projdes1.miz
begin
reserve FCPS for
up-3-dimensional
CollProjectiveSpace;
reserve a,a9,b,b9,c,c9,d,d9,o,p,q,r,s,t,u,x,y,z for
Element of FCPS;
theorem ::
PROJDES1:1
Th1: (a,b,c)
are_collinear implies (b,c,a)
are_collinear & (c,a,b)
are_collinear & (b,a,c)
are_collinear & (a,c,b)
are_collinear & (c,b,a)
are_collinear
proof
assume
A1: (a,b,c)
are_collinear ;
then (b,a,c)
are_collinear by
COLLSP: 4;
then
A2: (b,c,a)
are_collinear by
COLLSP: 4;
(a,c,b)
are_collinear by
A1,
COLLSP: 4;
hence thesis by
A2,
COLLSP: 4;
end;
theorem ::
PROJDES1:2
ex q, r st not (p,q,r)
are_collinear
proof
consider q such that
A1: p
<> q and p
<> q and (p,p,q)
are_collinear by
ANPROJ_2:def 10;
ex r st not (p,q,r)
are_collinear by
A1,
COLLSP: 12;
hence thesis;
end;
theorem ::
PROJDES1:3
not (a,b,c)
are_collinear & (a,b,b9)
are_collinear & a
<> b9 implies not (a,b9,c)
are_collinear
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,b9)
are_collinear and
A3: a
<> b9;
assume
A4: not thesis;
(a,b9,b)
are_collinear by
A2,
Th1;
hence contradiction by
A1,
A3,
A4,
COLLSP: 6;
end;
theorem ::
PROJDES1:4
not (a,b,c)
are_collinear & (a,b,d)
are_collinear & (a,c,d)
are_collinear implies a
= d
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,d)
are_collinear & (a,c,d)
are_collinear ;
assume
A3: not thesis;
A4: (a,d,a)
are_collinear by
ANPROJ_2:def 7;
(a,d,b)
are_collinear & (a,d,c)
are_collinear by
A2,
Th1;
hence contradiction by
A1,
A3,
A4,
ANPROJ_2:def 8;
end;
theorem ::
PROJDES1:5
Th5: not (o,a,d)
are_collinear & (o,d,d9)
are_collinear & d
<> d9 & (a9,d9,s)
are_collinear & (o,a,a9)
are_collinear & o
<> a9 implies s
<> d
proof
assume that
A1: not (o,a,d)
are_collinear and
A2: (o,d,d9)
are_collinear and
A3: d
<> d9 and
A4: (a9,d9,s)
are_collinear and
A5: (o,a,a9)
are_collinear and
A6: o
<> a9;
assume not thesis;
then
A7: (d,d9,a9)
are_collinear by
A4,
Th1;
(d,d9,o)
are_collinear by
A2,
Th1;
then (d,o,a9)
are_collinear by
A3,
A7,
COLLSP: 6;
then
A8: (o,a9,d)
are_collinear by
Th1;
(o,a9,a)
are_collinear by
A5,
Th1;
hence contradiction by
A1,
A6,
A8,
COLLSP: 6;
end;
Lm1: not (a,b,c)
are_collinear & (a,b,b9)
are_collinear & (a,c,c9)
are_collinear & a
<> b9 implies b9
<> c9
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,b9)
are_collinear and
A3: (a,c,c9)
are_collinear and
A4: a
<> b9;
assume not thesis;
then
A5: (a,b9,c)
are_collinear by
A3,
Th1;
(a,b9,b)
are_collinear by
A2,
Th1;
hence contradiction by
A1,
A4,
A5,
COLLSP: 6;
end;
definition
let FCPS, a, b, c, d;
::
PROJDES1:def1
pred a,b,c,d
are_coplanar means ex x be
Element of FCPS st (a,b,x)
are_collinear & (c,d,x)
are_collinear ;
end
theorem ::
PROJDES1:6
Th6: (a,b,c)
are_collinear or (b,c,d)
are_collinear or (c,d,a)
are_collinear or (d,a,b)
are_collinear implies (a,b,c,d)
are_coplanar
proof
A1:
now
A2: (c,d,c)
are_collinear by
ANPROJ_2:def 7;
assume (a,b,c)
are_collinear ;
hence thesis by
A2;
end;
A3:
now
A4: (a,b,a)
are_collinear by
ANPROJ_2:def 7;
assume (c,d,a)
are_collinear ;
hence thesis by
A4;
end;
A5:
now
assume (d,a,b)
are_collinear ;
then
A6: (a,b,d)
are_collinear by
Th1;
(c,d,d)
are_collinear by
ANPROJ_2:def 7;
hence thesis by
A6;
end;
A7:
now
assume (b,c,d)
are_collinear ;
then
A8: (c,d,b)
are_collinear by
Th1;
(a,b,b)
are_collinear by
ANPROJ_2:def 7;
hence thesis by
A8;
end;
assume (a,b,c)
are_collinear or (b,c,d)
are_collinear or (c,d,a)
are_collinear or (d,a,b)
are_collinear ;
hence thesis by
A1,
A7,
A3,
A5;
end;
Lm2: (a,b,c,d)
are_coplanar implies (b,a,c,d)
are_coplanar
proof
assume (a,b,c,d)
