realset3.miz
begin
theorem ::
REALSET3:1
Th1: for F be
Field holds ((
revf F)
. (
1. F))
= (
1. F)
proof
let F be
Field;
A1: (
1. F) is
Element of (
NonZero F) by
STRUCT_0: 2;
then ((
1. F)
* (
1. F))
= (
1. F) by
REALSET2: 6;
hence thesis by
A1,
REALSET2: 22;
end;
theorem ::
REALSET3:2
Th2: for F be
Field holds for a,b be
Element of (
NonZero F) holds ((
revf F)
. ((
omf F)
. (a,((
revf F)
. b))))
= ((
omf F)
. (b,((
revf F)
. a)))
proof
let F be
Field;
let a,b be
Element of (
NonZero F);
reconsider revfa = ((
revf F)
. a), revfb = ((
revf F)
. b) as
Element of (
NonZero F);
A1: ((
omf F)
. (a,((
revf F)
. b))) is
Element of (
NonZero F) by
REALSET2: 24;
A2: ((
omf F)
. (b,((
revf F)
. a))) is
Element of (
NonZero F) by
REALSET2: 24;
(revfb
* (b
* revfa))
= (revfa
* (b
* revfb)) by
REALSET2: 4
.= (revfa
* ((
omf F)
. (b,revfb)))
.= (revfa
* (
1. F)) by
REALSET2:def 6
.= ((
revf F)
. a) by
REALSET2: 6;
then ((a
* revfb)
* (b
* revfa))
= (a
* revfa) by
A2,
REALSET2: 4
.= ((
omf F)
. (a,revfa))
.= (
1. F) by
REALSET2:def 6;
hence thesis by
A1,
A2,
REALSET2: 22;
end;
theorem ::
REALSET3:3
Th3: for F be
Field, a,b be
Element of (
NonZero F) holds ((
revf F)
. ((
omf F)
. (a,b)))
= ((
omf F)
. (((
revf F)
. a),((
revf F)
. b)))
proof
let F be
Field;
let a,b be
Element of (
NonZero F);
reconsider revfa = ((
revf F)
. a), revfb = ((
revf F)
. b) as
Element of (
NonZero F);
thus ((
revf F)
. ((
omf F)
. (a,b)))
= ((
revf F)
. ((
omf F)
. (a,((
revf F)
. ((
revf F)
. b))))) by
REALSET2: 23
.= (revfb
* revfa) by
Th2
.= (revfa
* revfb)
.= ((
omf F)
. (((
revf F)
. a),((
revf F)
. b)));
end;
theorem ::
REALSET3:4
Th4: for F be
Field holds for a,b,c,d be
Element of F holds (a
- b)
= (c
- d) iff (a
+ d)
= (b
+ c)
proof
let F be
Field;
let a,b,c,d be
Element of F;
hereby
assume (a
- b)
= (c
- d);
then ((c
- d)
+ b)
= ((a
+ (
- b))
+ b)
.= (a
+ (b
- b)) by
RLVECT_1:def 3
.= (a
+ (
0. F)) by
RLVECT_1: 5
.= a by
RLVECT_1: 4;
hence (a
+ d)
= (((c
+ b)
+ (
- d))
+ d) by
RLVECT_1:def 3
.= ((c
+ b)
+ (d
- d)) by
RLVECT_1:def 3
.= ((c
+ b)
+ (
0. F)) by
RLVECT_1: 5
.= (b
+ c) by
RLVECT_1: 4;
end;
assume (a
+ d)
= (b
+ c);
then ((b
+ c)
- d)
= (a
+ (d
- d)) by
RLVECT_1:def 3
.= (a
+ (
0. F)) by
RLVECT_1: 5
.= a by
RLVECT_1: 4;
hence (a
- b)
= (((c
- d)
+ b)
- b) by
RLVECT_1:def 3
.= ((c
- d)
+ (b
- b)) by
RLVECT_1:def 3
.= ((c
- d)
+ (
0. F)) by
RLVECT_1: 5
.= (c
- d) by
RLVECT_1: 4;
end;
theorem ::
REALSET3:5
Th5: for F be
Field holds for a,c be
Element of F holds for b,d be
Element of (
NonZero F) holds ((
omf F)
. (a,((
revf F)
. b)))
= ((
omf F)
. (c,((
revf F)
. d))) iff ((
omf F)
. (a,d))
= ((
omf F)
. (b,c))
