pasch.miz
begin
reserve OAS for
OAffinSpace;
reserve a,a9,b,b9,c,c9,d,d1,d2,e1,e2,e3,e4,e5,e6,p,p9,q,r,x,y,z for
Element of OAS;
definition
let OAS;
::
PASCH:def1
attr OAS is
satisfying_Int_Par_Pasch means for a, b, c, d, p st not (p,b,c)
are_collinear &
Mid (b,p,a) & (p,c,d)
are_collinear & (b,c)
'||' (d,a) holds
Mid (c,p,d);
end
definition
let OAS;
::
PASCH:def2
attr OAS is
satisfying_Ext_Par_Pasch means for a, b, c, d, p st
Mid (p,b,c) & (p,a,d)
are_collinear & (a,b)
'||' (c,d) & not (p,a,b)
are_collinear holds
Mid (p,a,d);
end
definition
let OAS;
::
PASCH:def3
attr OAS is
satisfying_Gen_Par_Pasch means for a, b, c, a9, b9, c9 st not (a,b,a9)
are_collinear & (a,a9)
'||' (b,b9) & (a,a9)
'||' (c,c9) &
Mid (a,b,c) & (a9,b9,c9)
are_collinear holds
Mid (a9,b9,c9);
end
definition
let OAS;
::
PASCH:def4
attr OAS is
satisfying_Ext_Bet_Pasch means for a, b, c, d, x, y st
Mid (a,b,d) &
Mid (b,x,c) & not (a,b,c)
are_collinear holds ex y st
Mid (a,y,c) &
Mid (y,x,d);
end
definition
let OAS;
::
PASCH:def5
attr OAS is
satisfying_Int_Bet_Pasch means for a, b, c, d, x, y st
Mid (a,b,d) &
Mid (a,x,c) & not (a,b,c)
are_collinear holds ex y st
Mid (b,y,c) &
Mid (x,y,d);
end
definition
let OAS;
::
PASCH:def6
attr OAS is
Fanoian means for a, b, c, d st (a,b)
// (c,d) & (a,c)
// (b,d) & not (a,b,c)
are_collinear holds ex x st
Mid (a,x,d) &
Mid (b,x,c);
end
theorem ::
PASCH:1
Th1: (b,p)
// (p,c) & p
<> c & b
<> p implies ex d st (a,p)
// (p,d) & (a,b)
'||' (c,d) & c
<> d & p
<> d
proof
assume that
A1: (b,p)
// (p,c) and
A2: p
<> c and
A3: b
<> p;
A4:
now
A5:
now
Mid (b,p,c) by
A1,
DIRAF:def 3;
then (b,p,c)
are_collinear by
DIRAF: 28;
then
A6: (p,c,b)
are_collinear by
DIRAF: 30;
assume (p,a)
// (p,b);
then
A7: (a,p)
// (b,p) by
DIRAF: 2;
then (a,p)
// (p,c) by
A1,
A3,
DIRAF: 3;
then
Mid (a,p,c) by
DIRAF:def 3;
then (a,p,c)
are_collinear by
DIRAF: 28;
then (p,c,a)
are_collinear by
DIRAF: 30;
then
A8: (p,c)
'||' (a,b) by
A6,
DIRAF: 34;
A9: (p,c)
// (b,p) by
A1,
DIRAF: 2;
A10: (p,c,c)
are_collinear by
DIRAF: 31;
consider d such that
A11:
Mid (p,c,d) and
A12: c
<> d by
DIRAF: 13;
A13: p
<> d by
A11,
A12,
DIRAF: 8;
(p,c)
// (c,d) by
A11,
DIRAF:def 3;
then (p,c)
// (p,d) by
ANALOAF:def 5;
then
A14: (b,p)
// (p,d) by
A2,
A9,
ANALOAF:def 5;
(p,c,d)
are_collinear by
A11,
DIRAF: 28;
then (p,c)
'||' (c,d) by
A10,
DIRAF: 34;
then (a,b)
'||' (c,d) by
A2,
A8,
DIRAF: 23;
hence thesis by
A3,
A7,
A12,
A13,
A14,
DIRAF: 3;
end;
A15:
now
assume (p,a)
// (b,p);
then
A16: (a,p)
// (p,b) by
DIRAF: 2;
then
Mid (a,p,b) by
DIRAF:def 3;
then (a,p,b)
are_collinear by
DIRAF: 28;
then
A17: (p,b,a)
are_collinear by
DIRAF: 30;
Mid (b,p,c) by
A1,
DIRAF:def 3;
then (b,p,c)
are_collinear by
DIRAF: 28;
then
A18: (p,b,c)
are_collinear by
DIRAF: 30;
A19: (a,b,b)
are_collinear by
DIRAF: 31;
A20: b
<> c by
A1,
A2,
ANALOAF:def 5;
(p,b,b)
are_collinear by
DIRAF: 31;
then (a,b,c)
are_collinear by
A3,
A17,
A18,
DIRAF: 32;
hence thesis by
A3,
A16,
A20,
A19,
DIRAF: 34;
end;
assume (a,b,p)
are_collinear ;
then (p,a,b)
are_collinear by
DIRAF: 30;
then (p,a)
'||' (p,b) by
DIRAF:def 5;
hence thesis by
A5,
A15,
DIRAF:def 4;
end;
now
consider d such that
A21: (a,p)
// (p,d) and
A22: (a,b)
// (c,d) by
A1,
A3,
ANALOAF:def 5;
assume
A23: not (a,b,p)
are_collinear ;
A24:
now
assume d
= p;
then (p,c)
// (b,a) by
A22,
DIRAF: 2;
then (b,p)
// (b,a) by
A1,
A2,
DIRAF: 3;
then (b,p)
'||' (b,a) by
DIRAF:def 4;
then (b,p,a)
are_collinear by
DIRAF:def 5;
hence contradiction by
A23,
DIRAF: 30;
end;
A25:
now
assume d
= c;
then (p,d)
// (b,p) by
A1,
DIRAF: 2;
then (a,p)
// (b,p) by
A21,
A24,
DIRAF: 3;
then (p,a)
// (p,b) by
DIRAF: 2;
then (p,a)
'||' (p,b) by
DIRAF:def 4;
then (p,a,b)
are_collinear by
DIRAF:def 5;
hence contradiction by
A23,
DIRAF: 30;
end;
(a,b)
'||' (c,d) by
A22,
DIRAF:def 4;
hence thesis by
A21,
A24,
A25;
end;
hence thesis by
A4;
end;
theorem ::
PASCH:2
Th2: (p,b)
// (p,c) & p
<> c & b
<> p implies ex d st (p,a)
// (p,d) & (a,b)
'||' (c,d) & c
<> d
proof
assume that
A1: (p,b)
// (p,c) and
A2: p
<> c and
A3: b
<> p;
consider q such that
A4:
Mid (b,p,q) and
A5: p
<> q by
DIRAF: 13;
A6: (b,p)
// (p,q) by
A4,
DIRAF:def 3;
then
consider r such that
A7: (a,p)
// (p,r) and
A8: (a,b)
'||' (q,r) and
A9: q
<> r and
A10: r
<> p by
A3,
A5,
Th1;
(b,p)
// (c,p) by
A1,
DIRAF: 2;
then (p,q)
// (c,p) by
A3,
A6,
ANALOAF:def 5;
then (q,p)
// (p,c) by
DIRAF: 2;
then
consider d such that
A11: (r,p)
// (p,d) and
A12: (r,q)
'||' (c,d) and
A13: c
<> d and d
<> p by
A2,
A5,
Th1;
(p,r)
// (d,p) by
A11,
DIRAF: 2;
then (a,p)
// (d,p) by
A7,
A10,
DIRAF: 3;
then
A14: (p,a)
// (p,d) by
DIRAF: 2;
(q,r)
'||' (c,d) by
A12,
DIRAF: 22;
then (a,b)
'||' (c,d) by
A8,
A9,
DIRAF: 23;
hence thesis by
A13,
A14;
end;
theorem ::
PASCH:3
(p,b)
'||' (p,c) & p
<> b implies ex d st (p,a)
'||' (p,d) & (a,b)
'||' (c,d)
proof
assume that
A1: (p,b)
'||' (p,c) and
A2: p
<> b;
A3:
now
assume
A4: p
<> c;
A5:
now
assume (p,b)
// (c,p);
then (b,p)
// (p,c) by
DIRAF: 2;
then
consider d such that
A6: (a,p)
// (p,d) and
A7: (a,b)
'||' (c,d) and c
<> d and d
<> p by
A2,
A4,
Th1;
(p,a)
// (d,p) by
A6,
DIRAF: 2;
then (p,a)
'||' (p,d) by
DIRAF:def 4;
hence thesis by
A7;
end;
now
assume (p,b)
// (p,c);
then
consider d such that
A8: (p,a)
// (p,d) and
A9: (a,b)
'||' (c,d) and c
<> d by
A2,
A4,
Th2;
(p,a)
'||' (p,d) by
A8,
DIRAF:def 4;
hence thesis by
A9;
end;
hence thesis by
A1,
A5,
DIRAF:def 4;
end;
now
A10: (a,b)
'||' (p,p) by
DIRAF: 20;
A11: (p,a)
'||' (p,p) by
DIRAF: 20;
assume p
= c;
hence thesis by
A11,
A10;
end;
hence thesis by
A3;
end;
theorem ::
PASCH:4
Th4: not (p,a,b)
are_collinear & (p,b,c)
are_collinear & (p,a,d1)
are_collinear & (p,a,d2)
are_collinear & (a,b)
'||' (c,d1) & (a,b)
'||' (c,d2) implies d1
= d2
proof
assume that
A1: not (p,a,b)
are_collinear and
A2: (p,b,c)
are_collinear and
A3: (p,a,d1)
are_collinear and
A4: (p,a,d2)
are_collinear and
A5: (a,b)
'||' (c,d1) and
A6: (a,b)
'||' (c,d2);
A7: p
<> a by
A1,
DIRAF: 31;
A8: a
<> b by
A1,
DIRAF: 31;
A9:
now
(p,a,a)
are_collinear by
DIRAF: 31;
then
A10: (d1,d2,a)
are_collinear by
A3,
A4,
A7,
DIRAF: 32;
A11: (d1,d2,d1)
are_collinear by
DIRAF: 31;
A12: (p,c,b)
are_collinear by
A2,
DIRAF: 30;
A13: (d1,d2,d2)
are_collinear by
DIRAF: 31;
A14: (p,a,p)
are_collinear by
DIRAF: 31;
then
A15: (d1,d2,p)
are_collinear by
A3,
A4,
A7,
DIRAF: 32;
(c,d1)
'||' (c,d2) by
A5,
A6,
A8,
DIRAF: 23;
then
A16: (c,d1,d2)
are_collinear by
DIRAF:def 5;
then
A17: (d1,d2,c)
are_collinear by
DIRAF: 30;
assume
A18: p
<> c;
assume
A19: d1
<> d2;
(d1,d2,p)
are_collinear by
A3,
A4,
A7,
A14,
DIRAF: 32;
then
A20: (p,c,d1)
are_collinear by
A19,
A17,
A11,
DIRAF: 32;
(d1,d2,c)
are_collinear by
A16,
DIRAF: 30;
then (p,c,d2)
are_collinear by
A19,
A15,
A13,
DIRAF: 32;
then (d1,d2,b)
are_collinear by
A18,
A20,
A12,
DIRAF: 32;
hence contradiction by
A1,
A19,
A15,
A10,
DIRAF: 32;
end;
A21: (p,d2,a)
are_collinear by
A4,
DIRAF: 30;
A22: (p,d1,a)
are_collinear by
A3,
DIRAF: 30;
now
A23: (p,d2,p)
are_collinear by
DIRAF: 31;
assume
A24: c
= p;
then
A25: (p,d2)
'||' (a,b) by
A6,
DIRAF: 22;
A26:
now
assume
A27: p
<> d2;
then (p,d2,b)
are_collinear by
A21,
A25,
DIRAF: 33;
hence contradiction by
A1,
A21,
A23,
A27,
DIRAF: 32;
end;
A28: (p,d1,p)
are_collinear by
DIRAF: 31;
A29: (p,d1)
'||' (a,b) by
A5,
A24,
DIRAF: 22;
now
assume
A30: p
<> d1;
then (p,d1,b)
are_collinear by
A22,
A29,
DIRAF: 33;
hence contradiction by
A1,
A22,
A28,
A30,
DIRAF: 32;
end;
hence thesis by
A26;
end;
hence thesis by
A9;
end;
theorem ::
PASCH:5
Th5: not (a,b,c)
are_collinear & (a,b)
'||' (c,d1) & (a,b)
'||' (c,d2) & (a,c)
'||' (b,d1) & (a,c)
'||' (b,d2) implies d1
= d2
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b)
'||' (c,d1) and
A3: (a,b)
'||' (c,d2) and
A4: (a,c)
'||' (b,d1) and
A5: (a,c)
'||' (b,d2);
assume
A6: d1
<> d2;
a
<> c by
A1,
DIRAF: 31;
then (b,d1)
'||' (b,d2) by
A4,
A5,
DIRAF: 23;
then (b,d1,d2)
are_collinear by
DIRAF:def 5;
then
A7: (d1,d2,b)
are_collinear by
DIRAF: 30;
A8:
now
assume c
= d1;
then (c,a)
'||' (c,b) by
A4,
DIRAF: 22;
then (c,a,b)
are_collinear by
DIRAF:def 5;
hence contradiction by
A1,
DIRAF: 30;
end;
A9: (d1,d2,d1)
are_collinear by
DIRAF: 31;
a
<> b by
A1,
DIRAF: 31;
then (c,d1)
'||' (c,d2) by
A2,
A3,
DIRAF: 23;
then
A10: (c,d1,d2)
are_collinear by
DIRAF:def 5;
then
A11: (d1,d2,c)
are_collinear by
DIRAF: 30;
(d1,d2,c)
are_collinear by
A10,
DIRAF: 30;
then (d1,d2)
'||' (c,d1) by
A9,
DIRAF: 34;
then (d1,d2)
'||' (a,b) or c
= d1 by
A2,
DIRAF: 23;
then (d1,d2)
'||' (b,a) by
A8,
DIRAF: 22;
then (d1,d2,a)
are_collinear by
A6,
A7,
DIRAF: 33;
hence contradiction by
A1,
A6,
A11,
A7,
DIRAF: 32;
end;
theorem ::
PASCH:6
Th6: not (p,b,c)
are_collinear &
Mid (b,p,a) & (p,c,d)
are_collinear & (b,c)
'||' (d,a) implies
Mid (c,p,d)
proof
assume that