are_coplanar ;
then
consider x such that
A1: (a,b,x)
are_collinear and
A2: (c,d,x)
are_collinear ;
(b,a,x)
are_collinear by
A1,
Th1;
hence thesis by
A2;
end;
Lm3: (a,b,c,d)
are_coplanar implies (b,c,d,a)
are_coplanar
proof
assume (a,b,c,d)
are_coplanar ;
then
consider x such that
A1: (a,b,x)
are_collinear & (c,d,x)
are_collinear ;
(b,x,a)
are_collinear & (x,c,d)
are_collinear by
A1,
Th1;
then
consider y such that
A2: (b,c,y)
are_collinear and
A3: (a,d,y)
are_collinear by
ANPROJ_2:def 9;
(d,a,y)
are_collinear by
A3,
Th1;
hence thesis by
A2;
end;
theorem ::
PROJDES1:7
Th7: (a,b,c,d)
are_coplanar implies (b,c,d,a)
are_coplanar & (c,d,a,b)
are_coplanar & (d,a,b,c)
are_coplanar & (b,a,c,d)
are_coplanar & (c,b,d,a)
are_coplanar & (d,c,a,b)
are_coplanar & (a,d,b,c)
are_coplanar & (a,c,d,b)
are_coplanar & (b,d,a,c)
are_coplanar & (c,a,b,d)
are_coplanar & (d,b,c,a)
are_coplanar & (c,a,d,b)
are_coplanar & (d,b,a,c)
are_coplanar & (a,c,b,d)
are_coplanar & (b,d,c,a)
are_coplanar & (a,b,d,c)
are_coplanar & (a,d,c,b)
are_coplanar & (b,c,a,d)
are_coplanar & (b,a,d,c)
are_coplanar & (c,b,a,d)
are_coplanar & (c,d,b,a)
are_coplanar & (d,a,c,b)
are_coplanar & (d,c,b,a)
are_coplanar
proof
assume
A1: (a,b,c,d)
are_coplanar ;
then (b,a,c,d)
are_coplanar by
Lm2;
then (a,c,d,b)
are_coplanar by
Lm3;
then
A2: (c,d,b,a)
are_coplanar by
Lm3;
then
A3: (d,b,a,c)
are_coplanar by
Lm3;
then (b,d,a,c)
are_coplanar by
Lm2;
then
A4: (d,a,c,b)
are_coplanar by
Lm3;
then (a,c,b,d)
are_coplanar by
Lm3;
then (c,a,b,d)
are_coplanar by
Lm2;
then
A5: (a,b,d,c)
are_coplanar by
Lm3;
then
A6: (b,d,c,a)
are_coplanar by
Lm3;
then (d,c,a,b)
are_coplanar by
Lm3;
then (c,d,a,b)
are_coplanar by
Lm2;
then
A7: (d,a,b,c)
are_coplanar by
Lm3;
then (a,d,b,c)
are_coplanar by
Lm2;
then (d,b,c,a)
are_coplanar by
Lm3;
then (b,c,a,d)
are_coplanar by
Lm3;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
Lm2,
Lm3;
end;
Lm4: not (a,b,c)
are_collinear & (a,b,c,p)
are_coplanar & (a,b,c,q)
are_coplanar implies (a,b,p,q)
are_coplanar
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,c,p)
are_coplanar and
A3: (a,b,c,q)
are_coplanar ;
consider x such that
A4: (a,b,x)
are_collinear and
A5: (c,p,x)
are_collinear by
A2;
consider y such that
A6: (a,b,y)
are_collinear and
A7: (c,q,y)
are_collinear by
A3;
A8:
now
assume
A9: a
<> b;
(b,a,x)
are_collinear & (b,a,y)
are_collinear by
A4,
A6,
Th1;
then (b,x,y)
are_collinear by
A9,
COLLSP: 6;
then
A10: (x,y,b)
are_collinear by
Th1;
(a,x,y)
are_collinear by
A4,
A6,
A9,
COLLSP: 6;
then
A11: (x,y,a)
are_collinear by
Th1;
A12:
now
(p,c,x)
are_collinear by
A5,
Th1;
then
consider z such that
A13: (p,q,z)
are_collinear and
A14: (x,y,z)
are_collinear by
A7,
ANPROJ_2:def 9;
assume x
<> y;
then (a,b,z)
are_collinear by
A11,
A10,
A14,
ANPROJ_2:def 8;
hence thesis by
A13;
end;
now
assume x
= y;
then
A15: (x,c,q)
are_collinear by
A7,
Th1;
(x,c,p)
are_collinear by
A5,
Th1;
then (x,p,q)
are_collinear by
A1,
A4,
A15,
COLLSP: 6;
then (p,q,x)
are_collinear by
Th1;
hence thesis by
A4;
end;
hence thesis by
A12;
end;
now
assume a
= b;
then (a,b,p)
are_collinear by
ANPROJ_2:def 7;
hence thesis by
Th6;
end;
hence thesis by
A8;
end;
theorem ::
PROJDES1:8
Th8: not (a,b,c)
are_collinear & (a,b,c,p)
are_coplanar & (a,b,c,q)
are_coplanar & (a,b,c,r)
are_coplanar & (a,b,c,s)
are_coplanar implies (p,q,r,s)
are_coplanar
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,c,p)
are_coplanar and
A3: (a,b,c,q)
are_coplanar and
A4: (a,b,c,r)
are_coplanar and
A5: (a,b,c,s)
are_coplanar ;
