-dimensional
    
    proof
    
      given u, v, w such that
    
      
    
    A1: for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 and 
    
      
    
    A2: for y holds ex a, b, c st y 
    = (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)); 
    
      reconsider V9 = V as
    up-3-dimensional  
    RealLinearSpace by 
    A1,
    Def6;
    
      take (
    ProjectiveSpace V9); 
    
      ex x1,x2 be
    Element of ( 
    ProjectiveSpace V) st (x1 
    <> x2 & for r1, r2 holds ex q st (x1,x2,q) 
    are_collinear & (r1,r2,q) 
    are_collinear ) by 
    A1,
    A2,
    Th27;
    
      then for p, p1, q, q1 holds ex r st (p,p1,r)
    are_collinear & (q,q1,r) 
    are_collinear by 
    Th28;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm42: (ex y, u, v, w st (for a, b, a1, b1 st ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 )) implies V is 
    up-3-dimensional
    
    proof
    
      given y, u, v, w such that
    
      
    
    A1: for a, b, a1, b1 st ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ; 
    
      take y, u, v;
    
      let a, b, a1;
    
      assume (((a
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    = ( 
    0. V); 
    
      
    
      then (
    0. V) 
    = ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + ( 
    0. V)) by 
    RLVECT_1: 4
    
      .= ((((a
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + ( 
    0  
    * w)) by 
    RLVECT_1: 10;
    
      hence thesis by
    A1;
    
    end;
    
    
    
    
    
    Lm43: (ex y, u, v, w st (for a, b, a1, b1 st ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 )) implies ( 
    ProjectiveSpace V) is 
    proper
    at_least_3rank
    
    proof
    
      given y, u, v, w such that
    
      
    
    A1: for a, b, a1, b1 st ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ; 
    
      V is
    up-3-dimensional by 
    A1,
    Lm42;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:30
    
    
    
    
    
    Th30: (ex y, u, v, w st (for w1 holds ex a, b, a1, b1 st w1 
    = ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w))) & (for a, b, a1, b1 st ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 )) implies ex p, q1, q2 st not (p,q1,q2) 
    are_collinear & for r1, r2 holds ex q3, r3 st (r1,r2,r3) 
    are_collinear & (q1,q2,q3) 
    are_collinear & (p,r3,q3) 
    are_collinear  
    
    proof
    
      given y, u, v, w such that
    
      
    
    A1: for w1 holds ex a, b, a1, b1 st w1 
    = ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) and 
    
      
    
    A2: for a, b, a1, b1 st ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ; 
    
      
    
      
    
    A3: not u is 
    zero & not v is 
    zero by 
    A2,
    Th2;
    
      
    
      
    
    A4: not y is 
    zero by 
    A2,
    Th2;
    
      then
    
      reconsider p = (
    Dir y), q1 = ( 
    Dir u), q2 = ( 
    Dir v) as 
    Element of ( 
    ProjectiveSpace V) by 
    A3,
    ANPROJ_1: 26;
    
      take p, q1, q2;
    
       not (y,u,v)
    are_LinDep by 
    A2,
    Th2;
    
      then not (p,q1,q2)
    are_collinear by 
    A4,
    A3,
    ANPROJ_1: 25;
    
      hence not (p,q1,q2)
    are_collinear ; 
    
      let r1, r2;
    
      consider u1 such that
    
      
    
    A5: not u1 is 
    zero and 
    
      
    
    A6: r1 
    = ( 
    Dir u1) by 
    ANPROJ_1: 26;
    
      consider u2 such that
    
      
    
    A7: not u2 is 
    zero and 
    
      
    
    A8: r2 
    = ( 
    Dir u2) by 
    ANPROJ_1: 26;
    
      consider w1, w2 such that
    
      
    
    A9: (u1,u2,w2) 
    are_LinDep and 
    
      
    
    A10: (u,v,w1) 
    are_LinDep and 
    
      
    
    A11: (y,w2,w1) 
    are_LinDep and 
    
      
    
    A12: not w1 is 
    zero and 
    
      
    
    A13: not w2 is 
    zero by 
    A1,
    A2,
    A5,
    A7,
    Th4;
    
      reconsider q3 = (
    Dir w1), r3 = ( 
    Dir w2) as 
    Element of ( 
    ProjectiveSpace V) by 
    A12,
    A13,
    ANPROJ_1: 26;
    
      take q3, r3;
    
      thus (r1,r2,r3)
    are_collinear by 
    A5,
    A6,
    A7,
    A8,
    A9,
    A13,
    Th23;
    
      thus (q1,q2,q3)
    are_collinear by 
    A3,
    A10,
    A12,
    Th23;
    
      thus thesis by
    A4,
    A11,
    A12,
    A13,
    Th23;
    
    end;
    
    
    
    
    