A1: not (p,b,c)
are_collinear and
A2:
Mid (b,p,a) and
A3: (p,c,d)
are_collinear and
A4: (b,c)
'||' (d,a);
A5: (p,d,c)
are_collinear by
A3,
DIRAF: 30;
(b,p,a)
are_collinear by
A2,
DIRAF: 28;
then
A6: (p,b,a)
are_collinear by
DIRAF: 30;
(p,c)
'||' (p,d) by
A3,
DIRAF:def 5;
then
A7: (p,c)
// (p,d) or (p,c)
// (d,p) by
DIRAF:def 4;
assume
A8: not
Mid (c,p,d);
then
A9: d
<> p by
DIRAF: 10;
A10:
now
assume (p,c)
// (d,p);
then (c,p)
// (p,d) by
DIRAF: 2;
hence contradiction by
A8,
DIRAF:def 3;
end;
p
<> c by
A8,
DIRAF: 10;
then
consider q such that
A11: (p,b)
// (p,q) and
A12: (b,c)
'||' (d,q) and d
<> q by
A9,
A7,
A10,
Th2;
A13: (p,d,p)
are_collinear by
DIRAF: 31;
(p,b)
'||' (p,q) by
A11,
DIRAF:def 4;
then (p,b,q)
are_collinear by
DIRAF:def 5;
then a
= q by
A1,
A3,
A4,
A12,
A6,
Th4;
then (b,p)
// (p,q) by
A2,
DIRAF:def 3;
then (p,q)
// (b,p) by
DIRAF: 2;
then (p,b)
// (b,p) or p
= q by
A11,
DIRAF: 3;
then p
= b or p
= q by
ANALOAF:def 5;
then (p,d)
'||' (c,b) by
A1,
A12,
DIRAF: 22,
DIRAF: 31;
then (p,d,b)
are_collinear by
A9,
A5,
DIRAF: 33;
hence contradiction by
A1,
A9,
A5,
A13,
DIRAF: 32;
end;
theorem ::
PASCH:7
OAS is
satisfying_Int_Par_Pasch by
Th6;
theorem ::
PASCH:8
Th8:
Mid (p,b,c) & (p,a,d)
are_collinear & (a,b)
'||' (c,d) & not (p,a,b)
are_collinear implies
Mid (p,a,d)
proof
assume that
A1:
Mid (p,b,c) and
A2: (p,a,d)
are_collinear and
A3: (a,b)
'||' (c,d) and
A4: not (p,a,b)
are_collinear ;
A5:
now
(d,a,p)
are_collinear by
A2,
DIRAF: 30;
then (d,a)
'||' (d,p) by
DIRAF:def 5;
then
A6: (a,d)
'||' (d,p) by
DIRAF: 22;
assume
A7: b
<> c;
A8: b
<> a by
A4,
DIRAF: 31;
A9: not (d,b,a)
are_collinear
proof
assume (d,b,a)
are_collinear ;
then
A10: (a,b,d)
are_collinear by
DIRAF: 30;
(a,b)
'||' (d,c) by
A3,
DIRAF: 22;
then (a,b,c)
are_collinear by
A8,
A10,
DIRAF: 33;
then
A11: (b,c,a)
are_collinear by
DIRAF: 30;
(p,b,c)
are_collinear by
A1,
DIRAF: 28;
then
A12: (b,c,p)
are_collinear by
DIRAF: 30;
(b,c,b)
are_collinear by
DIRAF: 31;
hence contradiction by
A4,
A7,
A11,
A12,
DIRAF: 32;
end;
then d
<> a by
DIRAF: 31;
then
consider q such that
A13: (b,d)
'||' (d,q) and
A14: (b,a)
'||' (p,q) by
A6,
DIRAF: 27;
A15: (p,b,c)
are_collinear by
A1,
DIRAF: 28;
A16: p
<> c by
A1,
A7,
DIRAF: 8;
A17: not (b,c,d)
are_collinear
proof
A18: (p,c,c)
are_collinear by
DIRAF: 31;
(p,b,c)
are_collinear by
A1,
DIRAF: 28;
then
A19: (p,c,b)
are_collinear by
DIRAF: 30;
assume
A20: (b,c,d)
are_collinear ;
A21: (b,c,b)
are_collinear by
DIRAF: 31;
A22:
now
assume (a,b)
'||' (c,b);
then (b,c)
'||' (b,a) by
DIRAF: 22;
then (b,c,a)
are_collinear by
DIRAF:def 5;
hence contradiction by
A7,
A9,
A20,
A21,
DIRAF: 32;
end;
(c,d,b)
are_collinear by
A20,
DIRAF: 30;
then (c,d)
'||' (c,b) by
DIRAF:def 5;
then (p,a,c)
are_collinear by
A2,
A3,
A22,
DIRAF: 23;
then (p,c,a)
are_collinear by
DIRAF: 30;
then (b,c,a)
are_collinear by
A16,
A19,
A18,
DIRAF: 32;
hence contradiction by
A7,
A9,
A20,
A21,
DIRAF: 32;
end;
(a,b)
'||' (q,p) by
A14,
DIRAF: 22;
then
A23: (c,d)
'||' (q,p) by
A3,
A8,
DIRAF: 23;
(d,b)
'||' (d,q) by
A13,
DIRAF: 22;
then (d,b,q)
are_collinear by
DIRAF:def 5;
then
A24: (b,d,q)
are_collinear by
DIRAF: 30;
A25: d
<> p
proof
A26: (p,c,p)
are_collinear by
DIRAF: 31;
(p,b,c)
are_collinear by
A1,
DIRAF: 28;
then
A27: (p,c,b)
are_collinear by
DIRAF: 30;
assume d
= p;
then (p,c)
'||' (b,a) by
A3,
DIRAF: 22;
then (p,c,a)
are_collinear by
A16,
A27,
DIRAF: 33;
hence contradiction by
A4,
A16,
A27,
A26,
DIRAF: 32;
end;
A28: not (d,p,q)
are_collinear
proof
A29:
now
assume p
= q;
then (d,b)
'||' (d,p) by
A13,
DIRAF: 22;
then (d,b,p)
are_collinear by
DIRAF:def 5;
then
A30: (d,p,b)
are_collinear by
DIRAF: 30;
A31: (d,p,d)
are_collinear by
DIRAF: 31;
(d,p,a)
are_collinear by
A2,
DIRAF: 30;
hence contradiction by
A9,
A25,
A31,
A30,
DIRAF: 32;
end;
A32: (p,q,p)
are_collinear by
DIRAF: 31;
A33: (d,p,p)
are_collinear by
DIRAF: 31;
assume
A34: (d,p,q)
are_collinear ;
(d,p,a)
are_collinear by
A2,
DIRAF: 30;
then
A35: (p,q,a)
are_collinear by
A25,
A34,
A33,
DIRAF: 32;
(p,q)
'||' (a,b) by
A14,
DIRAF: 22;
then (p,q,b)
are_collinear by
A35,
A29,
DIRAF: 33;
hence contradiction by
A4,
A35,
A29,
A32,
DIRAF: 32;
end;
Mid (c,b,p) by
A1,
DIRAF: 9;
then
A36:
Mid (d,b,q) by
A17,
A24,
A23,
Th6;
A37:
now
(d,b)
'||' (d,q) by
A13,
DIRAF: 22;
then (d,b,q)
are_collinear by
DIRAF:def 5;
then
A38: (d,q,b)
are_collinear by
DIRAF: 30;
assume
A39:
Mid (p,d,a);
(p,q)
'||' (b,a) by
A14,
DIRAF: 22;
then
Mid (q,d,b) by
A28,
A39,
A38,
Th6;
then
Mid (b,d,q) by
DIRAF: 9;
then b
= d by
A36,
DIRAF: 14;
hence contradiction by
A9,
DIRAF: 31;
end;
assume not
Mid (p,a,d);
then
Mid (a,p,d) by
A2,
A37,
DIRAF: 29;
then
Mid (b,p,c) by
A3,
A4,
A15,
Th6;
then p
= b by
A1,
DIRAF: 14;
hence contradiction by
A4,
DIRAF: 31;
end;
now
A40: (a,b)
'||' (b,a) by
DIRAF: 19;
A41: (p,a,a)
are_collinear by
DIRAF: 31;
A42: (p,b,b)
are_collinear by
DIRAF: 31;
assume b
= c;
then a
= d by
A2,
A3,
A4,
A42,
A41,
A40,
Th4;
hence thesis by
DIRAF: 10;
end;
hence thesis by
A5;
end;
theorem ::
PASCH:9
OAS is
satisfying_Ext_Par_Pasch by
Th8;
theorem ::
PASCH:10
Th10: not (a,b,a9)
are_collinear & (a,a9)
'||' (b,b9) & (a,a9)
'||' (c,c9) &
Mid (a,b,c) & (a9,b9,c9)
are_collinear implies
Mid (a9,b9,c9)
proof
assume that
A1: not (a,b,a9)
are_collinear and
A2: (a,a9)
'||' (b,b9) and
A3: (a,a9)
'||' (c,c9) and
A4:
Mid (a,b,c) and
A5: (a9,b9,c9)
are_collinear ;
A6: (a,b,c)
are_collinear by
A4,
DIRAF: 28;
A7: (b9,c9,a9)
are_collinear by
A5,
DIRAF: 30;
A8: (c9,b9,a9)
are_collinear by
A5,
DIRAF: 30;
A9: a
<> a9 by
A1,
DIRAF: 31;
then
A10: (b,b9)
'||' (c,c9) by
A2,
A3,
DIRAF: 23;
A11: a
<> b by
A1,
DIRAF: 31;
then
A12: a
<> c by
A4,
DIRAF: 8;
A13:
now
assume that
A14: b9
<> c9 and a9
<> b9 and
A15: b
<> b9;
A16: not (b,b9,a9)
are_collinear
proof
A17: (b,b9,b)
are_collinear by
DIRAF: 31;
assume
A18: (b,b9,a9)
are_collinear ;
(b,b9)
'||' (a9,a) by
A2,
DIRAF: 22;
then (b,b9,a)
are_collinear by
A15,
A18,
DIRAF: 33;
hence contradiction by
A1,
A15,
A18,
A17,
DIRAF: 32;
end;
A19:
now
(a,b)
'||' (a,c) by
A6,
DIRAF:def 5;
then (c,a)
'||' (a,b) by
DIRAF: 22;
then
consider x such that
A20: (c9,a)
'||' (a,x) and
A21: (c9,c)
'||' (b,x) by
A12,
DIRAF: 27;
(a,c9)
'||' (a,x) by
A20,
DIRAF: 22;
then
A22: (a,c9,x)
are_collinear by
DIRAF:def 5;
assume
A23: c
<> c9;
A24: x
<> b
proof
assume x
= b;
then
A25: (a,b,c9)
are_collinear by
A22,
DIRAF: 30;
(a,b,b)
are_collinear by
DIRAF: 31;
then
A26: (c,c9,b)
are_collinear by
A11,
A6,
A25,
DIRAF: 32;
(a,b,a)
are_collinear by
DIRAF: 31;
then (c,c9,a)
are_collinear by
A11,
A6,
A25,
DIRAF: 32;
then (c,c9)
'||' (a,b) by
A26,
DIRAF: 34;
then (b,b9)
'||' (a,b) by
A10,
A23,
DIRAF: 23;
then (a,a9)
'||' (a,b) by
A2,
A15,
DIRAF: 23;
then (a,a9,b)
are_collinear by
DIRAF:def 5;
hence contradiction by
A1,
DIRAF: 30;
end;
(c,c9)
'||' (b,x) by
A21,
DIRAF: 22;
then (b,b9)
'||' (b,x) by
A10,
A23,
DIRAF: 23;
then
A27: (b,b9,x)
are_collinear by
DIRAF:def 5;
then (b,x,b9)
are_collinear by
DIRAF: 30;
then (b,x)
'||' (b,b9) by
DIRAF:def 5;
then (b,x)
'||' (c,c9) by
A10,
A15,
DIRAF: 23;
then
A28: (x,b)
'||' (c,c9) by
DIRAF: 22;
A29: x
<> b9
proof
assume x
= b9;
then
A30: (b9,c9,a)
are_collinear by
A22,
DIRAF: 30;
A31: (a,a9)
'||' (b9,b) by
A2,
DIRAF: 22;
(b9,c9,b9)
are_collinear by
DIRAF: 31;
then (a,a9,b9)
are_collinear by
A7,
A14,
A30,
DIRAF: 32;
then (a,a9,b)
are_collinear by
A9,
A31,
DIRAF: 33;
hence contradiction by
A1,
DIRAF: 30;
end;
A32: not (c9,b9,x)
are_collinear
proof
assume (c9,b9,x)
are_collinear ;
then
A33: (b9,x,c9)
are_collinear by
DIRAF: 30;
A34: (b9,x,b9)
are_collinear by
DIRAF: 31;
A35: (c9,b9,b9)
are_collinear by
DIRAF: 31;
(b9,x,b)
are_collinear by
A27,
DIRAF: 30;
then (c9,b9,b)
are_collinear by
A29,
A33,
A34,
DIRAF: 32;
hence contradiction by
A8,
A14,
A16,
A35,
DIRAF: 32;
end;
A36: (x,b,b9)
are_collinear by
A27,
DIRAF: 30;
A37: not (a,x,b)
are_collinear
proof
assume (a,x,b)
are_collinear ;
then
A38: (x,b,a)
are_collinear by
DIRAF: 30;
A39: (b,b9)
'||' (a,a9) by
A2,
DIRAF: 22;
(x,b,b)
are_collinear by
DIRAF: 31;
then (b,b9,a)
are_collinear by
A36,
A24,
A38,
DIRAF: 32;
hence contradiction by
A15,
A16,
A39,
DIRAF: 33;
end;
(b9,b,x)
are_collinear by
A27,
DIRAF: 30;
then (b9,b)
'||' (b9,x) by
DIRAF:def 5;
then (b,b9)
'||' (b9,x) by
DIRAF: 22;
then
A40: (b9,x)
'||' (a,a9) by
A2,
A15,
DIRAF: 23;
(a,x,c9)
are_collinear by
A22,
DIRAF: 30;
then
Mid (a,x,c9) by
A4,
A28,
A37,
Th8;
then
Mid (c9,x,a) by
DIRAF: 9;
then
Mid (c9,b9,a9) by
A8,
A40,
A32,
Th8;
hence thesis by
DIRAF: 9;
end;
c
= c9 implies thesis
proof
A41: not (c9,b9,b)
are_collinear
proof
A42: (c9,b9,b9)
are_collinear by
DIRAF: 31;
assume (c9,b9,b)
are_collinear ;
hence contradiction by
A8,
A14,
A16,
A42,
DIRAF: 32;
end;
assume c
= c9;
then
A43:
Mid (c9,b,a) by
A4,
DIRAF: 9;
(b9,b)
'||' (a,a9) by
A2,