A6: (a,b,p,q)
are_coplanar by
A1,
A2,
A3,
Lm4;
A7: (a,b,q,r)
are_coplanar by
A1,
A3,
A4,
Lm4;
A8: (a,b,p,r)
are_coplanar by
A1,
A2,
A4,
Lm4;
A9: (a,b,q,s)
are_coplanar by
A1,
A3,
A5,
Lm4;
A10:
now
A11: (q,a,b,r)
are_coplanar by
A7,
Th7;
assume
A12: not (a,b,q)
are_collinear ;
then
A13: not (q,a,b)
are_collinear by
Th1;
A14: (q,a,b,p)
are_coplanar by
A6,
Th7;
then
A15: (q,a,p,r)
are_coplanar by
A13,
A11,
Lm4;
A16: (q,a,b,s)
are_coplanar by
A9,
Th7;
then
A17: (q,a,p,s)
are_coplanar by
A13,
A14,
Lm4;
A18:
now
assume not (q,a,p)
are_collinear ;
then
A19: not (q,p,a)
are_collinear by
Th1;
(q,p,a,r)
are_coplanar & (q,p,a,s)
are_coplanar by
A15,
A17,
Th7;
then (q,p,r,s)
are_coplanar by
A19,
Lm4;
hence thesis by
Th7;
end;
A20: (q,a,r,s)
are_coplanar by
A13,
A11,
A16,
Lm4;
A21:
now
assume not (q,a,r)
are_collinear ;
then
A22: not (q,r,a)
are_collinear by
Th1;
(q,r,a,p)
are_coplanar & (q,r,a,s)
are_coplanar by
A15,
A20,
Th7;
then (q,r,p,s)
are_coplanar by
A22,
Lm4;
hence thesis by
Th7;
end;
A23: q
<> a by
A12,
ANPROJ_2:def 7;
now
assume (q,a,p)
are_collinear & (q,a,r)
are_collinear ;
then (q,p,r)
are_collinear by
A23,
COLLSP: 6;
then (p,q,r)
are_collinear by
Th1;
hence thesis by
Th6;
end;
hence thesis by
A18,
A21;
end;
A24: (a,b,r,s)
are_coplanar by
A1,
A4,
A5,
Lm4;
A25:
now
A26: (r,a,b,q)
are_coplanar by
A7,
Th7;
assume
A27: not (a,b,r)
are_collinear ;
then
A28: not (r,a,b)
are_collinear by
Th1;
A29: (r,a,b,p)
are_coplanar by
A8,
Th7;
then
A30: (r,a,p,q)
are_coplanar by
A28,
A26,
Lm4;
A31: (r,a,b,s)
are_coplanar by
A24,
Th7;
then
A32: (r,a,p,s)
are_coplanar by
A28,
A29,
Lm4;
A33:
now
assume not (r,a,p)
are_collinear ;
then
A34: not (r,p,a)
are_collinear by
Th1;
(r,p,a,q)
are_coplanar & (r,p,a,s)
are_coplanar by
A30,
A32,
Th7;
then (r,p,q,s)
are_coplanar by
A34,
Lm4;
hence thesis by
Th7;
end;
A35: (r,a,q,s)
are_coplanar by
A28,
A26,
A31,
Lm4;
A36:
now
assume not (r,a,q)
are_collinear ;
then
A37: not (r,q,a)
are_collinear by
Th1;
(r,q,a,p)
are_coplanar & (r,q,a,s)
are_coplanar by
A30,
A35,
Th7;
then (r,q,p,s)
are_coplanar by
A37,
Lm4;
hence thesis by
Th7;
end;
A38: r
<> a by
A27,
ANPROJ_2:def 7;
now
assume (r,a,p)
are_collinear & (r,a,q)
are_collinear ;
then (r,p,q)
are_collinear by
A38,
COLLSP: 6;
then (p,q,r)
are_collinear by
Th1;
hence thesis by
Th6;
end;
hence thesis by
A33,
A36;
end;
A39: (a,b,p,s)
are_coplanar by
A1,
A2,
A5,
Lm4;
A40:
now
A41: (p,a,b,r)
are_coplanar by
A8,
Th7;
assume
A42: not (a,b,p)
are_collinear ;
then
A43: not (p,a,b)
are_collinear by
Th1;
A44: (p,a,b,q)
are_coplanar by
A6,
Th7;
then
A45: (p,a,q,r)
are_coplanar by
A43,
A41,
Lm4;
A46: (p,a,b,s)
are_coplanar by
A39,
Th7;
then
A47: (p,a,q,s)
are_coplanar by
A43,
A44,
Lm4;
A48:
now
assume not (p,a,q)
are_collinear ;
then
A49: not (p,q,a)
are_collinear by
Th1;
(p,q,a,r)
are_coplanar & (p,q,a,s)
are_coplanar by
A45,
A47,
Th7;
hence thesis by
A49,
Lm4;
end;
A50: (p,a,r,s)
are_coplanar by
A43,
A41,
A46,
Lm4;
A51:
now
assume not (p,a,r)
are_collinear ;
then
A52: not (p,r,a)
are_collinear by
Th1;
(p,r,a,q)
are_coplanar & (p,r,a,s)
are_coplanar by
A45,
A50,
Th7;
then (p,r,q,s)
are_coplanar by
A52,
Lm4;
hence thesis by
Th7;
end;
A53: p
<> a by
A42,
ANPROJ_2:def 7;
now
assume (p,a,q)
are_collinear & (p,a,r)
are_collinear ;
then (p,q,r)
are_collinear by
A53,
COLLSP: 6;
hence thesis by
Th6;
end;
hence thesis by
A48,
A51;
end;
A54: a
<> b by
A1,
ANPROJ_2:def 7;
now
assume (a,b,p)
are_collinear & (a,b,q)
are_collinear & (a,b,r)
are_collinear ;
then (p,q,r)
are_collinear by
A54,