    Lm44: for x,d,b,b9,d9,q be 
    Element of ( 
    ProjectiveSpace V) st not (q,b,d) 
    are_collinear & (b,d,x) 
    are_collinear & (q,b9,b) 
    are_collinear & (q,d9,d) 
    are_collinear holds ex o be 
    Element of ( 
    ProjectiveSpace V) st (b9,d9,o) 
    are_collinear & (q,x,o) 
    are_collinear  
    
    proof
    
      let x,d,b,b9,d9,q be
    Element of ( 
    ProjectiveSpace V); 
    
      assume that
    
      
    
    A1: not (q,b,d) 
    are_collinear and 
    
      
    
    A2: (b,d,x) 
    are_collinear and 
    
      
    
    A3: (q,b9,b) 
    are_collinear and 
    
      
    
    A4: (q,d9,d) 
    are_collinear ; 
    
      
    
      
    
    A5: (b9,q,b) 
    are_collinear by 
    A3,
    Th24;
    
      
    
      
    
    A6: b 
    <> d by 
    A1,
    Def7;
    
      
    
    A7: 
    
      now
    
        
    
        
    
    A8: (b,b9,q) 
    are_collinear by 
    A3,
    Th24;
    
        consider z be
    Element of ( 
    ProjectiveSpace V) such that 
    
        
    
    A9: (b9,d9,z) 
    are_collinear and 
    
        
    
    A10: (b,d,z) 
    are_collinear by 
    A4,
    A5,
    Def9;
    
        
    
        
    
    A11: (z,b9,b9) 
    are_collinear by 
    Def7;
    
        (b,d,b)
    are_collinear by 
    Def7;
    
        then (z,b,x)
    are_collinear by 
    A2,
    A6,
    A10,
    Def8;
    
        then
    
        consider o be
    Element of ( 
    ProjectiveSpace V) such that 
    
        
    
    A12: (z,b9,o) 
    are_collinear and 
    
        
    
    A13: (x,q,o) 
    are_collinear by 
    A8,
    Def9;
    
        
    
        
    
    A14: (q,x,o) 
    are_collinear by 
    A13,
    Th24;
    
        assume
    
        
    
    A15: b 
    <> b9; 
    
        
    
        
    
    A16: z 
    <> b9 
    
        proof
    
          assume not thesis;
    
          then
    
          
    
    A17: (b,b9,d) 
    are_collinear by 
    A10,
    Th24;
    
          (b,b9,q)
    are_collinear & (b,b9,b) 
    are_collinear by 
    A3,
    Def7,
    Th24;
    
          hence contradiction by
    A1,
    A15,
    A17,
    Def8;
    
        end;
    
        (z,b9,d9)
    are_collinear by 
    A9,
    Th24;
    
        then (b9,d9,o)
    are_collinear by 
    A12,
    A16,
    A11,
    Def8;
    
        hence thesis by
    A14;
    
      end;
    
      now
    
        assume b
    = b9; 
    
        then
    
        
    
    A18: (d,b9,x) 
    are_collinear by 
    A2,
    Th24;
    
        (d9,d,q)
    are_collinear by 
    A4,
    Th24;
    
        then
    
        consider o be
    Element of ( 
    ProjectiveSpace V) such that 
    
        
    
    A19: (d9,b9,o) 
    are_collinear and 
    
        
    
    A20: (q,x,o) 
    are_collinear by 
    A18,
    Def9;
    
        (b9,d9,o)
    are_collinear by 
    A19,
    Th24;
    
        hence thesis by
    A20;
    
      end;
    
      hence thesis by
    A7;
    
    end;
    
    reserve x,z,x1,y1,z1,x2,x3,y2,z2,p4,q4 for
    Element of ( 
    ProjectiveSpace V); 
    
    theorem :: 
    
    ANPROJ_2:31
    
    
    
    
    
    Th31: ( 
    ProjectiveSpace V) is 
    proper
    at_least_3rank & (ex p, q1, q2 st not (p,q1,q2) 
    are_collinear & (for r1, r2 holds ex q3, r3 st (r1,r2,r3) 
    are_collinear & (q1,q2,q3) 
    are_collinear & (p,r3,q3) 
    are_collinear )) implies ex CS be 
    CollProjectiveSpace st CS 
    = ( 
    ProjectiveSpace V) & CS is 
    at_most-3-dimensional
    
    proof
    
      assume that
    
      
    
    A1: ( 
    ProjectiveSpace V) is 
    proper and 
    
      
    
    A2: for p, q holds ex r st p 
    <> r & q 
    <> r & (p,q,r) 
    are_collinear ; 
    
      defpred
    
    P[
    Element of ( 
    ProjectiveSpace V), 
    Element of ( 
    ProjectiveSpace V), 
    Element of ( 
    ProjectiveSpace V)] means for y1, y2 holds ex x2, x1 st (y1,y2,x1) 
    are_collinear & ($2,$3,x2) 
    are_collinear & ($1,x1,x2) 
    are_collinear ; 
    