DIRAF: 22;
then
Mid (c9,b9,a9) by
A8,
A43,
A41,
Th8;
hence thesis by
DIRAF: 9;
end;
hence thesis by
A19;
end;
b
= b9 implies thesis
proof
A44: (a,a9)
'||' (c9,c) by
A3,
DIRAF: 22;
A45: (b9,a9,c9)
are_collinear by
A5,
DIRAF: 30;
assume
A46: b
= b9;
then not (b9,a,a9)
are_collinear by
A1,
DIRAF: 30;
hence thesis by
A4,
A46,
A45,
A44,
Th6;
end;
hence thesis by
A13,
DIRAF: 10;
end;
theorem ::
PASCH:11
OAS is
satisfying_Gen_Par_Pasch by
Th10;
theorem ::
PASCH:12
not (p,a,b)
are_collinear & (a,p)
// (p,a9) & (b,p)
// (p,b9) & (a,b)
'||' (a9,b9) implies (a,b)
// (b9,a9)
proof
assume that
A1: not (p,a,b)
are_collinear and
A2: (a,p)
// (p,a9) and
A3: (b,p)
// (p,b9) and
A4: (a,b)
'||' (a9,b9);
A5: not (p,b,a)
are_collinear by
A1,
DIRAF: 30;
Mid (b,p,b9) by
A3,
DIRAF:def 3;
then (b,p,b9)
are_collinear by
DIRAF: 28;
then
A6: (p,b,b9)
are_collinear by
DIRAF: 30;
Mid (a,p,a9) by
A2,
DIRAF:def 3;
then (a,p,a9)
are_collinear by
DIRAF: 28;
then
A7: (p,a,a9)
are_collinear by
DIRAF: 30;
A8: (b,a)
'||' (a9,b9) by
A4,
DIRAF: 22;
a
<> p by
A1,
DIRAF: 31;
then
consider q such that
A9: (b,p)
// (p,q) and
A10: (b,a)
// (a9,q) by
A2,
ANALOAF:def 5;
Mid (b,p,q) by
A9,
DIRAF:def 3;
then (b,p,q)
are_collinear by
DIRAF: 28;
then
A11: (p,b,q)
are_collinear by
DIRAF: 30;
(b,a)
'||' (a9,q) by
A10,
DIRAF:def 4;
then (b,a)
// (a9,b9) by
A10,
A5,
A7,
A6,
A11,
A8,
Th4;
hence thesis by
DIRAF: 2;
end;
theorem ::
PASCH:13
not (p,a,a9)
are_collinear & (p,a)
// (p,b) & (p,a9)
// (p,b9) & (a,a9)
'||' (b,b9) implies (a,a9)
// (b,b9)
proof
assume that
A1: not (p,a,a9)
are_collinear and
A2: (p,a)
// (p,b) and
A3: (p,a9)
// (p,b9) and
A4: (a,a9)
'||' (b,b9);
consider c such that
A5:
Mid (a,p,c) and
A6: p
<> c by
DIRAF: 13;
A7: (a,p)
// (p,c) by
A5,
DIRAF:def 3;
A8: a
<> p by
A1,
DIRAF: 31;
then
consider c9 such that
A9: (a9,p)
// (p,c9) and
A10: (a9,a)
// (c,c9) by
A7,
ANALOAF:def 5;
A11: (a9,a)
'||' (c9,c) by
A10,
DIRAF:def 4;
A12: c
<> c9
proof
assume c
= c9;
then
Mid (a9,p,c) by
A9,
DIRAF:def 3;
then (a9,p,c)
are_collinear by
DIRAF: 28;
then
A13: (p,c,a9)
are_collinear by
DIRAF: 30;
(a,p,c)
are_collinear by
A5,
DIRAF: 28;
then
A14: (p,c,a)
are_collinear by
DIRAF: 30;
(p,c,p)
are_collinear by
DIRAF: 31;
hence contradiction by
A1,
A6,
A14,
A13,
DIRAF: 32;
end;
(p,a)
// (c,p) by
A7,
DIRAF: 2;
then (c,p)
// (p,b) by
A2,
A8,
ANALOAF:def 5;
then
consider b99 be
Element of OAS such that
A15: (c9,p)
// (p,b99) and
A16: (c9,c)
// (b,b99) by
A6,
ANALOAF:def 5;
A17: (a9,a)
'||' (b,b9) by
A4,
DIRAF: 22;
A18: p
<> c9
proof
assume p
= c9;
then (a9,a)
'||' (c,p) by
A10,
DIRAF:def 4;
then
A19: (p,c)
'||' (a,a9) by
DIRAF: 22;
(a,p)
'||' (p,c) by
A7,
DIRAF:def 4;
then (a,p)
'||' (a,a9) by
A6,
A19,
DIRAF: 23;
then (a,p,a9)
are_collinear by
DIRAF:def 5;
hence contradiction by
A1,
DIRAF: 30;
end;
(p,a)
'||' (p,b) by
A2,
DIRAF:def 4;
then
A20: (p,a,b)
are_collinear by
DIRAF:def 5;
A21: (c9,c)
// (a,a9) by
A10,
DIRAF: 2;
(a9,p)
'||' (p,c9) by
A9,
DIRAF:def 4;
then
A22: (p,a9)
'||' (p,c9) by
DIRAF: 22;
(p,a9)
'||' (p,b9) by
A3,
DIRAF:def 4;
then
A23: (p,a9,b9)
are_collinear by
DIRAF:def 5;
(c9,p)
'||' (p,b99) by
A15,
DIRAF:def 4;
then (p,c9)
'||' (p,b99) by
DIRAF: 22;
then (p,a9)
'||' (p,b99) by
A18,
A22,
DIRAF: 23;
then
A24: (p,a9,b99)
are_collinear by
DIRAF:def 5;
(c9,c)
'||' (b,b99) by
A16,
DIRAF:def 4;
then
A25: (a9,a)
'||' (b,b99) by
A12,
A11,
DIRAF: 23;
not (p,a9,a)
are_collinear by
A1,
DIRAF: 30;
then (c9,c)
// (b,b9) by
A20,
A23,
A17,
A16,
A24,
A25,
Th4;
hence thesis by
A12,
A21,
ANALOAF:def 5;
end;
theorem ::
PASCH:14
Th14: not (p,a,b)
are_collinear & (p,a)
'||' (b,c) & (p,b)
'||' (a,c) implies (p,a)
// (b,c) & (p,b)
// (a,c)
proof
assume that
A1: not (p,a,b)
are_collinear and
A2: (p,a)
'||' (b,c) and
A3: (p,b)
'||' (a,c);
consider d such that
A4: (p,a)
// (b,d) and
A5: (p,b)
// (a,d) and a
<> d by
ANALOAF:def 5;
A6: (p,b)
'||' (a,d) by
A5,
DIRAF:def 4;
(p,a)
'||' (b,d) by
A4,
DIRAF:def 4;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
Th5;
end;
theorem ::
PASCH:15
Th15:
Mid (p,c,b) & (c,d)
// (b,a) & (p,d)
// (p,a) & not (p,a,b)
are_collinear & p
<> c implies
Mid (p,d,a)
proof
assume that
A1:
Mid (p,c,b) and
A2: (c,d)
// (b,a) and
A3: (p,d)
// (p,a) and
A4: not (p,a,b)
are_collinear and
A5: p
<> c;
A6: (p,c,b)
are_collinear by
A1,
DIRAF: 28;
now
assume
A7:
Mid (p,a,d);
A8:
now
A9: p
<> a by
A4,
DIRAF: 31;
assume that
A10: b
<> c and
A11: d
<> a;
assume not
Mid (p,d,a);
then
Mid (p,a,d) by
A3,
DIRAF: 7;
then (p,a)
// (a,d) by
DIRAF:def 3;
then
consider e1 such that
A12: (c,a)
// (a,e1) and
A13: (c,p)
// (d,e1) by
A9,
ANALOAF:def 5;
A14: (d,e1)
// (c,p) by
A13,
DIRAF: 2;
A15: c
<> e1 by
A12,
DIRAF:def 3,
A4,
A6,
DIRAF: 8;
Mid (b,c,p) by
A1,
DIRAF: 9;
then
A16: (b,c)
// (c,p) by
DIRAF:def 3;
then
A17: (c,p)
// (b,c) by
DIRAF: 2;
consider e2 such that
A18: (b,a)
// (a,e2) and
A19: (b,c)
// (e1,e2) by
A4,
A6,
A12,
ANALOAF:def 5;
consider e3 such that
A20: (b,c)
// (e2,e3) and
A21: (b,e2)
// (c,e3) and c
<> e3 by
ANALOAF:def 5;
A22: a
<> b by
A4,
DIRAF: 31;
A23:
Mid (c,a,e1) by
A12,
DIRAF:def 3;
A24: d
<> e1
proof
Mid (p,d,a) or
Mid (p,a,d) by
A3,
DIRAF: 7;
then (p,d,a)
are_collinear or (p,a,d)
are_collinear by
DIRAF: 28;
then
A25: (d,a,p)
are_collinear by
DIRAF: 30;
A26: (d,a,a)
are_collinear by
DIRAF: 31;
assume d
= e1;
then (c,a,d)
are_collinear by
A23,
DIRAF: 28;
then (d,a,c)
are_collinear by
DIRAF: 30;
then (d,a,b)
are_collinear by
A5,
A6,
A25,
DIRAF: 35;
hence contradiction by
A4,
A11,
A25,
A26,
DIRAF: 32;
end;
(b,a)
// (b,e2) by
A18,
ANALOAF:def 5;
then
A27: (c,d)
// (b,e2) by
A2,
A22,
DIRAF: 3;
b
<> e2 by
A22,
A18,
ANALOAF:def 5;
then (c,d)
// (c,e3) by
A21,
A27,
DIRAF: 3;
then
Mid (c,d,e3) or
Mid (c,e3,d) by
DIRAF: 7;
then (c,d,e3)
are_collinear or (c,e3,d)
are_collinear by
DIRAF: 28;
then
A28: (d,e3,c)
are_collinear by
DIRAF: 30;
(e1,e2)
// (c,p) by
A10,
A19,
A16,
ANALOAF:def 5;
then
A29: (e1,e2)
// (d,e1) by
A5,
A13,
DIRAF: 3;
then (d,e1)
// (e1,e2) by
DIRAF: 2;
then
A30: (d,e1)
// (d,e2) by
ANALOAF:def 5;
then (d,e2)
// (d,e1) by
DIRAF: 2;
then (d,e2)
// (c,p) by
A24,
A14,
DIRAF: 3;
then (d,e2)
// (b,c) by
A5,
A17,
DIRAF: 3;
then
A31: (d,e2)
// (e2,e3) by
A10,
A20,
DIRAF: 3;
then
Mid (d,e2,e3) by
DIRAF:def 3;
then (d,e2,e3)
are_collinear by
DIRAF: 28;
then
A32: (d,e3,e2)
are_collinear by
DIRAF: 30;
A33: d
<> e2 by
A24,
A29,
ANALOAF:def 5;
then
A34: d
<> e3 by
A31,
ANALOAF:def 5;
(d,e2)
// (d,e3) by
A31,
ANALOAF:def 5;
then (d,e1)
// (d,e3) by
A30,
A33,
DIRAF: 3;
then
Mid (d,e1,e3) or
Mid (d,e3,e1) by
DIRAF: 7;
then (d,e1,e3)
are_collinear or (d,e3,e1)
are_collinear by
DIRAF: 28;
then
A35: (d,e3,e1)
are_collinear by
DIRAF: 30;
(c,a,e1)
are_collinear by
A23,
DIRAF: 28;
then (c,e1,a)
are_collinear by
DIRAF: 30;
then
A36: (d,e3,a)
are_collinear by
A15,
A28,
A35,
DIRAF: 35;
A37: a
<> e1
proof
(p,a)
// (a,d) by
A7,
DIRAF:def 3;
then
A38: (d,a)
// (a,p) by
DIRAF: 2;
assume a
= e1;
then (c,p)
// (a,p) by
A11,
A13,
A38,
DIRAF: 3;
then (p,c)
// (p,a) by
DIRAF: 2;
then
Mid (p,c,a) or
Mid (p,a,c) by
DIRAF: 7;
then (p,c,a)
are_collinear or (p,a,c)
are_collinear by
DIRAF: 28;
then
A39: (p,c,a)
are_collinear by
DIRAF: 30;
(p,c,p)
are_collinear by
DIRAF: 31;
hence contradiction by
A4,
A5,
A6,
A39,
DIRAF: 32;
end;
A40: a
<> e2
proof
assume
A41: a
= e2;
(e1,a)
// (a,c) by
A12,
DIRAF: 2;
then (b,c)
// (a,c) by
A19,
A37,
A41,
DIRAF: 3;
then (c,b)
// (c,a) by
DIRAF: 2;
then
Mid (c,b,a) or
Mid (c,a,b) by
DIRAF: 7;
then (c,b,a)
are_collinear or (c,a,b)
are_collinear by
DIRAF: 28;
then
A42: (c,b,a)
are_collinear by
DIRAF: 30;
A43: (c,b,b)
are_collinear by
DIRAF: 31;
(c,b,p)
are_collinear by
A6,
DIRAF: 30;
hence contradiction by
A4,
A10,
A42,
A43,
DIRAF: 32;
end;
Mid (b,a,e2) by
A18,
DIRAF:def 3;
then (b,a,e2)
are_collinear by
DIRAF: 28;
then (a,e2,b)
are_collinear by
DIRAF: 30;
then
A44: (d,e3,b)
are_collinear by
A40,
A36,
A32,
DIRAF: 35;
(c,b,p)
are_collinear by
A6,
DIRAF: 30;
then (d,e3,p)
are_collinear by
A10,
A28,
A44,
DIRAF: 35;
hence contradiction by
A4,
A34,
A36,
A44,
DIRAF: 32;
end;
A45: (p,a,d)
are_collinear by
A7,
DIRAF: 28;
now
assume b
= c;
then
Mid (b,d,a) or
Mid (b,a,d) by
A2,
DIRAF: 7;
then (b,d,a)
are_collinear or (b,a,d)
are_collinear by
DIRAF: 28;
then
A46: (d,a,b)
are_collinear by
DIRAF: 30;
A47: (d,a,a)
are_collinear by
DIRAF: 31;
(d,a,p)
are_collinear by
A45,
DIRAF: 30;
hence a
= d by
A4,
A46,
A47,
DIRAF: 32;
end;
hence thesis by
A8,
DIRAF: 10;
end;
hence thesis by
A3,
DIRAF: 7;
end;
theorem ::
PASCH:16
Th16:
Mid (p,d,a) & (c,d)
// (b,a) & (p,c)
// (p,b) & not (p,a,b)
are_collinear & p
<> c implies
Mid (p,c,b)
proof
assume that
A1:
Mid (p,d,a) and
A2: (c,d)
// (b,a) and
A3: (p,c)
// (p,b) and
A4: not (p,a,b)
are_collinear and
A5: p
<> c;
A6: p
<> d
proof
assume
A7: p
= d;
(c,p)