proof
let F be
Field;
let a,c be
Element of F;
let b,d be
Element of (
NonZero F);
A1: ((
omf F)
. (a,((
revf F)
. b)))
= ((
omf F)
. (c,((
revf F)
. d))) implies ((
omf F)
. (a,d))
= ((
omf F)
. (b,c))
proof
reconsider revfb = ((
revf F)
. b), revfd = ((
revf F)
. d) as
Element of (
NonZero F);
reconsider crevfd = (c
* revfd) as
Element of F;
assume
A2: ((
omf F)
. (a,((
revf F)
. b)))
= ((
omf F)
. (c,((
revf F)
. d)));
A3: c
= (c
* (
1. F)) by
REALSET2: 21
.= ((
omf F)
. (c,(d
* revfd))) by
REALSET2:def 6
.= (c
* (revfd
* d))
.= ((c
* revfd)
* d) by
REALSET2: 19;
a
= (a
* (
1. F)) by
REALSET2: 21
.= ((
omf F)
. (a,(b
* revfb))) by
REALSET2:def 6
.= (a
* (revfb
* b))
.= ((a
* revfb)
* b) by
REALSET2: 19
.= (b
* crevfd) by
A2
.= ((
omf F)
. (b,((
omf F)
. (c,((
revf F)
. d)))));
hence ((
omf F)
. (a,d))
= ((b
* (c
* revfd))
* d)
.= (b
* ((c
* revfd)
* d)) by
REALSET2: 19
.= ((
omf F)
. (b,c)) by
A3;
end;
((
omf F)
. (a,d))
= ((
omf F)
. (b,c)) implies ((
omf F)
. (a,((
revf F)
. b)))
= ((
omf F)
. (c,((
revf F)
. d)))
proof
reconsider revfd = ((
revf F)
. d), revfb = ((
revf F)
. b) as
Element of (
NonZero F);
reconsider crevfd = ((
omf F)
. (c,revfd)) as
Element of F;
assume
A4: ((
omf F)
. (a,d))
= ((
omf F)
. (b,c));
a
= (a
* (
1. F)) by
REALSET2: 21
.= ((
omf F)
. (a,(
1. F)))
.= (a
* (d
* revfd)) by
REALSET2:def 6
.= ((a
* d)
* revfd) by
REALSET2: 19
.= ((b
* c)
* revfd) by
A4
.= (b
* (c
* revfd)) by
REALSET2: 19
.= (crevfd
* b);
hence ((
omf F)
. (a,((
revf F)
. b)))
= ((crevfd
* b)
* revfb)
.= (crevfd
* (b
* revfb)) by
REALSET2: 19
.= (((
omf F)
. (c,revfd))
* (
1. F)) by
REALSET2:def 6
.= ((
omf F)
. (c,((
revf F)
. d))) by
REALSET2: 21;
end;
hence thesis by
A1;
end;
theorem ::
REALSET3:6
for F be
Field holds for a,b be
Element of F holds for c,d be
Element of (
NonZero F) holds ((
omf F)
. (((
omf F)
. (a,((
revf F)
. c))),((
omf F)
. (b,((
revf F)
. d)))))
= ((
omf F)
. (((
omf F)
. (a,b)),((
revf F)
. ((
omf F)
. (c,d)))))
proof
let F be
Field;
let a,b be
Element of F;
let c,d be
Element of (
NonZero F);
reconsider revfc = ((
revf F)
. c), revfd = ((
revf F)
. d) as
Element of (
NonZero F);
((
omf F)
. (c,d)) is
Element of (
NonZero F) by
REALSET2: 24;
then
reconsider revfcd = ((
revf F)
. (c
* d)) as
Element of F by
REALSET2: 24;
thus ((
omf F)
. (((
omf F)
. (a,((
revf F)
. c))),((
omf F)
. (b,((
revf F)
. d)))))
= ((a
* revfc)
* (b
* revfd))
.= (a
* (revfc
* (b
* revfd))) by
REALSET2: 19
.= (a
* (b
* (revfc
* revfd))) by
REALSET2: 19
.= ((
omf F)
. (a,((
omf F)
. (b,((
revf F)
. ((
omf F)
. (c,d))))))) by
Th3
.= (a
* (b
* revfcd))
.= ((a
* b)
* revfcd) by
REALSET2: 19
.= ((