ANPROJ_2:def 8;
hence thesis by
Th6;
end;
hence thesis by
A40,
A10,
A25;
end;
Lm5: not (a,b,c)
are_collinear & (a,b,c,p)
are_coplanar & (a,b,c,q)
are_coplanar & (a,b,c,r)
are_coplanar implies (a,p,q,r)
are_coplanar
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: (a,b,c,p)
are_coplanar and
A3: (a,b,c,q)
are_coplanar and
A4: (a,b,c,r)
are_coplanar ;
now
A5:
now
(a,b,r,q)
are_coplanar by
A1,
A3,
A4,
Lm4;
then
A6: (a,r,b,q)
are_coplanar by
Th7;
(a,b,r,p)
are_coplanar by
A1,
A2,
A4,
Lm4;
then
A7: (a,r,b,p)
are_coplanar by
Th7;
assume not (a,r,b)
are_collinear ;
then (a,r,p,q)
are_coplanar by
A7,
A6,
Lm4;
hence thesis by
Th7;
end;
A8:
now
(a,b,p,r)
are_coplanar by
A1,
A2,
A4,
Lm4;
then
A9: (a,p,b,r)
are_coplanar by
Th7;
(a,b,p,q)
are_coplanar by
A1,
A2,
A3,
Lm4;
then
A10: (a,p,b,q)
are_coplanar by
Th7;
assume not (a,p,b)
are_collinear ;
hence thesis by
A10,
A9,
Lm4;
end;
A11:
now
(a,b,q,r)
are_coplanar by
A1,
A3,
A4,
Lm4;
then
A12: (a,q,b,r)
are_coplanar by
Th7;
(a,b,q,p)
are_coplanar by
A1,
A2,
A3,
Lm4;
then
A13: (a,q,b,p)
are_coplanar by
Th7;
assume not (a,q,b)
are_collinear ;
then (a,q,p,r)
are_coplanar by
A13,
A12,
Lm4;
hence thesis by
Th7;
end;
assume
A14: not (p,q,r)
are_collinear ;
a
<> b by
A1,
ANPROJ_2:def 7;
then not (a,b,p)
are_collinear or not (a,b,q)
are_collinear or not (a,b,r)
are_collinear by
A14,
ANPROJ_2:def 8;
hence thesis by
A8,
A11,
A5,
Th1;
end;
hence thesis by
Th6;
end;
theorem ::
PROJDES1:9
not (p,q,r)
are_collinear & (a,b,c,p)
are_coplanar & (a,b,c,r)
are_coplanar & (a,b,c,q)
are_coplanar & (p,q,r,s)
are_coplanar implies (a,b,c,s)
are_coplanar
proof
assume that
A1: not (p,q,r)
are_collinear and
A2: (a,b,c,p)
are_coplanar and
A3: (a,b,c,r)
are_coplanar and
A4: (a,b,c,q)
are_coplanar and
A5: (p,q,r,s)
are_coplanar ;
now
(b,b,a)
are_collinear by
ANPROJ_2:def 7;
then
A6: (b,a,c,b)
are_coplanar by
Th6;
A7: (b,a,c,r)
are_coplanar by
A3,
Th7;
assume
A8: not (a,b,c)
are_collinear ;
then
A9: not (b,a,c)
are_collinear by
Th1;
(a,p,q,r)
are_coplanar by
A2,
A3,
A4,
A8,
Lm5;
then
A10: (p,q,r,a)
are_coplanar by
Th7;
A11: (c,a,b,r)
are_coplanar by
A3,
Th7;
A12: not (c,a,b)
are_collinear by
A8,
Th1;
(c,a,b,p)
are_coplanar & (c,a,b,q)
are_coplanar by
A2,
A4,
Th7;
then (c,p,q,r)
are_coplanar by
A12,
A11,
Lm5;
then
A13: (p,q,r,c)
are_coplanar by
Th7;
(b,a,c,p)
are_coplanar & (b,a,c,q)
are_coplanar by
A2,
A4,
Th7;
then (p,q,r,b)
are_coplanar by
A9,
A6,
A7,
Th8;
hence thesis by
A1,
A5,
A10,
A13,
Th8;
end;
hence thesis by
Th6;
end;
Lm6: p
<> q & (p,q,r)
are_collinear & (a,b,p,q)
are_coplanar implies (a,b,p,r)
are_coplanar
proof
assume that
A1: p
<> q & (p,q,r)
are_collinear and
A2: (a,b,p,q)
are_coplanar ;
consider x such that
A3: (a,b,x)
are_collinear and
A4: (p,q,x)
are_collinear by
A2;
(p,r,x)
are_collinear by
A1,
A4,
COLLSP: 6;
hence thesis by
A3;
end;
theorem ::
PROJDES1:10
Th10: p
<> q & (p,q,r)
are_collinear & (a,b,c,p)
are_coplanar & (a,b,c,q)
are_coplanar implies (a,b,c,r)
are_coplanar
proof
assume that
A1: p
<> q and
A2: (p,q,r)
are_collinear and
A3: (a,b,c,p)
are_coplanar and
A4: (a,b,c,q)
are_coplanar ;
A5: (q,p,r)
are_collinear by
A2,
Th1;
now
assume
A6: not (a,b,c)
are_collinear ;
then (a,b,p,q)
are_coplanar by
A3,
A4,
Lm4;
then
A7: (a,b,p,r)
are_coplanar by
A1,
A2,
Lm6;
A8:
now
(b,a,b)
are_collinear by
ANPROJ_2:def 7;
then
A9: (a,b,p,b)
are_coplanar by
Th6;
(a,a,b)
are_collinear by
ANPROJ_2:def 7;
then
A10: (a,b,p,a)
are_coplanar by
Th6;
assume
A11: not (a,b,p)
are_collinear ;
(a,b,p,c)
are_coplanar by
A3,
Th7;