// (b,p) by
A3,
DIRAF: 2;
then (b,p)
// (b,a) by
A2,
A5,
A7,
ANALOAF:def 5;
then
Mid (b,p,a) or
Mid (b,a,p) by
DIRAF: 7;
then (b,p,a)
are_collinear or (b,a,p)
are_collinear by
DIRAF: 28;
hence contradiction by
A4,
DIRAF: 30;
end;
Mid (p,c,b) or
Mid (p,b,c) by
A3,
DIRAF: 7;
then
A8: (p,c,b)
are_collinear or (p,b,c)
are_collinear by
DIRAF: 28;
then
A9: (p,c,b)
are_collinear by
DIRAF: 30;
now
A10: not (p,d,c)
are_collinear
proof
assume (p,d,c)
are_collinear ;
then
A11: (p,c,d)
are_collinear by
DIRAF: 30;
(p,c,p)
are_collinear by
DIRAF: 31;
then
A12: (p,d,b)
are_collinear by
A5,
A9,
A11,
DIRAF: 32;
A13: (p,d,p)
are_collinear by
DIRAF: 31;
(p,d,a)
are_collinear by
A1,
DIRAF: 28;
hence contradiction by
A4,
A6,
A12,
A13,
DIRAF: 32;
end;
assume
A14:
Mid (p,b,c);
(p,d)
// (d,a) by
A1,
DIRAF:def 3;
then (p,d)
// (p,a) by
ANALOAF:def 5;
then
A15: (p,a)
// (p,d) by
DIRAF: 2;
A16: p
<> b by
A4,
DIRAF: 31;
(b,a)
// (c,d) by
A2,
DIRAF: 2;
then
Mid (p,a,d) by
A14,
A15,
A16,
A10,
Th15;
then
A17:
Mid (d,a,p) by
DIRAF: 9;
Mid (a,d,p) by
A1,
DIRAF: 9;
then (c,a)
// (b,a) by
A2,
A17,
DIRAF: 14;
then (a,c)
// (a,b) by
DIRAF: 2;
then
Mid (a,c,b) or
Mid (a,b,c) by
DIRAF: 7;
then (a,c,b)
are_collinear or (a,b,c)
are_collinear by
DIRAF: 28;
then
A18: (b,c,a)
are_collinear by
DIRAF: 30;
A19: (b,c,b)
are_collinear by
DIRAF: 31;
(b,c,p)
are_collinear by
A8,
DIRAF: 30;
then b
= c by
A4,
A18,
A19,
DIRAF: 32;
hence thesis by
DIRAF: 10;
end;
hence thesis by
A3,
DIRAF: 7;
end;
theorem ::
PASCH:17
Th17: not (p,a,b)
are_collinear & (p,b)
// (p,c) & (b,a)
// (c,d) & p
<> d implies not
Mid (a,p,d)
proof
assume that
A1: not (p,a,b)
are_collinear and
A2: (p,b)
// (p,c) and
A3: (b,a)
// (c,d) and
A4: p
<> d;
assume
Mid (a,p,d);
then
Mid (d,p,a) by
DIRAF: 9;
then
A5: (d,p)
// (p,a) by
DIRAF:def 3;
then
A6: (p,d)
// (a,p) by
DIRAF: 2;
consider b9 such that
A7: (c,p)
// (p,b9) and
A8: (c,d)
// (a,b9) by
A4,
A5,
ANALOAF:def 5;
A9: p
<> c
proof
assume p
= c;
then (b,a)
// (a,p) by
A3,
A4,
A6,
DIRAF: 3;
then
Mid (b,a,p) by
DIRAF:def 3;
hence contradiction by
A1,
DIRAF: 9,
DIRAF: 28;
end;
A10: a
<> b9
proof
assume
A11: a
= b9;
(b,p)
// (c,p) by
A2,
DIRAF: 2;
then (b,p)
// (p,a) by
A9,
A7,
A11,
DIRAF: 3;
then
Mid (b,p,a) by
DIRAF:def 3;
then (b,p,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A1,
DIRAF: 30;
end;
(p,c)
// (b9,p) by
A7,
DIRAF: 2;
then (p,b)
// (b9,p) by
A2,
A9,
DIRAF: 3;
then
A12: (b9,p)
// (p,b) by
DIRAF: 2;
A13: c
<> d
proof
assume c
= d;
then (p,b)
// (a,p) by
A2,
A4,
A6,
DIRAF: 3;
then (b,p)
// (p,a) by
DIRAF: 2;
then
Mid (b,p,a) by
DIRAF:def 3;
then (b,p,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A1,
DIRAF: 30;
end;
p
<> b9
proof
assume p
= b9;
then (b,a)
// (a,p) by
A3,
A13,
A8,
DIRAF: 3;
then
Mid (b,a,p) by
DIRAF:def 3;
hence contradiction by
A1,
DIRAF: 9,
DIRAF: 28;
end;
then
consider b99 be
Element of OAS such that
A14: (a,p)
// (p,b99) and
A15: (a,b9)
// (b,b99) by
A12,
ANALOAF:def 5;
a
<> p by
A1,
DIRAF: 31;
then
A16: a
<> b99 by
A14,
ANALOAF:def 5;
(b,a)
// (a,b9) by
A3,
A13,
A8,
DIRAF: 3;
then (b,a)
// (b,b99) by
A15,
A10,
DIRAF: 3;
then
Mid (b,a,b99) or
Mid (b,b99,a) by
DIRAF: 7;
then (b,a,b99)
are_collinear or (b,b99,a)
are_collinear by
DIRAF: 28;
then
A17: (a,b99,b)
are_collinear by
DIRAF: 30;
Mid (a,p,b99) by
A14,
DIRAF:def 3;
then (a,p,b99)
are_collinear by
DIRAF: 28;
then
A18: (a,b99,p)
are_collinear by
DIRAF: 30;
(a,b99,a)
are_collinear by
DIRAF: 31;
hence contradiction by
A1,
A18,
A16,
A17,
DIRAF: 32;
end;
theorem ::
PASCH:18
Th18: (p,b)
// (p,c) & b
<> p implies ex x st (p,a)
// (p,x) & (b,a)
// (c,x)
proof
assume that
A1: (p,b)
// (p,c) and
A2: b
<> p;
A3: (b,p)
// (c,p) by
A1,
DIRAF: 2;
A4:
now
assume that p
<> c and
A5: p
<> a;
consider e1 such that
A6:
Mid (a,p,e1) and
A7: p
<> e1 by
DIRAF: 13;
(a,p)
// (p,e1) by
A6,
DIRAF:def 3;
then
consider e2 such that
A8: (b,p)
// (p,e2) and
A9: (b,a)
// (e1,e2) by
A5,
ANALOAF:def 5;
Mid (e1,p,a) by
A6,
DIRAF: 9;
then
A10: (e1,p)
// (p,a) by
DIRAF:def 3;
A11:
now
A12:
now
A13:
now
assume (b,p)
// (a,p);
then (a,p)
// (c,p) by
A2,
A3,
ANALOAF:def 5;
hence (p,a)
// (p,c) & (b,a)
// (c,c) by
DIRAF: 2,
DIRAF: 4;
end;
assume
A14: (a,b)
// (b,p);
then (a,b)
// (a,p) by
ANALOAF:def 5;
then (b,p)
// (a,p) or a
= b by
A14,
ANALOAF:def 5;
hence thesis by
A13,
DIRAF: 1;
end;
A15:
now
assume
A16: (a,p)
// (p,b);
then (a,p)
// (a,b) by
ANALOAF:def 5;
then (a,b)
// (p,b) by
A5,
A16,
ANALOAF:def 5;
then (b,a)
// (b,p) by
DIRAF: 2;
hence (p,a)
// (p,p) & (b,a)
// (c,p) by
A2,
A3,
DIRAF: 3,
DIRAF: 4;
end;
assume p
= e2;
then (b,a)
// (p,a) by
A7,
A10,
A9,
DIRAF: 3;
then (a,b)
// (a,p) by
DIRAF: 2;
hence thesis by
A12,
A15,
DIRAF: 6;
end;
A17:
now
A18:
now
assume that (p,a)
// (a,b) and
A19: (p,c)
// (c,a);
(p,c)
// (p,a) by
A19,
ANALOAF:def 5;
hence (p,a)
// (p,c) & (b,a)
// (c,c) by
DIRAF: 2,
DIRAF: 4;
end;
A20:
now
assume that (p,b)
// (b,a) and
A21: (p,c)
// (c,a);
(p,c)
// (p,a) by
A21,
ANALOAF:def 5;
hence (p,a)
// (p,c) & (b,a)
// (c,c) by
DIRAF: 2,
DIRAF: 4;
end;
A22:
now
assume that
A23: (p,a)
// (a,b) and
A24: (p,a)
// (a,c);
(a,b)
// (a,c) by
A5,
A23,
A24,
ANALOAF:def 5;
hence (p,a)
// (p,a) & (b,a)
// (c,a) by
DIRAF: 1,
DIRAF: 2;
end;
A25: (p,b)
// (b,a) & (p,a)
// (a,c) implies (p,a)
// (p,c) & (b,a)
// (c,c) by
ANALOAF:def 5;
assume that
A26: e1
= e2 and
A27: e2
<> p;
(p,e2)
// (a,p) by
A10,
A26,
DIRAF: 2;
then (b,p)
// (a,p) by
A8,
A27,
DIRAF: 3;
then
A28: (p,b)
// (p,a) by
DIRAF: 2;
then (p,a)
// (p,c) by
A1,
A2,
ANALOAF:def 5;
hence thesis by
A28,
A25,
A20,
A22,
A18,
DIRAF: 6;
end;
now
assume that
A29: e1
<> e2 and
A30: e2
<> p;
(p,b)
// (e2,p) by
A8,
DIRAF: 2;
then (e2,p)
// (p,c) by
A1,
A2,
ANALOAF:def 5;
then
consider x such that
A31: (e1,p)
// (p,x) and
A32: (e1,e2)
// (c,x) by
A30,
ANALOAF:def 5;
A33: (p,a)
// (p,x) by
A7,
A10,
A31,
ANALOAF:def 5;
(b,a)
// (c,x) by
A9,
A29,
A32,
DIRAF: 3;
hence thesis by
A33;
end;
hence thesis by
A17,
A11;
end;
A34: p
= c implies (p,a)
// (p,c) & (b,a)
// (c,c) by
DIRAF: 4;
p
= a implies (p,a)
// (p,a) & (b,a)
// (c,a) by
A1,
DIRAF: 1,
DIRAF: 2;
hence thesis by
A34,
A4;
end;
theorem ::
PASCH:19
Th19:
Mid (p,c,b) implies ex x st
Mid (p,x,a) & (b,a)
// (c,x)
proof
A1: b
= c implies
Mid (p,a,a) & (b,a)
// (c,a) by
DIRAF: 1,
DIRAF: 10;
assume
A2:
Mid (p,c,b);
A3:
now
assume p
= b;
then p
= c by
A2,
DIRAF: 8;
hence
Mid (p,p,a) & (b,a)
// (c,p) by
DIRAF: 4,
DIRAF: 10;
end;
A4: (p,c)
// (c,b) by
A2,
DIRAF:def 3;
A5:
now
assume that
A6: p
<> c and
A7: p
<> b and
A8: b
<> c;
Mid (b,c,p) by
A2,
DIRAF: 9;
then
A9: (b,c)
// (c,p) by
DIRAF:def 3;
then
A10: (b,c)
// (b,p) by
ANALOAF:def 5;
then
A11: (b,p)
// (c,p) by
A8,
A9,
ANALOAF:def 5;
A12:
now
A13:
now
assume
A14:
Mid (p,a,b);
A15:
now
Mid (b,a,p) by
A14,
DIRAF: 9;
then (b,a)
// (a,p) by
DIRAF:def 3;
then
A16: (a,p)
// (b,a) by
DIRAF: 2;
assume
Mid (p,a,c);
then
Mid (c,a,p) by
DIRAF: 9;
then (c,a)
// (a,p) by
DIRAF:def 3;
then
A17: (a,p)
// (c,a) by
DIRAF: 2;
A18: (b,a)
// (c,a) implies
Mid (p,a,a) & (b,a)
// (c,a) by
DIRAF: 10;
a
= p implies
Mid (p,p,a) & (b,a)
// (c,p) by
A8,
A9,
A10,
ANALOAF:def 5,
DIRAF: 10;
hence thesis by
A17,
A16,
A18,
ANALOAF:def 5;
end;
Mid (p,c,a) implies
Mid (p,c,a) & (b,a)
// (c,c) by
DIRAF: 4;
hence thesis by
A2,
A14,
A15,
DIRAF: 17;
end;
A19:
now
assume
Mid (a,p,b);
then
Mid (b,p,a) by
DIRAF: 9;
then (b,p)
// (p,a) by
DIRAF:def 3;
then (b,p)
// (b,a) by
ANALOAF:def 5;
hence
Mid (p,p,a) & (b,a)
// (c,p) by
A7,
A11,
ANALOAF:def 5,
DIRAF: 10;
end;
A20:
now
A21: (p,c)
// (p,b) by
A4,
ANALOAF:def 5;
assume
A22:
Mid (p,b,a);
then (p,b)
// (b,a) by
DIRAF:def 3;
then (p,c)
// (b,a) by
A7,
A21,
DIRAF: 3;
then (b,a)
// (c,b) by
A4,
A6,
ANALOAF:def 5;
hence thesis by
A22;
end;
assume (p,a,b)
are_collinear ;
hence thesis by
A13,
A19,
A20,
DIRAF: 29;
end;
now
A23: (p,b)
// (p,c) by
A2,
DIRAF: 7;
assume
A24: not (p,a,b)
are_collinear ;
then p
<> b by
DIRAF: 31;
then
consider x such that
A25: (p,a)
// (p,x) and
A26: (b,a)
// (c,x) by
A23,
Th18;
A27: (p,x)
// (p,a) by
A25,
DIRAF: 2;
(c,x)
// (b,a) by
A26,
DIRAF: 2;
hence thesis by
A2,
A6,
A24,
A26,
A27,
Th15;
end;
hence thesis by
A12;
end;
p
= c implies
Mid (p,p,a) & (b,a)
// (c,p) by
DIRAF: 4,
DIRAF: 10;
hence thesis by
A3,
A1,
A5;
end;
theorem ::
PASCH:20
Th20: p
<> b &
Mid (p,b,c) implies ex x st
Mid (p,a,x) & (b,a)
// (c,x)
proof
assume that
A1: p
<> b and
A2:
Mid (p,b,c);
A3: (p,b)
// (b,c) by
A2,
DIRAF:def 3;
then
A4: (p,b)
// (p,c) by
ANALOAF:def 5;
A5:
now
assume
A6: not (p,a,b)
are_collinear ;
consider x such that
A7: (p,a)
// (p,x) and
A8: (b,a)
// (c,x) by
A1,
A4,
Th18;
A9: p
<> c by
A1,
A2,
DIRAF: 8;
A10: p
<> x
proof
(p,b)
// (p,c) by
A2,
DIRAF: 7;
then
A11: (c,p)
// (b,p) by
DIRAF: 2;
assume p
= x;
then (b,a)
// (b,p) by