omf F)
. (((
omf F)
. (a,b)),((
revf F)
. ((
omf F)
. (c,d)))));
end;
theorem ::
REALSET3:7
for F be
Field holds for a,b be
Element of F holds for c,d be
Element of (
NonZero F) holds (the
addF of F
. (((
omf F)
. (a,((
revf F)
. c))),((
omf F)
. (b,((
revf F)
. d)))))
= ((
omf F)
. ((the
addF of F
. (((
omf F)
. (a,d)),((
omf F)
. (b,c)))),((
revf F)
. ((
omf F)
. (c,d)))))
proof
let F be
Field;
let a,b be
Element of F;
let c,d be
Element of (
NonZero F);
reconsider revfd = ((
revf F)
. d) as
Element of F by
XBOOLE_0:def 5;
A1: a
= (a
* (
1. F)) by
REALSET2: 21
.= ((
omf F)
. (a,(
1. F)))
.= (a
* (d
* revfd)) by
REALSET2:def 6
.= ((a
* d)
* revfd) by
REALSET2: 19;
reconsider revfc = ((
revf F)
. c), revfd = ((
revf F)
. d) as
Element of (
NonZero F);
((
omf F)
. (c,d)) is
Element of (
NonZero F) by
REALSET2: 24;
then
reconsider revfcd = ((
revf F)
. (c
* d)) as
Element of F by
REALSET2: 24;
b
= (b
* (
1. F)) by
REALSET2: 21
.= ((
omf F)
. (b,(
1. F)))
.= (b
* (c
* revfc)) by
REALSET2:def 6
.= ((b
* c)
* revfc) by
REALSET2: 19;
then
A2: ((
omf F)
. (b,((
revf F)
. d)))
= (((b
* c)
* revfc)
* revfd)
.= ((b
* c)
* (revfc
* revfd)) by
REALSET2: 19
.= ((
omf F)
. (((
omf F)
. (b,c)),((
revf F)
. ((
omf F)
. (c,d))))) by
Th3;
((
omf F)
. (a,((
revf F)
. c)))
= (((a
* d)
* revfd)
* revfc) by
A1
.= ((a
* d)
* (revfd
* revfc)) by
REALSET2: 19
.= ((
omf F)
. (((
omf F)
. (a,d)),(revfc
* revfd)))
.= ((
omf F)
. (((
omf F)
. (a,d)),((
revf F)
. ((
omf F)
. (c,d))))) by
Th3;
hence (the
addF of F
. (((
omf F)
. (a,((
revf F)
. c))),((
omf F)
. (b,((
revf F)
. d)))))
= (((a
* d)
* revfcd)
+ ((b
* c)
* revfcd)) by
A2
.= (((a
* d)
+ (b
* c))
* revfcd) by
VECTSP_1:def 7
.= ((
omf F)
. ((the
addF of F
. (((
omf F)
. (a,d)),((
omf F)
. (b,c)))),((
revf F)
. ((
omf F)
. (c,d)))));
end;
definition
let F be
Field;
::
REALSET3:def1
func
osf (F) ->
BinOp of the
carrier of F means
:
Def1: for x,y be
Element of F holds (it
. (x,y))
= (the
addF of F
. (x,((
comp F)
. y)));
existence
proof
defpred
P[
Element of F,
Element of F,
set] means $3
= (the
addF of F
. ($1,((
comp F)
. $2)));
A1: for x be
Element of F holds for y be
Element of F holds ex z be
Element of F st
P[x, y, z];
ex f be
BinOp of the
carrier of F st for x be
Element of F holds for y be
Element of F holds
P[x, y, (f
. (x,y))] from
BINOP_1:sch 3(
A1);
then
consider S be
BinOp of the
carrier of F such that
A2: for x,y be
Element of F holds (S
. (x,y))
= (the
addF of F
. (x,((
comp F)
. y)));
take S;
thus thesis by
A2;
end;
uniqueness
proof
let S1,S2 be
BinOp of the
carrier of F such that
A3: for x,y be
Element of F holds (S1
. (x,y))
= (the
addF of F
. (x,((