      
    
      
    
    A3: for p, q1, q2 st (q1,q2,p) 
    are_collinear holds 
    P[p, q1, q2]
    
      proof
    
        let p, q1, q2 such that
    
        
    
    A4: (q1,q2,p) 
    are_collinear ; 
    
        now
    
          let y1, y2;
    
          (y1,y2,y2)
    are_collinear & (p,y2,p) 
    are_collinear by 
    Def7;
    
          hence ex x2, x1 st (y1,y2,x1)
    are_collinear & (q1,q2,x2) 
    are_collinear & (p,x1,x2) 
    are_collinear by 
    A4;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A5: for q, q1, q2, p1, p2, x st 
    P[q, q1, q2] & not (q1,q2,q)
    are_collinear & (q1,q2,x) 
    are_collinear & not (p1,p2,q) 
    are_collinear & (p1,p2,x) 
    are_collinear holds 
    P[q, p1, p2]
    
      proof
    
        let q, q1, q2, p1, p2, x;
    
        assume that
    
        
    
    A6: 
    P[q, q1, q2] and
    
        
    
    A7: not (q1,q2,q) 
    are_collinear and 
    
        
    
    A8: (q1,q2,x) 
    are_collinear and 
    
        
    
    A9: not (p1,p2,q) 
    are_collinear and 
    
        
    
    A10: (p1,p2,x) 
    are_collinear ; 
    
        
    
        
    
    A11: q1 
    <> q2 by 
    A7,
    Def7;
    
        
    
        
    
    A12: p1 
    <> p2 by 
    A9,
    Def7;
    
        now
    
          let y1, y2;
    
          
    
    A13: 
    
          now
    
            ex a be
    Element of ( 
    ProjectiveSpace V) st (p1,p2,a) 
    are_collinear & x 
    <> a 
    
            proof
    
              
    
    A14: 
    
              now
    
                assume
    
                
    
    A15: x 
    <> p2; 
    
                take p2;
    
                (p1,p2,p2)
    are_collinear by 
    Def7;
    
                hence thesis by
    A15;
    
              end;
    
              now
    
                assume
    
                
    
    A16: x 
    <> p1; 
    
                take p1;
    
                (p1,p2,p1)
    are_collinear by 
    Def7;
    
                hence thesis by
    A16;
    
              end;
    
              hence thesis by
    A9,
    A14,
    Def7;
    
            end;
    
            then
    
            consider x1 such that
    
            
    
    A17: (p1,p2,x1) 
    are_collinear and 
    
            
    
    A18: x 
    <> x1; 
    
            consider b,b9 be
    Element of ( 
    ProjectiveSpace V) such that 
    
            
    
    A19: (y1,y2,b9) 
    are_collinear and 
    
            
    
    A20: (q1,q2,b) 
    are_collinear and 
    
            
    
    A21: (q,b9,b) 
    are_collinear by 
    A6;
    
            assume
    
            
    
    A22: y1 
    <> y2; 
    
            ex a be
    Element of ( 
    ProjectiveSpace V) st (y1,y2,a) 
    are_collinear & b9 
    <> a 
    
            proof
    
              
    
    A23: 
    
              now
    
                assume
    
                
    
    A24: b9 
    <> y2; 
    
                take y2;
    
                (y1,y2,y2)
    are_collinear by 
    Def7;
    
                hence thesis by
    A24;
    
              end;
    
              now
    
                assume
    
                
    
    A25: b9 
    <> y1; 
    
                take y1;
    
                (y1,y2,y1)
    are_collinear by 
    Def7;
    
                hence thesis by
    A25;
    
              end;
    
              hence thesis by
    A22,
    A23;
    
            end;
    
            then
    
            consider x3 such that
    
            
    
    A26: b9 
    <> x3 and 
    
            
    
    A27: (y1,y2,x3) 
    are_collinear ; 
    
            consider d,d9 be
    Element of ( 
    ProjectiveSpace V) such that 
    
            
    
    A28: (x1,x3,d9) 
    are_collinear and 
    
            
    
    A29: (q1,q2,d) 
    are_collinear and 
    
            
    
    A30: (q,d9,d) 
    are_collinear by 
    A6;
    
            
    
            
    
    A31: (b,d,x) 
    are_collinear by 
    A8,
    A11,
    A20,
    A29,
    Def8;
    
            
    
    A32: 
    
            now
    
              assume
    
              
    
    A33: b 
    <> d; 
    
               not (q,b,d)
    are_collinear  
    
              proof
    
                (q1,q2,q2)
    are_collinear by 
    Def7;
    
                then
    
                
    
    A34: (b,d,q2) 
    are_collinear by 
    A11,
    A20,
    A29,
    Def8;
    
                assume not thesis;
    
                then
    
                
    