hence thesis by
A7,
A11,
A10,
A9,
Th8;
end;
(a,b,q,p)
are_coplanar by
A3,
A4,
A6,
Lm4;
then
A12: (a,b,q,r)
are_coplanar by
A1,
A5,
Lm6;
A13:
now
(b,a,b)
are_collinear by
ANPROJ_2:def 7;
then
A14: (a,b,q,b)
are_coplanar by
Th6;
(a,a,b)
are_collinear by
ANPROJ_2:def 7;
then
A15: (a,b,q,a)
are_coplanar by
Th6;
assume
A16: not (a,b,q)
are_collinear ;
(a,b,q,c)
are_coplanar by
A4,
Th7;
hence thesis by
A12,
A16,
A15,
A14,
Th8;
end;
now
assume (a,b,p)
are_collinear & (a,b,q)
are_collinear ;
then (a,b,r)
are_collinear by
A1,
A2,
COLLSP: 9;
then (r,a,b)
are_collinear by
Th1;
hence thesis by
Th6;
end;
hence thesis by
A8,
A13;
end;
hence thesis by
Th6;
end;
theorem ::
PROJDES1:11
not (a,b,c)
are_collinear & (a,b,c,p)
are_coplanar & (a,b,c,q)
are_coplanar & (a,b,c,r)
are_coplanar & (a,b,c,s)
are_coplanar implies ex x st (p,q,x)
are_collinear & (r,s,x)
are_collinear
proof
assume not (a,b,c)
are_collinear & (a,b,c,p)
are_coplanar & (a,b,c,q)
are_coplanar & (a,b,c,r)
are_coplanar & (a,b,c,s)
are_coplanar ;
then (p,q,r,s)
are_coplanar by
Th8;
hence thesis;
end;
theorem ::
PROJDES1:12
Th12: ex a, b, c, d st not (a,b,c,d)
are_coplanar
proof
consider a, b, c, d such that
A1: not (a,b,x)
are_collinear or not (c,d,x)
are_collinear by
ANPROJ_2:def 14;
take a, b, c, d;
thus thesis by
A1;
end;
theorem ::
PROJDES1:13
Th13: not (p,q,r)
are_collinear implies ex s st not (p,q,r,s)
are_coplanar
proof
assume
A1: not (p,q,r)
are_collinear ;
consider a, b, c, d such that
A2: not (a,b,c,d)
are_coplanar by
Th12;
assume
A3: not thesis;
then
A4: (p,q,r,c)
are_coplanar & (p,q,r,d)
are_coplanar ;
(p,q,r,a)
are_coplanar & (p,q,r,b)
are_coplanar by
A3;
hence contradiction by
A1,
A2,
A4,
Th8;
end;
theorem ::
PROJDES1:14
Th14: a
= b or a
= c or b
= c or a
= d or b
= d or d
= c implies (a,b,c,d)
are_coplanar
proof
A1:
now
assume a
= b or a
= c or b
= c;
then (a,b,c)
are_collinear by
ANPROJ_2:def 7;
hence thesis by
Th6;
end;
A2:
now
assume a
= d or b
= d;
then (d,a,b)
are_collinear by
ANPROJ_2:def 7;
hence thesis by
Th6;
end;
A3:
now
assume d
= c;
then (b,c,d)
are_collinear by
ANPROJ_2:def 7;
hence thesis by
Th6;
end;
assume a
= b or a
= c or b
= c or a
= d or b
= d or d
= c;
hence thesis by
A1,
A2,
A3;
end;
theorem ::
PROJDES1:15
Th15: not (a,b,c,o)
are_coplanar & (o,a,a9)
are_collinear & a
<> a9 implies not (a,b,c,a9)
are_coplanar
proof
assume that
A1: not (a,b,c,o)
are_coplanar and
A2: (o,a,a9)
are_collinear and
A3: a
<> a9;
assume
A4: not thesis;
A5: (a,b,c,a)
are_coplanar by
Th14;
(a,a9,o)
are_collinear by
A2,
Th1;
hence contradiction by
A1,
A3,
A4,
A5,
Th10;
end;
theorem ::
PROJDES1:16
Th16: not (a,b,c)
are_collinear & not (a9,b9,c9)
are_collinear & (a,b,c,p)
are_coplanar & (a,b,c,q)
are_coplanar & (a,b,c,r)
are_coplanar & (a9,b9,c9,p)
are_coplanar & (a9,b9,c9,q)
are_coplanar & (a9,b9,c9,r)
are_coplanar & not (a,b,c,a9)
are_coplanar implies (p,q,r)
are_collinear
proof
assume that
A1: not (a,b,c)
are_collinear and
A2: not (a9,b9,c9)
are_collinear and
A3: (a,b,c,p)
are_coplanar & (a,b,c,q)
are_coplanar & (a,b,c,r)
are_coplanar and
A4: (a9,b9,c9,p)
are_coplanar & (a9,b9,c9,q)
are_coplanar & (a9,b9,c9,r)
are_coplanar and
A5: not (a,b,c,a9)
are_coplanar ;
(a,b,c,a)
are_coplanar by
Th14;
then
A6: (p,q,r,a)
are_coplanar by
A1,
A3,
Th8;
(a9,b9,c9,a9)
are_coplanar by
Th14;
then
A7: (p,q,r,a9)
are_coplanar by
A2,
A4,
Th8;
(a,b,c,c)
are_coplanar by
Th14;
then
A8: (p,q,r,c)
are_coplanar by
A1,
A3,
Th8;
(a,b,c,b)
are_coplanar by
Th14;
then
A9: (p,q,r,b)
are_coplanar by
A1,
A3,
Th8;