comp F)
. y))) and
A4: for x,y be
Element of F holds (S2
. (x,y))
= (the
addF of F
. (x,((
comp F)
. y)));
now
let p be
object;
assume p
in
[:the
carrier of F, the
carrier of F:];
then
consider x,y be
object such that
A5: x
in the
carrier of F & y
in the
carrier of F and
A6: p
=
[x, y] by
ZFMISC_1:def 2;
thus (S1
. p)
= (S1
. (x,y)) by
A6
.= (the
addF of F
. (x,((
comp F)
. y))) by
A3,
A5
.= (S2
. (x,y)) by
A4,
A5
.= (S2
. p) by
A6;
end;
hence thesis by
FUNCT_2: 12;
end;
end
theorem ::
REALSET3:8
for F be
Field holds for x be
Element of F holds ((
osf F)
. (x,x))
= (
0. F)
proof
let F be
Field;
let x be
Element of F;
thus ((
osf F)
. (x,x))
= (the
addF of F
. (x,((
comp F)
. x))) by
Def1
.= (x
- x) by
VECTSP_1:def 13
.= (
0. F) by
RLVECT_1: 5;
end;
theorem ::
REALSET3:9
Th9: for F be
Field holds for a,b,c be
Element of F holds ((
omf F)
. (a,((
osf F)
. (b,c))))
= ((
osf F)
. (((
omf F)
. (a,b)),((
omf F)
. (a,c))))
proof
let F be
Field;
let a,b,c be
Element of F;
thus ((
omf F)
. (a,((
osf F)
. (b,c))))
= ((
omf F)
. (a,(the
addF of F
. (b,((
comp F)
. c))))) by
Def1
.= (a
* (b
- c)) by
VECTSP_1:def 13
.= ((a
* b)
- (a
* c)) by
REALSET2: 11
.= (the
addF of F
. (((
omf F)
. (a,b)),((
comp F)
. (a
* c)))) by
VECTSP_1:def 13
.= ((
osf F)
. (((
omf F)
. (a,b)),((
omf F)
. (a,c)))) by
Def1;
end;
theorem ::
REALSET3:10
for F be
Field holds for a,b,c be
Element of F holds ((
omf F)
. (((
osf F)
. (a,b)),c))
= ((
osf F)
. (((
omf F)
. (a,c)),((
omf F)
. (b,c))))
proof
let F be
Field;
let a,b,c be
Element of F;
thus ((
omf F)
. (((
osf F)
. (a,b)),c))
= (((
osf F)
. (a,b))
* c)
.= (c
* ((
osf F)
. (a,b)))
.= ((
omf F)
. (c,((
osf F)
. (a,b))))
.= ((
osf F)
. ((c
* a),(c
* b))) by
Th9
.= ((
osf F)
. ((a
* c),(b
* c)))
.= ((
osf F)
. (((
omf F)
. (a,c)),((
omf F)
. (b,c))));
end;
theorem ::
REALSET3:11
for F be
Field holds for a,b be
Element of F holds ((
osf F)
. (a,b))
= ((
comp F)
. ((
osf F)
. (b,a)))
proof
let F be
Field;
let a,b be
Element of F;
((
osf F)
. (a,b))
= (the
addF of F
. (a,((
comp F)
. b))) by
Def1
.= (a
+ (
- b)) by
VECTSP_1:def 13
.= (
- (b
- a)) by
RLVECT_1: 33
.= ((
comp F)
. (b
+ (
- a))) by
VECTSP_1:def 13
.= ((
comp F)
. (the
addF of F
. (b,((
comp F)
. a)))) by
VECTSP_1:def 13;
hence thesis by
Def1;
end;
theorem ::
REALSET3:12
for F be
Field holds for a,b be
Element of F holds ((
osf F)
. (((
comp F)
. a),b))
= ((
comp F)
. (the
addF of F
. (a,b)))
proof
let F be
Field;
let a,b be
Element of F;
thus ((
osf F)
. (((
comp F)
. a),b))
= (the
addF of F
. (((
comp F)
. a),((
comp F)
. b))) by
Def1
.= (the
addF of F
. ((
- a),((
comp F)
. b))) by
VECTSP_1:def 13
.= ((
- a)
+ (