    A35: (b,d,q) 
    are_collinear by 
    Th24;
    
                (q1,q2,q1)
    are_collinear by 
    Def7;
    
                then (b,d,q1)
    are_collinear by 
    A11,
    A20,
    A29,
    Def8;
    
                hence contradiction by
    A7,
    A33,
    A35,
    A34,
    Def8;
    
              end;
    
              then
    
              consider o be
    Element of ( 
    ProjectiveSpace V) such that 
    
              
    
    A36: (b9,d9,o) 
    are_collinear and 
    
              
    
    A37: (q,x,o) 
    are_collinear by 
    A21,
    A30,
    A31,
    Lm44;
    
              
    
              
    
    A38: (o,x,q) 
    are_collinear by 
    A37,
    Th24;
    
              (d9,x3,x1)
    are_collinear by 
    A28,
    Th24;
    
              then
    
              consider z1 such that
    
              
    
    A39: (b9,x3,z1) 
    are_collinear and 
    
              
    
    A40: (o,x1,z1) 
    are_collinear by 
    A36,
    Def9;
    
              (x1,o,z1)
    are_collinear by 
    A40,
    Th24;
    
              then
    
              consider z2 such that
    
              
    
    A41: (x1,x,z2) 
    are_collinear and 
    
              
    
    A42: (z1,q,z2) 
    are_collinear by 
    A38,
    Def9;
    
              
    
              
    
    A43: (q,z1,z2) 
    are_collinear by 
    A42,
    Th24;
    
              (p1,p2,p2)
    are_collinear by 
    Def7;
    
              then
    
              
    
    A44: (x1,x,p2) 
    are_collinear by 
    A10,
    A12,
    A17,
    Def8;
    
              (y1,y2,y2)
    are_collinear by 
    Def7;
    
              then
    
              
    
    A45: (b9,x3,y2) 
    are_collinear by 
    A22,
    A19,
    A27,
    Def8;
    
              (p1,p2,p1)
    are_collinear by 
    Def7;
    
              then (x1,x,p1)
    are_collinear by 
    A10,
    A12,
    A17,
    Def8;
    
              then
    
              
    
    A46: (p1,p2,z2) 
    are_collinear by 
    A18,
    A41,
    A44,
    Def8;
    
              (y1,y2,y1)
    are_collinear by 
    Def7;
    
              then (b9,x3,y1)
    are_collinear by 
    A22,
    A19,
    A27,
    Def8;
    
              then (y1,y2,z1)
    are_collinear by 
    A26,
    A39,
    A45,
    Def8;
    
              hence ex z2, z1 st (y1,y2,z1)
    are_collinear & (p1,p2,z2) 
    are_collinear & (q,z1,z2) 
    are_collinear by 
    A46,
    A43;
    
            end;
    
            now
    
              assume b
    = d; 
    
              then
    
              
    
    A47: (b,q,d9) 
    are_collinear by 
    A30,
    Th24;
    
              (y1,y2,y2)
    are_collinear by 
    Def7;
    
              then
    
              
    
    A48: (b9,x3,y2) 
    are_collinear by 
    A22,
    A19,
    A27,
    Def8;
    
              
    
              
    
    A49: (d9,x3,x1) 
    are_collinear by 
    A28,
    Th24;
    
              (b,q,b9)
    are_collinear & (b,q,q) 
    are_collinear by 
    A21,
    Def7,
    Th24;
    
              then (b9,d9,q)
    are_collinear by 
    A7,
    A20,
    A47,
    Def8;
    
              then
    
              consider z1 such that
    
              
    
    A50: (b9,x3,z1) 
    are_collinear and 
    
              
    
    A51: (q,x1,z1) 
    are_collinear by 
    A49,
    Def9;
    
              
    
              
    
    A52: (q,z1,x1) 
    are_collinear by 
    A51,
    Th24;
    
              (y1,y2,y1)
    are_collinear by 
    Def7;
    
              then (b9,x3,y1)
    are_collinear by 
    A22,
    A19,
    A27,
    Def8;
    
              then (y1,y2,z1)
    are_collinear by 
    A26,
    A50,
    A48,
    Def8;
    
              hence ex z2, z1 st (y1,y2,z1)
    are_collinear & (p1,p2,z2) 
    are_collinear & (q,z1,z2) 
    are_collinear by 
    A17,
    A52;
    
            end;
    
            hence ex z2, z1 st (y1,y2,z1)
    are_collinear & (p1,p2,z2) 
    are_collinear & (q,z1,z2) 
    are_collinear by 
    A32;
    
          end;
    
          now
    
            assume y1
    = y2; 
    
            then
    
            
    
    A53: (y1,y2,q) 
    are_collinear by 
    Def7;
    