assume not thesis;
hence contradiction by
A5,
A6,
A9,
A8,
A7,
Th8;
end;
theorem ::
PROJDES1:17
Th17: a
<> a9 & (o,a,a9)
are_collinear & not (a,b,c,o)
are_coplanar & not (a9,b9,c9)
are_collinear & (a,b,p)
are_collinear & (a9,b9,p)
are_collinear & (b,c,q)
are_collinear & (b9,c9,q)
are_collinear & (a,c,r)
are_collinear & (a9,c9,r)
are_collinear implies (p,q,r)
are_collinear
proof
assume that
A1: a
<> a9 & (o,a,a9)
are_collinear & not (a,b,c,o)
are_coplanar and
A2: not (a9,b9,c9)
are_collinear and
A3: (a,b,p)
are_collinear and
A4: (a9,b9,p)
are_collinear and
A5: (b,c,q)
are_collinear & (b9,c9,q)
are_collinear and
A6: (a,c,r)
are_collinear and
A7: (a9,c9,r)
are_collinear ;
A8: (a,b,c,q)
are_coplanar & (a9,b9,c9,q)
are_coplanar by
A5,
Th6;
(c9,r,a9)
are_collinear by
A7,
Th1;
then
A9: (a9,b9,c9,r)
are_coplanar by
Th6;
(p,a9,b9)
are_collinear by
A4,
Th1;
then
A10: (a9,b9,c9,p)
are_coplanar by
Th6;
(c,r,a)
are_collinear by
A6,
Th1;
then
A11: (a,b,c,r)
are_coplanar by
Th6;
(p,a,b)
are_collinear by
A3,
Th1;
then
A12: (a,b,c,p)
are_coplanar by
Th6;
( not (a,b,c,a9)
are_coplanar ) & not (a,b,c)
are_collinear by
A1,
Th6,
Th15;
hence thesis by
A2,
A12,
A11,
A10,
A8,
A9,
Th16;
end;
theorem ::
PROJDES1:18
Th18: not (a,b,c,d)
are_coplanar & (a,b,c,o)
are_coplanar & not (a,b,o)
are_collinear implies not (a,b,d,o)
are_coplanar
proof
assume that
A1: not (a,b,c,d)
are_coplanar and
A2: (a,b,c,o)
are_coplanar and
A3: not (a,b,o)
are_collinear ;
assume not thesis;
then
A4: (a,b,o,d)
are_coplanar by
Th7;
(a,b,o,c)
are_coplanar by
A2,
Th7;
hence contradiction by
A1,
A3,
A4,
Lm4;
end;
theorem ::
PROJDES1:19
Th19: not (a,b,c,o)
are_coplanar & (o,a,a9)
are_collinear & (o,b,b9)
are_collinear & (o,c,c9)
are_collinear & o
<> a9 & o
<> b9 & o
<> c9 implies not (a9,b9,c9)
are_collinear & not (a9,b9,c9,o)
are_coplanar
proof
assume that
A1: ( not (a,b,c,o)
are_coplanar ) & (o,a,a9)
are_collinear and
A2: (o,b,b9)
are_collinear and
A3: (o,c,c9)
are_collinear and
A4: o
<> a9 and
A5: o
<> b9 and
A6: o
<> c9;
(a,o,a9)
are_collinear & not (o,b,c,a)
are_coplanar by
A1,
Th1,
Th7;
then not (o,b,c,a9)
are_coplanar by
A4,
Th15;
then
A7: not (o,a9,b,c)
are_coplanar by
Th7;
(c,o,c9)
are_collinear by
A3,
Th1;
then not (o,a9,b,c9)
are_coplanar by
A6,
A7,
Th15;
then
A8: not (o,a9,c9,b)
are_coplanar by
Th7;
(b,o,b9)
are_collinear by
A2,
Th1;
then not (o,a9,c9,b9)
are_coplanar by
A5,
A8,
Th15;
then not (a9,b9,c9,o)
are_coplanar by
Th7;
hence thesis by
Th6;
end;
theorem ::
PROJDES1:20
Th20: (a,b,c,o)
are_coplanar & not (a,b,c,d)
are_coplanar & not (a,b,d,o)
are_coplanar & (o,d,d9)
are_collinear & (o,a,a9)
are_collinear & (o,b,b9)
are_collinear & (a,d,s)
are_collinear & (a9,d9,s)
are_collinear & (b,d,t)
are_collinear & (b9,d9,t)
are_collinear & (c,d,u)
are_collinear & o
<> a9 & d
<> d9 & o
<> b9 implies not (s,t,u)
are_collinear
proof
assume that
A1: (a,b,c,o)
are_coplanar and
A2: not (a,b,c,d)
are_coplanar and
A3: not (a,b,d,o)
are_coplanar and
A4: (o,d,d9)
are_collinear and
A5: (o,a,a9)
are_collinear and
A6: (o,b,b9)
are_collinear and
A7: (a,d,s)
are_collinear and
A8: (a9,d9,s)
are_collinear and
A9: (b,d,t)
are_collinear and
A10: (b9,d9,t)
are_collinear and
A11: (c,d,u)
are_collinear and
A12: o
<> a9 and
A13: d
<> d9 and
A14: o
<> b9;
A15: (d,b,c,b)
are_coplanar by
Th14;
A16: not (d,b,c,a)
are_coplanar by
A2,
Th7;
then
A17: not (d,b,c)
are_collinear by
Th6;
not (b,d,o)
are_collinear by
A3,
Th6;
then not (o,b,d)
are_collinear by
Th1;
then
A18: t
<> d by
A4,
A6,
A10,
A13,
A14,
Th5;
(d,b,t)