- b)) by
VECTSP_1:def 13
.= (
- (a
+ b)) by
RLVECT_1: 31
.= ((
comp F)
. (the
addF of F
. (a,b))) by
VECTSP_1:def 13;
end;
theorem ::
REALSET3:13
Th13: for F be
Field holds for a,b,c,d be
Element of F holds ((
osf F)
. (a,b))
= ((
osf F)
. (c,d)) iff (a
+ d)
= (b
+ c)
proof
let F be
Field;
let a,b,c,d be
Element of F;
A1: ((
osf F)
. (c,d))
= (the
addF of F
. (c,((
comp F)
. d))) by
Def1
.= (c
- d) by
VECTSP_1:def 13;
((
osf F)
. (a,b))
= (the
addF of F
. (a,((
comp F)
. b))) by
Def1
.= (a
- b) by
VECTSP_1:def 13;
hence thesis by
A1,
Th4;
end;
theorem ::
REALSET3:14
for F be
Field holds for a be
Element of F holds ((
osf F)
. ((
0. F),a))
= ((
comp F)
. a)
proof
let F be
Field;
let a be
Element of F;
thus ((
osf F)
. ((
0. F),a))
= ((
0. F)
+ ((
comp F)
. a)) by
Def1
.= ((
comp F)
. a) by
REALSET2: 2;
end;
theorem ::
REALSET3:15
Th15: for F be
Field holds for a be
Element of F holds ((
osf F)
. (a,(
0. F)))
= a
proof
let F be
Field;
let a be
Element of F;
thus ((
osf F)
. (a,(
0. F)))
= (the
addF of F
. (a,((
comp F)
. (
0. F)))) by
Def1
.= (the
addF of F
. (a,(
- (
0. F)))) by
VECTSP_1:def 13
.= (a
+ (
0. F)) by
RLVECT_1: 12
.= a by
REALSET2: 2;
end;
theorem ::
REALSET3:16
for F be
Field holds for a,b,c be
Element of F holds (a
+ b)
= c iff ((
osf F)
. (c,a))
= b
proof
let F be
Field;
let a,b,c be
Element of F;
set d = (
0. F);
(c
+ d)
= c & ((
osf F)
. (b,d))
= b by
Th15,
REALSET2: 2;
hence thesis by
Th13;
end;
theorem ::
REALSET3:17
for F be
Field holds for a,b,c be
Element of F holds (a
+ b)
= c iff ((
osf F)
. (c,b))
= a
proof
let F be
Field;
let a,b,c be
Element of F;
set d = (
0. F);
(c
+ d)
= c & ((
osf F)
. (a,d))
= a by
Th15,
REALSET2: 2;
hence thesis by
Th13;
end;
theorem ::
REALSET3:18
for F be
Field holds for a,b,c be
Element of F holds ((
osf F)
. (a,((
osf F)
. (b,c))))
= (the
addF of F
. (((
osf F)
. (a,b)),c))
proof
let F be
Field;
let a,b,c be
Element of F;
thus ((
osf F)
. (a,((
osf F)
. (b,c))))
= ((
osf F)
. (a,(the
addF of F
. (b,((
comp F)
. c))))) by
Def1
.= (a
+ ((
comp F)
. (b
+ ((
comp F)
. c)))) by
Def1
.= (a
+ ((
comp F)
. (b
+ (
- c)))) by
VECTSP_1:def 13
.= (a
+ (
- (b
+ (
- c)))) by
VECTSP_1:def 13
.= (a
+ ((
- b)
+ (
- (
- c)))) by
RLVECT_1: 31
.= (a
+ (((
comp F)
. b)
+ (
- (
- c)))) by
VECTSP_1:def 13
.= (a
+ (((
comp F)
. b)
+ ((
comp F)
. (
- c)))) by
VECTSP_1:def 13
.= (a
+ (((
comp F)
. b)
+ ((
comp F)
. ((
comp F)
. c)))) by
VECTSP_1:def 13
.= (a
+ (((
comp F)
. b)
+ c)) by
REALSET2: 9
.= ((a
+ ((
comp F)
. b))
+ c) by
RLVECT_1:def 3
.= (the
addF of F
. (((
osf F)
. (a,b)),c)) by
Def1;
end;
theorem ::
REALSET3:19
for F be
Field holds for a,b,c be