            (p1,p2,p1)
    are_collinear & (q,q,p1) 
    are_collinear by 
    Def7;
    
            hence ex z2, z1 st (y1,y2,z1)
    are_collinear & (p1,p2,z2) 
    are_collinear & (q,z1,z2) 
    are_collinear by 
    A53;
    
          end;
    
          hence ex z2, z1 st (y1,y2,z1)
    are_collinear & (p1,p2,z2) 
    are_collinear & (q,z1,z2) 
    are_collinear by 
    A13;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A54: for q1, q2, p1, p2, q st not (q1,q2,q) 
    are_collinear & not (p1,p2,q) 
    are_collinear & ( not ex x st ((q1,q2,x) 
    are_collinear & (p1,p2,x) 
    are_collinear )) holds ex q3, p3 st (p1,p2,p3) 
    are_collinear & (q1,q2,q3) 
    are_collinear & not (q3,p3,q) 
    are_collinear  
    
      proof
    
        let q1, q2, p1, p2, q such that
    
        
    
    A55: not (q1,q2,q) 
    are_collinear and 
    
        
    
    A56: not (p1,p2,q) 
    are_collinear and not ex x st ((q1,q2,x) 
    are_collinear & (p1,p2,x) 
    are_collinear ); 
    
        
    
        
    
    A57: q 
    <> q1 by 
    A55,
    Def7;
    
        
    
        
    
    A58: not (q1,p1,q) 
    are_collinear or not (q1,p2,q) 
    are_collinear  
    
        proof
    
          assume not thesis;
    
          then
    
          
    
    A59: (q,q1,p1) 
    are_collinear & (q,q1,p2) 
    are_collinear by 
    Th24;
    
          (q,q1,q)
    are_collinear by 
    Def7;
    
          hence contradiction by
    A56,
    A57,
    A59,
    Def8;
    
        end;
    
        
    
        
    
    A60: (p1,p2,p2) 
    are_collinear by 
    Def7;
    
        (q1,q2,q1)
    are_collinear & (p1,p2,p1) 
    are_collinear by 
    Def7;
    
        hence thesis by
    A60,
    A58;
    
      end;
    
      
    
      
    
    A61: for q, q1, q2, p1, p2 st 
    P[q, q1, q2] & not (q1,q2,q)
    are_collinear & not (p1,p2,q) 
    are_collinear & not ex x st ((q1,q2,x) 
    are_collinear & (p1,p2,x) 
    are_collinear ) holds 
    P[q, p1, p2]
    
      proof
    
        let q, q1, q2, p1, p2;
    
        assume that
    
        
    
    A62: 
    P[q, q1, q2] and
    
        
    
    A63: not (q1,q2,q) 
    are_collinear and 
    
        
    
    A64: not (p1,p2,q) 
    are_collinear and 
    
        
    
    A65: not ex x st ((q1,q2,x) 
    are_collinear & (p1,p2,x) 
    are_collinear ); 
    
        consider q3, p3 such that
    
        
    
    A66: (p1,p2,p3) 
    are_collinear and 
    
        
    
    A67: (q1,q2,q3) 
    are_collinear and 
    
        
    
    A68: not (q3,p3,q) 
    are_collinear by 
    A54,
    A63,
    A64,
    A65;
    
        (q3,p3,q3)
    are_collinear by 
    Def7;
    
        then
    
        
    
    A69: 
    P[q, q3, p3] by
    A5,
    A62,
    A63,
    A67,
    A68;
    
        (q3,p3,p3)
    are_collinear by 
    Def7;
    
        hence thesis by
    A5,
    A64,
    A66,
    A68,
    A69;
    
      end;
    
      
    
      
    
    A70: for q, q1, q2 st 
    P[q, q1, q2] & not (q1,q2,q)
    are_collinear holds for p1, p2 holds 
    P[q, p1, p2]
    
      proof
    
        let q, q1, q2 such that
    
        
    
    A71: 
    P[q, q1, q2] & not (q1,q2,q)
    are_collinear ; 
    
        let p1, p2;
    
        
    
        
    
    A72: not (p1,p2,q) 
    are_collinear & ( not ex x st (q1,q2,x) 
    are_collinear & (p1,p2,x) 
    are_collinear ) implies 
    P[q, p1, p2] by
    A61,
    A71;
    
         not (p1,p2,q)
    are_collinear & (ex x st (q1,q2,x) 
    are_collinear & (p1,p2,x) 
    are_collinear ) implies 
    P[q, p1, p2] by
    A5,
    A71;
    
        hence thesis by
    A3,
    A72;
    
      end;
    
      reconsider CS = (
    ProjectiveSpace V) as 
    CollProjectiveSpace by 
    A1,
    A2,
    Def10;
    
      given p, q1, q2 such that
    
      
    
    A73: not (p,q1,q2) 
    are_collinear and 
    
      
    