A8,
A9,
A11,
DIRAF: 3;
then
Mid (b,a,p) or
Mid (b,p,a) by
DIRAF: 7;
then (b,a,p)
are_collinear or (b,p,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A6,
DIRAF: 30;
end;
not (p,x,c)
are_collinear
proof
Mid (p,a,x) or
Mid (p,x,a) by
A7,
DIRAF: 7;
then (p,a,x)
are_collinear or (p,x,a)
are_collinear by
DIRAF: 28;
then
A12: (p,x,a)
are_collinear by
DIRAF: 30;
A13: (p,x,p)
are_collinear by
DIRAF: 31;
(p,b,c)
are_collinear by
A2,
DIRAF: 28;
then
A14: (p,c,b)
are_collinear by
DIRAF: 30;
A15: (p,c,p)
are_collinear by
DIRAF: 31;
assume (p,x,c)
are_collinear ;
then (p,c,a)
are_collinear by
A10,
A12,
A13,
DIRAF: 32;
hence contradiction by
A6,
A9,
A14,
A15,
DIRAF: 32;
end;
hence thesis by
A1,
A2,
A7,
A8,
Th15;
end;
A16:
now
assume that
A17: (p,a,b)
are_collinear and
A18: c
<> b;
A19:
now
assume
Mid (p,a,b);
then
Mid (a,b,c) by
A2,
DIRAF: 11;
then
Mid (c,b,a) by
DIRAF: 9;
then
A20: (c,b)
// (b,a) by
DIRAF:def 3;
then (c,b)
// (c,a) by
ANALOAF:def 5;
hence
Mid (p,a,a) & (b,a)
// (c,a) by
A18,
A20,
ANALOAF:def 5,
DIRAF: 10;
end;
A21:
now
assume
Mid (p,b,a);
then
A22: (p,b)
// (b,a) by
DIRAF:def 3;
A23:
now
A24:
now
assume (p,a)
// (a,c);
then
Mid (p,a,c) by
DIRAF:def 3;
hence thesis by
DIRAF: 4;
end;
A25:
now
assume a
= b;
then (b,a)
// (c,a) by
DIRAF: 4;
hence thesis by
DIRAF: 10;
end;
(p,b)
// (p,a) by
A22,
ANALOAF:def 5;
then
A26: (b,a)
// (p,a) by
A1,
A22,
ANALOAF:def 5;
assume (b,a)
// (a,c);
hence thesis by
A26,
A25,
A24,
ANALOAF:def 5;
end;
A27:
now
assume
A28: (b,c)
// (c,a);
then (b,c)
// (b,a) by
ANALOAF:def 5;
hence
Mid (p,a,a) & (b,a)
// (c,a) by
A18,
A28,
ANALOAF:def 5,
DIRAF: 10;
end;
(b,a)
// (b,c) by
A1,
A3,
A22,
ANALOAF:def 5;
hence thesis by
A23,
A27,
ANALOAF:def 5;
end;
now
assume
Mid (a,p,b);
then
Mid (a,b,c) by
A1,
A2,
DIRAF: 12;
then
Mid (c,b,a) by
DIRAF: 9;
then
A29: (c,b)
// (b,a) by
DIRAF:def 3;
then (c,b)
// (c,a) by
ANALOAF:def 5;
hence
Mid (p,a,a) & (b,a)
// (c,a) by
A18,
A29,
ANALOAF:def 5,
DIRAF: 10;
end;
hence thesis by
A17,
A19,
A21,
DIRAF: 29;
end;
c
= b implies
Mid (p,a,a) & (b,a)
// (c,a) by
DIRAF: 1,
DIRAF: 10;
hence thesis by
A5,
A16;
end;
theorem ::
PASCH:21
Th21: not (p,a,b)
are_collinear &
Mid (p,c,b) implies ex x st
Mid (p,x,a) & (a,b)
// (x,c)
proof
assume that
A1: not (p,a,b)
are_collinear and
A2:
Mid (p,c,b);
A3: p
<> a by
A1,
DIRAF: 31;
A4: (p,c,b)
are_collinear by
A2,
DIRAF: 28;
A5:
Mid (b,c,p) by
A2,
DIRAF: 9;
then
A6: (b,c)
// (c,p) by
DIRAF:def 3;
A7: a
<> b by
A1,
DIRAF: 31;
A8:
now
assume that
A9: b
<> c and
A10: a
<> c and
A11: p
<> c;
consider e1 such that
A12:
Mid (b,e1,a) and
A13: (p,a)
// (c,e1) by
A5,
Th19;
A14: not (p,c,a)
are_collinear
proof
A15: (p,c,p)
are_collinear by
DIRAF: 31;
assume (p,c,a)
are_collinear ;
hence contradiction by
A1,
A4,
A11,
A15,
DIRAF: 32;
end;
A16: a
<> e1
proof
assume a
= e1;
then (a,p)
// (a,c) by
A13,
DIRAF: 2;
then
Mid (a,p,c) or
Mid (a,c,p) by
DIRAF: 7;
then (a,p,c)
are_collinear or (a,c,p)
are_collinear by
DIRAF: 28;
hence contradiction by
A14,
DIRAF: 30;
end;
consider e4 such that
A17: (e1,c)
// (c,e4) and
A18: (e1,b)
// (p,e4) by
A6,
A9,
ANALOAF:def 5;
consider e2 such that
A19: (a,c)
// (c,e2) and
A20: (a,b)
// (p,e2) by
A6,
A9,
ANALOAF:def 5;
consider e3 such that
A21: (p,c)
// (c,e3) and
A22: (p,a)
// (e2,e3) by
A10,
A19,
ANALOAF:def 5;
A23: not (a,b,c)
are_collinear
proof
assume (a,b,c)
are_collinear ;
then
A24: (b,c,a)
are_collinear by
DIRAF: 30;
A25: (b,c,b)
are_collinear by
DIRAF: 31;
(b,c,p)
are_collinear by
A4,
DIRAF: 30;
hence contradiction by
A1,
A9,
A24,
A25,
DIRAF: 32;
end;
A26: c
<> e2
proof
assume
A27: c
= e2;
(p,c)
// (c,b) by
A6,
DIRAF: 2;
then (a,b)
// (c,b) by
A11,
A20,
A27,
DIRAF: 3;
then (b,a)
// (b,c) by
DIRAF: 2;
then
Mid (b,a,c) or
Mid (b,c,a) by
DIRAF: 7;
then (b,a,c)
are_collinear or (b,c,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A23,
DIRAF: 30;
end;
A28: e2
<> e3
proof
assume e2
= e3;
then (c,e2)
// (p,c) by
A21,
DIRAF: 2;
then (a,c)
// (p,c) by
A19,
A26,
DIRAF: 3;
then (c,a)
// (c,p) by
DIRAF: 2;
then
Mid (c,a,p) or
Mid (c,p,a) by
DIRAF: 7;
then (c,a,p)
are_collinear or (c,p,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A14,
DIRAF: 30;
end;
A29: c
<> e1
proof
assume c
= e1;
then (b,c,a)
are_collinear by
A12,
DIRAF: 28;
hence contradiction by
A23,
DIRAF: 30;
end;
A30: p
<> e4
proof
assume p
= e4;
then (c,e1)
// (p,c) by
A17,
DIRAF: 2;
then (p,a)
// (p,c) by
A13,
A29,
DIRAF: 3;
then
Mid (p,a,c) or
Mid (p,c,a) by
DIRAF: 7;
then (p,a,c)
are_collinear or (p,c,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A14,
DIRAF: 30;
end;
Mid (e1,c,e4) by
A17,
DIRAF:def 3;
then
Mid (e4,c,e1) by
DIRAF: 9;
then
A31: (e4,c)
// (c,e1) by
DIRAF:def 3;
(c,e1)
// (e2,e3) by
A3,
A13,
A22,
ANALOAF:def 5;
then
A32: (e4,c)
// (e2,e3) by
A29,
A31,
DIRAF: 3;
A33: e2
<> e4
proof
assume e2
= e4;
then (c,e2)
// (e1,c) by
A17,
DIRAF: 2;
then (a,c)
// (e1,c) by
A19,
A26,
DIRAF: 3;
then (c,e1)
// (c,a) by
DIRAF: 2;
then (p,a)
// (c,a) by
A13,
A29,
DIRAF: 3;
then (a,p)
// (a,c) by
DIRAF: 2;
then
Mid (a,p,c) or
Mid (a,c,p) by
DIRAF: 7;
then (a,p,c)
are_collinear or (a,c,p)
are_collinear by
DIRAF: 28;
hence contradiction by
A14,
DIRAF: 30;
end;
A34: c
<> e3
proof
assume c
= e3;
then (c,e2)
// (a,p) by
A22,
DIRAF: 2;
then (a,c)
// (a,p) by
A19,
A26,
DIRAF: 3;
then
Mid (a,c,p) or
Mid (a,p,c) by
DIRAF: 7;
then (a,c,p)
are_collinear or (a,p,c)
are_collinear by
DIRAF: 28;
hence contradiction by
A14,
DIRAF: 30;
end;
A35: p
<> e3 by
A11,
A21,
ANALOAF:def 5;
A36: not (p,e3,e2)
are_collinear
proof
(p,c)
// (c,b) by
A2,
DIRAF:def 3;
then
A37: (p,c)
// (p,b) by
ANALOAF:def 5;
(p,c)
// (p,e3) by
A21,
ANALOAF:def 5;
then (p,b)
// (p,e3) by
A11,
A37,
ANALOAF:def 5;
then
Mid (p,b,e3) or
Mid (p,e3,b) by
DIRAF: 7;
then (p,b,e3)
are_collinear or (p,e3,b)
are_collinear by
DIRAF: 28;
then
A38: (p,e3,b)
are_collinear by
DIRAF: 30;
A39: (p,e3,p)
are_collinear by
DIRAF: 31;
(a,c)
// (a,e2) by
A19,
ANALOAF:def 5;
then
Mid (a,c,e2) or
Mid (a,e2,c) by
DIRAF: 7;
then (a,c,e2)
are_collinear or (a,e2,c)
are_collinear by
DIRAF: 28;
then
A40: (c,e2,a)
are_collinear by
DIRAF: 30;
(p,c)
// (p,e3) by
A21,
ANALOAF:def 5;
then
Mid (p,c,e3) or
Mid (p,e3,c) by
DIRAF: 7;
then (p,c,e3)
are_collinear or (p,e3,c)
are_collinear by
DIRAF: 28;
then
A41: (p,e3,c)
are_collinear by
DIRAF: 30;
assume (p,e3,e2)
are_collinear ;
then (p,e3,a)
are_collinear by
A26,
A41,
A40,
DIRAF: 35;
hence contradiction by
A1,
A35,
A38,
A39,
DIRAF: 32;
end;
then
A42: not (e3,e2,p)
are_collinear by
DIRAF: 30;
consider e5 such that
A43: (e4,e2)
// (c,e5) and
A44: (e4,c)
// (e2,e5) and
A45: e2
<> e5 by
ANALOAF:def 5;
A46: b
<> e1
proof
(p,c)
// (c,b) by
A2,
DIRAF:def 3;
then
A47: (c,b)
// (p,c) by
DIRAF: 2;
assume b
= e1;
then (p,a)
// (p,c) by
A9,
A13,
A47,
DIRAF: 3;
then
Mid (p,a,c) or
Mid (p,c,a) by
DIRAF: 7;
then (p,a,c)
are_collinear or (p,c,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A14,
DIRAF: 30;
end;
A48: c
<> e4
proof
assume
A49: c
= e4;
(p,c)
// (c,b) by
A2,
DIRAF:def 3;
then (e1,b)
// (c,b) by
A11,
A18,
A49,
DIRAF: 3;
then (b,e1)
// (b,c) by
DIRAF: 2;
then
Mid (b,e1,c) or
Mid (b,c,e1) by
DIRAF: 7;
then (b,e1,c)
are_collinear or (b,c,e1)
are_collinear by
DIRAF: 28;
then
A50: (b,e1,c)
are_collinear by
DIRAF: 30;
A51: (b,e1,b)
are_collinear by
DIRAF: 31;
(b,e1,a)
are_collinear by
A12,
DIRAF: 28;
hence contradiction by
A23,
A46,
A50,
A51,
DIRAF: 32;
end;
A52: c
<> e5
proof
assume c
= e5;
then (c,e4)
// (c,e2) by
A44,
DIRAF: 2;
then (e1,c)
// (c,e2) by
A17,
A48,
DIRAF: 3;
then (c,e2)
// (e1,c) by
DIRAF: 2;
then (a,c)
// (e1,c) by
A19,
A26,
DIRAF: 3;
then (c,e1)
// (c,a) by
DIRAF: 2;
then (p,a)
// (c,a) by
A13,
A29,
DIRAF: 3;
then (a,p)
// (a,c) by
DIRAF: 2;
then
Mid (a,p,c) or
Mid (a,c,p) by
DIRAF: 7;
then (a,p,c)
are_collinear or (a,c,p)
are_collinear by
DIRAF: 28;
hence contradiction by
A14,
DIRAF: 30;
end;
Mid (a,e1,b) by
A12,
DIRAF: 9;
then
A53: (a,e1)
// (e1,b) by
DIRAF:def 3;
then (a,e1)
// (a,b) by
ANALOAF:def 5;
then (a,b)
// (e1,b) by
A16,
A53,
ANALOAF:def 5;
then (e1,b)
// (p,e2) by
A7,
A20,
ANALOAF:def 5;
then
A54: (p,e4)
// (p,e2) by
A18,
A46,
ANALOAF:def 5;
Mid (p,c,e3) by
A21,
DIRAF:def 3;
then
Mid (p,e4,e2) by
A36,
A32,
A30,
A54,
Th16;
then
A55: (p,e4)
// (e4,e2) by
DIRAF:def 3;
then (p,e4)
// (p,e2) by
ANALOAF:def 5;
then
A56: (p,e2)
// (e4,e2) by
A30,
A55,
ANALOAF:def 5;
then
A57: (p,e2)
// (c,e5) by
A43,
A33,
DIRAF: 3;
p
<> e2
proof
assume p
= e2;
then
Mid (a,c,p) by
A19,
DIRAF:def 3;
hence contradiction by
A14,
DIRAF: 9,
DIRAF: 28;
end;
then
A58: (a,b)
// (e4,e2) by
A20,
A56,
DIRAF: 3;
then
A59: (a,b)
// (c,e5) by
A43,
A33,
DIRAF: 3;
A60: e5
<> e3
proof
assume e5
= e3;
then (c,e3)
// (a,b) by
A59,
DIRAF: 2;
then (p,c)
// (a,b) by
A21,
A34,
DIRAF: 3;
then (c,p)
// (b,a) by