Element of F holds ((
osf F)
. (a,(the
addF of F
. (b,c))))
= ((
osf F)
. (((
osf F)
. (a,b)),c))
proof
let F be
Field;
let a,b,c be
Element of F;
thus ((
osf F)
. (a,(the
addF of F
. (b,c))))
= (the
addF of F
. (a,((
comp F)
. (the
addF of F
. (b,c))))) by
Def1
.= (a
- (b
+ c)) by
VECTSP_1:def 13
.= ((a
- b)
- c) by
RLVECT_1: 27
.= (the
addF of F
. ((the
addF of F
. (a,(
- b))),((
comp F)
. c))) by
VECTSP_1:def 13
.= (the
addF of F
. ((the
addF of F
. (a,((
comp F)
. b))),((
comp F)
. c))) by
VECTSP_1:def 13
.= (the
addF of F
. (((
osf F)
. (a,b)),((
comp F)
. c))) by
Def1
.= ((
osf F)
. (((
osf F)
. (a,b)),c)) by
Def1;
end;
definition
let F be
Field;
::
REALSET3:def2
func
ovf (F) ->
Function of
[:the
carrier of F, (
NonZero F):], the
carrier of F means
:
Def2: for x be
Element of F, y be
Element of (
NonZero F) holds (it
. (x,y))
= ((
omf F)
. (x,((
revf F)
. y)));
existence
proof
defpred
P[
Element of F,
Element of (
NonZero F),
set] means $3
= ((
omf F)
. ($1,((
revf F)
. $2)));
now
let x be
Element of F, y be
Element of (
NonZero F);
((
revf F)
. y) is
Element of F by
XBOOLE_0:def 5;
then
reconsider z = ((
omf F)
. (x,((
revf F)
. y))) as
Element of F by
REALSET2: 10;
take z;
thus z
= ((
omf F)
. (x,((
revf F)
. y)));
end;
then
A1: for x be
Element of F holds for y be
Element of (
NonZero F) holds ex z be
Element of F st
P[x, y, z];
ex f be
Function of
[:the
carrier of F, (
NonZero F):], the
carrier of F st for x be
Element of F, y be
Element of (
NonZero F) holds
P[x, y, (f
. (x,y))] from
BINOP_1:sch 3(
A1);
hence thesis;
end;
uniqueness
proof
let S1,S2 be
Function of
[:the
carrier of F, (
NonZero F):], the
carrier of F such that
A2: for x be
Element of F, y be
Element of (
NonZero F) holds (S1
. (x,y))
= ((
omf F)
. (x,((
revf F)
. y))) and
A3: for x be
Element of F, y be
Element of (
NonZero F) holds (S2
. (x,y))
= ((
omf F)
. (x,((
revf F)
. y)));
now
let p be
object;
assume p
in
[:the
carrier of F, (
NonZero F):];
then
consider x,y be
object such that
A4: x
in the
carrier of F & y
in (
NonZero F) and
A5: p
=
[x, y] by
ZFMISC_1:def 2;
(S1
. (x,y))
= ((
omf F)
. (x,((
revf F)
. y))) by
A2,
A4
.= (S2
. (x,y)) by
A3,
A4;
hence (S1
. p)
= (S2
. p) by
A5;
end;
hence thesis by
FUNCT_2: 12;
end;
end
theorem ::
REALSET3:20
Th20: for F be
Field holds for x be
Element of (
NonZero F) holds ((
ovf F)
. (x,x))
= (
1. F)
proof
let F be
Field;
let x be
Element of (
NonZero F);
thus ((
ovf F)
. (x,x))
= ((
omf F)
. (x,((
revf F)
. x))) by
Def2
.= (
1. F) by
REALSET2:def 6;
end;
theorem ::
REALSET3:21
Th21: for F be
Field holds for a,b be
Element of F holds for c be
Element of (
NonZero F) holds ((
omf F)