    A74: for r1, r2 holds ex q3, r3 st (r1,r2,r3) 
    are_collinear & (q1,q2,q3) 
    are_collinear & (p,r3,q3) 
    are_collinear ; 
    
      take CS;
    
      
    
      
    
    A75: for q, q1, q2, x, q3 st 
    P[q, q1, q2] & not (q1,q2,q)
    are_collinear & (q1,q2,x) 
    are_collinear & (q,q3,x) 
    are_collinear holds 
    P[q3, q1, q2]
    
      proof
    
        let q, q1, q2, x, q3 such that
    
        
    
    A76: 
    P[q, q1, q2] and
    
        
    
    A77: not (q1,q2,q) 
    are_collinear and 
    
        
    
    A78: (q1,q2,x) 
    are_collinear and 
    
        
    
    A79: (q,q3,x) 
    are_collinear ; 
    
        now
    
          let y1, y2;
    
          consider z2, z1 such that
    
          
    
    A80: (y1,y2,z1) 
    are_collinear and 
    
          
    
    A81: (q1,q2,z2) 
    are_collinear and 
    
          
    
    A82: (q,z1,z2) 
    are_collinear by 
    A76;
    
          
    
    A83: 
    
          now
    
            (q3,q,x)
    are_collinear by 
    A79,
    Th24;
    
            then
    
            consider x2 such that
    
            
    
    A84: (q3,z1,x2) 
    are_collinear and 
    
            
    
    A85: (x,z2,x2) 
    are_collinear by 
    A82,
    Def9;
    
            
    
            
    
    A86: q1 
    <> q2 by 
    A77,
    Def7;
    
            (q1,q2,q2)
    are_collinear by 
    Def7;
    
            then
    
            
    
    A87: (x,z2,q2) 
    are_collinear by 
    A78,
    A81,
    A86,
    Def8;
    
            (q1,q2,q1)
    are_collinear by 
    Def7;
    
            then
    
            
    
    A88: (x,z2,q1) 
    are_collinear by 
    A78,
    A81,
    A86,
    Def8;
    
            assume x
    <> z2; 
    
            then (q1,q2,x2)
    are_collinear by 
    A85,
    A88,
    A87,
    Def8;
    
            hence ex x2, x1 st (y1,y2,x1)
    are_collinear & (q1,q2,x2) 
    are_collinear & (q3,x1,x2) 
    are_collinear by 
    A80,
    A84;
    
          end;
    
          now
    
            
    
            
    
    A89: (q,x,q3) 
    are_collinear & (q,x,x) 
    are_collinear by 
    A79,
    Def7,
    Th24;
    
            assume
    
            
    
    A90: x 
    = z2; 
    
            then (q,x,z1)
    are_collinear by 
    A82,
    Th24;
    
            then (q3,z1,z2)
    are_collinear by 
    A77,
    A78,
    A90,
    A89,
    Def8;
    
            hence ex x2, x1 st (y1,y2,x1)
    are_collinear & (q1,q2,x2) 
    are_collinear & (q3,x1,x2) 
    are_collinear by 
    A80,
    A81;
    
          end;
    
          hence ex x2, x1 st (y1,y2,x1)
    are_collinear & (q1,q2,x2) 
    are_collinear & (q3,x1,x2) 
    are_collinear by 
    A83;
    
        end;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A91: for q, p holds ((for q1, q2 holds 
    P[q, q1, q2]) implies ex p1, p2 st
    P[p, p1, p2] & not (p1,p2,p)
    are_collinear ) 
    
      proof
    
        let q, p such that
    
        
    
    A92: for q1, q2 holds 
    P[q, q1, q2];
    
        consider x1 such that
    
        
    
    A93: p 
    <> x1 and 
    
        
    
    A94: q 
    <> x1 and 
    
        
    
    A95: (p,q,x1) 
    are_collinear by 
    A2;
    
        consider x2 such that
    
        
    
    A96: not (p,x1,x2) 
    are_collinear by 
    A1,
    A93,
    COLLSP: 12;
    
        
    
        
    
    A97: not (x1,x2,q) 
    are_collinear  
    
        proof
    
          assume not thesis;
    
          then
    
          
    
    A98: (q,x1,x2) 
    are_collinear by 
    Th24;
    
          (q,x1,x1)
    are_collinear & (q,x1,p) 
    are_collinear by 
    A95,
    Def7,
    Th24;
    
          hence contradiction by
    A94,
    A96,
    A98,
    Def8;
    
        end;
    
        
    
        
    
    A99: (x1,x2,x1) 
    are_collinear by 
    Def7;
    
        
    
        
    
    A100: not (x1,x2,p) 
    are_collinear by 
    A96,
    Th24;
    
        
    
        
    
    A101: 
    P[q, x1, x2] by
    A92;
    