DIRAF: 2;
then (b,c)
// (b,a) by
A6,
A11,
DIRAF: 3;
then
Mid (b,c,a) or
Mid (b,a,c) by
DIRAF: 7;
then (b,c,a)
are_collinear or (b,a,c)
are_collinear by
DIRAF: 28;
hence contradiction by
A23,
DIRAF: 30;
end;
(c,e1)
// (e4,c) by
A17,
DIRAF: 2;
then (c,e1)
// (e2,e5) by
A44,
A48,
DIRAF: 3;
then (p,a)
// (e2,e5) by
A13,
A29,
DIRAF: 3;
then (e2,e3)
// (e2,e5) by
A3,
A22,
ANALOAF:def 5;
then
Mid (e2,e3,e5) or
Mid (e2,e5,e3) by
DIRAF: 7;
then (e2,e3,e5)
are_collinear or (e2,e5,e3)
are_collinear by
DIRAF: 28;
then
A61: (e2,e3,e5)
are_collinear by
DIRAF: 30;
Mid (p,c,e3) by
A21,
DIRAF:def 3;
then
A62:
Mid (e3,c,p) by
DIRAF: 9;
(e3,c)
// (c,p) by
A21,
DIRAF: 2;
then
consider x such that
A63: (e5,c)
// (c,x) and
A64: (e5,e3)
// (p,x) by
A34,
ANALOAF:def 5;
A65: (c,e5)
// (x,c) by
A63,
DIRAF: 2;
Mid (p,c,e3) by
A21,
DIRAF:def 3;
then
Mid (e3,c,p) by
DIRAF: 9;
then (e3,c)
// (c,p) by
DIRAF:def 3;
then (e3,c)
// (e3,p) by
ANALOAF:def 5;
then (e3,p)
// (e3,c) by
DIRAF: 2;
then not
Mid (e2,e3,e5) by
A60,
A57,
A42,
Th17;
then
Mid (e3,e2,e5) or
Mid (e2,e5,e3) by
A61,
DIRAF: 29;
then (e3,e2)
// (e2,e5) or
Mid (e3,e5,e2) by
DIRAF: 9,
DIRAF:def 3;
then (e3,e2)
// (e3,e5) or (e3,e5)
// (e5,e2) by
ANALOAF:def 5,
DIRAF:def 3;
then
A66: (e3,e5)
// (e3,e2) by
ANALOAF:def 5,
DIRAF: 2;
(c,e5)
// (p,e2) by
A57,
DIRAF: 2;
then
Mid (e3,e5,e2) by
A34,
A42,
A66,
A62,
Th15;
then
Mid (e2,e5,e3) by
DIRAF: 9;
then
A67: (e2,e5)
// (e5,e3) by
DIRAF:def 3;
then (e2,e5)
// (e2,e3) by
ANALOAF:def 5;
then (e2,e3)
// (e5,e3) by
A45,
A67,
ANALOAF:def 5;
then (p,a)
// (e5,e3) by
A22,
A28,
DIRAF: 3;
then (p,a)
// (p,x) by
A64,
A60,
DIRAF: 3;
then
A68: (p,x)
// (p,a) by
DIRAF: 2;
(a,b)
// (c,e5) by
A43,
A33,
A58,
DIRAF: 3;
then
A69: (a,b)
// (x,c) by
A52,
A65,
DIRAF: 3;
then (c,x)
// (b,a) by
DIRAF: 2;
hence thesis by
A1,
A2,
A11,
A69,
A68,
Th15;
end;
A70: a
= c implies (a,b)
// (a,c) &
Mid (p,a,a) by
DIRAF: 4,
DIRAF: 10;
A71: p
= c implies (a,b)
// (c,c) &
Mid (p,c,a) by
DIRAF: 4,
DIRAF: 10;
b
= c implies (a,b)
// (a,c) &
Mid (p,a,a) by
DIRAF: 1,
DIRAF: 10;
hence thesis by
A8,
A70,
A71;
end;
theorem ::
PASCH:22
ex x st (a,x)
// (b,c) & (a,b)
// (x,c)
proof
A1:
now
consider e3 such that
A2:
Mid (b,c,e3) and
A3: c
<> e3 by
DIRAF: 13;
A4: (b,c)
// (c,e3) by
A2,
DIRAF:def 3;
assume
A5: not (a,b,c)
are_collinear ;
then
A6: b
<> c by
DIRAF: 31;
then
consider e4 such that
A7: (a,c)
// (c,e4) and
A8: (a,b)
// (e3,e4) by
A4,
ANALOAF:def 5;
A9:
Mid (a,c,e4) by
A7,
DIRAF:def 3;
then
Mid (e4,c,a) by
DIRAF: 9;
then
A10: (e4,c)
// (c,a) by
DIRAF:def 3;
A11: e4
<> c
proof
assume
A12: e4
= c;
(e3,c)
// (c,b) by
A4,
DIRAF: 2;
then (a,b)
// (c,b) by
A3,
A8,
A12,
DIRAF: 3;
then (b,a)
// (b,c) by
DIRAF: 2;
then
Mid (b,a,c) or
Mid (b,c,a) by
DIRAF: 7;
then (b,a,c)
are_collinear or (b,c,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A5,
DIRAF: 30;
end;
A13: not (e4,c,e3)
are_collinear
proof
(b,c,e3)
are_collinear by
A2,
DIRAF: 28;
then
A14: (c,e3,b)
are_collinear by
DIRAF: 30;
assume
A15: (e4,c,e3)
are_collinear ;
A16: (c,e3,c)
are_collinear by
DIRAF: 31;
A17: (e4,c,c)
are_collinear by
DIRAF: 31;
(e4,c,a)
are_collinear by
A9,
DIRAF: 9,
DIRAF: 28;
then (c,e3,a)
are_collinear by
A11,
A15,
A17,
DIRAF: 32;
hence contradiction by
A5,
A3,
A14,
A16,
DIRAF: 32;
end;
(b,c)
// (c,e3) by
A2,
DIRAF:def 3;
then
A18: (c,e3)
// (b,c) by
DIRAF: 2;
consider e1 such that
A19:
Mid (c,a,e1) and
A20: a
<> e1 by
DIRAF: 13;
A21: (c,a)
// (a,e1) by
A19,
DIRAF:def 3;
A22: a
<> c by
A5,
DIRAF: 31;
then
consider e2 such that
A23: (b,a)
// (a,e2) and
A24: (b,c)
// (e1,e2) by
A21,
ANALOAF:def 5;
(c,a)
// (c,e1) by
A21,
ANALOAF:def 5;
then (e4,c)
// (c,e1) by
A22,
A10,
DIRAF: 3;
then
A25:
Mid (e4,c,e1) by
DIRAF:def 3;
then
consider e5 such that
A26:
Mid (e4,e3,e5) and
A27: (c,e3)
// (e1,e5) by
A11,
Th20;
A28: e4
<> e3
proof
assume e4
= e3;
then
Mid (a,c,e3) by
A7,
DIRAF:def 3;
then
A29: (e3,c,a)
are_collinear by
DIRAF: 9,
DIRAF: 28;
A30: (e3,c,c)
are_collinear by
DIRAF: 31;
(e3,c,b)
are_collinear by
A2,
DIRAF: 9,
DIRAF: 28;
hence contradiction by
A5,
A3,
A29,
A30,
DIRAF: 32;
end;
then
A31: e4
<> e5 by
A26,
DIRAF: 8;
A32: e1
<> e4 by
A25,
A11,
DIRAF: 8;
A33: not (e1,e4,e3)
are_collinear
proof
(e4,c,e1)
are_collinear by
A25,
DIRAF: 28;
then
A34: (e4,e1,c)
are_collinear by
DIRAF: 30;
assume (e1,e4,e3)
are_collinear ;
then
A35: (e4,e1,e3)
are_collinear by
DIRAF: 30;
(e4,e1,e4)
are_collinear by
DIRAF: 31;
hence contradiction by
A32,
A13,
A35,
A34,
DIRAF: 32;
end;
A36: not (e1,e5,e4)
are_collinear
proof
(e4,e3,e5)
are_collinear by
A26,
DIRAF: 28;
then
A37: (e5,e4,e3)
are_collinear by
DIRAF: 30;
assume (e1,e5,e4)
are_collinear ;
then
A38: (e5,e4,e1)
are_collinear by
DIRAF: 30;
(e5,e4,e4)
are_collinear by
DIRAF: 31;
hence contradiction by
A31,
A33,
A38,
A37,
DIRAF: 32;
end;
then
A39: e1
<> e5 by
DIRAF: 31;
Mid (e1,c,e4) by
A25,
DIRAF: 9;
then
consider e6 such that
A40:
Mid (e1,e6,e5) and
A41: (e5,e4)
// (e6,c) by
A36,
Th21;
A42: c
<> e1 by
A19,
A20,
DIRAF: 8;
A43: not (c,e1,b)
are_collinear
proof
(c,a,e1)
are_collinear by
A19,
DIRAF: 28;
then
A44: (c,e1,a)
are_collinear by
DIRAF: 30;
A45: (c,e1,c)
are_collinear by
DIRAF: 31;
assume (c,e1,b)
are_collinear ;
hence contradiction by
A5,
A42,
A44,
A45,
DIRAF: 32;
end;
A46: e5
<> e3
proof
assume e5
= e3;
then (e3,c)
// (e3,e1) by
A27,
DIRAF: 2;
then
Mid (e3,c,e1) or
Mid (e3,e1,c) by
DIRAF: 7;
then (e3,c,e1)
are_collinear or (e3,e1,c)
are_collinear by
DIRAF: 28;
then
A47: (e3,c,e1)
are_collinear by
DIRAF: 30;
A48: (e3,c,c)
are_collinear by
DIRAF: 31;
(e3,c,b)
are_collinear by
A2,
DIRAF: 9,
DIRAF: 28;
hence contradiction by
A3,
A43,
A47,
A48,
DIRAF: 32;
end;
A49: e1
<> e6
proof
Mid (e5,e3,e4) by
A26,
DIRAF: 9;
then
A50: (e5,e3)
// (e3,e4) by
DIRAF:def 3;
then (e5,e3)
// (e5,e4) by
ANALOAF:def 5;
then
A51: (e5,e4)
// (e3,e4) by
A46,
A50,
ANALOAF:def 5;
assume e1
= e6;
then (e3,e4)
// (e1,c) by
A31,
A41,
A51,
ANALOAF:def 5;
then
A52: (a,b)
// (e1,c) by
A8,
A28,
DIRAF: 3;
Mid (e1,a,c) by
A19,
DIRAF: 9;
then
A53: (e1,a)
// (a,c) by
DIRAF:def 3;
then (e1,a)
// (e1,c) by
ANALOAF:def 5;
then (e1,c)
// (a,c) by
A20,
A53,
ANALOAF:def 5;
then (a,b)
// (a,c) by
A42,
A52,
DIRAF: 3;
then (a,b)
// (b,c) or (a,c)
// (c,b) by
DIRAF: 6;
then
Mid (a,b,c) or
Mid (a,c,b) by
DIRAF:def 3;
then (a,b,c)
are_collinear or (a,c,b)
are_collinear by
DIRAF: 28;
hence contradiction by
A5,
DIRAF: 30;
end;
consider x such that
A54:
Mid (c,x,e6) and
A55: (e1,e6)
// (a,x) by
A19,
Th19;
(e1,e6)
// (e6,e5) by
A40,
DIRAF:def 3;
then (e1,e6)
// (e1,e5) by
ANALOAF:def 5;
then (e1,e5)
// (a,x) by
A55,
A49,
ANALOAF:def 5;
then (c,e3)
// (a,x) by
A27,
A39,
DIRAF: 3;
then
A56: (a,x)
// (b,c) by
A3,
A18,
ANALOAF:def 5;
A57: e6
<> c
proof
assume e6
= c;
then x
= c by
A54,
DIRAF: 8;
then (c,a)
// (c,b) by
A56,
DIRAF: 2;
then
Mid (c,a,b) or
Mid (c,b,a) by
DIRAF: 7;
then (c,a,b)
are_collinear or (c,b,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A5,
DIRAF: 30;
end;
A58: a
<> e2
proof
assume
A59: a
= e2;
(e1,a)
// (a,c) by
A21,
DIRAF: 2;
then (b,c)
// (a,c) by
A20,
A24,
A59,
DIRAF: 3;
then (c,b)
// (c,a) by
DIRAF: 2;
then
Mid (c,b,a) or
Mid (c,a,b) by
DIRAF: 7;
then (c,b,a)
are_collinear or (c,a,b)
are_collinear by
DIRAF: 28;
hence contradiction by
A5,
DIRAF: 30;
end;
A60: e6
<> x
proof
assume e6
= x;
then (e6,e1)
// (e6,a) by
A55,
DIRAF: 2;
then
Mid (e6,e1,a) or
Mid (e6,a,e1) by
DIRAF: 7;
then (e6,e1,a)
are_collinear or (e6,a,e1)
are_collinear by
DIRAF: 28;
then
A61: (e6,e1,a)
are_collinear by
DIRAF: 30;
(e1,e6,e5)
are_collinear by
A40,
DIRAF: 28;
then
A62: (e6,e1,e5)
are_collinear by
DIRAF: 30;
(b,c)
// (e1,e5) by
A3,
A4,
A27,
DIRAF: 3;
then (e1,e2)
// (e1,e5) by
A6,
A24,
ANALOAF:def 5;
then
Mid (e1,e2,e5) or
Mid (e1,e5,e2) by
DIRAF: 7;
then (e1,e2,e5)
are_collinear or (e1,e5,e2)
are_collinear by
DIRAF: 28;
then
A63: (e1,e5,e2)
are_collinear by
DIRAF: 30;
A64: (e1,e5,e1)
are_collinear by
DIRAF: 31;
Mid (b,a,e2) by
A23,
DIRAF:def 3;
then (b,a,e2)
are_collinear by
DIRAF: 28;
then
A65: (a,e2,b)
are_collinear by
DIRAF: 30;
(c,a,e1)
are_collinear by
A19,
DIRAF: 28;
then
A66: (a,e1,c)
are_collinear by
DIRAF: 30;
(e6,e1,e1)
are_collinear by
DIRAF: 31;
then (e1,e5,a)
are_collinear by
A49,
A61,
A62,
DIRAF: 32;
then
A67: (a,e1,e2)
are_collinear by
A39,
A63,
A64,
DIRAF: 32;
A68: (a,e2,a)
are_collinear by
DIRAF: 31;
(a,e1,a)
are_collinear by
DIRAF: 31;
then (a,e2,c)
are_collinear by
A20,
A67,
A66,
DIRAF: 32;
hence contradiction by
A5,
A58,
A65,
A68,
DIRAF: 32;
end;
Mid (e6,x,c) by
A54,
DIRAF: 9;
then
A69: (e6,x)
// (x,c) by
DIRAF:def 3;
then (e6,x)
// (e6,c) by
ANALOAF:def 5;
then
A70: (e6,c)
// (x,c) by
A60,
A69,
ANALOAF:def 5;
Mid (e5,e3,e4) by
A26,
DIRAF: 9;
then
A71: (e5,e3)
// (e3,e4) by
DIRAF:def 3;
then (e5,e3)
// (e5,e4) by