. (a,((
ovf F)
. (b,c))))
= ((
ovf F)
. (((
omf F)
. (a,b)),c))
proof
let F be
Field;
let a,b be
Element of F;
let c be
Element of (
NonZero F);
reconsider revfc = ((
revf F)
. c) as
Element of F by
XBOOLE_0:def 5;
thus ((
omf F)
. (a,((
ovf F)
. (b,c))))
= (a
* (b
* revfc)) by
Def2
.= ((a
* b)
* revfc) by
REALSET2: 19
.= ((
ovf F)
. (((
omf F)
. (a,b)),c)) by
Def2;
end;
theorem ::
REALSET3:22
for F be
Field holds for a be
Element of (
NonZero F) holds ((
omf F)
. (a,((
ovf F)
. ((
1. F),a))))
= (
1. F) & ((
omf F)
. (((
ovf F)
. ((
1. F),a)),a))
= (
1. F)
proof
let F be
Field;
let a be
Element of (
NonZero F);
thus
A1: ((
omf F)
. (a,((
ovf F)
. ((
1. F),a))))
= ((
ovf F)
. ((a
* (
1. F)),a)) by
Th21
.= ((
ovf F)
. (a,a)) by
REALSET2: 21
.= (
1. F) by
Th20;
thus ((
omf F)
. (((
ovf F)
. ((
1. F),a)),a))
= (((
ovf F)
. ((
1. F),a))
* a)
.= (a
* ((
ovf F)
. ((
1. F),a)))
.= (
1. F) by
A1;
end;
theorem ::
REALSET3:23
for F be
Field holds for a,b be
Element of (
NonZero F) holds ((
ovf F)
. (a,b))
= ((
revf F)
. ((
ovf F)
. (b,a)))
proof
let F be
Field;
let a,b be
Element of (
NonZero F);
((
ovf F)
. (a,b))
= ((
omf F)
. (a,((
revf F)
. b))) by
Def2
.= ((
revf F)
. ((
omf F)
. (b,((
revf F)
. a)))) by
Th2;
hence thesis by
Def2;
end;
theorem ::
REALSET3:24
for F be
Field holds for a,b be
Element of (
NonZero F) holds ((
ovf F)
. (((
revf F)
. a),b))
= ((
revf F)
. ((
omf F)
. (a,b)))
proof
let F be
Field;
let a,b be
Element of (
NonZero F);
((
revf F)
. a) is
Element of F by
XBOOLE_0:def 5;
hence ((
ovf F)
. (((
revf F)
. a),b))
= ((
omf F)
. (((
revf F)
. a),((
revf F)
. b))) by
Def2
.= ((
revf F)
. ((
omf F)
. (a,b))) by
Th3;
end;
theorem ::
REALSET3:25
Th25: for F be
Field holds for a,c be
Element of F holds for b,d be
Element of (
NonZero F) holds ((
ovf F)
. (a,b))
= ((
ovf F)
. (c,d)) iff ((
omf F)
. (a,d))
= ((
omf F)
. (b,c))
proof
let F be
Field;
let a,c be
Element of F;
let b,d be
Element of (
NonZero F);
((
ovf F)
. (a,b))
= ((
omf F)
. (a,((
revf F)
. b))) & ((
ovf F)
. (c,d))
= ((
omf F)
. (c,((
revf F)
. d))) by
Def2;
hence thesis by
Th5;
end;
theorem ::
REALSET3:26
for F be
Field holds for a be
Element of (
NonZero F) holds ((
ovf F)
. ((
1. F),a))
= ((
revf F)
. a)
proof
let F be
Field;
let a be
Element of (
NonZero F);
reconsider revfa = ((
revf F)
. a) as
Element of (
NonZero F);
thus ((
ovf F)
. ((
1. F),a))
= ((
omf F)
. ((
1. F),((
revf F)
. a))) by
Def2
.= ((
1. F)
* revfa)
.= ((
revf F)
. a) by
REALSET2: 6;
end;
theorem ::
REALSET3:27
Th27: for F be
Field holds for a be
Element of F holds ((
ovf F)
. (a,(
1. F)))
= a
proof
let F be
Field;
let a be
Element of F;
(
1. F) is