        (q,p,x1)
    are_collinear by 
    A95,
    Th24;
    
        then
    P[p, x1, x2] by
    A75,
    A97,
    A99,
    A101;
    
        hence thesis by
    A100;
    
      end;
    
      
    
      
    
    A102: for x, y1, z holds 
    P[x, y1, z]
    
      proof
    
        let x, y1, z;
    
         not (q1,q2,p)
    are_collinear by 
    A73,
    Th24;
    
        then for p1, p2 holds
    P[p, p1, p2] by
    A74,
    A70;
    
        then ex r1, r2 st
    P[x, r1, r2] & not (r1,r2,x)
    are_collinear by 
    A91;
    
        hence thesis by
    A70;
    
      end;
    
      for p4, p1, q, q4, r2 holds ex r, r1 st (p4,q,r)
    are_collinear & (p1,q4,r1) 
    are_collinear & (r2,r,r1) 
    are_collinear  
    
      proof
    
        let p4, p1, q, q4, r2;
    
        ex r1, r st (p4,q,r)
    are_collinear & (p1,q4,r1) 
    are_collinear & (r2,r,r1) 
    are_collinear by 
    A102;
    
        hence thesis;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:32
    
    
    
    
    
    Th32: (ex y, u, v, w st (for w1 holds ex a, b, c, c1 st w1 
    = ((((a 
    * y) 
    + (b 
    * u)) 
    + (c 
    * v)) 
    + (c1 
    * w))) & (for a, b, a1, b1 st ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 )) implies ex CS be 
    CollProjectiveSpace st CS 
    = ( 
    ProjectiveSpace V) & CS is 
    at_most-3-dimensional
    
    proof
    
      given y, u, v, w such that
    
      
    
    A1: (for w1 holds ex a, b, c, c1 st w1 
    = ((((a 
    * y) 
    + (b 
    * u)) 
    + (c 
    * v)) 
    + (c1 
    * w))) & for a, b, a1, b1 st ((((a 
    * y) 
    + (b 
    * u)) 
    + (a1 
    * v)) 
    + (b1 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ; 
    
      (
    ProjectiveSpace V) is 
    proper
    at_least_3rank & ex p, q1, q2 st not (p,q1,q2) 
    are_collinear & for r1, r2 holds ex q3, r3 st (r1,r2,r3) 
    are_collinear & (q1,q2,q3) 
    are_collinear & (p,r3,q3) 
    are_collinear by 
    A1,
    Lm43,
    Th30;
    
      hence thesis by
    Th31;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:33
    
    
    
    
    
    Th33: (ex u, v, u1, v1 st (for a, b, a1, b1 st ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 )) implies ex CS be 
    CollProjectiveSpace st CS 
    = ( 
    ProjectiveSpace V) & CS is non 
    2-dimensional
    
    proof
    
      given u, v, u1, v1 such that
    
      
    
    A1: for a, b, a1, b1 st ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ; 
    
      V is
    up-3-dimensional by 
    A1,
    Lm42;
    
      then
    
      reconsider CS = (
    ProjectiveSpace V) as 
    CollProjectiveSpace;
    
      take CS;
    
      thus CS
    = ( 
    ProjectiveSpace V); 
    
      
    
      
    
    A2: not u1 is 
    zero & not v1 is 
    zero by 
    A1,
    Th2;
    
      
    
      
    
    A3: not u is 
    zero & not v is 
    zero by 
    A1,
    Th2;
    
      then
    
      reconsider p = (
    Dir u), p1 = ( 
    Dir v), q = ( 
    Dir u1), q1 = ( 
    Dir v1) as 
    Element of CS by 
    A2,
    ANPROJ_1: 26;
    
      take p, p1, q, q1;
    
      thus not ex r be
    Element of CS st ((p,p1,r) 
    are_collinear & (q,q1,r) 
    are_collinear ) 
    
      proof
    
        assume not thesis;
    
        then
    
        consider r be
    Element of CS such that 
    
        
    
    A4: (p,p1,r) 
    are_collinear and 
    
        
    
    A5: (q,q1,r) 
    are_collinear ; 
    
        consider y such that
    
        
    
    A6: not y is 
    zero and 
    
        
    
    A7: r 
    = ( 
    Dir y) by 
    ANPROJ_1: 26;
    
        
    [q, q1, r]
    in the 
    Collinearity of ( 
    ProjectiveSpace V) by 
    A5;
    
        then
    
        
    
    A8: (u1,v1,y) 
    are_LinDep by 
    A2,
    A6,
    A7,
    ANPROJ_1: 25;
    
        
    [p, p1, r]
    in the 
    Collinearity of ( 
    ProjectiveSpace V) by 
    A4;
    
        then (u,v,y)
    are_LinDep by 
    A3,
    A6,
    A7,
    ANPROJ_1: 25;
    
        hence contradiction by
    A1,
    A6,
    A8,
    Th5;
    
      end;
    
    end;
    
    theorem :: 
    