are_collinear & (d,c,u)
are_collinear by
A9,
A11,
Th1;
then
A19: t
<> u by
A17,
A18,
Lm1;
A20: (d,b,c,d)
are_coplanar by
Th14;
not (d,o,a)
are_collinear by
A3,
Th6;
then not (o,a,d)
are_collinear by
Th1;
then s
<> d by
A4,
A5,
A8,
A12,
A13,
Th5;
then
A21: not (d,b,c,s)
are_coplanar by
A7,
A16,
Th15;
b
<> d by
A2,
Th14;
then
A22: (d,b,c,t)
are_coplanar by
A9,
A15,
A20,
Th10;
(d,b,c,c)
are_coplanar by
Th14;
then (d,b,c,u)
are_coplanar by
A1,
A3,
A11,
A20,
Th10;
then not (t,u,s)
are_collinear by
A21,
A22,
A19,
Th10;
hence thesis by
Th1;
end;
definition
let FCPS, o, a, b, c;
::
PROJDES1:def2
pred o,a,b,c
constitute_a_quadrangle means not (a,b,c)
are_collinear & not (o,a,b)
are_collinear & not (o,b,c)
are_collinear & not (o,c,a)
are_collinear ;
end
Lm7: o
<> a9 & o
<> b9 & o
<> c9 & a
<> a9 & b
<> b9 & (o,a,b,c)
constitute_a_quadrangle & (o,a,a9)
are_collinear & (o,b,b9)
are_collinear & (o,c,c9)
are_collinear & (a,b,p)
are_collinear & (a9,b9,p)
are_collinear & (b,c,q)
are_collinear & (b9,c9,q)
are_collinear & (a,c,r)
are_collinear & (a9,c9,r)
are_collinear implies (p,q,r)
are_collinear
proof
assume that
A1: o
<> a9 and
A2: o
<> b9 and
A3: o
<> c9 and
A4: a
<> a9 and
A5: b
<> b9 and
A6: (o,a,b,c)
constitute_a_quadrangle and
A7: (o,a,a9)
are_collinear and
A8: (o,b,b9)
are_collinear and
A9: (o,c,c9)
are_collinear and
A10: (a,b,p)
are_collinear and
A11: (a9,b9,p)
are_collinear and
A12: (b,c,q)
are_collinear and
A13: (b9,c9,q)
are_collinear and
A14: (a,c,r)
are_collinear and
A15: (a9,c9,r)
are_collinear ;
A16: not (o,b,c)
are_collinear by
A6;
A17: not (a,b,c)
are_collinear by
A6;
A18: not (o,c,a)
are_collinear by
A6;
A19: not (o,a,b)
are_collinear by
A6;
A20:
now
assume
A21: (a,b,c,o)
are_coplanar ;
then
A22: (b,c,a,o)
are_coplanar by
Th7;
A23: (a,c,b,o)
are_coplanar by
A21,
Th7;
consider d such that
A24: not (a,b,c,d)
are_coplanar by
A17,
Th13;
A25: not (a,c,b,d)
are_coplanar by
A24,
Th7;
A26: (a,b,c,c)
are_coplanar by
Th14;
A27: not (b,c,a,d)
are_coplanar by
A24,
Th7;
consider d9 such that
A28: o
<> d9 and
A29: d
<> d9 and
A30: (o,d,d9)
are_collinear by
ANPROJ_2:def 10;
(a,o,a9)
are_collinear by
A7,
Th1;
then
consider s such that
A31: (a,d,s)
are_collinear and
A32: (a9,d9,s)
are_collinear by
A30,
ANPROJ_2:def 9;
A33: (d,a,s)
are_collinear by
A31,
Th1;
(b,o,b9)
are_collinear by
A8,
Th1;
then
consider t such that
A34: (b,d,t)
are_collinear & (b9,d9,t)
are_collinear by
A30,
ANPROJ_2:def 9;
(c,o,c9)
are_collinear by
A9,
Th1;
then
consider u such that
A35: (c,d,u)
are_collinear and
A36: (c9,d9,u)
are_collinear by
A30,
ANPROJ_2:def 9;
A37: (s,t,u,s)
are_coplanar by
Th14;
not (a,c,o)
are_collinear by
A18,
Th1;
then
A38: not (a,c,d,o)
are_coplanar by
A25,
A23,
Th18;
then not (a9,c9,d9)
are_collinear by
A1,
A3,
A7,
A9,
A28,
A30,
Th19;
then (r,u,s)
are_collinear by
A4,
A7,
A14,
A15,
A31,
A32,
A35,
A36,
A38,
Th17;
then
A39: (s,u,r)
are_collinear by
Th1;
not (a,b,o)
are_collinear by
A19,
Th1;
then
A40: not (a,b,d,o)
are_coplanar by
A21,
A24,
Th18;
then not (d,o,a)
are_collinear by
Th6;
then
A41: not (o,d,a)
are_collinear by
Th1;
A42: (s,t,u,u)
are_coplanar by
Th14;
not (b,c,o)
are_collinear by
A16,
Th1;
then
A43: not (b,c,d,o)
are_coplanar by
A27,
A22,
Th18;
then not (b9,c9,d9)
are_collinear by
A2,
A3,
A8,
A9,
A28,
A30,
Th19;
then (q,u,t)
are_collinear by
A5,
A8,
A12,
A13,
A34,
A35,
A36,
A43,
Th17;
then
A44: (u,t,q)
are_collinear by
Th1;
A45: (s,t,u,t)
are_coplanar by
Th14;
(d9,a9,s)
are_collinear by
A32,
Th1;
then s
<> a by
A4,
A7,
A28,
A30,
A41,
Th5;