Element of (
NonZero F) by
STRUCT_0: 2;
hence ((
ovf F)
. (a,(
1. F)))
= ((
omf F)
. (a,((
revf F)
. (
1. F)))) by
Def2
.= (a
* (
1. F)) by
Th1
.= a by
REALSET2: 21;
end;
theorem ::
REALSET3:28
for F be
Field holds for a be
Element of (
NonZero F) holds for b,c be
Element of F holds ((
omf F)
. (a,b))
= c iff ((
ovf F)
. (c,a))
= b
proof
let F be
Field;
let a be
Element of (
NonZero F);
let b,c be
Element of F;
set d = (
1. F);
A1: ((
omf F)
. (c,d))
= (c
* (
1. F))
.= c by
REALSET2: 21;
(
1. F) is
Element of (
NonZero F) & ((
ovf F)
. (b,d))
= b by
Th27,
STRUCT_0: 2;
hence thesis by
A1,
Th25;
end;
theorem ::
REALSET3:29
for F be
Field holds for a,c be
Element of F holds for b be
Element of (
NonZero F) holds ((
omf F)
. (a,b))
= c iff ((
ovf F)
. (c,b))
= a
proof
let F be
Field;
let a,c be
Element of F;
let b be
Element of (
NonZero F);
set d = (
1. F);
A1: ((
omf F)
. (c,d))
= (c
* (
1. F))
.= c by
REALSET2: 21;
A2: ((
omf F)
. (b,a))
= (b
* a)
.= (a
* b)
.= ((
omf F)
. (a,b));
((
ovf F)
. (a,d))
= a & (
1. F) is
Element of (
NonZero F) by
Th27,
STRUCT_0: 2;
hence thesis by
A1,
A2,
Th25;
end;
theorem ::
REALSET3:30
for F be
Field holds for a be
Element of F holds for b,c be
Element of (
NonZero F) holds ((
ovf F)
. (a,((
ovf F)
. (b,c))))
= ((
omf F)
. (((
ovf F)
. (a,b)),c))
proof
let F be
Field;
let a be
Element of F;
let b,c be
Element of (
NonZero F);
A1: ((
omf F)
. (b,((
revf F)
. c))) is
Element of (
NonZero F) by
REALSET2: 24;
reconsider revfb = ((
revf F)
. b) as
Element of F by
XBOOLE_0:def 5;
thus ((
ovf F)
. (a,((
ovf F)
. (b,c))))
= ((
ovf F)
. (a,((
omf F)
. (b,((
revf F)
. c))))) by
Def2
.= ((
omf F)
. (a,((
revf F)
. ((
omf F)
. (b,((
revf F)
. c)))))) by
A1,
Def2
.= ((
omf F)
. (a,((
omf F)
. (((
revf F)
. b),((
revf F)
. ((
revf F)
. c)))))) by
Th3
.= (a
* (revfb
* c)) by
REALSET2: 23
.= ((a
* revfb)
* c) by
REALSET2: 19
.= ((
omf F)
. (((
ovf F)
. (a,b)),c)) by
Def2;
end;
theorem ::
REALSET3:31
for F be
Field holds for a be
Element of F holds for b,c be
Element of (
NonZero F) holds ((
ovf F)
. (a,((
omf F)
. (b,c))))
= ((
ovf F)
. (((
ovf F)
. (a,b)),c))
proof
let F be
Field;
let a be
Element of F;
let b,c be
Element of (
NonZero F);
reconsider revfb = ((
revf F)
. b), revfc = ((
revf F)
. c) as
Element of F by
XBOOLE_0:def 5;
((
omf F)
. (b,c)) is
Element of (
NonZero F) by
REALSET2: 24;
hence ((
ovf F)
. (a,((
omf F)
. (b,c))))
= ((
omf F)
. (a,((
revf F)
. ((
omf F)
. (b,c))))) by
Def2
.= (a
* (revfb
* revfc)) by
Th3
.= ((a
* revfb)
* revfc) by
REALSET2: 19
.= ((
omf F)
. (((
ovf F)
. (a,b)),((
revf F)
. c))) by
Def2
.= ((
ovf F)
. (((
ovf F)
. (a,b)),c)) by
Def2;
end;