    ANPROJ_2:34
    
    
    
    
    
    Th34: (ex u, v, u1, v1 st (for w holds ex a, b, a1, b1 st w 
    = ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1))) & (for a, b, a1, b1 st ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 )) implies ex CS be 
    CollProjectiveSpace st CS 
    = ( 
    ProjectiveSpace V) & CS is 
    up-3-dimensional
    at_most-3-dimensional
    
    proof
    
      assume ex u, v, u1, v1 st (for w holds ex a, b, a1, b1 st w
    = ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1))) & for a, b, a1, b1 st ((((a 
    * u) 
    + (b 
    * v)) 
    + (a1 
    * u1)) 
    + (b1 
    * v1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & a1 
    =  
    0 & b1 
    =  
    0 ; 
    
      then (ex CS1 be
    CollProjectiveSpace st CS1 
    = ( 
    ProjectiveSpace V) & CS1 is 
    up-3-dimensional) & ex CS2 be
    CollProjectiveSpace st CS2 
    = ( 
    ProjectiveSpace V) & CS2 is 
    at_most-3-dimensional by 
    Th32,
    Th33;
    
      hence thesis;
    
    end;
    
    registration
    
      cluster 
    strict
    Fanoian
    Desarguesian
    Pappian
    2-dimensional for 
    CollProjectiveSpace;
    
      existence
    
      proof
    
        consider V be non
    trivial  
    RealLinearSpace such that 
    
        
    
    A1: ex u,v,w be 
    Element of V st (for a, b, c st (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 ) & for y be 
    Element of V holds ex a, b, c st y 
    = (((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) by 
    Th16;
    
        reconsider V as
    up-3-dimensional  
    RealLinearSpace by 
    A1,
    Def6;
    
        take CS = (
    ProjectiveSpace V); 
    
        thus CS is
    strict
    Fanoian
    Desarguesian
    Pappian;
    
        ex CS1 be
    CollProjectiveSpace st CS1 
    = ( 
    ProjectiveSpace V) & CS1 is 
    2-dimensional by 
    A1,
    Th29;
    
        hence thesis;
    
      end;
    
      cluster 
    strict
    Fanoian
    Desarguesian
    Pappian
    at_most-3-dimensional
    up-3-dimensional for 
    CollProjectiveSpace;
    
      existence
    
      proof
    
        consider V be non
    trivial  
    RealLinearSpace such that 
    
        
    
    A2: ex u,v,w,u1 be 
    Element of V st (for a, b, c, d st ((((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) 
    = ( 
    0. V) holds a 
    =  
    0 & b 
    =  
    0 & c 
    =  
    0 & d 
    =  
    0 ) & for y be 
    Element of V holds ex a, b, c, d st y 
    = ((((a 
    * u) 
    + (b 
    * v)) 
    + (c 
    * w)) 
    + (d 
    * u1)) by 
    Th22;
    
        reconsider V as
    up-3-dimensional  
    RealLinearSpace by 
    A2,
    Lm42;
    
        take CS = (
    ProjectiveSpace V); 
    
        thus CS is
    strict
    Fanoian
    Desarguesian
    Pappian;
    
        ex CS be
    CollProjectiveSpace st CS 
    = ( 
    ProjectiveSpace V) & CS is 
    up-3-dimensional
    at_most-3-dimensional by 
    A2,
    Th34;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      mode
    
    CollProjectivePlane is 
    2-dimensional  
    CollProjectiveSpace;
    
    end
    
    theorem :: 
    
    ANPROJ_2:35
    
    for CS be non
    empty  
    CollStr holds CS is 
    2-dimensional  
    CollProjectiveSpace iff (CS is 
    at_least_3rank
    proper  
    CollSp & for p,p1,q,q1 be 
    Element of CS holds ex r be 
    Element of CS st (p,p1,r) 
    are_collinear & (q,q1,r) 
    are_collinear ) 
    
    proof
    
      let CS be non
    empty  
    CollStr;
    
      thus CS is
    2-dimensional  
    CollProjectiveSpace implies CS is 
    at_least_3rank
    proper  
    CollSp & for p,p1,q,q1 be 
    Element of CS holds ex r be 
    Element of CS st (p,p1,r) 
    are_collinear & (q,q1,r) 
    are_collinear by 
    Def14;
    
      assume that
    
      
    
    A1: CS is 
    at_least_3rank
    proper  
    CollSp and 
    
      
    
    A2: for p,p1,q,q1 be 
    Element of CS holds ex r be 
    Element of CS st (p,p1,r) 
    are_collinear & (q,q1,r) 
    are_collinear ; 
    
      CS is
    Vebleian by 
    A2;
    
      hence thesis by
    A1,
    A2,
    Def14;
    
    end;