then
A46: not (a,b,c,s)
are_coplanar by
A24,
A33,
Th15;
A47: (a,b,c,b)
are_coplanar by
Th14;
not (a9,b9,d9)
are_collinear by
A1,
A2,
A7,
A8,
A28,
A30,
A40,
Th19;
then (p,t,s)
are_collinear by
A4,
A7,
A10,
A11,
A31,
A32,
A34,
A40,
Th17;
then
A48: (t,s,p)
are_collinear by
Th1;
A49: (a,b,c,a)
are_coplanar by
Th14;
A50: not (s,t,u)
are_collinear by
A1,
A2,
A7,
A8,
A21,
A24,
A29,
A30,
A31,
A32,
A34,
A35,
A40,
Th20;
then t
<> u by
ANPROJ_2:def 7;
then
A51: (s,t,u,q)
are_coplanar by
A44,
A45,
A42,
Th10;
c
<> a by
A18,
ANPROJ_2:def 7;
then
A52: (a,b,c,r)
are_coplanar by
A14,
A49,
A26,
Th10;
b
<> c by
A16,
ANPROJ_2:def 7;
then
A53: (a,b,c,q)
are_coplanar by
A12,
A47,
A26,
Th10;
a
<> b by
A19,
ANPROJ_2:def 7;
then
A54: (a,b,c,p)
are_coplanar by
A10,
A49,
A47,
Th10;
u
<> s by
A50,
ANPROJ_2:def 7;
then
A55: (s,t,u,r)
are_coplanar by
A39,
A37,
A42,
Th10;
s
<> t by
A50,
ANPROJ_2:def 7;
then (s,t,u,p)
are_coplanar by
A48,
A37,
A45,
Th10;
hence thesis by
A17,
A50,
A46,
A54,
A53,
A52,
A51,
A55,
Th16;
end;
now
assume
A56: not (a,b,c,o)
are_coplanar ;
then not (a9,b9,c9)
are_collinear by
A1,
A2,
A3,
A7,
A8,
A9,
Th19;
hence thesis by
A4,
A7,
A10,
A11,
A12,
A13,
A14,
A15,
A56,
Th17;
end;
hence thesis by
A20;
end;
theorem ::
PROJDES1:21
Th21: not (o,a,b)
are_collinear & not (o,b,c)
are_collinear & not (o,a,c)
are_collinear & (o,a,a9)
are_collinear & (o,b,b9)
are_collinear & (o,c,c9)
are_collinear & (a,b,p)
are_collinear & (a9,b9,p)
are_collinear & a
<> a9 & (b,c,r)
are_collinear & (b9,c9,r)
are_collinear & (a,c,q)
are_collinear & b
<> b9 & (a9,c9,q)
are_collinear & o
<> a9 & o
<> b9 & o
<> c9 implies (r,q,p)
are_collinear
proof
assume that
A1: not (o,a,b)
are_collinear and
A2: not (o,b,c)
are_collinear and
A3: not (o,a,c)
are_collinear and
A4: (o,a,a9)
are_collinear & (o,b,b9)
are_collinear & (o,c,c9)
are_collinear and
A5: (a,b,p)
are_collinear and
A6: (a9,b9,p)
are_collinear & a
<> a9 and
A7: (b,c,r)
are_collinear and
A8: (b9,c9,r)
are_collinear and
A9: (a,c,q)
are_collinear and
A10: b
<> b9 & (a9,c9,q)
are_collinear & o
<> a9 & o
<> b9 & o
<> c9;
A11:
now
A12: b
<> c & (b,c,b)
are_collinear by
A2,
ANPROJ_2:def 7;
assume
A13: (a,b,c)
are_collinear ;
then (b,c,a)
are_collinear by
Th1;
then
A14: (a,b,r)
are_collinear by
A7,
A12,
ANPROJ_2:def 8;
A15: c
<> a & (a,c,a)
are_collinear by
A3,
ANPROJ_2:def 7;
(a,c,b)
are_collinear by
A13,
Th1;
then
A16: (a,b,q)
are_collinear by
A9,
A15,
ANPROJ_2:def 8;
a
<> b by
A1,
ANPROJ_2:def 7;
hence thesis by
A5,
A14,
A16,
ANPROJ_2:def 8;
end;
A17: not (o,c,a)
are_collinear by
A3,
Th1;
now
assume not (a,b,c)
are_collinear ;
then (o,a,b,c)
constitute_a_quadrangle by
A1,
A2,
A17;
then (p,r,q)
are_collinear by
A4,
A5,
A6,
A7,
A8,
A9,
A10,
Lm7;
hence thesis by
Th1;
end;
hence thesis by
A11;
end;
theorem ::
PROJDES1:22
Th22: for CS be
up-3-dimensional
CollProjectiveSpace holds CS is
Desarguesian
proof
let CS be
up-3-dimensional
CollProjectiveSpace;
for o,a,b,c,a9,b9,c9,r,q,p be
Element of CS st o
<> a9 & a
<> a9 & o
<> b9 & b
<> b9 & o
<> c9 & c
<> c9 & not (o,a,b)
are_collinear & not (o,a,c)
are_collinear & not (o,b,c)
are_collinear & (a,b,p)
are_collinear & (a9,b9,p)
are_collinear & (b,c,r)
are_collinear & (b9,c9,r)
are_collinear & (a,c,q)
are_collinear & (a9,c9,q)
are_collinear & (o,a,a9)
are_collinear & (o,b,b9)
are_collinear & (o,c,c9)
are_collinear holds (r,q,p)
are_collinear by
Th21;
hence thesis by
ANPROJ_2:def 12;
end;
registration
cluster ->
Desarguesian for
up-3-dimensional
CollProjectiveSpace;
correctness by
Th22;
end