ANALOAF:def 5;
then (e3,e4)
// (e5,e4) by
A46,
A71,
ANALOAF:def 5;
then (a,b)
// (e5,e4) by
A8,
A28,
DIRAF: 3;
then (a,b)
// (e6,c) by
A31,
A41,
DIRAF: 3;
then (a,b)
// (x,c) by
A57,
A70,
DIRAF: 3;
hence thesis by
A56;
end;
now
A72:
now
assume
Mid (a,c,b);
then (a,c)
// (c,b) by
DIRAF:def 3;
then (a,c)
// (a,b) by
ANALOAF:def 5;
hence (a,a)
// (b,c) & (a,b)
// (a,c) by
DIRAF: 2,
DIRAF: 4;
end;
A73:
now
assume
Mid (b,a,c);
then
Mid (c,a,b) by
DIRAF: 9;
then (c,a)
// (a,b) by
DIRAF:def 3;
then (c,a)
// (c,b) by
ANALOAF:def 5;
hence (a,c)
// (b,c) & (a,b)
// (c,c) by
DIRAF: 2,
DIRAF: 4;
end;
A74:
Mid (a,b,c) implies (a,b)
// (b,c) & (a,b)
// (b,c) by
DIRAF:def 3;
assume (a,b,c)
are_collinear ;
hence thesis by
A74,
A73,
A72,
DIRAF: 29;
end;
hence thesis by
A1;
end;
theorem ::
PASCH:23
Th23: (a,b)
// (c,d) & not (a,b,c)
are_collinear implies ex x st
Mid (a,x,d) &
Mid (b,x,c)
proof
assume that
A1: (a,b)
// (c,d) and
A2: not (a,b,c)
are_collinear ;
A3:
now
consider e1 such that
A4: (a,b)
// (d,e1) and
A5: (a,d)
// (b,e1) and
A6: b
<> e1 by
ANALOAF:def 5;
A7: a
<> b by
A2,
DIRAF: 31;
then (c,d)
// (d,e1) by
A1,
A4,
ANALOAF:def 5;
then
A8:
Mid (c,d,e1) by
DIRAF:def 3;
A9: a
<> d
proof
assume a
= d;
then (b,a)
// (a,c) by
A1,
DIRAF: 2;
then
Mid (b,a,c) by
DIRAF:def 3;
then (b,a,c)
are_collinear by
DIRAF: 28;
hence contradiction by
A2,
DIRAF: 30;
end;
A10: not (a,b,d)
are_collinear
proof
A11:
now
assume (a,b)
// (a,d);
then (c,d)
// (a,d) by
A1,
A7,
ANALOAF:def 5;
then (d,c)
// (d,a) by
DIRAF: 2;
then (d,c)
'||' (d,a) by
DIRAF:def 4;
hence (d,c,a)
are_collinear by
DIRAF:def 5;
end;
A12: (d,a,a)
are_collinear by
DIRAF: 31;
A13:
now
assume (a,b)
// (d,a);
then (c,d)
// (d,a) by
A1,
A7,
ANALOAF:def 5;
then
Mid (c,d,a) by
DIRAF:def 3;
then (c,d,a)
are_collinear by
DIRAF: 28;
hence (d,c,a)
are_collinear by
DIRAF: 30;
end;
assume
A14: (a,b,d)
are_collinear ;
then
A15: (d,a,b)
are_collinear by
DIRAF: 30;
(a,b)
'||' (a,d) by
A14,
DIRAF:def 5;
then (d,a,c)
are_collinear by
A11,
A13,
DIRAF: 30,
DIRAF:def 4;
hence contradiction by
A2,
A9,
A12,
A15,
DIRAF: 32;
end;
consider e2 such that
A16: (c,d)
// (b,e2) and
A17: (c,b)
// (d,e2) and
A18: d
<> e2 by
ANALOAF:def 5;
assume
A19: c
<> d;
then (a,b)
// (b,e2) by
A1,
A16,
DIRAF: 3;
then
A20:
Mid (a,b,e2) by
DIRAF:def 3;
A21: not (c,d,b)
are_collinear
proof
A22:
now
assume (c,d)
// (c,b);
then (a,b)
// (c,b) by
A1,
A19,
DIRAF: 3;
then (b,a)
// (b,c) by
DIRAF: 2;
then
Mid (b,a,c) or
Mid (b,c,a) by
DIRAF: 7;
then (b,a,c)
are_collinear or (b,c,a)
are_collinear by
DIRAF: 28;
hence contradiction by
A2,
DIRAF: 30;
end;
assume (c,d,b)
are_collinear ;
then (c,d)
'||' (c,b) by
DIRAF:def 5;
then (c,d)
// (c,b) or (c,d)
// (b,c) by
DIRAF:def 4;
then (a,b)
// (b,c) by
A1,
A19,
A22,
DIRAF: 3;
then
Mid (a,b,c) by
DIRAF:def 3;
hence contradiction by
A2,
DIRAF: 28;
end;
A23: (b,c,c)
are_collinear by
DIRAF: 31;
A24: (d,a,a)
are_collinear by
DIRAF: 31;
A25: c
<> e1
proof
assume c
= e1;
then (c,d)
// (d,c) by
A1,
A4,
A7,
ANALOAF:def 5;
hence contradiction by
A19,
ANALOAF:def 5;
end;
not (c,b,e1)
are_collinear
proof
(c,d,e1)
are_collinear by
A8,
DIRAF: 28;
then
A26: (c,e1,d)
are_collinear by
DIRAF: 30;
assume (c,b,e1)
are_collinear ;
then
A27: (c,e1,b)
are_collinear by
DIRAF: 30;
(c,e1,c)
are_collinear by
DIRAF: 31;
hence contradiction by
A25,
A21,
A27,
A26,
DIRAF: 32;
end;
then
consider x such that
A28:
Mid (c,x,b) and
A29: (b,e1)
// (x,d) by
A8,
Th21;
A30:
Mid (b,x,c) by
A28,
DIRAF: 9;
(a,d)
// (x,d) by
A5,
A6,
A29,
DIRAF: 3;
then (d,a)
// (d,x) by
DIRAF: 2;
then
Mid (d,a,x) or
Mid (d,x,a) by
DIRAF: 7;
then (d,a,x)
are_collinear or (d,x,a)
are_collinear by
DIRAF: 28;
then
A31: (d,a,x)
are_collinear by
DIRAF: 30;
A32: b
<> c by
A2,
DIRAF: 31;
A33: a
<> e2
proof
assume a
= e2;
then (a,b)
// (b,a) by
A1,
A19,
A16,
DIRAF: 3;
hence contradiction by
A7,
ANALOAF:def 5;
end;
not (a,d,e2)
are_collinear
proof
(a,b,e2)
are_collinear by
A20,
DIRAF: 28;
then
A34: (a,e2,b)
are_collinear by
DIRAF: 30;
assume (a,d,e2)
are_collinear ;
then
A35: (a,e2,d)
are_collinear by
DIRAF: 30;
(a,e2,a)
are_collinear by
DIRAF: 31;
hence contradiction by
A33,
A10,
A35,
A34,
DIRAF: 32;
end;
then
consider y such that
A36:
Mid (a,y,d) and
A37: (d,e2)
// (y,b) by
A20,
Th21;
A38: (b,c,b)
are_collinear by
DIRAF: 31;
(c,b)
// (y,b) by
A17,
A18,
A37,
DIRAF: 3;
then (b,c)
// (b,y) by
DIRAF: 2;
then
Mid (b,c,y) or
Mid (b,y,c) by
DIRAF: 7;
then (b,c,y)
are_collinear or (b,y,c)
are_collinear by
DIRAF: 28;
then
A39: (b,c,y)
are_collinear by
DIRAF: 30;
A40: (c,x,b)
are_collinear by
A28,
DIRAF: 28;
then (b,c,x)
are_collinear by
DIRAF: 30;
then
A41: (x,y,c)
are_collinear by
A32,
A39,
A23,
DIRAF: 32;
(a,y,d)
are_collinear by
A36,
DIRAF: 28;
then (d,a,y)
are_collinear by
DIRAF: 30;
then
A42: (x,y,a)
are_collinear by
A9,
A31,
A24,
DIRAF: 32;
(b,c,x)
are_collinear by
A40,
DIRAF: 30;
then (x,y,b)
are_collinear by
A32,
A39,
A38,
DIRAF: 32;
then
Mid (a,x,d) by
A2,
A36,
A42,
A41,
DIRAF: 32;
hence thesis by
A30;
end;
now
assume
A43: c
= d;
take x = c;
thus
Mid (a,x,d) &
Mid (b,x,c) by
A43,
DIRAF: 10;
end;
hence thesis by
A3;
end;
theorem ::
PASCH:24
OAS is
Fanoian by
Th23;
theorem ::
PASCH:25
(a,b)
'||' (c,d) & (a,c)
'||' (b,d) & not (a,b,c)
are_collinear implies ex x st (x,a,d)
are_collinear & (x,b,c)
are_collinear
proof
assume that
A1: (a,b)
'||' (c,d) and
A2: (a,c)
'||' (b,d) and
A3: not (a,b,c)
are_collinear ;
(a,b)
// (c,d) by
A1,
A2,
A3,
Th14;
then
consider x such that
A4:
Mid (a,x,d) and
A5:
Mid (b,x,c) by
A3,
Th23;
(b,x,c)
are_collinear by
A5,
DIRAF: 28;
then
A6: (x,b,c)
are_collinear by
DIRAF: 30;
(a,x,d)
are_collinear by
A4,
DIRAF: 28;
then (x,a,d)
are_collinear by
DIRAF: 30;
hence thesis by
A6;
end;
theorem ::
PASCH:26
(a,b)
'||' (c,d) & not (a,b,c)
are_collinear & (p,a,d)
are_collinear & (p,b,c)
are_collinear implies not (p,a,b)
are_collinear
proof
assume that
A1: (a,b)
'||' (c,d) and
A2: not (a,b,c)
are_collinear and
A3: (p,a,d)
are_collinear and
A4: (p,b,c)
are_collinear ;
A5: (p,a,a)
are_collinear by
DIRAF: 31;
assume (p,a,b)
are_collinear ;
then
A6: (a,b,d)
are_collinear by
A2,
A3,
A4,
A5,
DIRAF: 32;
A7: (a,b)
'||' (d,c) by
A1,
DIRAF: 22;
a
<> b by
A2,
DIRAF: 31;
hence contradiction by
A2,
A6,
A7,
DIRAF: 33;
end;
theorem ::
PASCH:27
Th27:
Mid (a,b,d) &
Mid (b,x,c) & not (a,b,c)
are_collinear implies ex y st
Mid (a,y,c) &
Mid (y,x,d)
proof
assume that
A1:
Mid (a,b,d) and
A2:
Mid (b,x,c) and
A3: not (a,b,c)
are_collinear ;
A4:
now
assume
A5: b
= d;
take y = c;
thus
Mid (a,y,c) &
Mid (d,x,y) by
A2,
A5,
DIRAF: 10;
thus
Mid (a,y,c) &
Mid (y,x,d) by
A2,
A5,
DIRAF: 9,
DIRAF: 10;
end;
A6:
Mid (d,b,a) by
A1,
DIRAF: 9;
A7:
now
assume that
A8: b
<> d and
A9: x
<> b;
(d,b)
// (b,a) by
A6,
DIRAF:def 3;
then
consider e1 such that
A10: (x,b)
// (b,e1) and
A11: (x,d)
// (a,e1) by
A8,
ANALOAF:def 5;
A12:
Mid (x,b,e1) by
A10,
DIRAF:def 3;
then
A13:
Mid (e1,b,x) by
DIRAF: 9;
then
A14:
Mid (e1,x,c) by
A2,
A9,
DIRAF: 12;
A15: c
<> e1
proof
assume c
= e1;
then
Mid (x,b,x) by
A2,
A9,
A13,
DIRAF: 8,
DIRAF: 12;
hence contradiction by
A9,
DIRAF: 8;
end;
A16: x
<> e1 by
A9,
A12,
DIRAF: 8;
A17: not (c,a,e1)
are_collinear
proof
(x,b,e1)
are_collinear by
A12,
DIRAF: 28;
then
A18: (x,e1,b)
are_collinear by
DIRAF: 30;
assume (c,a,e1)
are_collinear ;
then
A19: (c,e1,a)
are_collinear by
DIRAF: 30;
(c,x,e1)
are_collinear by
A14,
DIRAF: 9,
DIRAF: 28;
then
A20: (c,e1,x)
are_collinear by
DIRAF: 30;
A21: (c,e1,c)
are_collinear by
DIRAF: 31;
(c,e1,e1)
are_collinear by
DIRAF: 31;
then (c,e1,b)
are_collinear by
A16,
A20,
A18,
DIRAF: 35;
hence contradiction by
A3,
A15,
A19,
A21,
DIRAF: 32;
end;
Mid (c,x,e1) by
A14,
DIRAF: 9;
then
consider y such that
A22:
Mid (c,y,a) and
A23: (a,e1)
// (y,x) by
A17,
Th21;
a
<> e1 by
A17,
DIRAF: 31;
then (x,d)
// (y,x) by
A11,
A23,
DIRAF: 3;
then (d,x)
// (x,y) by
DIRAF: 2;
then
Mid (d,x,y) by
DIRAF:def 3;
then
A24:
Mid (y,x,d) by
DIRAF: 9;
Mid (a,y,c) by
A22,
DIRAF: 9;
hence thesis by
A24;
end;
now
assume that b
<> d and
A25: x
= b;
take y = a;
thus
Mid (a,y,c) &
Mid (y,x,d) by
A1,
A25,
DIRAF: 10;
end;
hence thesis by
A7,
A4;
end;
theorem ::
PASCH:28
OAS is
satisfying_Ext_Bet_Pasch by
Th27;
theorem ::
PASCH:29
Th29:
Mid (a,b,d) &
Mid (a,x,c) & not (a,b,c)
are_collinear implies ex y st
Mid (b,y,c) &
Mid (x,y,d)
proof
assume that
A1:
Mid (a,b,d) and
A2:
Mid (a,x,c) and
A3: not (a,b,c)
are_collinear ;
A4: b
<> c by
A3,
DIRAF: 31;
A5: a
<> b by
A3,
DIRAF: 31;
A6:
now
assume that
A7: b
<> d and
A8: x
<> c and
A9: a
<> x;
A10: a
<> d by
A1,
A7,
DIRAF: 8;
consider e1 such that
A11:
Mid (a,d,e1) and
A12: (x,d)
// (c,e1) by
A2,
A9,
Th20;
A13:
Mid (e1,d,a) by
A11,
DIRAF: 9;
A14: (d,b,a)
are_collinear by
A1,
DIRAF: 9,
DIRAF: 28;
A15: not (a,x,b)
are_collinear
proof
A16: (a,x,a)
are_collinear by
DIRAF: 31;
assume
A17: (a,x,b)
are_collinear ;
(a,x,c)
are_collinear by
A2,
DIRAF: 28;
hence contradiction by
A3,
A9,
A17,
A16,
DIRAF: 32;
end;
A18: not (x,d,a)
are_collinear
proof
assume (x,d,a)
are_collinear ;
then
A19: (d,a,x)
are_collinear by
DIRAF: 30;
A20: (d,a,a)
are_collinear by
DIRAF: 31;
(d,a,b)
are_collinear by
A14,
DIRAF: 30;
hence contradiction by
A10,
A15,
A19,
A20,
DIRAF: 32;
end;
then
A21: x
<> d by
DIRAF: 31;
A22:
Mid (d,b,a) by
A1,
DIRAF: 9;
Mid (b,d,e1) by
A1,
A11,
DIRAF: 11;
then
Mid (e1,d,b) by
DIRAF: 9;
then
Mid (e1,b,a) by
A22,
A13,
DIRAF: 12;
then
A23: (e1,b)
// (b,a) by
DIRAF:def 3;
e1
<> b by
A7,
A22,
A13,
DIRAF: 14;
then
consider e2 such that
A24: (c,b)
// (b,e2) and
A25: (c,e1)
// (a,e2) by
A23,
ANALOAF:def 5;
A26:
Mid (c,b,e2) by
A24,
DIRAF:def 3;
then
A27: (c,b,e2)
are_collinear by
DIRAF: 28;
Mid (c,x,a) by
A2,
DIRAF: 9;
then
consider y such that
A28:
Mid (c,y,e2) and
A29: (a,e2)
// (x,y) by
Th19;
A30:
Mid (c,b,y) or
Mid (c,y,b) by
A26,
A28,
DIRAF: 17;
A31: c
<> e2 by
A4,
A24,
ANALOAF:def 5;
A32:
now
(c,b,e2)
are_collinear by
A26,
DIRAF: 28;
then
A33: (c,e2,b)
are_collinear by
DIRAF: 30;
(c,y,e2)
are_collinear by
A28,
DIRAF: 28;
then
A34: (c,e2,y)
are_collinear by
DIRAF: 30;
(c,e2,c)
are_collinear by
DIRAF: 31;
then
A35: (b,y,c)
are_collinear by
A31,
A34,
A33,
DIRAF: 32;
(a,x,c)
are_collinear by
A2,
DIRAF: 28;
then
A36: (x,a,c)
are_collinear by
DIRAF: 30;
A37:
Mid (c,x,a) by
A2,
DIRAF: 9;
assume
A38:
Mid (x,d,y);
then
consider c9 such that
A39:
Mid (x,c9,a) and
A40:
Mid (c9,b,y) by
A22,
A18,
Th27;
(x,c9,a)
are_collinear by
A39,
DIRAF: 28;
then
A41: (x,a,c9)
are_collinear by
DIRAF: 30;
A42: b
<> y
proof
assume b
= y;
then (x,d,b)
are_collinear by
A38,
DIRAF: 28;
then
A43: (d,b,x)
are_collinear by
DIRAF: 30;
A44: (d,b,b)
are_collinear by
DIRAF: 31;
(a,x,c)
are_collinear by
A2,
DIRAF: 28;
then (d,b,c)
are_collinear by
A9,
A14,
A43,
DIRAF: 35;
hence contradiction by
A3,
A7,
A14,
A44,
DIRAF: 32;
end;
(c9,b,y)
are_collinear by
A40,
DIRAF: 28;
then
A45: (b,y,c9)
are_collinear by
DIRAF: 30;
then
A46: (c,c9,c)
are_collinear by
A42,
A35,
DIRAF: 32;
(b,y,b)
are_collinear by
DIRAF: 31;
then
A47: (c,c9,b)
are_collinear by
A42,
A35,
A45,
DIRAF: 32;
(x,a,a)
are_collinear by
DIRAF: 31;
then (c,c9,a)
are_collinear by
A9,
A36,
A41,
DIRAF: 32;
then
Mid (x,c,a) by
A3,
A39,
A47,
A46,
DIRAF: 32;
hence contradiction by
A8,
A37,
DIRAF: 14;
end;
A48: a
<> e2
proof
assume a
= e2;
then
Mid (c,b,a) by
A24,
DIRAF:def 3;
hence contradiction by
A3,
DIRAF: 9,
DIRAF: 28;
end;
A49: (e1,d,a)
are_collinear by
A11,
DIRAF: 9,
DIRAF: 28;
A50: c
<> e1
proof
assume c
= e1;
then
A51: (d,a,c)
are_collinear by
A49,
DIRAF: 30;
A52: (d,a,a)
are_collinear by
DIRAF: 31;
(d,a,b)
are_collinear by
A14,
DIRAF: 30;
hence contradiction by
A3,
A10,
A51,
A52,
DIRAF: 32;
end;
then (x,d)
// (a,e2) by
A12,
A25,
DIRAF: 3;
then (x,d)
// (x,y) by
A48,
A29,
DIRAF: 3;
then
A53:
Mid (x,d,y) or
Mid (x,y,d) by
DIRAF: 7;
then
A54:
Mid (d,y,x) by
A32,
DIRAF: 9;
now
A55: b
<> e2
proof
A56: (a,b)
// (b,d) by
A1,
DIRAF:def 3;
assume
A57: b
= e2;
(c,e1)
// (x,d) by
A12,
DIRAF: 2;
then (a,b)
// (x,d) by
A25,
A50,
A57,
ANALOAF:def 5;
then (x,d)
// (b,d) by
A5,
A56,
ANALOAF:def 5;
then (d,x)
// (d,b) by
DIRAF: 2;
then
Mid (d,x,b) or
Mid (d,b,x) by
DIRAF: 7;
then (d,x,b)
are_collinear or (d,b,x)
are_collinear by
DIRAF: 28;
then
A58: (d,b,x)
are_collinear by
DIRAF: 30;
(d,b,b)
are_collinear by
DIRAF: 31;
then
A59: (a,x,b)
are_collinear by
A7,
A14,
A58,
DIRAF: 32;
A60: (a,x,c)
are_collinear by
A2,
DIRAF: 28;
(a,x,a)
are_collinear by
A7,
A14,
A58,
DIRAF: 32;
hence contradiction by
A3,
A9,
A59,
A60,
DIRAF: 32;
end;
A61: (b,d,a)
are_collinear by
A14,
DIRAF: 30;
A62: y
<> d
proof
A63: (c,e2,c)
are_collinear by
DIRAF: 31;
A64: (c,e2,b)
are_collinear by
A27,
DIRAF: 30;
assume y
= d;
then (c,d,e2)
are_collinear by
A28,
DIRAF: 28;
then (c,e2,d)
are_collinear by
DIRAF: 30;
then (c,e2,a)
are_collinear by
A7,
A14,
A64,
DIRAF: 35;
hence contradiction by
A3,
A31,
A64,
A63,
DIRAF: 32;
end;
A65: (b,e2,c)
are_collinear by
A27,
DIRAF: 30;
assume
A66: not
Mid (c,y,b);
then
A67: y
<> b by
DIRAF: 10;
Mid (b,y,e2) by
A28,
A30,
A66,
DIRAF: 11;
then
consider z such that
A68:
Mid (b,d,z) and
A69: (y,d)
// (e2,z) by
A67,
Th20;
A70: (a,e2,a)
are_collinear by
DIRAF: 31;
A71:
now
assume
A72: a
= z;
Mid (d,b,a) by
A1,
DIRAF: 9;
hence contradiction by
A7,
A68,
A72,
DIRAF: 14;
end;
(d,y)
// (y,x) by
A54,
DIRAF:def 3;
then (d,y)
// (d,x) by
ANALOAF:def 5;
then (y,d)
// (x,d) by
DIRAF: 2;
then (y,d)
// (c,e1) by
A12,
A21,
DIRAF: 3;
then (c,e1)
// (e2,z) by
A69,
A62,
ANALOAF:def 5;
then (a,e2)
// (e2,z) by
A25,
A50,
ANALOAF:def 5;
then
Mid (a,e2,z) by
DIRAF:def 3;
then (a,e2,z)
are_collinear by
DIRAF: 28;
then
A73: (a,z,e2)
are_collinear by
DIRAF: 30;
A74: (b,d,z)
are_collinear by
A68,
DIRAF: 28;
then
A75: (a,z,a)
are_collinear by
A7,
A61,
DIRAF: 32;
(b,d,b)
are_collinear by
DIRAF: 31;
then (a,z,b)
are_collinear by
A7,
A74,
A61,
DIRAF: 32;
then
A76: (a,e2,b)
are_collinear by
A73,
A75,
A71,
DIRAF: 32;
(a,e2,e2)
are_collinear by
A73,
A75,
A71,
DIRAF: 32;
then (a,e2,c)
are_collinear by
A55,
A76,
A65,
DIRAF: 35;
hence contradiction by
A3,
A48,
A76,
A70,
DIRAF: 32;
end;
then
Mid (b,y,c) by
DIRAF: 9;
hence thesis by
A53,
A32;
end;
A77: b
= d implies
Mid (b,d,c) &
Mid (x,d,d) by
DIRAF: 10;
A78: x
= c implies
Mid (b,c,c) &
Mid (x,c,d) by
DIRAF: 10;
a
= x implies
Mid (b,b,c) &
Mid (x,b,d) by
A1,
DIRAF: 10;
hence thesis by
A6,
A77,
A78;
end;
theorem ::
PASCH:30
OAS is
satisfying_Int_Bet_Pasch by
Th29;
theorem ::
PASCH:31
Mid (p,a,b) & (p,a)
// (p9,a9) & not (p,a,p9)
are_collinear & (p9,a9,b9)
are_collinear & (p,p9)
// (a,a9) & (p,p9)
// (b,b9) implies
Mid (p9,a9,b9)
proof
assume that
A1:
Mid (p,a,b) and
A2: (p,a)
// (p9,a9) and
A3: not (p,a,p9)
are_collinear and
A4: (p9,a9,b9)
are_collinear and
A5: (p,p9)
// (a,a9) and
A6: (p,p9)
// (b,b9);
A7: p
<> a by
A3,
DIRAF: 31;
A8: p
<> p9 by
A3,
DIRAF: 31;
A9: (p,a,b)
are_collinear by
A1,
DIRAF: 28;
then
A10: (p,b,a)
are_collinear by
DIRAF: 30;
now
A11: p
<> b by
A1,
A7,
DIRAF: 8;
A12: p9
<> b9
proof
assume
A13: p9
= b9;
then (b9,p)
// (b9,b) by
A6,
DIRAF: 2;
then
Mid (b9,p,b) or
Mid (b9,b,p) by
DIRAF: 7;
then (b9,p,b)
are_collinear or (b9,b,p)
are_collinear by
DIRAF: 28;
then
A14: (p,b,b9)
are_collinear by
DIRAF: 30;
(p,b,p)
are_collinear by
DIRAF: 31;
hence contradiction by
A3,
A10,
A11,
A13,
A14,
DIRAF: 32;
end;
A15: not (p,a,a9)
are_collinear
proof
assume
A16: (p,a,a9)
are_collinear ;
(p,a)
'||' (a9,p9) by
A2,
DIRAF:def 4;
hence contradiction by
A3,
A7,
A16,
DIRAF: 33;
end;
then
A17: a
<> a9 by
DIRAF: 31;
A18:
now
(a,a9)
// (p,p9) by
A5,
DIRAF: 2;
then
A19: (a,a9)
'||' (p9,p) by
DIRAF:def 4;
assume (a,a9,p9)
are_collinear ;
then (a,a9,p)
are_collinear by
A17,
A19,
DIRAF: 33;
hence contradiction by
A15,
DIRAF: 30;
end;
assume that
A20: p9
<> a9 and a9
<> b9;
consider x such that
A21:
Mid (p,x,b9) and
A22: (b,b9)
// (a,x) by
A1,
Th19;
Mid (b9,x,p) by
A21,
DIRAF: 9;
then
consider y such that
A23:
Mid (b9,y,p9) and
A24: (p,p9)
// (x,y) by
Th19;
(b9,y,p9)
are_collinear by
A23,
DIRAF: 28;
then
A25: (p9,b9,y)
are_collinear by
DIRAF: 30;
A26: b
<> b9
proof
assume b
= b9;
then (a9,p9,b)
are_collinear by
A4,
DIRAF: 30;
then (a9,p9)
'||' (a9,b) by
DIRAF:def 5;
then (a9,p9)
// (a9,b) or (a9,p9)
// (b,a9) by
DIRAF:def 4;
then (p9,a9)
// (a9,b) or (p9,a9)
// (b,a9) by
DIRAF: 2;
then (p,a)
// (a9,b) or (p,a)
// (b,a9) by
A2,
A20,
DIRAF: 3;
then (p,a)
'||' (b,a9) by
DIRAF:def 4;
hence contradiction by
A1,
A7,
A15,
DIRAF: 28,
DIRAF: 33;
end;
A27: x
<> a
proof
assume x
= a;
then
A28: (p,a,b9)
are_collinear by
A21,
DIRAF: 28;
(p,a,a)
are_collinear by
DIRAF: 31;
then
A29: (b,b9,a)
are_collinear by
A7,
A9,
A28,
DIRAF: 32;
(p,a,p)
are_collinear by
DIRAF: 31;
then
A30: (b,b9,p)
are_collinear by
A7,
A9,
A28,
DIRAF: 32;
(b,b9)
// (p,p9) by
A6,
DIRAF: 2;
then (b,b9)
'||' (p,p9) by
DIRAF:def 4;
then (b,b9,p9)
are_collinear by
A26,
A30,
DIRAF: 33;
hence contradiction by
A3,
A26,
A29,
A30,
DIRAF: 32;
end;
A31: (p9,b9,a9)
are_collinear by
A4,
DIRAF: 30;
then
A32: (y,a9,a9)
are_collinear by
A12,
A25,
DIRAF: 32;
A33: (p,p9)
// (a,x) by
A6,
A22,
A26,
DIRAF: 3;
then (a,x)
// (x,y) by
A8,
A24,
ANALOAF:def 5;
then (a,x)
// (a,y) by
ANALOAF:def 5;
then (p,p9)
// (a,y) by
A27,
A33,
DIRAF: 3;
then (a,y)
// (a,a9) by
A5,
A8,
ANALOAF:def 5;
then (a,y)
'||' (a,a9) by
DIRAF:def 4;
then (a,y,a9)
are_collinear by
DIRAF:def 5;
then
A34: (y,a9,a)
are_collinear by
DIRAF: 30;
(p9,b9,p9)
are_collinear by
DIRAF: 31;
then (y,a9,p9)
are_collinear by
A12,
A25,
A31,
DIRAF: 32;
then y
= a9 or (a,a9,p9)
are_collinear by
A34,
A32,
DIRAF: 32;
hence thesis by
A23,
A18,
DIRAF: 9;
end;
hence thesis by
DIRAF: 10;
end;